1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 53 rb, __u64, __subtree_last, 54 START, LAST, static inline, vhost_umem_interval_tree); 55 56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 58 { 59 vq->user_be = !virtio_legacy_is_little_endian(); 60 } 61 62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 63 { 64 vq->user_be = true; 65 } 66 67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 68 { 69 vq->user_be = false; 70 } 71 72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 73 { 74 struct vhost_vring_state s; 75 76 if (vq->private_data) 77 return -EBUSY; 78 79 if (copy_from_user(&s, argp, sizeof(s))) 80 return -EFAULT; 81 82 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 83 s.num != VHOST_VRING_BIG_ENDIAN) 84 return -EINVAL; 85 86 if (s.num == VHOST_VRING_BIG_ENDIAN) 87 vhost_enable_cross_endian_big(vq); 88 else 89 vhost_enable_cross_endian_little(vq); 90 91 return 0; 92 } 93 94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 95 int __user *argp) 96 { 97 struct vhost_vring_state s = { 98 .index = idx, 99 .num = vq->user_be 100 }; 101 102 if (copy_to_user(argp, &s, sizeof(s))) 103 return -EFAULT; 104 105 return 0; 106 } 107 108 static void vhost_init_is_le(struct vhost_virtqueue *vq) 109 { 110 /* Note for legacy virtio: user_be is initialized at reset time 111 * according to the host endianness. If userspace does not set an 112 * explicit endianness, the default behavior is native endian, as 113 * expected by legacy virtio. 114 */ 115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 116 } 117 #else 118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 119 { 120 } 121 122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 123 { 124 return -ENOIOCTLCMD; 125 } 126 127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 128 int __user *argp) 129 { 130 return -ENOIOCTLCMD; 131 } 132 133 static void vhost_init_is_le(struct vhost_virtqueue *vq) 134 { 135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 136 || virtio_legacy_is_little_endian(); 137 } 138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 139 140 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 141 { 142 vhost_init_is_le(vq); 143 } 144 145 struct vhost_flush_struct { 146 struct vhost_work work; 147 struct completion wait_event; 148 }; 149 150 static void vhost_flush_work(struct vhost_work *work) 151 { 152 struct vhost_flush_struct *s; 153 154 s = container_of(work, struct vhost_flush_struct, work); 155 complete(&s->wait_event); 156 } 157 158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 159 poll_table *pt) 160 { 161 struct vhost_poll *poll; 162 163 poll = container_of(pt, struct vhost_poll, table); 164 poll->wqh = wqh; 165 add_wait_queue(wqh, &poll->wait); 166 } 167 168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 169 void *key) 170 { 171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 172 173 if (!((unsigned long)key & poll->mask)) 174 return 0; 175 176 vhost_poll_queue(poll); 177 return 0; 178 } 179 180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 181 { 182 clear_bit(VHOST_WORK_QUEUED, &work->flags); 183 work->fn = fn; 184 init_waitqueue_head(&work->done); 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 unsigned long mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 unsigned long mask; 207 int ret = 0; 208 209 if (poll->wqh) 210 return 0; 211 212 mask = file->f_op->poll(file, &poll->table); 213 if (mask) 214 vhost_poll_wakeup(&poll->wait, 0, 0, (void *)mask); 215 if (mask & POLLERR) { 216 if (poll->wqh) 217 remove_wait_queue(poll->wqh, &poll->wait); 218 ret = -EINVAL; 219 } 220 221 return ret; 222 } 223 EXPORT_SYMBOL_GPL(vhost_poll_start); 224 225 /* Stop polling a file. After this function returns, it becomes safe to drop the 226 * file reference. You must also flush afterwards. */ 227 void vhost_poll_stop(struct vhost_poll *poll) 228 { 229 if (poll->wqh) { 230 remove_wait_queue(poll->wqh, &poll->wait); 231 poll->wqh = NULL; 232 } 233 } 234 EXPORT_SYMBOL_GPL(vhost_poll_stop); 235 236 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 237 { 238 struct vhost_flush_struct flush; 239 240 if (dev->worker) { 241 init_completion(&flush.wait_event); 242 vhost_work_init(&flush.work, vhost_flush_work); 243 244 vhost_work_queue(dev, &flush.work); 245 wait_for_completion(&flush.wait_event); 246 } 247 } 248 EXPORT_SYMBOL_GPL(vhost_work_flush); 249 250 /* Flush any work that has been scheduled. When calling this, don't hold any 251 * locks that are also used by the callback. */ 252 void vhost_poll_flush(struct vhost_poll *poll) 253 { 254 vhost_work_flush(poll->dev, &poll->work); 255 } 256 EXPORT_SYMBOL_GPL(vhost_poll_flush); 257 258 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 259 { 260 if (!dev->worker) 261 return; 262 263 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 264 /* We can only add the work to the list after we're 265 * sure it was not in the list. 266 * test_and_set_bit() implies a memory barrier. 267 */ 268 llist_add(&work->node, &dev->work_list); 269 wake_up_process(dev->worker); 270 } 271 } 272 EXPORT_SYMBOL_GPL(vhost_work_queue); 273 274 /* A lockless hint for busy polling code to exit the loop */ 275 bool vhost_has_work(struct vhost_dev *dev) 276 { 277 return !llist_empty(&dev->work_list); 278 } 279 EXPORT_SYMBOL_GPL(vhost_has_work); 280 281 void vhost_poll_queue(struct vhost_poll *poll) 282 { 283 vhost_work_queue(poll->dev, &poll->work); 284 } 285 EXPORT_SYMBOL_GPL(vhost_poll_queue); 286 287 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 288 { 289 int j; 290 291 for (j = 0; j < VHOST_NUM_ADDRS; j++) 292 vq->meta_iotlb[j] = NULL; 293 } 294 295 static void vhost_vq_meta_reset(struct vhost_dev *d) 296 { 297 int i; 298 299 for (i = 0; i < d->nvqs; ++i) 300 __vhost_vq_meta_reset(d->vqs[i]); 301 } 302 303 static void vhost_vq_reset(struct vhost_dev *dev, 304 struct vhost_virtqueue *vq) 305 { 306 vq->num = 1; 307 vq->desc = NULL; 308 vq->avail = NULL; 309 vq->used = NULL; 310 vq->last_avail_idx = 0; 311 vq->avail_idx = 0; 312 vq->last_used_idx = 0; 313 vq->signalled_used = 0; 314 vq->signalled_used_valid = false; 315 vq->used_flags = 0; 316 vq->log_used = false; 317 vq->log_addr = -1ull; 318 vq->private_data = NULL; 319 vq->acked_features = 0; 320 vq->log_base = NULL; 321 vq->error_ctx = NULL; 322 vq->error = NULL; 323 vq->kick = NULL; 324 vq->call_ctx = NULL; 325 vq->call = NULL; 326 vq->log_ctx = NULL; 327 vhost_reset_is_le(vq); 328 vhost_disable_cross_endian(vq); 329 vq->busyloop_timeout = 0; 330 vq->umem = NULL; 331 vq->iotlb = NULL; 332 __vhost_vq_meta_reset(vq); 333 } 334 335 static int vhost_worker(void *data) 336 { 337 struct vhost_dev *dev = data; 338 struct vhost_work *work, *work_next; 339 struct llist_node *node; 340 mm_segment_t oldfs = get_fs(); 341 342 set_fs(USER_DS); 343 use_mm(dev->mm); 344 345 for (;;) { 346 /* mb paired w/ kthread_stop */ 347 set_current_state(TASK_INTERRUPTIBLE); 348 349 if (kthread_should_stop()) { 350 __set_current_state(TASK_RUNNING); 351 break; 352 } 353 354 node = llist_del_all(&dev->work_list); 355 if (!node) 356 schedule(); 357 358 node = llist_reverse_order(node); 359 /* make sure flag is seen after deletion */ 360 smp_wmb(); 361 llist_for_each_entry_safe(work, work_next, node, node) { 362 clear_bit(VHOST_WORK_QUEUED, &work->flags); 363 __set_current_state(TASK_RUNNING); 364 work->fn(work); 365 if (need_resched()) 366 schedule(); 367 } 368 } 369 unuse_mm(dev->mm); 370 set_fs(oldfs); 371 return 0; 372 } 373 374 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 375 { 376 kfree(vq->indirect); 377 vq->indirect = NULL; 378 kfree(vq->log); 379 vq->log = NULL; 380 kfree(vq->heads); 381 vq->heads = NULL; 382 } 383 384 /* Helper to allocate iovec buffers for all vqs. */ 385 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 386 { 387 struct vhost_virtqueue *vq; 388 int i; 389 390 for (i = 0; i < dev->nvqs; ++i) { 391 vq = dev->vqs[i]; 392 vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV, 