1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/interval_tree_generic.h> 32 33 #include "vhost.h" 34 35 static ushort max_mem_regions = 64; 36 module_param(max_mem_regions, ushort, 0444); 37 MODULE_PARM_DESC(max_mem_regions, 38 "Maximum number of memory regions in memory map. (default: 64)"); 39 static int max_iotlb_entries = 2048; 40 module_param(max_iotlb_entries, int, 0444); 41 MODULE_PARM_DESC(max_iotlb_entries, 42 "Maximum number of iotlb entries. (default: 2048)"); 43 44 enum { 45 VHOST_MEMORY_F_LOG = 0x1, 46 }; 47 48 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 49 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 50 51 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 52 rb, __u64, __subtree_last, 53 START, LAST, static inline, vhost_umem_interval_tree); 54 55 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 56 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 57 { 58 vq->user_be = !virtio_legacy_is_little_endian(); 59 } 60 61 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 62 { 63 vq->user_be = true; 64 } 65 66 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 67 { 68 vq->user_be = false; 69 } 70 71 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 72 { 73 struct vhost_vring_state s; 74 75 if (vq->private_data) 76 return -EBUSY; 77 78 if (copy_from_user(&s, argp, sizeof(s))) 79 return -EFAULT; 80 81 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 82 s.num != VHOST_VRING_BIG_ENDIAN) 83 return -EINVAL; 84 85 if (s.num == VHOST_VRING_BIG_ENDIAN) 86 vhost_enable_cross_endian_big(vq); 87 else 88 vhost_enable_cross_endian_little(vq); 89 90 return 0; 91 } 92 93 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 94 int __user *argp) 95 { 96 struct vhost_vring_state s = { 97 .index = idx, 98 .num = vq->user_be 99 }; 100 101 if (copy_to_user(argp, &s, sizeof(s))) 102 return -EFAULT; 103 104 return 0; 105 } 106 107 static void vhost_init_is_le(struct vhost_virtqueue *vq) 108 { 109 /* Note for legacy virtio: user_be is initialized at reset time 110 * according to the host endianness. If userspace does not set an 111 * explicit endianness, the default behavior is native endian, as 112 * expected by legacy virtio. 113 */ 114 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 115 } 116 #else 117 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 118 { 119 } 120 121 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 122 { 123 return -ENOIOCTLCMD; 124 } 125 126 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 127 int __user *argp) 128 { 129 return -ENOIOCTLCMD; 130 } 131 132 static void vhost_init_is_le(struct vhost_virtqueue *vq) 133 { 134 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 135 || virtio_legacy_is_little_endian(); 136 } 137 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 138 139 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 140 { 141 vhost_init_is_le(vq); 142 } 143 144 struct vhost_flush_struct { 145 struct vhost_work work; 146 struct completion wait_event; 147 }; 148 149 static void vhost_flush_work(struct vhost_work *work) 150 { 151 struct vhost_flush_struct *s; 152 153 s = container_of(work, struct vhost_flush_struct, work); 154 complete(&s->wait_event); 155 } 156 157 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 158 poll_table *pt) 159 { 160 struct vhost_poll *poll; 161 162 poll = container_of(pt, struct vhost_poll, table); 163 poll->wqh = wqh; 164 add_wait_queue(wqh, &poll->wait); 165 } 166 167 static int vhost_poll_wakeup(wait_queue_t *wait, unsigned mode, int sync, 168 void *key) 169 { 170 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 171 172 if (!((unsigned long)key & poll->mask)) 173 return 0; 174 175 vhost_poll_queue(poll); 176 return 0; 177 } 178 179 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 180 { 181 clear_bit(VHOST_WORK_QUEUED, &work->flags); 182 work->fn = fn; 183 init_waitqueue_head(&work->done); 184 } 185 EXPORT_SYMBOL_GPL(vhost_work_init); 186 187 /* Init poll structure */ 188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 189 unsigned long mask, struct vhost_dev *dev) 190 { 191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 192 init_poll_funcptr(&poll->table, vhost_poll_func); 193 poll->mask = mask; 194 poll->dev = dev; 195 poll->wqh = NULL; 196 197 vhost_work_init(&poll->work, fn); 198 } 199 EXPORT_SYMBOL_GPL(vhost_poll_init); 200 201 /* Start polling a file. We add ourselves to file's wait queue. The caller must 202 * keep a reference to a file until after vhost_poll_stop is called. */ 203 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 204 { 205 unsigned long mask; 206 int ret = 0; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = file->f_op->poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, (void *)mask); 214 if (mask & POLLERR) { 215 if (poll->wqh) 216 remove_wait_queue(poll->wqh, &poll->wait); 217 ret = -EINVAL; 218 } 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(vhost_poll_start); 223 224 /* Stop polling a file. After this function returns, it becomes safe to drop the 225 * file reference. You must also flush afterwards. */ 226 void vhost_poll_stop(struct vhost_poll *poll) 227 { 228 if (poll->wqh) { 229 remove_wait_queue(poll->wqh, &poll->wait); 230 poll->wqh = NULL; 231 } 232 } 233 EXPORT_SYMBOL_GPL(vhost_poll_stop); 234 235 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 236 { 237 struct vhost_flush_struct flush; 238 239 if (dev->worker) { 240 init_completion(&flush.wait_event); 241 vhost_work_init(&flush.work, vhost_flush_work); 242 243 vhost_work_queue(dev, &flush.work); 244 wait_for_completion(&flush.wait_event); 245 } 246 } 247 EXPORT_SYMBOL_GPL(vhost_work_flush); 248 249 /* Flush any work that has been scheduled. When calling this, don't hold any 250 * locks that are also used by the callback. */ 251 void vhost_poll_flush(struct vhost_poll *poll) 252 { 253 vhost_work_flush(poll->dev, &poll->work); 254 } 255 EXPORT_SYMBOL_GPL(vhost_poll_flush); 256 257 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 258 { 259 if (!dev->worker) 260 return; 261 262 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 263 /* We can only add the work to the list after we're 264 * sure it was not in the list. 265 * test_and_set_bit() implies a memory barrier. 266 */ 267 llist_add(&work->node, &dev->work_list); 268 wake_up_process(dev->worker); 269 } 270 } 271 EXPORT_SYMBOL_GPL(vhost_work_queue); 272 273 /* A lockless hint for busy polling code to exit the loop */ 274 bool vhost_has_work(struct vhost_dev *dev) 275 { 276 return !llist_empty(&dev->work_list); 277 } 278 EXPORT_SYMBOL_GPL(vhost_has_work); 279 280 void vhost_poll_queue(struct vhost_poll *poll) 281 { 282 vhost_work_queue(poll->dev, &poll->work); 283 } 284 EXPORT_SYMBOL_GPL(vhost_poll_queue); 285 286 static void vhost_vq_reset(struct vhost_dev *dev, 287 struct vhost_virtqueue *vq) 288 { 289 vq->num = 1; 290 vq->desc = NULL; 291 vq->avail = NULL; 292 vq->used = NULL; 293 vq->last_avail_idx = 0; 294 vq->last_used_event = 0; 295 vq->avail_idx = 0; 296 vq->last_used_idx = 0; 297 vq->signalled_used = 0; 298 vq->signalled_used_valid = false; 299 vq->used_flags = 0; 300 vq->log_used = false; 301 vq->log_addr = -1ull; 302 vq->private_data = NULL; 303 vq->acked_features = 0; 304 vq->log_base = NULL; 305 vq->error_ctx = NULL; 306 vq->error = NULL; 307 vq->kick = NULL; 308 vq->call_ctx = NULL; 309 vq->call = NULL; 310 vq->log_ctx = NULL; 311 vhost_reset_is_le(vq); 312 vhost_disable_cross_endian(vq); 313 vq->busyloop_timeout = 0; 314 vq->umem = NULL; 315 vq->iotlb = NULL; 316 } 317 318 static int vhost_worker(void *data) 319 { 320 struct vhost_dev *dev = data; 321 struct vhost_work *work, *work_next; 322 struct llist_node *node; 323 mm_segment_t oldfs = get_fs(); 324 325 set_fs(USER_DS); 326 use_mm(dev->mm); 327 328 for (;;) { 329 /* mb paired w/ kthread_stop */ 330 set_current_state(TASK_INTERRUPTIBLE); 331 332 if (kthread_should_stop()) { 333 __set_current_state(TASK_RUNNING); 334 break; 335 } 336 337 node = llist_del_all(&dev->work_list); 338 if (!node) 339 schedule(); 340 341 node = llist_reverse_order(node); 342 /* make sure flag is seen after deletion */ 343 smp_wmb(); 344 llist_for_each_entry_safe(work, work_next, node, node) { 345 clear_bit(VHOST_WORK_QUEUED, &work->flags); 346 __set_current_state(TASK_RUNNING); 347 work->fn(work); 348 if (need_resched()) 349 schedule(); 350 } 351 } 352 unuse_mm(dev->mm); 353 set_fs(oldfs); 354 return 0; 355 } 356 357 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 358 { 359 kfree(vq->indirect); 360 vq->indirect = NULL; 361 kfree(vq->log); 362 vq->log = NULL; 363 kfree(vq->heads); 364 vq->heads = NULL; 365 } 366 367 /* Helper to allocate iovec buffers for all vqs. */ 368 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 369 { 370 struct vhost_virtqueue *vq; 371 int i; 372 373 for (i = 0; i < dev->nvqs; ++i) { 374 vq = dev->vqs[i]; 375 vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV, 376 GFP_KERNEL); 377 vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL); 378 vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL); 379 if (!vq->indirect || !vq->log || !vq->heads) 380 goto err_nomem; 381 } 382 return 0; 383 384 err_nomem: 385 for (; i >= 0; --i) 386 vhost_vq_free_iovecs(dev->vqs[i]); 387 return -ENOMEM; 388 } 389 390 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 391 { 392 int i; 393 394 for (i = 0; i < dev->nvqs; ++i) 395 vhost_vq_free_iovecs(dev->vqs[i]); 396 } 397 398 void vhost_dev_init(struct vhost_dev *dev, 399 struct vhost_virtqueue **vqs, int nvqs) 400 { 401 struct vhost_virtqueue *vq; 402 int i; 403 404 dev->vqs = vqs; 405 dev->nvqs = nvqs; 406 mutex_init(&dev->mutex); 407 dev->log_ctx = NULL; 408 dev->log_file = NULL; 409 dev->umem = NULL; 410 dev->iotlb = NULL; 411 dev->mm = NULL; 412 dev->worker = NULL; 413 init_llist_head(&dev->work_list); 414 init_waitqueue_head(&dev->wait); 415 INIT_LIST_HEAD(&dev->read_list); 416 INIT_LIST_HEAD(&dev->pending_list); 417 spin_lock_init(&dev->iotlb_lock); 418 419 420 for (i = 0; i < dev->nvqs; ++i) { 421 vq = dev->vqs[i]; 422 vq->log = NULL; 423 vq->indirect = NULL; 424 vq->heads = NULL; 425 vq->dev = dev; 426 mutex_init(&vq->mutex); 427 vhost_vq_reset(dev, vq); 428 if (vq->handle_kick) 429 vhost_poll_init(&vq->poll, vq->handle_kick, 430 POLLIN, dev); 431 } 432 } 433 EXPORT_SYMBOL_GPL(vhost_dev_init); 434 435 /* Caller should have device mutex */ 436 long vhost_dev_check_owner(struct vhost_dev *dev) 437 { 438 /* Are you the owner? If not, I don't think you mean to do that */ 439 return dev->mm == current->mm ? 0 : -EPERM; 440 } 441 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 442 443 struct vhost_attach_cgroups_struct { 444 struct vhost_work work; 445 struct task_struct *owner; 446 int ret; 447 }; 448 449 static void vhost_attach_cgroups_work(struct vhost_work *work) 450 { 451 struct vhost_attach_cgroups_struct *s; 452 453 s = container_of(work, struct vhost_attach_cgroups_struct, work); 454 s->ret = cgroup_attach_task_all(s->owner, current); 455 } 456 457 static int vhost_attach_cgroups(struct vhost_dev *dev) 458 { 459 struct vhost_attach_cgroups_struct attach; 460 461 attach.owner = current; 462 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 463 vhost_work_queue(dev, &attach.work); 464 vhost_work_flush(dev, &attach.work); 465 return attach.ret; 466 } 467 468 /* Caller should have device mutex */ 469 bool vhost_dev_has_owner(struct vhost_dev *dev) 470 { 471 return dev->mm; 472 } 473 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 474 475 /* Caller should have device mutex */ 476 long vhost_dev_set_owner(struct vhost_dev *dev) 477 { 478 struct task_struct *worker; 479 int err; 480 481 /* Is there an owner already? */ 482 if (vhost_dev_has_owner(dev)) { 483 err = -EBUSY; 484 goto err_mm; 485 } 486 487 /* No owner, become one */ 488 dev->mm = get_task_mm(current); 489 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 490 if (IS_ERR(worker)) { 491 err = PTR_ERR(worker); 492 goto err_worker; 493 } 494 495 dev->worker = worker; 496 wake_up_process(worker); /* avoid contributing to loadavg */ 497 498 err = vhost_attach_cgroups(dev); 499 if (err) 500 goto err_cgroup; 501 502 err = vhost_dev_alloc_iovecs(dev); 503 if (err) 504 goto err_cgroup; 505 506 return 0; 507 err_cgroup: 508 kthread_stop(worker); 509 dev->worker = NULL; 510 err_worker: 511 if (dev->mm) 512 mmput(dev->mm); 513 dev->mm = NULL; 514 err_mm: 515 return err; 516 } 517 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 518 519 static void *vhost_kvzalloc(unsigned long size) 520 { 521 void *n = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 522 523 if (!n) 524 n = vzalloc(size); 525 return n; 526 } 527 528 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 529 { 530 return vhost_kvzalloc(sizeof(struct vhost_umem)); 531 } 532 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 533 534 /* Caller should have device mutex */ 535 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 536 { 537 int i; 538 539 vhost_dev_cleanup(dev, true); 540 541 /* Restore memory to default empty mapping. */ 542 INIT_LIST_HEAD(&umem->umem_list); 543 dev->umem = umem; 544 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 545 * VQs aren't running. 546 */ 547 for (i = 0; i < dev->nvqs; ++i) 548 dev->vqs[i]->umem = umem; 549 } 550 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 551 552 void vhost_dev_stop(struct vhost_dev *dev) 553 { 554 int i; 555 556 for (i = 0; i < dev->nvqs; ++i) { 557 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 558 vhost_poll_stop(&dev->vqs[i]->poll); 559 vhost_poll_flush(&dev->vqs[i]->poll); 560 } 561 } 562 } 563 EXPORT_SYMBOL_GPL(vhost_dev_stop); 564 565 static void vhost_umem_free(struct vhost_umem *umem, 566 struct vhost_umem_node *node) 567 { 568 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 569 list_del(&node->link); 570 kfree(node); 571 umem->numem--; 572 } 573 574 static void vhost_umem_clean(struct vhost_umem *umem) 575 { 576 struct vhost_umem_node *node, *tmp; 577 578 if (!umem) 579 return; 580 581 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 582 vhost_umem_free(umem, node); 583 584 kvfree(umem); 585 } 586 587 static void vhost_clear_msg(struct vhost_dev *dev) 588 { 589 struct vhost_msg_node *node, *n; 590 591 spin_lock(&dev->iotlb_lock); 592 593 list_for_each_entry_safe(node, n, &dev->read_list, node) { 594 list_del(&node->node); 595 kfree(node); 596 } 597 598 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 599 list_del(&node->node); 600 kfree(node); 601 } 602 603 spin_unlock(&dev->iotlb_lock); 604 } 605 606 /* Caller should have device mutex if and only if locked is set */ 607 void vhost_dev_cleanup(struct vhost_dev *dev, bool locked) 608 { 609 int i; 610 611 for (i = 0; i < dev->nvqs; ++i) { 612 if (dev->vqs[i]->error_ctx) 613 eventfd_ctx_put(dev->vqs[i]->error_ctx); 614 if (dev->vqs[i]->error) 615 fput(dev->vqs[i]->error); 616 if (dev->vqs[i]->kick) 617 fput(dev->vqs[i]->kick); 618 if (dev->vqs[i]->call_ctx) 619 eventfd_ctx_put(dev->vqs[i]->call_ctx); 620 if (dev->vqs[i]->call) 621 fput(dev->vqs[i]->call); 622 vhost_vq_reset(dev, dev->vqs[i]); 623 } 624 vhost_dev_free_iovecs(dev); 625 if (dev->log_ctx) 626 eventfd_ctx_put(dev->log_ctx); 627 dev->log_ctx = NULL; 628 if (dev->log_file) 629 fput(dev->log_file); 630 dev->log_file = NULL; 631 /* No one will access memory at this point */ 632 vhost_umem_clean(dev->umem); 633 dev->umem = NULL; 634 vhost_umem_clean(dev->iotlb); 635 dev->iotlb = NULL; 636 vhost_clear_msg(dev); 637 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 638 WARN_ON(!llist_empty(&dev->work_list)); 639 if (dev->worker) { 640 kthread_stop(dev->worker); 641 dev->worker = NULL; 642 } 643 if (dev->mm) 644 mmput(dev->mm); 645 dev->mm = NULL; 646 } 647 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 648 649 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 