1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/miscdevice.h> 18 #include <linux/mutex.h> 19 #include <linux/poll.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/kthread.h> 25 #include <linux/module.h> 26 #include <linux/sort.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/vhost_task.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/nospec.h> 32 #include <linux/kcov.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 53 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 54 { 55 vq->user_be = !virtio_legacy_is_little_endian(); 56 } 57 58 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = true; 61 } 62 63 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = false; 66 } 67 68 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 69 { 70 struct vhost_vring_state s; 71 72 if (vq->private_data) 73 return -EBUSY; 74 75 if (copy_from_user(&s, argp, sizeof(s))) 76 return -EFAULT; 77 78 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 79 s.num != VHOST_VRING_BIG_ENDIAN) 80 return -EINVAL; 81 82 if (s.num == VHOST_VRING_BIG_ENDIAN) 83 vhost_enable_cross_endian_big(vq); 84 else 85 vhost_enable_cross_endian_little(vq); 86 87 return 0; 88 } 89 90 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 91 int __user *argp) 92 { 93 struct vhost_vring_state s = { 94 .index = idx, 95 .num = vq->user_be 96 }; 97 98 if (copy_to_user(argp, &s, sizeof(s))) 99 return -EFAULT; 100 101 return 0; 102 } 103 104 static void vhost_init_is_le(struct vhost_virtqueue *vq) 105 { 106 /* Note for legacy virtio: user_be is initialized at reset time 107 * according to the host endianness. If userspace does not set an 108 * explicit endianness, the default behavior is native endian, as 109 * expected by legacy virtio. 110 */ 111 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 112 } 113 #else 114 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 115 { 116 } 117 118 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 119 { 120 return -ENOIOCTLCMD; 121 } 122 123 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 124 int __user *argp) 125 { 126 return -ENOIOCTLCMD; 127 } 128 129 static void vhost_init_is_le(struct vhost_virtqueue *vq) 130 { 131 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 132 || virtio_legacy_is_little_endian(); 133 } 134 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 135 136 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 137 { 138 vhost_init_is_le(vq); 139 } 140 141 struct vhost_flush_struct { 142 struct vhost_work work; 143 struct completion wait_event; 144 }; 145 146 static void vhost_flush_work(struct vhost_work *work) 147 { 148 struct vhost_flush_struct *s; 149 150 s = container_of(work, struct vhost_flush_struct, work); 151 complete(&s->wait_event); 152 } 153 154 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 155 poll_table *pt) 156 { 157 struct vhost_poll *poll; 158 159 poll = container_of(pt, struct vhost_poll, table); 160 poll->wqh = wqh; 161 add_wait_queue(wqh, &poll->wait); 162 } 163 164 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 165 void *key) 166 { 167 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 168 struct vhost_work *work = &poll->work; 169 170 if (!(key_to_poll(key) & poll->mask)) 171 return 0; 172 173 if (!poll->dev->use_worker) 174 work->fn(work); 175 else 176 vhost_poll_queue(poll); 177 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev, 191 struct vhost_virtqueue *vq) 192 { 193 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 194 init_poll_funcptr(&poll->table, vhost_poll_func); 195 poll->mask = mask; 196 poll->dev = dev; 197 poll->wqh = NULL; 198 poll->vq = vq; 199 200 vhost_work_init(&poll->work, fn); 201 } 202 EXPORT_SYMBOL_GPL(vhost_poll_init); 203 204 /* Start polling a file. We add ourselves to file's wait queue. The caller must 205 * keep a reference to a file until after vhost_poll_stop is called. */ 206 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 207 { 208 __poll_t mask; 209 210 if (poll->wqh) 211 return 0; 212 213 mask = vfs_poll(file, &poll->table); 214 if (mask) 215 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 216 if (mask & EPOLLERR) { 217 vhost_poll_stop(poll); 218 return -EINVAL; 219 } 220 221 return 0; 222 } 223 EXPORT_SYMBOL_GPL(vhost_poll_start); 224 225 /* Stop polling a file. After this function returns, it becomes safe to drop the 226 * file reference. You must also flush afterwards. */ 227 void vhost_poll_stop(struct vhost_poll *poll) 228 { 229 if (poll->wqh) { 230 remove_wait_queue(poll->wqh, &poll->wait); 231 poll->wqh = NULL; 232 } 233 } 234 EXPORT_SYMBOL_GPL(vhost_poll_stop); 235 236 static void vhost_worker_queue(struct vhost_worker *worker, 237 struct vhost_work *work) 238 { 239 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 240 /* We can only add the work to the list after we're 241 * sure it was not in the list. 242 * test_and_set_bit() implies a memory barrier. 243 */ 244 llist_add(&work->node, &worker->work_list); 245 vhost_task_wake(worker->vtsk); 246 } 247 } 248 249 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work) 250 { 251 struct vhost_worker *worker; 252 bool queued = false; 253 254 rcu_read_lock(); 255 worker = rcu_dereference(vq->worker); 256 if (worker) { 257 queued = true; 258 vhost_worker_queue(worker, work); 259 } 260 rcu_read_unlock(); 261 262 return queued; 263 } 264 EXPORT_SYMBOL_GPL(vhost_vq_work_queue); 265 266 /** 267 * __vhost_worker_flush - flush a worker 268 * @worker: worker to flush 269 * 270 * The worker's flush_mutex must be held. 271 */ 272 static void __vhost_worker_flush(struct vhost_worker *worker) 273 { 274 struct vhost_flush_struct flush; 275 276 if (!worker->attachment_cnt || worker->killed) 277 return; 278 279 init_completion(&flush.wait_event); 280 vhost_work_init(&flush.work, vhost_flush_work); 281 282 vhost_worker_queue(worker, &flush.work); 283 /* 284 * Drop mutex in case our worker is killed and it needs to take the 285 * mutex to force cleanup. 286 */ 287 mutex_unlock(&worker->mutex); 288 wait_for_completion(&flush.wait_event); 289 mutex_lock(&worker->mutex); 290 } 291 292 static void vhost_worker_flush(struct vhost_worker *worker) 293 { 294 mutex_lock(&worker->mutex); 295 __vhost_worker_flush(worker); 296 mutex_unlock(&worker->mutex); 297 } 298 299 void vhost_dev_flush(struct vhost_dev *dev) 300 { 301 struct vhost_worker *worker; 302 unsigned long i; 303 304 xa_for_each(&dev->worker_xa, i, worker) 305 vhost_worker_flush(worker); 306 } 307 EXPORT_SYMBOL_GPL(vhost_dev_flush); 308 309 /* A lockless hint for busy polling code to exit the loop */ 310 bool vhost_vq_has_work(struct vhost_virtqueue *vq) 311 { 312 struct vhost_worker *worker; 313 bool has_work = false; 314 315 rcu_read_lock(); 316 worker = rcu_dereference(vq->worker); 317 if (worker && !llist_empty(&worker->work_list)) 318 has_work = true; 319 rcu_read_unlock(); 320 321 return has_work; 322 } 323 EXPORT_SYMBOL_GPL(vhost_vq_has_work); 324 325 void vhost_poll_queue(struct vhost_poll *poll) 326 { 327 vhost_vq_work_queue(poll->vq, &poll->work); 328 } 329 EXPORT_SYMBOL_GPL(vhost_poll_queue); 330 331 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 332 { 333 int j; 334 335 for (j = 0; j < VHOST_NUM_ADDRS; j++) 336 vq->meta_iotlb[j] = NULL; 337 } 338 339 static void vhost_vq_meta_reset(struct vhost_dev *d) 340 { 341 int i; 342 343 for (i = 0; i < d->nvqs; ++i) 344 __vhost_vq_meta_reset(d->vqs[i]); 345 } 346 347 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx) 348 { 349 call_ctx->ctx = NULL; 350 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer)); 351 } 352 353 bool vhost_vq_is_setup(struct vhost_virtqueue *vq) 354 { 355 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq); 356 } 357 EXPORT_SYMBOL_GPL(vhost_vq_is_setup); 358 359 static void vhost_vq_reset(struct vhost_dev *dev, 360 struct vhost_virtqueue *vq) 361 { 362 vq->num = 1; 363 vq->desc = NULL; 364 vq->avail = NULL; 365 vq->used = NULL; 366 vq->last_avail_idx = 0; 367 vq->avail_idx = 0; 368 vq->last_used_idx = 0; 369 vq->signalled_used = 0; 370 vq->signalled_used_valid = false; 371 vq->used_flags = 0; 372 vq->log_used = false; 373 vq->log_addr = -1ull; 374 vq->private_data = NULL; 375 vq->acked_features = 0; 376 vq->acked_backend_features = 0; 377 vq->log_base = NULL; 378 vq->error_ctx = NULL; 379 vq->kick = NULL; 380 vq->log_ctx = NULL; 381 vhost_disable_cross_endian(vq); 382 vhost_reset_is_le(vq); 383 vq->busyloop_timeout = 0; 384 vq->umem = NULL; 385 vq->iotlb = NULL; 386 rcu_assign_pointer(vq->worker, NULL); 387 vhost_vring_call_reset(&vq->call_ctx); 388 __vhost_vq_meta_reset(vq); 389 } 390 391 static bool vhost_run_work_list(void *data) 392 { 393 struct vhost_worker *worker = data; 394 struct vhost_work *work, *work_next; 395 struct llist_node *node; 396 397 node = llist_del_all(&worker->work_list); 398 if (node) { 399 __set_current_state(TASK_RUNNING); 400 401 node = llist_reverse_order(node); 402 /* make sure flag is seen after deletion */ 403 smp_wmb(); 404 llist_for_each_entry_safe(work, work_next, node, node) { 405 clear_bit(VHOST_WORK_QUEUED, &work->flags); 406 kcov_remote_start_common(worker->kcov_handle); 407 work->fn(work); 408 kcov_remote_stop(); 409 cond_resched(); 410 } 411 } 412 413 return !!node; 414 } 415 416 static void vhost_worker_killed(void *data) 417 { 418 struct vhost_worker *worker = data; 419 struct vhost_dev *dev = worker->dev; 420 struct vhost_virtqueue *vq; 421 int i, attach_cnt = 0; 422 423 mutex_lock(&worker->mutex); 424 worker->killed = true; 425 426 for (i = 0; i < dev->nvqs; i++) { 427 vq = dev->vqs[i]; 428 429 mutex_lock(&vq->mutex); 430 if (worker == 431 rcu_dereference_check(vq->worker, 432 lockdep_is_held(&vq->mutex))) { 433 rcu_assign_pointer(vq->worker, NULL); 434 attach_cnt++; 435 } 436 mutex_unlock(&vq->mutex); 