1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/miscdevice.h> 18 #include <linux/mutex.h> 19 #include <linux/poll.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/kthread.h> 25 #include <linux/module.h> 26 #include <linux/sort.h> 27 #include <linux/sched/mm.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/vhost_task.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/nospec.h> 32 #include <linux/kcov.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 53 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 54 { 55 vq->user_be = !virtio_legacy_is_little_endian(); 56 } 57 58 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 59 { 60 vq->user_be = true; 61 } 62 63 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 64 { 65 vq->user_be = false; 66 } 67 68 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 69 { 70 struct vhost_vring_state s; 71 72 if (vq->private_data) 73 return -EBUSY; 74 75 if (copy_from_user(&s, argp, sizeof(s))) 76 return -EFAULT; 77 78 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 79 s.num != VHOST_VRING_BIG_ENDIAN) 80 return -EINVAL; 81 82 if (s.num == VHOST_VRING_BIG_ENDIAN) 83 vhost_enable_cross_endian_big(vq); 84 else 85 vhost_enable_cross_endian_little(vq); 86 87 return 0; 88 } 89 90 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 91 int __user *argp) 92 { 93 struct vhost_vring_state s = { 94 .index = idx, 95 .num = vq->user_be 96 }; 97 98 if (copy_to_user(argp, &s, sizeof(s))) 99 return -EFAULT; 100 101 return 0; 102 } 103 104 static void vhost_init_is_le(struct vhost_virtqueue *vq) 105 { 106 /* Note for legacy virtio: user_be is initialized at reset time 107 * according to the host endianness. If userspace does not set an 108 * explicit endianness, the default behavior is native endian, as 109 * expected by legacy virtio. 110 */ 111 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 112 } 113 #else 114 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 115 { 116 } 117 118 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 119 { 120 return -ENOIOCTLCMD; 121 } 122 123 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 124 int __user *argp) 125 { 126 return -ENOIOCTLCMD; 127 } 128 129 static void vhost_init_is_le(struct vhost_virtqueue *vq) 130 { 131 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 132 || virtio_legacy_is_little_endian(); 133 } 134 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 135 136 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 137 { 138 vhost_init_is_le(vq); 139 } 140 141 struct vhost_flush_struct { 142 struct vhost_work work; 143 struct completion wait_event; 144 }; 145 146 static void vhost_flush_work(struct vhost_work *work) 147 { 148 struct vhost_flush_struct *s; 149 150 s = container_of(work, struct vhost_flush_struct, work); 151 complete(&s->wait_event); 152 } 153 154 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 155 poll_table *pt) 156 { 157 struct vhost_poll *poll; 158 159 poll = container_of(pt, struct vhost_poll, table); 160 poll->wqh = wqh; 161 add_wait_queue(wqh, &poll->wait); 162 } 163 164 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 165 void *key) 166 { 167 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 168 struct vhost_work *work = &poll->work; 169 170 if (!