1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 53 rb, __u64, __subtree_last, 54 START, LAST, static inline, vhost_umem_interval_tree); 55 56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 58 { 59 vq->user_be = !virtio_legacy_is_little_endian(); 60 } 61 62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 63 { 64 vq->user_be = true; 65 } 66 67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 68 { 69 vq->user_be = false; 70 } 71 72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 73 { 74 struct vhost_vring_state s; 75 76 if (vq->private_data) 77 return -EBUSY; 78 79 if (copy_from_user(&s, argp, sizeof(s))) 80 return -EFAULT; 81 82 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 83 s.num != VHOST_VRING_BIG_ENDIAN) 84 return -EINVAL; 85 86 if (s.num == VHOST_VRING_BIG_ENDIAN) 87 vhost_enable_cross_endian_big(vq); 88 else 89 vhost_enable_cross_endian_little(vq); 90 91 return 0; 92 } 93 94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 95 int __user *argp) 96 { 97 struct vhost_vring_state s = { 98 .index = idx, 99 .num = vq->user_be 100 }; 101 102 if (copy_to_user(argp, &s, sizeof(s))) 103 return -EFAULT; 104 105 return 0; 106 } 107 108 static void vhost_init_is_le(struct vhost_virtqueue *vq) 109 { 110 /* Note for legacy virtio: user_be is initialized at reset time 111 * according to the host endianness. If userspace does not set an 112 * explicit endianness, the default behavior is native endian, as 113 * expected by legacy virtio. 114 */ 115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 116 } 117 #else 118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 119 { 120 } 121 122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 123 { 124 return -ENOIOCTLCMD; 125 } 126 127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 128 int __user *argp) 129 { 130 return -ENOIOCTLCMD; 131 } 132 133 static void vhost_init_is_le(struct vhost_virtqueue *vq) 134 { 135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 136 || virtio_legacy_is_little_endian(); 137 } 138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 139 140 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 141 { 142 vhost_init_is_le(vq); 143 } 144 145 struct vhost_flush_struct { 146 struct vhost_work work; 147 struct completion wait_event; 148 }; 149 150 static void vhost_flush_work(struct vhost_work *work) 151 { 152 struct vhost_flush_struct *s; 153 154 s = container_of(work, struct vhost_flush_struct, work); 155 complete(&s->wait_event); 156 } 157 158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 159 poll_table *pt) 160 { 161 struct vhost_poll *poll; 162 163 poll = container_of(pt, struct vhost_poll, table); 164 poll->wqh = wqh; 165 add_wait_queue(wqh, &poll->wait); 166 } 167 168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 169 void *key) 170 { 171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 172 173 if (!(key_to_poll(key) & poll->mask)) 174 return 0; 175 176 vhost_poll_queue(poll); 177 return 0; 178 } 179 180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 181 { 182 clear_bit(VHOST_WORK_QUEUED, &work->flags); 183 work->fn = fn; 184 } 185 EXPORT_SYMBOL_GPL(vhost_work_init); 186 187 /* Init poll structure */ 188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 189 __poll_t mask, struct vhost_dev *dev) 190 { 191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 192 init_poll_funcptr(&poll->table, vhost_poll_func); 193 poll->mask = mask; 194 poll->dev = dev; 195 poll->wqh = NULL; 196 197 vhost_work_init(&poll->work, fn); 198 } 199 EXPORT_SYMBOL_GPL(vhost_poll_init); 200 201 /* Start polling a file. We add ourselves to file's wait queue. The caller must 202 * keep a reference to a file until after vhost_poll_stop is called. */ 203 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 204 { 205 __poll_t mask; 206 int ret = 0; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = file->f_op->poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 214 if (mask & EPOLLERR) { 215 vhost_poll_stop(poll); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 286 { 287 int j; 288 289 for (j = 0; j < VHOST_NUM_ADDRS; j++) 290 vq->meta_iotlb[j] = NULL; 291 } 292 293 static void vhost_vq_meta_reset(struct vhost_dev *d) 294 { 295 int i; 296 297 for (i = 0; i < d->nvqs; ++i) 298 __vhost_vq_meta_reset(d->vqs[i]); 299 } 300 301 static void vhost_vq_reset(struct vhost_dev *dev, 302 struct vhost_virtqueue *vq) 303 { 304 vq->num = 1; 305 vq->desc = NULL; 306 vq->avail = NULL; 307 vq->used = NULL; 308 vq->last_avail_idx = 0; 309 vq->avail_idx = 0; 310 vq->last_used_idx = 0; 311 vq->signalled_used = 0; 312 vq->signalled_used_valid = false; 313 vq->used_flags = 0; 314 vq->log_used = false; 315 vq->log_addr = -1ull; 316 vq->private_data = NULL; 317 vq->acked_features = 0; 318 vq->log_base = NULL; 319 vq->error_ctx = NULL; 320 vq->kick = NULL; 321 vq->call_ctx = NULL; 322 vq->log_ctx = NULL; 323 vhost_reset_is_le(vq); 324 vhost_disable_cross_endian(vq); 325 vq->busyloop_timeout = 0; 326 vq->umem = NULL; 327 vq->iotlb = NULL; 328 __vhost_vq_meta_reset(vq); 329 } 330 331 static int vhost_worker(void *data) 332 { 333 struct vhost_dev *dev = data; 334 struct vhost_work *work, *work_next; 335 struct llist_node *node; 336 mm_segment_t oldfs = get_fs(); 337 338 set_fs(USER_DS); 339 use_mm(dev->mm); 340 341 for (;;) { 342 /* mb paired w/ kthread_stop */ 343 set_current_state(TASK_INTERRUPTIBLE); 344 345 if (kthread_should_stop()) { 346 __set_current_state(TASK_RUNNING); 347 break; 348 } 349 350 node = llist_del_all(&dev->work_list); 351 if (!node) 352 schedule(); 353 354 node = llist_reverse_order(node); 355 /* make sure flag is seen after deletion */ 356 smp_wmb(); 357 llist_for_each_entry_safe(work, work_next, node, node) { 358 clear_bit(VHOST_WORK_QUEUED, &work->flags); 359 __set_current_state(TASK_RUNNING); 360 work->fn(work); 361 if (need_resched()) 362 schedule(); 363 } 364 } 365 unuse_mm(dev->mm); 366 set_fs(oldfs); 367 return 0; 368 } 369 370 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 371 { 372 kfree(vq->indirect); 373 vq->indirect = NULL; 374 kfree(vq->log); 375 vq->log = NULL; 376 kfree(vq->heads); 377 vq->heads = NULL; 378 } 379 380 /* Helper to allocate iovec buffers for all vqs. */ 381 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 382 { 383 struct vhost_virtqueue *vq; 384 int i; 385 386 for (i = 0; i < dev->nvqs; ++i) { 387 vq = dev->vqs[i]; 388 vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV, 389 GFP_KERNEL); 390 vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL); 391 vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL); 392 if (!vq->indirect || !vq->log || !vq->heads) 393 goto err_nomem; 394 } 395 return 0; 396 397 err_nomem: 398 for (; i >= 0; --i) 399 vhost_vq_free_iovecs(dev->vqs[i]); 400 return -ENOMEM; 401 } 402 403 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 404 { 405 int i; 406 407 for (i = 0; i < dev->nvqs; ++i) 408 vhost_vq_free_iovecs(dev->vqs[i]); 409 } 410 411 void vhost_dev_init(struct vhost_dev *dev, 412 struct vhost_virtqueue **vqs, int nvqs) 413 { 414 struct vhost_virtqueue *vq; 415 int i; 416 417 dev->vqs = vqs; 418 dev->nvqs = nvqs; 419 mutex_init(&dev->mutex); 420 dev->log_ctx = NULL; 421 dev->umem = NULL; 422 dev->iotlb = NULL; 423 dev->mm = NULL; 424 dev->worker = NULL; 425 init_llist_head(&dev->work_list); 426 init_waitqueue_head(&dev->wait); 427 INIT_LIST_HEAD(&dev->read_list); 428 INIT_LIST_HEAD(&dev->pending_list); 429 spin_lock_init(&dev->iotlb_lock); 430 431 432 for (i = 0; i < dev->nvqs; ++i) { 433 vq = dev->vqs[i]; 434 vq->log = NULL; 435 vq->indirect = NULL; 436 vq->heads = NULL; 437 vq->dev = dev; 438 mutex_init(&vq->mutex); 439 vhost_vq_reset(dev, vq); 440 if (vq->handle_kick) 441 vhost_poll_init(&vq->poll, vq->handle_kick, 442 EPOLLIN, dev); 443 } 444 } 445 EXPORT_SYMBOL_GPL(vhost_dev_init); 446 447 /* Caller should have device mutex */ 448 long vhost_dev_check_owner(struct vhost_dev *dev) 449 { 450 /* Are you the owner? If not, I don't think you mean to do that */ 451 return dev->mm == current->mm ? 