650 { 651 u64 a = addr / VHOST_PAGE_SIZE / 8; 652 653 /* Make sure 64 bit math will not overflow. */ 654 if (a > ULONG_MAX - (unsigned long)log_base || 655 a + (unsigned long)log_base > ULONG_MAX) 656 return 0; 657 658 return access_ok(VERIFY_WRITE, log_base + a, 659 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 660 } 661 662 static bool vhost_overflow(u64 uaddr, u64 size) 663 { 664 /* Make sure 64 bit math will not overflow. */ 665 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 666 } 667 668 /* Caller should have vq mutex and device mutex. */ 669 static int vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 670 int log_all) 671 { 672 struct vhost_umem_node *node; 673 674 if (!umem) 675 return 0; 676 677 list_for_each_entry(node, &umem->umem_list, link) { 678 unsigned long a = node->userspace_addr; 679 680 if (vhost_overflow(node->userspace_addr, node->size)) 681 return 0; 682 683 684 if (!access_ok(VERIFY_WRITE, (void __user *)a, 685 node->size)) 686 return 0; 687 else if (log_all && !log_access_ok(log_base, 688 node->start, 689 node->size)) 690 return 0; 691 } 692 return 1; 693 } 694 695 /* Can we switch to this memory table? */ 696 /* Caller should have device mutex but not vq mutex */ 697 static int memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 698 int log_all) 699 { 700 int i; 701 702 for (i = 0; i < d->nvqs; ++i) { 703 int ok; 704 bool log; 705 706 mutex_lock(&d->vqs[i]->mutex); 707 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 708 /* If ring is inactive, will check when it's enabled. */ 709 if (d->vqs[i]->private_data) 710 ok = vq_memory_access_ok(d->vqs[i]->log_base, 711 umem, log); 712 else 713 ok = 1; 714 mutex_unlock(&d->vqs[i]->mutex); 715 if (!ok) 716 return 0; 717 } 718 return 1; 719 } 720 721 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 722 struct iovec iov[], int iov_size, int access); 723 724 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 725 const void *from, unsigned size) 726 { 727 int ret; 728 729 if (!vq->iotlb) 730 return __copy_to_user(to, from, size); 731 else { 732 /* This function should be called after iotlb 733 * prefetch, which means we're sure that all vq 734 * could be access through iotlb. So -EAGAIN should 735 * not happen in this case. 736 */ 737 /* TODO: more fast path */ 738 struct iov_iter t; 739 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 740 ARRAY_SIZE(vq->iotlb_iov), 741 VHOST_ACCESS_WO); 742 if (ret < 0) 743 goto out; 744 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 745 ret = copy_to_iter(from, size, &t); 746 if (ret == size) 747 ret = 0; 748 } 749 out: 750 return ret; 751 } 752 753 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 754 void __user *from, unsigned size) 755 { 756 int ret; 757 758 if (!vq->iotlb) 759 return __copy_from_user(to, from, size); 760 else { 761 /* This function should be called after iotlb 762 * prefetch, which means we're sure that vq 763 * could be access through iotlb. So -EAGAIN should 764 * not happen in this case. 765 */ 766 /* TODO: more fast path */ 767 struct iov_iter f; 768 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 769 ARRAY_SIZE(vq->iotlb_iov), 770 VHOST_ACCESS_RO); 771 if (ret < 0) { 772 vq_err(vq, "IOTLB translation failure: uaddr " 773 "%p size 0x%llx\n", from, 774 (unsigned long long) size); 775 goto out; 776 } 777 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 778 ret = copy_from_iter(to, size, &f); 779 if (ret == size) 780 ret = 0; 781 } 782 783 out: 784 return ret; 785 } 786 787 static void __user *__vhost_get_user(struct vhost_virtqueue *vq, 788 void __user *addr, unsigned size) 789 { 790 int ret; 791 792 /* This function should be called after iotlb 793 * prefetch, which means we're sure that vq 794 * could be access through iotlb. So -EAGAIN should 795 * not happen in this case. 796 */ 797 /* TODO: more fast path */ 798 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 799 ARRAY_SIZE(vq->iotlb_iov), 800 VHOST_ACCESS_RO); 801 if (ret < 0) { 802 vq_err(vq, "IOTLB translation failure: uaddr " 803 "%p size 0x%llx\n", addr, 804 (unsigned long long) size); 805 return NULL; 806 } 807 808 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 809 vq_err(vq, "Non atomic userspace memory access: uaddr " 810 "%p size 0x%llx\n", addr, 811 (unsigned long long) size); 812 return NULL; 813 } 814 815 return vq->iotlb_iov[0].iov_base; 816 } 817 818 #define vhost_put_user(vq, x, ptr) \ 819 ({ \ 820 int ret = -EFAULT; \ 821 if (!vq->iotlb) { \ 822 ret = __put_user(x, ptr); \ 823 } else { \ 824 __typeof__(ptr) to = \ 825 (__typeof__(ptr)) __vhost_get_user(vq, ptr, sizeof(*ptr)); \ 826 if (to != NULL) \ 827 ret = __put_user(x, to); \ 828 else \ 829 ret = -EFAULT; \ 830 } \ 831 ret; \ 832 }) 833 834 #define vhost_get_user(vq, x, ptr) \ 835 ({ \ 836 int ret; \ 837 if (!vq->iotlb) { \ 838 ret = __get_user(x, ptr); \ 839 } else { \ 840 __typeof__(ptr) from = \ 841 (__typeof__(ptr)) __vhost_get_user(vq, ptr, sizeof(*ptr)); \ 842 if (from != NULL) \ 843 ret = __get_user(x, from); \ 844 else \ 845 ret = -EFAULT; \ 846 } \ 847 ret; \ 848 }) 849 850 static void vhost_dev_lock_vqs(struct vhost_dev *d) 851 { 852 int i = 0; 853 for (i = 0; i < d->nvqs; ++i) 854 mutex_lock(&d->vqs[i]->mutex); 855 } 856 857 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 858 { 859 int i = 0; 860 for (i = 0; i < d->nvqs; ++i) 861 mutex_unlock(&d->vqs[i]->mutex); 862 } 863 864 static int vhost_new_umem_range(struct vhost_umem *umem, 865 u64 start, u64 size, u64 end, 866 u64 userspace_addr, int perm) 867 { 868 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 869 870 if (!node) 871 return -ENOMEM; 872 873 if (umem->numem == max_iotlb_entries) { 874 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 875 vhost_umem_free(umem, tmp); 876 } 877 878 node->start = start; 879 node->size = size; 880 node->last = end; 881 node->userspace_addr = userspace_addr; 882 node->perm = perm; 883 INIT_LIST_HEAD(&node->link); 884 list_add_tail(&node->link, &umem->umem_list); 885 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 886 umem->numem++; 887 888 return 0; 889 } 890 891 static void vhost_del_umem_range(struct vhost_umem *umem, 892 u64 start, u64 end) 893 { 894 struct vhost_umem_node *node; 895 896 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 897 start, end))) 898 vhost_umem_free(umem, node); 899 } 900 901 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 902 struct vhost_iotlb_msg *msg) 903 { 904 struct vhost_msg_node *node, *n; 905 906 spin_lock(&d->iotlb_lock); 907 908 list_for_each_entry_safe(node, n, &d->pending_list, node) { 909 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 910 if (msg->iova <= vq_msg->iova && 911 msg->iova + msg->size - 1 > vq_msg->iova && 912 vq_msg->type == VHOST_IOTLB_MISS) { 913 vhost_poll_queue(&node->vq->poll); 914 list_del(&node->node); 915 kfree(node); 916 } 917 } 918 919 spin_unlock(&d->iotlb_lock); 920 } 921 922 static int umem_access_ok(u64 uaddr, u64 size, int access) 923 { 924 unsigned long a = uaddr; 925 926 /* Make sure 64 bit math will not overflow. */ 927 if (vhost_overflow(uaddr, size)) 928 return -EFAULT; 929 930 if ((access & VHOST_ACCESS_RO) && 931 !access_ok(VERIFY_READ, (void __user *)a, size)) 932 return -EFAULT; 933 if ((access & VHOST_ACCESS_WO) && 934 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 935 return -EFAULT; 936 return 0; 937 } 938 939 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 940 struct vhost_iotlb_msg *msg) 941 { 942 int ret = 0; 943 944 vhost_dev_lock_vqs(dev); 945 switch (msg->type) { 946 case VHOST_IOTLB_UPDATE: 947 if (!dev->iotlb) { 948 ret = -EFAULT; 949 break; 950 } 951 if (umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 952 ret = -EFAULT; 953 break; 954 } 955 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 956 msg->iova + msg->size - 1, 957 msg->uaddr, msg->perm)) { 958 ret = -ENOMEM; 959 break; 960 } 961 