1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 53 rb, __u64, __subtree_last, 54 START, LAST, static inline, vhost_umem_interval_tree); 55 56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 58 { 59 vq->user_be = !virtio_legacy_is_little_endian(); 60 } 61 62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 63 { 64 vq->user_be = true; 65 } 66 67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 68 { 69 vq->user_be = false; 70 } 71 72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 73 { 74 struct vhost_vring_state s; 75 76 if (vq->private_data) 77 return -EBUSY; 78 79 if (copy_from_user(&s, argp, sizeof(s))) 80 return -EFAULT; 81 82 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 83 s.num != VHOST_VRING_BIG_ENDIAN) 84 return -EINVAL; 85 86 if (s.num == VHOST_VRING_BIG_ENDIAN) 87 vhost_enable_cross_endian_big(vq); 88 else 89 vhost_enable_cross_endian_little(vq); 90 91 return 0; 92 } 93 94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 95 int __user *argp) 96 { 97 struct vhost_vring_state s = { 98 .index = idx, 99 .num = vq->user_be 100 }; 101 102 if (copy_to_user(argp, &s, sizeof(s))) 103 return -EFAULT; 104 105 return 0; 106 } 107 108 static void vhost_init_is_le(struct vhost_virtqueue *vq) 109 { 110 /* Note for legacy virtio: user_be is initialized at reset time 111 * according to the host endianness. If userspace does not set an 112 * explicit endianness, the default behavior is native endian, as 113 * expected by legacy virtio. 114 */ 115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 116 } 117 #else 118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 119 { 120 } 121 122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 123 { 124 return -ENOIOCTLCMD; 125 } 126 127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 128 int __user *argp) 129 { 130 return -ENOIOCTLCMD; 131 } 132 133 static void vhost_init_is_le(struct vhost_virtqueue *vq) 134 { 135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 136 || virtio_legacy_is_little_endian(); 137 } 138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 139 140 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 141 { 142 vhost_init_is_le(vq); 143 } 144 145 struct vhost_flush_struct { 146 struct vhost_work work; 147 struct completion wait_event; 148 }; 149 150 static void vhost_flush_work(struct vhost_work *work) 151 { 152 struct vhost_flush_struct *s; 153 154 s = container_of(work, struct vhost_flush_struct, work); 155 complete(&s->wait_event); 156 } 157 158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 159 poll_table *pt) 160 { 161 struct vhost_poll *poll; 162 163 poll = container_of(pt, struct vhost_poll, table); 164 poll->wqh = wqh; 165 add_wait_queue(wqh, &poll->wait); 166 } 167 168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 169 void *key) 170 { 171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 172 173 if (!(key_to_poll(key) & poll->mask)) 174 return 0; 175 176 vhost_poll_queue(poll); 177 return 0; 178 } 179 180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 181 { 182 clear_bit(VHOST_WORK_QUEUED, &work->flags); 183 work->fn = fn; 184 } 185 EXPORT_SYMBOL_GPL(vhost_work_init); 186 187 /* Init poll structure */ 188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 189 __poll_t mask, struct vhost_dev *dev) 190 { 191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 192 init_poll_funcptr(&poll->table, vhost_poll_func); 193 poll->mask = mask; 194 poll->dev = dev; 195 poll->wqh = NULL; 196 197 vhost_work_init(&poll->work, fn); 198 } 199 EXPORT_SYMBOL_GPL(vhost_poll_init); 200 201 /* Start polling a file. We add ourselves to file's wait queue. The caller must 202 * keep a reference to a file until after vhost_poll_stop is called. */ 203 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 204 { 205 __poll_t mask; 206 int ret = 0; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = vfs_poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 214 if (mask & EPOLLERR) { 215 vhost_poll_stop(poll); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 286 { 287 int j; 288 289 for (j = 0; j < VHOST_NUM_ADDRS; j++) 290 vq->meta_iotlb[j] = NULL; 291 } 292 293 static void vhost_vq_meta_reset(struct vhost_dev *d) 294 { 295 int i; 296 297 for (i = 0; i < d->nvqs; ++i) { 298 mutex_lock(&d->vqs[i]->mutex); 299 __vhost_vq_meta_reset(d->vqs[i]); 300 mutex_unlock(&d->vqs[i]->mutex); 301 } 302 } 303 304 static void vhost_vq_reset(struct vhost_dev *dev, 305 struct vhost_virtqueue *vq) 306 { 307 vq->num = 1; 308 vq->desc = NULL; 309 vq->avail = NULL; 310 vq->used = NULL; 311 vq->last_avail_idx = 0; 312 vq->avail_idx = 0; 313 vq->last_used_idx = 0; 314 vq->signalled_used = 0; 315 vq->signalled_used_valid = false; 316 vq->used_flags = 0; 317 vq->log_used = false; 318 vq->log_addr = -1ull; 319 vq->private_data = NULL; 320 vq->acked_features = 0; 321 vq->acked_backend_features = 0; 322 vq->log_base = NULL; 323 vq->error_ctx = NULL; 324 vq->kick = NULL; 325 vq->call_ctx = NULL; 326 vq->log_ctx = NULL; 327 vhost_reset_is_le(vq); 328 vhost_disable_cross_endian(vq); 329 vq->busyloop_timeout = 0; 330 vq->umem = NULL; 331 vq->iotlb = NULL; 332 __vhost_vq_meta_reset(vq); 333 } 334 335 static int vhost_worker(void *data) 336 { 337 struct vhost_dev *dev = data; 338 struct vhost_work *work, *work_next; 339 struct llist_node *node; 340 mm_segment_t oldfs = get_fs(); 341 342 set_fs(USER_DS); 343 use_mm(dev->mm); 344 345 for (;;) { 346 /* mb paired w/ kthread_stop */ 347 set_current_state(TASK_INTERRUPTIBLE); 348 349 if (kthread_should_stop()) { 350 __set_current_state(TASK_RUNNING); 351 break; 352 } 353 354 node = llist_del_all(&dev->work_list); 355 if (!node) 356 schedule(); 357 358 node = llist_reverse_order(node); 359 /* make sure flag is seen after deletion */ 360 smp_wmb(); 361 llist_for_each_entry_safe(work, work_next, node, node) { 362 clear_bit(VHOST_WORK_QUEUED, &work->flags); 363 __set_current_state(TASK_RUNNING); 364 work->fn(work); 365 if (need_resched()) 366 schedule(); 367 } 368 } 369 unuse_mm(dev->mm); 370 set_fs(oldfs); 371 return 0; 372 } 373 374 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 375 { 376 kfree(vq->indirect); 377 vq->indirect = NULL; 378 kfree(vq->log); 379 vq->log = NULL; 380 kfree(vq->heads); 381 vq->heads = NULL; 382 } 383 384 /* Helper to allocate iovec buffers for all vqs. */ 385 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 386 { 387 struct vhost_virtqueue *vq; 388 int i; 389 390 for (i = 0; i < dev->nvqs; ++i) { 391 vq = dev->vqs[i]; 392 vq->indirect = kmalloc_array(UIO_MAXIOV, 393 sizeof(*vq->indirect), 394 GFP_KERNEL); 395 vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log), 396 GFP_KERNEL); 397 vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads), 398 GFP_KERNEL); 399 if (!vq->indirect || !vq->log || !vq->heads) 400 goto err_nomem; 401 } 402 return 0; 403 404 err_nomem: 405 for (; i >= 0; --i) 406 vhost_vq_free_iovecs(dev->vqs[i]); 407 return -ENOMEM; 408 } 409 410 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 411 { 412 int i; 413 414 for (i = 0; i < dev->nvqs; ++i) 415 vhost_vq_free_iovecs(dev->vqs[i]); 416 } 417 418 void vhost_dev_init(struct vhost_dev *dev, 419 struct vhost_virtqueue **vqs, int nvqs) 420 { 421 struct vhost_virtqueue *vq; 422 int i; 423 424 dev->vqs = vqs; 425 dev->nvqs = nvqs; 426 mutex_init(&dev->mutex); 427 dev->log_ctx = NULL; 428 dev->umem = NULL; 429 dev->iotlb = NULL; 430 dev->mm = NULL; 431 dev->worker = NULL; 432 init_llist_head(&dev->work_list); 433 init_waitqueue_head(&dev->wait); 434 INIT_LIST_HEAD(&dev->read_list); 435 INIT_LIST_HEAD(&dev->pending_list); 436 spin_lock_init(&dev->iotlb_lock); 437 438 439 for (i = 0; i < dev->nvqs; ++i) { 440 vq = dev->vqs[i]; 441 vq->log = NULL; 442 vq->indirect = NULL; 443 vq->heads = NULL; 444 vq->dev = dev; 445 mutex_init(&vq->mutex); 446 vhost_vq_reset(dev, vq); 447 if (vq->handle_kick) 448 vhost_poll_init(&vq->poll, vq->handle_kick, 449 EPOLLIN, dev); 450 } 451 } 452 EXPORT_SYMBOL_GPL(vhost_dev_init); 453 454 /* Caller should have device mutex */ 455 long vhost_dev_check_owner(struct vhost_dev *dev) 456 { 457 /* Are you the owner? If not, I don't think you mean to do that */ 458 return dev->mm == current->mm ? 