393 GFP_KERNEL); 394 vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL); 395 vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL); 396 if (!vq->indirect || !vq->log || !vq->heads) 397 goto err_nomem; 398 } 399 return 0; 400 401 err_nomem: 402 for (; i >= 0; --i) 403 vhost_vq_free_iovecs(dev->vqs[i]); 404 return -ENOMEM; 405 } 406 407 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 408 { 409 int i; 410 411 for (i = 0; i < dev->nvqs; ++i) 412 vhost_vq_free_iovecs(dev->vqs[i]); 413 } 414 415 void vhost_dev_init(struct vhost_dev *dev, 416 struct vhost_virtqueue **vqs, int nvqs) 417 { 418 struct vhost_virtqueue *vq; 419 int i; 420 421 dev->vqs = vqs; 422 dev->nvqs = nvqs; 423 mutex_init(&dev->mutex); 424 dev->log_ctx = NULL; 425 dev->log_file = NULL; 426 dev->umem = NULL; 427 dev->iotlb = NULL; 428 dev->mm = NULL; 429 dev->worker = NULL; 430 init_llist_head(&dev->work_list); 431 init_waitqueue_head(&dev->wait); 432 INIT_LIST_HEAD(&dev->read_list); 433 INIT_LIST_HEAD(&dev->pending_list); 434 spin_lock_init(&dev->iotlb_lock); 435 436 437 for (i = 0; i < dev->nvqs; ++i) { 438 vq = dev->vqs[i]; 439 vq->log = NULL; 440 vq->indirect = NULL; 441 vq->heads = NULL; 442 vq->dev = dev; 443 mutex_init(&vq->mutex); 444 vhost_vq_reset(dev, vq); 445 if (vq->handle_kick) 446 vhost_poll_init(&vq->poll, vq->handle_kick, 447 POLLIN, dev); 448 } 449 } 450 EXPORT_SYMBOL_GPL(vhost_dev_init); 451 452 /* Caller should have device mutex */ 453 long vhost_dev_check_owner(struct vhost_dev *dev) 454 { 455 /* Are you the owner? If not, I don't think you mean to do that */ 456 return dev->mm == current->mm ? 0 : -EPERM; 457 } 458 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 459 460 struct vhost_attach_cgroups_struct { 461 struct vhost_work work; 462 struct task_struct *owner; 463 int ret; 464 }; 465 466 static void vhost_attach_cgroups_work(struct vhost_work *work) 467 { 468 struct vhost_attach_cgroups_struct *s; 469 470 s = container_of(work, struct vhost_attach_cgroups_struct, work); 471 s->ret = cgroup_attach_task_all(s->owner, current); 472 } 473 474 static int vhost_attach_cgroups(struct vhost_dev *dev) 475 { 476 struct vhost_attach_cgroups_struct attach; 477 478 attach.owner = current; 479 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 480 vhost_work_queue(dev, &attach.work); 481 vhost_work_flush(dev, &attach.work); 482 return attach.ret; 483 } 484 485 /* Caller should have device mutex */ 486 bool vhost_dev_has_owner(struct vhost_dev *dev) 487 { 488 return dev->mm; 489 } 490 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 491 492 /* Caller should have device mutex */ 493 long vhost_dev_set_owner(struct vhost_dev *dev) 494 { 495 struct task_struct *worker; 496 int err; 497 498 /* Is there an owner already? */ 499 if (vhost_dev_has_owner(dev)) { 500 err = -EBUSY; 501 goto err_mm; 502 } 503 504 /* No owner, become one */ 505 dev->mm = get_task_mm(current); 506 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 507 if (IS_ERR(worker)) { 508 err = PTR_ERR(worker); 509 goto err_worker; 510 } 511 512 dev->worker = worker; 513 wake_up_process(worker); /* avoid contributing to loadavg */ 514 515 err = vhost_attach_cgroups(dev); 516 if (err) 517 goto err_cgroup; 518 519 err = vhost_dev_alloc_iovecs(dev); 520 if (err) 521 goto err_cgroup; 522 523 return 0; 524 err_cgroup: 525 kthread_stop(worker); 526 dev->worker = NULL; 527 err_worker: 528 if (dev->mm) 529 mmput(dev->mm); 530 dev->mm = NULL; 531 err_mm: 532 return err; 533 } 534 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 535 536 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 537 { 538 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 539 } 540 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 541 542 /* Caller should have device mutex */ 543 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 544 { 545 int i; 546 547 vhost_dev_cleanup(dev, true); 548 549 /* Restore memory to default empty mapping. */ 550 INIT_LIST_HEAD(&umem->umem_list); 551 dev->umem = umem; 552 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 553 * VQs aren't running. 554 */ 555 for (i = 0; i < dev->nvqs; ++i) 556 dev->vqs[i]->umem = umem; 557 } 558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 559 560 void vhost_dev_stop(struct vhost_dev *dev) 561 { 562 int i; 563 564 for (i = 0; i < dev->nvqs; ++i) { 565 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 566 vhost_poll_stop(&dev->vqs[i]->poll); 567 vhost_poll_flush(&dev->vqs[i]->poll); 568 } 569 } 570 } 571 EXPORT_SYMBOL_GPL(vhost_dev_stop); 572 573 static void vhost_umem_free(struct vhost_umem *umem, 574 struct vhost_umem_node *node) 575 { 576 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 577 list_del(&node->link); 578 kfree(node); 579 umem->numem--; 580 } 581 582 static void vhost_umem_clean(struct vhost_umem *umem) 583 { 584 struct vhost_umem_node *node, *tmp; 585 586 if (!umem) 587 return; 588 589 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 590 vhost_umem_free(umem, node); 591 592 kvfree(umem); 593 } 594 595 static void vhost_clear_msg(struct vhost_dev *dev) 596 { 597 struct vhost_msg_node *node, *n; 598 599 spin_lock(&dev->iotlb_lock); 600 601 list_for_each_entry_safe(node, n, &dev->read_list, node) { 602 list_del(&node->node); 603 kfree(node); 604 } 605 606 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 607 list_del(&node->node); 608 kfree(node); 609 } 610 611 spin_unlock(&dev->iotlb_lock); 612 } 613 614 /* Caller should have device mutex if and only if locked is set */ 615 void vhost_dev_cleanup(struct vhost_dev *dev, bool locked) 616 { 617 int i; 618 619 for (i = 0; i < dev->nvqs; ++i) { 620 if (dev->vqs[i]->error_ctx) 621 eventfd_ctx_put(dev->vqs[i]->error_ctx); 622 if (dev->vqs[i]->error) 623 fput(dev->vqs[i]->error); 624 if (dev->vqs[i]->kick) 625 fput(dev->vqs[i]->kick); 626 if (dev->vqs[i]->call_ctx) 627 eventfd_ctx_put(dev->vqs[i]->call_ctx); 628 if (dev->vqs[i]->call) 629 fput(dev->vqs[i]->call); 630 vhost_vq_reset(dev, dev->vqs[i]); 631 } 632 vhost_dev_free_iovecs(dev); 633 if (dev->log_ctx) 634 eventfd_ctx_put(dev->log_ctx); 635 dev->log_ctx = NULL; 636 if (dev->log_file) 637 fput(dev->log_file); 638 dev->log_file = NULL; 639 /* No one will access memory at this point */ 640 vhost_umem_clean(dev->umem); 641 dev->umem = NULL; 642 vhost_umem_clean(dev->iotlb); 643 dev->iotlb = NULL; 644 vhost_clear_msg(dev); 645 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 646 WARN_ON(!llist_empty(&dev->work_list)); 647 if (dev->worker) { 648 kthread_stop(dev->worker); 649 dev->worker = NULL; 650 } 651 if (dev->mm) 652 mmput(dev->mm); 653 dev->mm = NULL; 654 } 655 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 656 657 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 658 { 659 u64 a = addr / VHOST_PAGE_SIZE / 8; 660 661 /* Make sure 64 bit math will not overflow. */ 662 if (a > ULONG_MAX - (unsigned long)log_base || 663 a + (unsigned long)log_base > ULONG_MAX) 664 return 0; 665 666 return access_ok(VERIFY_WRITE, log_base + a, 667 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 668 } 669 670 static bool vhost_overflow(u64 uaddr, u64 size) 671 { 672 /* Make sure 64 bit math will not overflow. */ 673 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 674 } 675 676 /* Caller should have vq mutex and device mutex. */ 677 static int vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 678 int log_all) 679 { 680 struct vhost_umem_node *node; 681 682 if (!umem) 683 return 0; 684 685 list_for_each_entry(node, &umem->umem_list, link) { 686 unsigned long a = node->userspace_addr; 687 688 if (vhost_overflow(node->userspace_addr, node->size)) 689 return 0; 690 691 692 if (!access_ok(VERIFY_WRITE, (void __user *)a, 693 node->size)) 694 return 0; 695 else if (log_all && !log_access_ok(log_base, 696 node->start, 697 node->size)) 698 return 0; 699 } 700 return 1; 701 } 702 703 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 