vhost_iotlb_notify_vq(dev, msg); 962 break; 963 case VHOST_IOTLB_INVALIDATE: 964 vhost_del_umem_range(dev->iotlb, msg->iova, 965 msg->iova + msg->size - 1); 966 break; 967 default: 968 ret = -EINVAL; 969 break; 970 } 971 972 vhost_dev_unlock_vqs(dev); 973 return ret; 974 } 975 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 976 struct iov_iter *from) 977 { 978 struct vhost_msg_node node; 979 unsigned size = sizeof(struct vhost_msg); 980 size_t ret; 981 int err; 982 983 if (iov_iter_count(from) < size) 984 return 0; 985 ret = copy_from_iter(&node.msg, size, from); 986 if (ret != size) 987 goto done; 988 989 switch (node.msg.type) { 990 case VHOST_IOTLB_MSG: 991 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb); 992 if (err) 993 ret = err; 994 break; 995 default: 996 ret = -EINVAL; 997 break; 998 } 999 1000 done: 1001 return ret; 1002 } 1003 EXPORT_SYMBOL(vhost_chr_write_iter); 1004 1005 unsigned int vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1006 poll_table *wait) 1007 { 1008 unsigned int mask = 0; 1009 1010 poll_wait(file, &dev->wait, wait); 1011 1012 if (!list_empty(&dev->read_list)) 1013 mask |= POLLIN | POLLRDNORM; 1014 1015 return mask; 1016 } 1017 EXPORT_SYMBOL(vhost_chr_poll); 1018 1019 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1020 int noblock) 1021 { 1022 DEFINE_WAIT(wait); 1023 struct vhost_msg_node *node; 1024 ssize_t ret = 0; 1025 unsigned size = sizeof(struct vhost_msg); 1026 1027 if (iov_iter_count(to) < size) 1028 return 0; 1029 1030 while (1) { 1031 if (!noblock) 1032 prepare_to_wait(&dev->wait, &wait, 1033 TASK_INTERRUPTIBLE); 1034 1035 node = vhost_dequeue_msg(dev, &dev->read_list); 1036 if (node) 1037 break; 1038 if (noblock) { 1039 ret = -EAGAIN; 1040 break; 1041 } 1042 if (signal_pending(current)) { 1043 ret = -ERESTARTSYS; 1044 break; 1045 } 1046 if (!dev->iotlb) { 1047 ret = -EBADFD; 1048 break; 1049 } 1050 1051 schedule(); 1052 } 1053 1054 if (!noblock) 1055 finish_wait(&dev->wait, &wait); 1056 1057 if (node) { 1058 ret = copy_to_iter(&node->msg, size, to); 1059 1060 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) { 1061 kfree(node); 1062 return ret; 1063 } 1064 1065 vhost_enqueue_msg(dev, &dev->pending_list, node); 1066 } 1067 1068 return ret; 1069 } 1070 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1071 1072 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1073 { 1074 struct vhost_dev *dev = vq->dev; 1075 struct vhost_msg_node *node; 1076 struct vhost_iotlb_msg *msg; 1077 1078 node = vhost_new_msg(vq, VHOST_IOTLB_MISS); 1079 if (!node) 1080 return -ENOMEM; 1081 1082 msg = &node->msg.iotlb; 1083 msg->type = VHOST_IOTLB_MISS; 1084 msg->iova = iova; 1085 msg->perm = access; 1086 1087 vhost_enqueue_msg(dev, &dev->read_list, node); 1088 1089 return 0; 1090 } 1091 1092 static int vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1093 struct vring_desc __user *desc, 1094 struct vring_avail __user *avail, 1095 struct vring_used __user *used) 1096 1097 { 1098 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1099 1100 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1101 access_ok(VERIFY_READ, avail, 1102 sizeof *avail + num * sizeof *avail->ring + s) && 1103 access_ok(VERIFY_WRITE, used, 1104 sizeof *used + num * sizeof *used->ring + s); 1105 } 1106 1107 static int iotlb_access_ok(struct vhost_virtqueue *vq, 1108 int access, u64 addr, u64 len) 1109 { 1110 const struct vhost_umem_node *node; 1111 struct vhost_umem *umem = vq->iotlb; 1112 u64 s = 0, size; 1113 1114 while (len > s) { 1115 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1116 addr, 1117 addr + len - 1); 1118 if (node == NULL || node->start > addr) { 1119 vhost_iotlb_miss(vq, addr, access); 1120 return false; 1121 } else if (!(node->perm & access)) { 1122 /* Report the possible access violation by 1123 * request another translation from userspace. 1124 */ 1125 return false; 1126 } 1127 1128 size = node->size - addr + node->start; 1129 s += size; 1130 addr += size; 1131 } 1132 1133 return true; 1134 } 1135 1136 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1137 { 1138 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1139 unsigned int num = vq->num; 1140 1141 if (!vq->iotlb) 1142 return 1; 1143 1144 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1145 num * sizeof *vq->desc) && 1146 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1147 sizeof *vq->avail + 1148 num * sizeof *vq->avail->ring + s) && 1149 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1150 sizeof *vq->used + 1151 num * sizeof *vq->used->ring + s); 1152 } 1153 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1154 1155 /* Can we log writes? */ 1156 /* Caller should have device mutex but not vq mutex */ 1157 int vhost_log_access_ok(struct vhost_dev *dev) 1158 { 1159 return memory_access_ok(dev, dev->umem, 1); 1160 } 1161 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1162 1163 /* Verify access for write logging. */ 1164 /* Caller should have vq mutex and device mutex */ 1165 static int vq_log_access_ok(struct vhost_virtqueue *vq, 1166 void __user *log_base) 1167 { 1168 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1169 1170 return vq_memory_access_ok(log_base, vq->umem, 1171 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1172 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1173 sizeof *vq->used + 1174 vq->num * sizeof *vq->used->ring + s)); 1175 } 1176 1177 /* Can we start vq? */ 1178 /* Caller should have vq mutex and device mutex */ 1179 int vhost_vq_access_ok(struct vhost_virtqueue *vq) 1180 { 1181 if (vq->iotlb) { 1182 /* When device IOTLB was used, the access validation 1183 * will be validated during prefetching. 1184 */ 1185 return 1; 1186 } 1187 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used) && 1188 vq_log_access_ok(vq, vq->log_base); 1189 } 1190 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1191 1192 static struct vhost_umem *vhost_umem_alloc(void) 1193 { 1194 struct vhost_umem *umem = vhost_kvzalloc(sizeof(*umem)); 1195 1196 if (!umem) 1197 return NULL; 1198 1199 umem->umem_tree = RB_ROOT; 1200 umem->numem = 0; 1201 INIT_LIST_HEAD(&umem->umem_list); 1202 1203 return umem; 1204 } 1205 1206 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1207 { 1208 struct vhost_memory mem, *newmem; 1209 struct vhost_memory_region *region; 1210 struct vhost_umem *newumem, *oldumem; 1211 unsigned long size = offsetof(struct vhost_memory, regions); 1212 int i; 1213 1214 if (copy_from_user(&mem, m, size)) 1215 return -EFAULT; 1216 if (mem.padding) 1217 return -EOPNOTSUPP; 1218 if (mem.nregions > max_mem_regions) 1219 return -E2BIG; 1220 newmem = vhost_kvzalloc(size + mem.nregions * sizeof(*m->regions)); 1221 if (!newmem) 1222 return -ENOMEM; 1223 1224 memcpy(newmem, &mem, size); 1225 if (copy_from_user(newmem->regions, m->regions, 1226 mem.nregions * sizeof *m->regions)) { 1227 kvfree(newmem); 1228 return -EFAULT; 1229 } 1230 1231 newumem = vhost_umem_alloc(); 1232 if (!newumem) { 1233 kvfree(newmem); 1234 return -ENOMEM; 1235 } 1236 1237 for (region = newmem->regions; 1238 region < newmem->regions + mem.nregions; 1239 region++) { 1240 if (vhost_new_umem_range(newumem, 1241 region->guest_phys_addr, 1242 region->memory_size, 1243 region->guest_phys_addr + 1244 region->memory_size - 1, 1245 region->userspace_addr, 1246 VHOST_ACCESS_RW)) 1247 goto err; 1248 } 1249 1250 if (!memory_access_ok(d, newumem, 0)) 1251 goto err; 1252 1253 oldumem = d->umem; 1254 d->umem = newumem; 1255 1256 /* All memory accesses are done under some VQ mutex. */ 1257 for (i = 0; i < d->nvqs; ++i) { 1258 mutex_lock(&d->vqs[i]->mutex); 1259 d->vqs[i]->umem = newumem; 1260 mutex_unlock(&d->vqs[i]->mutex); 1261 } 1262 1263 kvfree(newmem); 1264 vhost_umem_clean(oldumem); 1265 return 0; 1266 1267 err: 1268 vhost_umem_clean(newumem); 1269 kvfree(newmem); 1270 return -EFAULT; 1271 } 1272 1273 long vhost_vring_ioctl(struct vhost_dev *d, int ioctl, void __user *argp) 1274 { 1275 struct file *eventfp, *filep = NULL; 1276 bool pollstart = false, pollstop = false; 1277 struct eventfd_ctx *ctx = NULL; 1278 u32 __user *idxp = argp; 1279 struct vhost_virtqueue *vq; 1280 struct vhost_vring_state s; 1281 struct vhost_vring_file f; 1282 struct vhost_vring_addr a; 1283 u32 idx; 1284 long r; 1285 1286 r = get_user(idx, idxp); 1287 if (r < 0) 1288 return r; 1289 if (idx >= d->nvqs) 1290 return -ENOBUFS; 1291 1292 vq = d->vqs[idx]; 1293 1294 mutex_lock(&vq->mutex); 1295 1296 switch (ioctl) { 1297 case VHOST_SET_VRING_NUM: 1298 /* Resizing ring with an active backend? 