1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 #include <linux/nospec.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 46 enum { 47 VHOST_MEMORY_F_LOG = 0x1, 48 }; 49 50 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 51 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 52 53 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 54 rb, __u64, __subtree_last, 55 START, LAST, static inline, vhost_umem_interval_tree); 56 57 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 58 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = !virtio_legacy_is_little_endian(); 61 } 62 63 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = true; 66 } 67 68 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 69 { 70 vq->user_be = false; 71 } 72 73 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 74 { 75 struct vhost_vring_state s; 76 77 if (vq->private_data) 78 return -EBUSY; 79 80 if (copy_from_user(&s, argp, sizeof(s))) 81 return -EFAULT; 82 83 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 84 s.num != VHOST_VRING_BIG_ENDIAN) 85 return -EINVAL; 86 87 if (s.num == VHOST_VRING_BIG_ENDIAN) 88 vhost_enable_cross_endian_big(vq); 89 else 90 vhost_enable_cross_endian_little(vq); 91 92 return 0; 93 } 94 95 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 96 int __user *argp) 97 { 98 struct vhost_vring_state s = { 99 .index = idx, 100 .num = vq->user_be 101 }; 102 103 if (copy_to_user(argp, &s, sizeof(s))) 104 return -EFAULT; 105 106 return 0; 107 } 108 109 static void vhost_init_is_le(struct vhost_virtqueue *vq) 110 { 111 /* Note for legacy virtio: user_be is initialized at reset time 112 * according to the host endianness. If userspace does not set an 113 * explicit endianness, the default behavior is native endian, as 114 * expected by legacy virtio. 115 */ 116 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 117 } 118 #else 119 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 120 { 121 } 122 123 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 124 { 125 return -ENOIOCTLCMD; 126 } 127 128 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 129 int __user *argp) 130 { 131 return -ENOIOCTLCMD; 132 } 133 134 static void vhost_init_is_le(struct vhost_virtqueue *vq) 135 { 136 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 137 || virtio_legacy_is_little_endian(); 138 } 139 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 140 141 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 142 { 143 vhost_init_is_le(vq); 144 } 145 146 struct vhost_flush_struct { 147 struct vhost_work work; 148 struct completion wait_event; 149 }; 150 151 static void vhost_flush_work(struct vhost_work *work) 152 { 153 struct vhost_flush_struct *s; 154 155 s = container_of(work, struct vhost_flush_struct, work); 156 complete(&s->wait_event); 157 } 158 159 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 160 poll_table *pt) 161 { 162 struct vhost_poll *poll; 163 164 poll = container_of(pt, struct vhost_poll, table); 165 poll->wqh = wqh; 166 add_wait_queue(wqh, &poll->wait); 167 } 168 169 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 170 void *key) 171 { 172 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 173 174 if (!(key_to_poll(key) & poll->mask)) 175 return 0; 176 177 vhost_poll_queue(poll); 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev) 191 { 192 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 193 init_poll_funcptr(&poll->table, vhost_poll_func); 194 poll->mask = mask; 195 poll->dev = dev; 196 poll->wqh = NULL; 197 198 vhost_work_init(&poll->work, fn); 199 } 200 EXPORT_SYMBOL_GPL(vhost_poll_init); 201 202 /* Start polling a file. We add ourselves to file's wait queue. The caller must 203 * keep a reference to a file until after vhost_poll_stop is called. */ 204 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 205 { 206 __poll_t mask; 207 int ret = 0; 208 209 if (poll->wqh) 210 return 0; 211 212 mask = vfs_poll(file, &poll->table); 213 if (mask) 214 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 215 if (mask & EPOLLERR) { 216 vhost_poll_stop(poll); 217 ret = -EINVAL; 218 } 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(vhost_poll_start); 223 224 /* Stop polling a file. After this function returns, it becomes safe to drop the 225 * file reference. You must also flush afterwards. */ 226 void vhost_poll_stop(struct vhost_poll *poll) 227 { 228 if (poll->wqh) { 229 remove_wait_queue(poll->wqh, &poll->wait); 230 poll->wqh = NULL; 231 } 232 } 233 EXPORT_SYMBOL_GPL(vhost_poll_stop); 234 235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 236 { 237 struct vhost_flush_struct flush; 238 239 if (dev->worker) { 240 init_completion(&flush.wait_event); 241 vhost_work_init(&flush.work, vhost_flush_work); 242 243 vhost_work_queue(dev, &flush.work); 244 wait_for_completion(&flush.wait_event); 245 } 246 } 247 EXPORT_SYMBOL_GPL(vhost_work_flush); 248 249 /* Flush any work that has been scheduled. When calling this, don't hold any 250 * locks that are also used by the callback. */ 251 void vhost_poll_flush(struct vhost_poll *poll) 252 { 253 vhost_work_flush(poll->dev, &poll->work); 254 } 255 EXPORT_SYMBOL_GPL(vhost_poll_flush); 256 257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 258 { 259 if (!dev->worker) 260 return; 261 262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 263 /* We can only add the work to the list after we're 264 * sure it was not in the list. 265 * test_and_set_bit() implies a memory barrier. 266 */ 267 llist_add(&work->node, &dev->work_list); 268 wake_up_process(dev->worker); 269 } 270 } 271 EXPORT_SYMBOL_GPL(vhost_work_queue); 272 273 /* A lockless hint for busy polling code to exit the loop */ 274 bool vhost_has_work(struct vhost_dev *dev) 275 { 276 return !llist_empty(&dev->work_list); 277 } 278 EXPORT_SYMBOL_GPL(vhost_has_work); 279 280 void vhost_poll_queue(struct vhost_poll *poll) 281 { 282 vhost_work_queue(poll->dev, &poll->work); 283 } 284 EXPORT_SYMBOL_GPL(vhost_poll_queue); 285 286 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 287 { 288 int j; 289 290 for (j = 0; j < VHOST_NUM_ADDRS; j++) 291 vq->meta_iotlb[j] = NULL; 292 } 293 294 static void vhost_vq_meta_reset(struct vhost_dev *d) 295 { 296 int i; 297 298 for (i = 0; i < d->nvqs; ++i) 299 __vhost_vq_meta_reset(d->vqs[i]); 300 } 301 302 static void vhost_vq_reset(struct vhost_dev *dev, 303 struct vhost_virtqueue *vq) 304 { 305 vq->num = 1; 306 vq->desc = NULL; 307 vq->avail = NULL; 308 vq->used = NULL; 309 vq->last_avail_idx = 0; 310 vq->avail_idx = 0; 311 vq->last_used_idx = 0; 312 vq->signalled_used = 0; 313 vq->signalled_used_valid = false; 314 vq->used_flags = 0; 315 vq->log_used = false; 316 vq->log_addr = -1ull; 317 vq->private_data = NULL; 318 vq->acked_features = 0; 319 vq->acked_backend_features = 0; 320 vq->log_base = NULL; 321 vq->error_ctx = NULL; 322 vq->kick = NULL; 323 vq->call_ctx = NULL; 324 vq->log_ctx = NULL; 325 vhost_reset_is_le(vq); 326 vhost_disable_cross_endian(vq); 327 vq->busyloop_timeout = 0; 328 vq->umem = NULL; 329 vq->iotlb = NULL; 330 __vhost_vq_meta_reset(vq); 331 } 332 333 static int vhost_worker(void *data) 334 { 335 struct vhost_dev *dev = data; 336 struct vhost_work *work, *work_next; 337 struct llist_node *node; 338 mm_segment_t oldfs = get_fs(); 339 340 set_fs(USER_DS); 341 use_mm(dev->mm); 342 343 for (;;) { 344 /* mb paired w/ kthread_stop */ 345 set_current_state(TASK_INTERRUPTIBLE); 346 347 if (kthread_should_stop()) { 348 __set_current_state(TASK_RUNNING); 349 break; 350 } 351 352 node = llist_del_all(&dev->work_list); 353 if (!node) 354 schedule(); 355 356 node = llist_reverse_order(node); 357 /* make sure flag is seen after deletion */ 358 smp_wmb(); 359 llist_for_each_entry_safe(work, work_next, node, node) { 360 clear_bit(VHOST_WORK_QUEUED, &work->flags); 361 __set_current_state(TASK_RUNNING); 362 work->fn(work); 363 if (need_resched()) 364 schedule(); 365 } 366 } 367 unuse_mm(dev->mm); 368 set_fs(oldfs); 369 return 0; 370 } 371 372 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 373 { 374 kfree(vq->indirect); 375 vq->indirect = NULL; 376 kfree(vq->log); 377 vq->log = NULL; 378 kfree(vq->heads); 379 vq->heads = NULL; 380 } 381 382 /* Helper to allocate iovec