1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/miscdevice.h> 18 #include <linux/mutex.h> 19 #include <linux/poll.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/kthread.h> 25 #include <linux/cgroup.h> 26 #include <linux/module.h> 27 #include <linux/sort.h> 28 #include <linux/sched/mm.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/vhost_task.h> 31 #include <linux/interval_tree_generic.h> 32 #include <linux/nospec.h> 33 #include <linux/kcov.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 static bool fork_from_owner_default = VHOST_FORK_OWNER_TASK; 46 47 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL 48 module_param(fork_from_owner_default, bool, 0444); 49 MODULE_PARM_DESC(fork_from_owner_default, 50 "Set task mode as the default(default: Y)"); 51 #endif 52 53 enum { 54 VHOST_MEMORY_F_LOG = 0x1, 55 }; 56 57 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 58 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 59 60 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 61 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 62 { 63 vq->user_be = !virtio_legacy_is_little_endian(); 64 } 65 66 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 67 { 68 vq->user_be = true; 69 } 70 71 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 72 { 73 vq->user_be = false; 74 } 75 76 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 77 { 78 struct vhost_vring_state s; 79 80 if (vq->private_data) 81 return -EBUSY; 82 83 if (copy_from_user(&s, argp, sizeof(s))) 84 return -EFAULT; 85 86 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 87 s.num != VHOST_VRING_BIG_ENDIAN) 88 return -EINVAL; 89 90 if (s.num == VHOST_VRING_BIG_ENDIAN) 91 vhost_enable_cross_endian_big(vq); 92 else 93 vhost_enable_cross_endian_little(vq); 94 95 return 0; 96 } 97 98 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 99 int __user *argp) 100 { 101 struct vhost_vring_state s = { 102 .index = idx, 103 .num = vq->user_be 104 }; 105 106 if (copy_to_user(argp, &s, sizeof(s))) 107 return -EFAULT; 108 109 return 0; 110 } 111 112 static void vhost_init_is_le(struct vhost_virtqueue *vq) 113 { 114 /* Note for legacy virtio: user_be is initialized at reset time 115 * according to the host endianness. If userspace does not set an 116 * explicit endianness, the default behavior is native endian, as 117 * expected by legacy virtio. 118 */ 119 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 120 } 121 #else 122 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 123 { 124 } 125 126 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 127 { 128 return -ENOIOCTLCMD; 129 } 130 131 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 132 int __user *argp) 133 { 134 return -ENOIOCTLCMD; 135 } 136 137 static void vhost_init_is_le(struct vhost_virtqueue *vq) 138 { 139 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 140 || virtio_legacy_is_little_endian(); 141 } 142 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 143 144 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 145 { 146 vhost_init_is_le(vq); 147 } 148 149 struct vhost_flush_struct { 150 struct vhost_work work; 151 struct completion wait_event; 152 }; 153 154 static void vhost_flush_work(struct vhost_work *work) 155 { 156 struct vhost_flush_struct *s; 157 158 s = container_of(work, struct vhost_flush_struct, work); 159 complete(&s->wait_event); 160 } 161 162 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 163 poll_table *pt) 164 { 165 struct vhost_poll *poll; 166 167 poll = container_of(pt, struct vhost_poll, table); 168 poll->wqh = wqh; 169 add_wait_queue(wqh, &poll->wait); 170 } 171 172 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 173 void *key) 174 { 175 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 176 struct vhost_work *work = &poll->work; 177 178 if (!(key_to_poll(key) & poll->mask)) 179 return 0; 180 181 if (!poll->dev->use_worker) 182 work->fn(work); 183 else 184 vhost_poll_queue(poll); 185 186 return 0; 187 } 188 189 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 190 { 191 clear_bit(VHOST_WORK_QUEUED, &work->flags); 192 work->fn = fn; 193 } 194 EXPORT_SYMBOL_GPL(vhost_work_init); 195 196 /* Init poll structure */ 197 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 198 __poll_t mask, struct vhost_dev *dev, 199 struct vhost_virtqueue *vq) 200 { 201 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 202 init_poll_funcptr(&poll->table, vhost_poll_func); 203 poll->mask = mask; 204 poll->dev = dev; 205 poll->wqh = NULL; 206 poll->vq = vq; 207 208 vhost_work_init(&poll->work, fn); 209 } 210 EXPORT_SYMBOL_GPL(vhost_poll_init); 211 212 /* Start polling a file. We add ourselves to file's wait queue. The caller must 213 * keep a reference to a file until after vhost_poll_stop is called. */ 214 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 215 { 216 __poll_t mask; 217 218 if (poll->wqh) 219 return 0; 220 221 mask = vfs_poll(file, &poll->table); 222 if (mask) 223 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 224 if (mask & EPOLLERR) { 225 vhost_poll_stop(poll); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(vhost_poll_start); 232 233 /* Stop polling a file. After this function returns, it becomes safe to drop the 234 * file reference. You must also flush afterwards. */ 235 void vhost_poll_stop(struct vhost_poll *poll) 236 { 237 if (poll->wqh) { 238 remove_wait_queue(poll->wqh, &poll->wait); 239 poll->wqh = NULL; 240 } 241 } 242 EXPORT_SYMBOL_GPL(vhost_poll_stop); 243 244 static void vhost_worker_queue(struct vhost_worker *worker, 245 struct vhost_work *work) 246 { 247 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 248 /* We can only add the work to the list after we're 249 * sure it was not in the list. 250 * test_and_set_bit() implies a memory barrier. 251 */ 252 llist_add(&work->node, &worker->work_list); 253 worker->ops->wakeup(worker); 254 } 255 } 256 257 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work) 258 { 259 struct vhost_worker *worker; 260 bool queued = false; 261 262 rcu_read_lock(); 263 worker = rcu_dereference(vq->worker); 264 if (worker) { 265 queued = true; 266 vhost_worker_queue(worker, work); 267 } 268 rcu_read_unlock(); 269 270 return queued; 271 } 272 EXPORT_SYMBOL_GPL(vhost_vq_work_queue); 273 274 /** 275 * __vhost_worker_flush - flush a worker 276 * @worker: worker to flush 277 * 278 * The worker's flush_mutex must be held. 279 */ 280 static void __vhost_worker_flush(struct vhost_worker *worker) 281 { 282 struct vhost_flush_struct flush; 283 284 if (!worker->attachment_cnt || worker->killed) 285 return; 286 287 init_completion(&flush.wait_event); 288 vhost_work_init(&flush.work, vhost_flush_work); 289 290 vhost_worker_queue(worker, &flush.work); 291 /* 292 * Drop mutex in case our worker is killed and it needs to take the 293 * mutex to force cleanup. 294 */ 295 mutex_unlock(&worker->mutex); 296 wait_for_completion(&flush.wait_event); 297 mutex_lock(&worker->mutex); 298 } 299 300 static void vhost_worker_flush(struct vhost_worker *worker) 301 { 302 mutex_lock(&worker->mutex); 303 __vhost_worker_flush(worker); 304 mutex_unlock(&worker->mutex); 305 } 306 307 void vhost_dev_flush(struct vhost_dev *dev) 308 { 309 struct vhost_worker *worker; 310 unsigned long i; 311 312 xa_for_each(&dev->worker_xa, i, worker) 313 vhost_worker_flush(worker); 314 } 315 EXPORT_SYMBOL_GPL(vhost_dev_flush); 316 317 /* A lockless hint for busy polling code to exit the loop */ 318 bool vhost_vq_has_work(struct vhost_virtqueue *vq) 319 { 320 struct vhost_worker *worker; 321 bool has_work = false; 322 323 rcu_read_lock(); 324 worker = rcu_dereference(vq->worker); 325 if (worker && !llist_empty(&worker->work_list)) 326 has_work = true; 327 rcu_read_unlock(); 328 329 return has_work; 330 } 331 EXPORT_SYMBOL_GPL(vhost_vq_has_work); 332 333 void vhost_poll_queue(struct vhost_poll *poll) 334 { 335 vhost_vq_work_queue(poll->vq, &poll->work); 336 } 337 EXPORT_SYMBOL_GPL(vhost_poll_queue); 338 339 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 340 { 341 int j; 342 343 for (j = 0; j < VHOST_NUM_ADDRS; j++) 344 vq->meta_iotlb[j] = NULL; 345 } 346 347 static void vhost_vq_meta_reset(struct vhost_dev *d) 348 { 349 int i; 350 351 for (i = 0; i < d->nvqs; ++i) 352 __vhost_vq_meta_reset(d->vqs[i]); 353 } 354 355 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx) 356 { 357 call_ctx->ctx = NULL; 358 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer)); 359 } 360 361 bool vhost_vq_is_setup(struct vhost_virtqueue *vq) 362 { 363 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq); 364 } 365 EXPORT_SYMBOL_GPL(vhost_vq_is_setup); 366 367 static void vhost_vq_reset(struct vhost_dev *dev, 368 struct vhost_virtqueue *vq) 369 { 370 vq->num = 1; 371 vq->desc = NULL; 372 vq->avail = NULL; 373 vq->used = NULL; 374 vq->last_avail_idx = 0; 375 vq->next_avail_head = 0; 376 vq->avail_idx = 0; 377 vq->last_used_idx = 0; 378 vq->signalled_used = 0; 379 vq->signalled_used_valid = false; 380 vq->used_flags = 0; 381 vq->log_used = false; 382 vq->log_addr = -1ull; 383 vq->private_data = NULL; 384 virtio_features_zero(vq->acked_features_array); 385 vq->acked_backend_features = 0; 386 vq->log_base = NULL; 387 vq->error_ctx = NULL; 388 vq->kick = NULL; 389 vq->log_ctx = NULL; 390 vhost_disable_cross_endian(vq); 391 vhost_reset_is_le(vq); 392 vq->busyloop_timeout = 0; 393 vq->umem = NULL; 394 vq->iotlb = NULL; 395 rcu_assign_pointer(vq->worker, NULL); 396 vhost_vring_call_reset(&vq->call_ctx); 397 __vhost_vq_meta_reset(vq); 398 } 399 400 static int vhost_run_work_kthread_list(void *data) 401 { 402 struct vhost_worker *worker = data; 403 struct vhost_work *work, *work_next; 404 struct vhost_dev *dev = worker->dev; 405 struct llist_node *node; 406 407 kthread_use_mm(dev->mm); 408 409 for (;;) { 410 /* mb paired w/ kthread_stop */ 411 set_current_state(TASK_INTERRUPTIBLE); 412 413 if (kthread_should_stop()) { 414 __set_current_state(TASK_RUNNING); 415 break; 416 } 417 node = llist_del_all(&worker->work_list); 418 if (!node) 419 schedule(); 420 421 node = llist_reverse_order(node); 422 /* make sure flag is seen after deletion */ 423 smp_wmb(); 424 llist_for_each_entry_safe(work, work_next, node, node) { 425 clear_bit(VHOST_WORK_QUEUED, &work->flags); 426 __set_current_state(TASK_RUNNING); 427 kcov_remote_start_common(worker->kcov_handle); 428 work->fn(work); 429 kcov_remote_stop(); 430 cond_resched(); 431 } 432 } 433 kthread_unuse_mm(dev->mm); 434 435 return 0; 436 } 437 438 static bool vhost_run_work_list(void *data) 439 { 440 struct vhost_worker *worker = data; 441 struct vhost_work *work, *work_next; 442 struct llist_node *node; 443 444 node = llist_del_all(&worker->work_list); 445 if (node) { 446 __set_current_state(TASK_RUNNING); 447 448 node = llist_reverse_order(node); 449 /* make sure flag is seen after deletion */ 450 smp_wmb(); 451 llist_for_each_entry_safe(work, work_next, node, node) { 452 clear_bit(VHOST_WORK_QUEUED, &work->flags); 453 kcov_remote_start_common(worker->kcov_handle); 454 work->fn(work); 455 kcov_remote_stop(); 456 cond_resched(); 457 } 458 } 459 460 return !!node; 461 } 462 463 static void vhost_worker_killed(void *data) 