0 : -EPERM; 459 } 460 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 461 462 struct vhost_attach_cgroups_struct { 463 struct vhost_work work; 464 struct task_struct *owner; 465 int ret; 466 }; 467 468 static void vhost_attach_cgroups_work(struct vhost_work *work) 469 { 470 struct vhost_attach_cgroups_struct *s; 471 472 s = container_of(work, struct vhost_attach_cgroups_struct, work); 473 s->ret = cgroup_attach_task_all(s->owner, current); 474 } 475 476 static int vhost_attach_cgroups(struct vhost_dev *dev) 477 { 478 struct vhost_attach_cgroups_struct attach; 479 480 attach.owner = current; 481 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 482 vhost_work_queue(dev, &attach.work); 483 vhost_work_flush(dev, &attach.work); 484 return attach.ret; 485 } 486 487 /* Caller should have device mutex */ 488 bool vhost_dev_has_owner(struct vhost_dev *dev) 489 { 490 return dev->mm; 491 } 492 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 493 494 /* Caller should have device mutex */ 495 long vhost_dev_set_owner(struct vhost_dev *dev) 496 { 497 struct task_struct *worker; 498 int err; 499 500 /* Is there an owner already? */ 501 if (vhost_dev_has_owner(dev)) { 502 err = -EBUSY; 503 goto err_mm; 504 } 505 506 /* No owner, become one */ 507 dev->mm = get_task_mm(current); 508 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 509 if (IS_ERR(worker)) { 510 err = PTR_ERR(worker); 511 goto err_worker; 512 } 513 514 dev->worker = worker; 515 wake_up_process(worker); /* avoid contributing to loadavg */ 516 517 err = vhost_attach_cgroups(dev); 518 if (err) 519 goto err_cgroup; 520 521 err = vhost_dev_alloc_iovecs(dev); 522 if (err) 523 goto err_cgroup; 524 525 return 0; 526 err_cgroup: 527 kthread_stop(worker); 528 dev->worker = NULL; 529 err_worker: 530 if (dev->mm) 531 mmput(dev->mm); 532 dev->mm = NULL; 533 err_mm: 534 return err; 535 } 536 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 537 538 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 539 { 540 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 541 } 542 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 543 544 /* Caller should have device mutex */ 545 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 546 { 547 int i; 548 549 vhost_dev_cleanup(dev); 550 551 /* Restore memory to default empty mapping. */ 552 INIT_LIST_HEAD(&umem->umem_list); 553 dev->umem = umem; 554 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 555 * VQs aren't running. 556 */ 557 for (i = 0; i < dev->nvqs; ++i) 558 dev->vqs[i]->umem = umem; 559 } 560 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 561 562 void vhost_dev_stop(struct vhost_dev *dev) 563 { 564 int i; 565 566 for (i = 0; i < dev->nvqs; ++i) { 567 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 568 vhost_poll_stop(&dev->vqs[i]->poll); 569 vhost_poll_flush(&dev->vqs[i]->poll); 570 } 571 } 572 } 573 EXPORT_SYMBOL_GPL(vhost_dev_stop); 574 575 static void vhost_umem_free(struct vhost_umem *umem, 576 struct vhost_umem_node *node) 577 { 578 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 579 list_del(&node->link); 580 kfree(node); 581 umem->numem--; 582 } 583 584 static void vhost_umem_clean(struct vhost_umem *umem) 585 { 586 struct vhost_umem_node *node, *tmp; 587 588 if (!umem) 589 return; 590 591 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 592 vhost_umem_free(umem, node); 593 594 kvfree(umem); 595 } 596 597 static void vhost_clear_msg(struct vhost_dev *dev) 598 { 599 struct vhost_msg_node *node, *n; 600 601 spin_lock(&dev->iotlb_lock); 602 603 list_for_each_entry_safe(node, n, &dev->read_list, node) { 604 list_del(&node->node); 605 kfree(node); 606 } 607 608 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 609 list_del(&node->node); 610 kfree(node); 611 } 612 613 spin_unlock(&dev->iotlb_lock); 614 } 615 616 void vhost_dev_cleanup(struct vhost_dev *dev) 617 { 618 int i; 619 620 for (i = 0; i < dev->nvqs; ++i) { 621 if (dev->vqs[i]->error_ctx) 622 eventfd_ctx_put(dev->vqs[i]->error_ctx); 623 if (dev->vqs[i]->kick) 624 fput(dev->vqs[i]->kick); 625 if (dev->vqs[i]->call_ctx) 626 eventfd_ctx_put(dev->vqs[i]->call_ctx); 627 vhost_vq_reset(dev, dev->vqs[i]); 628 } 629 vhost_dev_free_iovecs(dev); 630 if (dev->log_ctx) 631 eventfd_ctx_put(dev->log_ctx); 632 dev->log_ctx = NULL; 633 /* No one will access memory at this point */ 634 vhost_umem_clean(dev->umem); 635 dev->umem = NULL; 636 vhost_umem_clean(dev->iotlb); 637 dev->iotlb = NULL; 638 vhost_clear_msg(dev); 639 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 640 WARN_ON(!llist_empty(&dev->work_list)); 641 if (dev->worker) { 642 kthread_stop(dev->worker); 643 dev->worker = NULL; 644 } 645 if (dev->mm) 646 mmput(dev->mm); 647 dev->mm = NULL; 648 } 649 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 650 651 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 652 { 653 u64 a = addr / VHOST_PAGE_SIZE / 8; 654 655 /* Make sure 64 bit math will not overflow. */ 656 if (a > ULONG_MAX - (unsigned long)log_base || 657 a + (unsigned long)log_base > ULONG_MAX) 658 return false; 659 660 return access_ok(VERIFY_WRITE, log_base + a, 661 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 662 } 663 664 static bool vhost_overflow(u64 uaddr, u64 size) 665 { 666 /* Make sure 64 bit math will not overflow. */ 667 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 668 } 669 670 /* Caller should have vq mutex and device mutex. */ 671 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 672 int log_all) 673 { 674 struct vhost_umem_node *node; 675 676 if (!umem) 677 return false; 678 679 list_for_each_entry(node, &umem->umem_list, link) { 680 unsigned long a = node->userspace_addr; 681 682 if (vhost_overflow(node->userspace_addr, node->size)) 683 return false; 684 685 686 if (!access_ok(VERIFY_WRITE, (void __user *)a, 687 node->size)) 688 return false; 689 else if (log_all && !log_access_ok(log_base, 690 node->start, 691 node->size)) 692 return false; 693 } 694 return true; 695 } 696 697 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 698 u64 addr, unsigned int size, 699 int type) 700 { 701 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 702 703 if (!node) 704 return NULL; 705 706 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 707 } 708 709 /* Can we switch to this memory table? */ 710 /* Caller should have device mutex but not vq mutex */ 711 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 712 int log_all) 713 { 714 int i; 715 716 for (i = 0; i < d->nvqs; ++i) { 717 bool ok; 718 bool log; 719 720 mutex_lock(&d->vqs[i]->mutex); 721 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 722 /* If ring is inactive, will check when it's enabled. */ 723 if (d->vqs[i]->private_data) 724 ok = vq_memory_access_ok(d->vqs[i]->log_base, 725 umem, log); 726 else 727 ok = true; 728 mutex_unlock(&d->vqs[i]->mutex); 729 if (!ok) 730 return false; 731 } 732 return true; 733 } 734 735 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 736 struct iovec iov[], int iov_size, int access); 737 738 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 739 const void *from, unsigned size) 740 { 741 int ret; 742 743 if (!vq->iotlb) 744 return __copy_to_user(to, from, size); 745 else { 746 /* This function should be called after iotlb 