buffers for all vqs. */ 383 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 384 { 385 struct vhost_virtqueue *vq; 386 int i; 387 388 for (i = 0; i < dev->nvqs; ++i) { 389 vq = dev->vqs[i]; 390 vq->indirect = kmalloc_array(UIO_MAXIOV, 391 sizeof(*vq->indirect), 392 GFP_KERNEL); 393 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 394 GFP_KERNEL); 395 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 396 GFP_KERNEL); 397 if (!vq->indirect || !vq->log || !vq->heads) 398 goto err_nomem; 399 } 400 return 0; 401 402 err_nomem: 403 for (; i >= 0; --i) 404 vhost_vq_free_iovecs(dev->vqs[i]); 405 return -ENOMEM; 406 } 407 408 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 409 { 410 int i; 411 412 for (i = 0; i < dev->nvqs; ++i) 413 vhost_vq_free_iovecs(dev->vqs[i]); 414 } 415 416 void vhost_dev_init(struct vhost_dev *dev, 417 struct vhost_virtqueue **vqs, int nvqs, int iov_limit) 418 { 419 struct vhost_virtqueue *vq; 420 int i; 421 422 dev->vqs = vqs; 423 dev->nvqs = nvqs; 424 mutex_init(&dev->mutex); 425 dev->log_ctx = NULL; 426 dev->umem = NULL; 427 dev->iotlb = NULL; 428 dev->mm = NULL; 429 dev->worker = NULL; 430 dev->iov_limit = iov_limit; 431 init_llist_head(&dev->work_list); 432 init_waitqueue_head(&dev->wait); 433 INIT_LIST_HEAD(&dev->read_list); 434 INIT_LIST_HEAD(&dev->pending_list); 435 spin_lock_init(&dev->iotlb_lock); 436 437 438 for (i = 0; i < dev->nvqs; ++i) { 439 vq = dev->vqs[i]; 440 vq->log = NULL; 441 vq->indirect = NULL; 442 vq->heads = NULL; 443 vq->dev = dev; 444 mutex_init(&vq->mutex); 445 vhost_vq_reset(dev, vq); 446 if (vq->handle_kick) 447 vhost_poll_init(&vq->poll, vq->handle_kick, 448 EPOLLIN, dev); 449 } 450 } 451 EXPORT_SYMBOL_GPL(vhost_dev_init); 452 453 /* Caller should have device mutex */ 454 long vhost_dev_check_owner(struct vhost_dev *dev) 455 { 456 /* Are you the owner? If not, I don't think you mean to do that */ 457 return dev->mm == current->mm ? 0 : -EPERM; 458 } 459 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 460 461 struct vhost_attach_cgroups_struct { 462 struct vhost_work work; 463 struct task_struct *owner; 464 int ret; 465 }; 466 467 static void vhost_attach_cgroups_work(struct vhost_work *work) 468 { 469 struct vhost_attach_cgroups_struct *s; 470 471 s = container_of(work, struct vhost_attach_cgroups_struct, work); 472 s->ret = cgroup_attach_task_all(s->owner, current); 473 } 474 475 static int vhost_attach_cgroups(struct vhost_dev *dev) 476 { 477 struct vhost_attach_cgroups_struct attach; 478 479 attach.owner = current; 480 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 481 vhost_work_queue(dev, &attach.work); 482 vhost_work_flush(dev, &attach.work); 483 return attach.ret; 484 } 485 486 /* Caller should have device mutex */ 487 bool vhost_dev_has_owner(struct vhost_dev *dev) 488 { 489 return dev->mm; 490 } 491 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 492 493 /* Caller should have device mutex */ 494 long vhost_dev_set_owner(struct vhost_dev *dev) 495 { 496 struct task_struct *worker; 497 int err; 498 499 /* Is there an owner already? */ 500 if (vhost_dev_has_owner(dev)) { 501 err = -EBUSY; 502 goto err_mm; 503 } 504 505 /* No owner, become one */ 506 dev->mm = get_task_mm(current); 507 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 508 if (IS_ERR(worker)) { 509 err = PTR_ERR(worker); 510 goto err_worker; 511 } 512 513 dev->worker = worker; 514 wake_up_process(worker); /* avoid contributing to loadavg */ 515 516 err = vhost_attach_cgroups(dev); 517 if (err) 518 goto err_cgroup; 519 520 err = vhost_dev_alloc_iovecs(dev); 521 if (err) 522 goto err_cgroup; 523 524 return 0; 525 err_cgroup: 526 kthread_stop(worker); 527 dev->worker = NULL; 528 err_worker: 529 if (dev->mm) 530 mmput(dev->mm); 531 dev->mm = NULL; 532 err_mm: 533 return err; 534 } 535 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 536 537 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 538 { 539 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 540 } 541 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 542 543 /* Caller should have device mutex */ 544 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 545 { 546 int i; 547 548 vhost_dev_cleanup(dev); 549 550 /* Restore memory to default empty mapping. */ 551 INIT_LIST_HEAD(&umem->umem_list); 552 dev->umem = umem; 553 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 554 * VQs aren't running. 555 */ 556 for (i = 0; i < dev->nvqs; ++i) 557 dev->vqs[i]->umem = umem; 558 } 559 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 560 561 void vhost_dev_stop(struct vhost_dev *dev) 562 { 563 int i; 564 565 for (i = 0; i < dev->nvqs; ++i) { 566 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 567 vhost_poll_stop(&dev->vqs[i]->poll); 568 vhost_poll_flush(&dev->vqs[i]->poll); 569 } 570 } 571 } 572 EXPORT_SYMBOL_GPL(vhost_dev_stop); 573 574 static void vhost_umem_free(struct vhost_umem *umem, 575 struct vhost_umem_node *node) 576 { 577 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 578 list_del(&node->link); 579 kfree(node); 580 umem->numem--; 581 } 582 583 static void vhost_umem_clean(struct vhost_umem *umem) 584 { 585 struct vhost_umem_node *node, *tmp; 586 587 if (!umem) 588 return; 589 590 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 591 vhost_umem_free(umem, node); 592 593 kvfree(umem); 594 } 595 596 static void vhost_clear_msg(struct vhost_dev *dev) 597 { 598 struct vhost_msg_node *node, *n; 599 600 spin_lock(&dev->iotlb_lock); 601 602 list_for_each_entry_safe(node, n, &dev->read_list, node) { 603 list_del(&node->node); 604 kfree(node); 605 } 606 607 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 608 list_del(&node->node); 609 kfree(node); 610 } 611 612 spin_unlock(&dev->iotlb_lock); 613 } 614 615 void vhost_dev_cleanup(struct vhost_dev *dev) 616 { 617 int i; 618 619 for (i = 0; i < dev->nvqs; ++i) { 620 if (dev->vqs[i]->error_ctx) 621 eventfd_ctx_put(dev->vqs[i]->error_ctx); 622 if (dev->vqs[i]->kick) 623 fput(dev->vqs[i]->kick); 624 if (dev->vqs[i]->call_ctx) 625 eventfd_ctx_put(dev->vqs[i]->call_ctx); 626 vhost_vq_reset(dev, dev->vqs[i]); 627 } 628 vhost_dev_free_iovecs(dev); 629 if (dev->log_ctx) 630 eventfd_ctx_put(dev->log_ctx); 631 dev->log_ctx = NULL; 632 /* No one will access memory at this point */ 633 vhost_umem_clean(dev->umem); 634 dev->umem = NULL; 635 vhost_umem_clean(dev->iotlb); 636 dev->iotlb = NULL; 637 vhost_clear_msg(dev); 638 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 639 WARN_ON(!llist_empty(&dev->work_list)); 640 if (dev->worker) { 641 kthread_stop(dev->worker); 642 dev->worker = NULL; 643 } 644 if (dev->mm) 645 mmput(dev->mm); 646 dev->mm = NULL; 647 } 648 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 649 650 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 651 { 652 u64 a = addr / VHOST_PAGE_SIZE / 8; 653 654 /* Make sure 64 bit math will not overflow. */ 655 if (a > ULONG_MAX - (unsigned long)log_base || 656 a + (unsigned long)log_base > ULONG_MAX) 657 return false; 658 659 return access_ok(log_base + a, 660 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 661 } 662 663 static bool vhost_overflow(u64 uaddr, u64 size) 664 { 665 /* Make sure 64 bit math will not overflow. */ 666 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 667 } 668 669 /* Caller should have vq mutex and device mutex. */ 670 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 671 int log_all) 672 { 673 struct vhost_umem_node *node; 674 675 if (!umem) 676 return false; 677 678 list_for_each_entry(node, &umem->umem_list, link) { 679 unsigned long a = node->userspace_addr; 680 681 if (vhost_overflow(node->userspace_addr, node->size)) 682 return false; 683 684 685 if (!access_ok((void __user *)a, 686 node->size)) 687 return false; 688 else if (log_all && !log_access_ok(log_base, 689 node->start, 690 node->size)) 691 return false; 692 } 693 return true; 694 } 695 696 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 697 u64 addr, unsigned int size, 698 int type) 699 { 700 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 701 702 if (!node) 703 return NULL; 704 705 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 706 } 707 708 /* Can we switch to this memory table? */ 709 /* Caller should