464 { 465 struct vhost_worker *worker = data; 466 struct vhost_dev *dev = worker->dev; 467 struct vhost_virtqueue *vq; 468 int i, attach_cnt = 0; 469 470 mutex_lock(&worker->mutex); 471 worker->killed = true; 472 473 for (i = 0; i < dev->nvqs; i++) { 474 vq = dev->vqs[i]; 475 476 mutex_lock(&vq->mutex); 477 if (worker == 478 rcu_dereference_check(vq->worker, 479 lockdep_is_held(&vq->mutex))) { 480 rcu_assign_pointer(vq->worker, NULL); 481 attach_cnt++; 482 } 483 mutex_unlock(&vq->mutex); 484 } 485 486 worker->attachment_cnt -= attach_cnt; 487 if (attach_cnt) 488 synchronize_rcu(); 489 /* 490 * Finish vhost_worker_flush calls and any other works that snuck in 491 * before the synchronize_rcu. 492 */ 493 vhost_run_work_list(worker); 494 mutex_unlock(&worker->mutex); 495 } 496 497 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 498 { 499 kfree(vq->indirect); 500 vq->indirect = NULL; 501 kfree(vq->log); 502 vq->log = NULL; 503 kfree(vq->heads); 504 vq->heads = NULL; 505 kfree(vq->nheads); 506 vq->nheads = NULL; 507 } 508 509 /* Helper to allocate iovec buffers for all vqs. */ 510 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 511 { 512 struct vhost_virtqueue *vq; 513 int i; 514 515 for (i = 0; i < dev->nvqs; ++i) { 516 vq = dev->vqs[i]; 517 vq->indirect = kmalloc_array(UIO_MAXIOV, 518 sizeof(*vq->indirect), 519 GFP_KERNEL); 520 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 521 GFP_KERNEL); 522 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 523 GFP_KERNEL); 524 vq->nheads = kmalloc_array(dev->iov_limit, sizeof(*vq->nheads), 525 GFP_KERNEL); 526 if (!vq->indirect || !vq->log || !vq->heads || !vq->nheads) 527 goto err_nomem; 528 } 529 return 0; 530 531 err_nomem: 532 for (; i >= 0; --i) 533 vhost_vq_free_iovecs(dev->vqs[i]); 534 return -ENOMEM; 535 } 536 537 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 538 { 539 int i; 540 541 for (i = 0; i < dev->nvqs; ++i) 542 vhost_vq_free_iovecs(dev->vqs[i]); 543 } 544 545 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 546 int pkts, int total_len) 547 { 548 struct vhost_dev *dev = vq->dev; 549 550 if ((dev->byte_weight && total_len >= dev->byte_weight) || 551 pkts >= dev->weight) { 552 vhost_poll_queue(&vq->poll); 553 return true; 554 } 555 556 return false; 557 } 558 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 559 560 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, 561 unsigned int num) 562 { 563 size_t event __maybe_unused = 564 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 565 566 return size_add(struct_size(vq->avail, ring, num), event); 567 } 568 569 static size_t vhost_get_used_size(struct vhost_virtqueue *vq, 570 unsigned int num) 571 { 572 size_t event __maybe_unused = 573 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 574 575 return size_add(struct_size(vq->used, ring, num), event); 576 } 577 578 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, 579 unsigned int num) 580 { 581 return sizeof(*vq->desc) * num; 582 } 583 584 void vhost_dev_init(struct vhost_dev *dev, 585 struct vhost_virtqueue **vqs, int nvqs, 586 int iov_limit, int weight, int byte_weight, 587 bool use_worker, 588 int (*msg_handler)(struct vhost_dev *dev, u32 asid, 589 struct vhost_iotlb_msg *msg)) 590 { 591 struct vhost_virtqueue *vq; 592 int i; 593 594 dev->vqs = vqs; 595 dev->nvqs = nvqs; 596 mutex_init(&dev->mutex); 597 dev->log_ctx = NULL; 598 dev->umem = NULL; 599 dev->iotlb = NULL; 600 dev->mm = NULL; 601 dev->iov_limit = iov_limit; 602 dev->weight = weight; 603 dev->byte_weight = byte_weight; 604 dev->use_worker = use_worker; 605 dev->msg_handler = msg_handler; 606 dev->fork_owner = fork_from_owner_default; 607 init_waitqueue_head(&dev->wait); 608 INIT_LIST_HEAD(&dev->read_list); 609 INIT_LIST_HEAD(&dev->pending_list); 610 spin_lock_init(&dev->iotlb_lock); 611 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC); 612 613 for (i = 0; i < dev->nvqs; ++i) { 614 vq = dev->vqs[i]; 615 vq->log = NULL; 616 vq->indirect = NULL; 617 vq->heads = NULL; 618 vq->nheads = NULL; 619 vq->dev = dev; 620 mutex_init(&vq->mutex); 621 vhost_vq_reset(dev, vq); 622 if (vq->handle_kick) 623 vhost_poll_init(&vq->poll, vq->handle_kick, 624 EPOLLIN, dev, vq); 625 } 626 } 627 EXPORT_SYMBOL_GPL(vhost_dev_init); 628 629 /* Caller should have device mutex */ 630 long vhost_dev_check_owner(struct vhost_dev *dev) 631 { 632 /* Are you the owner? If not, I don't think you mean to do that */ 633 return dev->mm == current->mm ? 0 : -EPERM; 634 } 635 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 636 637 struct vhost_attach_cgroups_struct { 638 struct vhost_work work; 639 struct task_struct *owner; 640 int ret; 641 }; 642 643 static void vhost_attach_cgroups_work(struct vhost_work *work) 644 { 645 struct vhost_attach_cgroups_struct *s; 646 647 s = container_of(work, struct vhost_attach_cgroups_struct, work); 648 s->ret = cgroup_attach_task_all(s->owner, current); 649 } 650 651 static int vhost_attach_task_to_cgroups(struct vhost_worker *worker) 652 { 653 struct vhost_attach_cgroups_struct attach; 654 int saved_cnt; 655 656 attach.owner = current; 657 658 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 659 vhost_worker_queue(worker, &attach.work); 660 661 mutex_lock(&worker->mutex); 662 663 /* 664 * Bypass attachment_cnt check in __vhost_worker_flush: 665 * Temporarily change it to INT_MAX to bypass the check 666 */ 667 saved_cnt = worker->attachment_cnt; 668 worker->attachment_cnt = INT_MAX; 669 __vhost_worker_flush(worker); 670 worker->attachment_cnt = saved_cnt; 671 672 mutex_unlock(&worker->mutex); 673 674 return attach.ret; 675 } 676 677 /* Caller should have device mutex */ 678 bool vhost_dev_has_owner(struct vhost_dev *dev) 679 { 680 return dev->mm; 681 } 682 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 683 684 static void vhost_attach_mm(struct vhost_dev *dev) 685 { 686 /* No owner, become one */ 687 if (dev->use_worker) { 688 dev->mm = get_task_mm(current); 689 } else { 690 /* vDPA device does not use worker thread, so there's 691 * no need to hold the address space for mm. This helps 692 * to avoid deadlock in the case of mmap() which may 693 * hold the refcnt of the file and depends on release 694 * method to remove vma. 695 */ 696 dev->mm = current->mm; 697 mmgrab(dev->mm); 698 } 699 } 700 701 static void vhost_detach_mm(struct vhost_dev *dev) 702 { 703 if (!dev->mm) 704 return; 705 706 if (dev->use_worker) 707 mmput(dev->mm); 708 else 709 mmdrop(dev->mm); 710 711 dev->mm = NULL; 712 } 713 714 static void vhost_worker_destroy(struct vhost_dev *dev, 715 struct vhost_worker *worker) 716 { 717 if (!worker) 718 return; 719 720 WARN_ON(!llist_empty(&worker->work_list)); 721 xa_erase(&dev->worker_xa, worker->id); 722 worker->ops->stop(worker); 723 kfree(worker); 724 } 725 726 static void vhost_workers_free(struct vhost_dev *dev) 727 { 728 struct vhost_worker *worker; 729 unsigned long i; 730 731 if (!dev->use_worker) 732 return; 733 734 for (i = 0; i < dev->nvqs; i++) 735 rcu_assign_pointer(dev->vqs[i]->worker, NULL); 736 /* 737 * Free the default worker we created and cleanup workers userspace 738 * created but couldn't clean up (it forgot or crashed). 739 */ 740 xa_for_each(&dev->worker_xa, i, worker) 741 vhost_worker_destroy(dev, worker); 742 xa_destroy(&dev->worker_xa); 743 } 744 745 static void vhost_task_wakeup(struct vhost_worker *worker) 746 { 747 return vhost_task_wake(worker->vtsk); 748 } 749 750 static void vhost_kthread_wakeup(struct vhost_worker *worker) 751 { 752 wake_up_process(worker->kthread_task); 753 } 754 755 static void vhost_task_do_stop(struct vhost_worker *worker) 756 { 757 return vhost_task_stop(worker->vtsk); 758 } 759 760 static void vhost_kthread_do_stop(struct vhost_worker *worker) 761 { 762 kthread_stop(worker->kthread_task); 763 } 764 765 static int vhost_task_worker_create(struct vhost_worker *worker, 766 struct vhost_dev *dev, const char *name) 767 { 768 struct vhost_task *vtsk; 769 u32 id; 770 int ret; 771 772 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed, 773 worker, name); 774 if (IS_ERR(vtsk)) 775 return PTR_ERR(vtsk); 776 777 worker->vtsk = vtsk; 778 vhost_task_start(vtsk); 779 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 780 if (ret < 0) { 781 vhost_task_do_stop(worker); 782 return ret; 783 } 784 worker->id = id; 785 return 0; 786 } 787 788 static int vhost_kthread_worker_create(struct vhost_worker *worker, 789 struct vhost_dev *dev, const char *name) 790 { 791 struct task_struct *task; 792 u32 id; 793 int ret; 794 795 task = kthread_create(vhost_run_work_kthread_list, worker, "%s", name); 796 if (IS_ERR(task)) 797 return PTR_ERR(task); 798 799 worker->kthread_task = task; 800 wake_up_process(task); 801 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 802 if (ret < 0) 803 goto stop_worker; 804 805 ret = vhost_attach_task_to_cgroups(worker); 806 if (ret) 807 goto free_id; 808 809 worker->id = id; 810 return 0; 811 812 free_id: 813 xa_erase(&dev->worker_xa, id); 814 stop_worker: 815 vhost_kthread_do_stop(worker); 816 return ret; 817 } 818 819 static const struct vhost_worker_ops kthread_ops = { 820 .create = vhost_kthread_worker_create, 821 .stop = vhost_kthread_do_stop, 822 .wakeup = vhost_kthread_wakeup, 823 }; 824 825 static const struct vhost_worker_ops vhost_task_ops = { 826 .create = vhost_task_worker_create, 827 .stop = vhost_task_do_stop, 828 .wakeup = vhost_task_wakeup, 829 }; 830 831 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev) 832 { 833 struct vhost_worker *worker; 834 char name[TASK_COMM_LEN]; 835 int ret; 836 const struct vhost_worker_ops *ops = dev->fork_owner ? &vhost_task_ops : 837 &kthread_ops; 838 839 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT); 840 if (!worker) 841 return NULL; 842 843 worker->dev = dev; 844 worker->ops = ops; 845 snprintf(name, sizeof(name), "vhost-%d", current->pid); 846 847 mutex_init(&worker->mutex); 848 init_llist_head(&worker->work_list); 849 worker->kcov_handle = kcov_common_handle(); 850 ret = ops->create(worker, dev, name); 851 if (ret < 0) 852 goto free_worker; 853 854 return worker; 855 856 free_worker: 857 kfree(worker); 858 return NULL; 859 } 860 861 /* Caller must have device mutex */ 862 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq, 863 struct vhost_worker *worker) 864 { 865 struct vhost_worker *old_worker; 866 867 mutex_lock(&worker->mutex); 868 if (worker->killed) { 869 mutex_unlock(&worker->mutex); 870 return; 871 } 872 873 mutex_lock(&vq->mutex); 874 875 old_worker = rcu_dereference_check(vq->worker, 876 lockdep_is_held(&vq->mutex)); 877 rcu_assign_pointer(vq->worker, worker); 878 worker->attachment_cnt++; 879 880 if (!old_worker) { 881 mutex_unlock(&vq->mutex); 882 mutex_unlock(&worker->mutex); 883 return; 884 } 885 mutex_unlock(&vq->mutex); 886 mutex_unlock(&worker->mutex); 887 888 /* 889 * Take the worker mutex to make sure we see the work queued from 890 * device wide flushes which doesn't use RCU for execution. 