0 : -EPERM; 452 } 453 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 454 455 struct vhost_attach_cgroups_struct { 456 struct vhost_work work; 457 struct task_struct *owner; 458 int ret; 459 }; 460 461 static void vhost_attach_cgroups_work(struct vhost_work *work) 462 { 463 struct vhost_attach_cgroups_struct *s; 464 465 s = container_of(work, struct vhost_attach_cgroups_struct, work); 466 s->ret = cgroup_attach_task_all(s->owner, current); 467 } 468 469 static int vhost_attach_cgroups(struct vhost_dev *dev) 470 { 471 struct vhost_attach_cgroups_struct attach; 472 473 attach.owner = current; 474 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 475 vhost_work_queue(dev, &attach.work); 476 vhost_work_flush(dev, &attach.work); 477 return attach.ret; 478 } 479 480 /* Caller should have device mutex */ 481 bool vhost_dev_has_owner(struct vhost_dev *dev) 482 { 483 return dev->mm; 484 } 485 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 486 487 /* Caller should have device mutex */ 488 long vhost_dev_set_owner(struct vhost_dev *dev) 489 { 490 struct task_struct *worker; 491 int err; 492 493 /* Is there an owner already? */ 494 if (vhost_dev_has_owner(dev)) { 495 err = -EBUSY; 496 goto err_mm; 497 } 498 499 /* No owner, become one */ 500 dev->mm = get_task_mm(current); 501 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 502 if (IS_ERR(worker)) { 503 err = PTR_ERR(worker); 504 goto err_worker; 505 } 506 507 dev->worker = worker; 508 wake_up_process(worker); /* avoid contributing to loadavg */ 509 510 err = vhost_attach_cgroups(dev); 511 if (err) 512 goto err_cgroup; 513 514 err = vhost_dev_alloc_iovecs(dev); 515 if (err) 516 goto err_cgroup; 517 518 return 0; 519 err_cgroup: 520 kthread_stop(worker); 521 dev->worker = NULL; 522 err_worker: 523 if (dev->mm) 524 mmput(dev->mm); 525 dev->mm = NULL; 526 err_mm: 527 return err; 528 } 529 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 530 531 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 532 { 533 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 534 } 535 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 536 537 /* Caller should have device mutex */ 538 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 539 { 540 int i; 541 542 vhost_dev_cleanup(dev); 543 544 /* Restore memory to default empty mapping. */ 545 INIT_LIST_HEAD(&umem->umem_list); 546 dev->umem = umem; 547 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 548 * VQs aren't running. 549 */ 550 for (i = 0; i < dev->nvqs; ++i) 551 dev->vqs[i]->umem = umem; 552 } 553 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 554 555 void vhost_dev_stop(struct vhost_dev *dev) 556 { 557 int i; 558 559 for (i = 0; i < dev->nvqs; ++i) { 560 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 561 vhost_poll_stop(&dev->vqs[i]->poll); 562 vhost_poll_flush(&dev->vqs[i]->poll); 563 } 564 } 565 } 566 EXPORT_SYMBOL_GPL(vhost_dev_stop); 567 568 static void vhost_umem_free(struct vhost_umem *umem, 569 struct vhost_umem_node *node) 570 { 571 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 572 list_del(&node->link); 573 kfree(node); 574 umem->numem--; 575 } 576 577 static void vhost_umem_clean(struct vhost_umem *umem) 578 { 579 struct vhost_umem_node *node, *tmp; 580 581 if (!umem) 582 return; 583 584 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 585 vhost_umem_free(umem, node); 586 587 kvfree(umem); 588 } 589 590 static void vhost_clear_msg(struct vhost_dev *dev) 591 { 592 struct vhost_msg_node *node, *n; 593 594 spin_lock(&dev->iotlb_lock); 595 596 list_for_each_entry_safe(node, n, &dev->read_list, node) { 597 list_del(&node->node); 598 kfree(node); 599 } 600 601 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 602 list_del(&node->node); 603 kfree(node); 604 } 605 606 spin_unlock(&dev->iotlb_lock); 607 } 608 609 void vhost_dev_cleanup(struct vhost_dev *dev) 610 { 611 int i; 612 613 for (i = 0; i < dev->nvqs; ++i) { 614 if (dev->vqs[i]->error_ctx) 615 eventfd_ctx_put(dev->vqs[i]->error_ctx); 616 if (dev->vqs[i]->kick) 617 fput(dev->vqs[i]->kick); 618 if (dev->vqs[i]->call_ctx) 619 eventfd_ctx_put(dev->vqs[i]->call_ctx); 620 vhost_vq_reset(dev, dev->vqs[i]); 621 } 622 vhost_dev_free_iovecs(dev); 623 if (dev->log_ctx) 624 eventfd_ctx_put(dev->log_ctx); 625 dev->log_ctx = NULL; 626 /* No one will access memory at this point */ 627 vhost_umem_clean(dev->umem); 628 dev->umem = NULL; 629 vhost_umem_clean(dev->iotlb); 630 dev->iotlb = NULL; 631 vhost_clear_msg(dev); 632 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 633 WARN_ON(!llist_empty(&dev->work_list)); 634 if (dev->worker) { 635 kthread_stop(dev->worker); 636 dev->worker = NULL; 637 } 638 if (dev->mm) 639 mmput(dev->mm); 640 dev->mm = NULL; 641 } 642 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 643 644 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 645 { 646 u64 a = addr / VHOST_PAGE_SIZE / 8; 647 648 /* Make sure 64 bit math will not overflow. */ 649 if (a > ULONG_MAX - (unsigned long)log_base || 650 a + (unsigned long)log_base > ULONG_MAX) 651 return 0; 652 653 return access_ok(VERIFY_WRITE, log_base + a, 654 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 655 } 656 657 static bool vhost_overflow(u64 uaddr, u64 size) 658 { 659 /* Make sure 64 bit math will not overflow. */ 660 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 661 } 662 663 /* Caller should have vq mutex and device mutex. */ 664 static int vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 665 int log_all) 666 { 667 struct vhost_umem_node *node; 668 669 if (!umem) 670 return 0; 671 672 list_for_each_entry(node, &umem->umem_list, link) { 673 unsigned long a = node->userspace_addr; 674 675 if (vhost_overflow(node->userspace_addr, node->size)) 676 return 0; 677 678 679 if (!access_ok(VERIFY_WRITE, (void __user *)a, 680 node->size)) 681 return 0; 682 else if (log_all && !log_access_ok(log_base, 683 node->start, 684 node->size)) 685 return 0; 686 } 687 return 1; 688 } 689 690 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 691 u64 addr, unsigned int size, 692 int type) 693 { 694 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 695 696 if (!node) 697 return NULL; 698 699 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 700 } 701 702 /* Can we switch to this memory table? */ 703 /* Caller should have device mutex but not vq mutex */ 704 static int memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 705 int log_all) 706 { 707 int i; 708 709 for (i = 0; i < d->nvqs; ++i) { 710 int ok; 711 bool log; 712 713 mutex_lock(&d->vqs[i]->mutex); 714 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 715 /* If ring is inactive, will check when it's enabled. */ 716 if (d->vqs[i]->private_data) 717 ok = vq_memory_access_ok(d->vqs[i]->log_base, 718 umem, log); 719 else 720 ok = 1; 721 mutex_unlock(&d->vqs[i]->mutex); 722 if (!ok) 723 return 0; 724 } 725 return 1; 726 } 727 728 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 729 struct iovec iov[], int iov_size, int access); 730 731 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 732 const void *from, unsigned size) 733 { 734 int ret; 735 736 if (!vq->iotlb) 737 return __copy_to_user(to, from, size); 738 else { 739 /* This function should be called after iotlb 740 * prefetch, which means we're sure that all vq 741 * could be access through iotlb. So -EAGAIN should 742 * not happen in this case. 743 */ 744 struct iov_iter t; 745 void __user *uaddr = vhost_vq_meta_fetch(vq, 746 (u64)(uintptr_t)to, size, 747 VHOST_ADDR_DESC); 748 749 if (uaddr) 750 return __copy_to_user(uaddr, from, size); 751 752 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 753 ARRAY_SIZE(vq->iotlb_iov), 754 VHOST_ACCESS_WO); 755 if (ret < 0) 756 goto out; 757 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 758 ret = copy_to_iter(from, size, &t); 759 if (ret == size) 760 ret = 0; 761 } 762 out: 763 return ret; 764 } 765 766 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 767 void __user *from, unsigned size) 768 { 769 int ret; 770 771 if (!vq->iotlb) 772 return __copy_from_user(to, from, size); 773 else { 774 /* This function should be called after iotlb 775 * prefetch, which means we're sure that vq 776 * could be access through iotlb. So -EAGAIN should 777 * not happen in this case. 778 */ 779 void __user *uaddr = vhost_vq_meta_fetch(vq, 780 (u64)(uintptr_t)from, size, 781 VHOST_ADDR_DESC); 782 struct iov_iter f; 783 784 if (uaddr) 785 return __copy_from_user(to, uaddr, size); 786 787 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 788 ARRAY_SIZE(vq->iotlb_iov), 789 VHOST_ACCESS_RO); 790 if (ret < 0) { 791 vq_err(vq, "IOTLB translation failure: uaddr " 792 "%p size 0x%llx\n", from, 793 (unsigned long long) size); 794 goto out; 795 } 796 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 797 ret = copy_from_iter(to, size, &f); 798 if (ret == size) 799 ret = 0; 800 } 801 802 out: 803 return ret; 804 } 805 806 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 807 void __user *addr, unsigned int size, 808 int type) 809 { 810 int ret; 811 812 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 813 ARRAY_SIZE(vq->iotlb_iov), 814 VHOST_ACCESS_RO); 815 if (ret < 0) { 816 vq_err(vq, "IOTLB translation failure: uaddr " 817 "%p size 0x%llx\n", addr, 818 (unsigned long long) size); 819 return NULL; 820 } 821 822 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 823 vq_err(vq, "Non atomic userspace memory access: uaddr " 824 "%p size 0x%llx\n", addr, 825 (unsigned long long) size); 826 return NULL; 827 } 828 829 return vq->iotlb_iov[0].iov_base; 830 } 831 832 /* This function should be called after iotlb 833 * prefetch, which means we're sure that vq 834 * could be access through iotlb. So -EAGAIN should 835 * not happen in this case. 836 */ 837 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 838 void *addr, unsigned int size, 839 int type) 840 { 841 void __user *uaddr = vhost_vq_meta_fetch(vq, 842 (u64)(uintptr_t)addr, size, type); 843 if (uaddr) 844 return uaddr; 845 846 return __vhost_get_user_slow(vq, addr, size, type); 847 } 848 849 #define vhost_put_user(vq, x, ptr) \ 850 ({ \ 851 int ret = -EFAULT; \ 852 if (!vq->iotlb) { \ 853 ret = __put_user(x, ptr); \ 854 } else { \ 855 __typeof__(ptr) to = \ 856 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 857 sizeof(*ptr), VHOST_ADDR_USED); \ 858 if (to != NULL) \ 859 ret = __put_user(x, to); \ 860 else \ 861 ret = -EFAULT; \ 862 } \ 863 ret; \ 864 }) 865 866 #define vhost_get_user(vq, x, ptr, type) \ 867 ({ \ 868 int ret; \ 869 if (!vq->iotlb) { \ 870 ret = __get_user(x, ptr); \ 871 } else { \ 872 __typeof__(ptr) from = \ 873 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 874 sizeof(*ptr), \ 875 type); \ 876 if (from != NULL) \ 877 ret = __get_user(x, from); \ 878 else \ 879 ret = -EFAULT; \ 880 } \ 881 ret; \ 882 }) 883 884 #define vhost_get_avail(vq, x, ptr) \ 885 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 886 887 #define vhost_get_used(vq, x, ptr) \ 888 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 889 890 static void vhost_dev_lock_vqs(struct vhost_dev *d) 891 { 892 int i = 0; 893 for (i = 0; i < d->nvqs; ++i) 894 mutex_lock_nested(&d->vqs[i]->mutex, i); 895 } 896 897 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 898 { 899 int i = 0; 900 for (i = 0; i < d->nvqs; ++i) 901 mutex_unlock(&d->vqs[i]->mutex); 902 } 903 904 static int vhost_new_umem_range(struct vhost_umem *umem, 905 u64 start, u64 size, u64 end, 906 u64 userspace_addr, int perm) 907 { 908 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 909 910 if (!node) 911 return -ENOMEM; 912 913 if (umem->numem == max_iotlb_entries) { 914 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 915 vhost_umem_free(umem, tmp); 916 } 917 918 node->start = start; 919 node->size = size; 920 node->last = end; 921 node->userspace_addr = userspace_addr; 922 node->perm = perm; 923 INIT_LIST_HEAD(&node->link); 924 list_add_tail(&node->link, &umem->umem_list); 925 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 926 umem->numem++; 927 928 return 0; 929 } 930 931 static void vhost_del_umem_range(struct vhost_umem *umem, 932 u64 start, u64 end) 933 { 934 struct vhost_umem_node *node; 935 936 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 937 start, end))) 938 vhost_umem_free(umem, node); 939 } 940 941 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 942 struct vhost_iotlb_msg *msg) 943 { 944 struct vhost_msg_node *node, *n; 945 946 spin_lock(&d->iotlb_lock); 947 948 list_for_each_entry_safe(node, n, &d->pending_list, node) { 949 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 950 if (msg->iova <= vq_msg->iova && 951 msg->iova + msg->size - 1 > vq_msg->iova && 952 vq_msg->type == VHOST_IOTLB_MISS) { 953 vhost_poll_queue(&node->vq->poll); 954 list_del(&node->node); 955 kfree(node); 956 } 957 } 958 959 spin_unlock(&d->iotlb_lock); 960 } 961 962 static int umem_access_ok(u64 uaddr, u64 size, int access) 963 { 964 unsigned long a = uaddr; 965 966 /* Make sure 64 bit math will not overflow. */ 967 if (vhost_overflow(uaddr, size)) 968 return -EFAULT; 969 970 if ((access & VHOST_ACCESS_RO) && 971 !access_ok(VERIFY_READ, (void __user *)a, size)) 972 return -EFAULT; 973 if ((access & VHOST_ACCESS_WO) && 974 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 975 return -EFAULT; 976 return 0; 977 } 978 979 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 980 struct vhost_iotlb_msg *msg) 981 { 982 int ret = 0; 983 984 vhost_dev_lock_vqs(dev); 985 switch (msg->type) { 986 case VHOST_IOTLB_UPDATE: 987 if (!dev->iotlb) { 988 ret = -EFAULT; 989 break; 990 } 991 if (umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 992 ret = -EFAULT; 993 break; 994 } 995 vhost_vq_meta_reset(dev); 996 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 997 msg->iova + msg->size - 1, 998 msg->uaddr, msg->perm)) { 999 ret = -ENOMEM; 1000 break; 1001 } 1002 vhost_iotlb_notify_vq(dev, msg); 1003 break; 1004 case VHOST_IOTLB_INVALIDATE: 1005 if (!dev->iotlb) { 1006 ret = -EFAULT; 1007 break; 1008 } 1009 vhost_vq_meta_reset(dev); 1010 vhost_del_umem_range(dev->iotlb, msg->iova, 1011 msg->iova + msg->size - 1); 1012 break; 1013 default: 1014 ret = -EINVAL; 1015 break; 1016 } 1017 1018 vhost_dev_unlock_vqs(dev); 1019 return ret; 1020 } 1021 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1022 struct iov_iter *from) 1023 { 1024 struct vhost_msg_node node; 1025 unsigned size = sizeof(struct vhost_msg); 1026 size_t ret; 1027 int err; 1028 1029 if (iov_iter_count(from) < size) 1030 return 0; 1031 ret = copy_from_iter(&node.msg, size, from); 1032 if (ret != size) 1033 goto done; 1034 1035 switch (node.msg.type) { 1036 case VHOST_IOTLB_MSG: 1037 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb); 1038 if (err) 1039 ret = err; 1040 break; 1041 default: 1042 ret = -EINVAL; 1043 break; 1044 } 1045 1046 done: 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(vhost_chr_write_iter); 1050 1051 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1052 poll_table *wait) 1053 { 1054 __poll_t mask = 0; 1055 1056 poll_wait(file, &dev->wait, wait); 1057 1058 if (!list_empty(&dev->read_list)) 1059 mask |= EPOLLIN | EPOLLRDNORM; 1060 1061 return mask; 1062 } 1063 EXPORT_SYMBOL(vhost_chr_poll); 1064 1065 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1066 int noblock) 1067 { 1068 DEFINE_WAIT(wait); 1069 struct vhost_msg_node *node; 1070 ssize_t ret = 0; 1071 unsigned size = sizeof(struct vhost_msg); 1072 1073 if (iov_iter_count(to) < size) 1074 return 0; 1075 1076 while (1) { 1077 if (!noblock) 1078 prepare_to_wait(&dev->wait, &wait, 1079 TASK_INTERRUPTIBLE); 1080 1081 node = vhost_dequeue_msg(dev, &dev->read_list); 1082 if (node) 1083 break; 1084 if (noblock) { 1085 ret = -EAGAIN; 1086 break; 1087 } 1088 if (signal_pending(current)) { 1089 ret = -ERESTARTSYS; 1090 break; 1091 } 1092 if (!dev->iotlb) { 1093 ret = -EBADFD; 1094 break; 1095 } 1096 1097 schedule(); 1098 } 1099 1100 if (!noblock) 1101 finish_wait(&dev->wait, &wait); 1102 1103 if (node) { 1104 ret = copy_to_iter(&node->msg, size, to); 1105 1106 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) { 1107 kfree(node); 1108 return ret; 1109 } 1110 1111 vhost_enqueue_msg(dev, &dev->pending_list, node); 1112 } 1113 1114 return ret; 1115 } 1116 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1117 1118 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1119 { 1120 struct vhost_dev *dev = vq->dev; 1121 struct vhost_msg_node *node; 1122 struct vhost_iotlb_msg *msg; 1123 1124 node = vhost_new_msg(vq, VHOST_IOTLB_MISS); 1125 if (!node) 1126 return -ENOMEM; 1127 1128 msg = &node->msg.iotlb; 1129 msg->type = VHOST_IOTLB_MISS; 1130 msg->iova = iova; 1131 msg->perm = access; 1132 1133 vhost_enqueue_msg(dev, &dev->read_list, node); 1134 1135 return 0; 1136 } 1137 1138 static int vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1139 struct vring_desc __user *desc, 1140 struct vring_avail __user *avail, 1141 struct vring_used __user *used) 1142 1143 { 1144 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1145 1146 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1147 access_ok(VERIFY_READ, avail, 1148 sizeof *avail + num * sizeof *avail->ring + s) && 1149 access_ok(VERIFY_WRITE, used, 1150 sizeof *used + num * sizeof *used->ring + s); 1151 } 1152 1153 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1154 const struct vhost_umem_node *node, 1155 int type) 1156 { 1157 int access = (type == VHOST_ADDR_USED) ? 1158 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1159 1160 if (likely(node->perm & access)) 1161 vq->meta_iotlb[type] = node; 1162 } 1163 1164 static int iotlb_access_ok(struct vhost_virtqueue *vq, 1165 int access, u64 addr, u64 len, int type) 1166 { 1167 const struct vhost_umem_node *node; 1168 struct vhost_umem *umem = vq->iotlb; 1169 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1170 1171 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1172 return true; 1173 1174 while (len > s) { 1175 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1176 addr, 1177 last); 1178 if (node == NULL || node->start > addr) { 1179 vhost_iotlb_miss(vq, addr, access); 1180 return false; 1181 } else if (!(node->perm & access)) { 1182 /* Report the possible access violation by 1183 * request another translation from userspace. 1184 */ 1185 return false; 1186 } 1187 1188 size = node->size - addr + node->start; 1189 1190 if (orig_addr == addr && size >= len) 1191 vhost_vq_meta_update(vq, node, type); 1192 1193 s += size; 1194 addr += size; 1195 } 1196 1197 return true; 1198 } 1199 1200 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1201 { 1202 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1203 unsigned int num = vq->num; 1204 1205 if (!vq->iotlb) 1206 return 1; 1207 1208 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1209 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1210 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1211 sizeof *vq->avail + 1212 num * sizeof(*vq->avail->ring) + s, 1213 VHOST_ADDR_AVAIL) && 1214 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1215 sizeof *vq->used + 1216 num * sizeof(*vq->used->ring) + s, 1217 VHOST_ADDR_USED); 1218 } 1219 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1220 1221 /* Can we log writes? */ 1222 /* Caller should have device mutex but not vq mutex */ 1223 int vhost_log_access_ok(struct vhost_dev *dev) 1224 { 1225 return memory_access_ok(dev, dev->umem, 1); 1226 } 1227 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1228 1229 /* Verify access for write logging. */ 1230 /* Caller should have vq mutex and device mutex */ 1231 static int vq_log_access_ok(struct vhost_virtqueue *vq, 1232 void __user *log_base) 1233 { 1234 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1235 1236 return vq_memory_access_ok(log_base, vq->umem, 1237 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1238 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1239 sizeof *vq->used + 1240 vq->num * sizeof *vq->used->ring + s)); 1241 } 1242 1243 /* Can we start vq? */ 1244 /* Caller should have vq mutex and device mutex */ 1245 int vhost_vq_access_ok(struct vhost_virtqueue *vq) 1246 { 1247 int ret = vq_log_access_ok(vq, vq->log_base); 1248 1249 if (ret || vq->iotlb) 1250 return ret; 1251 1252 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1253 } 1254 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1255 1256 static struct vhost_umem *vhost_umem_alloc(void) 1257 { 1258 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1259 1260 if (!umem) 1261 return NULL; 1262 1263 umem->umem_tree = RB_ROOT_CACHED; 1264 umem->numem = 0; 1265 INIT_LIST_HEAD(&umem->umem_list); 1266 1267 return umem; 1268 } 1269 1270 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1271 { 1272 struct vhost_memory mem, *newmem; 1273 struct vhost_memory_region *region; 1274 struct vhost_umem *newumem, *oldumem; 1275 unsigned long size = offsetof(struct vhost_memory, regions); 1276 int i; 1277 1278 if (copy_from_user(&mem, m, size)) 1279 return -EFAULT; 1280 if (mem.padding) 1281 return -EOPNOTSUPP; 1282 if (mem.nregions > max_mem_regions) 1283 return -E2BIG; 1284 newmem = kvzalloc(size + mem.nregions * sizeof(*m->regions), GFP_KERNEL); 1285 if (!newmem) 1286 return -ENOMEM; 1287 1288 memcpy(newmem, &mem, size); 1289 if (copy_from_user(newmem->regions, m->regions, 1290 mem.nregions * sizeof *m->regions)) { 1291 kvfree(newmem); 1292 return -EFAULT; 1293 } 1294 1295 newumem = vhost_umem_alloc(); 1296 if (!newumem) { 1297 kvfree(newmem); 1298 return -ENOMEM; 1299 } 1300 1301 for (region = newmem->regions; 1302 region < newmem->regions + mem.nregions; 1303 region++) { 1304 if (vhost_new_umem_range(newumem, 1305 region->guest_phys_addr, 1306 region->memory_size, 1307 region->guest_phys_addr + 1308 region->memory_size - 1, 1309 region->userspace_addr, 1310 VHOST_ACCESS_RW)) 1311 goto err; 1312 } 1313 1314 if (!memory_access_ok(d, newumem, 0)) 1315 goto err; 1316 1317 oldumem = d->umem; 1318 d->umem = newumem; 1319 1320 /* All memory accesses are done under some VQ mutex. */ 1321 for (i = 0; i < d->nvqs; ++i) { 1322 mutex_lock(&d->vqs[i]->mutex); 1323 d->vqs[i]->umem = newumem; 1324 mutex_unlock(&d->vqs[i]->mutex); 1325 } 1326 1327 kvfree(newmem); 1328 vhost_umem_clean(oldumem); 1329 return 0; 1330 1331 err: 1332 vhost_umem_clean(newumem); 1333 kvfree(newmem); 1334 return -EFAULT; 1335 } 1336 1337 long vhost_vring_ioctl(struct vhost_dev *d, int ioctl, void __user *argp) 1338 { 1339 struct file *eventfp, *filep = NULL; 1340 bool pollstart = false, pollstop = false; 1341 struct eventfd_ctx *ctx = NULL; 1342 u32 __user *idxp = argp; 1343 struct vhost_virtqueue *vq; 1344 struct vhost_vring_state s; 1345 struct vhost_vring_file f; 1346 struct vhost_vring_addr a; 1347 u32 idx; 1348 long r; 1349 1350 r = get_user(idx, idxp); 1351 if (r < 0) 1352 return r; 1353 if (idx >= d->nvqs) 1354 return -ENOBUFS; 1355 1356 vq = d->vqs[idx]; 1357 1358 mutex_lock(&vq->mutex); 1359 1360 switch (ioctl) { 1361 case VHOST_SET_VRING_NUM: 1362 /* Resizing ring with an active backend? 