have device mutex but not vq mutex */ 710 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 711 int log_all) 712 { 713 int i; 714 715 for (i = 0; i < d->nvqs; ++i) { 716 bool ok; 717 bool log; 718 719 mutex_lock(&d->vqs[i]->mutex); 720 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 721 /* If ring is inactive, will check when it's enabled. */ 722 if (d->vqs[i]->private_data) 723 ok = vq_memory_access_ok(d->vqs[i]->log_base, 724 umem, log); 725 else 726 ok = true; 727 mutex_unlock(&d->vqs[i]->mutex); 728 if (!ok) 729 return false; 730 } 731 return true; 732 } 733 734 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 735 struct iovec iov[], int iov_size, int access); 736 737 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 738 const void *from, unsigned size) 739 { 740 int ret; 741 742 if (!vq->iotlb) 743 return __copy_to_user(to, from, size); 744 else { 745 /* This function should be called after iotlb 746 * prefetch, which means we're sure that all vq 747 * could be access through iotlb. So -EAGAIN should 748 * not happen in this case. 749 */ 750 struct iov_iter t; 751 void __user *uaddr = vhost_vq_meta_fetch(vq, 752 (u64)(uintptr_t)to, size, 753 VHOST_ADDR_USED); 754 755 if (uaddr) 756 return __copy_to_user(uaddr, from, size); 757 758 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 759 ARRAY_SIZE(vq->iotlb_iov), 760 VHOST_ACCESS_WO); 761 if (ret < 0) 762 goto out; 763 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 764 ret = copy_to_iter(from, size, &t); 765 if (ret == size) 766 ret = 0; 767 } 768 out: 769 return ret; 770 } 771 772 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 773 void __user *from, unsigned size) 774 { 775 int ret; 776 777 if (!vq->iotlb) 778 return __copy_from_user(to, from, size); 779 else { 780 /* This function should be called after iotlb 781 * prefetch, which means we're sure that vq 782 * could be access through iotlb. So -EAGAIN should 783 * not happen in this case. 784 */ 785 void __user *uaddr = vhost_vq_meta_fetch(vq, 786 (u64)(uintptr_t)from, size, 787 VHOST_ADDR_DESC); 788 struct iov_iter f; 789 790 if (uaddr) 791 return __copy_from_user(to, uaddr, size); 792 793 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 794 ARRAY_SIZE(vq->iotlb_iov), 795 VHOST_ACCESS_RO); 796 if (ret < 0) { 797 vq_err(vq, "IOTLB translation failure: uaddr " 798 "%p size 0x%llx\n", from, 799 (unsigned long long) size); 800 goto out; 801 } 802 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 803 ret = copy_from_iter(to, size, &f); 804 if (ret == size) 805 ret = 0; 806 } 807 808 out: 809 return ret; 810 } 811 812 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 813 void __user *addr, unsigned int size, 814 int type) 815 { 816 int ret; 817 818 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 819 ARRAY_SIZE(vq->iotlb_iov), 820 VHOST_ACCESS_RO); 821 if (ret < 0) { 822 vq_err(vq, "IOTLB translation failure: uaddr " 823 "%p size 0x%llx\n", addr, 824 (unsigned long long) size); 825 return NULL; 826 } 827 828 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 829 vq_err(vq, "Non atomic userspace memory access: uaddr " 830 "%p size 0x%llx\n", addr, 831 (unsigned long long) size); 832 return NULL; 833 } 834 835 return vq->iotlb_iov[0].iov_base; 836 } 837 838 /* This function should be called after iotlb 839 * prefetch, which means we're sure that vq 840 * could be access through iotlb. So -EAGAIN should 841 * not happen in this case. 842 */ 843 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 844 void *addr, unsigned int size, 845 int type) 846 { 847 void __user *uaddr = vhost_vq_meta_fetch(vq, 848 (u64)(uintptr_t)addr, size, type); 849 if (uaddr) 850 return uaddr; 851 852 return __vhost_get_user_slow(vq, addr, size, type); 853 } 854 855 #define vhost_put_user(vq, x, ptr) \ 856 ({ \ 857 int ret = -EFAULT; \ 858 if (!vq->iotlb) { \ 859 ret = __put_user(x, ptr); \ 860 } else { \ 861 __typeof__(ptr) to = \ 862 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 863 sizeof(*ptr), VHOST_ADDR_USED); \ 864 if (to != NULL) \ 865 ret = __put_user(x, to); \ 866 else \ 867 ret = -EFAULT; \ 868 } \ 869 ret; \ 870 }) 871 872 #define vhost_get_user(vq, x, ptr, type) \ 873 ({ \ 874 int ret; \ 875 if (!vq->iotlb) { \ 876 ret = __get_user(x, ptr); \ 877 } else { \ 878 __typeof__(ptr) from = \ 879 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 880 sizeof(*ptr), \ 881 type); \ 882 if (from != NULL) \ 883 ret = __get_user(x, from); \ 884 else \ 885 ret = -EFAULT; \ 886 } \ 887 ret; \ 888 }) 889 890 #define vhost_get_avail(vq, x, ptr) \ 891 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 892 893 #define vhost_get_used(vq, x, ptr) \ 894 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 895 896 static void vhost_dev_lock_vqs(struct vhost_dev *d) 897 { 898 int i = 0; 899 for (i = 0; i < d->nvqs; ++i) 900 mutex_lock_nested(&d->vqs[i]->mutex, i); 901 } 902 903 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 904 { 905 int i = 0; 906 for (i = 0; i < d->nvqs; ++i) 907 mutex_unlock(&d->vqs[i]->mutex); 908 } 909 910 static int vhost_new_umem_range(struct vhost_umem *umem, 911 u64 start, u64 size, u64 end, 912 u64 userspace_addr, int perm) 913 { 914 struct vhost_umem_node *tmp, *node; 915 916 if (!size) 917 return -EFAULT; 918 919 node = kmalloc(sizeof(*node), GFP_ATOMIC); 920 if (!node) 921 return -ENOMEM; 922 923 if (umem->numem == max_iotlb_entries) { 924 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 925 vhost_umem_free(umem, tmp); 926 } 927 928 node->start = start; 929 node->size = size; 930 node->last = end; 931 node->userspace_addr = userspace_addr; 932 node->perm = perm; 933 INIT_LIST_HEAD(&node->link); 934 list_add_tail(&node->link, &umem->umem_list); 935 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 936 umem->numem++; 937 938 return 0; 939 } 940 941 static void vhost_del_umem_range(struct vhost_umem *umem, 942 u64 start, u64 end) 943 { 944 struct vhost_umem_node *node; 945 946 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 947 start, end))) 948 vhost_umem_free(umem, node); 949 } 950 951 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 952 struct vhost_iotlb_msg *msg) 953 { 954 struct vhost_msg_node *node, *n; 955 956 spin_lock(&d->iotlb_lock); 957 958 list_for_each_entry_safe(node, n, &d->pending_list, node) { 959 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 960 if (msg->iova <= vq_msg->iova && 961 msg->iova + msg->size - 1 >= vq_msg->iova && 962 vq_msg->type == VHOST_IOTLB_MISS) { 963 vhost_poll_queue(&node->vq->poll); 964 list_del(&node->node); 965 kfree(node); 966 } 967 } 968 969 spin_unlock(&d->iotlb_lock); 970 } 971 972 static bool umem_access_ok(u64 uaddr, u64 size, int access) 973 { 974 unsigned long a = uaddr; 975 976 /* Make sure 64 bit math will not overflow. */ 977 if (vhost_overflow(uaddr, size)) 978 return false; 979 980 if ((access & VHOST_ACCESS_RO) && 981 !access_ok((void __user *)a, size)) 982 return false; 983 if ((access & VHOST_ACCESS_WO) && 984 !access_ok((void __user *)a, size)) 985 return false; 986 return true; 987 } 988 989 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 990 struct vhost_iotlb_msg *msg) 991 { 992 int ret = 0; 993 994 mutex_lock(&dev->mutex); 995 vhost_dev_lock_vqs(dev); 996 switch (msg->type) { 997 case VHOST_IOTLB_UPDATE: 998 if (!dev->iotlb) { 999 ret = -EFAULT; 1000 break; 1001 } 1002 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1003 ret = -EFAULT; 1004 break; 1005 } 1006 vhost_vq_meta_reset(dev); 1007 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1008 msg->iova + msg->size - 1, 1009 msg->uaddr, msg->perm)) { 1010 ret = -ENOMEM; 1011 break; 1012 } 1013 vhost_iotlb_notify_vq(dev, msg); 1014 break; 1015 case VHOST_IOTLB_INVALIDATE: 1016 if (!dev->iotlb) { 1017 ret = -EFAULT; 1018 break; 1019 } 1020 vhost_vq_meta_reset(dev); 1021 vhost_del_umem_range(dev->iotlb, msg->iova, 1022 msg->iova + msg->size - 1); 1023 break; 1024 default: 1025 ret = -EINVAL; 1026 break; 1027 } 1028 1029 vhost_dev_unlock_vqs(dev); 1030 mutex_unlock(&dev->mutex); 1031 1032 return ret; 1033 } 1034 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1035 struct iov_iter *from) 1036 { 1037 struct vhost_iotlb_msg msg; 1038 size_t offset; 1039 int