891 */ 892 mutex_lock(&old_worker->mutex); 893 if (old_worker->killed) { 894 mutex_unlock(&old_worker->mutex); 895 return; 896 } 897 898 /* 899 * We don't want to call synchronize_rcu for every vq during setup 900 * because it will slow down VM startup. If we haven't done 901 * VHOST_SET_VRING_KICK and not done the driver specific 902 * SET_ENDPOINT/RUNNING then we can skip the sync since there will 903 * not be any works queued for scsi and net. 904 */ 905 mutex_lock(&vq->mutex); 906 if (!vhost_vq_get_backend(vq) && !vq->kick) { 907 mutex_unlock(&vq->mutex); 908 909 old_worker->attachment_cnt--; 910 mutex_unlock(&old_worker->mutex); 911 /* 912 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID. 913 * Warn if it adds support for multiple workers but forgets to 914 * handle the early queueing case. 915 */ 916 WARN_ON(!old_worker->attachment_cnt && 917 !llist_empty(&old_worker->work_list)); 918 return; 919 } 920 mutex_unlock(&vq->mutex); 921 922 /* Make sure new vq queue/flush/poll calls see the new worker */ 923 synchronize_rcu(); 924 /* Make sure whatever was queued gets run */ 925 __vhost_worker_flush(old_worker); 926 old_worker->attachment_cnt--; 927 mutex_unlock(&old_worker->mutex); 928 } 929 930 /* Caller must have device mutex */ 931 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq, 932 struct vhost_vring_worker *info) 933 { 934 unsigned long index = info->worker_id; 935 struct vhost_dev *dev = vq->dev; 936 struct vhost_worker *worker; 937 938 if (!dev->use_worker) 939 return -EINVAL; 940 941 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 942 if (!worker || worker->id != info->worker_id) 943 return -ENODEV; 944 945 __vhost_vq_attach_worker(vq, worker); 946 return 0; 947 } 948 949 /* Caller must have device mutex */ 950 static int vhost_new_worker(struct vhost_dev *dev, 951 struct vhost_worker_state *info) 952 { 953 struct vhost_worker *worker; 954 955 worker = vhost_worker_create(dev); 956 if (!worker) 957 return -ENOMEM; 958 959 info->worker_id = worker->id; 960 return 0; 961 } 962 963 /* Caller must have device mutex */ 964 static int vhost_free_worker(struct vhost_dev *dev, 965 struct vhost_worker_state *info) 966 { 967 unsigned long index = info->worker_id; 968 struct vhost_worker *worker; 969 970 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 971 if (!worker || worker->id != info->worker_id) 972 return -ENODEV; 973 974 mutex_lock(&worker->mutex); 975 if (worker->attachment_cnt || worker->killed) { 976 mutex_unlock(&worker->mutex); 977 return -EBUSY; 978 } 979 /* 980 * A flush might have raced and snuck in before attachment_cnt was set 981 * to zero. Make sure flushes are flushed from the queue before 982 * freeing. 983 */ 984 __vhost_worker_flush(worker); 985 mutex_unlock(&worker->mutex); 986 987 vhost_worker_destroy(dev, worker); 988 return 0; 989 } 990 991 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp, 992 struct vhost_virtqueue **vq, u32 *id) 993 { 994 u32 __user *idxp = argp; 995 u32 idx; 996 long r; 997 998 r = get_user(idx, idxp); 999 if (r < 0) 1000 return r; 1001 1002 if (idx >= dev->nvqs) 1003 return -ENOBUFS; 1004 1005 idx = array_index_nospec(idx, dev->nvqs); 1006 1007 *vq = dev->vqs[idx]; 1008 *id = idx; 1009 return 0; 1010 } 1011 1012 /* Caller must have device mutex */ 1013 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl, 1014 void __user *argp) 1015 { 1016 struct vhost_vring_worker ring_worker; 1017 struct vhost_worker_state state; 1018 struct vhost_worker *worker; 1019 struct vhost_virtqueue *vq; 1020 long ret; 1021 u32 idx; 1022 1023 if (!dev->use_worker) 1024 return -EINVAL; 1025 1026 if (!vhost_dev_has_owner(dev)) 1027 return -EINVAL; 1028 1029 ret = vhost_dev_check_owner(dev); 1030 if (ret) 1031 return ret; 1032 1033 switch (ioctl) { 1034 /* dev worker ioctls */ 1035 case VHOST_NEW_WORKER: 1036 /* 1037 * vhost_tasks will account for worker threads under the parent's 1038 * NPROC value but kthreads do not. To avoid userspace overflowing 1039 * the system with worker threads fork_owner must be true. 1040 */ 1041 if (!dev->fork_owner) 1042 return -EFAULT; 1043 1044 ret = vhost_new_worker(dev, &state); 1045 if (!ret && copy_to_user(argp, &state, sizeof(state))) 1046 ret = -EFAULT; 1047 return ret; 1048 case VHOST_FREE_WORKER: 1049 if (copy_from_user(&state, argp, sizeof(state))) 1050 return -EFAULT; 1051 return vhost_free_worker(dev, &state); 1052 /* vring worker ioctls */ 1053 case VHOST_ATTACH_VRING_WORKER: 1054 case VHOST_GET_VRING_WORKER: 1055 break; 1056 default: 1057 return -ENOIOCTLCMD; 1058 } 1059 1060 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx); 1061 if (ret) 1062 return ret; 1063 1064 switch (ioctl) { 1065 case VHOST_ATTACH_VRING_WORKER: 1066 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) { 1067 ret = -EFAULT; 1068 break; 1069 } 1070 1071 ret = vhost_vq_attach_worker(vq, &ring_worker); 1072 break; 1073 case VHOST_GET_VRING_WORKER: 1074 worker = rcu_dereference_check(vq->worker, 1075 lockdep_is_held(&dev->mutex)); 1076 if (!worker) { 1077 ret = -EINVAL; 1078 break; 1079 } 1080 1081 ring_worker.index = idx; 1082 ring_worker.worker_id = worker->id; 1083 1084 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker))) 1085 ret = -EFAULT; 1086 break; 1087 default: 1088 ret = -ENOIOCTLCMD; 1089 break; 1090 } 1091 1092 return ret; 1093 } 1094 EXPORT_SYMBOL_GPL(vhost_worker_ioctl); 1095 1096 /* Caller should have device mutex */ 1097 long vhost_dev_set_owner(struct vhost_dev *dev) 1098 { 1099 struct vhost_worker *worker; 1100 int err, i; 1101 1102 /* Is there an owner already? */ 1103 if (vhost_dev_has_owner(dev)) { 1104 err = -EBUSY; 1105 goto err_mm; 1106 } 1107 1108 vhost_attach_mm(dev); 1109 1110 err = vhost_dev_alloc_iovecs(dev); 1111 if (err) 1112 goto err_iovecs; 1113 1114 if (dev->use_worker) { 1115 /* 1116 * This should be done last, because vsock can queue work 1117 * before VHOST_SET_OWNER so it simplifies the failure path 1118 * below since we don't have to worry about vsock queueing 1119 * while we free the worker. 1120 */ 1121 worker = vhost_worker_create(dev); 1122 if (!worker) { 1123 err = -ENOMEM; 1124 goto err_worker; 1125 } 1126 1127 for (i = 0; i < dev->nvqs; i++) 1128 __vhost_vq_attach_worker(dev->vqs[i], worker); 1129 } 1130 1131 return 0; 1132 1133 err_worker: 1134 vhost_dev_free_iovecs(dev); 1135 err_iovecs: 1136 vhost_detach_mm(dev); 1137 err_mm: 1138 return err; 1139 } 1140 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 1141 1142 static struct vhost_iotlb *iotlb_alloc(void) 1143 { 1144 return vhost_iotlb_alloc(max_iotlb_entries, 1145 VHOST_IOTLB_FLAG_RETIRE); 1146 } 1147 1148 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void) 1149 { 1150 return iotlb_alloc(); 1151 } 1152 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 1153 1154 /* Caller should have device mutex */ 1155 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem) 1156 { 1157 int i; 1158 1159 vhost_dev_cleanup(dev); 1160 1161 dev->fork_owner = fork_from_owner_default; 1162 dev->umem = umem; 1163 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 1164 * VQs aren't running. 1165 */ 1166 for (i = 0; i < dev->nvqs; ++i) 1167 dev->vqs[i]->umem = umem; 1168 } 1169 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 1170 1171 void vhost_dev_stop(struct vhost_dev *dev) 1172 { 1173 int i; 1174 1175 for (i = 0; i < dev->nvqs; ++i) { 1176 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) 1177 vhost_poll_stop(&dev->vqs[i]->poll); 1178 } 1179 1180 vhost_dev_flush(dev); 1181 } 1182 EXPORT_SYMBOL_GPL(vhost_dev_stop); 1183 1184 void vhost_clear_msg(struct vhost_dev *dev) 1185 { 1186 struct vhost_msg_node *node, *n; 1187 1188 spin_lock(&dev->iotlb_lock); 1189 1190 list_for_each_entry_safe(node, n, &dev->read_list, node) { 1191 list_del(&node->node); 1192 kfree(node); 1193 } 1194 1195 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 1196 list_del(&node->node); 1197 kfree(node); 1198 } 1199 1200 spin_unlock(&dev->iotlb_lock); 1201 } 1202 EXPORT_SYMBOL_GPL(vhost_clear_msg); 1203 1204 void vhost_dev_cleanup(struct vhost_dev *dev) 1205 { 1206 int i; 1207 1208 for (i = 0; i < dev->nvqs; ++i) { 1209 if (dev->vqs[i]->error_ctx) 1210 eventfd_ctx_put(dev->vqs[i]->error_ctx); 1211 if (dev->vqs[i]->kick) 1212 fput(dev->vqs[i]->kick); 1213 if (dev->vqs[i]->call_ctx.ctx) 1214 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx); 1215 vhost_vq_reset(dev, dev->vqs[i]); 1216 } 1217 vhost_dev_free_iovecs(dev); 1218 if (dev->log_ctx) 1219 eventfd_ctx_put(dev->log_ctx); 1220 dev->log_ctx = NULL; 1221 /* No one will access memory at this point */ 1222 vhost_iotlb_free(dev->umem); 1223 dev->umem = NULL; 1224 vhost_iotlb_free(dev->iotlb); 1225 dev->iotlb = NULL; 1226 vhost_clear_msg(dev); 1227 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 1228 vhost_workers_free(dev); 1229 vhost_detach_mm(dev); 1230 } 1231 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 1232 1233 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 1234 { 1235 u64 a = addr / VHOST_PAGE_SIZE / 8; 1236 1237 /* Make sure 64 bit math will not overflow. */ 1238 if (a > ULONG_MAX - (unsigned long)log_base || 1239 a + (unsigned long)log_base > ULONG_MAX) 1240 return false; 1241 1242 return access_ok(log_base + a, 1243 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 1244 } 1245 1246 /* Make sure 64 bit math will not overflow. */ 1247 static bool vhost_overflow(u64 uaddr, u64 size) 1248 { 1249 if (uaddr > ULONG_MAX || size > ULONG_MAX) 1250 return true; 1251 1252 if (!size) 1253 return false; 1254 1255 return uaddr > ULONG_MAX - size + 1; 1256 } 1257 1258 /* Caller should have vq mutex and device mutex. */ 1259 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem, 1260 int log_all) 1261 { 1262 struct vhost_iotlb_map *map; 1263 1264 if (!umem) 1265 return false; 1266 1267 list_for_each_entry(map, &umem->list, link) { 1268 unsigned long a = map->addr; 1269 1270 if (vhost_overflow(map->addr, map->size)) 1271 return false; 1272 1273 1274 if (!access_ok((void __user *)a, map->size)) 1275 return false; 1276 else if (log_all && !log_access_ok(log_base, 1277 map->start, 1278 map->size)) 1279 return false; 1280 } 1281 return true; 1282 } 1283 1284 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 1285 u64 addr, unsigned int size, 1286 int type) 1287 { 1288 const struct vhost_iotlb_map *map = vq->meta_iotlb[type]; 1289 1290 if (!map) 1291 return NULL; 1292 1293 return (void __user *)(uintptr_t)(map->addr + addr - map->start); 1294 } 1295 1296 /* Can we switch to this memory table? */ 1297 /* Caller should have device mutex but not vq mutex */ 1298 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem, 1299 int log_all) 1300 { 1301 int i; 1302 1303 for (i = 0; i < d->nvqs; ++i) { 1304 bool ok; 1305 bool log; 1306 1307 mutex_lock(&d->vqs[i]->mutex); 1308 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 1309 /* If ring is inactive, will check when it's enabled. */ 1310 if (d->vqs[i]->private_data) 1311 ok = vq_memory_access_ok(d->vqs[i]->log_base, 1312 umem, log); 1313 else 1314 ok = true; 1315 mutex_unlock(&d->vqs[i]->mutex); 1316 if (!ok) 1317 return false; 1318 } 1319 return true; 1320 } 1321 1322 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1323 struct iovec iov[], int iov_size, int access); 1324 1325 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 1326 const void *from, unsigned size) 1327 { 1328 int