437 } 438 439 worker->attachment_cnt -= attach_cnt; 440 if (attach_cnt) 441 synchronize_rcu(); 442 /* 443 * Finish vhost_worker_flush calls and any other works that snuck in 444 * before the synchronize_rcu. 445 */ 446 vhost_run_work_list(worker); 447 mutex_unlock(&worker->mutex); 448 } 449 450 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 451 { 452 kfree(vq->indirect); 453 vq->indirect = NULL; 454 kfree(vq->log); 455 vq->log = NULL; 456 kfree(vq->heads); 457 vq->heads = NULL; 458 } 459 460 /* Helper to allocate iovec buffers for all vqs. */ 461 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 462 { 463 struct vhost_virtqueue *vq; 464 int i; 465 466 for (i = 0; i < dev->nvqs; ++i) { 467 vq = dev->vqs[i]; 468 vq->indirect = kmalloc_array(UIO_MAXIOV, 469 sizeof(*vq->indirect), 470 GFP_KERNEL); 471 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 472 GFP_KERNEL); 473 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 474 GFP_KERNEL); 475 if (!vq->indirect || !vq->log || !vq->heads) 476 goto err_nomem; 477 } 478 return 0; 479 480 err_nomem: 481 for (; i >= 0; --i) 482 vhost_vq_free_iovecs(dev->vqs[i]); 483 return -ENOMEM; 484 } 485 486 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 487 { 488 int i; 489 490 for (i = 0; i < dev->nvqs; ++i) 491 vhost_vq_free_iovecs(dev->vqs[i]); 492 } 493 494 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 495 int pkts, int total_len) 496 { 497 struct vhost_dev *dev = vq->dev; 498 499 if ((dev->byte_weight && total_len >= dev->byte_weight) || 500 pkts >= dev->weight) { 501 vhost_poll_queue(&vq->poll); 502 return true; 503 } 504 505 return false; 506 } 507 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 508 509 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, 510 unsigned int num) 511 { 512 size_t event __maybe_unused = 513 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 514 515 return size_add(struct_size(vq->avail, ring, num), event); 516 } 517 518 static size_t vhost_get_used_size(struct vhost_virtqueue *vq, 519 unsigned int num) 520 { 521 size_t event __maybe_unused = 522 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 523 524 return size_add(struct_size(vq->used, ring, num), event); 525 } 526 527 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, 528 unsigned int num) 529 { 530 return sizeof(*vq->desc) * num; 531 } 532 533 void vhost_dev_init(struct vhost_dev *dev, 534 struct vhost_virtqueue **vqs, int nvqs, 535 int iov_limit, int weight, int byte_weight, 536 bool use_worker, 537 int (*msg_handler)(struct vhost_dev *dev, u32 asid, 538 struct vhost_iotlb_msg *msg)) 539 { 540 struct vhost_virtqueue *vq; 541 int i; 542 543 dev->vqs = vqs; 544 dev->nvqs = nvqs; 545 mutex_init(&dev->mutex); 546 dev->log_ctx = NULL; 547 dev->umem = NULL; 548 dev->iotlb = NULL; 549 dev->mm = NULL; 550 dev->iov_limit = iov_limit; 551 dev->weight = weight; 552 dev->byte_weight = byte_weight; 553 dev->use_worker = use_worker; 554 dev->msg_handler = msg_handler; 555 init_waitqueue_head(&dev->wait); 556 INIT_LIST_HEAD(&dev->read_list); 557 INIT_LIST_HEAD(&dev->pending_list); 558 spin_lock_init(&dev->iotlb_lock); 559 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC); 560 561 for (i = 0; i < dev->nvqs; ++i) { 562 vq = dev->vqs[i]; 563 vq->log = NULL; 564 vq->indirect = NULL; 565 vq->heads = NULL; 566 vq->dev = dev; 567 mutex_init(&vq->mutex); 568 vhost_vq_reset(dev, vq); 569 if (vq->handle_kick) 570 vhost_poll_init(&vq->poll, vq->handle_kick, 571 EPOLLIN, dev, vq); 572 } 573 } 574 EXPORT_SYMBOL_GPL(vhost_dev_init); 575 576 /* Caller should have device mutex */ 577 long vhost_dev_check_owner(struct vhost_dev *dev) 578 { 579 /* Are you the owner? If not, I don't think you mean to do that */ 580 return dev->mm == current->mm ? 0 : -EPERM; 581 } 582 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 583 584 /* Caller should have device mutex */ 585 bool vhost_dev_has_owner(struct vhost_dev *dev) 586 { 587 return dev->mm; 588 } 589 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 590 591 static void vhost_attach_mm(struct vhost_dev *dev) 592 { 593 /* No owner, become one */ 594 if (dev->use_worker) { 595 dev->mm = get_task_mm(current); 596 } else { 597 /* vDPA device does not use worker thead, so there's 598 * no need to hold the address space for mm. This help 599 * to avoid deadlock in the case of mmap() which may 600 * held the refcnt of the file and depends on release 601 * method to remove vma. 602 */ 603 dev->mm = current->mm; 604 mmgrab(dev->mm); 605 } 606 } 607 608 static void vhost_detach_mm(struct vhost_dev *dev) 609 { 610 if (!dev->mm) 611 return; 612 613 if (dev->use_worker) 614 mmput(dev->mm); 615 else 616 mmdrop(dev->mm); 617 618 dev->mm = NULL; 619 } 620 621 static void vhost_worker_destroy(struct vhost_dev *dev, 622 struct vhost_worker *worker) 623 { 624 if (!worker) 625 return; 626 627 WARN_ON(!llist_empty(&worker->work_list)); 628 xa_erase(&dev->worker_xa, worker->id); 629 vhost_task_stop(worker->vtsk); 630 kfree(worker); 631 } 632 633 static void vhost_workers_free(struct vhost_dev *dev) 634 { 635 struct vhost_worker *worker; 636 unsigned long i; 637 638 if (!dev->use_worker) 639 return; 640 641 for (i = 0; i < dev->nvqs; i++) 642 rcu_assign_pointer(dev->vqs[i]->worker, NULL); 643 /* 644 * Free the default worker we created and cleanup workers userspace 645 * created but couldn't clean up (it forgot or crashed). 646 */ 647 xa_for_each(&dev->worker_xa, i, worker) 648 vhost_worker_destroy(dev, worker); 649 xa_destroy(&dev->worker_xa); 650 } 651 652 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev) 653 { 654 struct vhost_worker *worker; 655 struct vhost_task *vtsk; 656 char name[TASK_COMM_LEN]; 657 int ret; 658 u32 id; 659 660 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT); 661 if (!worker) 662 return NULL; 663 664 worker->dev = dev; 665 snprintf(name, sizeof(name), "vhost-%d", current->pid); 666 667 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed, 668 worker, name); 669 if (!vtsk) 670 goto free_worker; 671 672 mutex_init(&worker->mutex); 673 init_llist_head(&worker->work_list); 674 worker->kcov_handle = kcov_common_handle(); 675 worker->vtsk = vtsk; 676 677 vhost_task_start(vtsk); 678 679 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 680 if (ret < 0) 681 goto stop_worker; 682 worker->id = id; 683 684 return worker; 685 686 stop_worker: 687 vhost_task_stop(vtsk); 688 free_worker: 689 kfree(worker); 690 return NULL; 691 } 692 693 /* Caller must have device mutex */ 694 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq, 695 struct vhost_worker *worker) 696 { 697 struct vhost_worker *old_worker; 698 699 mutex_lock(&worker->mutex); 700 if (worker->killed) { 701 mutex_unlock(&worker->mutex); 702 return; 703 } 704 705 mutex_lock(&vq->mutex); 706 707 old_worker = rcu_dereference_check(vq->worker, 708 lockdep_is_held(&vq->mutex)); 709 rcu_assign_pointer(vq->worker, worker); 710 worker->attachment_cnt++; 711 712 if (!old_worker) { 713 mutex_unlock(&vq->mutex); 714 mutex_unlock(&worker->mutex); 715 return; 716 } 717 mutex_unlock(&vq->mutex); 718 mutex_unlock(&worker->mutex); 719 720 /* 721 * Take the worker mutex to make sure we see the work queued from 722 * device wide flushes which doesn't use RCU for execution. 723 */ 724 mutex_lock(&old_worker->mutex); 725 if (old_worker->killed) { 726 mutex_unlock(&old_worker->mutex); 727 return; 728 } 729 730 /* 731 * We don't want to call synchronize_rcu for every vq during setup 732 * because it will slow down VM startup. If we haven't done 733 * VHOST_SET_VRING_KICK and not done the driver specific 734 * SET_ENDPOINT/RUNNUNG then we can skip the sync since there will 735 * not be any works queued for scsi and net. 736 */ 737 mutex_lock(&vq->mutex); 738 if (!vhost_vq_get_backend(vq) && !vq->kick) { 739 mutex_unlock(&vq->mutex); 740 741 old_worker->attachment_cnt--; 742 mutex_unlock(&old_worker->mutex); 743 /* 744 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID. 745 * Warn if it adds support for multiple workers but forgets to 746 * handle the early queueing case. 747 */ 748 WARN_ON(!old_worker->attachment_cnt && 749 !llist_empty(&old_worker->work_list)); 750 return; 751 } 752 mutex_unlock(&vq->mutex); 753 754 /* Make sure new vq queue/flush/poll calls see the new worker */ 755 synchronize_rcu(); 756 /* Make sure whatever was queued gets run */ 757 __vhost_worker_flush(old_worker); 758 old_worker->attachment_cnt--; 759 mutex_unlock(&old_worker->mutex); 760 } 761 762 /* Caller must have device mutex */ 763 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq, 764 struct vhost_vring_worker *info) 765 { 766 unsigned long index = info->worker_id; 767 struct vhost_dev *dev = vq->dev; 768 struct vhost_worker *worker; 769 770 if (!dev->use_worker) 771 return -EINVAL; 772 773 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 774 if (!worker || worker->id != info->worker_id) 775 return -ENODEV; 776 777 __vhost_vq_attach_worker(vq, worker); 778 return 0; 779 } 780 781 /* Caller must have device mutex */ 782 static int vhost_new_worker(struct vhost_dev *dev, 783 struct vhost_worker_state *info) 784 { 785 struct vhost_worker *worker; 786 787 worker = vhost_worker_create(dev); 788 if (!worker) 789 return -ENOMEM; 790 791 info->worker_id = worker->id; 792 return 0; 793 } 794 795 /* Caller must have device mutex */ 796 static int vhost_free_worker(struct vhost_dev *dev, 797 struct vhost_worker_state *info) 798 { 799 unsigned long index = info->worker_id; 800 struct vhost_worker *worker; 801 802 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 803 if (!worker || worker->id != info->worker_id) 804 return -ENODEV; 805 806 mutex_lock(&worker->mutex); 807 if (worker->attachment_cnt || worker->killed) { 808 mutex_unlock(&worker->mutex); 809 return -EBUSY; 810 } 811 /* 812 * A flush might have raced and snuck in before attachment_cnt was set 813 * to zero. Make sure flushes are flushed from the queue before 814 * freeing. 