747 * prefetch, which means we're sure that all vq 748 * could be access through iotlb. So -EAGAIN should 749 * not happen in this case. 750 */ 751 struct iov_iter t; 752 void __user *uaddr = vhost_vq_meta_fetch(vq, 753 (u64)(uintptr_t)to, size, 754 VHOST_ADDR_USED); 755 756 if (uaddr) 757 return __copy_to_user(uaddr, from, size); 758 759 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 760 ARRAY_SIZE(vq->iotlb_iov), 761 VHOST_ACCESS_WO); 762 if (ret < 0) 763 goto out; 764 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 765 ret = copy_to_iter(from, size, &t); 766 if (ret == size) 767 ret = 0; 768 } 769 out: 770 return ret; 771 } 772 773 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 774 void __user *from, unsigned size) 775 { 776 int ret; 777 778 if (!vq->iotlb) 779 return __copy_from_user(to, from, size); 780 else { 781 /* This function should be called after iotlb 782 * prefetch, which means we're sure that vq 783 * could be access through iotlb. So -EAGAIN should 784 * not happen in this case. 785 */ 786 void __user *uaddr = vhost_vq_meta_fetch(vq, 787 (u64)(uintptr_t)from, size, 788 VHOST_ADDR_DESC); 789 struct iov_iter f; 790 791 if (uaddr) 792 return __copy_from_user(to, uaddr, size); 793 794 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 795 ARRAY_SIZE(vq->iotlb_iov), 796 VHOST_ACCESS_RO); 797 if (ret < 0) { 798 vq_err(vq, "IOTLB translation failure: uaddr " 799 "%p size 0x%llx\n", from, 800 (unsigned long long) size); 801 goto out; 802 } 803 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 804 ret = copy_from_iter(to, size, &f); 805 if (ret == size) 806 ret = 0; 807 } 808 809 out: 810 return ret; 811 } 812 813 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 814 void __user *addr, unsigned int size, 815 int type) 816 { 817 int ret; 818 819 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 820 ARRAY_SIZE(vq->iotlb_iov), 821 VHOST_ACCESS_RO); 822 if (ret < 0) { 823 vq_err(vq, "IOTLB translation failure: uaddr " 824 "%p size 0x%llx\n", addr, 825 (unsigned long long) size); 826 return NULL; 827 } 828 829 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 830 vq_err(vq, "Non atomic userspace memory access: uaddr " 831 "%p size 0x%llx\n", addr, 832 (unsigned long long) size); 833 return NULL; 834 } 835 836 return vq->iotlb_iov[0].iov_base; 837 } 838 839 /* This function should be called after iotlb 840 * prefetch, which means we're sure that vq 841 * could be access through iotlb. So -EAGAIN should 842 * not happen in this case. 843 */ 844 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 845 void *addr, unsigned int size, 846 int type) 847 { 848 void __user *uaddr = vhost_vq_meta_fetch(vq, 849 (u64)(uintptr_t)addr, size, type); 850 if (uaddr) 851 return uaddr; 852 853 return __vhost_get_user_slow(vq, addr, size, type); 854 } 855 856 #define vhost_put_user(vq, x, ptr) \ 857 ({ \ 858 int ret = -EFAULT; \ 859 if (!vq->iotlb) { \ 860 ret = __put_user(x, ptr); \ 861 } else { \ 862 __typeof__(ptr) to = \ 863 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 864 sizeof(*ptr), VHOST_ADDR_USED); \ 865 if (to != NULL) \ 866 ret = __put_user(x, to); \ 867 else \ 868 ret = -EFAULT; \ 869 } \ 870 ret; \ 871 }) 872 873 #define vhost_get_user(vq, x, ptr, type) \ 874 ({ \ 875 int ret; \ 876 if (!vq->iotlb) { \ 877 ret = __get_user(x, ptr); \ 878 } else { \ 879 __typeof__(ptr) from = \ 880 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 881 sizeof(*ptr), \ 882 type); \ 883 if (from != NULL) \ 884 ret = __get_user(x, from); \ 885 else \ 886 ret = -EFAULT; \ 887 } \ 888 ret; \ 889 }) 890 891 #define vhost_get_avail(vq, x, ptr) \ 892 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 893 894 #define vhost_get_used(vq, x, ptr) \ 895 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 896 897 static int vhost_new_umem_range(struct vhost_umem *umem, 898 u64 start, u64 size, u64 end, 899 u64 userspace_addr, int perm) 900 { 901 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 902 903 if (!node) 904 return -ENOMEM; 905 906 if (umem->numem == max_iotlb_entries) { 907 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 908 vhost_umem_free(umem, tmp); 909 } 910 911 node->start = start; 912 node->size = size; 913 node->last = end; 914 node->userspace_addr = userspace_addr; 915 node->perm = perm; 916 INIT_LIST_HEAD(&node->link); 917 list_add_tail(&node->link, &umem->umem_list); 918 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 919 umem->numem++; 920 921 return 0; 922 } 923 924 static void vhost_del_umem_range(struct vhost_umem *umem, 925 u64 start, u64 end) 926 { 927 struct vhost_umem_node *node; 928 929 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 930 start, end))) 931 vhost_umem_free(umem, node); 932 } 933 934 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 935 struct vhost_iotlb_msg *msg) 936 { 937 struct vhost_msg_node *node, *n; 938 939 spin_lock(&d->iotlb_lock); 940 941 list_for_each_entry_safe(node, n, &d->pending_list, node) { 942 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 943 if (msg->iova <= vq_msg->iova && 944 msg->iova + msg->size - 1 >= vq_msg->iova && 945 vq_msg->type == VHOST_IOTLB_MISS) { 946 mutex_lock(&node->vq->mutex); 947 vhost_poll_queue(&node->vq->poll); 948 mutex_unlock(&node->vq->mutex); 949 950 list_del(&node->node); 951 kfree(node); 952 } 953 } 954 955 spin_unlock(&d->iotlb_lock); 956 } 957 958 static bool umem_access_ok(u64 uaddr, u64 size, int access) 959 { 960 unsigned long a = uaddr; 961 962 /* Make sure 64 bit math will not overflow. */ 963 if (vhost_overflow(uaddr, size)) 964 return false; 965 966 if ((access & VHOST_ACCESS_RO) && 967 !access_ok(VERIFY_READ, (void __user *)a, size)) 968 return false; 969 if ((access & VHOST_ACCESS_WO) && 970 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 971 return false; 972 return true; 973 } 974 975 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 976 struct vhost_iotlb_msg *msg) 977 { 978 int ret = 0; 979 980 mutex_lock(&dev->mutex); 981 switch (msg->type) { 982 case VHOST_IOTLB_UPDATE: 983 if (!dev->iotlb) { 984 ret = -EFAULT; 985 break; 986 } 987 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 988 ret = -EFAULT; 989 break; 990 } 991 vhost_vq_meta_reset(dev); 992 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 993 msg->iova + msg->size - 1, 994 msg->uaddr, msg->perm)) { 995 ret = -ENOMEM; 996 break; 997 } 998 vhost_iotlb_notify_vq(dev, msg); 999 break; 1000 case VHOST_IOTLB_INVALIDATE: 1001 if (!dev->iotlb) { 1002 ret = -EFAULT; 1003 break; 1004 } 1005 vhost_vq_meta_reset(dev); 1006 vhost_del_umem_range(dev->iotlb, msg->iova, 1007 msg->iova + msg->size - 1); 1008 break; 1009 default: 1010 ret = -EINVAL; 1011 break; 1012 } 1013 1014 mutex_unlock(&dev->mutex); 1015 1016 return ret; 1017 } 1018 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1019 struct iov_iter *from) 1020 { 1021 struct vhost_iotlb_msg msg; 1022 size_t offset; 1023 int type, ret; 1024 1025 ret = copy_from_iter(&type, sizeof(type), from); 1026 if (ret != sizeof(type)) 1027 goto done; 1028 1029 switch (type) { 1030 case VHOST_IOTLB_MSG: 1031 /* There maybe a hole after type for V1 message type, 1032 * so skip it here. 1033 */ 1034 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1035 break; 1036 case VHOST_IOTLB_MSG_V2: 1037 offset = sizeof(__u32); 1038 break; 1039 default: 1040 ret = -EINVAL; 1041 goto done; 1042 } 1043 1044 iov_iter_advance(from, offset); 1045 ret = copy_from_iter(&msg, sizeof(msg), from); 1046 if (ret != sizeof(msg)) 1047 goto done; 1048 if (vhost_process_iotlb_msg(dev, &msg)) { 1049 ret = -EFAULT; 1050 goto done; 1051 } 1052 1053 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1054 sizeof(struct vhost_msg_v2); 1055 done: 1056 