704 u64 addr, unsigned int size, 705 int type) 706 { 707 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 708 709 if (!node) 710 return NULL; 711 712 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 713 } 714 715 /* Can we switch to this memory table? */ 716 /* Caller should have device mutex but not vq mutex */ 717 static int memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 718 int log_all) 719 { 720 int i; 721 722 for (i = 0; i < d->nvqs; ++i) { 723 int ok; 724 bool log; 725 726 mutex_lock(&d->vqs[i]->mutex); 727 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 728 /* If ring is inactive, will check when it's enabled. */ 729 if (d->vqs[i]->private_data) 730 ok = vq_memory_access_ok(d->vqs[i]->log_base, 731 umem, log); 732 else 733 ok = 1; 734 mutex_unlock(&d->vqs[i]->mutex); 735 if (!ok) 736 return 0; 737 } 738 return 1; 739 } 740 741 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 742 struct iovec iov[], int iov_size, int access); 743 744 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 745 const void *from, unsigned size) 746 { 747 int ret; 748 749 if (!vq->iotlb) 750 return __copy_to_user(to, from, size); 751 else { 752 /* This function should be called after iotlb 753 * prefetch, which means we're sure that all vq 754 * could be access through iotlb. So -EAGAIN should 755 * not happen in this case. 756 */ 757 struct iov_iter t; 758 void __user *uaddr = vhost_vq_meta_fetch(vq, 759 (u64)(uintptr_t)to, size, 760 VHOST_ADDR_DESC); 761 762 if (uaddr) 763 return __copy_to_user(uaddr, from, size); 764 765 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 766 ARRAY_SIZE(vq->iotlb_iov), 767 VHOST_ACCESS_WO); 768 if (ret < 0) 769 goto out; 770 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 771 ret = copy_to_iter(from, size, &t); 772 if (ret == size) 773 ret = 0; 774 } 775 out: 776 return ret; 777 } 778 779 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 780 void __user *from, unsigned size) 781 { 782 int ret; 783 784 if (!vq->iotlb) 785 return __copy_from_user(to, from, size); 786 else { 787 /* This function should be called after iotlb 788 * prefetch, which means we're sure that vq 789 * could be access through iotlb. So -EAGAIN should 790 * not happen in this case. 791 */ 792 void __user *uaddr = vhost_vq_meta_fetch(vq, 793 (u64)(uintptr_t)from, size, 794 VHOST_ADDR_DESC); 795 struct iov_iter f; 796 797 if (uaddr) 798 return __copy_from_user(to, uaddr, size); 799 800 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 801 ARRAY_SIZE(vq->iotlb_iov), 802 VHOST_ACCESS_RO); 803 if (ret < 0) { 804 vq_err(vq, "IOTLB translation failure: uaddr " 805 "%p size 0x%llx\n", from, 806 (unsigned long long) size); 807 goto out; 808 } 809 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 810 ret = copy_from_iter(to, size, &f); 811 if (ret == size) 812 ret = 0; 813 } 814 815 out: 816 return ret; 817 } 818 819 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 820 void __user *addr, unsigned int size, 821 int type) 822 { 823 int ret; 824 825 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 826 ARRAY_SIZE(vq->iotlb_iov), 827 VHOST_ACCESS_RO); 828 if (ret < 0) { 829 vq_err(vq, "IOTLB translation failure: uaddr " 830 "%p size 0x%llx\n", addr, 831 (unsigned long long) size); 832 return NULL; 833 } 834 835 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 836 vq_err(vq, "Non atomic userspace memory access: uaddr " 837 "%p size 0x%llx\n", addr, 838 (unsigned long long) size); 839 return NULL; 840 } 841 842 return vq->iotlb_iov[0].iov_base; 843 } 844 845 /* This function should be called after iotlb 846 * prefetch, which means we're sure that vq 847 * could be access through iotlb. So -EAGAIN should 848 * not happen in this case. 849 */ 850 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 851 void *addr, unsigned int size, 852 int type) 853 { 854 void __user *uaddr = vhost_vq_meta_fetch(vq, 855 (u64)(uintptr_t)addr, size, type); 856 if (uaddr) 857 return uaddr; 858 859 return __vhost_get_user_slow(vq, addr, size, type); 860 } 861 862 #define vhost_put_user(vq, x, ptr) \ 863 ({ \ 864 int ret = -EFAULT; \ 865 if (!vq->iotlb) { \ 866 ret = __put_user(x, ptr); \ 867 } else { \ 868 __typeof__(ptr) to = \ 869 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 870 sizeof(*ptr), VHOST_ADDR_USED); \ 871 if (to != NULL) \ 872 ret = __put_user(x, to); \ 873 else \ 874 ret = -EFAULT; \ 875 } \ 876 ret; \ 877 }) 878 879 #define vhost_get_user(vq, x, ptr, type) \ 880 ({ \ 881 int ret; \ 882 if (!vq->iotlb) { \ 883 ret = __get_user(x, ptr); \ 884 } else { \ 885 __typeof__(ptr) from = \ 886 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 887 sizeof(*ptr), \ 888 type); \ 889 if (from != NULL) \ 890 ret = __get_user(x, from); \ 891 else \ 892 ret = -EFAULT; \ 893 } \ 894 ret; \ 895 }) 896 897 #define vhost_get_avail(vq, x, ptr) \ 898 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 899 900 #define vhost_get_used(vq, x, ptr) \ 901 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 902 903 static void vhost_dev_lock_vqs(struct vhost_dev *d) 904 { 905 int i = 0; 906 for (i = 0; i < d->nvqs; ++i) 907 mutex_lock(&d->vqs[i]->mutex); 908 } 909 910 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 911 { 912 int i = 0; 913 for (i = 0; i < d->nvqs; ++i) 914 mutex_unlock(&d->vqs[i]->mutex); 915 } 916 917 static int vhost_new_umem_range(struct vhost_umem *umem, 918 u64 start, u64 size, u64 end, 919 u64 userspace_addr, int perm) 920 { 921 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 922 923 if (!node) 924 return -ENOMEM; 925 926 if (umem->numem == max_iotlb_entries) { 927 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 928 vhost_umem_free(umem, tmp); 929 } 930 931 node->start = start; 932 node->size = size; 933 node->last = end; 934 node->userspace_addr = userspace_addr; 935 node->perm = perm; 936 INIT_LIST_HEAD(&node->link); 937 list_add_tail(&node->link, &umem->umem_list); 938 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 939 umem->numem++; 940 941 return 0; 942 } 943 944 static void vhost_del_umem_range(struct vhost_umem *umem, 945 u64 start, u64 end) 946 { 947 struct vhost_umem_node *node; 948 949 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 950 start, end))) 951 vhost_umem_free(umem, node); 952 } 953 954 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 955 struct vhost_iotlb_msg *msg) 956 { 957 struct vhost_msg_node *node, *n; 958 959 spin_lock(&d->iotlb_lock); 960 961 list_for_each_entry_safe(node, n, &d->pending_list, node) { 962 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 963 if (msg->iova <= vq_msg->iova && 964 msg->iova + msg->size - 1 > vq_msg->iova && 965 vq_msg->type == VHOST_IOTLB_MISS) { 966 vhost_poll_queue(&node->vq->poll); 967 list_del(&node->node); 968 kfree(node); 969 } 970 } 971 972 spin_unlock(&d->iotlb_lock); 973 } 974 975 static int umem_access_ok(u64 uaddr, u64 size, int access) 976 { 977 unsigned long a = uaddr; 978 979 /* Make sure 64 bit math will not overflow. */ 980 if (vhost_overflow(uaddr, size)) 981 return -EFAULT; 982 983 if ((access & VHOST_ACCESS_RO) && 984 !access_ok(VERIFY_READ, (void __user *)a, size)) 985 return -EFAULT; 986 if ((access & VHOST_ACCESS_WO) && 987 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 988 return -EFAULT; 989 return 0; 990 } 991 992 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 993 struct vhost_iotlb_msg *msg) 994 { 995 int ret = 0; 996 997 vhost_dev_lock_vqs(dev); 998 switch (msg->type) { 999 case VHOST_IOTLB_UPDATE: 1000 if (!dev->iotlb) { 1001 ret = -EFAULT; 1002 break; 1003 } 1004 if (umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1005 ret = -EFAULT; 1006 break; 1007 } 1008 vhost_vq_meta_reset(dev); 1009 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1010 msg->iova + msg->size - 1, 1011 msg->uaddr, msg->perm)) { 1012 ret = -ENOMEM; 1013 break; 1014 } 1015 vhost_iotlb_notify_vq(dev, msg); 1016 break; 1017 case