(key_to_poll(key) & poll->mask)) 171 return 0; 172 173 if (!poll->dev->use_worker) 174 work->fn(work); 175 else 176 vhost_poll_queue(poll); 177 178 return 0; 179 } 180 181 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 182 { 183 clear_bit(VHOST_WORK_QUEUED, &work->flags); 184 work->fn = fn; 185 } 186 EXPORT_SYMBOL_GPL(vhost_work_init); 187 188 /* Init poll structure */ 189 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 190 __poll_t mask, struct vhost_dev *dev, 191 struct vhost_virtqueue *vq) 192 { 193 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 194 init_poll_funcptr(&poll->table, vhost_poll_func); 195 poll->mask = mask; 196 poll->dev = dev; 197 poll->wqh = NULL; 198 poll->vq = vq; 199 200 vhost_work_init(&poll->work, fn); 201 } 202 EXPORT_SYMBOL_GPL(vhost_poll_init); 203 204 /* Start polling a file. We add ourselves to file's wait queue. The caller must 205 * keep a reference to a file until after vhost_poll_stop is called. */ 206 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 207 { 208 __poll_t mask; 209 210 if (poll->wqh) 211 return 0; 212 213 mask = vfs_poll(file, &poll->table); 214 if (mask) 215 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 216 if (mask & EPOLLERR) { 217 vhost_poll_stop(poll); 218 return -EINVAL; 219 } 220 221 return 0; 222 } 223 EXPORT_SYMBOL_GPL(vhost_poll_start); 224 225 /* Stop polling a file. After this function returns, it becomes safe to drop the 226 * file reference. You must also flush afterwards. */ 227 void vhost_poll_stop(struct vhost_poll *poll) 228 { 229 if (poll->wqh) { 230 remove_wait_queue(poll->wqh, &poll->wait); 231 poll->wqh = NULL; 232 } 233 } 234 EXPORT_SYMBOL_GPL(vhost_poll_stop); 235 236 static void vhost_worker_queue(struct vhost_worker *worker, 237 struct vhost_work *work) 238 { 239 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 240 /* We can only add the work to the list after we're 241 * sure it was not in the list. 242 * test_and_set_bit() implies a memory barrier. 243 */ 244 llist_add(&work->node, &worker->work_list); 245 vhost_task_wake(worker->vtsk); 246 } 247 } 248 249 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work) 250 { 251 struct vhost_worker *worker; 252 bool queued = false; 253 254 rcu_read_lock(); 255 worker = rcu_dereference(vq->worker); 256 if (worker) { 257 queued = true; 258 vhost_worker_queue(worker, work); 259 } 260 rcu_read_unlock(); 261 262 return queued; 263 } 264 EXPORT_SYMBOL_GPL(vhost_vq_work_queue); 265 266 /** 267 * __vhost_worker_flush - flush a worker 268 * @worker: worker to flush 269 * 270 * The worker's flush_mutex must be held. 271 */ 272 static void __vhost_worker_flush(struct vhost_worker *worker) 273 { 274 struct vhost_flush_struct flush; 275 276 if (!worker->attachment_cnt || worker->killed) 277 return; 278 279 init_completion(&flush.wait_event); 280 vhost_work_init(&flush.work, vhost_flush_work); 281 282 vhost_worker_queue(worker, &flush.work); 283 /* 284 * Drop mutex in case our worker is killed and it needs to take the 285 * mutex to force cleanup. 286 */ 287 mutex_unlock(&worker->mutex); 288 wait_for_completion(&flush.wait_event); 289 mutex_lock(&worker->mutex); 290 } 291 292 static void vhost_worker_flush(struct vhost_worker *worker) 293 { 294 mutex_lock(&worker->mutex); 295 __vhost_worker_flush(worker); 296 mutex_unlock(&worker->mutex); 297 } 298 299 void vhost_dev_flush(struct vhost_dev *dev) 300 { 301 struct vhost_worker *worker; 302 unsigned long i; 303 304 xa_for_each(&dev->worker_xa, i, worker) 305 vhost_worker_flush(worker); 306 } 307 EXPORT_SYMBOL_GPL(vhost_dev_flush); 308 309 /* A lockless hint for busy polling code to exit the loop */ 310 bool vhost_vq_has_work(struct vhost_virtqueue *vq) 311 { 312 struct vhost_worker *worker; 313 bool has_work = false; 314 315 rcu_read_lock(); 316 worker = rcu_dereference(vq->worker); 317 if (worker && !llist_empty(&worker->work_list)) 318 has_work = true; 319 rcu_read_unlock(); 320 321 return has_work; 322 } 323 EXPORT_SYMBOL_GPL(vhost_vq_has_work); 324 325 void vhost_poll_queue(struct vhost_poll *poll) 326 { 327 vhost_vq_work_queue(poll->vq, &poll->work); 328 } 329 EXPORT_SYMBOL_GPL(vhost_poll_queue); 330 331 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 332 { 333 int j; 334 335 for (j = 0; j < VHOST_NUM_ADDRS; j++) 336 vq->meta_iotlb[j] = NULL; 337 } 338 