ret; 1329 1330 if (!vq->iotlb) 1331 return __copy_to_user(to, from, size); 1332 else { 1333 /* This function should be called after iotlb 1334 * prefetch, which means we're sure that all vq 1335 * could be access through iotlb. So -EAGAIN should 1336 * not happen in this case. 1337 */ 1338 struct iov_iter t; 1339 void __user *uaddr = vhost_vq_meta_fetch(vq, 1340 (u64)(uintptr_t)to, size, 1341 VHOST_ADDR_USED); 1342 1343 if (uaddr) 1344 return __copy_to_user(uaddr, from, size); 1345 1346 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 1347 ARRAY_SIZE(vq->iotlb_iov), 1348 VHOST_ACCESS_WO); 1349 if (ret < 0) 1350 goto out; 1351 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size); 1352 ret = copy_to_iter(from, size, &t); 1353 if (ret == size) 1354 ret = 0; 1355 } 1356 out: 1357 return ret; 1358 } 1359 1360 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 1361 void __user *from, unsigned size) 1362 { 1363 int ret; 1364 1365 if (!vq->iotlb) 1366 return __copy_from_user(to, from, size); 1367 else { 1368 /* This function should be called after iotlb 1369 * prefetch, which means we're sure that vq 1370 * could be access through iotlb. So -EAGAIN should 1371 * not happen in this case. 1372 */ 1373 void __user *uaddr = vhost_vq_meta_fetch(vq, 1374 (u64)(uintptr_t)from, size, 1375 VHOST_ADDR_DESC); 1376 struct iov_iter f; 1377 1378 if (uaddr) 1379 return __copy_from_user(to, uaddr, size); 1380 1381 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 1382 ARRAY_SIZE(vq->iotlb_iov), 1383 VHOST_ACCESS_RO); 1384 if (ret < 0) { 1385 vq_err(vq, "IOTLB translation failure: uaddr " 1386 "%p size 0x%llx\n", from, 1387 (unsigned long long) size); 1388 goto out; 1389 } 1390 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size); 1391 ret = copy_from_iter(to, size, &f); 1392 if (ret == size) 1393 ret = 0; 1394 } 1395 1396 out: 1397 return ret; 1398 } 1399 1400 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 1401 void __user *addr, unsigned int size, 1402 int type) 1403 { 1404 int ret; 1405 1406 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 1407 ARRAY_SIZE(vq->iotlb_iov), 1408 VHOST_ACCESS_RO); 1409 if (ret < 0) { 1410 vq_err(vq, "IOTLB translation failure: uaddr " 1411 "%p size 0x%llx\n", addr, 1412 (unsigned long long) size); 1413 return NULL; 1414 } 1415 1416 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 1417 vq_err(vq, "Non atomic userspace memory access: uaddr " 1418 "%p size 0x%llx\n", addr, 1419 (unsigned long long) size); 1420 return NULL; 1421 } 1422 1423 return vq->iotlb_iov[0].iov_base; 1424 } 1425 1426 /* This function should be called after iotlb 1427 * prefetch, which means we're sure that vq 1428 * could be access through iotlb. So -EAGAIN should 1429 * not happen in this case. 1430 */ 1431 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 1432 void __user *addr, unsigned int size, 1433 int type) 1434 { 1435 void __user *uaddr = vhost_vq_meta_fetch(vq, 1436 (u64)(uintptr_t)addr, size, type); 1437 if (uaddr) 1438 return uaddr; 1439 1440 return __vhost_get_user_slow(vq, addr, size, type); 1441 } 1442 1443 #define vhost_put_user(vq, x, ptr) \ 1444 ({ \ 1445 int ret; \ 1446 if (!vq->iotlb) { \ 1447 ret = __put_user(x, ptr); \ 1448 } else { \ 1449 __typeof__(ptr) to = \ 1450 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1451 sizeof(*ptr), VHOST_ADDR_USED); \ 1452 if (to != NULL) \ 1453 ret = __put_user(x, to); \ 1454 else \ 1455 ret = -EFAULT; \ 1456 } \ 1457 ret; \ 1458 }) 1459 1460 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) 1461 { 1462 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1463 vhost_avail_event(vq)); 1464 } 1465 1466 static inline int vhost_put_used(struct vhost_virtqueue *vq, 1467 struct vring_used_elem *head, int idx, 1468 int count) 1469 { 1470 return vhost_copy_to_user(vq, vq->used->ring + idx, head, 1471 count * sizeof(*head)); 1472 } 1473 1474 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) 1475 1476 { 1477 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1478 &vq->used->flags); 1479 } 1480 1481 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) 1482 1483 { 1484 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 1485 &vq->used->idx); 1486 } 1487 1488 #define vhost_get_user(vq, x, ptr, type) \ 1489 ({ \ 1490 int ret; \ 1491 if (!vq->iotlb) { \ 1492 ret = __get_user(x, ptr); \ 1493 } else { \ 1494 __typeof__(ptr) from = \ 1495 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1496 sizeof(*ptr), \ 1497 type); \ 1498 if (from != NULL) \ 1499 ret = __get_user(x, from); \ 1500 else \ 1501 ret = -EFAULT; \ 1502 } \ 1503 ret; \ 1504 }) 1505 1506 #define vhost_get_avail(vq, x, ptr) \ 1507 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 1508 1509 #define vhost_get_used(vq, x, ptr) \ 1510 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 1511 1512 static void vhost_dev_lock_vqs(struct vhost_dev *d) 1513 { 1514 int i = 0; 1515 for (i = 0; i < d->nvqs; ++i) 1516 mutex_lock_nested(&d->vqs[i]->mutex, i); 1517 } 1518 1519 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 1520 { 1521 int i = 0; 1522 for (i = 0; i < d->nvqs; ++i) 1523 mutex_unlock(&d->vqs[i]->mutex); 1524 } 1525 1526 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq) 1527 { 1528 __virtio16 idx; 1529 int r; 1530 1531 r = vhost_get_avail(vq, idx, &vq->avail->idx); 1532 if (unlikely(r < 0)) { 1533 vq_err(vq, "Failed to access available index at %p (%d)\n", 1534 &vq->avail->idx, r); 1535 return r; 1536 } 1537 1538 /* Check it isn't doing very strange thing with available indexes */ 1539 vq->avail_idx = vhost16_to_cpu(vq, idx); 1540 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) { 1541 vq_err(vq, "Invalid available index change from %u to %u", 1542 vq->last_avail_idx, vq->avail_idx); 1543 return -EINVAL; 1544 } 1545 1546 /* We're done if there is nothing new */ 1547 if (vq->avail_idx == vq->last_avail_idx) 1548 return 0; 1549 1550 /* 1551 * We updated vq->avail_idx so we need a memory barrier between 1552 * the index read above and the caller reading avail ring entries. 1553 */ 1554 smp_rmb(); 1555 return 1; 1556 } 1557 1558 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, 1559 __virtio16 *head, int idx) 1560 { 1561 return vhost_get_avail(vq, *head, 1562 &vq->avail->ring[idx & (vq->num - 1)]); 1563 } 1564 1565 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, 1566 __virtio16 *flags) 1567 { 1568 return vhost_get_avail(vq, *flags, &vq->avail->flags); 1569 } 1570 1571 static inline int vhost_get_used_event(struct vhost_virtqueue *vq, 1572 __virtio16 *event) 1573 { 1574 return vhost_get_avail(vq, *event, vhost_used_event(vq)); 1575 } 1576 1577 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, 1578 __virtio16 *idx) 1579 { 1580 return vhost_get_used(vq, *idx, &vq->used->idx); 1581 } 1582 1583 static inline int vhost_get_desc(struct vhost_virtqueue *vq, 1584 struct vring_desc *desc, int idx) 1585 { 1586 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); 1587 } 1588 1589 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 1590 struct vhost_iotlb_msg *msg) 1591 { 1592 struct vhost_msg_node *node, *n; 1593 1594 spin_lock(&d->iotlb_lock); 1595 1596 list_for_each_entry_safe(node, n, &d->pending_list, node) { 1597 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 1598 if (msg->iova <= vq_msg->iova && 1599 msg->iova + msg->size - 1 >= vq_msg->iova && 1600 vq_msg->type == VHOST_IOTLB_MISS) { 1601 vhost_poll_queue(&node->vq->poll); 1602 list_del(&node->node); 1603 kfree(node); 1604 } 1605 } 1606 1607 spin_unlock(&d->iotlb_lock); 1608 } 1609 1610 static bool umem_access_ok(u64 uaddr, u64 size, int access) 1611 { 1612 unsigned long a = uaddr; 1613 1614 /* Make sure 64 bit math will not overflow. */ 1615 if (vhost_overflow(uaddr, size)) 1616 return false; 1617 1618 if ((access & VHOST_ACCESS_RO) && 1619 !access_ok((void __user *)a, size)) 1620 return false; 1621 if ((access & VHOST_ACCESS_WO) && 1622 !access_ok((void __user *)a, size)) 1623 return false; 1624 return true; 1625 } 1626 1627 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid, 1628 struct vhost_iotlb_msg *msg) 1629 { 1630 int ret = 0; 1631 1632 if (asid != 0) 1633 return -EINVAL; 1634 1635 mutex_lock(&dev->mutex); 1636 vhost_dev_lock_vqs(dev); 1637 switch (msg->type) { 1638 case VHOST_IOTLB_UPDATE: 1639 if (!dev->iotlb) { 1640 ret = -EFAULT; 1641 break; 1642 } 1643 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1644 ret = -EFAULT; 1645 break; 1646 } 1647 vhost_vq_meta_reset(dev); 1648 if (vhost_iotlb_add_range(dev->iotlb, msg->iova, 1649 msg->iova + msg->size - 1, 1650 msg->uaddr, msg->perm)) { 1651 ret = -ENOMEM; 1652 break; 1653 } 1654 vhost_iotlb_notify_vq(dev, msg); 1655 break; 1656 case VHOST_IOTLB_INVALIDATE: 1657 if (!dev->iotlb) { 1658 ret = -EFAULT; 1659 break; 1660 } 1661 vhost_vq_meta_reset(dev); 1662 vhost_iotlb_del_range(dev->iotlb, msg->iova, 1663 msg->iova + msg->size - 1); 1664 break; 1665 default: 1666 ret = -EINVAL; 1667 break; 1668 } 1669 1670 vhost_dev_unlock_vqs(dev); 1671 mutex_unlock(&dev->mutex); 1672 1673 return ret; 1674 } 1675 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1676 struct iov_iter *from) 1677 { 1678 struct vhost_iotlb_msg msg; 1679 size_t offset; 1680 int type, ret; 1681 u32 asid = 0; 1682 1683 ret = copy_from_iter(&type, sizeof(type), from); 1684 if (ret != sizeof(type)) { 1685 ret = -EINVAL; 1686 goto done; 1687 } 1688 1689 switch (type) { 1690 case VHOST_IOTLB_MSG: 1691 /* There maybe a hole after type for V1 message type, 1692 * so skip it here. 1693 */ 1694 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1695 break; 1696 case VHOST_IOTLB_MSG_V2: 1697 if (vhost_backend_has_feature(dev->vqs[0], 1698 VHOST_BACKEND_F_IOTLB_ASID)) { 1699 ret = copy_from_iter(&asid, sizeof(asid), from); 1700 if (ret != sizeof(asid)) { 1701 ret = -EINVAL; 1702 goto done; 1703 } 1704 offset = 0; 1705 } else 1706 offset = sizeof(__u32); 1707 break; 1708 default: 1709 ret = -EINVAL; 1710 goto done; 1711 } 1712 1713 iov_iter_advance(from, offset); 1714 ret = copy_from_iter(&msg, sizeof(msg), from); 1715 if (ret != sizeof(msg)) { 1716 ret = -EINVAL; 1717 goto done; 1718 } 1719 1720 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) { 1721 ret = -EINVAL; 1722 goto done; 1723 } 1724 1725 if (dev->msg_handler) 1726 ret = dev->msg_handler(dev, asid, &msg); 1727 else 1728 ret = vhost_process_iotlb_msg(dev, asid, &msg); 1729 if (ret) { 1730 ret = -EFAULT; 1731 goto done; 1732 } 1733 1734 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1735 sizeof(struct vhost_msg_v2); 1736 done: 1737 return ret; 1738 } 1739 EXPORT_SYMBOL(vhost_chr_write_iter); 1740 1741 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1742 poll_table *wait) 1743 { 1744 __poll_t mask = 0; 1745 1746 poll_wait(file, &dev->wait, wait); 1747 1748 if (!list_empty(&dev->read_list)) 1749 mask |= EPOLLIN | EPOLLRDNORM; 1750 1751 return mask; 1752 } 1753 EXPORT_SYMBOL(vhost_chr_poll); 1754 1755 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1756 int noblock) 1757 { 1758 DEFINE_WAIT(wait); 1759 struct vhost_msg_node *node; 1760 ssize_t ret = 0; 1761 unsigned size = sizeof(struct vhost_msg); 1762 1763 if (iov_iter_count(to) < size) 1764 return 0; 1765 1766 while (1) { 1767 if (!noblock) 1768 prepare_to_wait(&dev->wait, &wait, 1769 TASK_INTERRUPTIBLE); 1770 1771 node = vhost_dequeue_msg(dev, &dev->read_list); 1772 if (node) 1773 break; 1774 if (noblock) { 1775 ret = -EAGAIN; 1776 break; 1777 } 1778 if (signal_pending(current)) { 1779 ret = -ERESTARTSYS; 1780 break; 1781 } 1782 if (!dev->iotlb) { 1783 ret = -EBADFD; 1784 break; 1785 } 1786 1787 schedule(); 1788 } 1789 1790 if (!noblock) 1791 finish_wait(&dev->wait, &wait); 1792 1793 if (node) { 1794 struct vhost_iotlb_msg *msg; 1795 void *start = &node->msg; 1796 1797 switch (node->msg.type) { 1798 case VHOST_IOTLB_MSG: 1799 size = sizeof(node->msg); 1800 msg = &node->msg.iotlb; 1801 break; 1802 case VHOST_IOTLB_MSG_V2: 1803 size = sizeof(node->msg_v2); 1804 msg = &node->msg_v2.iotlb; 1805 break; 1806 default: 1807 BUG(); 1808 break; 1809 } 1810 1811 ret = copy_to_iter(start, size, to); 1812 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1813 kfree(node); 1814 return ret; 1815 } 1816 vhost_enqueue_msg(dev, &dev->pending_list, node); 1817 } 1818 1819 return ret; 1820 } 1821 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1822 1823 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1824 { 1825 struct vhost_dev *dev = vq->dev; 1826 struct vhost_msg_node *node; 1827 struct vhost_iotlb_msg *msg; 1828 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1829 1830 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1831 if (!node) 1832 return -ENOMEM; 1833 1834 if (v2) { 1835 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1836 msg = &node->msg_v2.iotlb; 1837 } else { 1838 msg = &node->msg.iotlb; 1839 } 1840 1841 msg->type = VHOST_IOTLB_MISS; 1842 msg->iova = iova; 1843 msg->perm = access; 1844 1845 vhost_enqueue_msg(dev, &dev->read_list, node); 1846 1847 return 0; 1848 } 1849 1850 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1851 vring_desc_t __user *desc, 1852 vring_avail_t __user *avail, 1853 vring_used_t __user *used) 1854 1855 { 1856 /* If an IOTLB device is present, the vring addresses are 1857 * GIOVAs. Access validation occurs at prefetch time. */ 1858 if (vq->iotlb) 1859 return true; 1860 1861 return access_ok(desc, vhost_get_desc_size(vq, num)) && 1862 access_ok(avail, vhost_get_avail_size(vq, num)) && 1863 access_ok(used, vhost_get_used_size(vq, num)); 1864 } 1865 1866 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1867 const struct vhost_iotlb_map *map, 1868 int type) 1869 { 1870 int access = (type == VHOST_ADDR_USED) ? 1871 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1872 1873 if (likely(map->perm & access)) 1874 vq->meta_iotlb[type] = map; 1875 } 1876 1877 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1878 int access, u64 addr, u64 len, int type) 1879 { 1880 const struct vhost_iotlb_map *map; 1881 struct vhost_iotlb *umem = vq->iotlb; 1882 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1883 1884 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1885 return true; 1886 1887 while (len > s) { 1888 map = vhost_iotlb_itree_first(umem, addr, last); 1889 if (map == NULL || map->start > addr) { 1890 vhost_iotlb_miss(vq, addr, access); 1891 return false; 1892 } else if (!(map->perm & access)) { 1893 /* Report the possible access violation by 1894 * request another translation from userspace. 1895 */ 1896 return false; 1897 } 1898 1899 size = map->size - addr + map->start; 1900 1901 if (orig_addr == addr && size >= len) 1902 vhost_vq_meta_update(vq, map, type); 1903 1904 s += size; 1905 addr += size; 1906 } 1907 1908 return true; 1909 } 1910 1911 int vq_meta_prefetch(struct vhost_virtqueue *vq) 1912 { 1913 unsigned int num = vq->num; 1914 1915 if (!vq->iotlb) 1916 return 1; 1917 1918 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc, 1919 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && 1920 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail, 1921 vhost_get_avail_size(vq, num), 1922 VHOST_ADDR_AVAIL) && 1923 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used, 1924 vhost_get_used_size(vq, num), VHOST_ADDR_USED); 1925 } 1926 EXPORT_SYMBOL_GPL(vq_meta_prefetch); 1927 1928 /* Can we log writes? */ 1929 /* Caller should have device mutex but not vq mutex */ 1930 bool vhost_log_access_ok(struct vhost_dev *dev) 1931 { 1932 return memory_access_ok(dev, dev->umem, 1); 1933 } 1934 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1935 1936 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq, 1937 void __user *log_base, 1938 bool log_used, 1939 u64 log_addr) 1940 { 1941 /* If an IOTLB device is present, log_addr is a GIOVA that 1942 * will never be logged by log_used(). */ 1943 if (vq->iotlb) 1944 return true; 1945 1946 return !log_used || log_access_ok(log_base, log_addr, 1947 vhost_get_used_size(vq, vq->num)); 1948 } 1949 1950 /* Verify access for write logging. */ 1951 /* Caller should have vq mutex and device mutex */ 1952 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1953 void __user *log_base) 1954 { 1955 return vq_memory_access_ok(log_base, vq->umem, 1956 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1957 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr); 1958 } 1959 1960 /* Can we start vq? */ 1961 /* Caller should have vq mutex and device mutex */ 1962 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1963 { 1964 if (!vq_log_access_ok(vq, vq->log_base)) 1965 return false; 1966 1967 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1968 } 1969 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1970 1971 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1972 { 1973 struct vhost_memory mem, *newmem; 1974 struct vhost_memory_region *region; 1975 struct vhost_iotlb *newumem, *oldumem; 1976 unsigned long size = offsetof(struct vhost_memory, regions); 1977 int i; 1978 1979 if (copy_from_user(&mem, m, size)) 1980 return -EFAULT; 1981 if (mem.padding) 1982 return -EOPNOTSUPP; 1983 if (mem.nregions > max_mem_regions) 1984 return -E2BIG; 1985 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1986 GFP_KERNEL); 1987 if (!newmem) 1988 return -ENOMEM; 1989 1990 memcpy(newmem, &mem, size); 1991 if (copy_from_user(newmem->regions, m->regions, 1992 flex_array_size(newmem, regions, mem.nregions))) { 1993 kvfree(newmem); 1994 return -EFAULT; 1995 } 1996 1997 newumem = iotlb_alloc(); 1998 if (!newumem) { 1999 kvfree(newmem); 2000 return -ENOMEM; 2001 } 2002 2003 for (region = newmem->regions; 2004 region < newmem->regions + mem.nregions; 2005 region++) { 2006 if (vhost_iotlb_add_range(newumem, 2007 region->guest_phys_addr, 2008 region->guest_phys_addr + 2009 region->memory_size - 1, 2010 region->userspace_addr, 2011 VHOST_MAP_RW)) 2012 goto err; 2013 } 2014 2015 if (!memory_access_ok(d, newumem, 0)) 2016 goto err; 2017 2018 oldumem = d->umem; 2019 d->umem = newumem; 2020 2021 /* All memory accesses are done under some VQ mutex. */ 2022 for (i = 0; i < d->nvqs; ++i) { 2023 mutex_lock(&d->vqs[i]->mutex); 2024 d->vqs[i]->umem = newumem; 2025 mutex_unlock(&d->vqs[i]->mutex); 2026 } 2027 2028 kvfree(newmem); 2029 vhost_iotlb_free(oldumem); 2030 return 0; 2031 2032 err: 2033 vhost_iotlb_free(newumem); 2034 kvfree(newmem); 2035 return -EFAULT; 2036 } 2037 2038 static long vhost_vring_set_num(struct vhost_dev *d, 2039 struct vhost_virtqueue *vq, 2040 void __user *argp) 2041 { 2042 struct vhost_vring_state s; 2043 2044 /* Resizing ring with an active backend? 2045 * You don't want to do that. */ 2046 if (vq->private_data) 2047 return -EBUSY; 2048 2049 if (copy_from_user(&s, argp, sizeof s)) 2050 return -EFAULT; 2051 2052 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) 2053 return -EINVAL; 2054 vq->num = s.num; 2055 2056 return 0; 2057 } 2058 2059 static long vhost_vring_set_addr(struct vhost_dev *d, 2060 struct vhost_virtqueue *vq, 2061 void __user *argp) 2062 { 2063 struct vhost_vring_addr a; 2064 2065 if (copy_from_user(&a, argp, sizeof a)) 2066 return -EFAULT; 2067 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) 2068 return -EOPNOTSUPP; 2069 2070 /* For 32bit, verify that the top 32bits of the user 2071 data are set to zero. */ 2072 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 2073 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 2074 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) 2075 return -EFAULT; 2076 2077 /* Make sure it's safe to cast pointers to vring types. */ 2078 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 2079 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 2080 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 2081 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 2082 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) 2083 return -EINVAL; 2084 2085 /* We only verify access here if backend is configured. 2086 * If it is not, we don't as size might not have been setup. 2087 * We will verify when backend is configured. */ 2088 if (vq->private_data) { 2089 if (!vq_access_ok(vq, vq->num, 2090 (void __user *)(unsigned long)a.desc_user_addr, 2091 (void __user *)(unsigned long)a.avail_user_addr, 2092 (void __user *)(unsigned long)a.used_user_addr)) 2093 return -EINVAL; 2094 2095 /* Also validate log access for used ring if enabled. */ 2096 if (!vq_log_used_access_ok(vq, vq->log_base, 2097 a.flags & (0x1 << VHOST_VRING_F_LOG), 2098 a.log_guest_addr)) 2099 return -EINVAL; 2100 } 2101 2102 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 2103 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 2104 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 2105 vq->log_addr = a.log_guest_addr; 2106 vq->used = (void __user *)(unsigned long)a.used_user_addr; 2107 2108 return 0; 2109 } 2110 2111 static long vhost_vring_set_num_addr(struct vhost_dev *d, 2112 struct vhost_virtqueue *vq, 2113 unsigned int ioctl, 2114 void __user *argp) 2115 { 2116 long r; 2117 2118 mutex_lock(&vq->mutex); 2119 2120 switch (ioctl) { 2121 case VHOST_SET_VRING_NUM: 2122 r = vhost_vring_set_num(d, vq, argp); 2123 break; 2124 case VHOST_SET_VRING_ADDR: 2125 r = vhost_vring_set_addr(d, vq, argp); 2126 break; 2127 default: 2128 BUG(); 2129 } 2130 2131 mutex_unlock(&vq->mutex); 2132 2133 return r; 2134 } 2135 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2136 { 2137 struct file *eventfp, *filep = NULL; 2138 bool pollstart = false, pollstop = false; 2139 struct eventfd_ctx *ctx = NULL; 2140 struct vhost_virtqueue *vq; 2141 struct vhost_vring_state s; 2142 struct vhost_vring_file f; 2143 u32 idx; 2144 long r; 2145 2146 r = vhost_get_vq_from_user(d, argp, &vq, &idx); 2147 if (r < 0) 2148 return r; 2149 2150 if (ioctl == VHOST_SET_VRING_NUM || 2151 ioctl == VHOST_SET_VRING_ADDR) { 2152 return vhost_vring_set_num_addr(d, vq, ioctl, argp); 2153 } 2154 2155 mutex_lock(&vq->mutex); 2156 2157 switch (ioctl) { 2158 case VHOST_SET_VRING_BASE: 2159 /* Moving base with an active backend? 