VHOST_IOTLB_INVALIDATE: 1018 vhost_vq_meta_reset(dev); 1019 vhost_del_umem_range(dev->iotlb, msg->iova, 1020 msg->iova + msg->size - 1); 1021 break; 1022 default: 1023 ret = -EINVAL; 1024 break; 1025 } 1026 1027 vhost_dev_unlock_vqs(dev); 1028 return ret; 1029 } 1030 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1031 struct iov_iter *from) 1032 { 1033 struct vhost_msg_node node; 1034 unsigned size = sizeof(struct vhost_msg); 1035 size_t ret; 1036 int err; 1037 1038 if (iov_iter_count(from) < size) 1039 return 0; 1040 ret = copy_from_iter(&node.msg, size, from); 1041 if (ret != size) 1042 goto done; 1043 1044 switch (node.msg.type) { 1045 case VHOST_IOTLB_MSG: 1046 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb); 1047 if (err) 1048 ret = err; 1049 break; 1050 default: 1051 ret = -EINVAL; 1052 break; 1053 } 1054 1055 done: 1056 return ret; 1057 } 1058 EXPORT_SYMBOL(vhost_chr_write_iter); 1059 1060 unsigned int vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1061 poll_table *wait) 1062 { 1063 unsigned int mask = 0; 1064 1065 poll_wait(file, &dev->wait, wait); 1066 1067 if (!list_empty(&dev->read_list)) 1068 mask |= POLLIN | POLLRDNORM; 1069 1070 return mask; 1071 } 1072 EXPORT_SYMBOL(vhost_chr_poll); 1073 1074 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1075 int noblock) 1076 { 1077 DEFINE_WAIT(wait); 1078 struct vhost_msg_node *node; 1079 ssize_t ret = 0; 1080 unsigned size = sizeof(struct vhost_msg); 1081 1082 if (iov_iter_count(to) < size) 1083 return 0; 1084 1085 while (1) { 1086 if (!noblock) 1087 prepare_to_wait(&dev->wait, &wait, 1088 TASK_INTERRUPTIBLE); 1089 1090 node = vhost_dequeue_msg(dev, &dev->read_list); 1091 if (node) 1092 break; 1093 if (noblock) { 1094 ret = -EAGAIN; 1095 break; 1096 } 1097 if (signal_pending(current)) { 1098 ret = -ERESTARTSYS; 1099 break; 1100 } 1101 if (!dev->iotlb) { 1102 ret = -EBADFD; 1103 break; 1104 } 1105 1106 schedule(); 1107 } 1108 1109 if (!noblock) 1110 finish_wait(&dev->wait, &wait); 1111 1112 if (node) { 1113 ret = copy_to_iter(&node->msg, size, to); 1114 1115 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) { 1116 kfree(node); 1117 return ret; 1118 } 1119 1120 vhost_enqueue_msg(dev, &dev->pending_list, node); 1121 } 1122 1123 return ret; 1124 } 1125 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1126 1127 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1128 { 1129 struct vhost_dev *dev = vq->dev; 1130 struct vhost_msg_node *node; 1131 struct vhost_iotlb_msg *msg; 1132 1133 node = vhost_new_msg(vq, VHOST_IOTLB_MISS); 1134 if (!node) 1135 return -ENOMEM; 1136 1137 msg = &node->msg.iotlb; 1138 msg->type = VHOST_IOTLB_MISS; 1139 msg->iova = iova; 1140 msg->perm = access; 1141 1142 vhost_enqueue_msg(dev, &dev->read_list, node); 1143 1144 return 0; 1145 } 1146 1147 static int vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1148 struct vring_desc __user *desc, 1149 struct vring_avail __user *avail, 1150 struct vring_used __user *used) 1151 1152 { 1153 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1154 1155 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1156 access_ok(VERIFY_READ, avail, 1157 sizeof *avail + num * sizeof *avail->ring + s) && 1158 access_ok(VERIFY_WRITE, used, 1159 sizeof *used + num * sizeof *used->ring + s); 1160 } 1161 1162 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1163 const struct vhost_umem_node *node, 1164 int type) 1165 { 1166 int access = (type == VHOST_ADDR_USED) ? 1167 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1168 1169 if (likely(node->perm & access)) 1170 vq->meta_iotlb[type] = node; 1171 } 1172 1173 static int iotlb_access_ok(struct vhost_virtqueue *vq, 1174 int access, u64 addr, u64 len, int type) 1175 { 1176 const struct vhost_umem_node *node; 1177 struct vhost_umem *umem = vq->iotlb; 1178 u64 s = 0, size, orig_addr = addr; 1179 1180 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1181 return true; 1182 1183 while (len > s) { 1184 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1185 addr, 1186 addr + len - 1); 1187 if (node == NULL || node->start > addr) { 1188 vhost_iotlb_miss(vq, addr, access); 1189 return false; 1190 } else if (!(node->perm & access)) { 1191 /* Report the possible access violation by 1192 * request another translation from userspace. 1193 */ 1194 return false; 1195 } 1196 1197 size = node->size - addr + node->start; 1198 1199 if (orig_addr == addr && size >= len) 1200 vhost_vq_meta_update(vq, node, type); 1201 1202 s += size; 1203 addr += size; 1204 } 1205 1206 return true; 1207 } 1208 1209 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1210 { 1211 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1212 unsigned int num = vq->num; 1213 1214 if (!vq->iotlb) 1215 return 1; 1216 1217 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1218 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1219 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1220 sizeof *vq->avail + 1221 num * sizeof(*vq->avail->ring) + s, 1222 VHOST_ADDR_AVAIL) && 1223 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1224 sizeof *vq->used + 1225 num * sizeof(*vq->used->ring) + s, 1226 VHOST_ADDR_USED); 1227 } 1228 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1229 1230 /* Can we log writes? */ 1231 /* Caller should have device mutex but not vq mutex */ 1232 int vhost_log_access_ok(struct vhost_dev *dev) 1233 { 1234 return memory_access_ok(dev, dev->umem, 1); 1235 } 1236 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1237 1238 /* Verify access for write logging. */ 1239 /* Caller should have vq mutex and device mutex */ 1240 static int vq_log_access_ok(struct vhost_virtqueue *vq, 1241 void __user *log_base) 1242 { 1243 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1244 1245 return vq_memory_access_ok(log_base, vq->umem, 1246 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1247 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1248 sizeof *vq->used + 1249 vq->num * sizeof *vq->used->ring + s)); 1250 } 1251 1252 /* Can we start vq? */ 1253 /* Caller should have vq mutex and device mutex */ 1254 int vhost_vq_access_ok(struct vhost_virtqueue *vq) 1255 { 1256 if (vq->iotlb) { 1257 /* When device IOTLB was used, the access validation 1258 * will be validated during prefetching. 1259 */ 1260 return 1; 1261 } 1262 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used) && 1263 vq_log_access_ok(vq, vq->log_base); 1264 } 1265 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1266 1267 static struct vhost_umem *vhost_umem_alloc(void) 1268 { 1269 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1270 1271 if (!umem) 1272 return NULL; 1273 1274 umem->umem_tree = RB_ROOT_CACHED; 1275 umem->numem = 0; 1276 INIT_LIST_HEAD(&umem->umem_list); 1277 1278 return umem; 1279 } 1280 1281 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1282 { 1283 struct vhost_memory mem, *newmem; 1284 struct vhost_memory_region *region; 1285 struct vhost_umem *newumem, *oldumem; 1286 unsigned long size = offsetof(struct vhost_memory, regions); 1287 int i; 1288 1289 if (copy_from_user(&mem, m, size)) 1290 return -EFAULT; 1291 if (mem.padding) 1292 return -EOPNOTSUPP; 1293 if (mem.nregions > max_mem_regions) 1294 return -E2BIG; 1295 newmem = kvzalloc(size + mem.nregions * sizeof(*m->regions), GFP_KERNEL); 1296 if (!newmem) 1297 return -ENOMEM; 1298 1299 memcpy(newmem, &mem, size); 1300 if (copy_from_user(newmem->regions, m->regions, 1301 mem.nregions * sizeof *m->regions)) { 1302 kvfree(newmem); 1303 return -EFAULT; 1304 } 1305 1306 newumem = vhost_umem_alloc(); 1307 if (!newumem) { 1308 kvfree(newmem); 1309 return -ENOMEM; 1310 } 1311 1312 for (region = newmem->regions; 1313 region < newmem->regions + mem.nregions; 1314 region++) { 1315 if (vhost_new_umem_range(newumem, 1316 region->guest_phys_addr, 1317 region->memory_size, 1318 region->guest_phys_addr + 1319 region->memory_size - 1, 1320 region->userspace_addr, 1321 VHOST_ACCESS_RW)) 