type, ret; 1040 1041 ret = copy_from_iter(&type, sizeof(type), from); 1042 if (ret != sizeof(type)) { 1043 ret = -EINVAL; 1044 goto done; 1045 } 1046 1047 switch (type) { 1048 case VHOST_IOTLB_MSG: 1049 /* There maybe a hole after type for V1 message type, 1050 * so skip it here. 1051 */ 1052 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1053 break; 1054 case VHOST_IOTLB_MSG_V2: 1055 offset = sizeof(__u32); 1056 break; 1057 default: 1058 ret = -EINVAL; 1059 goto done; 1060 } 1061 1062 iov_iter_advance(from, offset); 1063 ret = copy_from_iter(&msg, sizeof(msg), from); 1064 if (ret != sizeof(msg)) { 1065 ret = -EINVAL; 1066 goto done; 1067 } 1068 if (vhost_process_iotlb_msg(dev, &msg)) { 1069 ret = -EFAULT; 1070 goto done; 1071 } 1072 1073 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1074 sizeof(struct vhost_msg_v2); 1075 done: 1076 return ret; 1077 } 1078 EXPORT_SYMBOL(vhost_chr_write_iter); 1079 1080 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1081 poll_table *wait) 1082 { 1083 __poll_t mask = 0; 1084 1085 poll_wait(file, &dev->wait, wait); 1086 1087 if (!list_empty(&dev->read_list)) 1088 mask |= EPOLLIN | EPOLLRDNORM; 1089 1090 return mask; 1091 } 1092 EXPORT_SYMBOL(vhost_chr_poll); 1093 1094 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1095 int noblock) 1096 { 1097 DEFINE_WAIT(wait); 1098 struct vhost_msg_node *node; 1099 ssize_t ret = 0; 1100 unsigned size = sizeof(struct vhost_msg); 1101 1102 if (iov_iter_count(to) < size) 1103 return 0; 1104 1105 while (1) { 1106 if (!noblock) 1107 prepare_to_wait(&dev->wait, &wait, 1108 TASK_INTERRUPTIBLE); 1109 1110 node = vhost_dequeue_msg(dev, &dev->read_list); 1111 if (node) 1112 break; 1113 if (noblock) { 1114 ret = -EAGAIN; 1115 break; 1116 } 1117 if (signal_pending(current)) { 1118 ret = -ERESTARTSYS; 1119 break; 1120 } 1121 if (!dev->iotlb) { 1122 ret = -EBADFD; 1123 break; 1124 } 1125 1126 schedule(); 1127 } 1128 1129 if (!noblock) 1130 finish_wait(&dev->wait, &wait); 1131 1132 if (node) { 1133 struct vhost_iotlb_msg *msg; 1134 void *start = &node->msg; 1135 1136 switch (node->msg.type) { 1137 case VHOST_IOTLB_MSG: 1138 size = sizeof(node->msg); 1139 msg = &node->msg.iotlb; 1140 break; 1141 case VHOST_IOTLB_MSG_V2: 1142 size = sizeof(node->msg_v2); 1143 msg = &node->msg_v2.iotlb; 1144 break; 1145 default: 1146 BUG(); 1147 break; 1148 } 1149 1150 ret = copy_to_iter(start, size, to); 1151 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1152 kfree(node); 1153 return ret; 1154 } 1155 vhost_enqueue_msg(dev, &dev->pending_list, node); 1156 } 1157 1158 return ret; 1159 } 1160 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1161 1162 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1163 { 1164 struct vhost_dev *dev = vq->dev; 1165 struct vhost_msg_node *node; 1166 struct vhost_iotlb_msg *msg; 1167 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1168 1169 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1170 if (!node) 1171 return -ENOMEM; 1172 1173 if (v2) { 1174 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1175 msg = &node->msg_v2.iotlb; 1176 } else { 1177 msg = &node->msg.iotlb; 1178 } 1179 1180 msg->type = VHOST_IOTLB_MISS; 1181 msg->iova = iova; 1182 msg->perm = access; 1183 1184 vhost_enqueue_msg(dev, &dev->read_list, node); 1185 1186 return 0; 1187 } 1188 1189 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1190 struct vring_desc __user *desc, 1191 struct vring_avail __user *avail, 1192 struct vring_used __user *used) 1193 1194 { 1195 size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1196 1197 return access_ok(desc, num * sizeof *desc) && 1198 access_ok(avail, 1199 sizeof *avail + num * sizeof *avail->ring + s) && 1200 access_ok(used, 1201 sizeof *used + num * sizeof *used->ring + s); 1202 } 1203 1204 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1205 const struct vhost_umem_node *node, 1206 int type) 1207 { 1208 int access = (type == VHOST_ADDR_USED) ? 1209 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1210 1211 if (likely(node->perm & access)) 1212 vq->meta_iotlb[type] = node; 1213 } 1214 1215 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1216 int access, u64 addr, u64 len, int type) 1217 { 1218 const struct vhost_umem_node *node; 1219 struct vhost_umem *umem = vq->iotlb; 1220 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1221 1222 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1223 return true; 1224 1225 while (len > s) { 1226 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1227 addr, 1228 last); 1229 if (node == NULL || node->start > addr) { 1230 vhost_iotlb_miss(vq, addr, access); 1231 return false; 1232 } else if (!(node->perm & access)) { 1233 /* Report the possible access violation by 1234 * request another translation from userspace. 1235 */ 1236 return false; 1237 } 1238 1239 size = node->size - addr + node->start; 1240 1241 if (orig_addr == addr && size >= len) 1242 vhost_vq_meta_update(vq, node, type); 1243 1244 s += size; 1245 addr += size; 1246 } 1247 1248 return true; 1249 } 1250 1251 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1252 { 1253 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1254 unsigned int num = vq->num; 1255 1256 if (!vq->iotlb) 1257 return 1; 1258 1259 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1260 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1261 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1262 sizeof *vq->avail + 1263 num * sizeof(*vq->avail->ring) + s, 1264 VHOST_ADDR_AVAIL) && 1265 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1266 sizeof *vq->used + 1267 num * sizeof(*vq->used->ring) + s, 1268 VHOST_ADDR_USED); 1269 } 1270 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1271 1272 /* Can we log writes? */ 1273 /* Caller should have device mutex but not vq mutex */ 1274 bool vhost_log_access_ok(struct vhost_dev *dev) 1275 { 1276 return memory_access_ok(dev, dev->umem, 1); 1277 } 1278 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1279 1280 /* Verify access for write logging. */ 1281 /* Caller should have vq mutex and device mutex */ 1282 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1283 void __user *log_base) 1284 { 1285 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1286 1287 return vq_memory_access_ok(log_base, vq->umem, 1288 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1289 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1290 sizeof *vq->used + 1291 vq->num * sizeof *vq->used->ring + s)); 1292 } 1293 1294 /* Can we start vq? */ 1295 /* Caller should have vq mutex and device mutex */ 1296 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1297 { 1298 if (!vq_log_access_ok(vq, vq->log_base)) 1299 return false; 1300 1301 /* Access validation occurs at prefetch time with IOTLB */ 1302 if (vq->iotlb) 1303 return true; 1304 1305 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1306 } 1307 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1308 1309 static struct vhost_umem *vhost_umem_alloc(void) 1310 { 1311 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1312 1313 if (!umem) 1314 return NULL; 1315 1316 umem->umem_tree = RB_ROOT_CACHED; 1317 umem->numem = 0; 1318 INIT_LIST_HEAD(&umem->umem_list); 1319 1320 return umem; 1321 } 1322 1323 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1324 { 1325 struct vhost_memory mem, *newmem; 1326 struct vhost_memory_region *region; 1327 struct vhost_umem *newumem, *oldumem; 1328 unsigned long size = offsetof(struct vhost_memory, regions); 1329 int i; 1330 1331 if (copy_from_user(&mem, m, size)) 1332 return -EFAULT; 1333 if (mem.padding) 1334 return -EOPNOTSUPP; 1335 if (mem.nregions > max_mem_regions) 1336 return -E2BIG; 1337 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1338 GFP_KERNEL); 1339 if (!newmem) 1340 return -ENOMEM; 1341 1342 memcpy(newmem, &mem, size); 1343 if (copy_from_user(newmem->regions, m->regions, 1344 mem.nregions * sizeof *m->regions)) { 1345 kvfree(newmem); 1346 return -EFAULT; 1347 } 1348 1349 newumem = vhost_umem_alloc(); 1350 if (!newumem) { 1351 kvfree(newmem); 1352 return -ENOMEM; 1353 } 1354 1355 for (region = newmem->regions; 1356 region < newmem->regions + mem.nregions; 1357 region++) { 1358 if (vhost_new_umem_range(newumem, 