2160 * You don't want to do that. */ 2161 if (vq->private_data) { 2162 r = -EBUSY; 2163 break; 2164 } 2165 if (copy_from_user(&s, argp, sizeof s)) { 2166 r = -EFAULT; 2167 break; 2168 } 2169 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) { 2170 vq->next_avail_head = vq->last_avail_idx = 2171 s.num & 0xffff; 2172 vq->last_used_idx = (s.num >> 16) & 0xffff; 2173 } else { 2174 if (s.num > 0xffff) { 2175 r = -EINVAL; 2176 break; 2177 } 2178 vq->next_avail_head = vq->last_avail_idx = s.num; 2179 } 2180 /* Forget the cached index value. */ 2181 vq->avail_idx = vq->last_avail_idx; 2182 break; 2183 case VHOST_GET_VRING_BASE: 2184 s.index = idx; 2185 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) 2186 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16); 2187 else 2188 s.num = vq->last_avail_idx; 2189 if (copy_to_user(argp, &s, sizeof s)) 2190 r = -EFAULT; 2191 break; 2192 case VHOST_SET_VRING_KICK: 2193 if (copy_from_user(&f, argp, sizeof f)) { 2194 r = -EFAULT; 2195 break; 2196 } 2197 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd); 2198 if (IS_ERR(eventfp)) { 2199 r = PTR_ERR(eventfp); 2200 break; 2201 } 2202 if (eventfp != vq->kick) { 2203 pollstop = (filep = vq->kick) != NULL; 2204 pollstart = (vq->kick = eventfp) != NULL; 2205 } else 2206 filep = eventfp; 2207 break; 2208 case VHOST_SET_VRING_CALL: 2209 if (copy_from_user(&f, argp, sizeof f)) { 2210 r = -EFAULT; 2211 break; 2212 } 2213 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2214 if (IS_ERR(ctx)) { 2215 r = PTR_ERR(ctx); 2216 break; 2217 } 2218 2219 swap(ctx, vq->call_ctx.ctx); 2220 break; 2221 case VHOST_SET_VRING_ERR: 2222 if (copy_from_user(&f, argp, sizeof f)) { 2223 r = -EFAULT; 2224 break; 2225 } 2226 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2227 if (IS_ERR(ctx)) { 2228 r = PTR_ERR(ctx); 2229 break; 2230 } 2231 swap(ctx, vq->error_ctx); 2232 break; 2233 case VHOST_SET_VRING_ENDIAN: 2234 r = vhost_set_vring_endian(vq, argp); 2235 break; 2236 case VHOST_GET_VRING_ENDIAN: 2237 r = vhost_get_vring_endian(vq, idx, argp); 2238 break; 2239 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 2240 if (copy_from_user(&s, argp, sizeof(s))) { 2241 r = -EFAULT; 2242 break; 2243 } 2244 vq->busyloop_timeout = s.num; 2245 break; 2246 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 2247 s.index = idx; 2248 s.num = vq->busyloop_timeout; 2249 if (copy_to_user(argp, &s, sizeof(s))) 2250 r = -EFAULT; 2251 break; 2252 default: 2253 r = -ENOIOCTLCMD; 2254 } 2255 2256 if (pollstop && vq->handle_kick) 2257 vhost_poll_stop(&vq->poll); 2258 2259 if (!IS_ERR_OR_NULL(ctx)) 2260 eventfd_ctx_put(ctx); 2261 if (filep) 2262 fput(filep); 2263 2264 if (pollstart && vq->handle_kick) 2265 r = vhost_poll_start(&vq->poll, vq->kick); 2266 2267 mutex_unlock(&vq->mutex); 2268 2269 if (pollstop && vq->handle_kick) 2270 vhost_dev_flush(vq->poll.dev); 2271 return r; 2272 } 2273 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 2274 2275 int vhost_init_device_iotlb(struct vhost_dev *d) 2276 { 2277 struct vhost_iotlb *niotlb, *oiotlb; 2278 int i; 2279 2280 niotlb = iotlb_alloc(); 2281 if (!niotlb) 2282 return -ENOMEM; 2283 2284 oiotlb = d->iotlb; 2285 d->iotlb = niotlb; 2286 2287 for (i = 0; i < d->nvqs; ++i) { 2288 struct vhost_virtqueue *vq = d->vqs[i]; 2289 2290 mutex_lock(&vq->mutex); 2291 vq->iotlb = niotlb; 2292 __vhost_vq_meta_reset(vq); 2293 mutex_unlock(&vq->mutex); 2294 } 2295 2296 vhost_iotlb_free(oiotlb); 2297 2298 return 0; 2299 } 2300 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 2301 2302 /* Caller must have device mutex */ 2303 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2304 { 2305 struct eventfd_ctx *ctx; 2306 u64 p; 2307 long r; 2308 int i, fd; 2309 2310 /* If you are not the owner, you can become one */ 2311 if (ioctl == VHOST_SET_OWNER) { 2312 r = vhost_dev_set_owner(d); 2313 goto done; 2314 } 2315 2316 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL 2317 if (ioctl == VHOST_SET_FORK_FROM_OWNER) { 2318 /* Only allow modification before owner is set */ 2319 if (vhost_dev_has_owner(d)) { 2320 r = -EBUSY; 2321 goto done; 2322 } 2323 u8 fork_owner_val; 2324 2325 if (get_user(fork_owner_val, (u8 __user *)argp)) { 2326 r = -EFAULT; 2327 goto done; 2328 } 2329 if (fork_owner_val != VHOST_FORK_OWNER_TASK && 2330 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) { 2331 r = -EINVAL; 2332 goto done; 2333 } 2334 d->fork_owner = !!fork_owner_val; 2335 r = 0; 2336 goto done; 2337 } 2338 if (ioctl == VHOST_GET_FORK_FROM_OWNER) { 2339 u8 fork_owner_val = d->fork_owner; 2340 2341 if (fork_owner_val != VHOST_FORK_OWNER_TASK && 2342 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) { 2343 r = -EINVAL; 2344 goto done; 2345 } 2346 if (put_user(fork_owner_val, (u8 __user *)argp)) { 2347 r = -EFAULT; 2348 goto done; 2349 } 2350 r = 0; 2351 goto done; 2352 } 2353 #endif 2354 2355 /* You must be the owner to do anything else */ 2356 r = vhost_dev_check_owner(d); 2357 if (r) 2358 goto done; 2359 2360 switch (ioctl) { 2361 case VHOST_SET_MEM_TABLE: 2362 r = vhost_set_memory(d, argp); 2363 break; 2364 case VHOST_SET_LOG_BASE: 2365 if (copy_from_user(&p, argp, sizeof p)) { 2366 r = -EFAULT; 2367 break; 2368 } 2369 if ((u64)(unsigned long)p != p) { 2370 r = -EFAULT; 2371 break; 2372 } 2373 for (i = 0; i < d->nvqs; ++i) { 2374 struct vhost_virtqueue *vq; 2375 void __user *base = (void __user *)(unsigned long)p; 2376 vq = d->vqs[i]; 2377 mutex_lock(&vq->mutex); 2378 /* If ring is inactive, will check when it's enabled. */ 2379 if (vq->private_data && !vq_log_access_ok(vq, base)) 2380 r = -EFAULT; 2381 else 2382 vq->log_base = base; 2383 mutex_unlock(&vq->mutex); 2384 } 2385 break; 2386 case VHOST_SET_LOG_FD: 2387 r = get_user(fd, (int __user *)argp); 2388 if (r < 0) 2389 break; 2390 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd); 2391 if (IS_ERR(ctx)) { 2392 r = PTR_ERR(ctx); 2393 break; 2394 } 2395 swap(ctx, d->log_ctx); 2396 for (i = 0; i < d->nvqs; ++i) { 2397 mutex_lock(&d->vqs[i]->mutex); 2398 d->vqs[i]->log_ctx = d->log_ctx; 2399 mutex_unlock(&d->vqs[i]->mutex); 2400 } 2401 if (ctx) 2402 eventfd_ctx_put(ctx); 2403 break; 2404 default: 2405 r = -ENOIOCTLCMD; 2406 break; 2407 } 2408 done: 2409 return r; 2410 } 2411 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 2412 2413 /* TODO: This is really inefficient. We need something like get_user() 2414 * (instruction directly accesses the data, with an exception table entry 2415 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst. 2416 */ 2417 static int set_bit_to_user(int nr, void __user *addr) 2418 { 2419 unsigned long log = (unsigned long)addr; 2420 struct page *page; 2421 void *base; 2422 int bit = nr + (log % PAGE_SIZE) * 8; 2423 int r; 2424 2425 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page); 2426 if (r < 0) 2427 return r; 2428 BUG_ON(r != 1); 2429 base = kmap_atomic(page); 2430 set_bit(bit, base); 2431 kunmap_atomic(base); 2432 unpin_user_pages_dirty_lock(&page, 1, true); 2433 return 0; 2434 } 2435 2436 static int log_write(void __user *log_base, 2437 u64 write_address, u64 write_length) 2438 { 2439 u64 write_page = write_address / VHOST_PAGE_SIZE; 2440 int r; 2441 2442 if (!write_length) 2443 return 0; 2444 write_length += write_address % VHOST_PAGE_SIZE; 2445 for (;;) { 2446 u64 base = (u64)(unsigned long)log_base; 2447 u64 log = base + write_page / 8; 2448 int bit = write_page % 8; 2449 if ((u64)(unsigned long)log != log) 2450 return -EFAULT; 2451 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 2452 if (r < 0) 2453 return r; 2454 if (write_length <= VHOST_PAGE_SIZE) 2455 break; 2456 write_length -= VHOST_PAGE_SIZE; 2457 write_page += 1; 2458 } 2459 return r; 2460 } 2461 2462 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 2463 { 2464 struct vhost_iotlb *umem = vq->umem; 2465 struct vhost_iotlb_map *u; 2466 u64 start, end, l, min; 2467 int r; 2468 bool hit = false; 2469 2470 while (len) { 2471 min = len; 2472 /* More than one GPAs can be mapped into a single HVA. So 2473 * iterate all possible umems here to be safe. 2474 */ 2475 list_for_each_entry(u, &umem->list, link) { 2476 if (u->addr > hva - 1 + len || 2477 u->addr - 1 + u->size < hva) 2478 continue; 2479 start = max(u->addr, hva); 2480 end = min(u->addr - 1 + u->size, hva - 1 + len); 2481 l = end - start + 1; 2482 r = log_write(vq->log_base, 2483 u->start + start - u->addr, 2484 l); 2485 if (r < 0) 2486 return r; 2487 hit = true; 2488 min = min(l, min); 2489 } 2490 2491 if (!hit) 2492 return -EFAULT; 2493 2494 len -= min; 2495 hva += min; 2496 } 2497 2498 return 0; 2499 } 2500 2501 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 2502 { 2503 struct iovec *iov = vq->log_iov; 2504 int i, ret; 2505 2506 if (!vq->iotlb) 2507 return log_write(vq->log_base, vq->log_addr + used_offset, len); 2508 2509 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 2510 len, iov, 64, VHOST_ACCESS_WO); 2511 if (ret < 0) 2512 return ret; 2513 2514 for (i = 0; i < ret; i++) { 2515 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2516 iov[i].iov_len); 2517 if (ret) 2518 return ret; 2519 } 2520 2521 return 0; 2522 } 2523 2524 /* 2525 * vhost_log_write() - Log in dirty page bitmap 2526 * @vq: vhost virtqueue. 2527 * @log: Array of dirty memory in GPA. 2528 * @log_num: Size of vhost_log arrary. 2529 * @len: The total length of memory buffer to log in the dirty bitmap. 2530 * Some drivers may only partially use pages shared via the last 2531 * vring descriptor (i.e. vhost-net RX buffer). 2532 * Use (len == U64_MAX) to indicate the driver would log all 2533 * pages of vring descriptors. 2534 * @iov: Array of dirty memory in HVA. 2535 * @count: Size of iovec array. 2536 */ 2537 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 2538 unsigned int log_num, u64 len, struct iovec *iov, int count) 2539 { 2540 int i, r; 2541 2542 /* Make sure data written is seen before log. */ 2543 smp_wmb(); 2544 2545 if (vq->iotlb) { 2546 for (i = 0; i < count; i++) { 2547 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2548 iov[i].iov_len); 2549 if (r < 0) 2550 return r; 2551 } 2552 return 0; 2553 } 2554 2555 for (i = 0; i < log_num; ++i) { 2556 u64 l = min(log[i].len, len); 2557 r = log_write(vq->log_base, log[i].addr, l); 2558 if (r < 0) 2559 return r; 2560 2561 if (len != U64_MAX) 2562 len -= l; 2563 } 2564 2565 if (vq->log_ctx) 2566 eventfd_signal(vq->log_ctx); 2567 2568 return 0; 2569 } 2570 EXPORT_SYMBOL_GPL(vhost_log_write); 2571 2572 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 2573 { 2574 void __user *used; 2575 if (vhost_put_used_flags(vq)) 2576 return -EFAULT; 2577 if (unlikely(vq->log_used)) { 2578 /* Make sure the flag is seen before log. */ 2579 smp_wmb(); 2580 /* Log used flag write. */ 2581 used = &vq->used->flags; 2582 log_used(vq, (used - (void __user *)vq->used), 2583 sizeof vq->used->flags); 2584 if (vq->log_ctx) 2585 eventfd_signal(vq->log_ctx); 2586 } 2587 return 0; 2588 } 2589 2590 static int vhost_update_avail_event(struct vhost_virtqueue *vq) 2591 { 2592 if (vhost_put_avail_event(vq)) 2593 return -EFAULT; 2594 if (unlikely(vq->log_used)) { 2595 void __user *used; 2596 /* Make sure the event is seen before log. */ 2597 smp_wmb(); 2598 /* Log avail event write */ 2599 used = vhost_avail_event(vq); 2600 log_used(vq, (used - (void __user *)vq->used), 2601 sizeof *vhost_avail_event(vq)); 2602 if (vq->log_ctx) 2603 eventfd_signal(vq->log_ctx); 2604 } 2605 return 0; 2606 } 2607 2608 int vhost_vq_init_access(struct vhost_virtqueue *vq) 2609 { 2610 __virtio16 last_used_idx; 2611 int r; 2612 bool is_le = vq->is_le; 2613 2614 if (!vq->private_data) 2615 return 0; 2616 2617 vhost_init_is_le(vq); 2618 2619 r = vhost_update_used_flags(vq); 2620 if (r) 2621 goto err; 2622 vq->signalled_used_valid = false; 2623 if (!vq->iotlb && 2624 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 2625 r = -EFAULT; 2626 goto err; 2627 } 2628 r = vhost_get_used_idx(vq, &last_used_idx); 2629 if (r) { 2630 vq_err(vq, "Can't access used idx at %p\n", 2631 &vq->used->idx); 2632 goto err; 2633 } 2634 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 2635 return 0; 2636 2637 err: 2638 vq->is_le = is_le; 2639 return r; 2640 } 2641 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 2642 2643 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 2644 struct iovec iov[], int iov_size, int access) 2645 { 2646 const struct vhost_iotlb_map *map; 2647 struct vhost_dev *dev = vq->dev; 2648 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem; 2649 struct iovec *_iov; 2650 u64 s = 0, last = addr + len - 1; 2651 int ret = 0; 2652 2653 while ((u64)len > s) { 2654 u64 size; 2655 if (unlikely(ret >= iov_size)) { 2656 ret = -ENOBUFS; 2657 break; 2658 } 2659 2660 map = vhost_iotlb_itree_first(umem, addr, last); 2661 if (map == NULL || map->start > addr) { 2662 if (umem != dev->iotlb) { 2663 ret = -EFAULT; 2664 break; 2665 } 2666 ret = -EAGAIN; 2667 break; 2668 } else if (!