815 */ 816 __vhost_worker_flush(worker); 817 mutex_unlock(&worker->mutex); 818 819 vhost_worker_destroy(dev, worker); 820 return 0; 821 } 822 823 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp, 824 struct vhost_virtqueue **vq, u32 *id) 825 { 826 u32 __user *idxp = argp; 827 u32 idx; 828 long r; 829 830 r = get_user(idx, idxp); 831 if (r < 0) 832 return r; 833 834 if (idx >= dev->nvqs) 835 return -ENOBUFS; 836 837 idx = array_index_nospec(idx, dev->nvqs); 838 839 *vq = dev->vqs[idx]; 840 *id = idx; 841 return 0; 842 } 843 844 /* Caller must have device mutex */ 845 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl, 846 void __user *argp) 847 { 848 struct vhost_vring_worker ring_worker; 849 struct vhost_worker_state state; 850 struct vhost_worker *worker; 851 struct vhost_virtqueue *vq; 852 long ret; 853 u32 idx; 854 855 if (!dev->use_worker) 856 return -EINVAL; 857 858 if (!vhost_dev_has_owner(dev)) 859 return -EINVAL; 860 861 ret = vhost_dev_check_owner(dev); 862 if (ret) 863 return ret; 864 865 switch (ioctl) { 866 /* dev worker ioctls */ 867 case VHOST_NEW_WORKER: 868 ret = vhost_new_worker(dev, &state); 869 if (!ret && copy_to_user(argp, &state, sizeof(state))) 870 ret = -EFAULT; 871 return ret; 872 case VHOST_FREE_WORKER: 873 if (copy_from_user(&state, argp, sizeof(state))) 874 return -EFAULT; 875 return vhost_free_worker(dev, &state); 876 /* vring worker ioctls */ 877 case VHOST_ATTACH_VRING_WORKER: 878 case VHOST_GET_VRING_WORKER: 879 break; 880 default: 881 return -ENOIOCTLCMD; 882 } 883 884 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx); 885 if (ret) 886 return ret; 887 888 switch (ioctl) { 889 case VHOST_ATTACH_VRING_WORKER: 890 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) { 891 ret = -EFAULT; 892 break; 893 } 894 895 ret = vhost_vq_attach_worker(vq, &ring_worker); 896 break; 897 case VHOST_GET_VRING_WORKER: 898 worker = rcu_dereference_check(vq->worker, 899 lockdep_is_held(&dev->mutex)); 900 if (!worker) { 901 ret = -EINVAL; 902 break; 903 } 904 905 ring_worker.index = idx; 906 ring_worker.worker_id = worker->id; 907 908 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker))) 909 ret = -EFAULT; 910 break; 911 default: 912 ret = -ENOIOCTLCMD; 913 break; 914 } 915 916 return ret; 917 } 918 EXPORT_SYMBOL_GPL(vhost_worker_ioctl); 919 920 /* Caller should have device mutex */ 921 long vhost_dev_set_owner(struct vhost_dev *dev) 922 { 923 struct vhost_worker *worker; 924 int err, i; 925 926 /* Is there an owner already? */ 927 if (vhost_dev_has_owner(dev)) { 928 err = -EBUSY; 929 goto err_mm; 930 } 931 932 vhost_attach_mm(dev); 933 934 err = vhost_dev_alloc_iovecs(dev); 935 if (err) 936 goto err_iovecs; 937 938 if (dev->use_worker) { 939 /* 940 * This should be done last, because vsock can queue work 941 * before VHOST_SET_OWNER so it simplifies the failure path 942 * below since we don't have to worry about vsock queueing 943 * while we free the worker. 944 */ 945 worker = vhost_worker_create(dev); 946 if (!worker) { 947 err = -ENOMEM; 948 goto err_worker; 949 } 950 951 for (i = 0; i < dev->nvqs; i++) 952 __vhost_vq_attach_worker(dev->vqs[i], worker); 953 } 954 955 return 0; 956 957 err_worker: 958 vhost_dev_free_iovecs(dev); 959 err_iovecs: 960 vhost_detach_mm(dev); 961 err_mm: 962 return err; 963 } 964 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 965 966 static struct vhost_iotlb *iotlb_alloc(void) 967 { 968 return vhost_iotlb_alloc(max_iotlb_entries, 969 VHOST_IOTLB_FLAG_RETIRE); 970 } 971 972 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void) 973 { 974 return iotlb_alloc(); 975 } 976 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 977 978 /* Caller should have device mutex */ 979 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem) 980 { 981 int i; 982 983 vhost_dev_cleanup(dev); 984 985 dev->umem = umem; 986 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 987 * VQs aren't running. 988 */ 989 for (i = 0; i < dev->nvqs; ++i) 990 dev->vqs[i]->umem = umem; 991 } 992 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 993 994 void vhost_dev_stop(struct vhost_dev *dev) 995 { 996 int i; 997 998 for (i = 0; i < dev->nvqs; ++i) { 999 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) 1000 vhost_poll_stop(&dev->vqs[i]->poll); 1001 } 1002 1003 vhost_dev_flush(dev); 1004 } 1005 EXPORT_SYMBOL_GPL(vhost_dev_stop); 1006 1007 void vhost_clear_msg(struct vhost_dev *dev) 1008 { 1009 struct vhost_msg_node *node, *n; 1010 1011 spin_lock(&dev->iotlb_lock); 1012 1013 list_for_each_entry_safe(node, n, &dev->read_list, node) { 1014 list_del(&node->node); 1015 kfree(node); 1016 } 1017 1018 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 1019 list_del(&node->node); 1020 kfree(node); 1021 } 1022 1023 spin_unlock(&dev->iotlb_lock); 1024 } 1025 EXPORT_SYMBOL_GPL(vhost_clear_msg); 1026 1027 void vhost_dev_cleanup(struct vhost_dev *dev) 1028 { 1029 int i; 1030 1031 for (i = 0; i < dev->nvqs; ++i) { 1032 if (dev->vqs[i]->error_ctx) 1033 eventfd_ctx_put(dev->vqs[i]->error_ctx); 1034 if (dev->vqs[i]->kick) 1035 fput(dev->vqs[i]->kick); 1036 if (dev->vqs[i]->call_ctx.ctx) 1037 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx); 1038 vhost_vq_reset(dev, dev->vqs[i]); 1039 } 1040 vhost_dev_free_iovecs(dev); 1041 if (dev->log_ctx) 1042 eventfd_ctx_put(dev->log_ctx); 1043 dev->log_ctx = NULL; 1044 /* No one will access memory at this point */ 1045 vhost_iotlb_free(dev->umem); 1046 dev->umem = NULL; 1047 vhost_iotlb_free(dev->iotlb); 1048 dev->iotlb = NULL; 1049 vhost_clear_msg(dev); 1050 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 1051 vhost_workers_free(dev); 1052 vhost_detach_mm(dev); 1053 } 1054 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 1055 1056 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 1057 { 1058 u64 a = addr / VHOST_PAGE_SIZE / 8; 1059 1060 /* Make sure 64 bit math will not overflow. */ 1061 if (a > ULONG_MAX - (unsigned long)log_base || 1062 a + (unsigned long)log_base > ULONG_MAX) 1063 return false; 1064 1065 return access_ok(log_base + a, 1066 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 1067 } 1068 1069 /* Make sure 64 bit math will not overflow. */ 1070 static bool vhost_overflow(u64 uaddr, u64 size) 1071 { 1072 if (uaddr > ULONG_MAX || size > ULONG_MAX) 1073 return true; 1074 1075 if (!size) 1076 return false; 1077 1078 return uaddr > ULONG_MAX - size + 1; 1079 } 1080 1081 /* Caller should have vq mutex and device mutex. */ 1082 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem, 1083 int log_all) 1084 { 1085 struct vhost_iotlb_map *map; 1086 1087 if (!umem) 1088 return false; 1089 1090 list_for_each_entry(map, &umem->list, link) { 1091 unsigned long a = map->addr; 1092 1093 if (vhost_overflow(map->addr, map->size)) 1094 return false; 1095 1096 1097 if (!access_ok((void __user *)a, map->size)) 1098 return false; 1099 else if (log_all && !log_access_ok(log_base, 1100 map->start, 1101 map->size)) 1102 return false; 1103 } 1104 return true; 1105 } 1106 1107 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 1108 u64 addr, unsigned int size, 1109 int type) 1110 { 1111 const struct vhost_iotlb_map *map = vq->meta_iotlb[type]; 1112 1113 if (!map) 1114 return NULL; 1115 1116 return (void __user *)(uintptr_t)(map->addr + addr - map->start); 1117 } 1118 1119 /* Can we switch to this memory table? */ 1120 /* Caller should have device mutex but not vq mutex */ 1121 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem, 1122 int log_all) 1123 { 1124 int i; 1125 1126 for (i = 0; i < d->nvqs; ++i) { 1127 bool ok; 1128 bool log; 1129 1130 mutex_lock(&d->vqs[i]->mutex); 1131 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 1132 /* If ring is inactive, will check when it's enabled. */ 1133 if (d->vqs[i]->private_data) 1134 ok = vq_memory_access_ok(d->vqs[i]->log_base, 1135 umem, log); 1136 else 1137 ok = true; 1138 mutex_unlock(&d->vqs[i]->mutex); 1139 if (!ok) 1140 return false; 1141 } 1142 return true; 1143 } 1144 1145 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1146 struct iovec iov[], int iov_size, int access); 1147 1148 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 1149 const void *from, unsigned size) 1150 { 1151 int ret; 1152 1153 if (!vq->iotlb) 1154 return __copy_to_user(to, from, size); 1155 else { 1156 /* This function should be called after iotlb 1157 * prefetch, which means we're sure that all vq 1158 * could be access through iotlb. So -EAGAIN should 1159 * not happen in this case. 1160 */ 1161 struct iov_iter t; 1162 void __user *uaddr = vhost_vq_meta_fetch(vq, 1163 (u64)(uintptr_t)to, size, 1164 VHOST_ADDR_USED); 1165 1166 if (uaddr) 1167 return __copy_to_user(uaddr, from, size); 1168 1169 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 1170 ARRAY_SIZE(vq->iotlb_iov), 1171 VHOST_ACCESS_WO); 1172 if (ret < 0) 1173 goto out; 1174 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size); 1175 ret = copy_to_iter(from, size, &t); 1176 if (ret == size) 1177 ret = 0; 1178 } 1179 out: 1180 return ret; 1181 } 1182 1183 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 1184 void __user *from, unsigned size) 1185 { 1186 int ret; 1187 1188 if (!vq->iotlb) 1189 return __copy_from_user(to, from, size); 1190 else { 1191 /* This function should be called after iotlb 1192 * prefetch, which means we're sure that vq 1193 * could be access through iotlb. So -EAGAIN should 1194 * not happen in this case. 1195 */ 1196 void __user *uaddr = vhost_vq_meta_fetch(vq, 1197 (u64)(uintptr_t)from, size, 1198 VHOST_ADDR_DESC); 1199 struct iov_iter f; 1200 1201 if (uaddr) 1202 return __copy_from_user(to, uaddr, size); 1203 1204 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 1205 ARRAY_SIZE(vq->iotlb_iov), 1206 VHOST_ACCESS_RO); 1207 if (ret < 0) { 1208 vq_err(vq, "IOTLB translation failure: uaddr " 1209 "%p size 0x%llx\n", from, 1210 (unsigned long long) size); 1211 goto out; 1212 } 1213 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size); 1214 ret = copy_from_iter(to, size, &f); 1215 if (ret == size) 1216 ret = 0; 1217 } 1218 1219 out: 1220 return ret; 1221 } 1222 1223 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 1224 void __user *addr, unsigned int size, 1225 int type) 1226 { 1227 int ret; 1228 1229 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 1230 ARRAY_SIZE(vq->iotlb_iov), 1231 VHOST_ACCESS_RO); 1232 if (ret < 0) { 1233 vq_err(vq, "IOTLB translation failure: uaddr " 1234 "%p size 0x%llx\n", addr, 1235 (unsigned long long) size); 1236 return NULL; 1237 } 1238 1239 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 1240 vq_err(vq, "Non atomic userspace memory access: uaddr " 1241 "%p size 0x%llx\n", addr, 1242 (unsigned long long) size); 1243 return NULL; 1244 } 1245 1246 return vq->iotlb_iov[0].iov_base; 1247 } 1248 1249 /* This function should be called after iotlb 1250 * prefetch, which means we're sure that vq 1251 * could be access through iotlb. So -EAGAIN should 1252 * not happen in this case. 1253 */ 1254 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 1255 void __user *addr, unsigned int size, 1256 int type) 1257 { 1258 void __user *uaddr = vhost_vq_meta_fetch(vq, 1259 (u64)(uintptr_t)addr, size, type); 1260 if (uaddr) 1261 return uaddr; 1262 1263 return __vhost_get_user_slow(vq, addr, size, type); 1264 } 1265 1266 #define vhost_put_user(vq, x, ptr) \ 1267 ({ \ 1268 int ret; \ 1269 if (!vq->iotlb) { \ 1270 ret = __put_user(x, ptr); \ 1271 } else { \ 1272 __typeof__(ptr) to = \ 1273 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1274 sizeof(*ptr), VHOST_ADDR_USED); \ 1275 if (to != NULL) \ 1276 ret = __put_user(x, to); \ 1277 else \ 1278 ret = -EFAULT; \ 1279 } \ 1280 ret; \ 1281 }) 1282 1283 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) 1284 { 1285 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1286 vhost_avail_event(vq)); 1287 } 1288 1289 static inline int vhost_put_used(struct vhost_virtqueue *vq, 1290 struct vring_used_elem *head, int idx, 1291 int count) 1292 { 1293 return vhost_copy_to_user(vq, vq->used->ring + idx, head, 1294 count * sizeof(*head)); 1295 } 1296 1297 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) 1298 1299 { 1300 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1301 &vq->used->flags); 1302 } 1303 1304 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) 1305 1306 { 1307 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 1308 &vq->used->idx); 1309 } 1310 1311 #define vhost_get_user(vq, x, ptr, type) \ 1312 ({ \ 1313 int ret; \ 1314 if (!vq->iotlb) { \ 1315 ret = __get_user(x, ptr); \ 1316 } else { \ 1317 __typeof__(ptr) from = \ 1318 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1319 sizeof(*ptr), \ 1320 type); \ 1321 if (from != NULL) \ 1322 ret = __get_user(x, from); \ 1323 else \ 1324 ret = -EFAULT; \ 1325 } \ 1326 ret; \ 1327 }) 1328 1329 #define vhost_get_avail(vq, x, ptr) \ 1330 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 1331 1332 #define vhost_get_used(vq, x, ptr) \ 1333 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 1334 1335 static void vhost_dev_lock_vqs(struct vhost_dev *d) 1336 { 1337 int i = 0; 1338 for (i = 0; i < d->nvqs; ++i) 1339 mutex_lock_nested(&d->vqs[i]->mutex, i); 1340 } 1341 1342 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 1343 { 1344 int i = 0; 1345 for (i = 0; i < d->nvqs; ++i) 1346 mutex_unlock(&d->vqs[i]->mutex); 1347 } 1348 1349 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq) 1350 { 1351 __virtio16 idx; 1352 int r; 1353 1354 r = vhost_get_avail(vq, idx, &vq->avail->idx); 1355 if (unlikely(r < 0)) { 1356 vq_err(vq, "Failed to access available index at %p (%d)\n", 1357 &vq->avail->idx, r); 1358 return r; 1359 } 1360 1361 /* Check it isn't doing very strange thing with available indexes */ 1362 vq->avail_idx = vhost16_to_cpu(vq, idx); 1363 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) { 1364 vq_err(vq, "Invalid available index change from %u to %u", 1365 vq->last_avail_idx, vq->avail_idx); 1366 return -EINVAL; 1367 } 1368 1369 /* We're done if there is nothing new */ 1370 if (vq->avail_idx == vq->last_avail_idx) 1371 return 0; 1372 1373 /* 1374 * We updated vq->avail_idx so we need a memory barrier between 1375 * the index read above and the caller reading avail ring entries. 1376 */ 1377 smp_rmb(); 1378 return 1; 1379 } 1380 1381 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, 1382 __virtio16 *head, int idx) 1383 { 1384 return vhost_get_avail(vq, *head, 1385 &vq->avail->ring[idx & (vq->num - 1)]); 1386 } 1387 1388 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, 1389 __virtio16 *flags) 1390 { 1391 return vhost_get_avail(vq, *flags, &vq->avail->flags); 1392 } 1393 1394 static inline int vhost_get_used_event(struct vhost_virtqueue *vq, 1395 __virtio16 *event) 1396 { 1397 return vhost_get_avail(vq, *event, vhost_used_event(vq)); 1398 } 1399 1400 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, 1401 __virtio16 *idx) 1402 { 1403 return vhost_get_used(vq, *idx, &vq->used->idx); 1404 } 1405 1406 static inline int vhost_get_desc(struct vhost_virtqueue *vq, 1407 struct vring_desc *desc, int idx) 1408 { 1409 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); 1410 } 1411 1412 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 1413 struct vhost_iotlb_msg *msg) 1414 { 1415 struct vhost_msg_node *node, *n; 1416 1417 spin_lock(&d->iotlb_lock); 1418 1419 list_for_each_entry_safe(node, n, &d->pending_list, node) { 1420 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 1421 if (msg->iova <= vq_msg->iova && 1422 msg->iova + msg->size - 1 >= vq_msg->iova && 1423 vq_msg->type == VHOST_IOTLB_MISS) { 1424 vhost_poll_queue(&node->vq->poll); 1425 list_del(&node->node); 1426 kfree(node); 1427 } 1428 } 1429 1430 spin_unlock(&d->iotlb_lock); 1431 } 1432 1433 static bool umem_access_ok(u64 uaddr, u64 size, int access) 1434 { 1435 unsigned long a = uaddr; 1436 1437 /* Make sure 64 bit math will not overflow. */ 1438 if (vhost_overflow(uaddr, size)) 1439 return false; 1440 1441 if ((access & VHOST_ACCESS_RO) && 1442 !access_ok((void __user *)a, size)) 1443 return false; 1444 if ((access & VHOST_ACCESS_WO) && 1445 !access_ok((void __user *)a, size)) 1446 return false; 1447 return true; 1448 } 1449 1450 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid, 1451 struct vhost_iotlb_msg *msg) 1452 { 1453 int ret = 0; 1454 1455 if (asid != 0) 1456 return -EINVAL; 1457 1458 mutex_lock(&dev->mutex); 1459 vhost_dev_lock_vqs(dev); 1460 switch (msg->type) { 1461 case VHOST_IOTLB_UPDATE: 1462 if (!dev->iotlb) { 1463 ret = -EFAULT; 1464 break; 1465 } 1466 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1467 ret = -EFAULT; 1468 break; 1469 } 1470 vhost_vq_meta_reset(dev); 1471 if (vhost_iotlb_add_range(dev->iotlb, msg->iova, 1472 msg->iova + msg->size - 1, 1473 msg->uaddr, msg->perm)) { 1474 ret = -ENOMEM; 1475 break; 1476 } 1477 vhost_iotlb_notify_vq(dev, msg); 1478 break; 1479 case VHOST_IOTLB_INVALIDATE: 1480 if (!dev->iotlb) { 1481 ret = -EFAULT; 1482 break; 1483 } 1484 vhost_vq_meta_reset(dev); 1485 vhost_iotlb_del_range(dev->iotlb, msg->iova, 1486 msg->iova + msg->size - 1); 1487 break; 1488 default: 1489 ret = -EINVAL; 1490 break; 1491 } 1492 1493 vhost_dev_unlock_vqs(dev); 1494 mutex_unlock(&dev->mutex); 1495 1496 return ret; 1497 } 1498 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1499 struct iov_iter *from) 1500 { 1501 struct vhost_iotlb_msg msg; 1502 size_t offset; 1503 int type, ret; 1504 u32 asid = 0; 1505 1506 ret = copy_from_iter(&type, sizeof(type), from); 1507 if (ret != sizeof(type)) { 1508 ret = -EINVAL; 1509 goto done; 1510 } 1511 1512 switch (type) { 1513 case VHOST_IOTLB_MSG: 1514 /* There maybe a hole after type for V1 message type, 1515 * so skip it here. 1516 */ 1517 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1518 break; 1519 case VHOST_IOTLB_MSG_V2: 1520 if (vhost_backend_has_feature(dev->vqs[0], 1521 VHOST_BACKEND_F_IOTLB_ASID)) { 1522 ret = copy_from_iter(&asid, sizeof(asid), from); 1523 if (ret != sizeof(asid)) { 1524 ret = -EINVAL; 1525 goto done; 1526 } 1527 offset = 0; 1528 } else 1529 offset = sizeof(__u32); 1530 break; 1531 default: 1532 ret = -EINVAL; 1533 goto done; 1534 } 1535 1536 iov_iter_advance(from, offset); 1537 ret = copy_from_iter(&msg, sizeof(msg), from); 1538 if (ret != sizeof(msg)) { 1539 ret = -EINVAL; 1540 goto done; 1541 } 1542 1543 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) { 1544 ret = -EINVAL; 1545 goto done; 1546 } 1547 1548 if (dev->msg_handler) 1549 ret = dev->msg_handler(dev, asid, &msg); 1550 else 1551 ret = vhost_process_iotlb_msg(dev, asid, &msg); 1552 if (ret) { 1553 ret = -EFAULT; 1554 goto done; 1555 } 1556 1557 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1558 sizeof(struct vhost_msg_v2); 1559 done: 1560 return ret; 1561 } 1562 EXPORT_SYMBOL(vhost_chr_write_iter); 1563 1564 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1565 poll_table *wait) 1566 { 1567 __poll_t mask = 0; 1568 1569 poll_wait(file, &dev->wait, wait); 1570 1571 if (!list_empty(&dev->read_list)) 1572 mask |= EPOLLIN | EPOLLRDNORM; 1573 1574 return mask; 1575 } 1576 EXPORT_SYMBOL(vhost_chr_poll); 1577 1578 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1579 int noblock) 1580 { 1581 DEFINE_WAIT(wait); 1582 struct vhost_msg_node *node; 1583 ssize_t ret = 0; 1584 unsigned size = sizeof(struct vhost_msg); 1585 1586 if (iov_iter_count(to) < size) 1587 return 0; 1588 1589 while (1) { 1590 if (!noblock) 1591 prepare_to_wait(&dev->wait, &wait, 1592 TASK_INTERRUPTIBLE); 1593 1594 node = vhost_dequeue_msg(dev, &dev->read_list); 1595 if (node) 1596 break; 1597 if (noblock) { 1598 ret = -EAGAIN; 1599 break; 1600 } 1601 if (signal_pending(current)) { 1602 ret = -ERESTARTSYS; 1603 break; 1604 } 1605 if (!dev->iotlb) { 1606 ret = -EBADFD; 1607 break; 1608 } 1609 1610 schedule(); 1611 } 1612 1613 if (!noblock) 1614 finish_wait(&dev->wait, &wait); 1615 1616 if (node) { 1617 struct vhost_iotlb_msg *msg; 1618 void *start = &node->msg; 1619 1620 switch (node->msg.type) { 1621 case VHOST_IOTLB_MSG: 1622 size = sizeof(node->msg); 1623 msg = &node->msg.iotlb; 1624 break; 1625 case VHOST_IOTLB_MSG_V2: 1626 size = sizeof(node->msg_v2); 1627 msg = &node->msg_v2.iotlb; 1628 break; 1629 default: 1630 BUG(); 1631 break; 1632 } 1633 1634 ret = copy_to_iter(start, size, to); 1635 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1636 kfree(node); 1637 return ret; 1638 } 1639 vhost_enqueue_msg(dev, &dev->pending_list, node); 1640 } 1641 1642 return ret; 1643 } 1644 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1645 1646 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1647 { 1648 struct vhost_dev *dev = vq->dev; 1649 struct vhost_msg_node *node; 1650 struct vhost_iotlb_msg *msg; 1651 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1652 1653 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1654 if (!node) 1655 return -ENOMEM; 1656 1657 if (v2) { 1658 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1659 msg = &node->msg_v2.iotlb; 1660 } else { 1661 msg = &node->msg.iotlb; 1662 } 1663 1664 msg->type = VHOST_IOTLB_MISS; 1665 msg->iova = iova; 1666 msg->perm = access; 1667 1668 vhost_enqueue_msg(dev, &dev->read_list, node); 1669 1670 return 0; 1671 } 1672 1673 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1674 vring_desc_t __user *desc, 1675 vring_avail_t __user *avail, 1676 vring_used_t __user *used) 1677 1678 { 1679 /* If an IOTLB device is present, the vring addresses are 1680 * GIOVAs. Access validation occurs at prefetch time. */ 1681 if (vq->iotlb) 1682 return true; 1683 1684 return access_ok(desc, vhost_get_desc_size(vq, num)) && 1685 access_ok(avail, vhost_get_avail_size(vq, num)) && 1686 access_ok(used, vhost_get_used_size(vq, num)); 1687 } 1688 1689 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1690 const struct vhost_iotlb_map *map, 1691 int type) 1692 { 1693 int access = (type == VHOST_ADDR_USED) ? 1694 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1695 1696 if (likely(map->perm & access)) 1697 vq->meta_iotlb[type] = map; 1698 } 1699 1700 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1701 int access, u64 addr, u64 len, int type) 1702 { 1703 const struct vhost_iotlb_map *map; 1704 struct vhost_iotlb *umem = vq->iotlb; 1705 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1706 1707 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1708 return true; 1709 1710 while (len > s) { 1711 map = vhost_iotlb_itree_first(umem, addr, last); 1712 if (map == NULL || map->start > addr) { 1713 vhost_iotlb_miss(vq, addr, access); 1714 return false; 1715 } else if (!(map->perm & access)) { 1716 /* Report the possible access violation by 1717 * request another translation from userspace. 1718 */ 1719 return false; 1720 } 1721 1722 size = map->size - addr + map->start; 1723 1724 if (orig_addr == addr && size >= len) 1725 vhost_vq_meta_update(vq, map, type); 1726 1727 s += size; 1728 addr += size; 1729 } 1730 1731 return true; 1732 } 1733 1734 int vq_meta_prefetch(struct vhost_virtqueue *vq) 1735 { 1736 unsigned int num = vq->num; 1737 1738 if (!vq->iotlb) 1739 return 1; 1740 1741 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc, 1742 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && 1743 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail, 1744 vhost_get_avail_size(vq, num), 1745 VHOST_ADDR_AVAIL) && 1746 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used, 1747 vhost_get_used_size(vq, num), VHOST_ADDR_USED); 1748 } 1749 EXPORT_SYMBOL_GPL(vq_meta_prefetch); 1750 1751 /* Can we log writes? */ 1752 /* Caller should have device mutex but not vq mutex */ 1753 bool vhost_log_access_ok(struct vhost_dev *dev) 1754 { 1755 return memory_access_ok(dev, dev->umem, 1); 1756 } 1757 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1758 1759 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq, 1760 void __user *log_base, 1761 bool log_used, 1762 u64 log_addr) 1763 { 1764 /* If an IOTLB device is present, log_addr is a GIOVA that 1765 * will never be logged by log_used(). */ 1766 if (vq->iotlb) 1767 return true; 1768 1769 return !log_used || log_access_ok(log_base, log_addr, 1770 vhost_get_used_size(vq, vq->num)); 1771 } 1772 1773 /* Verify access for write logging. */ 1774 /* Caller should have vq mutex and device mutex */ 1775 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1776 void __user *log_base) 1777 { 1778 return vq_memory_access_ok(log_base, vq->umem, 1779 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1780 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr); 1781 } 1782 1783 /* Can we start vq? */ 1784 /* Caller should have vq mutex and device mutex */ 1785 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1786 { 1787 if (!vq_log_access_ok(vq, vq->log_base)) 1788 return false; 1789 1790 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1791 } 1792 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1793 1794 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1795 { 1796 struct vhost_memory mem, *newmem; 1797 struct vhost_memory_region *region; 1798 struct vhost_iotlb *newumem, *oldumem; 1799 unsigned long size = offsetof(struct vhost_memory, regions); 1800 int i; 1801 1802 if (copy_from_user(&mem, m, size)) 1803 return -EFAULT; 1804 if (mem.padding) 1805 return -EOPNOTSUPP; 1806 if (mem.nregions > max_mem_regions) 1807 return -E2BIG; 1808 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1809 GFP_KERNEL); 1810 if (!newmem) 1811 return -ENOMEM; 1812 1813 memcpy(newmem, &mem, size); 1814 if (copy_from_user(newmem->regions, m->regions, 1815 flex_array_size(newmem, regions, mem.nregions))) { 1816 kvfree(newmem); 1817 return -EFAULT; 1818 } 1819 1820 newumem = iotlb_alloc(); 1821 if (!newumem) { 1822 kvfree(newmem); 1823 return -ENOMEM; 1824 } 1825 1826 for (region = newmem->regions; 1827 region < newmem->regions + mem.nregions; 1828 region++) { 1829 if (vhost_iotlb_add_range(newumem, 1830 region->guest_phys_addr, 1831 region->guest_phys_addr + 1832 region->memory_size - 1, 1833 region->userspace_addr, 1834 VHOST_MAP_RW)) 1835 goto err; 1836 } 1837 1838 if (!memory_access_ok(d, newumem, 0)) 1839 goto err; 1840 1841 oldumem = d->umem; 1842 d->umem = newumem; 1843 1844 /* All memory accesses are done under some VQ mutex. */ 1845 for (i = 0; i < d->nvqs; ++i) { 1846 mutex_lock(&d->vqs[i]->mutex); 1847 d->vqs[i]->umem = newumem; 1848 mutex_unlock(&d->vqs[i]->mutex); 1849 } 1850 1851 kvfree(newmem); 1852 vhost_iotlb_free(oldumem); 1853 return 0; 1854 1855 err: 1856 vhost_iotlb_free(newumem); 1857 kvfree(newmem); 1858 return -EFAULT; 1859 } 1860 1861 static long vhost_vring_set_num(struct vhost_dev *d, 1862 struct vhost_virtqueue *vq, 1863 void __user *argp) 1864 { 1865 struct vhost_vring_state s; 1866 1867 /* Resizing ring with an active backend? 1868 * You don't want to do that. */ 1869 if (vq->private_data) 1870 return -EBUSY; 1871 1872 if (copy_from_user(&s, argp, sizeof s)) 1873 return -EFAULT; 1874 1875 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) 1876 return -EINVAL; 1877 vq->num = s.num; 1878 1879 return 0; 1880 } 1881 1882 static long vhost_vring_set_addr(struct vhost_dev *d, 1883 struct vhost_virtqueue *vq, 1884 void __user *argp) 1885 { 1886 struct vhost_vring_addr a; 1887 1888 if (copy_from_user(&a, argp, sizeof a)) 1889 return -EFAULT; 1890 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) 1891 return -EOPNOTSUPP; 1892 1893 /* For 32bit, verify that the top 32bits of the user 1894 data are set to zero. */ 1895 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1896 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1897 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) 1898 return -EFAULT; 1899 1900 /* Make sure it's safe to cast pointers to vring types. */ 1901 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1902 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1903 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1904 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1905 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) 1906 return -EINVAL; 1907 1908 /* We only verify access here if backend is configured. 1909 * If it is not, we don't as size might not have been setup. 