339 static void vhost_vq_meta_reset(struct vhost_dev *d) 340 { 341 int i; 342 343 for (i = 0; i < d->nvqs; ++i) 344 __vhost_vq_meta_reset(d->vqs[i]); 345 } 346 347 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx) 348 { 349 call_ctx->ctx = NULL; 350 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer)); 351 } 352 353 bool vhost_vq_is_setup(struct vhost_virtqueue *vq) 354 { 355 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq); 356 } 357 EXPORT_SYMBOL_GPL(vhost_vq_is_setup); 358 359 static void vhost_vq_reset(struct vhost_dev *dev, 360 struct vhost_virtqueue *vq) 361 { 362 vq->num = 1; 363 vq->desc = NULL; 364 vq->avail = NULL; 365 vq->used = NULL; 366 vq->last_avail_idx = 0; 367 vq->avail_idx = 0; 368 vq->last_used_idx = 0; 369 vq->signalled_used = 0; 370 vq->signalled_used_valid = false; 371 vq->used_flags = 0; 372 vq->log_used = false; 373 vq->log_addr = -1ull; 374 vq->private_data = NULL; 375 vq->acked_features = 0; 376 vq->acked_backend_features = 0; 377 vq->log_base = NULL; 378 vq->error_ctx = NULL; 379 vq->kick = NULL; 380 vq->log_ctx = NULL; 381 vhost_disable_cross_endian(vq); 382 vhost_reset_is_le(vq); 383 vq->busyloop_timeout = 0; 384 vq->umem = NULL; 385 vq->iotlb = NULL; 386 rcu_assign_pointer(vq->worker, NULL); 387 vhost_vring_call_reset(&vq->call_ctx); 388 __vhost_vq_meta_reset(vq); 389 } 390 391 static bool vhost_run_work_list(void *data) 392 { 393 struct vhost_worker *worker = data; 394 struct vhost_work *work, *work_next; 395 struct llist_node *node; 396 397 node = llist_del_all(&worker->work_list); 398 if (node) { 399 __set_current_state(TASK_RUNNING); 400 401 node = llist_reverse_order(node); 402 /* make sure flag is seen after deletion */ 403 smp_wmb(); 404 llist_for_each_entry_safe(work, work_next, node, node) { 405 clear_bit(VHOST_WORK_QUEUED, &work->flags); 406 kcov_remote_start_common(worker->kcov_handle); 407 work->fn(work); 408 kcov_remote_stop(); 409 cond_resched(); 410 } 411 } 412 413 return !!node; 414 } 415 416 static void vhost_worker_killed(void *data) 417 { 418 struct vhost_worker *worker = data; 419 struct vhost_dev *dev = worker->dev; 420 struct vhost_virtqueue *vq; 421 int i, attach_cnt = 0; 422 423 mutex_lock(&worker->mutex); 424 worker->killed = true; 425 426 for (i = 0; i < dev->nvqs; i++) { 427 vq = dev->vqs[i]; 428 429 mutex_lock(&vq->mutex); 430 if (worker == 431 rcu_dereference_check(vq->worker, 432 lockdep_is_held(&vq->mutex))) { 433 rcu_assign_pointer(vq->worker, NULL); 434 attach_cnt++; 435 } 436 mutex_unlock(&vq->mutex); 437 } 438 439 worker->attachment_cnt -= attach_cnt; 440 if (attach_cnt) 441 synchronize_rcu(); 442 /* 443 * Finish vhost_worker_flush calls and any other works that snuck in 444 * before the synchronize_rcu. 445 */ 446 vhost_run_work_list(worker); 447 mutex_unlock(&worker->mutex); 448 } 449 450 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 451 { 452 kfree(vq->indirect); 453 vq->indirect = NULL; 454 kfree(vq->log); 455 vq->log = NULL; 456 kfree(vq->heads); 457 vq->heads = NULL; 458 } 459 460 /* Helper to allocate iovec buffers for all vqs. */ 461 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 462 { 463 struct vhost_virtqueue *vq; 464 int i; 465 466 for (i = 0; i < dev->nvqs; ++i) { 467 vq = dev->vqs[i]; 468 vq->indirect = kmalloc_array(UIO_MAXIOV, 469 sizeof(*vq->indirect), 470 GFP_KERNEL); 471 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 472 GFP_KERNEL); 473 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 474 GFP_KERNEL); 475 if (!vq->indirect || !vq->log || !vq->heads) 476 goto err_nomem; 477 } 478 return 0; 479 480 err_nomem: 481 for (; i >= 0; --i) 482 vhost_vq_free_iovecs(dev->vqs[i]); 483 return -ENOMEM; 484 } 485 486 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 487 { 488 int i; 489 490 for (i = 0; i < dev->nvqs; ++i) 