(map->perm & access)) { 2669 ret = -EPERM; 2670 break; 2671 } 2672 2673 _iov = iov + ret; 2674 size = map->size - addr + map->start; 2675 _iov->iov_len = min((u64)len - s, size); 2676 _iov->iov_base = (void __user *)(unsigned long) 2677 (map->addr + addr - map->start); 2678 s += size; 2679 addr += size; 2680 ++ret; 2681 } 2682 2683 if (ret == -EAGAIN) 2684 vhost_iotlb_miss(vq, addr, access); 2685 return ret; 2686 } 2687 2688 /* Each buffer in the virtqueues is actually a chain of descriptors. This 2689 * function returns the next descriptor in the chain, 2690 * or -1U if we're at the end. */ 2691 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 2692 { 2693 unsigned int next; 2694 2695 /* If this descriptor says it doesn't chain, we're done. */ 2696 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 2697 return -1U; 2698 2699 /* Check they're not leading us off end of descriptors. */ 2700 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 2701 return next; 2702 } 2703 2704 static int get_indirect(struct vhost_virtqueue *vq, 2705 struct iovec iov[], unsigned int iov_size, 2706 unsigned int *out_num, unsigned int *in_num, 2707 struct vhost_log *log, unsigned int *log_num, 2708 struct vring_desc *indirect) 2709 { 2710 struct vring_desc desc; 2711 unsigned int i = 0, count, found = 0; 2712 u32 len = vhost32_to_cpu(vq, indirect->len); 2713 struct iov_iter from; 2714 int ret, access; 2715 2716 /* Sanity check */ 2717 if (unlikely(len % sizeof desc)) { 2718 vq_err(vq, "Invalid length in indirect descriptor: " 2719 "len 0x%llx not multiple of 0x%zx\n", 2720 (unsigned long long)len, 2721 sizeof desc); 2722 return -EINVAL; 2723 } 2724 2725 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2726 UIO_MAXIOV, VHOST_ACCESS_RO); 2727 if (unlikely(ret < 0)) { 2728 if (ret != -EAGAIN) 2729 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2730 return ret; 2731 } 2732 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len); 2733 count = len / sizeof desc; 2734 /* Buffers are chained via a 16 bit next field, so 2735 * we can have at most 2^16 of these. */ 2736 if (unlikely(count > USHRT_MAX + 1)) { 2737 vq_err(vq, "Indirect buffer length too big: %d\n", 2738 indirect->len); 2739 return -E2BIG; 2740 } 2741 2742 do { 2743 unsigned iov_count = *in_num + *out_num; 2744 if (unlikely(++found > count)) { 2745 vq_err(vq, "Loop detected: last one at %u " 2746 "indirect size %u\n", 2747 i, count); 2748 return -EINVAL; 2749 } 2750 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2751 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2752 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2753 return -EINVAL; 2754 } 2755 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2756 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2757 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2758 return -EINVAL; 2759 } 2760 2761 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2762 access = VHOST_ACCESS_WO; 2763 else 2764 access = VHOST_ACCESS_RO; 2765 2766 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2767 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2768 iov_size - iov_count, access); 2769 if (unlikely(ret < 0)) { 2770 if (ret != -EAGAIN) 2771 vq_err(vq, "Translation failure %d indirect idx %d\n", 2772 ret, i); 2773 return ret; 2774 } 2775 /* If this is an input descriptor, increment that count. */ 2776 if (access == VHOST_ACCESS_WO) { 2777 *in_num += ret; 2778 if (unlikely(log && ret)) { 2779 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2780 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2781 ++*log_num; 2782 } 2783 } else { 2784 /* If it's an output descriptor, they're all supposed 2785 * to come before any input descriptors. */ 2786 if (unlikely(*in_num)) { 2787 vq_err(vq, "Indirect descriptor " 2788 "has out after in: idx %d\n", i); 2789 return -EINVAL; 2790 } 2791 *out_num += ret; 2792 } 2793 } while ((i = next_desc(vq, &desc)) != -1); 2794 return 0; 2795 } 2796 2797 /** 2798 * vhost_get_vq_desc_n - Fetch the next available descriptor chain and build iovecs 2799 * @vq: target virtqueue 2800 * @iov: array that receives the scatter/gather segments 2801 * @iov_size: capacity of @iov in elements 2802 * @out_num: the number of output segments 2803 * @in_num: the number of input segments 2804 * @log: optional array to record addr/len for each writable segment; NULL if unused 2805 * @log_num: optional output; number of entries written to @log when provided 2806 * @ndesc: optional output; number of descriptors consumed from the available ring 2807 * (useful for rollback via vhost_discard_vq_desc) 2808 * 2809 * Extracts one available descriptor chain from @vq and translates guest addresses 2810 * into host iovecs. 2811 * 2812 * On success, advances @vq->last_avail_idx by 1 and @vq->next_avail_head by the 2813 * number of descriptors consumed (also stored via @ndesc when non-NULL). 2814 * 2815 * Return: 2816 * - head index in [0, @vq->num) on success; 2817 * - @vq->num if no descriptor is currently available; 2818 * - negative errno on failure 2819 */ 2820 int vhost_get_vq_desc_n(struct vhost_virtqueue *vq, 2821 struct iovec iov[], unsigned int iov_size, 2822 unsigned int *out_num, unsigned int *in_num, 2823 struct vhost_log *log, unsigned int *log_num, 2824 unsigned int *ndesc) 2825 { 2826 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER); 2827 struct vring_desc desc; 2828 unsigned int i, head, found = 0; 2829 u16 last_avail_idx = vq->last_avail_idx; 2830 __virtio16 ring_head; 2831 int ret, access, c = 0; 2832 2833 if (vq->avail_idx == vq->last_avail_idx) { 2834 ret = vhost_get_avail_idx(vq); 2835 if (unlikely(ret < 0)) 2836 return ret; 2837 2838 if (!ret) 2839 return vq->num; 2840 } 2841 2842 if (in_order) 2843 head = vq->next_avail_head & (vq->num - 1); 2844 else { 2845 /* Grab the next descriptor number they're 2846 * advertising, and increment the index we've seen. */ 2847 if (unlikely(vhost_get_avail_head(vq, &ring_head, 2848 last_avail_idx))) { 2849 vq_err(vq, "Failed to read head: idx %d address %p\n", 2850 last_avail_idx, 2851 &vq->avail->ring[last_avail_idx % vq->num]); 2852 return -EFAULT; 2853 } 2854 head = vhost16_to_cpu(vq, ring_head); 2855 } 2856 2857 /* If their number is silly, that's an error. */ 2858 if (unlikely(head >= vq->num)) { 2859 vq_err(vq, "Guest says index %u > %u is available", 2860 head, vq->num); 2861 return -EINVAL; 2862 } 2863 2864 /* When we start there are none of either input nor output. */ 2865 *out_num = *in_num = 0; 2866 if (unlikely(log)) 2867 *log_num = 0; 2868 2869 i = head; 2870 do { 2871 unsigned iov_count = *in_num + *out_num; 2872 if (unlikely(i >= vq->num)) { 2873 vq_err(vq, "Desc index is %u > %u, head = %u", 2874 i, vq->num, head); 2875 return -EINVAL; 2876 } 2877 if (unlikely(++found > vq->num)) { 2878 vq_err(vq, "Loop detected: last one at %u " 2879 "vq size %u head %u\n", 2880 i, vq->num, head); 2881 return -EINVAL; 2882 } 2883 ret = vhost_get_desc(vq, &desc, i); 2884 if (unlikely(ret)) { 2885 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2886 i, vq->desc + i); 2887 return -EFAULT; 2888 } 2889 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2890 ret = get_indirect(vq, iov, iov_size, 2891 out_num, in_num, 2892 log, log_num, &desc); 2893 if (unlikely(ret < 0)) { 2894 if (ret != -EAGAIN) 2895 vq_err(vq, "Failure detected " 2896 "in indirect descriptor at idx %d\n", i); 2897 return ret; 2898 } 2899 ++c; 2900 continue; 2901 } 2902 2903 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2904 access = VHOST_ACCESS_WO; 2905 else 2906 access = VHOST_ACCESS_RO; 2907 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2908 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2909 iov_size - iov_count, access); 2910 if (unlikely(ret < 0)) { 2911 if (ret != -EAGAIN) 2912 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2913 ret, i); 2914 return ret; 2915 } 2916 if (access == VHOST_ACCESS_WO) { 2917 /* If this is an input descriptor, 2918 * increment that count. */ 2919 *in_num += ret; 2920 if (unlikely(log && ret)) { 2921 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2922 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2923 ++*log_num; 2924 } 2925 } else { 2926 /* If it's an output descriptor, they're all supposed 2927 * to come before any input descriptors. */ 2928 if (unlikely(*in_num)) { 2929 vq_err(vq, "Descriptor has out after in: " 2930 "idx %d\n", i); 2931 return -EINVAL; 2932 } 2933 *out_num += ret; 2934 } 2935 ++c; 2936 } while ((i = next_desc(vq, &desc)) != -1); 2937 2938 /* On success, increment avail index. */ 2939 vq->last_avail_idx++; 2940 vq->next_avail_head += c; 2941 2942 if (ndesc) 2943 *ndesc = c; 2944 2945 /* Assume notifications from guest are disabled at this point, 2946 * if they aren't we would need to update avail_event index. */ 2947 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2948 return head; 2949 } 2950 EXPORT_SYMBOL_GPL(vhost_get_vq_desc_n); 2951 2952 /* This looks in the virtqueue and for the first available buffer, and converts 2953 * it to an iovec for convenient access. Since descriptors consist of some 2954 * number of output then some number of input descriptors, it's actually two 2955 * iovecs, but we pack them into one and note how many of each there were. 2956 * 2957 * This function returns the descriptor number found, or vq->num (which is 2958 * never a valid descriptor number) if none was found. A negative code is 2959 * returned on error. 