1322 goto err; 1323 } 1324 1325 if (!memory_access_ok(d, newumem, 0)) 1326 goto err; 1327 1328 oldumem = d->umem; 1329 d->umem = newumem; 1330 1331 /* All memory accesses are done under some VQ mutex. */ 1332 for (i = 0; i < d->nvqs; ++i) { 1333 mutex_lock(&d->vqs[i]->mutex); 1334 d->vqs[i]->umem = newumem; 1335 mutex_unlock(&d->vqs[i]->mutex); 1336 } 1337 1338 kvfree(newmem); 1339 vhost_umem_clean(oldumem); 1340 return 0; 1341 1342 err: 1343 vhost_umem_clean(newumem); 1344 kvfree(newmem); 1345 return -EFAULT; 1346 } 1347 1348 long vhost_vring_ioctl(struct vhost_dev *d, int ioctl, void __user *argp) 1349 { 1350 struct file *eventfp, *filep = NULL; 1351 bool pollstart = false, pollstop = false; 1352 struct eventfd_ctx *ctx = NULL; 1353 u32 __user *idxp = argp; 1354 struct vhost_virtqueue *vq; 1355 struct vhost_vring_state s; 1356 struct vhost_vring_file f; 1357 struct vhost_vring_addr a; 1358 u32 idx; 1359 long r; 1360 1361 r = get_user(idx, idxp); 1362 if (r < 0) 1363 return r; 1364 if (idx >= d->nvqs) 1365 return -ENOBUFS; 1366 1367 vq = d->vqs[idx]; 1368 1369 mutex_lock(&vq->mutex); 1370 1371 switch (ioctl) { 1372 case VHOST_SET_VRING_NUM: 1373 /* Resizing ring with an active backend? 1374 * You don't want to do that. */ 1375 if (vq->private_data) { 1376 r = -EBUSY; 1377 break; 1378 } 1379 if (copy_from_user(&s, argp, sizeof s)) { 1380 r = -EFAULT; 1381 break; 1382 } 1383 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1384 r = -EINVAL; 1385 break; 1386 } 1387 vq->num = s.num; 1388 break; 1389 case VHOST_SET_VRING_BASE: 1390 /* Moving base with an active backend? 1391 * You don't want to do that. */ 1392 if (vq->private_data) { 1393 r = -EBUSY; 1394 break; 1395 } 1396 if (copy_from_user(&s, argp, sizeof s)) { 1397 r = -EFAULT; 1398 break; 1399 } 1400 if (s.num > 0xffff) { 1401 r = -EINVAL; 1402 break; 1403 } 1404 vq->last_avail_idx = s.num; 1405 /* Forget the cached index value. */ 1406 vq->avail_idx = vq->last_avail_idx; 1407 break; 1408 case VHOST_GET_VRING_BASE: 1409 s.index = idx; 1410 s.num = vq->last_avail_idx; 1411 if (copy_to_user(argp, &s, sizeof s)) 1412 r = -EFAULT; 1413 break; 1414 case VHOST_SET_VRING_ADDR: 1415 if (copy_from_user(&a, argp, sizeof a)) { 1416 r = -EFAULT; 1417 break; 1418 } 1419 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1420 r = -EOPNOTSUPP; 1421 break; 1422 } 1423 /* For 32bit, verify that the top 32bits of the user 1424 data are set to zero. */ 1425 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1426 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1427 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1428 r = -EFAULT; 1429 break; 1430 } 1431 1432 /* Make sure it's safe to cast pointers to vring types. */ 1433 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1434 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1435 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1436 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1437 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1438 r = -EINVAL; 1439 break; 1440 } 1441 1442 /* We only verify access here if backend is configured. 1443 * If it is not, we don't as size might not have been setup. 1444 * We will verify when backend is configured. */ 1445 if (vq->private_data) { 1446 if (!vq_access_ok(vq, vq->num, 1447 (void __user *)(unsigned long)a.desc_user_addr, 1448 (void __user *)(unsigned long)a.avail_user_addr, 1449 (void __user *)(unsigned long)a.used_user_addr)) { 1450 r = -EINVAL; 1451 break; 1452 } 1453 1454 /* Also validate log access for used ring if enabled. */ 1455 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1456 !log_access_ok(vq->log_base, a.log_guest_addr, 1457 sizeof *vq->used + 1458 vq->num * sizeof *vq->used->ring)) { 1459 r = -EINVAL; 1460 break; 1461 } 1462 } 1463 1464 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1465 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1466 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1467 vq->log_addr = a.log_guest_addr; 1468 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1469 break; 1470 case VHOST_SET_VRING_KICK: 1471 if (copy_from_user(&f, argp, sizeof f)) { 1472 r = -EFAULT; 1473 break; 1474 } 1475 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1476 if (IS_ERR(eventfp)) { 1477 r = PTR_ERR(eventfp); 1478 break; 1479 } 1480 if (eventfp != vq->kick) { 1481 pollstop = (filep = vq->kick) != NULL; 1482 pollstart = (vq->kick = eventfp) != NULL; 1483 } else 1484 filep = eventfp; 1485 break; 1486 case VHOST_SET_VRING_CALL: 1487 if (copy_from_user(&f, argp, sizeof f)) { 1488 r = -EFAULT; 1489 break; 1490 } 1491 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1492 if (IS_ERR(eventfp)) { 1493 r = PTR_ERR(eventfp); 1494 break; 1495 } 1496 if (eventfp != vq->call) { 1497 filep = vq->call; 1498 ctx = vq->call_ctx; 1499 vq->call = eventfp; 1500 vq->call_ctx = eventfp ? 1501 eventfd_ctx_fileget(eventfp) : NULL; 1502 } else 1503 filep = eventfp; 1504 break; 1505 case VHOST_SET_VRING_ERR: 1506 if (copy_from_user(&f, argp, sizeof f)) { 1507 r = -EFAULT; 1508 break; 1509 } 1510 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1511 if (IS_ERR(eventfp)) { 1512 r = PTR_ERR(eventfp); 1513 break; 1514 } 1515 if (eventfp != vq->error) { 1516 filep = vq->error; 1517 vq->error = eventfp; 1518 ctx = vq->error_ctx; 1519 vq->error_ctx = eventfp ? 1520 eventfd_ctx_fileget(eventfp) : NULL; 1521 } else 1522 filep = eventfp; 1523 break; 1524 case VHOST_SET_VRING_ENDIAN: 1525 r = vhost_set_vring_endian(vq, argp); 1526 break; 1527 case VHOST_GET_VRING_ENDIAN: 1528 r = vhost_get_vring_endian(vq, idx, argp); 1529 break; 1530 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1531 if (copy_from_user(&s, argp, sizeof(s))) { 1532 r = -EFAULT; 1533 break; 1534 } 1535 vq->busyloop_timeout = s.num; 1536 break; 1537 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1538 s.index = idx; 1539 s.num = vq->busyloop_timeout; 1540 if (copy_to_user(argp, &s, sizeof(s))) 1541 r = -EFAULT; 1542 break; 1543 default: 1544 r = -ENOIOCTLCMD; 1545 } 1546 1547 if (pollstop && vq->handle_kick) 1548 vhost_poll_stop(&vq->poll); 1549 1550 if (ctx) 1551 eventfd_ctx_put(ctx); 1552 if (filep) 1553 fput(filep); 1554 1555 if (pollstart && vq->handle_kick) 1556 r = vhost_poll_start(&vq->poll, vq->kick); 1557 1558 mutex_unlock(&vq->mutex); 1559 1560 if (pollstop && vq->handle_kick) 1561 vhost_poll_flush(&vq->poll); 1562 return r; 1563 } 1564 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1565 1566 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1567 { 1568 struct vhost_umem *niotlb, *oiotlb; 1569 int i; 1570 1571 niotlb = vhost_umem_alloc(); 1572 if (!niotlb) 1573 return -ENOMEM; 1574 1575 oiotlb = d->iotlb; 1576 d->iotlb = niotlb; 1577 1578 for (i = 0; i < d->nvqs; ++i) { 1579 mutex_lock(&d->vqs[i]->mutex); 1580 d->vqs[i]->iotlb = niotlb; 1581 mutex_unlock(&d->vqs[i]->mutex); 1582 } 1583 1584 vhost_umem_clean(oiotlb); 1585 1586 return 0; 1587 } 1588 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1589 1590 /* Caller must have device mutex */ 1591 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1592 { 1593 struct file *eventfp, *filep = NULL; 1594 struct eventfd_ctx *ctx = NULL; 1595 u64 p; 1596 long r; 1597 int i, fd; 1598 1599 /* If you are not the owner, you can become one */ 1600 if (ioctl == VHOST_SET_OWNER) { 1601 r = vhost_dev_set_owner(d); 1602 goto done; 1603 } 1604 1605 /* You must be the owner to do anything else */ 1606 r = vhost_dev_check_owner(d); 1607 if (r) 1608 goto done; 1609 1610 switch (ioctl) { 1611 case VHOST_SET_MEM_TABLE: 1612 r = vhost_set_memory(d, argp); 1613 break; 1614 case VHOST_SET_LOG_BASE: 1615 if (copy_from_user(&p, argp, sizeof p)) { 1616 r = -EFAULT; 1617 break; 1618 } 1619 if ((u64)(unsigned long)p != p) { 1620 r = -EFAULT; 1621 break; 1622 } 1623 for (i = 0; i < d->nvqs; ++i) { 1624 struct vhost_virtqueue *vq; 1625 void __user *base = (void __user *)(unsigned long)p; 1626 vq = d->vqs[i]; 1627 mutex_lock(&vq->mutex); 1628 /* If ring is inactive, will check when it's enabled. */ 1629 if (vq->private_data && !vq_log_access_ok(vq, base)) 1630 r = -EFAULT; 1631 else 1632 vq->log_base = base; 1633 mutex_unlock(&vq->mutex); 1634 } 1635 break; 1636 case VHOST_SET_LOG_FD: 1637 r = get_user(fd, (int __user *)argp); 1638 if (r < 0) 1639 break; 1640 eventfp = fd == -1 ? NULL : eventfd_fget(fd); 1641 if (IS_ERR(eventfp)) { 1642 r = PTR_ERR(eventfp); 1643 break; 1644 } 1645 if (eventfp != d->log_file) { 1646 filep = d->log_file; 1647 d->log_file = eventfp; 1648 ctx = d->log_ctx; 1649 d->log_ctx = eventfp ? 