1299 * You don't want to do that. */ 1300 if (vq->private_data) { 1301 r = -EBUSY; 1302 break; 1303 } 1304 if (copy_from_user(&s, argp, sizeof s)) { 1305 r = -EFAULT; 1306 break; 1307 } 1308 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1309 r = -EINVAL; 1310 break; 1311 } 1312 vq->num = s.num; 1313 break; 1314 case VHOST_SET_VRING_BASE: 1315 /* Moving base with an active backend? 1316 * You don't want to do that. */ 1317 if (vq->private_data) { 1318 r = -EBUSY; 1319 break; 1320 } 1321 if (copy_from_user(&s, argp, sizeof s)) { 1322 r = -EFAULT; 1323 break; 1324 } 1325 if (s.num > 0xffff) { 1326 r = -EINVAL; 1327 break; 1328 } 1329 vq->last_avail_idx = vq->last_used_event = s.num; 1330 /* Forget the cached index value. */ 1331 vq->avail_idx = vq->last_avail_idx; 1332 break; 1333 case VHOST_GET_VRING_BASE: 1334 s.index = idx; 1335 s.num = vq->last_avail_idx; 1336 if (copy_to_user(argp, &s, sizeof s)) 1337 r = -EFAULT; 1338 break; 1339 case VHOST_SET_VRING_ADDR: 1340 if (copy_from_user(&a, argp, sizeof a)) { 1341 r = -EFAULT; 1342 break; 1343 } 1344 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1345 r = -EOPNOTSUPP; 1346 break; 1347 } 1348 /* For 32bit, verify that the top 32bits of the user 1349 data are set to zero. */ 1350 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1351 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1352 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1353 r = -EFAULT; 1354 break; 1355 } 1356 1357 /* Make sure it's safe to cast pointers to vring types. */ 1358 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1359 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1360 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1361 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1362 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1363 r = -EINVAL; 1364 break; 1365 } 1366 1367 /* We only verify access here if backend is configured. 1368 * If it is not, we don't as size might not have been setup. 1369 * We will verify when backend is configured. */ 1370 if (vq->private_data) { 1371 if (!vq_access_ok(vq, vq->num, 1372 (void __user *)(unsigned long)a.desc_user_addr, 1373 (void __user *)(unsigned long)a.avail_user_addr, 1374 (void __user *)(unsigned long)a.used_user_addr)) { 1375 r = -EINVAL; 1376 break; 1377 } 1378 1379 /* Also validate log access for used ring if enabled. */ 1380 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1381 !log_access_ok(vq->log_base, a.log_guest_addr, 1382 sizeof *vq->used + 1383 vq->num * sizeof *vq->used->ring)) { 1384 r = -EINVAL; 1385 break; 1386 } 1387 } 1388 1389 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1390 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1391 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1392 vq->log_addr = a.log_guest_addr; 1393 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1394 break; 1395 case VHOST_SET_VRING_KICK: 1396 if (copy_from_user(&f, argp, sizeof f)) { 1397 r = -EFAULT; 1398 break; 1399 } 1400 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1401 if (IS_ERR(eventfp)) { 1402 r = PTR_ERR(eventfp); 1403 break; 1404 } 1405 if (eventfp != vq->kick) { 1406 pollstop = (filep = vq->kick) != NULL; 1407 pollstart = (vq->kick = eventfp) != NULL; 1408 } else 1409 filep = eventfp; 1410 break; 1411 case VHOST_SET_VRING_CALL: 1412 if (copy_from_user(&f, argp, sizeof f)) { 1413 r = -EFAULT; 1414 break; 1415 } 1416 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1417 if (IS_ERR(eventfp)) { 1418 r = PTR_ERR(eventfp); 1419 break; 1420 } 1421 if (eventfp != vq->call) { 1422 filep = vq->call; 1423 ctx = vq->call_ctx; 1424 vq->call = eventfp; 1425 vq->call_ctx = eventfp ? 1426 eventfd_ctx_fileget(eventfp) : NULL; 1427 } else 1428 filep = eventfp; 1429 break; 1430 case VHOST_SET_VRING_ERR: 1431 if (copy_from_user(&f, argp, sizeof f)) { 1432 r = -EFAULT; 1433 break; 1434 } 1435 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1436 if (IS_ERR(eventfp)) { 1437 r = PTR_ERR(eventfp); 1438 break; 1439 } 1440 if (eventfp != vq->error) { 1441 filep = vq->error; 1442 vq->error = eventfp; 1443 ctx = vq->error_ctx; 1444 vq->error_ctx = eventfp ? 1445 eventfd_ctx_fileget(eventfp) : NULL; 1446 } else 1447 filep = eventfp; 1448 break; 1449 case VHOST_SET_VRING_ENDIAN: 1450 r = vhost_set_vring_endian(vq, argp); 1451 break; 1452 case VHOST_GET_VRING_ENDIAN: 1453 r = vhost_get_vring_endian(vq, idx, argp); 1454 break; 1455 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1456 if (copy_from_user(&s, argp, sizeof(s))) { 1457 r = -EFAULT; 1458 break; 1459 } 1460 vq->busyloop_timeout = s.num; 1461 break; 1462 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1463 s.index = idx; 1464 s.num = vq->busyloop_timeout; 1465 if (copy_to_user(argp, &s, sizeof(s))) 1466 r = -EFAULT; 1467 break; 1468 default: 1469 r = -ENOIOCTLCMD; 1470 } 1471 1472 if (pollstop && vq->handle_kick) 1473 vhost_poll_stop(&vq->poll); 1474 1475 if (ctx) 1476 eventfd_ctx_put(ctx); 1477 if (filep) 1478 fput(filep); 1479 1480 if (pollstart && vq->handle_kick) 1481 r = vhost_poll_start(&vq->poll, vq->kick); 1482 1483 mutex_unlock(&vq->mutex); 1484 1485 if (pollstop && vq->handle_kick) 1486 vhost_poll_flush(&vq->poll); 1487 return r; 1488 } 1489 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1490 1491 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1492 { 1493 struct vhost_umem *niotlb, *oiotlb; 1494 int i; 1495 1496 niotlb = vhost_umem_alloc(); 1497 if (!niotlb) 1498 return -ENOMEM; 1499 1500 oiotlb = d->iotlb; 1501 d->iotlb = niotlb; 1502 1503 for (i = 0; i < d->nvqs; ++i) { 1504 mutex_lock(&d->vqs[i]->mutex); 1505 d->vqs[i]->iotlb = niotlb; 1506 mutex_unlock(&d->vqs[i]->mutex); 1507 } 1508 1509 vhost_umem_clean(oiotlb); 1510 1511 return 0; 1512 } 1513 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1514 1515 /* Caller must have device mutex */ 1516 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1517 { 1518 struct file *eventfp, *filep = NULL; 1519 struct eventfd_ctx *ctx = NULL; 1520 u64 p; 1521 long r; 1522 int i, fd; 1523 1524 /* If you are not the owner, you can become one */ 1525 if (ioctl == VHOST_SET_OWNER) { 1526 r = vhost_dev_set_owner(d); 1527 goto done; 1528 } 1529 1530 /* You must be the owner to do anything else */ 1531 r = vhost_dev_check_owner(d); 1532 if (r) 1533 goto done; 1534 1535 switch (ioctl) { 1536 case VHOST_SET_MEM_TABLE: 1537 r = vhost_set_memory(d, argp); 1538 break; 1539 case VHOST_SET_LOG_BASE: 1540 if (copy_from_user(&p, argp, sizeof p)) { 1541 r = -EFAULT; 1542 break; 1543 } 1544 if ((u64)(unsigned long)p != p) { 1545 r = -EFAULT; 1546 break; 1547 } 1548 for (i = 0; i < d->nvqs; ++i) { 1549 struct vhost_virtqueue *vq; 1550 void __user *base = (void __user *)(unsigned long)p; 1551 vq = d->vqs[i]; 1552 mutex_lock(&vq->mutex); 1553 /* If ring is inactive, will check when it's enabled. */ 1554 if (vq->private_data && !vq_log_access_ok(vq, base)) 1555 r = -EFAULT; 1556 else 1557 vq->log_base = base; 1558 mutex_unlock(&vq->mutex); 1559 } 1560 break; 1561 case VHOST_SET_LOG_FD: 1562 r = get_user(fd, (int __user *)argp); 1563 if (r < 0) 1564 break; 1565 eventfp = fd == -1 ? NULL : eventfd_fget(fd); 1566 if (IS_ERR(eventfp)) { 1567 r = PTR_ERR(eventfp); 1568 break; 1569 } 1570 if (eventfp != d->log_file) { 1571 filep = d->log_file; 1572 d->log_file = eventfp; 1573 ctx = d->log_ctx; 1574 d->log_ctx = eventfp ? 