1359 region->guest_phys_addr, 1360 region->memory_size, 1361 region->guest_phys_addr + 1362 region->memory_size - 1, 1363 region->userspace_addr, 1364 VHOST_ACCESS_RW)) 1365 goto err; 1366 } 1367 1368 if (!memory_access_ok(d, newumem, 0)) 1369 goto err; 1370 1371 oldumem = d->umem; 1372 d->umem = newumem; 1373 1374 /* All memory accesses are done under some VQ mutex. */ 1375 for (i = 0; i < d->nvqs; ++i) { 1376 mutex_lock(&d->vqs[i]->mutex); 1377 d->vqs[i]->umem = newumem; 1378 mutex_unlock(&d->vqs[i]->mutex); 1379 } 1380 1381 kvfree(newmem); 1382 vhost_umem_clean(oldumem); 1383 return 0; 1384 1385 err: 1386 vhost_umem_clean(newumem); 1387 kvfree(newmem); 1388 return -EFAULT; 1389 } 1390 1391 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1392 { 1393 struct file *eventfp, *filep = NULL; 1394 bool pollstart = false, pollstop = false; 1395 struct eventfd_ctx *ctx = NULL; 1396 u32 __user *idxp = argp; 1397 struct vhost_virtqueue *vq; 1398 struct vhost_vring_state s; 1399 struct vhost_vring_file f; 1400 struct vhost_vring_addr a; 1401 u32 idx; 1402 long r; 1403 1404 r = get_user(idx, idxp); 1405 if (r < 0) 1406 return r; 1407 if (idx >= d->nvqs) 1408 return -ENOBUFS; 1409 1410 idx = array_index_nospec(idx, d->nvqs); 1411 vq = d->vqs[idx]; 1412 1413 mutex_lock(&vq->mutex); 1414 1415 switch (ioctl) { 1416 case VHOST_SET_VRING_NUM: 1417 /* Resizing ring with an active backend? 1418 * You don't want to do that. */ 1419 if (vq->private_data) { 1420 r = -EBUSY; 1421 break; 1422 } 1423 if (copy_from_user(&s, argp, sizeof s)) { 1424 r = -EFAULT; 1425 break; 1426 } 1427 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1428 r = -EINVAL; 1429 break; 1430 } 1431 vq->num = s.num; 1432 break; 1433 case VHOST_SET_VRING_BASE: 1434 /* Moving base with an active backend? 1435 * You don't want to do that. */ 1436 if (vq->private_data) { 1437 r = -EBUSY; 1438 break; 1439 } 1440 if (copy_from_user(&s, argp, sizeof s)) { 1441 r = -EFAULT; 1442 break; 1443 } 1444 if (s.num > 0xffff) { 1445 r = -EINVAL; 1446 break; 1447 } 1448 vq->last_avail_idx = s.num; 1449 /* Forget the cached index value. */ 1450 vq->avail_idx = vq->last_avail_idx; 1451 break; 1452 case VHOST_GET_VRING_BASE: 1453 s.index = idx; 1454 s.num = vq->last_avail_idx; 1455 if (copy_to_user(argp, &s, sizeof s)) 1456 r = -EFAULT; 1457 break; 1458 case VHOST_SET_VRING_ADDR: 1459 if (copy_from_user(&a, argp, sizeof a)) { 1460 r = -EFAULT; 1461 break; 1462 } 1463 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1464 r = -EOPNOTSUPP; 1465 break; 1466 } 1467 /* For 32bit, verify that the top 32bits of the user 1468 data are set to zero. */ 1469 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1470 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1471 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1472 r = -EFAULT; 1473 break; 1474 } 1475 1476 /* Make sure it's safe to cast pointers to vring types. */ 1477 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1478 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1479 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1480 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1481 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1482 r = -EINVAL; 1483 break; 1484 } 1485 1486 /* We only verify access here if backend is configured. 1487 * If it is not, we don't as size might not have been setup. 1488 * We will verify when backend is configured. */ 1489 if (vq->private_data) { 1490 if (!vq_access_ok(vq, vq->num, 1491 (void __user *)(unsigned long)a.desc_user_addr, 1492 (void __user *)(unsigned long)a.avail_user_addr, 1493 (void __user *)(unsigned long)a.used_user_addr)) { 1494 r = -EINVAL; 1495 break; 1496 } 1497 1498 /* Also validate log access for used ring if enabled. */ 1499 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1500 !log_access_ok(vq->log_base, a.log_guest_addr, 1501 sizeof *vq->used + 1502 vq->num * sizeof *vq->used->ring)) { 1503 r = -EINVAL; 1504 break; 1505 } 1506 } 1507 1508 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1509 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1510 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1511 vq->log_addr = a.log_guest_addr; 1512 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1513 break; 1514 case VHOST_SET_VRING_KICK: 1515 if (copy_from_user(&f, argp, sizeof f)) { 1516 r = -EFAULT; 1517 break; 1518 } 1519 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1520 if (IS_ERR(eventfp)) { 1521 r = PTR_ERR(eventfp); 1522 break; 1523 } 1524 if (eventfp != vq->kick) { 1525 pollstop = (filep = vq->kick) != NULL; 1526 pollstart = (vq->kick = eventfp) != NULL; 1527 } else 1528 filep = eventfp; 1529 break; 1530 case VHOST_SET_VRING_CALL: 1531 if (copy_from_user(&f, argp, sizeof f)) { 1532 r = -EFAULT; 1533 break; 1534 } 1535 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1536 if (IS_ERR(ctx)) { 1537 r = PTR_ERR(ctx); 1538 break; 1539 } 1540 swap(ctx, vq->call_ctx); 1541 break; 1542 case VHOST_SET_VRING_ERR: 1543 if (copy_from_user(&f, argp, sizeof f)) { 1544 r = -EFAULT; 1545 break; 1546 } 1547 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1548 if (IS_ERR(ctx)) { 1549 r = PTR_ERR(ctx); 1550 break; 1551 } 1552 swap(ctx, vq->error_ctx); 1553 break; 1554 case VHOST_SET_VRING_ENDIAN: 1555 r = vhost_set_vring_endian(vq, argp); 1556 break; 1557 case VHOST_GET_VRING_ENDIAN: 1558 r = vhost_get_vring_endian(vq, idx, argp); 1559 break; 1560 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1561 if (copy_from_user(&s, argp, sizeof(s))) { 1562 r = -EFAULT; 1563 break; 1564 } 1565 vq->busyloop_timeout = s.num; 1566 break; 1567 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1568 s.index = idx; 1569 s.num = vq->busyloop_timeout; 1570 if (copy_to_user(argp, &s, sizeof(s))) 1571 r = -EFAULT; 1572 break; 1573 default: 1574 r = -ENOIOCTLCMD; 1575 } 1576 1577 if (pollstop && vq->handle_kick) 1578 vhost_poll_stop(&vq->poll); 1579 1580 if (!IS_ERR_OR_NULL(ctx)) 1581 eventfd_ctx_put(ctx); 1582 if (filep) 1583 fput(filep); 1584 1585 if (pollstart && vq->handle_kick) 1586 r = vhost_poll_start(&vq->poll, vq->kick); 1587 1588 mutex_unlock(&vq->mutex); 1589 1590 if (pollstop && vq->handle_kick) 1591 vhost_poll_flush(&vq->poll); 1592 return r; 1593 } 1594 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1595 1596 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1597 { 1598 struct vhost_umem *niotlb, *oiotlb; 1599 int i; 1600 1601 niotlb = vhost_umem_alloc(); 1602 if (!niotlb) 1603 return -ENOMEM; 1604 1605 oiotlb = d->iotlb; 1606 d->iotlb = niotlb; 1607 1608 for (i = 0; i < d->nvqs; ++i) { 1609 struct vhost_virtqueue *vq = d->vqs[i]; 1610 1611 mutex_lock(&vq->mutex); 1612 vq->iotlb = niotlb; 1613 __vhost_vq_meta_reset(vq); 1614 mutex_unlock(&vq->mutex); 1615 } 1616 1617 vhost_umem_clean(oiotlb); 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1622 1623 /* Caller must have device mutex */ 1624 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1625 { 1626 struct eventfd_ctx *ctx; 1627 u64 p; 1628 long r; 1629 int i, fd; 1630 1631 /* If you are not the owner, you can become one */ 1632 if (ioctl == VHOST_SET_OWNER) { 1633 r = vhost_dev_set_owner(d); 1634 goto done; 1635 } 1636 1637 /* You must be the owner to do anything else */ 1638 r = vhost_dev_check_owner(d); 1639 if (r) 1640 goto done; 1641 1642 switch (ioctl) { 1643 case VHOST_SET_MEM_TABLE: 1644 r = vhost_set_memory(d, argp); 1645 break; 1646 case VHOST_SET_LOG_BASE: 1647 if (copy_from_user(&p, argp, sizeof p)) { 1648 r = -EFAULT; 1649 break; 1650 } 1651 if ((u64)(unsigned long)p != p) { 1652 r = -EFAULT; 1653 break; 1654 } 1655 for (i = 0; i < d->nvqs; ++i) { 1656 struct vhost_virtqueue *vq; 1657 void __user *base = (void __user *)(unsigned long)p; 1658 vq = d->vqs[i]; 1659 mutex_lock(&vq->mutex); 1660 /* If ring is inactive, will check when it's enabled. */ 1661 if (vq->private_data && !vq_log_access_ok(vq, base)) 1662 r = -EFAULT; 1663 else 1664 vq->log_base = base; 1665 mutex_unlock(&vq->mutex); 1666 } 1667 break; 1668 case VHOST_SET_LOG_FD: 1669 r = get_user(fd, (int __user *)argp); 1670 if (r < 0) 1671 break; 1672 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1673 if (IS_ERR(ctx)) { 1674 r = PTR_ERR(ctx); 1675 