1910 * We will verify when backend is configured. */ 1911 if (vq->private_data) { 1912 if (!vq_access_ok(vq, vq->num, 1913 (void __user *)(unsigned long)a.desc_user_addr, 1914 (void __user *)(unsigned long)a.avail_user_addr, 1915 (void __user *)(unsigned long)a.used_user_addr)) 1916 return -EINVAL; 1917 1918 /* Also validate log access for used ring if enabled. */ 1919 if (!vq_log_used_access_ok(vq, vq->log_base, 1920 a.flags & (0x1 << VHOST_VRING_F_LOG), 1921 a.log_guest_addr)) 1922 return -EINVAL; 1923 } 1924 1925 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1926 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1927 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1928 vq->log_addr = a.log_guest_addr; 1929 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1930 1931 return 0; 1932 } 1933 1934 static long vhost_vring_set_num_addr(struct vhost_dev *d, 1935 struct vhost_virtqueue *vq, 1936 unsigned int ioctl, 1937 void __user *argp) 1938 { 1939 long r; 1940 1941 mutex_lock(&vq->mutex); 1942 1943 switch (ioctl) { 1944 case VHOST_SET_VRING_NUM: 1945 r = vhost_vring_set_num(d, vq, argp); 1946 break; 1947 case VHOST_SET_VRING_ADDR: 1948 r = vhost_vring_set_addr(d, vq, argp); 1949 break; 1950 default: 1951 BUG(); 1952 } 1953 1954 mutex_unlock(&vq->mutex); 1955 1956 return r; 1957 } 1958 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1959 { 1960 struct file *eventfp, *filep = NULL; 1961 bool pollstart = false, pollstop = false; 1962 struct eventfd_ctx *ctx = NULL; 1963 struct vhost_virtqueue *vq; 1964 struct vhost_vring_state s; 1965 struct vhost_vring_file f; 1966 u32 idx; 1967 long r; 1968 1969 r = vhost_get_vq_from_user(d, argp, &vq, &idx); 1970 if (r < 0) 1971 return r; 1972 1973 if (ioctl == VHOST_SET_VRING_NUM || 1974 ioctl == VHOST_SET_VRING_ADDR) { 1975 return vhost_vring_set_num_addr(d, vq, ioctl, argp); 1976 } 1977 1978 mutex_lock(&vq->mutex); 1979 1980 switch (ioctl) { 1981 case VHOST_SET_VRING_BASE: 1982 /* Moving base with an active backend? 1983 * You don't want to do that. */ 1984 if (vq->private_data) { 1985 r = -EBUSY; 1986 break; 1987 } 1988 if (copy_from_user(&s, argp, sizeof s)) { 1989 r = -EFAULT; 1990 break; 1991 } 1992 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) { 1993 vq->last_avail_idx = s.num & 0xffff; 1994 vq->last_used_idx = (s.num >> 16) & 0xffff; 1995 } else { 1996 if (s.num > 0xffff) { 1997 r = -EINVAL; 1998 break; 1999 } 2000 vq->last_avail_idx = s.num; 2001 } 2002 /* Forget the cached index value. */ 2003 vq->avail_idx = vq->last_avail_idx; 2004 break; 2005 case VHOST_GET_VRING_BASE: 2006 s.index = idx; 2007 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) 2008 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16); 2009 else 2010 s.num = vq->last_avail_idx; 2011 if (copy_to_user(argp, &s, sizeof s)) 2012 r = -EFAULT; 2013 break; 2014 case VHOST_SET_VRING_KICK: 2015 if (copy_from_user(&f, argp, sizeof f)) { 2016 r = -EFAULT; 2017 break; 2018 } 2019 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd); 2020 if (IS_ERR(eventfp)) { 2021 r = PTR_ERR(eventfp); 2022 break; 2023 } 2024 if (eventfp != vq->kick) { 2025 pollstop = (filep = vq->kick) != NULL; 2026 pollstart = (vq->kick = eventfp) != NULL; 2027 } else 2028 filep = eventfp; 2029 break; 2030 case VHOST_SET_VRING_CALL: 2031 if (copy_from_user(&f, argp, sizeof f)) { 2032 r = -EFAULT; 2033 break; 2034 } 2035 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2036 if (IS_ERR(ctx)) { 2037 r = PTR_ERR(ctx); 2038 break; 2039 } 2040 2041 swap(ctx, vq->call_ctx.ctx); 2042 break; 2043 case VHOST_SET_VRING_ERR: 2044 if (copy_from_user(&f, argp, sizeof f)) { 2045 r = -EFAULT; 2046 break; 2047 } 2048 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2049 if (IS_ERR(ctx)) { 2050 r = PTR_ERR(ctx); 2051 break; 2052 } 2053 swap(ctx, vq->error_ctx); 2054 break; 2055 case VHOST_SET_VRING_ENDIAN: 2056 r = vhost_set_vring_endian(vq, argp); 2057 break; 2058 case VHOST_GET_VRING_ENDIAN: 2059 r = vhost_get_vring_endian(vq, idx, argp); 2060 break; 2061 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 2062 if (copy_from_user(&s, argp, sizeof(s))) { 2063 r = -EFAULT; 2064 break; 2065 } 2066 vq->busyloop_timeout = s.num; 2067 break; 2068 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 2069 s.index = idx; 2070 s.num = vq->busyloop_timeout; 2071 if (copy_to_user(argp, &s, sizeof(s))) 2072 r = -EFAULT; 2073 break; 2074 default: 2075 r = -ENOIOCTLCMD; 2076 } 2077 2078 if (pollstop && vq->handle_kick) 2079 vhost_poll_stop(&vq->poll); 2080 2081 if (!IS_ERR_OR_NULL(ctx)) 2082 eventfd_ctx_put(ctx); 2083 if (filep) 2084 fput(filep); 2085 2086 if (pollstart && vq->handle_kick) 2087 r = vhost_poll_start(&vq->poll, vq->kick); 2088 2089 mutex_unlock(&vq->mutex); 2090 2091 if (pollstop && vq->handle_kick) 2092 vhost_dev_flush(vq->poll.dev); 2093 return r; 2094 } 2095 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 2096 2097 int vhost_init_device_iotlb(struct vhost_dev *d) 2098 { 2099 struct vhost_iotlb *niotlb, *oiotlb; 2100 int i; 2101 2102 niotlb = iotlb_alloc(); 2103 if (!niotlb) 2104 return -ENOMEM; 2105 2106 oiotlb = d->iotlb; 2107 d->iotlb = niotlb; 2108 2109 for (i = 0; i < d->nvqs; ++i) { 2110 struct vhost_virtqueue *vq = d->vqs[i]; 2111 2112 mutex_lock(&vq->mutex); 2113 vq->iotlb = niotlb; 2114 __vhost_vq_meta_reset(vq); 2115 mutex_unlock(&vq->mutex); 2116 } 2117 2118 vhost_iotlb_free(oiotlb); 2119 2120 return 0; 2121 } 2122 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 2123 2124 /* Caller must have device mutex */ 2125 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2126 { 2127 struct eventfd_ctx *ctx; 2128 u64 p; 2129 long r; 2130 int i, fd; 2131 2132 /* If you are not the owner, you can become one */ 2133 if (ioctl == VHOST_SET_OWNER) { 2134 r = vhost_dev_set_owner(d); 2135 goto done; 2136 } 2137 2138 /* You must be the owner to do anything else */ 2139 r = vhost_dev_check_owner(d); 2140 if (r) 2141 goto done; 2142 2143 switch (ioctl) { 2144 case VHOST_SET_MEM_TABLE: 2145 r = vhost_set_memory(d, argp); 2146 break; 2147 case VHOST_SET_LOG_BASE: 2148 if (copy_from_user(&p, argp, sizeof p)) { 2149 r = -EFAULT; 2150 break; 2151 } 2152 if ((u64)(unsigned long)p != p) { 2153 r = -EFAULT; 2154 break; 2155 } 2156 for (i = 0; i < d->nvqs; ++i) { 2157 struct vhost_virtqueue *vq; 2158 void __user *base = (void __user *)(unsigned long)p; 2159 vq = d->vqs[i]; 2160 mutex_lock(&vq->mutex); 2161 /* If ring is inactive, will check when it's enabled. */ 2162 if (vq->private_data && !vq_log_access_ok(vq, base)) 2163 r = -EFAULT; 2164 else 2165 vq->log_base = base; 2166 mutex_unlock(&vq->mutex); 2167 } 2168 break; 2169 case VHOST_SET_LOG_FD: 2170 r = get_user(fd, (int __user *)argp); 2171 if (r < 0) 2172 break; 2173 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd); 2174 if (IS_ERR(ctx)) { 2175 r = PTR_ERR(ctx); 2176 break; 2177 } 2178 swap(ctx, d->log_ctx); 2179 for (i = 0; i < d->nvqs; ++i) { 2180 mutex_lock(&d->vqs[i]->mutex); 2181 d->vqs[i]->log_ctx = d->log_ctx; 2182 mutex_unlock(&d->vqs[i]->mutex); 2183 } 2184 if (ctx) 2185 eventfd_ctx_put(ctx); 2186 break; 2187 default: 2188 r = -ENOIOCTLCMD; 2189 break; 2190 } 2191 done: 2192 return r; 2193 } 2194 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 2195 2196 /* TODO: This is really inefficient. We need something like get_user() 2197 * (instruction directly accesses the data, with an exception table entry 2198 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst. 2199 */ 2200 static int set_bit_to_user(int nr, void __user *addr) 2201 { 2202 unsigned long log = (unsigned long)addr; 2203 struct page *page; 2204 void *base; 2205 int bit = nr + (log % PAGE_SIZE) * 8; 2206 int r; 2207 2208 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page); 2209 if (r < 0) 2210 return r; 2211 BUG_ON(r != 1); 2212 base = kmap_atomic(page); 2213 set_bit(bit, base); 2214 kunmap_atomic(base); 2215 unpin_user_pages_dirty_lock(&page, 1, true); 2216 return 0; 2217 } 2218 2219 static int log_write(void __user *log_base, 2220 u64 write_address, u64 write_length) 2221 { 2222 u64 write_page = write_address / VHOST_PAGE_SIZE; 2223 int r; 2224 2225 if (!write_length) 2226 return 0; 2227 write_length += write_address % VHOST_PAGE_SIZE; 2228 for (;;) { 2229 u64 base = (u64)(unsigned long)log_base; 2230 u64 log = base + write_page / 8; 2231 int bit = write_page % 8; 2232 if ((u64)(unsigned long)log != log) 2233 return -EFAULT; 2234 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 2235 if (r < 0) 2236 return r; 2237 if (write_length <= VHOST_PAGE_SIZE) 2238 break; 2239 write_length -= VHOST_PAGE_SIZE; 2240 write_page += 1; 2241 } 2242 return r; 2243 } 2244 2245 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 2246 { 2247 struct vhost_iotlb *umem = vq->umem; 2248 struct vhost_iotlb_map *u; 2249 u64 start, end, l, min; 2250 int r; 2251 bool hit = false; 2252 2253 while (len) { 2254 min = len; 2255 /* More than one GPAs can be mapped into a single HVA. So 2256 * iterate all possible umems here to be safe. 2257 */ 2258 list_for_each_entry(u, &umem->list, link) { 2259 if (u->addr > hva - 1 + len || 2260 u->addr - 1 + u->size < hva) 2261 continue; 2262 start = max(u->addr, hva); 2263 end = min(u->addr - 1 + u->size, hva - 1 + len); 2264 l = end - start + 1; 2265 r = log_write(vq->log_base, 2266 u->start + start - u->addr, 2267 l); 2268 if (r < 0) 2269 return r; 2270 hit = true; 2271 min = min(l, min); 2272 } 2273 2274 if (!hit) 2275 return -EFAULT; 2276 2277 len -= min; 2278 hva += min; 2279 } 2280 2281 return 0; 2282 } 2283 2284 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 2285 { 2286 struct iovec *iov = vq->log_iov; 2287 int i, ret; 2288 2289 if (!vq->iotlb) 2290 return log_write(vq->log_base, vq->log_addr + used_offset, len); 2291 2292 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 2293 len, iov, 64, VHOST_ACCESS_WO); 2294 if (ret < 0) 2295 return ret; 2296 2297 for (i = 0; i < ret; i++) { 2298 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2299 iov[i].iov_len); 2300 if (ret) 2301 return ret; 2302 } 2303 2304 return 0; 2305 } 2306 2307 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 2308 unsigned int log_num, u64 len, struct iovec *iov, int count) 2309 { 2310 int i, r; 2311 2312 /* Make sure data written is seen before log. */ 2313 smp_wmb(); 2314 2315 if (vq->iotlb) { 2316 for (i = 0; i < count; i++) { 2317 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2318 iov[i].iov_len); 2319 if (r < 0) 2320 return r; 2321 } 2322 return 0; 2323 } 2324 2325 for (i = 0; i < log_num; ++i) { 2326 u64 l = min(log[i].len, len); 2327 r = log_write(vq->log_base, log[i].addr, l); 2328 if (r < 0) 2329 return r; 2330 len -= l; 2331 if (!len) { 2332 if (vq->log_ctx) 2333 eventfd_signal(vq->log_ctx); 2334 return 0; 2335 } 2336 } 2337 /* Length written exceeds what we have stored. This is a bug. */ 2338 BUG(); 2339 return 0; 2340 } 2341 EXPORT_SYMBOL_GPL(vhost_log_write); 2342 2343 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 2344 { 2345 void __user *used; 2346 if (vhost_put_used_flags(vq)) 2347 return -EFAULT; 2348 if (unlikely(vq->log_used)) { 2349 /* Make sure the flag is seen before log. */ 2350 smp_wmb(); 2351 /* Log used flag write. */ 2352 used = &vq->used->flags; 2353 log_used(vq, (used - (void __user *)vq->used), 2354 sizeof vq->used->flags); 2355 if (vq->log_ctx) 2356 eventfd_signal(vq->log_ctx); 2357 } 2358 return 0; 2359 } 2360 2361 static int vhost_update_avail_event(struct vhost_virtqueue *vq) 2362 { 2363 if (vhost_put_avail_event(vq)) 2364 return -EFAULT; 2365 if (unlikely(vq->log_used)) { 2366 void __user *used; 2367 /* Make sure the event is seen before log. */ 2368 smp_wmb(); 2369 /* Log avail event write */ 2370 used = vhost_avail_event(vq); 2371 log_used(vq, (used - (void __user *)vq->used), 2372 sizeof *vhost_avail_event(vq)); 2373 if (vq->log_ctx) 2374 eventfd_signal(vq->log_ctx); 2375 } 2376 return 0; 2377 } 2378 2379 int vhost_vq_init_access(struct vhost_virtqueue *vq) 2380 { 2381 __virtio16 last_used_idx; 2382 int r; 2383 bool is_le = vq->is_le; 2384 2385 if (!vq->private_data) 2386 return 0; 2387 2388 vhost_init_is_le(vq); 2389 2390 r = vhost_update_used_flags(vq); 2391 if (r) 2392 goto err; 2393 vq->signalled_used_valid = false; 2394 if (!vq->iotlb && 2395 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 2396 r = -EFAULT; 2397 goto err; 2398 } 2399 r = vhost_get_used_idx(vq, &last_used_idx); 2400 if (r) { 2401 vq_err(vq, "Can't access used idx at %p\n", 2402 &vq->used->idx); 2403 goto err; 2404 } 2405 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 2406 return 0; 2407 2408 err: 2409 vq->is_le = is_le; 2410 return r; 2411 } 2412 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 2413 2414 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 2415 struct iovec iov[], int iov_size, int access) 2416 { 2417 const struct vhost_iotlb_map *map; 2418 struct vhost_dev *dev = vq->dev; 2419 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem; 2420 struct iovec *_iov; 2421 u64 s = 0, last = addr + len - 1; 2422 int ret = 0; 2423 2424 while ((u64)len > s) { 2425 u64 size; 2426 if (unlikely(ret >= iov_size)) { 2427 ret = -ENOBUFS; 2428 break; 2429 } 2430 2431 map = vhost_iotlb_itree_first(umem, addr, last); 2432 if (map == NULL || map->start > addr) { 2433 if (umem != dev->iotlb) { 2434 ret = -EFAULT; 2435 break; 2436 } 2437 ret = -EAGAIN; 2438 break; 2439 } else if (!(map->perm & access)) { 2440 ret = -EPERM; 2441 break; 2442 } 2443 2444 _iov = iov + ret; 2445 size = map->size - addr + map->start; 2446 _iov->iov_len = min((u64)len - s, size); 2447 _iov->iov_base = (void __user *)(unsigned long) 2448 (map->addr + addr - map->start); 2449 s += size; 2450 addr += size; 2451 ++ret; 2452 } 2453 2454 if (ret == -EAGAIN) 2455 vhost_iotlb_miss(vq, addr, access); 2456 return ret; 2457 } 2458 2459 /* Each buffer in the virtqueues is actually a chain of descriptors. This 2460 * function returns the next descriptor in the chain, 2461 * or -1U if we're at the end. */ 2462 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 2463 { 2464 unsigned int next; 2465 2466 /* If this descriptor says it doesn't chain, we're done. */ 2467 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 2468 return -1U; 2469 2470 /* Check they're not leading us off end of descriptors. */ 2471 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 2472 return next; 2473 } 2474 2475 static int get_indirect(struct vhost_virtqueue *vq, 2476 struct iovec iov[], unsigned int iov_size, 2477 unsigned int *out_num, unsigned int *in_num, 2478 struct vhost_log *log, unsigned int *log_num, 2479 struct vring_desc *indirect) 2480 { 2481 struct vring_desc desc; 2482 unsigned int i = 0, count, found = 0; 2483 u32 len = vhost32_to_cpu(vq, indirect->len); 2484 struct iov_iter from; 2485 int ret, access; 2486 2487 /* Sanity check */ 2488 if (unlikely(len % sizeof desc)) { 2489 vq_err(vq, "Invalid length in indirect descriptor: " 2490 "len 0x%llx not multiple of 0x%zx\n", 2491 (unsigned long long)len, 2492 sizeof desc); 2493 return -EINVAL; 2494 } 2495 2496 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2497 UIO_MAXIOV, VHOST_ACCESS_RO); 2498 if (unlikely(ret < 0)) { 2499 if (ret != -EAGAIN) 2500 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2501 return ret; 2502 } 2503 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len); 2504 count = len / sizeof desc; 2505 /* Buffers are chained via a 16 bit next field, so 2506 * we can have at most 2^16 of these. */ 2507 if (unlikely(count > USHRT_MAX + 1)) { 2508 vq_err(vq, "Indirect buffer length too big: %d\n", 2509 indirect->len); 2510 return -E2BIG; 2511 } 2512 2513 do { 2514 unsigned iov_count = *in_num + *out_num; 2515 if (unlikely(++found > count)) { 2516 vq_err(vq, "Loop detected: last one at %u " 2517 "indirect size %u\n", 2518 i, count); 2519 return -EINVAL; 2520 } 2521 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2522 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2523 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2524 return -EINVAL; 2525 } 2526 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2527 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2528 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2529 return -EINVAL; 2530 } 2531 2532 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2533 access = VHOST_ACCESS_WO; 2534 else 2535 access = VHOST_ACCESS_RO; 2536 2537 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2538 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2539 iov_size - iov_count, access); 2540 if (unlikely(ret < 0)) { 2541 if (ret != -EAGAIN) 2542 vq_err(vq, "Translation failure %d indirect idx %d\n", 2543 ret, i); 2544 return ret; 2545 } 2546 /* If this is an input descriptor, increment that count. */ 2547 if (access == VHOST_ACCESS_WO) { 2548 *in_num += ret; 2549 if (unlikely(log && ret)) { 2550 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2551 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2552 ++*log_num; 2553 } 2554 } else { 2555 /* If it's an output descriptor, they're all supposed 2556 * to come before any input descriptors. */ 2557 if (unlikely(*in_num)) { 2558 vq_err(vq, "Indirect descriptor " 2559 "has out after in: idx %d\n", i); 2560 return -EINVAL; 2561 } 2562 *out_num += ret; 2563 } 2564 } while ((i = next_desc(vq, &desc)) != -1); 2565 return 0; 2566 } 2567 2568 /* This looks in the virtqueue and for the first available buffer, and converts 2569 * it to an iovec for convenient access. Since descriptors consist of some 2570 * number of output then some number of input descriptors, it's actually two 2571 * iovecs, but we pack them into one and note how many of each there were. 2572 * 2573 * This function returns the descriptor number found, or vq->num (which is 2574 * never a valid descriptor number) if none was found. A negative code is 2575 * returned on error. */ 2576 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2577 struct iovec iov[], unsigned int iov_size, 2578 unsigned int *out_num, unsigned int *in_num, 2579 struct vhost_log *log, unsigned int *log_num) 2580 { 2581 struct vring_desc desc; 2582 unsigned int i, head, found = 0; 2583 u16 last_avail_idx = vq->last_avail_idx; 2584 __virtio16 ring_head; 2585 int ret, access; 2586 2587 if (vq->avail_idx == vq->last_avail_idx) { 2588 ret = vhost_get_avail_idx(vq); 2589 if (unlikely(ret < 0)) 2590 return ret; 2591 2592 if (!ret) 2593 return vq->num; 2594 } 2595 2596 /* Grab the next descriptor number they're advertising, and increment 2597 * the index we've seen. */ 2598 if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) { 2599 vq_err(vq, "Failed to read head: idx %d address %p\n", 2600 last_avail_idx, 2601 &vq->avail->ring[last_avail_idx % vq->num]); 2602 return -EFAULT; 2603 } 2604 2605 head = vhost16_to_cpu(vq, ring_head); 2606 2607 /* If their number is silly, that's an error. */ 2608 if (unlikely(head >= vq->num)) { 2609 vq_err(vq, "Guest says index %u > %u is available", 2610 head, vq->num); 2611 return -EINVAL; 2612 } 2613 2614 /* When we start there are none of either input nor output. */ 2615 *out_num = *in_num = 0; 2616 if (unlikely(log)) 2617 *log_num = 0; 2618 2619 i = head; 2620 do { 2621 unsigned iov_count = *in_num + *out_num; 2622 if (unlikely(i >= vq->num)) { 2623 vq_err(vq, "Desc index is %u > %u, head = %u", 2624 i, vq->num, head); 2625 return -EINVAL; 2626 } 2627 if (unlikely(++found > vq->num)) { 2628 vq_err(vq, "Loop detected: last one at %u " 2629 "vq size %u head %u\n", 2630 i, vq->num, head); 2631 return -EINVAL; 2632 } 2633 ret = vhost_get_desc(vq, &desc, i); 2634 if (unlikely(ret)) { 2635 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2636 i, vq->desc + i); 2637 return -EFAULT; 2638 } 2639 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2640 ret = get_indirect(vq, iov, iov_size, 2641 out_num, in_num, 2642 log, log_num, &desc); 2643 if (unlikely(ret < 0)) { 2644 if (ret != -EAGAIN) 2645 vq_err(vq, "Failure detected " 2646 "in indirect descriptor at idx %d\n", i); 2647 return ret; 2648 } 2649 continue; 2650 } 2651 2652 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2653 access = VHOST_ACCESS_WO; 2654 else 2655 access = VHOST_ACCESS_RO; 2656 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2657 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2658 iov_size - iov_count, access); 2659 if (unlikely(ret < 0)) { 2660 if (ret != -EAGAIN) 2661 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2662 ret, i); 