1363 * You don't want to do that. */ 1364 if (vq->private_data) { 1365 r = -EBUSY; 1366 break; 1367 } 1368 if (copy_from_user(&s, argp, sizeof s)) { 1369 r = -EFAULT; 1370 break; 1371 } 1372 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1373 r = -EINVAL; 1374 break; 1375 } 1376 vq->num = s.num; 1377 break; 1378 case VHOST_SET_VRING_BASE: 1379 /* Moving base with an active backend? 1380 * You don't want to do that. */ 1381 if (vq->private_data) { 1382 r = -EBUSY; 1383 break; 1384 } 1385 if (copy_from_user(&s, argp, sizeof s)) { 1386 r = -EFAULT; 1387 break; 1388 } 1389 if (s.num > 0xffff) { 1390 r = -EINVAL; 1391 break; 1392 } 1393 vq->last_avail_idx = s.num; 1394 /* Forget the cached index value. */ 1395 vq->avail_idx = vq->last_avail_idx; 1396 break; 1397 case VHOST_GET_VRING_BASE: 1398 s.index = idx; 1399 s.num = vq->last_avail_idx; 1400 if (copy_to_user(argp, &s, sizeof s)) 1401 r = -EFAULT; 1402 break; 1403 case VHOST_SET_VRING_ADDR: 1404 if (copy_from_user(&a, argp, sizeof a)) { 1405 r = -EFAULT; 1406 break; 1407 } 1408 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1409 r = -EOPNOTSUPP; 1410 break; 1411 } 1412 /* For 32bit, verify that the top 32bits of the user 1413 data are set to zero. */ 1414 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1415 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1416 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1417 r = -EFAULT; 1418 break; 1419 } 1420 1421 /* Make sure it's safe to cast pointers to vring types. */ 1422 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1423 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1424 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1425 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1426 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1427 r = -EINVAL; 1428 break; 1429 } 1430 1431 /* We only verify access here if backend is configured. 1432 * If it is not, we don't as size might not have been setup. 1433 * We will verify when backend is configured. */ 1434 if (vq->private_data) { 1435 if (!vq_access_ok(vq, vq->num, 1436 (void __user *)(unsigned long)a.desc_user_addr, 1437 (void __user *)(unsigned long)a.avail_user_addr, 1438 (void __user *)(unsigned long)a.used_user_addr)) { 1439 r = -EINVAL; 1440 break; 1441 } 1442 1443 /* Also validate log access for used ring if enabled. */ 1444 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1445 !log_access_ok(vq->log_base, a.log_guest_addr, 1446 sizeof *vq->used + 1447 vq->num * sizeof *vq->used->ring)) { 1448 r = -EINVAL; 1449 break; 1450 } 1451 } 1452 1453 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1454 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1455 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1456 vq->log_addr = a.log_guest_addr; 1457 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1458 break; 1459 case VHOST_SET_VRING_KICK: 1460 if (copy_from_user(&f, argp, sizeof f)) { 1461 r = -EFAULT; 1462 break; 1463 } 1464 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1465 if (IS_ERR(eventfp)) { 1466 r = PTR_ERR(eventfp); 1467 break; 1468 } 1469 if (eventfp != vq->kick) { 1470 pollstop = (filep = vq->kick) != NULL; 1471 pollstart = (vq->kick = eventfp) != NULL; 1472 } else 1473 filep = eventfp; 1474 break; 1475 case VHOST_SET_VRING_CALL: 1476 if (copy_from_user(&f, argp, sizeof f)) { 1477 r = -EFAULT; 1478 break; 1479 } 1480 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1481 if (IS_ERR(ctx)) { 1482 r = PTR_ERR(ctx); 1483 break; 1484 } 1485 swap(ctx, vq->call_ctx); 1486 break; 1487 case VHOST_SET_VRING_ERR: 1488 if (copy_from_user(&f, argp, sizeof f)) { 1489 r = -EFAULT; 1490 break; 1491 } 1492 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1493 if (IS_ERR(ctx)) { 1494 r = PTR_ERR(ctx); 1495 break; 1496 } 1497 swap(ctx, vq->error_ctx); 1498 break; 1499 case VHOST_SET_VRING_ENDIAN: 1500 r = vhost_set_vring_endian(vq, argp); 1501 break; 1502 case VHOST_GET_VRING_ENDIAN: 1503 r = vhost_get_vring_endian(vq, idx, argp); 1504 break; 1505 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1506 if (copy_from_user(&s, argp, sizeof(s))) { 1507 r = -EFAULT; 1508 break; 1509 } 1510 vq->busyloop_timeout = s.num; 1511 break; 1512 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1513 s.index = idx; 1514 s.num = vq->busyloop_timeout; 1515 if (copy_to_user(argp, &s, sizeof(s))) 1516 r = -EFAULT; 1517 break; 1518 default: 1519 r = -ENOIOCTLCMD; 1520 } 1521 1522 if (pollstop && vq->handle_kick) 1523 vhost_poll_stop(&vq->poll); 1524 1525 if (!IS_ERR_OR_NULL(ctx)) 1526 eventfd_ctx_put(ctx); 1527 if (filep) 1528 fput(filep); 1529 1530 if (pollstart && vq->handle_kick) 1531 r = vhost_poll_start(&vq->poll, vq->kick); 1532 1533 mutex_unlock(&vq->mutex); 1534 1535 if (pollstop && vq->handle_kick) 1536 vhost_poll_flush(&vq->poll); 1537 return r; 1538 } 1539 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1540 1541 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1542 { 1543 struct vhost_umem *niotlb, *oiotlb; 1544 int i; 1545 1546 niotlb = vhost_umem_alloc(); 1547 if (!niotlb) 1548 return -ENOMEM; 1549 1550 oiotlb = d->iotlb; 1551 d->iotlb = niotlb; 1552 1553 for (i = 0; i < d->nvqs; ++i) { 1554 mutex_lock(&d->vqs[i]->mutex); 1555 d->vqs[i]->iotlb = niotlb; 1556 mutex_unlock(&d->vqs[i]->mutex); 1557 } 1558 1559 vhost_umem_clean(oiotlb); 1560 1561 return 0; 1562 } 1563 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1564 1565 /* Caller must have device mutex */ 1566 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1567 { 1568 struct eventfd_ctx *ctx; 1569 u64 p; 1570 long r; 1571 int i, fd; 1572 1573 /* If you are not the owner, you can become one */ 1574 if (ioctl == VHOST_SET_OWNER) { 1575 r = vhost_dev_set_owner(d); 1576 goto done; 1577 } 1578 1579 /* You must be the owner to do anything else */ 1580 r = vhost_dev_check_owner(d); 1581 if (r) 1582 goto done; 1583 1584 switch (ioctl) { 1585 case VHOST_SET_MEM_TABLE: 1586 r = vhost_set_memory(d, argp); 1587 break; 1588 case VHOST_SET_LOG_BASE: 1589 if (copy_from_user(&p, argp, sizeof p)) { 1590 r = -EFAULT; 1591 break; 1592 } 1593 if ((u64)(unsigned long)p != p) { 1594 r = -EFAULT; 1595 break; 1596 } 1597 for (i = 0; i < d->nvqs; ++i) { 1598 struct vhost_virtqueue *vq; 1599 void __user *base = (void __user *)(unsigned long)p; 1600 vq = d->vqs[i]; 1601 mutex_lock(&vq->mutex); 1602 /* If ring is inactive, will check when it's enabled. */ 1603 if (vq->private_data && !vq_log_access_ok(vq, base)) 1604 r = -EFAULT; 1605 else 1606 vq->log_base = base; 1607 mutex_unlock(&vq->mutex); 1608 } 1609 break; 1610 case VHOST_SET_LOG_FD: 1611 r = get_user(fd, (int __user *)argp); 1612 if (r < 0) 1613 break; 1614 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1615 if (IS_ERR(ctx)) { 1616 r = PTR_ERR(ctx); 1617 break; 1618 } 1619 swap(ctx, d->log_ctx); 1620 for (i = 0; i < d->nvqs; ++i) { 1621 mutex_lock(&d->vqs[i]->mutex); 