1650 eventfd_ctx_fileget(eventfp) : NULL; 1651 } else 1652 filep = eventfp; 1653 for (i = 0; i < d->nvqs; ++i) { 1654 mutex_lock(&d->vqs[i]->mutex); 1655 d->vqs[i]->log_ctx = d->log_ctx; 1656 mutex_unlock(&d->vqs[i]->mutex); 1657 } 1658 if (ctx) 1659 eventfd_ctx_put(ctx); 1660 if (filep) 1661 fput(filep); 1662 break; 1663 default: 1664 r = -ENOIOCTLCMD; 1665 break; 1666 } 1667 done: 1668 return r; 1669 } 1670 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1671 1672 /* TODO: This is really inefficient. We need something like get_user() 1673 * (instruction directly accesses the data, with an exception table entry 1674 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1675 */ 1676 static int set_bit_to_user(int nr, void __user *addr) 1677 { 1678 unsigned long log = (unsigned long)addr; 1679 struct page *page; 1680 void *base; 1681 int bit = nr + (log % PAGE_SIZE) * 8; 1682 int r; 1683 1684 r = get_user_pages_fast(log, 1, 1, &page); 1685 if (r < 0) 1686 return r; 1687 BUG_ON(r != 1); 1688 base = kmap_atomic(page); 1689 set_bit(bit, base); 1690 kunmap_atomic(base); 1691 set_page_dirty_lock(page); 1692 put_page(page); 1693 return 0; 1694 } 1695 1696 static int log_write(void __user *log_base, 1697 u64 write_address, u64 write_length) 1698 { 1699 u64 write_page = write_address / VHOST_PAGE_SIZE; 1700 int r; 1701 1702 if (!write_length) 1703 return 0; 1704 write_length += write_address % VHOST_PAGE_SIZE; 1705 for (;;) { 1706 u64 base = (u64)(unsigned long)log_base; 1707 u64 log = base + write_page / 8; 1708 int bit = write_page % 8; 1709 if ((u64)(unsigned long)log != log) 1710 return -EFAULT; 1711 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1712 if (r < 0) 1713 return r; 1714 if (write_length <= VHOST_PAGE_SIZE) 1715 break; 1716 write_length -= VHOST_PAGE_SIZE; 1717 write_page += 1; 1718 } 1719 return r; 1720 } 1721 1722 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1723 unsigned int log_num, u64 len) 1724 { 1725 int i, r; 1726 1727 /* Make sure data written is seen before log. */ 1728 smp_wmb(); 1729 for (i = 0; i < log_num; ++i) { 1730 u64 l = min(log[i].len, len); 1731 r = log_write(vq->log_base, log[i].addr, l); 1732 if (r < 0) 1733 return r; 1734 len -= l; 1735 if (!len) { 1736 if (vq->log_ctx) 1737 eventfd_signal(vq->log_ctx, 1); 1738 return 0; 1739 } 1740 } 1741 /* Length written exceeds what we have stored. This is a bug. */ 1742 BUG(); 1743 return 0; 1744 } 1745 EXPORT_SYMBOL_GPL(vhost_log_write); 1746 1747 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1748 { 1749 void __user *used; 1750 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1751 &vq->used->flags) < 0) 1752 return -EFAULT; 1753 if (unlikely(vq->log_used)) { 1754 /* Make sure the flag is seen before log. */ 1755 smp_wmb(); 1756 /* Log used flag write. */ 1757 used = &vq->used->flags; 1758 log_write(vq->log_base, vq->log_addr + 1759 (used - (void __user *)vq->used), 1760 sizeof vq->used->flags); 1761 if (vq->log_ctx) 1762 eventfd_signal(vq->log_ctx, 1); 1763 } 1764 return 0; 1765 } 1766 1767 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1768 { 1769 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1770 vhost_avail_event(vq))) 1771 return -EFAULT; 1772 if (unlikely(vq->log_used)) { 1773 void __user *used; 1774 /* Make sure the event is seen before log. */ 1775 smp_wmb(); 1776 /* Log avail event write */ 1777 used = vhost_avail_event(vq); 1778 log_write(vq->log_base, vq->log_addr + 1779 (used - (void __user *)vq->used), 1780 sizeof *vhost_avail_event(vq)); 1781 if (vq->log_ctx) 1782 eventfd_signal(vq->log_ctx, 1); 1783 } 1784 return 0; 1785 } 1786 1787 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1788 { 1789 __virtio16 last_used_idx; 1790 int r; 1791 bool is_le = vq->is_le; 1792 1793 if (!vq->private_data) 1794 return 0; 1795 1796 vhost_init_is_le(vq); 1797 1798 r = vhost_update_used_flags(vq); 1799 if (r) 1800 goto err; 1801 vq->signalled_used_valid = false; 1802 if (!vq->iotlb && 1803 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1804 r = -EFAULT; 1805 goto err; 1806 } 1807 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1808 if (r) { 1809 vq_err(vq, "Can't access used idx at %p\n", 1810 &vq->used->idx); 1811 goto err; 1812 } 1813 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1814 return 0; 1815 1816 err: 1817 vq->is_le = is_le; 1818 return r; 1819 } 1820 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1821 1822 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1823 struct iovec iov[], int iov_size, int access) 1824 { 1825 const struct vhost_umem_node *node; 1826 struct vhost_dev *dev = vq->dev; 1827 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1828 struct iovec *_iov; 1829 u64 s = 0; 1830 int ret = 0; 1831 1832 while ((u64)len > s) { 1833 u64 size; 1834 if (unlikely(ret >= iov_size)) { 1835 ret = -ENOBUFS; 1836 break; 1837 } 1838 1839 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1840 addr, addr + len - 1); 1841 if (node == NULL || node->start > addr) { 1842 if (umem != dev->iotlb) { 1843 ret = -EFAULT; 1844 break; 1845 } 1846 ret = -EAGAIN; 1847 break; 1848 } else if (!(node->perm & access)) { 1849 ret = -EPERM; 1850 break; 1851 } 1852 1853 _iov = iov + ret; 1854 size = node->size - addr + node->start; 1855 _iov->iov_len = min((u64)len - s, size); 1856 _iov->iov_base = (void __user *)(unsigned long) 1857 (node->userspace_addr + addr - node->start); 1858 s += size; 1859 addr += size; 1860 ++ret; 1861 } 1862 1863 if (ret == -EAGAIN) 1864 vhost_iotlb_miss(vq, addr, access); 1865 return ret; 1866 } 1867 1868 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1869 * function returns the next descriptor in the chain, 1870 * or -1U if we're at the end. */ 1871 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1872 { 1873 unsigned int next; 1874 1875 /* If this descriptor says it doesn't chain, we're done. */ 1876 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1877 return -1U; 1878 1879 /* Check they're not leading us off end of descriptors. */ 1880 next = vhost16_to_cpu(vq, desc->next); 1881 /* Make sure compiler knows to grab that: we don't want it changing! */ 1882 /* We will use the result as an index in an array, so most 1883 * architectures only need a compiler barrier here. */ 1884 read_barrier_depends(); 1885 1886 return next; 1887 } 1888 1889 static int get_indirect(struct vhost_virtqueue *vq, 1890 struct iovec iov[], unsigned int iov_size, 1891 unsigned int *out_num, unsigned int *in_num, 1892 struct vhost_log *log, unsigned int *log_num, 1893 struct vring_desc *indirect) 1894 { 1895 struct vring_desc desc; 1896 unsigned int i = 0, count, found = 0; 1897 u32 len = vhost32_to_cpu(vq, indirect->len); 1898 struct iov_iter from; 1899 int ret, access; 1900 1901 /* Sanity check */ 1902 if (unlikely(len % sizeof desc)) { 1903 vq_err(vq, "Invalid length in indirect descriptor: " 1904 "len 0x%llx not multiple of 0x%zx\n", 1905 (unsigned long long)len, 1906 sizeof desc); 1907 return -EINVAL; 1908 } 1909 1910 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1911 UIO_MAXIOV, VHOST_ACCESS_RO); 1912 if (unlikely(ret < 0)) { 1913 if (ret != -EAGAIN) 1914 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1915 return ret; 1916 } 1917 iov_iter_init(&from, READ, vq->indirect, ret, len); 1918 1919 /* We will use the result as an