1575 eventfd_ctx_fileget(eventfp) : NULL; 1576 } else 1577 filep = eventfp; 1578 for (i = 0; i < d->nvqs; ++i) { 1579 mutex_lock(&d->vqs[i]->mutex); 1580 d->vqs[i]->log_ctx = d->log_ctx; 1581 mutex_unlock(&d->vqs[i]->mutex); 1582 } 1583 if (ctx) 1584 eventfd_ctx_put(ctx); 1585 if (filep) 1586 fput(filep); 1587 break; 1588 default: 1589 r = -ENOIOCTLCMD; 1590 break; 1591 } 1592 done: 1593 return r; 1594 } 1595 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1596 1597 /* TODO: This is really inefficient. We need something like get_user() 1598 * (instruction directly accesses the data, with an exception table entry 1599 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1600 */ 1601 static int set_bit_to_user(int nr, void __user *addr) 1602 { 1603 unsigned long log = (unsigned long)addr; 1604 struct page *page; 1605 void *base; 1606 int bit = nr + (log % PAGE_SIZE) * 8; 1607 int r; 1608 1609 r = get_user_pages_fast(log, 1, 1, &page); 1610 if (r < 0) 1611 return r; 1612 BUG_ON(r != 1); 1613 base = kmap_atomic(page); 1614 set_bit(bit, base); 1615 kunmap_atomic(base); 1616 set_page_dirty_lock(page); 1617 put_page(page); 1618 return 0; 1619 } 1620 1621 static int log_write(void __user *log_base, 1622 u64 write_address, u64 write_length) 1623 { 1624 u64 write_page = write_address / VHOST_PAGE_SIZE; 1625 int r; 1626 1627 if (!write_length) 1628 return 0; 1629 write_length += write_address % VHOST_PAGE_SIZE; 1630 for (;;) { 1631 u64 base = (u64)(unsigned long)log_base; 1632 u64 log = base + write_page / 8; 1633 int bit = write_page % 8; 1634 if ((u64)(unsigned long)log != log) 1635 return -EFAULT; 1636 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1637 if (r < 0) 1638 return r; 1639 if (write_length <= VHOST_PAGE_SIZE) 1640 break; 1641 write_length -= VHOST_PAGE_SIZE; 1642 write_page += 1; 1643 } 1644 return r; 1645 } 1646 1647 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1648 unsigned int log_num, u64 len) 1649 { 1650 int i, r; 1651 1652 /* Make sure data written is seen before log. */ 1653 smp_wmb(); 1654 for (i = 0; i < log_num; ++i) { 1655 u64 l = min(log[i].len, len); 1656 r = log_write(vq->log_base, log[i].addr, l); 1657 if (r < 0) 1658 return r; 1659 len -= l; 1660 if (!len) { 1661 if (vq->log_ctx) 1662 eventfd_signal(vq->log_ctx, 1); 1663 return 0; 1664 } 1665 } 1666 /* Length written exceeds what we have stored. This is a bug. */ 1667 BUG(); 1668 return 0; 1669 } 1670 EXPORT_SYMBOL_GPL(vhost_log_write); 1671 1672 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1673 { 1674 void __user *used; 1675 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1676 &vq->used->flags) < 0) 1677 return -EFAULT; 1678 if (unlikely(vq->log_used)) { 1679 /* Make sure the flag is seen before log. */ 1680 smp_wmb(); 1681 /* Log used flag write. */ 1682 used = &vq->used->flags; 1683 log_write(vq->log_base, vq->log_addr + 1684 (used - (void __user *)vq->used), 1685 sizeof vq->used->flags); 1686 if (vq->log_ctx) 1687 eventfd_signal(vq->log_ctx, 1); 1688 } 1689 return 0; 1690 } 1691 1692 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1693 { 1694 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1695 vhost_avail_event(vq))) 1696 return -EFAULT; 1697 if (unlikely(vq->log_used)) { 1698 void __user *used; 1699 /* Make sure the event is seen before log. */ 1700 smp_wmb(); 1701 /* Log avail event write */ 1702 used = vhost_avail_event(vq); 1703 log_write(vq->log_base, vq->log_addr + 1704 (used - (void __user *)vq->used), 1705 sizeof *vhost_avail_event(vq)); 1706 if (vq->log_ctx) 1707 eventfd_signal(vq->log_ctx, 1); 1708 } 1709 return 0; 1710 } 1711 1712 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1713 { 1714 __virtio16 last_used_idx; 1715 int r; 1716 bool is_le = vq->is_le; 1717 1718 if (!vq->private_data) 1719 return 0; 1720 1721 vhost_init_is_le(vq); 1722 1723 r = vhost_update_used_flags(vq); 1724 if (r) 1725 goto err; 1726 vq->signalled_used_valid = false; 1727 if (!vq->iotlb && 1728 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1729 r = -EFAULT; 1730 goto err; 1731 } 1732 r = vhost_get_user(vq, last_used_idx, &vq->used->idx); 1733 if (r) { 1734 vq_err(vq, "Can't access used idx at %p\n", 1735 &vq->used->idx); 1736 goto err; 1737 } 1738 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1739 return 0; 1740 1741 err: 1742 vq->is_le = is_le; 1743 return r; 1744 } 1745 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1746 1747 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1748 struct iovec iov[], int iov_size, int access) 1749 { 1750 const struct vhost_umem_node *node; 1751 struct vhost_dev *dev = vq->dev; 1752 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1753 struct iovec *_iov; 1754 u64 s = 0; 1755 int ret = 0; 1756 1757 while ((u64)len > s) { 1758 u64 size; 1759 if (unlikely(ret >= iov_size)) { 1760 ret = -ENOBUFS; 1761 break; 1762 } 1763 1764 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1765 addr, addr + len - 1); 1766 if (node == NULL || node->start > addr) { 1767 if (umem != dev->iotlb) { 1768 ret = -EFAULT; 1769 break; 1770 } 1771 ret = -EAGAIN; 1772 break; 1773 } else if (!(node->perm & access)) { 1774 ret = -EPERM; 1775 break; 1776 } 1777 1778 _iov = iov + ret; 1779 size = node->size - addr + node->start; 1780 _iov->iov_len = min((u64)len - s, size); 1781 _iov->iov_base = (void __user *)(unsigned long) 1782 (node->userspace_addr + addr - node->start); 1783 s += size; 1784 addr += size; 1785 ++ret; 1786 } 1787 1788 if (ret == -EAGAIN) 1789 vhost_iotlb_miss(vq, addr, access); 1790 return ret; 1791 } 1792 1793 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1794 * function returns the next descriptor in the chain, 1795 * or -1U if we're at the end. */ 1796 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1797 { 1798 unsigned int next; 1799 1800 /* If this descriptor says it doesn't chain, we're done. */ 1801 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1802 return -1U; 1803 1804 /* Check they're not leading us off end of descriptors. */ 1805 next = vhost16_to_cpu(vq, desc->next); 1806 /* Make sure compiler knows to grab that: we don't want it changing! */ 1807 /* We will use the result as an index in an array, so most 1808 * architectures only need a compiler barrier here. */ 1809 read_barrier_depends(); 1810 1811 return next; 1812 } 1813 1814 static int get_indirect(struct vhost_virtqueue *vq, 1815 struct iovec iov[], unsigned int iov_size, 1816 unsigned int *out_num, unsigned int *in_num, 1817 struct vhost_log *log, unsigned int *log_num, 1818 struct vring_desc *indirect) 1819 { 1820 struct vring_desc desc; 1821 unsigned int i = 0, count, found = 0; 1822 u32 len = vhost32_to_cpu(vq, indirect->len); 1823 struct iov_iter from; 1824 int ret, access; 1825 1826 /* Sanity check */ 1827 if (unlikely(len % sizeof desc)) { 1828 vq_err(vq, "Invalid length in indirect descriptor: " 1829 "len 0x%llx not multiple of 0x%zx\n", 1830 (unsigned long long)len, 1831 sizeof desc); 1832 return -EINVAL; 1833 } 1834 1835 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1836 UIO_MAXIOV, VHOST_ACCESS_RO); 1837 if (unlikely(ret < 0)) { 1838 if (ret != -EAGAIN) 1839 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1840 return ret; 1841 } 1842 iov_iter_init(&from, READ, vq->indirect, ret, len); 1843 1844 /* We will use the result as an address to read from, so most 1845 * architectures only need a compiler barrier here. */ 1846 read_barrier_depends(); 1847 1848 count = len / sizeof desc; 1849 /* Buffers are chained via a 16 bit next field, so 1850 * we can have at most 2^16 of these. */ 1851 if (unlikely(count > USHRT_MAX + 1)) { 1852 vq_err(vq, "Indirect buffer length too big: %d\n", 1853 indirect->len); 1854 return -E2BIG; 1855 } 1856 1857 do { 1858 unsigned iov_count = *in_num + *out_num; 1859 if (unlikely(++found > count)) { 1860 vq_err(vq, "Loop detected: last