1622 d->vqs[i]->log_ctx = d->log_ctx; 1623 mutex_unlock(&d->vqs[i]->mutex); 1624 } 1625 if (ctx) 1626 eventfd_ctx_put(ctx); 1627 break; 1628 default: 1629 r = -ENOIOCTLCMD; 1630 break; 1631 } 1632 done: 1633 return r; 1634 } 1635 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1636 1637 /* TODO: This is really inefficient. We need something like get_user() 1638 * (instruction directly accesses the data, with an exception table entry 1639 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1640 */ 1641 static int set_bit_to_user(int nr, void __user *addr) 1642 { 1643 unsigned long log = (unsigned long)addr; 1644 struct page *page; 1645 void *base; 1646 int bit = nr + (log % PAGE_SIZE) * 8; 1647 int r; 1648 1649 r = get_user_pages_fast(log, 1, 1, &page); 1650 if (r < 0) 1651 return r; 1652 BUG_ON(r != 1); 1653 base = kmap_atomic(page); 1654 set_bit(bit, base); 1655 kunmap_atomic(base); 1656 set_page_dirty_lock(page); 1657 put_page(page); 1658 return 0; 1659 } 1660 1661 static int log_write(void __user *log_base, 1662 u64 write_address, u64 write_length) 1663 { 1664 u64 write_page = write_address / VHOST_PAGE_SIZE; 1665 int r; 1666 1667 if (!write_length) 1668 return 0; 1669 write_length += write_address % VHOST_PAGE_SIZE; 1670 for (;;) { 1671 u64 base = (u64)(unsigned long)log_base; 1672 u64 log = base + write_page / 8; 1673 int bit = write_page % 8; 1674 if ((u64)(unsigned long)log != log) 1675 return -EFAULT; 1676 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1677 if (r < 0) 1678 return r; 1679 if (write_length <= VHOST_PAGE_SIZE) 1680 break; 1681 write_length -= VHOST_PAGE_SIZE; 1682 write_page += 1; 1683 } 1684 return r; 1685 } 1686 1687 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1688 unsigned int log_num, u64 len) 1689 { 1690 int i, r; 1691 1692 /* Make sure data written is seen before log. */ 1693 smp_wmb(); 1694 for (i = 0; i < log_num; ++i) { 1695 u64 l = min(log[i].len, len); 1696 r = log_write(vq->log_base, log[i].addr, l); 1697 if (r < 0) 1698 return r; 1699 len -= l; 1700 if (!len) { 1701 if (vq->log_ctx) 1702 eventfd_signal(vq->log_ctx, 1); 1703 return 0; 1704 } 1705 } 1706 /* Length written exceeds what we have stored. This is a bug. */ 1707 BUG(); 1708 return 0; 1709 } 1710 EXPORT_SYMBOL_GPL(vhost_log_write); 1711 1712 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1713 { 1714 void __user *used; 1715 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1716 &vq->used->flags) < 0) 1717 return -EFAULT; 1718 if (unlikely(vq->log_used)) { 1719 /* Make sure the flag is seen before log. */ 1720 smp_wmb(); 1721 /* Log used flag write. */ 1722 used = &vq->used->flags; 1723 log_write(vq->log_base, vq->log_addr + 1724 (used - (void __user *)vq->used), 1725 sizeof vq->used->flags); 1726 if (vq->log_ctx) 1727 eventfd_signal(vq->log_ctx, 1); 1728 } 1729 return 0; 1730 } 1731 1732 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1733 { 1734 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1735 vhost_avail_event(vq))) 1736 return -EFAULT; 1737 if (unlikely(vq->log_used)) { 1738 void __user *used; 1739 /* Make sure the event is seen before log. */ 1740 smp_wmb(); 1741 /* Log avail event write */ 1742 used = vhost_avail_event(vq); 1743 log_write(vq->log_base, vq->log_addr + 1744 (used - (void __user *)vq->used), 1745 sizeof *vhost_avail_event(vq)); 1746 if (vq->log_ctx) 1747 eventfd_signal(vq->log_ctx, 1); 1748 } 1749 return 0; 1750 } 1751 1752 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1753 { 1754 __virtio16 last_used_idx; 1755 int r; 1756 bool is_le = vq->is_le; 1757 1758 if (!vq->private_data) 1759 return 0; 1760 1761 vhost_init_is_le(vq); 1762 1763 r = vhost_update_used_flags(vq); 1764 if (r) 1765 goto err; 1766 vq->signalled_used_valid = false; 1767 if (!vq->iotlb && 1768 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1769 r = -EFAULT; 1770 goto err; 1771 } 1772 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1773 if (r) { 1774 vq_err(vq, "Can't access used idx at %p\n", 1775 &vq->used->idx); 1776 goto err; 1777 } 1778 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1779 return 0; 1780 1781 err: 1782 vq->is_le = is_le; 1783 return r; 1784 } 1785 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1786 1787 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1788 struct iovec iov[], int iov_size, int access) 1789 { 1790 const struct vhost_umem_node *node; 1791 struct vhost_dev *dev = vq->dev; 1792 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1793 struct iovec *_iov; 1794 u64 s = 0; 1795 int ret = 0; 1796 1797 while ((u64)len > s) { 1798 u64 size; 1799 if (unlikely(ret >= iov_size)) { 1800 ret = -ENOBUFS; 1801 break; 1802 } 1803 1804 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1805 addr, addr + len - 1); 1806 if (node == NULL || node->start > addr) { 1807 if (umem != dev->iotlb) { 1808 ret = -EFAULT; 1809 break; 1810 } 1811 ret = -EAGAIN; 1812 break; 1813 } else if (!(node->perm & access)) { 1814 ret = -EPERM; 1815 break; 1816 } 1817 1818 _iov = iov + ret; 1819 size = node->size - addr + node->start; 1820 _iov->iov_len = min((u64)len - s, size); 1821 _iov->iov_base = (void __user *)(unsigned long) 1822 (node->userspace_addr + addr - node->start); 1823 s += size; 1824 addr += size; 1825 ++ret; 1826 } 1827 1828 if (ret == -EAGAIN) 1829 vhost_iotlb_miss(vq, addr, access); 1830 return ret; 1831 } 1832 1833 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1834 * function returns the next descriptor in the chain, 1835 * or -1U if we're at the end. */ 1836 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1837 { 1838 unsigned int next; 1839 1840 /* If this descriptor says it doesn't chain, we're done. */ 1841 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1842 return -1U; 1843 1844 /* Check they're not leading us off end of descriptors. */ 1845 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1846 return next; 1847 } 1848 1849 static int get_indirect(struct vhost_virtqueue *vq, 1850 struct iovec iov[], unsigned int iov_size, 1851 unsigned int *out_num, unsigned int *in_num, 1852 struct vhost_log *log, unsigned int *log_num, 1853 struct vring_desc *indirect) 1854 { 1855 struct vring_desc desc; 1856 unsigned int i = 0, count, found = 0; 1857 u32 len = vhost32_to_cpu(vq, indirect->len); 1858 struct iov_iter from; 1859 int ret, access; 1860 1861 /* Sanity check */ 1862 if (unlikely(len % sizeof desc)) { 1863 vq_err(vq, "Invalid length in indirect descriptor: " 1864 "len 0x%llx not multiple of 0x%zx\n", 1865 (unsigned long long)len, 1866 sizeof desc); 1867 return -EINVAL; 1868 } 1869 1870 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1871 UIO_MAXIOV, VHOST_ACCESS_RO); 1872 if (unlikely(ret < 0)) { 1873 if (ret != -EAGAIN) 1874 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1875 return ret; 1876 } 1877 iov_iter_init(&from, READ, vq->indirect, ret, len); 1878 1879 /* We will use the result as an address to read from, so most 1880 * architectures only need a compiler barrier here. */ 1881 read_barrier_depends(); 1882 1883 count = len / sizeof desc; 1884 /* Buffers are chained via a 16 bit next field, so 1885 * we can have at most 2^16 of these. */ 1886 if (unlikely(count > USHRT_MAX + 1)) { 1887 vq_err(vq, "Indirect buffer length too big: %d\n", 1888 indirect->len); 1889 return -E2BIG; 1890 } 1891 1892 do { 1893 unsigned iov_count = *in_num + *out_num; 1894 if (unlikely(++found > count)) { 1895 vq_err(vq, "Loop detected: last one at %u " 1896 "indirect size %u\n", 1897 i, count); 1898 return -EINVAL; 1899 } 1900 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1901 