2663 return ret; 2664 } 2665 if (access == VHOST_ACCESS_WO) { 2666 /* If this is an input descriptor, 2667 * increment that count. */ 2668 *in_num += ret; 2669 if (unlikely(log && ret)) { 2670 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2671 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2672 ++*log_num; 2673 } 2674 } else { 2675 /* If it's an output descriptor, they're all supposed 2676 * to come before any input descriptors. */ 2677 if (unlikely(*in_num)) { 2678 vq_err(vq, "Descriptor has out after in: " 2679 "idx %d\n", i); 2680 return -EINVAL; 2681 } 2682 *out_num += ret; 2683 } 2684 } while ((i = next_desc(vq, &desc)) != -1); 2685 2686 /* On success, increment avail index. */ 2687 vq->last_avail_idx++; 2688 2689 /* Assume notifications from guest are disabled at this point, 2690 * if they aren't we would need to update avail_event index. */ 2691 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2692 return head; 2693 } 2694 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2695 2696 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2697 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2698 { 2699 vq->last_avail_idx -= n; 2700 } 2701 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2702 2703 /* After we've used one of their buffers, we tell them about it. We'll then 2704 * want to notify the guest, using eventfd. */ 2705 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2706 { 2707 struct vring_used_elem heads = { 2708 cpu_to_vhost32(vq, head), 2709 cpu_to_vhost32(vq, len) 2710 }; 2711 2712 return vhost_add_used_n(vq, &heads, 1); 2713 } 2714 EXPORT_SYMBOL_GPL(vhost_add_used); 2715 2716 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2717 struct vring_used_elem *heads, 2718 unsigned count) 2719 { 2720 vring_used_elem_t __user *used; 2721 u16 old, new; 2722 int start; 2723 2724 start = vq->last_used_idx & (vq->num - 1); 2725 used = vq->used->ring + start; 2726 if (vhost_put_used(vq, heads, start, count)) { 2727 vq_err(vq, "Failed to write used"); 2728 return -EFAULT; 2729 } 2730 if (unlikely(vq->log_used)) { 2731 /* Make sure data is seen before log. */ 2732 smp_wmb(); 2733 /* Log used ring entry write. */ 2734 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2735 count * sizeof *used); 2736 } 2737 old = vq->last_used_idx; 2738 new = (vq->last_used_idx += count); 2739 /* If the driver never bothers to signal in a very long while, 2740 * used index might wrap around. If that happens, invalidate 2741 * signalled_used index we stored. TODO: make sure driver 2742 * signals at least once in 2^16 and remove this. */ 2743 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2744 vq->signalled_used_valid = false; 2745 return 0; 2746 } 2747 2748 /* After we've used one of their buffers, we tell them about it. We'll then 2749 * want to notify the guest, using eventfd. */ 2750 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2751 unsigned count) 2752 { 2753 int start, n, r; 2754 2755 start = vq->last_used_idx & (vq->num - 1); 2756 n = vq->num - start; 2757 if (n < count) { 2758 r = __vhost_add_used_n(vq, heads, n); 2759 if (r < 0) 2760 return r; 2761 heads += n; 2762 count -= n; 2763 } 2764 r = __vhost_add_used_n(vq, heads, count); 2765 2766 /* Make sure buffer is written before we update index. */ 2767 smp_wmb(); 2768 if (vhost_put_used_idx(vq)) { 2769 vq_err(vq, "Failed to increment used idx"); 2770 return -EFAULT; 2771 } 2772 if (unlikely(vq->log_used)) { 2773 /* Make sure used idx is seen before log. */ 2774 smp_wmb(); 2775 /* Log used index update. */ 2776 log_used(vq, offsetof(struct vring_used, idx), 2777 sizeof vq->used->idx); 2778 if (vq->log_ctx) 2779 eventfd_signal(vq->log_ctx); 2780 } 2781 return r; 2782 } 2783 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2784 2785 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2786 { 2787 __u16 old, new; 2788 __virtio16 event; 2789 bool v; 2790 /* Flush out used index updates. This is paired 2791 * with the barrier that the Guest executes when enabling 2792 * interrupts. */ 2793 smp_mb(); 2794 2795 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2796 unlikely(vq->avail_idx == vq->last_avail_idx)) 2797 return true; 2798 2799 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2800 __virtio16 flags; 2801 if (vhost_get_avail_flags(vq, &flags)) { 2802 vq_err(vq, "Failed to get flags"); 2803 return true; 2804 } 2805 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2806 } 2807 old = vq->signalled_used; 2808 v = vq->signalled_used_valid; 2809 new = vq->signalled_used = vq->last_used_idx; 2810 vq->signalled_used_valid = true; 2811 2812 if (unlikely(!v)) 2813 return true; 2814 2815 if (vhost_get_used_event(vq, &event)) { 2816 vq_err(vq, "Failed to get used event idx"); 2817 return true; 2818 } 2819 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2820 } 2821 2822 /* This actually signals the guest, using eventfd. */ 2823 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2824 { 2825 /* Signal the Guest tell them we used something up. */ 2826 if (vq->call_ctx.ctx && vhost_notify(dev, vq)) 2827 eventfd_signal(vq->call_ctx.ctx); 2828 } 2829 EXPORT_SYMBOL_GPL(vhost_signal); 2830 2831 /* And here's the combo meal deal. Supersize me! */ 2832 void vhost_add_used_and_signal(struct vhost_dev *dev, 2833 struct vhost_virtqueue *vq, 2834 unsigned int head, int len) 2835 { 2836 vhost_add_used(vq, head, len); 2837 vhost_signal(dev, vq); 2838 } 2839 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2840 2841 /* multi-buffer version of vhost_add_used_and_signal */ 2842 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2843 struct vhost_virtqueue *vq, 2844 struct vring_used_elem *heads, unsigned count) 2845 { 2846 vhost_add_used_n(vq, heads, count); 2847 vhost_signal(dev, vq); 2848 } 2849 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2850 2851 /* return true if we're sure that avaiable ring is empty */ 2852 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2853 { 2854 int r; 2855 2856 if (vq->avail_idx != vq->last_avail_idx) 2857 return false; 2858 2859 r = vhost_get_avail_idx(vq); 2860 2861 /* Note: we treat error as non-empty here */ 2862 return r == 0; 2863 } 2864 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2865 2866 /* OK, now we need to know about added descriptors. */ 2867 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2868 { 2869 int r; 2870 2871 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2872 return false; 2873 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2874 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2875 r = vhost_update_used_flags(vq); 2876 if (r) { 2877 vq_err(vq, "Failed to enable notification at %p: %d\n", 2878 &vq->used->flags, r); 2879 return false; 2880 } 2881 } else { 2882 r = vhost_update_avail_event(vq); 2883 if (r) { 2884 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2885 vhost_avail_event(vq), r); 2886 return false; 2887 } 2888 } 2889 /* They could have slipped one in as we were doing that: make 2890 * sure it's written, then check again. */ 2891 smp_mb(); 2892 2893 r = vhost_get_avail_idx(vq); 2894 /* Note: we treat error as empty here */ 2895 if (unlikely(r < 0)) 2896 return false; 2897 2898 return r; 2899 } 2900 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2901 2902 /* We don't need to be notified again. */ 2903 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2904 { 2905 int r; 2906 2907 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2908 return; 2909 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2910 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2911 r = vhost_update_used_flags(vq); 2912 if (r) 2913 vq_err(vq, "Failed to disable notification at %p: %d\n", 2914 &vq->used->flags, r); 2915 } 2916 } 2917 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2918 2919 /* Create a new message. */ 2920 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2921 { 2922 /* Make sure all padding within the structure is initialized. */ 2923 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL); 2924 if (!node) 2925 return NULL; 2926 2927 node->vq = vq; 2928 node->msg.type = type; 2929 return node; 2930 } 2931 EXPORT_SYMBOL_GPL(vhost_new_msg); 2932 2933 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2934 struct vhost_msg_node *node) 2935 { 2936 spin_lock(&dev->iotlb_lock); 2937 list_add_tail(&node->node, head); 2938 spin_unlock(&dev->iotlb_lock); 2939 2940 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2941 } 2942 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2943 2944 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2945 struct list_head *head) 2946 { 2947 struct vhost_msg_node *node = NULL; 2948 2949 spin_lock(&dev->iotlb_lock); 2950 if (!list_empty(head)) { 2951 node = list_first_entry(head, struct vhost_msg_node, 2952 node); 2953 list_del(&node->node); 2954 } 2955 spin_unlock(&dev->iotlb_lock); 2956 2957 return node; 2958 } 2959 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2960 2961 void vhost_set_backend_features(struct vhost_dev *dev, u64 features) 2962 { 2963 struct vhost_virtqueue *vq; 2964 int i; 2965 2966 mutex_lock(&dev->mutex); 2967 for (i = 0; i < dev->nvqs; ++i) { 2968 vq = dev->vqs[i]; 2969 mutex_lock(&vq->mutex); 2970 vq->acked_backend_features = features; 2971 mutex_unlock(&vq->mutex); 2972 } 2973 mutex_unlock(&dev->mutex); 2974 } 2975 EXPORT_SYMBOL_GPL(vhost_set_backend_features); 2976 2977 static int __init vhost_init(void) 2978 { 2979 return 0; 2980 } 2981 2982 static void __exit vhost_exit(void) 2983 { 2984 } 2985 2986 module_init(vhost_init); 2987 module_exit(vhost_exit); 2988 2989 MODULE_VERSION("0.0.1"); 2990 MODULE_LICENSE("GPL v2"); 2991 MODULE_AUTHOR("Michael S. Tsirkin"); 2992 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2993