break; 1676 } 1677 swap(ctx, d->log_ctx); 1678 for (i = 0; i < d->nvqs; ++i) { 1679 mutex_lock(&d->vqs[i]->mutex); 1680 d->vqs[i]->log_ctx = d->log_ctx; 1681 mutex_unlock(&d->vqs[i]->mutex); 1682 } 1683 if (ctx) 1684 eventfd_ctx_put(ctx); 1685 break; 1686 default: 1687 r = -ENOIOCTLCMD; 1688 break; 1689 } 1690 done: 1691 return r; 1692 } 1693 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1694 1695 /* TODO: This is really inefficient. We need something like get_user() 1696 * (instruction directly accesses the data, with an exception table entry 1697 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1698 */ 1699 static int set_bit_to_user(int nr, void __user *addr) 1700 { 1701 unsigned long log = (unsigned long)addr; 1702 struct page *page; 1703 void *base; 1704 int bit = nr + (log % PAGE_SIZE) * 8; 1705 int r; 1706 1707 r = get_user_pages_fast(log, 1, FOLL_WRITE, &page); 1708 if (r < 0) 1709 return r; 1710 BUG_ON(r != 1); 1711 base = kmap_atomic(page); 1712 set_bit(bit, base); 1713 kunmap_atomic(base); 1714 set_page_dirty_lock(page); 1715 put_page(page); 1716 return 0; 1717 } 1718 1719 static int log_write(void __user *log_base, 1720 u64 write_address, u64 write_length) 1721 { 1722 u64 write_page = write_address / VHOST_PAGE_SIZE; 1723 int r; 1724 1725 if (!write_length) 1726 return 0; 1727 write_length += write_address % VHOST_PAGE_SIZE; 1728 for (;;) { 1729 u64 base = (u64)(unsigned long)log_base; 1730 u64 log = base + write_page / 8; 1731 int bit = write_page % 8; 1732 if ((u64)(unsigned long)log != log) 1733 return -EFAULT; 1734 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1735 if (r < 0) 1736 return r; 1737 if (write_length <= VHOST_PAGE_SIZE) 1738 break; 1739 write_length -= VHOST_PAGE_SIZE; 1740 write_page += 1; 1741 } 1742 return r; 1743 } 1744 1745 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 1746 { 1747 struct vhost_umem *umem = vq->umem; 1748 struct vhost_umem_node *u; 1749 u64 start, end, l, min; 1750 int r; 1751 bool hit = false; 1752 1753 while (len) { 1754 min = len; 1755 /* More than one GPAs can be mapped into a single HVA. So 1756 * iterate all possible umems here to be safe. 1757 */ 1758 list_for_each_entry(u, &umem->umem_list, link) { 1759 if (u->userspace_addr > hva - 1 + len || 1760 u->userspace_addr - 1 + u->size < hva) 1761 continue; 1762 start = max(u->userspace_addr, hva); 1763 end = min(u->userspace_addr - 1 + u->size, 1764 hva - 1 + len); 1765 l = end - start + 1; 1766 r = log_write(vq->log_base, 1767 u->start + start - u->userspace_addr, 1768 l); 1769 if (r < 0) 1770 return r; 1771 hit = true; 1772 min = min(l, min); 1773 } 1774 1775 if (!hit) 1776 return -EFAULT; 1777 1778 len -= min; 1779 hva += min; 1780 } 1781 1782 return 0; 1783 } 1784 1785 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 1786 { 1787 struct iovec iov[64]; 1788 int i, ret; 1789 1790 if (!vq->iotlb) 1791 return log_write(vq->log_base, vq->log_addr + used_offset, len); 1792 1793 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 1794 len, iov, 64, VHOST_ACCESS_WO); 1795 if (ret < 0) 1796 return ret; 1797 1798 for (i = 0; i < ret; i++) { 1799 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1800 iov[i].iov_len); 1801 if (ret) 1802 return ret; 1803 } 1804 1805 return 0; 1806 } 1807 1808 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1809 unsigned int log_num, u64 len, struct iovec *iov, int count) 1810 { 1811 int i, r; 1812 1813 /* Make sure data written is seen before log. */ 1814 smp_wmb(); 1815 1816 if (vq->iotlb) { 1817 for (i = 0; i < count; i++) { 1818 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 1819 iov[i].iov_len); 1820 if (r < 0) 1821 return r; 1822 } 1823 return 0; 1824 } 1825 1826 for (i = 0; i < log_num; ++i) { 1827 u64 l = min(log[i].len, len); 1828 r = log_write(vq->log_base, log[i].addr, l); 1829 if (r < 0) 1830 return r; 1831 len -= l; 1832 if (!len) { 1833 if (vq->log_ctx) 1834 eventfd_signal(vq->log_ctx, 1); 1835 return 0; 1836 } 1837 } 1838 /* Length written exceeds what we have stored. This is a bug. */ 1839 BUG(); 1840 return 0; 1841 } 1842 EXPORT_SYMBOL_GPL(vhost_log_write); 1843 1844 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1845 { 1846 void __user *used; 1847 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1848 &vq->used->flags) < 0) 1849 return -EFAULT; 1850 if (unlikely(vq->log_used)) { 1851 /* Make sure the flag is seen before log. */ 1852 smp_wmb(); 1853 /* Log used flag write. */ 1854 used = &vq->used->flags; 1855 log_used(vq, (used - (void __user *)vq->used), 1856 sizeof vq->used->flags); 1857 if (vq->log_ctx) 1858 eventfd_signal(vq->log_ctx, 1); 1859 } 1860 return 0; 1861 } 1862 1863 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1864 { 1865 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1866 vhost_avail_event(vq))) 1867 return -EFAULT; 1868 if (unlikely(vq->log_used)) { 1869 void __user *used; 1870 /* Make sure the event is seen before log. */ 1871 smp_wmb(); 1872 /* Log avail event write */ 1873 used = vhost_avail_event(vq); 1874 log_used(vq, (used - (void __user *)vq->used), 1875 sizeof *vhost_avail_event(vq)); 1876 if (vq->log_ctx) 1877 eventfd_signal(vq->log_ctx, 1); 1878 } 1879 return 0; 1880 } 1881 1882 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1883 { 1884 __virtio16 last_used_idx; 1885 int r; 1886 bool is_le = vq->is_le; 1887 1888 if (!vq->private_data) 1889 return 0; 1890 1891 vhost_init_is_le(vq); 1892 1893 r = vhost_update_used_flags(vq); 1894 if (r) 1895 goto err; 1896 vq->signalled_used_valid = false; 1897 if (!vq->iotlb && 1898 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 1899 r = -EFAULT; 1900 goto err; 1901 } 1902 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1903 if (r) { 1904 vq_err(vq, "Can't access used idx at %p\n", 1905 &vq->used->idx); 1906 goto err; 1907 } 1908 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1909 return 0; 1910 1911 err: 1912 vq->is_le = is_le; 1913 return r; 1914 } 1915 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1916 1917 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1918 struct iovec iov[], int iov_size, int access) 1919 { 1920 const struct vhost_umem_node *node; 1921 struct vhost_dev *dev = vq->dev; 1922 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1923 struct iovec *_iov; 1924 u64 s = 0; 1925 int ret = 0; 1926 1927 while ((u64)len > s) { 1928 u64 size; 1929 if (unlikely(ret >= iov_size)) { 1930 ret = -ENOBUFS; 1931 break; 1932 } 1933 1934 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1935 addr, addr + len - 1); 1936 if (node == NULL || node->start > addr) { 1937 if (umem != dev->iotlb) { 1938 ret = -EFAULT; 1939 break; 1940 } 1941 ret = -EAGAIN; 1942 break; 1943 } else if (!(node->perm & access)) { 1944 ret = -EPERM; 1945 break; 1946 } 1947 1948 _iov = iov + ret; 1949 size = node->size - addr + node->start; 1950 _iov->iov_len = min((u64)len - s, size); 1951 _iov->iov_base = (void __user *)(unsigned long) 1952 (node->userspace_addr + addr - node->start); 1953 s += size; 1954 addr += size; 1955 ++ret; 1956 } 1957 1958 if (ret == -EAGAIN) 1959 vhost_iotlb_miss(vq, addr, access); 1960 return ret; 1961 } 1962 1963 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1964 * function returns the next descriptor in the chain, 1965 * or -1U if we're at the end. */ 1966 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1967 { 1968 unsigned int next; 1969 1970 /* If this descriptor says it doesn't chain, we're done. */ 1971 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1972 return -1U; 1973 1974 /* Check they're not leading us off end of descriptors. */ 1975 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1976 return next; 1977 } 1978 1979 static int get_indirect(struct vhost_virtqueue *vq, 1980 struct iovec iov[], unsigned int iov_size, 1981 unsigned int *out_num, unsigned int *in_num, 1982 struct vhost_log *log, unsigned int *log_num, 1983 struct vring_desc *indirect) 1984 { 1985 struct vring_desc desc; 1986 unsigned int i = 0, count, found = 0; 1987 u32 len = vhost32_to_cpu(vq, indirect->len); 1988 struct iov_iter from; 1989 int ret, access; 1990 1991 /* Sanity check */ 1992 if (unlikely(len % sizeof desc)) { 1993 vq_err(vq, "Invalid length in indirect descriptor: " 1994 "len 0x%llx not multiple of 0x%zx\n", 1995 (unsigned long long)len, 1996 sizeof desc); 1997 return -EINVAL; 1998 } 1999 2000 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2001 UIO_MAXIOV, VHOST_ACCESS_RO); 2002 if (unlikely(ret < 0)) { 2003 if (ret != -EAGAIN) 2004 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2005 return ret; 2006 } 2007 iov_iter_init(&from, READ, vq->indirect, ret, len); 2008 2009 /* We will use the result as an address to read from, so most 2010 * architectures only need a compiler barrier here. */ 2011 read_barrier_depends(); 2012 2013 count = len / sizeof desc; 2014 /* Buffers are chained via a 16 bit next field, so 2015 * we can have at most 2^16 of these. */ 2016 if (unlikely(count > USHRT_MAX + 1)) { 2017 vq_err(vq, "Indirect buffer length too big: %d\n", 2018 indirect->len); 2019 return -E2BIG; 2020 } 2021 2022 do { 2023 unsigned iov_count = *in_num + *out_num; 2024 if (unlikely(++found > count)) { 2025 vq_err(vq, "Loop detected: last one at %u " 2026 "indirect size %u\n", 2027 i, count); 2028 return -EINVAL; 2029 } 2030 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2031 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2032 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2033 return -EINVAL; 2034 } 2035 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2036 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2037 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2038 return -EINVAL; 2039 } 2040 2041 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2042 access = VHOST_ACCESS_WO; 2043 else 2044 access = VHOST_ACCESS_RO; 2045 2046 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2047 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2048 iov_size - iov_count, access); 2049 if (unlikely(ret < 0)) { 2050 if (ret != -EAGAIN) 2051 vq_err(vq, "Translation failure %d indirect idx %d\n", 2052 ret, i); 2053 return ret; 2054 } 2055 /* If this is an input descriptor, increment that count. */ 2056 if (access == VHOST_ACCESS_WO) { 2057 *in_num += ret; 2058 if (unlikely(log)) { 2059 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2060 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2061 ++*log_num; 2062 } 2063 } else { 2064 /* If it's an output descriptor, they're all supposed 2065 * to come before any input descriptors. */ 2066 if (unlikely(*in_num)) { 2067 vq_err(vq, "Indirect descriptor " 2068 "has out after in: idx %d\n", i); 2069 return -EINVAL; 2070 } 2071 *out_num += ret; 2072 } 2073 } while ((i = next_desc(vq, &desc)) != -1); 2074 return 0; 2075 } 2076 2077 /* This looks in the virtqueue and for the first available buffer, and converts 2078 * it to an iovec for convenient access. Since descriptors consist of some 2079 * number of output then some number of input descriptors, it's actually two 2080 * iovecs, but we pack them into one and note how many of each there were. 2081 * 2082 * This function returns the descriptor number found, or vq->num (which is 2083 * never a valid descriptor number) if none was found. A negative code is 2084 * returned on error. */ 2085 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2086 struct iovec iov[], unsigned int iov_size, 2087 unsigned int *out_num, unsigned int *in_num, 2088 struct vhost_log *log, unsigned int *log_num) 2089 { 2090 struct vring_desc desc; 2091 unsigned int i, head, found = 0; 2092 u16 last_avail_idx; 2093 __virtio16 avail_idx; 2094 __virtio16 ring_head; 2095 int ret, access; 2096 2097 /* Check it isn't doing very strange things with descriptor numbers. */ 2098 last_avail_idx = vq->last_avail_idx; 2099 2100 if (vq->avail_idx == vq->last_avail_idx) { 2101 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2102 vq_err(vq, "Failed to access avail idx at %p\n", 2103 &vq->avail->idx); 2104 return -EFAULT; 2105 } 2106 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2107 2108 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2109 vq_err(vq, "Guest moved used index from %u to %u", 2110 last_avail_idx, vq->avail_idx); 2111 return -EFAULT; 2112 } 2113 2114 /* If there's nothing new since last we looked, return 2115 * invalid. 2116 */ 2117 if (vq->avail_idx == last_avail_idx) 2118 return vq->num; 2119 2120 /* Only get avail ring entries after they have been 2121 * exposed by guest. 2122 */ 2123 smp_rmb(); 2124 } 2125 2126 /* Grab the next descriptor number they're advertising, and increment 2127 * the index we've seen. */ 2128 if (unlikely(vhost_get_avail(vq, ring_head, 2129 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2130 vq_err(vq, "Failed to read head: idx %d address %p\n", 2131 last_avail_idx, 2132 &vq->avail->ring[last_avail_idx % vq->num]); 2133 return -EFAULT; 2134 } 2135 2136 head = vhost16_to_cpu(vq, ring_head); 2137 2138 /* If their number is silly, that's an error. */ 2139 if (unlikely(head >= vq->num)) { 2140 vq_err(vq, "Guest says index %u > %u is available", 2141 head, vq->num); 2142 return -EINVAL; 2143 } 2144 2145 /* When we start there are none of either input nor output. */ 2146 *out_num = *in_num = 0; 2147 if (unlikely(log)) 2148 *log_num = 0; 2149 2150 i = head; 2151 do { 2152 unsigned iov_count = *in_num + *out_num; 2153 if (unlikely(i >= vq->num)) { 2154 vq_err(vq, "Desc index is %u > %u, head = %u", 2155 i, vq->num, head); 2156 return -EINVAL; 2157 } 2158 if (unlikely(++found > vq->num)) { 2159 vq_err(vq, "Loop detected: last one at %u " 2160 "vq size %u head %u\n", 2161 i, vq->num, head); 2162 return -EINVAL; 2163 } 2164 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2165 sizeof desc); 2166 if (unlikely(ret)) { 2167 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2168 i, vq->desc + i); 2169 return -EFAULT; 2170 } 2171 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2172 ret = get_indirect(vq, iov, iov_size, 2173 out_num, in_num, 2174 log, log_num, &desc); 2175 if (unlikely(ret < 0)) { 2176 if (ret != -EAGAIN) 2177 vq_err(vq, "Failure detected " 2178 "in indirect descriptor at idx %d\n", i); 2179 return ret; 2180 } 2181 continue; 2182 } 2183 2184 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2185 access = VHOST_ACCESS_WO; 2186 else 2187 access = VHOST_ACCESS_RO; 2188 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2189 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2190 iov_size - iov_count, access); 2191 if (unlikely(ret < 0)) { 2192 if (ret != -EAGAIN) 2193 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2194 ret, i); 2195 return ret; 2196 } 2197 if (access == VHOST_ACCESS_WO) { 2198 /* If this is an input descriptor, 2199 * increment that count. */ 2200 *in_num += ret; 2201 if (unlikely(log)) { 2202 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2203 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2204 ++*log_num; 2205 } 2206 } else { 2207 /* If it's an output descriptor, they're all supposed 2208 * to come before any input descriptors. */ 2209 if (unlikely(*in_num)) { 2210 vq_err(vq, "Descriptor has out after in: " 2211 "idx %d\n", i); 2212 return -EINVAL; 2213 } 2214 *out_num += ret; 2215 } 2216 } while ((i = next_desc(vq, &desc)) != -1); 2217 2218 /* On success, increment avail index. */ 2219 vq->last_avail_idx++; 2220 2221 /* Assume notifications from guest are disabled at this point, 2222 * if they aren't we would need to update avail_event index. */ 2223 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2224 return head; 2225 } 2226 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2227 2228 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2229 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2230 { 2231 vq->last_avail_idx -= n; 2232 } 2233 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2234 2235 /* After we've used one of their buffers, we tell them about it. We'll then 2236 * want to notify the guest, using eventfd. */ 2237 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2238 { 2239 struct vring_used_elem heads = { 2240 cpu_to_vhost32(vq, head), 2241 cpu_to_vhost32(vq, len) 2242 }; 2243 2244 return vhost_add_used_n(vq, &heads, 1); 2245 } 2246 EXPORT_SYMBOL_GPL(vhost_add_used); 2247 2248 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2249 struct vring_used_elem *heads, 2250 unsigned count) 2251 { 2252 struct