491 vhost_vq_free_iovecs(dev->vqs[i]); 492 } 493 494 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 495 int pkts, int total_len) 496 { 497 struct vhost_dev *dev = vq->dev; 498 499 if ((dev->byte_weight && total_len >= dev->byte_weight) || 500 pkts >= dev->weight) { 501 vhost_poll_queue(&vq->poll); 502 return true; 503 } 504 505 return false; 506 } 507 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 508 509 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, 510 unsigned int num) 511 { 512 size_t event __maybe_unused = 513 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 514 515 return size_add(struct_size(vq->avail, ring, num), event); 516 } 517 518 static size_t vhost_get_used_size(struct vhost_virtqueue *vq, 519 unsigned int num) 520 { 521 size_t event __maybe_unused = 522 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 523 524 return size_add(struct_size(vq->used, ring, num), event); 525 } 526 527 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, 528 unsigned int num) 529 { 530 return sizeof(*vq->desc) * num; 531 } 532 533 void vhost_dev_init(struct vhost_dev *dev, 534 struct vhost_virtqueue **vqs, int nvqs, 535 int iov_limit, int weight, int byte_weight, 536 bool use_worker, 537 int (*msg_handler)(struct vhost_dev *dev, u32 asid, 538 struct vhost_iotlb_msg *msg)) 539 { 540 struct vhost_virtqueue *vq; 541 int i; 542 543 dev->vqs = vqs; 544 dev->nvqs = nvqs; 545 mutex_init(&dev->mutex); 546 dev->log_ctx = NULL; 547 dev->umem = NULL; 548 dev->iotlb = NULL; 549 dev->mm = NULL; 550 dev->iov_limit = iov_limit; 551 dev->weight = weight; 552 dev->byte_weight = byte_weight; 553 dev->use_worker = use_worker; 554 dev->msg_handler = msg_handler; 555 init_waitqueue_head(&dev->wait); 556 INIT_LIST_HEAD(&dev->read_list); 557 INIT_LIST_HEAD(&dev->pending_list); 558 spin_lock_init(&dev->iotlb_lock); 559 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC); 560 561 for (i = 0; i < dev->nvqs; ++i) { 562 vq = dev->vqs[i]; 563 vq->log = NULL; 564 vq->indirect = NULL; 565 vq->heads = NULL; 566 vq->dev = dev; 567 mutex_init(&vq->mutex); 568 vhost_vq_reset(dev, vq); 569 if (vq->handle_kick) 570 vhost_poll_init(&vq->poll, vq->handle_kick, 571 EPOLLIN, dev, vq); 572 } 573 } 574 EXPORT_SYMBOL_GPL(vhost_dev_init); 575 576 /* Caller should have device mutex */ 577 long vhost_dev_check_owner(struct vhost_dev *dev) 578 { 579 /* Are you the owner? If not, I don't think you mean to do that */ 580 return dev->mm == current->mm ? 0 : -EPERM; 581 } 582 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 583 584 /* Caller should have device mutex */ 585 bool vhost_dev_has_owner(struct vhost_dev *dev) 586 { 587 return dev->mm; 588 } 589 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 590 591 static void vhost_attach_mm(struct vhost_dev *dev) 592 { 593 /* No owner, become one */ 594 if (dev->use_worker) { 595 dev->mm = get_task_mm(current); 596 } else { 597 /* vDPA device does not use worker thead, so there's 598 * no need to hold the address space for mm. This help 599 * to avoid deadlock in the case of mmap() which may 600 * held the refcnt of the file and depends on release 601 * method to remove vma. 602 */ 603 dev->mm = current->mm; 604 mmgrab(dev->mm); 605 } 606 } 607 608 static void vhost_detach_mm(struct vhost_dev *dev) 609 { 610 if (!dev->mm) 611 return; 612 613 if (dev->use_worker) 614 mmput(dev->mm); 615 else 616 mmdrop(dev->mm); 617 618 dev->mm = NULL; 619 } 620 621 static void vhost_worker_destroy(struct vhost_dev *dev, 622 struct vhost_worker *worker) 623 { 624 if (!worker) 625 return; 626 627 WARN_ON(!llist_empty(&worker->work_list)); 628 xa_erase(&dev->worker_xa, worker->id); 629 vhost_task_stop(worker->vtsk); 630 kfree(worker); 631 } 632 633 static void vhost_workers_free(struct vhost_dev *dev) 634 { 635 struct vhost_worker *worker; 636 unsigned long i; 637 638 if (!dev->use_worker) 639 return; 640 641 for (i = 0; i < dev->nvqs; i++) 642 rcu_assign_pointer(dev->vqs[i]->worker, NULL); 643 /* 644 * Free the default worker we created and cleanup workers userspace 645 * created but couldn't clean up (it forgot or crashed). 