address to read from, so most 1920 * architectures only need a compiler barrier here. */ 1921 read_barrier_depends(); 1922 1923 count = len / sizeof desc; 1924 /* Buffers are chained via a 16 bit next field, so 1925 * we can have at most 2^16 of these. */ 1926 if (unlikely(count > USHRT_MAX + 1)) { 1927 vq_err(vq, "Indirect buffer length too big: %d\n", 1928 indirect->len); 1929 return -E2BIG; 1930 } 1931 1932 do { 1933 unsigned iov_count = *in_num + *out_num; 1934 if (unlikely(++found > count)) { 1935 vq_err(vq, "Loop detected: last one at %u " 1936 "indirect size %u\n", 1937 i, count); 1938 return -EINVAL; 1939 } 1940 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1941 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1942 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1943 return -EINVAL; 1944 } 1945 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1946 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1947 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1948 return -EINVAL; 1949 } 1950 1951 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1952 access = VHOST_ACCESS_WO; 1953 else 1954 access = VHOST_ACCESS_RO; 1955 1956 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1957 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1958 iov_size - iov_count, access); 1959 if (unlikely(ret < 0)) { 1960 if (ret != -EAGAIN) 1961 vq_err(vq, "Translation failure %d indirect idx %d\n", 1962 ret, i); 1963 return ret; 1964 } 1965 /* If this is an input descriptor, increment that count. */ 1966 if (access == VHOST_ACCESS_WO) { 1967 *in_num += ret; 1968 if (unlikely(log)) { 1969 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1970 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1971 ++*log_num; 1972 } 1973 } else { 1974 /* If it's an output descriptor, they're all supposed 1975 * to come before any input descriptors. */ 1976 if (unlikely(*in_num)) { 1977 vq_err(vq, "Indirect descriptor " 1978 "has out after in: idx %d\n", i); 1979 return -EINVAL; 1980 } 1981 *out_num += ret; 1982 } 1983 } while ((i = next_desc(vq, &desc)) != -1); 1984 return 0; 1985 } 1986 1987 /* This looks in the virtqueue and for the first available buffer, and converts 1988 * it to an iovec for convenient access. Since descriptors consist of some 1989 * number of output then some number of input descriptors, it's actually two 1990 * iovecs, but we pack them into one and note how many of each there were. 1991 * 1992 * This function returns the descriptor number found, or vq->num (which is 1993 * never a valid descriptor number) if none was found. A negative code is 1994 * returned on error. */ 1995 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1996 struct iovec iov[], unsigned int iov_size, 1997 unsigned int *out_num, unsigned int *in_num, 1998 struct vhost_log *log, unsigned int *log_num) 1999 { 2000 struct vring_desc desc; 2001 unsigned int i, head, found = 0; 2002 u16 last_avail_idx; 2003 __virtio16 avail_idx; 2004 __virtio16 ring_head; 2005 int ret, access; 2006 2007 /* Check it isn't doing very strange things with descriptor numbers. */ 2008 last_avail_idx = vq->last_avail_idx; 2009 2010 if (vq->avail_idx == vq->last_avail_idx) { 2011 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2012 vq_err(vq, "Failed to access avail idx at %p\n", 2013 &vq->avail->idx); 2014 return -EFAULT; 2015 } 2016 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2017 2018 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2019 vq_err(vq, "Guest moved used index from %u to %u", 2020 last_avail_idx, vq->avail_idx); 2021 return -EFAULT; 2022 } 2023 2024 /* If there's nothing new since last we looked, return 2025 * invalid. 2026 */ 2027 if (vq->avail_idx == last_avail_idx) 2028 return vq->num; 2029 2030 /* Only get avail ring entries after they have been 2031 * exposed by guest. 2032 */ 2033 smp_rmb(); 2034 } 2035 2036 /* Grab the next descriptor number they're advertising, and increment 2037 * the index we've seen. */ 2038 if (unlikely(vhost_get_avail(vq, ring_head, 2039 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2040 vq_err(vq, "Failed to read head: idx %d address %p\n", 2041 last_avail_idx, 2042 &vq->avail->ring[last_avail_idx % vq->num]); 2043 return -EFAULT; 2044 } 2045 2046 head = vhost16_to_cpu(vq, ring_head); 2047 2048 /* If their number is silly, that's an error. */ 2049 if (unlikely(head >= vq->num)) { 2050 vq_err(vq, "Guest says index %u > %u is available", 2051 head, vq->num); 2052 return -EINVAL; 2053 } 2054 2055 /* When we start there are none of either input nor output. */ 2056 *out_num = *in_num = 0; 2057 if (unlikely(log)) 2058 *log_num = 0; 2059 2060 i = head; 2061 do { 2062 unsigned iov_count = *in_num + *out_num; 2063 if (unlikely(i >= vq->num)) { 2064 vq_err(vq, "Desc index is %u > %u, head = %u", 2065 i, vq->num, head); 2066 return -EINVAL; 2067 } 2068 if (unlikely(++found > vq->num)) { 2069 vq_err(vq, "Loop detected: last one at %u " 2070 "vq size %u head %u\n", 2071 i, vq->num, head); 2072 return -EINVAL; 2073 } 2074 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2075 sizeof desc); 2076 if (unlikely(ret)) { 2077 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2078 i, vq->desc + i); 2079 return -EFAULT; 2080 } 2081 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2082 ret = get_indirect(vq, iov, iov_size, 2083 out_num, in_num, 2084 log, log_num, &desc); 2085 if (unlikely(ret < 0)) { 2086 if (ret != -EAGAIN) 2087 vq_err(vq, "Failure detected " 2088 "in indirect descriptor at idx %d\n", i); 2089 return ret; 2090 } 2091 continue; 2092 } 2093 2094 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2095 access = VHOST_ACCESS_WO; 2096 else 2097 access = VHOST_ACCESS_RO; 2098 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2099 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2100 iov_size - iov_count, access); 2101 if (unlikely(ret < 0)) { 2102 if (ret != -EAGAIN) 2103 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2104 ret, i); 2105 return ret; 2106 } 2107 if (access == VHOST_ACCESS_WO) { 2108 /* If this is an input descriptor, 2109 * increment that count. */ 2110 *in_num += ret; 2111 if (unlikely(log)) { 2112 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2113 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2114 ++*log_num; 2115 } 2116 } else { 2117 /* If it's an output descriptor, they're all supposed 2118 * to come before any input descriptors. */ 2119 if (unlikely(*in_num)) { 2120 vq_err(vq, "Descriptor has out after in: " 2121 "idx %d\n", i); 2122 return -EINVAL; 2123 } 2124 *out_num += ret; 2125 } 2126 } while ((i = next_desc(vq, &desc)) != -1); 2127 2128 /* On success, increment avail index. */ 2129 vq->last_avail_idx++; 2130 2131 /* Assume notifications from guest are disabled at this point, 2132 * if they aren't we would need to update avail_event index. */ 2133 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2134 return head; 2135 } 2136 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2137 2138 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2139 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2140 { 2141 vq->last_avail_idx -= n; 2142 } 2143 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2144 2145 /* After we've used one of their buffers, we tell them about it. We'll then 2146 * want to notify the guest, using eventfd. */ 2147 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2148 { 2149 struct vring_used_elem heads = { 2150 cpu_to_vhost32(vq, head), 2151 cpu_to_vhost32(vq, len) 2152 }; 2153 2154 return vhost_add_used_n(vq, &heads, 1); 2155 } 2156 EXPORT_SYMBOL_GPL(vhost_add_used); 2157 2158 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2159 struct vring_used_elem *heads, 2160 unsigned count) 2161 { 2162 struct vring_used_elem __user *used; 2163 u16 old, new; 2164 int start; 2165 2166 start = vq->last_used_idx & (vq->num - 1); 2167 used = vq->used->ring + start; 2168 if (count == 1) { 2169 