vring_used_elem __user *used; 2253 u16 old, new; 2254 int start; 2255 2256 start = vq->last_used_idx & (vq->num - 1); 2257 used = vq->used->ring + start; 2258 if (count == 1) { 2259 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2260 vq_err(vq, "Failed to write used id"); 2261 return -EFAULT; 2262 } 2263 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2264 vq_err(vq, "Failed to write used len"); 2265 return -EFAULT; 2266 } 2267 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2268 vq_err(vq, "Failed to write used"); 2269 return -EFAULT; 2270 } 2271 if (unlikely(vq->log_used)) { 2272 /* Make sure data is seen before log. */ 2273 smp_wmb(); 2274 /* Log used ring entry write. */ 2275 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2276 count * sizeof *used); 2277 } 2278 old = vq->last_used_idx; 2279 new = (vq->last_used_idx += count); 2280 /* If the driver never bothers to signal in a very long while, 2281 * used index might wrap around. If that happens, invalidate 2282 * signalled_used index we stored. TODO: make sure driver 2283 * signals at least once in 2^16 and remove this. */ 2284 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2285 vq->signalled_used_valid = false; 2286 return 0; 2287 } 2288 2289 /* After we've used one of their buffers, we tell them about it. We'll then 2290 * want to notify the guest, using eventfd. */ 2291 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2292 unsigned count) 2293 { 2294 int start, n, r; 2295 2296 start = vq->last_used_idx & (vq->num - 1); 2297 n = vq->num - start; 2298 if (n < count) { 2299 r = __vhost_add_used_n(vq, heads, n); 2300 if (r < 0) 2301 return r; 2302 heads += n; 2303 count -= n; 2304 } 2305 r = __vhost_add_used_n(vq, heads, count); 2306 2307 /* Make sure buffer is written before we update index. */ 2308 smp_wmb(); 2309 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2310 &vq->used->idx)) { 2311 vq_err(vq, "Failed to increment used idx"); 2312 return -EFAULT; 2313 } 2314 if (unlikely(vq->log_used)) { 2315 /* Make sure used idx is seen before log. */ 2316 smp_wmb(); 2317 /* Log used index update. */ 2318 log_used(vq, offsetof(struct vring_used, idx), 2319 sizeof vq->used->idx); 2320 if (vq->log_ctx) 2321 eventfd_signal(vq->log_ctx, 1); 2322 } 2323 return r; 2324 } 2325 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2326 2327 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2328 { 2329 __u16 old, new; 2330 __virtio16 event; 2331 bool v; 2332 /* Flush out used index updates. This is paired 2333 * with the barrier that the Guest executes when enabling 2334 * interrupts. */ 2335 smp_mb(); 2336 2337 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2338 unlikely(vq->avail_idx == vq->last_avail_idx)) 2339 return true; 2340 2341 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2342 __virtio16 flags; 2343 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2344 vq_err(vq, "Failed to get flags"); 2345 return true; 2346 } 2347 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2348 } 2349 old = vq->signalled_used; 2350 v = vq->signalled_used_valid; 2351 new = vq->signalled_used = vq->last_used_idx; 2352 vq->signalled_used_valid = true; 2353 2354 if (unlikely(!v)) 2355 return true; 2356 2357 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2358 vq_err(vq, "Failed to get used event idx"); 2359 return true; 2360 } 2361 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2362 } 2363 2364 /* This actually signals the guest, using eventfd. */ 2365 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2366 { 2367 /* Signal the Guest tell them we used something up. */ 2368 if (vq->call_ctx && vhost_notify(dev, vq)) 2369 eventfd_signal(vq->call_ctx, 1); 2370 } 2371 EXPORT_SYMBOL_GPL(vhost_signal); 2372 2373 /* And here's the combo meal deal. Supersize me! */ 2374 void vhost_add_used_and_signal(struct vhost_dev *dev, 2375 struct vhost_virtqueue *vq, 2376 unsigned int head, int len) 2377 { 2378 vhost_add_used(vq, head, len); 2379 vhost_signal(dev, vq); 2380 } 2381 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2382 2383 /* multi-buffer version of vhost_add_used_and_signal */ 2384 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2385 struct vhost_virtqueue *vq, 2386 struct vring_used_elem *heads, unsigned count) 2387 { 2388 vhost_add_used_n(vq, heads, count); 2389 vhost_signal(dev, vq); 2390 } 2391 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2392 2393 /* return true if we're sure that avaiable ring is empty */ 2394 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2395 { 2396 __virtio16 avail_idx; 2397 int r; 2398 2399 if (vq->avail_idx != vq->last_avail_idx) 2400 return false; 2401 2402 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2403 if (unlikely(r)) 2404 return false; 2405 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2406 2407 return vq->avail_idx == vq->last_avail_idx; 2408 } 2409 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2410 2411 /* OK, now we need to know about added descriptors. */ 2412 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2413 { 2414 __virtio16 avail_idx; 2415 int r; 2416 2417 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2418 return false; 2419 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2420 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2421 r = vhost_update_used_flags(vq); 2422 if (r) { 2423 vq_err(vq, "Failed to enable notification at %p: %d\n", 2424 &vq->used->flags, r); 2425 return false; 2426 } 2427 } else { 2428 r = vhost_update_avail_event(vq, vq->avail_idx); 2429 if (r) { 2430 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2431 vhost_avail_event(vq), r); 2432 return false; 2433 } 2434 } 2435 /* They could have slipped one in as we were doing that: make 2436 * sure it's written, then check again. */ 2437 smp_mb(); 2438 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2439 if (r) { 2440 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2441 &vq->avail->idx, r); 2442 return false; 2443 } 2444 2445 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2446 } 2447 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2448 2449 /* We don't need to be notified again. */ 2450 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2451 { 2452 int r; 2453 2454 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2455 return; 2456 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2457 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2458 r = vhost_update_used_flags(vq); 2459 if (r) 2460 vq_err(vq, "Failed to enable notification at %p: %d\n", 2461 &vq->used->flags, r); 2462 } 2463 } 2464 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2465 2466 /* Create a new message. */ 2467 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2468 { 2469 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2470 if (!node) 2471 return NULL; 2472 2473 /* Make sure all padding within the structure is initialized. */ 2474 memset(&node->msg, 0, sizeof node->msg); 2475 node->vq = vq; 2476 node->msg.type = type; 2477 return node; 2478 } 2479 EXPORT_SYMBOL_GPL(vhost_new_msg); 2480 2481 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2482 struct vhost_msg_node *node) 2483 { 2484 spin_lock(&dev->iotlb_lock); 2485 list_add_tail(&node->node, head); 2486 spin_unlock(&dev->iotlb_lock); 2487 2488 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2489 } 2490 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2491 2492 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2493 struct list_head *head) 2494 { 2495 struct vhost_msg_node *node = NULL; 2496 2497 spin_lock(&dev->iotlb_lock); 2498 if (!list_empty(head)) { 2499 node = list_first_entry(head, struct vhost_msg_node, 2500 node); 2501 list_del(&node->node); 2502 } 2503 spin_unlock(&dev->iotlb_lock); 2504 2505 return node; 2506 } 2507 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2508 2509 2510 static int __init vhost_init(void) 2511 { 2512 return 0; 2513 } 2514 2515 static void __exit vhost_exit(void) 2516 { 2517 } 2518 2519 module_init(vhost_init); 2520 module_exit(vhost_exit); 2521 2522 MODULE_VERSION("0.0.1"); 2523 MODULE_LICENSE("GPL v2"); 2524 MODULE_AUTHOR("Michael S. Tsirkin"); 2525 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2526