return ret; 1057 } 1058 EXPORT_SYMBOL(vhost_chr_write_iter); 1059 1060 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1061 poll_table *wait) 1062 { 1063 __poll_t mask = 0; 1064 1065 poll_wait(file, &dev->wait, wait); 1066 1067 if (!list_empty(&dev->read_list)) 1068 mask |= EPOLLIN | EPOLLRDNORM; 1069 1070 return mask; 1071 } 1072 EXPORT_SYMBOL(vhost_chr_poll); 1073 1074 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1075 int noblock) 1076 { 1077 DEFINE_WAIT(wait); 1078 struct vhost_msg_node *node; 1079 ssize_t ret = 0; 1080 unsigned size = sizeof(struct vhost_msg); 1081 1082 if (iov_iter_count(to) < size) 1083 return 0; 1084 1085 while (1) { 1086 if (!noblock) 1087 prepare_to_wait(&dev->wait, &wait, 1088 TASK_INTERRUPTIBLE); 1089 1090 node = vhost_dequeue_msg(dev, &dev->read_list); 1091 if (node) 1092 break; 1093 if (noblock) { 1094 ret = -EAGAIN; 1095 break; 1096 } 1097 if (signal_pending(current)) { 1098 ret = -ERESTARTSYS; 1099 break; 1100 } 1101 if (!dev->iotlb) { 1102 ret = -EBADFD; 1103 break; 1104 } 1105 1106 schedule(); 1107 } 1108 1109 if (!noblock) 1110 finish_wait(&dev->wait, &wait); 1111 1112 if (node) { 1113 struct vhost_iotlb_msg *msg; 1114 void *start = &node->msg; 1115 1116 switch (node->msg.type) { 1117 case VHOST_IOTLB_MSG: 1118 size = sizeof(node->msg); 1119 msg = &node->msg.iotlb; 1120 break; 1121 case VHOST_IOTLB_MSG_V2: 1122 size = sizeof(node->msg_v2); 1123 msg = &node->msg_v2.iotlb; 1124 break; 1125 default: 1126 BUG(); 1127 break; 1128 } 1129 1130 ret = copy_to_iter(start, size, to); 1131 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1132 kfree(node); 1133 return ret; 1134 } 1135 vhost_enqueue_msg(dev, &dev->pending_list, node); 1136 } 1137 1138 return ret; 1139 } 1140 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1141 1142 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1143 { 1144 struct vhost_dev *dev = vq->dev; 1145 struct vhost_msg_node *node; 1146 struct vhost_iotlb_msg *msg; 1147 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1148 1149 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1150 if (!node) 1151 return -ENOMEM; 1152 1153 if (v2) { 1154 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1155 msg = &node->msg_v2.iotlb; 1156 } else { 1157 msg = &node->msg.iotlb; 1158 } 1159 1160 msg->type = VHOST_IOTLB_MISS; 1161 msg->iova = iova; 1162 msg->perm = access; 1163 1164 vhost_enqueue_msg(dev, &dev->read_list, node); 1165 1166 return 0; 1167 } 1168 1169 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1170 struct vring_desc __user *desc, 1171 struct vring_avail __user *avail, 1172 struct vring_used __user *used) 1173 1174 { 1175 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1176 1177 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1178 access_ok(VERIFY_READ, avail, 1179 sizeof *avail + num * sizeof *avail->ring + s) && 1180 access_ok(VERIFY_WRITE, used, 1181 sizeof *used + num * sizeof *used->ring + s); 1182 } 1183 1184 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1185 const struct vhost_umem_node *node, 1186 int type) 1187 { 1188 int access = (type == VHOST_ADDR_USED) ? 1189 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1190 1191 if (likely(node->perm & access)) 1192 vq->meta_iotlb[type] = node; 1193 } 1194 1195 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1196 int access, u64 addr, u64 len, int type) 1197 { 1198 const struct vhost_umem_node *node; 1199 struct vhost_umem *umem = vq->iotlb; 1200 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1201 1202 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1203 return true; 1204 1205 while (len > s) { 1206 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1207 addr, 1208 last); 1209 if (node == NULL || node->start > addr) { 1210 vhost_iotlb_miss(vq, addr, access); 1211 return false; 1212 } else if (!(node->perm & access)) { 1213 /* Report the possible access violation by 1214 * request another translation from userspace. 1215 */ 1216 return false; 1217 } 1218 1219 size = node->size - addr + node->start; 1220 1221 if (orig_addr == addr && size >= len) 1222 vhost_vq_meta_update(vq, node, type); 1223 1224 s += size; 1225 addr += size; 1226 } 1227 1228 return true; 1229 } 1230 1231 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1232 { 1233 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1234 unsigned int num = vq->num; 1235 1236 if (!vq->iotlb) 1237 return 1; 1238 1239 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1240 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1241 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1242 sizeof *vq->avail + 1243 num * sizeof(*vq->avail->ring) + s, 1244 VHOST_ADDR_AVAIL) && 1245 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1246 sizeof *vq->used + 1247 num * sizeof(*vq->used->ring) + s, 1248 VHOST_ADDR_USED); 1249 } 1250 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1251 1252 /* Can we log writes? */ 1253 /* Caller should have device mutex but not vq mutex */ 1254 bool vhost_log_access_ok(struct vhost_dev *dev) 1255 { 1256 return memory_access_ok(dev, dev->umem, 1); 1257 } 1258 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1259 1260 /* Verify access for write logging. */ 1261 /* Caller should have vq mutex and device mutex */ 1262 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1263 void __user *log_base) 1264 { 1265 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1266 1267 return vq_memory_access_ok(log_base, vq->umem, 1268 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1269 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1270 sizeof *vq->used + 1271 vq->num * sizeof *vq->used->ring + s)); 1272 } 1273 1274 /* Can we start vq? */ 1275 /* Caller should have vq mutex and device mutex */ 1276 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1277 { 1278 if (!vq_log_access_ok(vq, vq->log_base)) 1279 return false; 1280 1281 /* Access validation occurs at prefetch time with IOTLB */ 1282 if (vq->iotlb) 1283 return true; 1284 1285 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1286 } 1287 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1288 1289 static struct vhost_umem *vhost_umem_alloc(void) 1290 { 1291 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1292 1293 if (!umem) 1294 return NULL; 1295 1296 umem->umem_tree = RB_ROOT_CACHED; 1297 umem->numem = 0; 1298 INIT_LIST_HEAD(&umem->umem_list); 1299 1300 return umem; 1301 } 1302 1303 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1304 { 1305 struct vhost_memory mem, *newmem; 1306 struct vhost_memory_region *region; 1307 struct vhost_umem *newumem, *oldumem; 1308 unsigned long size = offsetof(struct vhost_memory, regions); 1309 int i; 1310 1311 if (copy_from_user(&mem, m, size)) 1312 return -EFAULT; 1313 if (mem.padding) 1314 return -EOPNOTSUPP; 1315 if (mem.nregions > max_mem_regions) 1316 return -E2BIG; 1317 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1318 GFP_KERNEL); 1319 if (!newmem) 1320 return -ENOMEM; 1321 1322 memcpy(newmem, &mem, size); 1323 if (copy_from_user(newmem->regions, m->regions, 1324 mem.nregions * sizeof *m->regions)) { 1325 kvfree(newmem); 1326 return -EFAULT; 1327 } 1328 1329 newumem = vhost_umem_alloc(); 1330 if (!newumem) { 1331 kvfree(newmem); 1332 return -ENOMEM; 1333 } 1334 1335 for (region = newmem->regions; 1336 region < newmem->regions + mem.nregions; 1337 region++) { 1338 if (vhost_new_umem_range(newumem, 1339 region->guest_phys_addr, 1340 region->memory_size, 1341 region->guest_phys_addr + 1342 region->memory_size - 1, 1343 region->userspace_addr, 1344 VHOST_ACCESS_RW)) 1345 goto err; 1346 } 1347 1348 if (!memory_access_ok(d, newumem, 0)) 1349 goto err; 1350 1351 oldumem = d->umem; 1352 d->umem = newumem; 1353 1354 /* All memory accesses are done under some VQ mutex. */ 1355 for (i = 0; i < d->nvqs; ++i) { 1356 mutex_lock(&d->vqs[i]->mutex); 1357 d->vqs[i]->umem = newumem; 1358 mutex_unlock(&d->vqs[i]->mutex); 1359 } 1360 1361 kvfree(newmem); 1362 vhost_umem_clean(oldumem); 1363 return 0; 1364 1365 err: 1366 vhost_umem_clean(newumem); 1367 kvfree(newmem); 1368 return -EFAULT; 1369 } 1370 1371 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1372 { 1373 struct file *eventfp, *filep = NULL; 1374 bool pollstart = false, pollstop = false; 1375 struct eventfd_ctx *ctx = NULL; 1376 u32 __user *idxp = argp; 1377 struct vhost_virtqueue *vq; 1378 struct vhost_vring_state s; 1379 struct vhost_vring_file f; 1380 struct vhost_vring_addr a; 1381 u32 idx; 1382 long r; 1383 1384 r = get_user(idx, idxp); 1385 if (r < 0) 1386 return r; 1387 if (idx >= d->nvqs) 1388 return -ENOBUFS; 1389 1390 vq = d->vqs[idx]; 1391 1392 mutex_lock(&vq->mutex); 1393 1394 switch (ioctl) { 1395 case VHOST_SET_VRING_NUM: 1396 /* Resizing ring with an active backend? 