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2170 vq_err(vq, "Failed to write used id"); 2171 return -EFAULT; 2172 } 2173 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2174 vq_err(vq, "Failed to write used len"); 2175 return -EFAULT; 2176 } 2177 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2178 vq_err(vq, "Failed to write used"); 2179 return -EFAULT; 2180 } 2181 if (unlikely(vq->log_used)) { 2182 /* Make sure data is seen before log. */ 2183 smp_wmb(); 2184 /* Log used ring entry write. */ 2185 log_write(vq->log_base, 2186 vq->log_addr + 2187 ((void __user *)used - (void __user *)vq->used), 2188 count * sizeof *used); 2189 } 2190 old = vq->last_used_idx; 2191 new = (vq->last_used_idx += count); 2192 /* If the driver never bothers to signal in a very long while, 2193 * used index might wrap around. If that happens, invalidate 2194 * signalled_used index we stored. TODO: make sure driver 2195 * signals at least once in 2^16 and remove this. */ 2196 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2197 vq->signalled_used_valid = false; 2198 return 0; 2199 } 2200 2201 /* After we've used one of their buffers, we tell them about it. We'll then 2202 * want to notify the guest, using eventfd. */ 2203 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2204 unsigned count) 2205 { 2206 int start, n, r; 2207 2208 start = vq->last_used_idx & (vq->num - 1); 2209 n = vq->num - start; 2210 if (n < count) { 2211 r = __vhost_add_used_n(vq, heads, n); 2212 if (r < 0) 2213 return r; 2214 heads += n; 2215 count -= n; 2216 } 2217 r = __vhost_add_used_n(vq, heads, count); 2218 2219 /* Make sure buffer is written before we update index. */ 2220 smp_wmb(); 2221 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2222 &vq->used->idx)) { 2223 vq_err(vq, "Failed to increment used idx"); 2224 return -EFAULT; 2225 } 2226 if (unlikely(vq->log_used)) { 2227 /* Log used index update. */ 2228 log_write(vq->log_base, 2229 vq->log_addr + offsetof(struct vring_used, idx), 2230 sizeof vq->used->idx); 2231 if (vq->log_ctx) 2232 eventfd_signal(vq->log_ctx, 1); 2233 } 2234 return r; 2235 } 2236 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2237 2238 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2239 { 2240 __u16 old, new; 2241 __virtio16 event; 2242 bool v; 2243 /* Flush out used index updates. This is paired 2244 * with the barrier that the Guest executes when enabling 2245 * interrupts. */ 2246 smp_mb(); 2247 2248 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2249 unlikely(vq->avail_idx == vq->last_avail_idx)) 2250 return true; 2251 2252 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2253 __virtio16 flags; 2254 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2255 vq_err(vq, "Failed to get flags"); 2256 return true; 2257 } 2258 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2259 } 2260 old = vq->signalled_used; 2261 v = vq->signalled_used_valid; 2262 new = vq->signalled_used = vq->last_used_idx; 2263 vq->signalled_used_valid = true; 2264 2265 if (unlikely(!v)) 2266 return true; 2267 2268 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2269 vq_err(vq, "Failed to get used event idx"); 2270 return true; 2271 } 2272 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2273 } 2274 2275 /* This actually signals the guest, using eventfd. */ 2276 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2277 { 2278 /* Signal the Guest tell them we used something up. */ 2279 if (vq->call_ctx && vhost_notify(dev, vq)) 2280 eventfd_signal(vq->call_ctx, 1); 2281 } 2282 EXPORT_SYMBOL_GPL(vhost_signal); 2283 2284 /* And here's the combo meal deal. Supersize me! */ 2285 void vhost_add_used_and_signal(struct vhost_dev *dev, 2286 struct vhost_virtqueue *vq, 2287 unsigned int head, int len) 2288 { 2289 vhost_add_used(vq, head, len); 2290 vhost_signal(dev, vq); 2291 } 2292 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2293 2294 /* multi-buffer version of vhost_add_used_and_signal */ 2295 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2296 struct vhost_virtqueue *vq, 2297 struct vring_used_elem *heads, unsigned count) 2298 { 2299 vhost_add_used_n(vq, heads, count); 2300 vhost_signal(dev, vq); 2301 } 2302 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2303 2304 /* return true if we're sure that avaiable ring is empty */ 2305 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2306 { 2307 __virtio16 avail_idx; 2308 int r; 2309 2310 if (vq->avail_idx != vq->last_avail_idx) 2311 return false; 2312 2313 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2314 if (unlikely(r)) 2315 return false; 2316 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2317 2318 return vq->avail_idx == vq->last_avail_idx; 2319 } 2320 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2321 2322 /* OK, now we need to know about added descriptors. */ 2323 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2324 { 2325 __virtio16 avail_idx; 2326 int r; 2327 2328 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2329 return false; 2330 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2331 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2332 r = vhost_update_used_flags(vq); 2333 if (r) { 2334 vq_err(vq, "Failed to enable notification at %p: %d\n", 2335 &vq->used->flags, r); 2336 return false; 2337 } 2338 } else { 2339 r = vhost_update_avail_event(vq, vq->avail_idx); 2340 if (r) { 2341 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2342 vhost_avail_event(vq), r); 2343 return false; 2344 } 2345 } 2346 /* They could have slipped one in as we were doing that: make 2347 * sure it's written, then check again. */ 2348 smp_mb(); 2349 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2350 if (r) { 2351 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2352 &vq->avail->idx, r); 2353 return false; 2354 } 2355 2356 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2357 } 2358 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2359 2360 /* We don't need to be notified again. */ 2361 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2362 { 2363 int r; 2364 2365 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2366 return; 2367 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2368 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2369 r = vhost_update_used_flags(vq); 2370 if (r) 2371 vq_err(vq, "Failed to enable notification at %p: %d\n", 2372 &vq->used->flags, r); 2373 } 2374 } 2375 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2376 2377 /* Create a new message. */ 2378 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2379 { 2380 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2381 if (!node) 2382 return NULL; 2383 node->vq = vq; 2384 node->msg.type = type; 2385 return node; 2386 } 2387 EXPORT_SYMBOL_GPL(vhost_new_msg); 2388 2389 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2390 struct vhost_msg_node *node) 2391 { 2392 spin_lock(&dev->iotlb_lock); 2393 list_add_tail(&node->node, head); 2394 spin_unlock(&dev->iotlb_lock); 2395 2396 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 2397 } 2398 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2399 2400 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2401 struct list_head *head) 2402 { 2403 struct vhost_msg_node *node = NULL; 2404 2405 spin_lock(&dev->iotlb_lock); 2406 if (!list_empty(head)) { 2407 node = list_first_entry(head, struct vhost_msg_node, 2408 node); 2409 list_del(&node->node); 2410 } 2411 spin_unlock(&dev->iotlb_lock); 2412 2413 return node; 2414 } 2415 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2416 2417 2418 static int __init vhost_init(void) 2419 { 2420 return 0; 2421 } 2422 2423 static void __exit vhost_exit(void) 2424 { 2425 } 2426 2427 module_init(vhost_init); 2428 module_exit(vhost_exit); 2429 2430 MODULE_VERSION("0.0.1"); 2431 MODULE_LICENSE("GPL v2"); 2432 MODULE_AUTHOR("Michael S. Tsirkin"); 2433 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2434