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1902 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1903 return -EINVAL; 1904 } 1905 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1906 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1907 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1908 return -EINVAL; 1909 } 1910 1911 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1912 access = VHOST_ACCESS_WO; 1913 else 1914 access = VHOST_ACCESS_RO; 1915 1916 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1917 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1918 iov_size - iov_count, access); 1919 if (unlikely(ret < 0)) { 1920 if (ret != -EAGAIN) 1921 vq_err(vq, "Translation failure %d indirect idx %d\n", 1922 ret, i); 1923 return ret; 1924 } 1925 /* If this is an input descriptor, increment that count. */ 1926 if (access == VHOST_ACCESS_WO) { 1927 *in_num += ret; 1928 if (unlikely(log)) { 1929 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1930 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1931 ++*log_num; 1932 } 1933 } else { 1934 /* If it's an output descriptor, they're all supposed 1935 * to come before any input descriptors. */ 1936 if (unlikely(*in_num)) { 1937 vq_err(vq, "Indirect descriptor " 1938 "has out after in: idx %d\n", i); 1939 return -EINVAL; 1940 } 1941 *out_num += ret; 1942 } 1943 } while ((i = next_desc(vq, &desc)) != -1); 1944 return 0; 1945 } 1946 1947 /* This looks in the virtqueue and for the first available buffer, and converts 1948 * it to an iovec for convenient access. Since descriptors consist of some 1949 * number of output then some number of input descriptors, it's actually two 1950 * iovecs, but we pack them into one and note how many of each there were. 1951 * 1952 * This function returns the descriptor number found, or vq->num (which is 1953 * never a valid descriptor number) if none was found. A negative code is 1954 * returned on error. */ 1955 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1956 struct iovec iov[], unsigned int iov_size, 1957 unsigned int *out_num, unsigned int *in_num, 1958 struct vhost_log *log, unsigned int *log_num) 1959 { 1960 struct vring_desc desc; 1961 unsigned int i, head, found = 0; 1962 u16 last_avail_idx; 1963 __virtio16 avail_idx; 1964 __virtio16 ring_head; 1965 int ret, access; 1966 1967 /* Check it isn't doing very strange things with descriptor numbers. */ 1968 last_avail_idx = vq->last_avail_idx; 1969 1970 if (vq->avail_idx == vq->last_avail_idx) { 1971 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 1972 vq_err(vq, "Failed to access avail idx at %p\n", 1973 &vq->avail->idx); 1974 return -EFAULT; 1975 } 1976 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 1977 1978 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 1979 vq_err(vq, "Guest moved used index from %u to %u", 1980 last_avail_idx, vq->avail_idx); 1981 return -EFAULT; 1982 } 1983 1984 /* If there's nothing new since last we looked, return 1985 * invalid. 1986 */ 1987 if (vq->avail_idx == last_avail_idx) 1988 return vq->num; 1989 1990 /* Only get avail ring entries after they have been 1991 * exposed by guest. 1992 */ 1993 smp_rmb(); 1994 } 1995 1996 /* Grab the next descriptor number they're advertising, and increment 1997 * the index we've seen. */ 1998 if (unlikely(vhost_get_avail(vq, ring_head, 1999 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2000 vq_err(vq, "Failed to read head: idx %d address %p\n", 2001 last_avail_idx, 2002 &vq->avail->ring[last_avail_idx % vq->num]); 2003 return -EFAULT; 2004 } 2005 2006 head = vhost16_to_cpu(vq, ring_head); 2007 2008 /* If their number is silly, that's an error. */ 2009 if (unlikely(head >= vq->num)) { 2010 vq_err(vq, "Guest says index %u > %u is available", 2011 head, vq->num); 2012 return -EINVAL; 2013 } 2014 2015 /* When we start there are none of either input nor output. */ 2016 *out_num = *in_num = 0; 2017 if (unlikely(log)) 2018 *log_num = 0; 2019 2020 i = head; 2021 do { 2022 unsigned iov_count = *in_num + *out_num; 2023 if (unlikely(i >= vq->num)) { 2024 vq_err(vq, "Desc index is %u > %u, head = %u", 2025 i, vq->num, head); 2026 return -EINVAL; 2027 } 2028 if (unlikely(++found > vq->num)) { 2029 vq_err(vq, "Loop detected: last one at %u " 2030 "vq size %u head %u\n", 2031 i, vq->num, head); 2032 return -EINVAL; 2033 } 2034 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2035 sizeof desc); 2036 if (unlikely(ret)) { 2037 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2038 i, vq->desc + i); 2039 return -EFAULT; 2040 } 2041 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2042 ret = get_indirect(vq, iov, iov_size, 2043 out_num, in_num, 2044 log, log_num, &desc); 2045 if (unlikely(ret < 0)) { 2046 if (ret != -EAGAIN) 2047 vq_err(vq, "Failure detected " 2048 "in indirect descriptor at idx %d\n", i); 2049 return ret; 2050 } 2051 continue; 2052 } 2053 2054 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2055 access = VHOST_ACCESS_WO; 2056 else 2057 access = VHOST_ACCESS_RO; 2058 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2059 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2060 iov_size - iov_count, access); 2061 if (unlikely(ret < 0)) { 2062 if (ret != -EAGAIN) 2063 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2064 ret, i); 2065 return ret; 2066 } 2067 if (access == VHOST_ACCESS_WO) { 2068 /* If this is an input descriptor, 2069 * increment that count. */ 2070 *in_num += ret; 2071 if (unlikely(log)) { 2072 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2073 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2074 ++*log_num; 2075 } 2076 } else { 2077 /* If it's an output descriptor, they're all supposed 2078 * to come before any input descriptors. */ 2079 if (unlikely(*in_num)) { 2080 vq_err(vq, "Descriptor has out after in: " 2081 "idx %d\n", i); 2082 return -EINVAL; 2083 } 2084 *out_num += ret; 2085 } 2086 } while ((i = next_desc(vq, &desc)) != -1); 2087 2088 /* On success, increment avail index. */ 2089 vq->last_avail_idx++; 2090 2091 /* Assume notifications from guest are disabled at this point, 2092 * if they aren't we would need to update avail_event index. */ 2093 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2094 return head; 2095 } 2096 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2097 2098 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2099 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2100 { 2101 vq->last_avail_idx -= n; 2102 } 2103 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2104 2105 /* After we've used one of their buffers, we tell them about it. We'll then 2106 * want to notify the guest, using eventfd. */ 2107 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2108 { 2109 struct vring_used_elem heads = { 2110 cpu_to_vhost32(vq, head), 2111 cpu_to_vhost32(vq, len) 2112 }; 2113 2114 return vhost_add_used_n(vq, &heads, 1); 2115 } 2116 EXPORT_SYMBOL_GPL(vhost_add_used); 2117 2118 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2119 struct vring_used_elem *heads, 2120 unsigned count) 2121 { 2122 struct vring_used_elem __user *used; 2123 u16 old, new; 2124 int start; 2125 2126 start = vq->last_used_idx & (vq->num - 1); 2127 used = vq->used->ring + start; 2128 if (count == 1) { 2129 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2130 vq_err(vq, "Failed to write used id"); 2131 return -EFAULT; 2132 } 2133 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2134 vq_err(vq, "Failed to write used len"); 2135 return -EFAULT; 2136 } 2137 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2138 vq_err(vq, "Failed