1397 * You don't want to do that. */ 1398 if (vq->private_data) { 1399 r = -EBUSY; 1400 break; 1401 } 1402 if (copy_from_user(&s, argp, sizeof s)) { 1403 r = -EFAULT; 1404 break; 1405 } 1406 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1407 r = -EINVAL; 1408 break; 1409 } 1410 vq->num = s.num; 1411 break; 1412 case VHOST_SET_VRING_BASE: 1413 /* Moving base with an active backend? 1414 * You don't want to do that. */ 1415 if (vq->private_data) { 1416 r = -EBUSY; 1417 break; 1418 } 1419 if (copy_from_user(&s, argp, sizeof s)) { 1420 r = -EFAULT; 1421 break; 1422 } 1423 if (s.num > 0xffff) { 1424 r = -EINVAL; 1425 break; 1426 } 1427 vq->last_avail_idx = s.num; 1428 /* Forget the cached index value. */ 1429 vq->avail_idx = vq->last_avail_idx; 1430 break; 1431 case VHOST_GET_VRING_BASE: 1432 s.index = idx; 1433 s.num = vq->last_avail_idx; 1434 if (copy_to_user(argp, &s, sizeof s)) 1435 r = -EFAULT; 1436 break; 1437 case VHOST_SET_VRING_ADDR: 1438 if (copy_from_user(&a, argp, sizeof a)) { 1439 r = -EFAULT; 1440 break; 1441 } 1442 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1443 r = -EOPNOTSUPP; 1444 break; 1445 } 1446 /* For 32bit, verify that the top 32bits of the user 1447 data are set to zero. */ 1448 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1449 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1450 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1451 r = -EFAULT; 1452 break; 1453 } 1454 1455 /* Make sure it's safe to cast pointers to vring types. */ 1456 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1457 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1458 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1459 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1460 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1461 r = -EINVAL; 1462 break; 1463 } 1464 1465 /* We only verify access here if backend is configured. 1466 * If it is not, we don't as size might not have been setup. 1467 * We will verify when backend is configured. */ 1468 if (vq->private_data) { 1469 if (!vq_access_ok(vq, vq->num, 1470 (void __user *)(unsigned long)a.desc_user_addr, 1471 (void __user *)(unsigned long)a.avail_user_addr, 1472 (void __user *)(unsigned long)a.used_user_addr)) { 1473 r = -EINVAL; 1474 break; 1475 } 1476 1477 /* Also validate log access for used ring if enabled. */ 1478 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1479 !log_access_ok(vq->log_base, a.log_guest_addr, 1480 sizeof *vq->used + 1481 vq->num * sizeof *vq->used->ring)) { 1482 r = -EINVAL; 1483 break; 1484 } 1485 } 1486 1487 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1488 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1489 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1490 vq->log_addr = a.log_guest_addr; 1491 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1492 break; 1493 case VHOST_SET_VRING_KICK: 1494 if (copy_from_user(&f, argp, sizeof f)) { 1495 r = -EFAULT; 1496 break; 1497 } 1498 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1499 if (IS_ERR(eventfp)) { 1500 r = PTR_ERR(eventfp); 1501 break; 1502 } 1503 if (eventfp != vq->kick) { 1504 pollstop = (filep = vq->kick) != NULL; 1505 pollstart = (vq->kick = eventfp) != NULL; 1506 } else 1507 filep = eventfp; 1508 break; 1509 case VHOST_SET_VRING_CALL: 1510 if (copy_from_user(&f, argp, sizeof f)) { 1511 r = -EFAULT; 1512 break; 1513 } 1514 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1515 if (IS_ERR(ctx)) { 1516 r = PTR_ERR(ctx); 1517 break; 1518 } 1519 swap(ctx, vq->call_ctx); 1520 break; 1521 case VHOST_SET_VRING_ERR: 1522 if (copy_from_user(&f, argp, sizeof f)) { 1523 r = -EFAULT; 1524 break; 1525 } 1526 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1527 if (IS_ERR(ctx)) { 1528 r = PTR_ERR(ctx); 1529 break; 1530 } 1531 swap(ctx, vq->error_ctx); 1532 break; 1533 case VHOST_SET_VRING_ENDIAN: 1534 r = vhost_set_vring_endian(vq, argp); 1535 break; 1536 case VHOST_GET_VRING_ENDIAN: 1537 r = vhost_get_vring_endian(vq, idx, argp); 1538 break; 1539 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1540 if (copy_from_user(&s, argp, sizeof(s))) { 1541 r = -EFAULT; 1542 break; 1543 } 1544 vq->busyloop_timeout = s.num; 1545 break; 1546 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1547 s.index = idx; 1548 s.num = vq->busyloop_timeout; 1549 if (copy_to_user(argp, &s, sizeof(s))) 1550 r = -EFAULT; 1551 break; 1552 default: 1553 r = -ENOIOCTLCMD; 1554 } 1555 1556 if (pollstop && vq->handle_kick) 1557 vhost_poll_stop(&vq->poll); 1558 1559 if (!IS_ERR_OR_NULL(ctx)) 1560 eventfd_ctx_put(ctx); 1561 if (filep) 1562 fput(filep); 1563 1564 if (pollstart && vq->handle_kick) 1565 r = vhost_poll_start(&vq->poll, vq->kick); 1566 1567 mutex_unlock(&vq->mutex); 1568 1569 if (pollstop && vq->handle_kick) 1570 vhost_poll_flush(&vq->poll); 1571 return r; 1572 } 1573 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1574 1575 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1576 { 1577 struct vhost_umem *niotlb, *oiotlb; 1578 int i; 1579 1580 niotlb = vhost_umem_alloc(); 1581 if (!niotlb) 1582 return -ENOMEM; 1583 1584 oiotlb = d->iotlb; 1585 d->iotlb = niotlb; 1586 1587 for (i = 0; i < d->nvqs; ++i) { 1588 struct vhost_virtqueue *vq = d->vqs[i]; 1589 1590 mutex_lock(&vq->mutex); 1591 vq->iotlb = niotlb; 1592 __vhost_vq_meta_reset(vq); 1593 mutex_unlock(&vq->mutex); 1594 } 1595 1596 vhost_umem_clean(oiotlb); 1597 1598 return 0; 1599 } 1600 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1601 1602 /* Caller must have device mutex */ 1603 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1604 { 1605 struct eventfd_ctx *ctx; 1606 u64 p; 1607 long r; 1608 int i, fd; 1609 1610 /* If you are not the owner, you can become one */ 1611 if (ioctl == VHOST_SET_OWNER) { 1612 r = vhost_dev_set_owner(d); 1613 goto done; 1614 } 1615 1616 /* You must be the owner to do anything else */ 1617 r = vhost_dev_check_owner(d); 1618 if (r) 1619 goto done; 1620 1621 switch (ioctl) { 1622 case VHOST_SET_MEM_TABLE: 1623 r = vhost_set_memory(d, argp); 1624 break; 1625 case VHOST_SET_LOG_BASE: 1626 if (copy_from_user(&p, argp, sizeof p)) { 1627 r = -EFAULT; 1628 break; 1629 } 1630 if ((u64)(unsigned long)p != p) { 1631 r = -EFAULT; 1632 break; 1633 } 1634 for (i = 0; i < d->nvqs; ++i) { 1635 struct vhost_virtqueue *vq; 1636 void __user *base = (void __user *)(unsigned long)p; 1637 vq = d->vqs[i]; 1638 mutex_lock(&vq->mutex); 1639 /* If ring is inactive, will check when it's enabled. */ 1640 if (vq->private_data && !vq_log_access_ok(vq, base)) 1641 r = -EFAULT; 1642 else 1643 vq->log_base = base; 1644 mutex_unlock(&vq->mutex); 1645 } 1646 break; 1647 case VHOST_SET_LOG_FD: 1648 r = get_user(fd, (int __user *)argp); 1649 if (r < 0) 1650 break; 1651 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1652 if (IS_ERR(ctx)) { 1653 r = PTR_ERR(ctx); 1654 break; 1655 } 1656 swap(ctx, d->log_ctx); 1657 for (i = 0; i < d->nvqs; ++i) { 1658 mutex_lock(&d->vqs[i]->mutex); 1659 d->vqs[i]->log_ctx = d->log_ctx; 1660 mutex_unlock(&d->vqs[i]->mutex); 1661 } 1662 if (ctx) 1663 eventfd_ctx_put(ctx); 1664 break; 1665 default: 1666 r = -ENOIOCTLCMD; 1667 break; 1668 } 1669 done: 1670 return r; 1671 } 1672 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1673 1674 /* TODO: This is really inefficient. We need something like get_user() 1675 * (instruction directly accesses the data, with an exception table entry 1676 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1677 */ 1678 static int set_bit_to_user(int nr, void __user *addr) 1679 { 1680 unsigned long log = (unsigned long)addr; 1681 struct page *page; 1682 void *base; 1683 int bit = nr + (log % PAGE_SIZE) * 8; 1684 int r; 1685 1686 r = get_user_pages_fast(log, 1, 1, &page); 1687 if (r < 0) 1688 return r; 1689 BUG_ON(r != 1); 1690 base = kmap_atomic(page); 1691 set_bit(bit, base); 1692 kunmap_atomic(base); 1693 set_page_dirty_lock(page); 1694 put_page(page); 1695 return 0; 1696 } 1697 1698 static int log_write(void __user *log_base, 1699 u64 write_address, u64 write_length) 1700 { 1701 u64 write_page = write_address / VHOST_PAGE_SIZE; 1702 int r; 1703 1704 if (!write_length) 1705 return 0; 1706 write_length += write_address % VHOST_PAGE_SIZE; 1707 for (;;) { 1708 u64 base = (u64)(unsigned long)log_base; 1709 u64 log = base + write_page / 8; 1710 int bit = write_page % 8; 1711 if ((u64)(unsigned long)log != log) 1712 return -EFAULT; 1713 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1714 if (r < 0) 1715 return r; 1716 if (write_length <= VHOST_PAGE_SIZE) 1717 break; 1718 write_length -= VHOST_PAGE_SIZE; 1719 write_page += 1; 1720 } 1721 return r; 1722 } 1723 1724 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1725 unsigned int log_num, u64 len) 1726 { 1727 int i, r; 1728 1729 /* Make sure data written is seen before log. */ 1730 smp_wmb(); 1731 for (i = 0; i < log_num; ++i) { 1732 u64 l = min(log[i].len, len); 1733 r = log_write(vq->log_base, log[i].addr, l); 1734 if (r < 0) 1735 return r; 1736 len -= l; 1737 if (!len) { 1738 if (vq->log_ctx) 1739 eventfd_signal(vq->log_ctx, 1); 1740 return 0; 1741 } 1742 } 1743 /* Length written exceeds what we have stored. This is a bug. */ 1744 BUG(); 1745 return 0; 1746 } 1747 EXPORT_SYMBOL_GPL(vhost_log_write); 1748 1749 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1750 { 1751 void __user *used; 1752 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1753 &vq->used->flags) < 0) 1754 return -EFAULT; 1755 if (unlikely(vq->log_used)) { 1756 /* Make sure the flag is seen before log. */ 1757 smp_wmb(); 1758 /* Log used flag write. */ 1759 used = &vq->used->flags; 1760 log_write(vq->log_base, vq->log_addr + 1761 (used - (void __user *)vq->used), 1762 sizeof vq->used->flags); 1763 if (vq->log_ctx) 1764 eventfd_signal(vq->log_ctx, 1); 1765 } 1766 return 0; 1767 } 1768 1769 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1770 { 1771 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1772 vhost_avail_event(vq))) 1773 return -EFAULT; 1774 if (unlikely(vq->log_used)) { 1775 void __user *used; 1776 /* Make sure the event is seen before log. */ 1777 smp_wmb(); 1778 /* Log avail event write */ 1779 used = vhost_avail_event(vq); 1780 log_write(vq->log_base, vq->log_addr + 1781 (used - (void __user *)vq->used), 1782 sizeof *vhost_avail_event(vq)); 1783 if (vq->log_ctx) 1784 eventfd_signal(vq->log_ctx, 1); 1785 } 1786 return 0; 1787 } 1788 1789 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1790 { 1791 __virtio16 last_used_idx; 1792 int r; 1793 bool is_le = vq->is_le; 1794 1795 if (!vq->private_data) 1796 return 0; 1797 1798 vhost_init_is_le(vq); 1799 1800 r = vhost_update_used_flags(vq); 1801 if (r) 1802 goto err; 1803 vq->signalled_used_valid = false; 1804 if (!vq->iotlb && 1805 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1806 r = -EFAULT; 1807 goto err; 1808 } 1809 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1810 if (r) { 1811 vq_err(vq, "Can't access used idx at %p\n", 1812 &vq->used->idx); 1813 goto err; 1814 } 1815 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1816 return 0; 1817 1818 err: 1819 vq->is_le = is_le; 1820 return r; 1821 } 1822 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1823 1824 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1825 struct iovec iov[], int iov_size, int access) 1826 { 1827 const struct vhost_umem_node *node; 1828 struct vhost_dev *dev = vq->dev; 1829 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1830 struct iovec *_iov; 1831 u64 s = 0; 1832 int ret = 0; 1833 1834 while ((u64)len > s) { 1835 u64 size; 1836 if (unlikely(ret >= iov_size)) { 1837 ret = -ENOBUFS; 1838 break; 1839 } 1840 1841 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1842 addr, addr + len - 1); 1843 if (node == NULL || node->start > addr) { 1844 if (umem != dev->iotlb) { 1845 ret = -EFAULT; 1846 break; 1847 } 1848 ret = -EAGAIN; 1849 break; 1850 } else if (!(node->perm & access)) { 1851 ret = -EPERM; 1852 break; 1853 } 1854 1855 _iov = iov + ret; 1856 size = node->size - addr + node->start; 1857 _iov->iov_len = min((u64)len - s, size); 1858 _iov->iov_base = (void __user *)(unsigned long) 1859 (node->userspace_addr + addr - node->start); 1860 s += size; 1861 addr += size; 1862 ++ret; 1863 } 1864 1865 if (ret == -EAGAIN) 1866 vhost_iotlb_miss(vq, addr, access); 1867 return ret; 1868 } 1869 1870 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1871 * function returns the next descriptor in the chain, 1872 * or -1U if we're at the end. */ 1873 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1874 { 1875 unsigned int next; 1876 1877 /* If this descriptor says it doesn't chain, we're done. */ 1878 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1879 return -1U; 1880 1881 /* Check they're not leading us off end of descriptors. */ 1882 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1883 return next; 1884 } 1885 1886 static int get_indirect(struct vhost_virtqueue *vq, 1887 struct iovec iov[], unsigned int iov_size, 1888 unsigned int *out_num, unsigned int *in_num, 1889 struct vhost_log *log, unsigned int *log_num, 1890 struct vring_desc *indirect) 1891 { 1892 struct vring_desc desc; 1893 unsigned int i = 0, count, found = 0; 1894 u32 len = vhost32_to_cpu(vq, indirect->len); 1895 struct iov_iter from; 1896 int ret, access; 1897 1898 /* Sanity check */ 1899 if (unlikely(len % sizeof desc)) { 1900 vq_err(vq, "Invalid length in indirect descriptor: " 1901 "len 0x%llx not multiple of 0x%zx\n", 1902 (unsigned long long)len, 1903 sizeof desc); 1904 return -EINVAL; 1905 } 1906 1907 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1908 UIO_MAXIOV, VHOST_ACCESS_RO); 1909 if (unlikely(ret < 0)) { 1910 if (ret != -EAGAIN) 1911 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1912 return ret; 1913 } 1914 iov_iter_init(&from, READ, vq->indirect, ret, len); 1915 1916 /* We will use the result as an address to read from, so most 1917 * architectures only need a compiler barrier here. */ 1918 read_barrier_depends(); 1919 1920 count = len / sizeof desc; 1921 /* Buffers are chained via a 16 bit next field, so 1922 * we can have at most 2^16 of these. */ 1923 if (unlikely(count > USHRT_MAX + 1)) { 1924 vq_err(vq, "Indirect buffer length too big: %d\n", 1925 indirect->len); 1926 return -E2BIG; 1927 } 1928 1929 do { 1930 unsigned iov_count = *in_num + *out_num; 1931 if (unlikely(++found > count)) { 1932 vq_err(vq, "Loop detected: last one at %u " 1933 "indirect size %u\n", 1934 i, count); 1935 return -EINVAL; 1936 } 1937 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1938 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1939 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1940 return -EINVAL; 1941 } 1942 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1943 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1944 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1945 return -EINVAL; 1946 } 1947 1948 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1949 access = VHOST_ACCESS_WO; 1950 else 1951 access = VHOST_ACCESS_RO; 1952 1953 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1954 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1955 iov_size - iov_count, access); 1956 if (unlikely(ret < 0)) { 1957 if (ret != -EAGAIN) 1958 vq_err(vq, "Translation failure %d indirect idx %d\n", 1959 ret, i); 1960 return ret; 1961 } 1962 /* If this is an input descriptor, increment that count. */ 1963 if (access == VHOST_ACCESS_WO) { 1964 *in_num += ret; 1965 if (unlikely(log)) { 1966 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1967 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1968 ++*log_num; 1969 } 1970 } else { 1971 /* If it's an output descriptor, they're all supposed 1972 * to come before any input descriptors. */ 1973 if (unlikely(*in_num)) { 1974 vq_err(vq, "Indirect descriptor " 1975 "has out after in: idx %d\n", i); 1976 return -EINVAL; 1977 } 1978 *out_num += ret; 1979 } 1980 } while ((i = next_desc(vq, &desc)) != -1); 1981 return 0; 1982 } 1983 1984 /* This looks in the virtqueue and for the first available buffer, and converts 1985 * it to an iovec for convenient access. Since descriptors consist of some 1986 * number of output then some number of input descriptors, it's actually two 1987 * iovecs, but we pack them into one and note how many of each there were. 1988 * 1989 * This function returns the descriptor number found, or vq->num (which is 1990 * never a valid descriptor number) if none was found. A negative code is 1991 * returned on error. */ 1992 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1993 struct iovec iov[], unsigned int iov_size, 1994 unsigned int *out_num, unsigned int *in_num, 1995 struct vhost_log *log, unsigned int *log_num) 1996 { 1997 struct vring_desc desc; 1998 unsigned int i, head, found = 0; 1999 u16 last_avail_idx; 2000 __virtio16 avail_idx; 2001 __virtio16 ring_head; 2002 int ret, access; 2003 2004 /* Check it isn't doing very strange things with descriptor numbers. */ 2005 last_avail_idx = vq->last_avail_idx; 2006 2007 if (vq->avail_idx == vq->last_avail_idx) { 2008 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 2009 vq_err(vq, "Failed to access avail idx at %p\n", 2010 &vq->avail->idx); 2011 return -EFAULT; 2012 } 2013 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2014 2015 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2016 vq_err(vq, "Guest moved used index from %u to %u", 2017 last_avail_idx, vq->avail_idx); 2018 return -EFAULT; 2019 } 2020 2021 /* If there's nothing new since last we looked, return 2022 * invalid. 2023 */ 2024 if (vq->avail_idx == last_avail_idx) 2025 return vq->num; 2026 2027 /* Only get avail ring entries after they have been 2028 * exposed by guest. 2029 */ 2030 smp_rmb(); 2031 } 2032 2033 /* Grab the next descriptor number they're advertising, and increment 2034 * the index we've seen. */ 2035 if (unlikely(vhost_get_avail(vq, ring_head, 2036 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2037 vq_err(vq, "Failed to read head: idx %d address %p\n", 2038 last_avail_idx, 2039 &vq->avail->ring[last_avail_idx % vq->num]); 2040 return -EFAULT; 2041 } 2042 2043 head = vhost16_to_cpu(vq, ring_head); 2044 2045 /* If their number is silly, that's an error. */ 2046 if (unlikely(head >= vq->num)) { 2047 vq_err(vq, "Guest says index %u > %u is available", 2048 head, vq->num); 2049 return -EINVAL; 2050 } 2051 2052 /* When we start there are none of either input nor output. */ 2053 *out_num = *in_num = 0; 2054 if (unlikely(log)) 2055 *log_num = 0; 2056 2057 i = head; 2058 do { 2059 unsigned iov_count = *in_num + *out_num; 2060 if (unlikely(i >= vq->num)) { 2061 vq_err(vq, "Desc index is %u > %u, head = %u", 2062 i, vq->num, head); 2063 return -EINVAL; 2064 } 2065 if (unlikely(++found > vq->num)) { 2066 vq_err(vq, "Loop detected: last one at %u " 2067 "vq size %u head %u\n", 2068 i, vq->num, head); 2069 return -EINVAL; 2070 } 2071 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2072 sizeof desc); 2073 if (unlikely(ret)) { 2074 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2075 i, vq->desc + i); 2076 return -EFAULT; 2077 } 2078 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2079 ret = get_indirect(vq, iov, iov_size, 2080 out_num, in_num, 2081 log, log_num, &desc); 2082 if (unlikely(ret < 0)) { 2083 if (ret != -EAGAIN) 2084 vq_err(vq, "Failure detected " 2085 "in indirect descriptor at idx %d\n", i); 2086 return ret; 2087 } 2088 continue; 2089 } 2090 2091 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2092 access = VHOST_ACCESS_WO; 2093 else 2094 access = VHOST_ACCESS_RO; 2095 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2096 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2097 iov_size - iov_count, access); 2098 if (unlikely(ret < 0)) { 2099 if (ret != -EAGAIN) 2100 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2101 ret, i); 2102 return ret; 2103 } 2104 if (access == VHOST_ACCESS_WO) { 2105 /* If this is an input descriptor, 2106 * increment that count. */ 2107 *in_num += ret; 2108 if (unlikely(log)) { 2109 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2110 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2111 ++*log_num; 2112 } 2113 } else { 2114 /* If it's an output descriptor, they're all supposed 2115 * to come before any input descriptors. */ 2116 if (unlikely(*in_num)) { 2117 vq_err(vq, "Descriptor has out after in: " 2118 "idx %d\n", i); 2119 return -EINVAL; 2120 } 2121 *out_num += ret; 2122 } 2123 } while ((i = next_desc(vq, &desc)) != -1); 2124 2125 /* On success, increment avail index. */ 2126 vq->last_avail_idx++; 2127 2128 /* Assume notifications from guest are disabled at this point, 2129 * if they aren't we would need to update avail_event index. */ 2130 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2131 return head; 2132 } 2133 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2134 2135 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2136 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2137 { 2138 vq->last_avail_idx -= n; 2139 } 2140 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2141 2142 /* After we've used one of their buffers, we tell them about it. We'll then 2143 * want to notify the guest, using eventfd. */ 2144 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2145 { 2146 struct vring_used_elem heads = { 2147 cpu_to_vhost32(vq, head), 2148 cpu_to_vhost32(vq, len) 2149 }; 2150 2151 return vhost_add_used_n(vq, &heads, 1); 2152 } 2153 EXPORT_SYMBOL_GPL(vhost_add_used); 2154 2155 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2156 struct vring_used_elem *heads, 2157 unsigned count) 2158 { 2159 struct vring_used_elem __user *used; 2160 u16 old, new; 2161 int start; 2162 2163 start = vq->last_used_idx & (vq->num - 1); 2164 used = vq->used->ring + start; 2165 if (count == 1) { 2166 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2167 vq_err(vq, "Failed to write used id"); 2168 return -EFAULT; 2169 } 2170 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2171 vq_err(vq, "Failed to write used len"); 2172 return -EFAULT; 2173 } 2174 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2175 vq_err(vq, "Failed