one at %u " 1861 "indirect size %u\n", 1862 i, count); 1863 return -EINVAL; 1864 } 1865 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1866 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1867 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1868 return -EINVAL; 1869 } 1870 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1871 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1872 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1873 return -EINVAL; 1874 } 1875 1876 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1877 access = VHOST_ACCESS_WO; 1878 else 1879 access = VHOST_ACCESS_RO; 1880 1881 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1882 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1883 iov_size - iov_count, access); 1884 if (unlikely(ret < 0)) { 1885 if (ret != -EAGAIN) 1886 vq_err(vq, "Translation failure %d indirect idx %d\n", 1887 ret, i); 1888 return ret; 1889 } 1890 /* If this is an input descriptor, increment that count. */ 1891 if (access == VHOST_ACCESS_WO) { 1892 *in_num += ret; 1893 if (unlikely(log)) { 1894 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1895 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1896 ++*log_num; 1897 } 1898 } else { 1899 /* If it's an output descriptor, they're all supposed 1900 * to come before any input descriptors. */ 1901 if (unlikely(*in_num)) { 1902 vq_err(vq, "Indirect descriptor " 1903 "has out after in: idx %d\n", i); 1904 return -EINVAL; 1905 } 1906 *out_num += ret; 1907 } 1908 } while ((i = next_desc(vq, &desc)) != -1); 1909 return 0; 1910 } 1911 1912 /* This looks in the virtqueue and for the first available buffer, and converts 1913 * it to an iovec for convenient access. Since descriptors consist of some 1914 * number of output then some number of input descriptors, it's actually two 1915 * iovecs, but we pack them into one and note how many of each there were. 1916 * 1917 * This function returns the descriptor number found, or vq->num (which is 1918 * never a valid descriptor number) if none was found. A negative code is 1919 * returned on error. */ 1920 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1921 struct iovec iov[], unsigned int iov_size, 1922 unsigned int *out_num, unsigned int *in_num, 1923 struct vhost_log *log, unsigned int *log_num) 1924 { 1925 struct vring_desc desc; 1926 unsigned int i, head, found = 0; 1927 u16 last_avail_idx; 1928 __virtio16 avail_idx; 1929 __virtio16 ring_head; 1930 int ret, access; 1931 1932 /* Check it isn't doing very strange things with descriptor numbers. */ 1933 last_avail_idx = vq->last_avail_idx; 1934 if (unlikely(vhost_get_user(vq, avail_idx, &vq->avail->idx))) { 1935 vq_err(vq, "Failed to access avail idx at %p\n", 1936 &vq->avail->idx); 1937 return -EFAULT; 1938 } 1939 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 1940 1941 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 1942 vq_err(vq, "Guest moved used index from %u to %u", 1943 last_avail_idx, vq->avail_idx); 1944 return -EFAULT; 1945 } 1946 1947 /* If there's nothing new since last we looked, return invalid. */ 1948 if (vq->avail_idx == last_avail_idx) 1949 return vq->num; 1950 1951 /* Only get avail ring entries after they have been exposed by guest. */ 1952 smp_rmb(); 1953 1954 /* Grab the next descriptor number they're advertising, and increment 1955 * the index we've seen. */ 1956 if (unlikely(vhost_get_user(vq, ring_head, 1957 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 1958 vq_err(vq, "Failed to read head: idx %d address %p\n", 1959 last_avail_idx, 1960 &vq->avail->ring[last_avail_idx % vq->num]); 1961 return -EFAULT; 1962 } 1963 1964 head = vhost16_to_cpu(vq, ring_head); 1965 1966 /* If their number is silly, that's an error. */ 1967 if (unlikely(head >= vq->num)) { 1968 vq_err(vq, "Guest says index %u > %u is available", 1969 head, vq->num); 1970 return -EINVAL; 1971 } 1972 1973 /* When we start there are none of either input nor output. */ 1974 *out_num = *in_num = 0; 1975 if (unlikely(log)) 1976 *log_num = 0; 1977 1978 i = head; 1979 do { 1980 unsigned iov_count = *in_num + *out_num; 1981 if (unlikely(i >= vq->num)) { 1982 vq_err(vq, "Desc index is %u > %u, head = %u", 1983 i, vq->num, head); 1984 return -EINVAL; 1985 } 1986 if (unlikely(++found > vq->num)) { 1987 vq_err(vq, "Loop detected: last one at %u " 1988 "vq size %u head %u\n", 1989 i, vq->num, head); 1990 return -EINVAL; 1991 } 1992 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 1993 sizeof desc); 1994 if (unlikely(ret)) { 1995 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 1996 i, vq->desc + i); 1997 return -EFAULT; 1998 } 1999 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2000 ret = get_indirect(vq, iov, iov_size, 2001 out_num, in_num, 2002 log, log_num, &desc); 2003 if (unlikely(ret < 0)) { 2004 if (ret != -EAGAIN) 2005 vq_err(vq, "Failure detected " 2006 "in indirect descriptor at idx %d\n", i); 2007 return ret; 2008 } 2009 continue; 2010 } 2011 2012 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2013 access = VHOST_ACCESS_WO; 2014 else 2015 access = VHOST_ACCESS_RO; 2016 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2017 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2018 iov_size - iov_count, access); 2019 if (unlikely(ret < 0)) { 2020 if (ret != -EAGAIN) 2021 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2022 ret, i); 2023 return ret; 2024 } 2025 if (access == VHOST_ACCESS_WO) { 2026 /* If this is an input descriptor, 2027 * increment that count. */ 2028 *in_num += ret; 2029 if (unlikely(log)) { 2030 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2031 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2032 ++*log_num; 2033 } 2034 } else { 2035 /* If it's an output descriptor, they're all supposed 2036 * to come before any input descriptors. */ 2037 if (unlikely(*in_num)) { 2038 vq_err(vq, "Descriptor has out after in: " 2039 "idx %d\n", i); 2040 return -EINVAL; 2041 } 2042 *out_num += ret; 2043 } 2044 } while ((i = next_desc(vq, &desc)) != -1); 2045 2046 /* On success, increment avail index. */ 2047 vq->last_avail_idx++; 2048 2049 /* Assume notifications from guest are disabled at this point, 2050 * if they aren't we would need to update avail_event index. */ 2051 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2052 return head; 2053 } 2054 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2055 2056 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2057 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2058 { 2059 vq->last_avail_idx -= n; 2060 } 2061 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2062 2063 /* After we've used one of their buffers, we tell them about it. We'll then 2064 * want to notify the guest, using eventfd. */ 2065 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2066 { 2067 struct vring_used_elem heads = { 2068 cpu_to_vhost32(vq, head), 2069 cpu_to_vhost32(vq, len) 2070 }; 2071 2072 return vhost_add_used_n(vq, &heads, 1); 2073 } 2074 EXPORT_SYMBOL_GPL(vhost_add_used); 2075 2076 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2077 struct vring_used_elem *heads, 2078 unsigned count) 2079 { 2080 struct vring_used_elem __user *used; 2081 u16 old, new; 2082 int start; 2083 2084 start = vq->last_used_idx & (vq->num - 1); 2085 used = vq->used->ring + start; 2086 if (count == 1) { 2087 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2088 vq_err(vq, "Failed to write used id"); 2089 return -EFAULT; 2090 } 2091 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2092 vq_err(vq, "Failed to write used len"); 2093 return -EFAULT; 2094 } 2095 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2096 vq_err(vq, "Failed to write used"); 2097 return -EFAULT; 2098 } 2099 if (unlikely(vq->log_used)) { 2100 /* Make sure data is seen before log. */ 2101 smp_wmb(); 2102 /* Log used ring entry write. */ 2103 log_write(vq->log_base, 2104 vq->log_addr + 2105 ((void __user *)used - (void __user *)vq->used), 2106 count * sizeof *used); 2107 } 2108 old = vq->last_used_idx; 2109 new = (vq->last_used_idx += count); 2110 /* If the driver never bothers to signal in a very long while, 2111 * used index might wrap around. If that happens, invalidate 2112 * signalled_used index we stored. TODO: make sure driver 2113 * signals at least once in 2^16 and remove this. */ 2114 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2115 vq->signalled_used_valid = false; 2116 return 0; 2117 } 2118 2119 /* After we've used one of their buffers, we tell them about it. We'll then 2120 * want to notify the guest, using eventfd. */ 2121 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2122 unsigned count) 2123 { 2124 int start, n, r; 2125 2126 start = vq->last_used_idx & (vq->num - 1); 2127 n = vq->num - start; 2128 if (n < count) { 2129 r = __vhost_add_used_n(vq, heads, n); 2130 if (r < 0) 2131 return r; 2132 heads += n; 2133 count -= n; 2134 } 2135 r = __vhost_add_used_n(vq, heads, count); 2136 2137 /* Make sure buffer is written before we update index. */ 2138 smp_wmb(); 2139 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2140 &vq->used->idx)) { 2141 vq_err(vq, "Failed to increment used idx"); 2142 return -EFAULT; 2143 } 2144 if (unlikely(vq->log_used)) { 2145 /* Log used index update. */ 2146 log_write(vq->log_base, 2147 vq->log_addr + offsetof(struct vring_used, idx), 2148 sizeof vq->used->idx); 2149 if (vq->log_ctx) 2150 eventfd_signal(vq->log_ctx, 1); 2151 } 2152 return r; 2153 } 2154 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2155 2156 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2157 { 2158 __u16 old, new; 2159 __virtio16 event; 2160 bool v; 2161 2162 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2163 unlikely(vq->avail_idx == vq->last_avail_idx)) 2164 return true; 2165 2166 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2167 __virtio16 flags; 2168 /* Flush out used index updates. This is paired 2169 * with the barrier that the Guest executes when enabling 2170 * interrupts. */ 2171 smp_mb(); 2172 if (vhost_get_user(vq, flags, &vq->avail->flags)) { 2173 vq_err(vq, "Failed to get flags"); 2174 return true; 2175 } 2176 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2177 } 2178 old = vq->signalled_used; 2179 v = vq->signalled_used_valid; 2180 new = vq->signalled_used = vq->last_used_idx; 2181 vq->signalled_used_valid = true; 2182 2183 if (unlikely(!v)) 2184 return true; 2185 2186 /* We're sure if the following conditions are met, there's no 2187 * need to notify guest: 2188 * 1) cached used event is ahead of new 2189 * 2) old to new updating does not cross cached used event. */ 2190 if (vring_need_event(vq->last_used_event, new + vq->num, new) && 2191 !vring_need_event(vq->last_used_event, new, old)) 2192 return false; 2193 2194 /* Flush out used index updates. This is paired 2195 * with the barrier that the Guest executes when enabling 2196 * interrupts. */ 2197 smp_mb(); 2198 2199 if (vhost_get_user(vq, event, vhost_used_event(vq))) { 2200 vq_err(vq, "Failed to get used event idx"); 2201 return true; 2202 } 2203 vq->last_used_event = vhost16_to_cpu(vq, event); 2204 2205 return vring_need_event(vq->last_used_event, new, old); 2206 } 2207 2208 /* This actually signals the guest, using eventfd. */ 2209 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2210 { 2211 /* Signal the Guest tell them we used something up. */ 2212 if (vq->call_ctx && vhost_notify(dev, vq)) 2213 eventfd_signal(vq->call_ctx, 1); 2214 } 2215 EXPORT_SYMBOL_GPL(vhost_signal); 2216 2217 /* And here's the combo meal deal. Supersize me! */ 2218 void vhost_add_used_and_signal(struct vhost_dev *dev, 2219 struct vhost_virtqueue *vq, 2220 unsigned int head, int len) 2221 { 2222 vhost_add_used(vq, head, len); 2223 vhost_signal(dev, vq); 2224 } 2225 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2226 2227 /* multi-buffer version of vhost_add_used_and_signal */ 2228 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2229 struct vhost_virtqueue *vq, 2230 struct vring_used_elem *heads, unsigned count) 2231 { 2232 vhost_add_used_n(vq, heads, count); 2233 vhost_signal(dev, vq); 2234 } 2235 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2236 2237 /* return true if we're sure that avaiable ring is empty */ 2238 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2239 { 2240 __virtio16 avail_idx; 2241 int r; 2242 2243 if (vq->avail_idx != vq->last_avail_idx) 2244 return false; 2245 2246 r = vhost_get_user(vq, avail_idx, &vq->avail->idx); 2247 if (unlikely(r)) 2248 return false; 2249 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2250 2251 return vq->avail_idx == vq->last_avail_idx; 2252 } 2253 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2254 2255 /* OK, now we need to know about added descriptors. */ 2256 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2257 { 2258 __virtio16 avail_idx; 2259 int r; 2260 2261 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2262 return false; 2263 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2264 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2265 r = vhost_update_used_flags(vq); 2266 if (r) { 2267 vq_err(vq, "Failed to enable notification at %p: %d\n", 2268 &vq->used->flags, r); 2269 return false; 2270 } 2271 } else { 2272 r = vhost_update_avail_event(vq, vq->avail_idx); 2273 if (r) { 2274 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2275 vhost_avail_event(vq), r); 2276 return false; 2277 } 2278 } 2279 /* They could have slipped one in as we were doing that: make 2280 * sure it's written, then check again. */ 2281 smp_mb(); 2282 r = vhost_get_user(vq, avail_idx, &vq->avail->idx); 2283 if (r) { 2284 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2285 &vq->avail->idx, r); 2286 return false; 2287 } 2288 2289 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2290 } 2291 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2292 2293 /* We don't need to be notified again. */ 2294 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2295 { 2296 int r; 2297 2298 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2299 return; 2300 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2301 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2302 r = vhost_update_used_flags(vq); 2303 if (r) 2304 vq_err(vq, "Failed to enable notification at %p: %d\n", 2305 &vq->used->flags, r); 2306 } 2307 } 2308 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2309 2310 /* Create a new message. */ 2311 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2312 { 2313 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2314 if (!node) 2315 return NULL; 2316 node->vq = vq; 2317 node->msg.type = type; 2318 return node; 2319 } 2320 EXPORT_SYMBOL_GPL(vhost_new_msg); 2321 2322 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2323 struct vhost_msg_node *node) 2324 { 2325 spin_lock(&dev->iotlb_lock); 2326 list_add_tail(&node->node, head); 2327 spin_unlock(&dev->iotlb_lock); 2328 2329 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 2330 } 2331 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2332 2333 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2334 struct list_head *head) 2335 { 2336 struct vhost_msg_node *node = NULL; 2337 2338 spin_lock(&dev->iotlb_lock); 2339 if (!list_empty(head)) { 2340 node = list_first_entry(head, struct vhost_msg_node, 2341 node); 2342 list_del(&node->node); 2343 } 2344 spin_unlock(&dev->iotlb_lock); 2345 2346 return node; 2347 } 2348 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2349 2350 2351 static int __init vhost_init(void) 2352 { 2353 return 0; 2354 } 2355 2356 static void __exit vhost_exit(void) 2357 { 2358 } 2359 2360 module_init(vhost_init); 2361 module_exit(vhost_exit); 2362 2363 MODULE_VERSION("0.0.1"); 2364 MODULE_LICENSE("GPL v2"); 2365 MODULE_AUTHOR("Michael S. Tsirkin"); 2366 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2367