to write used"); 2139 return -EFAULT; 2140 } 2141 if (unlikely(vq->log_used)) { 2142 /* Make sure data is seen before log. */ 2143 smp_wmb(); 2144 /* Log used ring entry write. */ 2145 log_write(vq->log_base, 2146 vq->log_addr + 2147 ((void __user *)used - (void __user *)vq->used), 2148 count * sizeof *used); 2149 } 2150 old = vq->last_used_idx; 2151 new = (vq->last_used_idx += count); 2152 /* If the driver never bothers to signal in a very long while, 2153 * used index might wrap around. If that happens, invalidate 2154 * signalled_used index we stored. TODO: make sure driver 2155 * signals at least once in 2^16 and remove this. */ 2156 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2157 vq->signalled_used_valid = false; 2158 return 0; 2159 } 2160 2161 /* After we've used one of their buffers, we tell them about it. We'll then 2162 * want to notify the guest, using eventfd. */ 2163 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2164 unsigned count) 2165 { 2166 int start, n, r; 2167 2168 start = vq->last_used_idx & (vq->num - 1); 2169 n = vq->num - start; 2170 if (n < count) { 2171 r = __vhost_add_used_n(vq, heads, n); 2172 if (r < 0) 2173 return r; 2174 heads += n; 2175 count -= n; 2176 } 2177 r = __vhost_add_used_n(vq, heads, count); 2178 2179 /* Make sure buffer is written before we update index. */ 2180 smp_wmb(); 2181 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2182 &vq->used->idx)) { 2183 vq_err(vq, "Failed to increment used idx"); 2184 return -EFAULT; 2185 } 2186 if (unlikely(vq->log_used)) { 2187 /* Log used index update. */ 2188 log_write(vq->log_base, 2189 vq->log_addr + offsetof(struct vring_used, idx), 2190 sizeof vq->used->idx); 2191 if (vq->log_ctx) 2192 eventfd_signal(vq->log_ctx, 1); 2193 } 2194 return r; 2195 } 2196 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2197 2198 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2199 { 2200 __u16 old, new; 2201 __virtio16 event; 2202 bool v; 2203 /* Flush out used index updates. This is paired 2204 * with the barrier that the Guest executes when enabling 2205 * interrupts. */ 2206 smp_mb(); 2207 2208 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2209 unlikely(vq->avail_idx == vq->last_avail_idx)) 2210 return true; 2211 2212 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2213 __virtio16 flags; 2214 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2215 vq_err(vq, "Failed to get flags"); 2216 return true; 2217 } 2218 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2219 } 2220 old = vq->signalled_used; 2221 v = vq->signalled_used_valid; 2222 new = vq->signalled_used = vq->last_used_idx; 2223 vq->signalled_used_valid = true; 2224 2225 if (unlikely(!v)) 2226 return true; 2227 2228 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2229 vq_err(vq, "Failed to get used event idx"); 2230 return true; 2231 } 2232 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2233 } 2234 2235 /* This actually signals the guest, using eventfd. */ 2236 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2237 { 2238 /* Signal the Guest tell them we used something up. */ 2239 if (vq->call_ctx && vhost_notify(dev, vq)) 2240 eventfd_signal(vq->call_ctx, 1); 2241 } 2242 EXPORT_SYMBOL_GPL(vhost_signal); 2243 2244 /* And here's the combo meal deal. Supersize me! */ 2245 void vhost_add_used_and_signal(struct vhost_dev *dev, 2246 struct vhost_virtqueue *vq, 2247 unsigned int head, int len) 2248 { 2249 vhost_add_used(vq, head, len); 2250 vhost_signal(dev, vq); 2251 } 2252 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2253 2254 /* multi-buffer version of vhost_add_used_and_signal */ 2255 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2256 struct vhost_virtqueue *vq, 2257 struct vring_used_elem *heads, unsigned count) 2258 { 2259 vhost_add_used_n(vq, heads, count); 2260 vhost_signal(dev, vq); 2261 } 2262 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2263 2264 /* return true if we're sure that avaiable ring is empty */ 2265 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2266 { 2267 __virtio16 avail_idx; 2268 int r; 2269 2270 if (vq->avail_idx != vq->last_avail_idx) 2271 return false; 2272 2273 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2274 if (unlikely(r)) 2275 return false; 2276 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2277 2278 return vq->avail_idx == vq->last_avail_idx; 2279 } 2280 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2281 2282 /* OK, now we need to know about added descriptors. */ 2283 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2284 { 2285 __virtio16 avail_idx; 2286 int r; 2287 2288 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2289 return false; 2290 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2291 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2292 r = vhost_update_used_flags(vq); 2293 if (r) { 2294 vq_err(vq, "Failed to enable notification at %p: %d\n", 2295 &vq->used->flags, r); 2296 return false; 2297 } 2298 } else { 2299 r = vhost_update_avail_event(vq, vq->avail_idx); 2300 if (r) { 2301 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2302 vhost_avail_event(vq), r); 2303 return false; 2304 } 2305 } 2306 /* They could have slipped one in as we were doing that: make 2307 * sure it's written, then check again. */ 2308 smp_mb(); 2309 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2310 if (r) { 2311 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2312 &vq->avail->idx, r); 2313 return false; 2314 } 2315 2316 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2317 } 2318 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2319 2320 /* We don't need to be notified again. */ 2321 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2322 { 2323 int r; 2324 2325 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2326 return; 2327 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2328 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2329 r = vhost_update_used_flags(vq); 2330 if (r) 2331 vq_err(vq, "Failed to enable notification at %p: %d\n", 2332 &vq->used->flags, r); 2333 } 2334 } 2335 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2336 2337 /* Create a new message. */ 2338 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2339 { 2340 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2341 if (!node) 2342 return NULL; 2343 node->vq = vq; 2344 node->msg.type = type; 2345 return node; 2346 } 2347 EXPORT_SYMBOL_GPL(vhost_new_msg); 2348 2349 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2350 struct vhost_msg_node *node) 2351 { 2352 spin_lock(&dev->iotlb_lock); 2353 list_add_tail(&node->node, head); 2354 spin_unlock(&dev->iotlb_lock); 2355 2356 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2357 } 2358 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2359 2360 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2361 struct list_head *head) 2362 { 2363 struct vhost_msg_node *node = NULL; 2364 2365 spin_lock(&dev->iotlb_lock); 2366 if (!list_empty(head)) { 2367 node = list_first_entry(head, struct vhost_msg_node, 2368 node); 2369 list_del(&node->node); 2370 } 2371 spin_unlock(&dev->iotlb_lock); 2372 2373 return node; 2374 } 2375 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2376 2377 2378 static int __init vhost_init(void) 2379 { 2380 return 0; 2381 } 2382 2383 static void __exit vhost_exit(void) 2384 { 2385 } 2386 2387 module_init(vhost_init); 2388 module_exit(vhost_exit); 2389 2390 MODULE_VERSION("0.0.1"); 2391 MODULE_LICENSE("GPL v2"); 2392 MODULE_AUTHOR("Michael S. Tsirkin"); 2393 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2394