to write used"); 2176 return -EFAULT; 2177 } 2178 if (unlikely(vq->log_used)) { 2179 /* Make sure data is seen before log. */ 2180 smp_wmb(); 2181 /* Log used ring entry write. */ 2182 log_write(vq->log_base, 2183 vq->log_addr + 2184 ((void __user *)used - (void __user *)vq->used), 2185 count * sizeof *used); 2186 } 2187 old = vq->last_used_idx; 2188 new = (vq->last_used_idx += count); 2189 /* If the driver never bothers to signal in a very long while, 2190 * used index might wrap around. If that happens, invalidate 2191 * signalled_used index we stored. TODO: make sure driver 2192 * signals at least once in 2^16 and remove this. */ 2193 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2194 vq->signalled_used_valid = false; 2195 return 0; 2196 } 2197 2198 /* After we've used one of their buffers, we tell them about it. We'll then 2199 * want to notify the guest, using eventfd. */ 2200 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2201 unsigned count) 2202 { 2203 int start, n, r; 2204 2205 start = vq->last_used_idx & (vq->num - 1); 2206 n = vq->num - start; 2207 if (n < count) { 2208 r = __vhost_add_used_n(vq, heads, n); 2209 if (r < 0) 2210 return r; 2211 heads += n; 2212 count -= n; 2213 } 2214 r = __vhost_add_used_n(vq, heads, count); 2215 2216 /* Make sure buffer is written before we update index. */ 2217 smp_wmb(); 2218 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2219 &vq->used->idx)) { 2220 vq_err(vq, "Failed to increment used idx"); 2221 return -EFAULT; 2222 } 2223 if (unlikely(vq->log_used)) { 2224 /* Log used index update. */ 2225 log_write(vq->log_base, 2226 vq->log_addr + offsetof(struct vring_used, idx), 2227 sizeof vq->used->idx); 2228 if (vq->log_ctx) 2229 eventfd_signal(vq->log_ctx, 1); 2230 } 2231 return r; 2232 } 2233 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2234 2235 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2236 { 2237 __u16 old, new; 2238 __virtio16 event; 2239 bool v; 2240 /* Flush out used index updates. This is paired 2241 * with the barrier that the Guest executes when enabling 2242 * interrupts. */ 2243 smp_mb(); 2244 2245 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2246 unlikely(vq->avail_idx == vq->last_avail_idx)) 2247 return true; 2248 2249 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2250 __virtio16 flags; 2251 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2252 vq_err(vq, "Failed to get flags"); 2253 return true; 2254 } 2255 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2256 } 2257 old = vq->signalled_used; 2258 v = vq->signalled_used_valid; 2259 new = vq->signalled_used = vq->last_used_idx; 2260 vq->signalled_used_valid = true; 2261 2262 if (unlikely(!v)) 2263 return true; 2264 2265 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2266 vq_err(vq, "Failed to get used event idx"); 2267 return true; 2268 } 2269 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2270 } 2271 2272 /* This actually signals the guest, using eventfd. */ 2273 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2274 { 2275 /* Signal the Guest tell them we used something up. */ 2276 if (vq->call_ctx && vhost_notify(dev, vq)) 2277 eventfd_signal(vq->call_ctx, 1); 2278 } 2279 EXPORT_SYMBOL_GPL(vhost_signal); 2280 2281 /* And here's the combo meal deal. Supersize me! */ 2282 void vhost_add_used_and_signal(struct vhost_dev *dev, 2283 struct vhost_virtqueue *vq, 2284 unsigned int head, int len) 2285 { 2286 vhost_add_used(vq, head, len); 2287 vhost_signal(dev, vq); 2288 } 2289 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2290 2291 /* multi-buffer version of vhost_add_used_and_signal */ 2292 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2293 struct vhost_virtqueue *vq, 2294 struct vring_used_elem *heads, unsigned count) 2295 { 2296 vhost_add_used_n(vq, heads, count); 2297 vhost_signal(dev, vq); 2298 } 2299 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2300 2301 /* return true if we're sure that avaiable ring is empty */ 2302 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2303 { 2304 __virtio16 avail_idx; 2305 int r; 2306 2307 if (vq->avail_idx != vq->last_avail_idx) 2308 return false; 2309 2310 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2311 if (unlikely(r)) 2312 return false; 2313 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2314 2315 return vq->avail_idx == vq->last_avail_idx; 2316 } 2317 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2318 2319 /* OK, now we need to know about added descriptors. */ 2320 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2321 { 2322 __virtio16 avail_idx; 2323 int r; 2324 2325 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2326 return false; 2327 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2328 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2329 r = vhost_update_used_flags(vq); 2330 if (r) { 2331 vq_err(vq, "Failed to enable notification at %p: %d\n", 2332 &vq->used->flags, r); 2333 return false; 2334 } 2335 } else { 2336 r = vhost_update_avail_event(vq, vq->avail_idx); 2337 if (r) { 2338 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2339 vhost_avail_event(vq), r); 2340 return false; 2341 } 2342 } 2343 /* They could have slipped one in as we were doing that: make 2344 * sure it's written, then check again. */ 2345 smp_mb(); 2346 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2347 if (r) { 2348 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2349 &vq->avail->idx, r); 2350 return false; 2351 } 2352 2353 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2354 } 2355 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2356 2357 /* We don't need to be notified again. */ 2358 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2359 { 2360 int r; 2361 2362 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2363 return; 2364 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2365 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2366 r = vhost_update_used_flags(vq); 2367 if (r) 2368 vq_err(vq, "Failed to enable notification at %p: %d\n", 2369 &vq->used->flags, r); 2370 } 2371 } 2372 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2373 2374 /* Create a new message. */ 2375 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2376 { 2377 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2378 if (!node) 2379 return NULL; 2380 2381 /* Make sure all padding within the structure is initialized. */ 2382 memset(&node->msg, 0, sizeof node->msg); 2383 node->vq = vq; 2384 node->msg.type = type; 2385 return node; 2386 } 2387 EXPORT_SYMBOL_GPL(vhost_new_msg); 2388 2389 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2390 struct vhost_msg_node *node) 2391 { 2392 spin_lock(&dev->iotlb_lock); 2393 list_add_tail(&node->node, head); 2394 spin_unlock(&dev->iotlb_lock); 2395 2396 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2397 } 2398 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2399 2400 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2401 struct list_head *head) 2402 { 2403 struct vhost_msg_node *node = NULL; 2404 2405 spin_lock(&dev->iotlb_lock); 2406 if (!list_empty(head)) { 2407 node = list_first_entry(head, struct vhost_msg_node, 2408 node); 2409 list_del(&node->node); 2410 } 2411 spin_unlock(&dev->iotlb_lock); 2412 2413 return node; 2414 } 2415 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2416 2417 2418 static int __init vhost_init(void) 2419 { 2420 return 0; 2421 } 2422 2423 static void __exit vhost_exit(void) 2424 { 2425 } 2426 2427 module_init(vhost_init); 2428 module_exit(vhost_exit); 2429 2430 MODULE_VERSION("0.0.1"); 2431 MODULE_LICENSE("GPL v2"); 2432 MODULE_AUTHOR("Michael S. Tsirkin"); 2433 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2434