2960 */ 2961 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2962 struct iovec iov[], unsigned int iov_size, 2963 unsigned int *out_num, unsigned int *in_num, 2964 struct vhost_log *log, unsigned int *log_num) 2965 { 2966 return vhost_get_vq_desc_n(vq, iov, iov_size, out_num, in_num, 2967 log, log_num, NULL); 2968 } 2969 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2970 2971 /** 2972 * vhost_discard_vq_desc - Reverse the effect of vhost_get_vq_desc_n() 2973 * @vq: target virtqueue 2974 * @nbufs: number of buffers to roll back 2975 * @ndesc: number of descriptors to roll back 2976 * 2977 * Rewinds the internal consumer cursors after a failed attempt to use buffers 2978 * returned by vhost_get_vq_desc_n(). 2979 */ 2980 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int nbufs, 2981 unsigned int ndesc) 2982 { 2983 vq->next_avail_head -= ndesc; 2984 vq->last_avail_idx -= nbufs; 2985 } 2986 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2987 2988 /* After we've used one of their buffers, we tell them about it. We'll then 2989 * want to notify the guest, using eventfd. */ 2990 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2991 { 2992 struct vring_used_elem heads = { 2993 cpu_to_vhost32(vq, head), 2994 cpu_to_vhost32(vq, len) 2995 }; 2996 u16 nheads = 1; 2997 2998 return vhost_add_used_n(vq, &heads, &nheads, 1); 2999 } 3000 EXPORT_SYMBOL_GPL(vhost_add_used); 3001 3002 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 3003 struct vring_used_elem *heads, 3004 unsigned count) 3005 { 3006 vring_used_elem_t __user *used; 3007 u16 old, new; 3008 int start; 3009 3010 start = vq->last_used_idx & (vq->num - 1); 3011 used = vq->used->ring + start; 3012 if (vhost_put_used(vq, heads, start, count)) { 3013 vq_err(vq, "Failed to write used"); 3014 return -EFAULT; 3015 } 3016 if (unlikely(vq->log_used)) { 3017 /* Make sure data is seen before log. */ 3018 smp_wmb(); 3019 /* Log used ring entry write. */ 3020 log_used(vq, ((void __user *)used - (void __user *)vq->used), 3021 count * sizeof *used); 3022 } 3023 old = vq->last_used_idx; 3024 new = (vq->last_used_idx += count); 3025 /* If the driver never bothers to signal in a very long while, 3026 * used index might wrap around. If that happens, invalidate 3027 * signalled_used index we stored. TODO: make sure driver 3028 * signals at least once in 2^16 and remove this. */ 3029 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 3030 vq->signalled_used_valid = false; 3031 return 0; 3032 } 3033 3034 static int vhost_add_used_n_ooo(struct vhost_virtqueue *vq, 3035 struct vring_used_elem *heads, 3036 unsigned count) 3037 { 3038 int start, n, r; 3039 3040 start = vq->last_used_idx & (vq->num - 1); 3041 n = vq->num - start; 3042 if (n < count) { 3043 r = __vhost_add_used_n(vq, heads, n); 3044 if (r < 0) 3045 return r; 3046 heads += n; 3047 count -= n; 3048 } 3049 return __vhost_add_used_n(vq, heads, count); 3050 } 3051 3052 static int vhost_add_used_n_in_order(struct vhost_virtqueue *vq, 3053 struct vring_used_elem *heads, 3054 const u16 *nheads, 3055 unsigned count) 3056 { 3057 vring_used_elem_t __user *used; 3058 u16 old, new = vq->last_used_idx; 3059 int start, i; 3060 3061 if (!nheads) 3062 return -EINVAL; 3063 3064 start = vq->last_used_idx & (vq->num - 1); 3065 used = vq->used->ring + start; 3066 3067 for (i = 0; i < count; i++) { 3068 if (vhost_put_used(vq, &heads[i], start, 1)) { 3069 vq_err(vq, "Failed to write used"); 3070 return -EFAULT; 3071 } 3072 start += nheads[i]; 3073 new += nheads[i]; 3074 if (start >= vq->num) 3075 start -= vq->num; 3076 } 3077 3078 if (unlikely(vq->log_used)) { 3079 /* Make sure data is seen before log. */ 3080 smp_wmb(); 3081 /* Log used ring entry write. */ 3082 log_used(vq, ((void __user *)used - (void __user *)vq->used), 3083 (vq->num - start) * sizeof *used); 3084 if (start + count > vq->num) 3085 log_used(vq, 0, 3086 (start + count - vq->num) * sizeof *used); 3087 } 3088 3089 old = vq->last_used_idx; 3090 vq->last_used_idx = new; 3091 /* If the driver never bothers to signal in a very long while, 3092 * used index might wrap around. If that happens, invalidate 3093 * signalled_used index we stored. TODO: make sure driver 3094 * signals at least once in 2^16 and remove this. */ 3095 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 3096 vq->signalled_used_valid = false; 3097 return 0; 3098 } 3099 3100 /* After we've used one of their buffers, we tell them about it. We'll then 3101 * want to notify the guest, using eventfd. */ 3102 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 3103 u16 *nheads, unsigned count) 3104 { 3105 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER); 3106 int r; 3107 3108 if (!in_order || !nheads) 3109 r = vhost_add_used_n_ooo(vq, heads, count); 3110 else 3111 r = vhost_add_used_n_in_order(vq, heads, nheads, count); 3112 3113 if (r < 0) 3114 return r; 3115 3116 /* Make sure buffer is written before we update index. */ 3117 smp_wmb(); 3118 if (vhost_put_used_idx(vq)) { 3119 vq_err(vq, "Failed to increment used idx"); 3120 return -EFAULT; 3121 } 3122 if (unlikely(vq->log_used)) { 3123 /* Make sure used idx is seen before log. */ 3124 smp_wmb(); 3125 /* Log used index update. */ 3126 log_used(vq, offsetof(struct vring_used, idx), 3127 sizeof vq->used->idx); 3128 if (vq->log_ctx) 3129 eventfd_signal(vq->log_ctx); 3130 } 3131 return r; 3132 } 3133 EXPORT_SYMBOL_GPL(vhost_add_used_n); 3134 3135 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3136 { 3137 __u16 old, new; 3138 __virtio16 event; 3139 bool v; 3140 /* Flush out used index updates. This is paired 3141 * with the barrier that the Guest executes when enabling 3142 * interrupts. */ 3143 smp_mb(); 3144 3145 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 3146 unlikely(vq->avail_idx == vq->last_avail_idx)) 3147 return true; 3148 3149 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 3150 __virtio16 flags; 3151 if (vhost_get_avail_flags(vq, &flags)) { 3152 vq_err(vq, "Failed to get flags"); 3153 return true; 3154 } 3155 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 3156 } 3157 old = vq->signalled_used; 3158 v = vq->signalled_used_valid; 3159 new = vq->signalled_used = vq->last_used_idx; 3160 vq->signalled_used_valid = true; 3161 3162 if (unlikely(!v)) 3163 return true; 3164 3165 if (vhost_get_used_event(vq, &event)) { 3166 vq_err(vq, "Failed to get used event idx"); 3167 return true; 3168 } 3169 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 3170 } 3171 3172 /* This actually signals the guest, using eventfd. */ 3173 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3174 { 3175 /* Signal the Guest tell them we used something up. */ 3176 if (vq->call_ctx.ctx && vhost_notify(dev, vq)) 3177 eventfd_signal(vq->call_ctx.ctx); 3178 } 3179 EXPORT_SYMBOL_GPL(vhost_signal); 3180 3181 /* And here's the combo meal deal. Supersize me! */ 3182 void vhost_add_used_and_signal(struct vhost_dev *dev, 3183 struct vhost_virtqueue *vq, 3184 unsigned int head, int len) 3185 { 3186 vhost_add_used(vq, head, len); 3187 vhost_signal(dev, vq); 3188 } 3189 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 3190 3191 /* multi-buffer version of vhost_add_used_and_signal */ 3192 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 3193 struct vhost_virtqueue *vq, 3194 struct vring_used_elem *heads, 3195 u16 *nheads, 3196 unsigned count) 3197 { 3198 vhost_add_used_n(vq, heads, nheads, count); 3199 vhost_signal(dev, vq); 3200 } 3201 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 3202 3203 /* return true if we're sure that available ring is empty */ 3204 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3205 { 3206 int r; 3207 3208 if (vq->avail_idx != vq->last_avail_idx) 3209 return false; 3210 3211 r = vhost_get_avail_idx(vq); 3212 3213 /* Note: we treat error as non-empty here */ 3214 return r == 0; 3215 } 3216 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 3217 3218 /* OK, now we need to know about added descriptors. */ 3219 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3220 { 3221 int r; 3222 3223 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 3224 return false; 3225 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 3226 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 3227 r = vhost_update_used_flags(vq); 3228 if (r) { 3229 vq_err(vq, "Failed to enable notification at %p: %d\n", 3230 &vq->used->flags, r); 3231 return false; 3232 } 3233 } else { 3234 r = vhost_update_avail_event(vq); 3235 if (r) { 3236 vq_err(vq, "Failed to update avail event index at %p: %d\n", 3237 vhost_avail_event(vq), r); 3238 return false; 3239 } 3240 } 3241 /* They could have slipped one in as we were doing that: make 3242 * sure it's written, then check again. */ 3243 smp_mb(); 3244 3245 r = vhost_get_avail_idx(vq); 3246 /* Note: we treat error as empty here */ 3247 if (unlikely(r < 0)) 3248 return false; 3249 3250 return r; 3251 } 3252 EXPORT_SYMBOL_GPL(vhost_enable_notify); 3253 3254 /* We don't need to be notified again. */ 3255 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3256 { 3257 int r; 3258 3259 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 3260 return; 3261 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 3262 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 3263 r = vhost_update_used_flags(vq); 3264 if (r) 3265 vq_err(vq, "Failed to disable notification at %p: %d\n", 3266 &vq->used->flags, r); 3267 } 3268 } 3269 EXPORT_SYMBOL_GPL(vhost_disable_notify); 3270 3271 /* Create a new message. */ 3272 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 3273 { 3274 /* Make sure all padding within the structure is initialized. */ 3275 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL); 3276 if (!node) 3277 return NULL; 3278 3279 node->vq = vq; 3280 node->msg.type = type; 3281 return node; 3282 } 3283 EXPORT_SYMBOL_GPL(vhost_new_msg); 3284 3285 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 3286 struct vhost_msg_node *node) 3287 { 3288 spin_lock(&dev->iotlb_lock); 3289 list_add_tail(&node->node, head); 3290 spin_unlock(&dev->iotlb_lock); 3291 3292 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 3293 } 3294 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 3295 3296 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 3297 struct list_head *head) 3298 { 3299 struct vhost_msg_node *node = NULL; 3300 3301 spin_lock(&dev->iotlb_lock); 3302 if (!list_empty(head)) { 3303 node = list_first_entry(head, struct vhost_msg_node, 3304 node); 3305 list_del(&node->node); 3306 } 3307 spin_unlock(&dev->iotlb_lock); 3308 3309 return node; 3310 } 3311 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 3312 3313 void vhost_set_backend_features(struct vhost_dev *dev, u64 features) 3314 { 3315 struct vhost_virtqueue *vq; 3316 int i; 3317 3318 mutex_lock(&dev->mutex); 3319 for (i = 0; i < dev->nvqs; ++i) { 3320 vq = dev->vqs[i]; 3321 mutex_lock(&vq->mutex); 3322 vq->acked_backend_features = features; 3323 mutex_unlock(&vq->mutex); 3324 } 3325 mutex_unlock(&dev->mutex); 3326 } 3327 EXPORT_SYMBOL_GPL(vhost_set_backend_features); 3328 3329 static int __init vhost_init(void) 3330 { 3331 return 0; 3332 } 3333 3334 static void __exit vhost_exit(void) 3335 { 3336 } 3337 3338 module_init(vhost_init); 3339 module_exit(vhost_exit); 3340 3341 MODULE_VERSION("0.0.1"); 3342 MODULE_LICENSE("GPL v2"); 3343 MODULE_AUTHOR("Michael S. Tsirkin"); 3344 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 3345