646 */ 647 xa_for_each(&dev->worker_xa, i, worker) 648 vhost_worker_destroy(dev, worker); 649 xa_destroy(&dev->worker_xa); 650 } 651 652 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev) 653 { 654 struct vhost_worker *worker; 655 struct vhost_task *vtsk; 656 char name[TASK_COMM_LEN]; 657 int ret; 658 u32 id; 659 660 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT); 661 if (!worker) 662 return NULL; 663 664 worker->dev = dev; 665 snprintf(name, sizeof(name), "vhost-%d", current->pid); 666 667 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed, 668 worker, name); 669 if (!vtsk) 670 goto free_worker; 671 672 mutex_init(&worker->mutex); 673 init_llist_head(&worker->work_list); 674 worker->kcov_handle = kcov_common_handle(); 675 worker->vtsk = vtsk; 676 677 vhost_task_start(vtsk); 678 679 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 680 if (ret < 0) 681 goto stop_worker; 682 worker->id = id; 683 684 return worker; 685 686 stop_worker: 687 vhost_task_stop(vtsk); 688 free_worker: 689 kfree(worker); 690 return NULL; 691 } 692 693 /* Caller must have device mutex */ 694 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq, 695 struct vhost_worker *worker) 696 { 697 struct vhost_worker *old_worker; 698 699 mutex_lock(&worker->mutex); 700 if (worker->killed) { 701 mutex_unlock(&worker->mutex); 702 return; 703 } 704 705 mutex_lock(&vq->mutex); 706 707 old_worker = rcu_dereference_check(vq->worker, 708 lockdep_is_held(&vq->mutex)); 709 rcu_assign_pointer(vq->worker, worker); 710 worker->attachment_cnt++; 711 712 if (!old_worker) { 713 mutex_unlock(&vq->mutex); 714 mutex_unlock(&worker->mutex); 715 return; 716 } 717 mutex_unlock(&vq->mutex); 718 mutex_unlock(&worker->mutex); 719 720 /* 721 * Take the worker mutex to make sure we see the work queued from 722 * device wide flushes which doesn't use RCU for execution. 723 */ 724 mutex_lock(&old_worker->mutex); 725 if (old_worker->killed) { 726 mutex_unlock(&old_worker->mutex); 727 return; 728 } 729 730 /* 731 * We don't want to call synchronize_rcu for every vq during setup 732 * because it will slow down VM startup. If we haven't done 733 * VHOST_SET_VRING_KICK and not done the driver specific 734 * SET_ENDPOINT/RUNNUNG then we can skip the sync since there will 735 * not be any works queued for scsi and net. 736 */ 737 mutex_lock(&vq->mutex); 738 if (!vhost_vq_get_backend(vq) && !vq->kick) { 739 mutex_unlock(&vq->mutex); 740 741 old_worker->attachment_cnt--; 742 mutex_unlock(&old_worker->mutex); 743 /* 744 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID. 745 * Warn if it adds support for multiple workers but forgets to 746 * handle the early queueing case. 747 */ 748 WARN_ON(!old_worker->attachment_cnt && 749 !llist_empty(&old_worker->work_list)); 750 return; 751 } 752 mutex_unlock(&vq->mutex); 753 754 /* Make sure new vq queue/flush/poll calls see the new worker */ 755 synchronize_rcu(); 756 /* Make sure whatever was queued gets run */ 757 __vhost_worker_flush(old_worker); 758 old_worker->attachment_cnt--; 759 mutex_unlock(&old_worker->mutex); 760 } 761 762 /* Caller must have device mutex */ 763 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq, 764 struct vhost_vring_worker *info) 765 { 766 unsigned long index = info->worker_id; 767 struct vhost_dev *dev = vq->dev; 768 struct vhost_worker *worker; 769 770 if (!dev->use_worker) 771 return -EINVAL; 772 773 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 774 if (!worker || worker->id != info->worker_id) 775 return -ENODEV; 776 777 __vhost_vq_attach_worker(vq, worker); 778 return 0; 779 } 780 781 /* Caller must have device mutex */ 782 static int vhost_new_worker(struct vhost_dev *dev, 783 struct vhost_worker_state *info) 784 { 785 struct vhost_worker *worker; 786 787 worker = vhost_worker_create(dev); 788 if (!worker) 789 return -ENOMEM; 790 791 info->worker_id = worker->id; 792 return 0; 793 } 794 795 /* Caller must have device mutex */ 796 static int vhost_free_worker(struct vhost_dev *dev, 797 struct vhost_worker_state *info) 798 { 799 unsigned long index = info->worker_id; 800 struct vhost_worker *worker; 801 802 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 803 if (!worker || worker->id != info->worker_id) 804 return -ENODEV; 805 806 mutex_lock(&worker->mutex); 807 if (worker->attachment_cnt || worker->killed) { 808 mutex_unlock(&worker->mutex); 809 return -EBUSY; 810 } 811 /* 812 * A flush might have raced and snuck in before attachment_cnt was set 813 * to zero. Make sure flushes are flushed from the queue before 814 * freeing. 815 */ 816 __vhost_worker_flush(worker); 817 mutex_unlock(&worker->mutex); 818 819 vhost_worker_destroy(dev, worker); 820 return 0; 821 } 822 823 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp, 824 struct vhost_virtqueue **vq, u32 *id) 825 { 826 u32 __user *idxp = argp; 827 u32 idx; 828 long r; 829 830 r = get_user(idx, idxp); 831 if (r < 0) 832 return r; 833 834 if (idx >= dev->nvqs) 835 return -ENOBUFS; 836 837 idx = array_index_nospec(idx, dev->nvqs); 838 839 *vq = dev->vqs[idx]; 840 *id = idx; 841 return 0; 842 } 843 844 /* Caller must have device mutex */ 845 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl, 846 void __user *argp) 847 { 848 struct vhost_vring_worker ring_worker; 849 struct vhost_worker_state state; 850 struct vhost_worker *worker; 851 struct vhost_virtqueue *vq; 852 long ret; 853 u32 idx; 854 855 if (!dev->use_worker) 856 return -EINVAL; 857 858 if (!vhost_dev_has_owner(dev)) 859 return -EINVAL; 860 861 ret = vhost_dev_check_owner(dev); 862 if (ret) 863 return ret; 864 865 switch (ioctl) { 866 /* dev worker ioctls */ 867 case VHOST_NEW_WORKER: 868 ret = vhost_new_worker(dev, &state); 869 if (!ret && copy_to_user(argp, &state, sizeof(state))) 870 ret = -EFAULT; 871 return ret; 872 case VHOST_FREE_WORKER: 873 if (copy_from_user(&state, argp, sizeof(state))) 874 return -EFAULT; 875 return vhost_free_worker(dev, &state); 876 /* vring worker ioctls */ 877 case VHOST_ATTACH_VRING_WORKER: 878 case VHOST_GET_VRING_WORKER: 879 break; 880 default: 881 return -ENOIOCTLCMD; 882 } 883 884 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx); 885 if (ret) 886 return ret; 887 888 switch (ioctl) { 889 case VHOST_ATTACH_VRING_WORKER: 890 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) { 891 ret = -EFAULT; 892 break; 893 } 894 895 ret = vhost_vq_attach_worker(vq, &ring_worker); 896 break; 897 case VHOST_GET_VRING_WORKER: 898 worker = rcu_dereference_check(vq->worker, 899 lockdep_is_held(&dev->mutex)); 900 if (!worker) { 901 ret = -EINVAL; 902 break; 903 } 904 905 ring_worker.index = idx; 906 ring_worker.worker_id = worker->id; 907 908 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker))) 909 ret = -EFAULT; 910 break; 911 default: 912 ret = -ENOIOCTLCMD; 913 break; 914 } 915 916 return ret; 917 } 918 EXPORT_SYMBOL_GPL(vhost_worker_ioctl); 919 920 /* Caller should have device mutex */ 921 long vhost_dev_set_owner(struct vhost_dev *dev) 922 { 923 struct vhost_worker *worker; 924 int err, i; 925 926 /* Is there an owner already? */ 927 if (vhost_dev_has_owner(dev)) { 928 err = -EBUSY; 929 goto err_mm; 930 } 931 932 vhost_attach_mm(dev); 933 934 err = vhost_dev_alloc_iovecs(dev); 935 if (err) 936 goto err_iovecs; 937 938 if (dev->use_worker) { 939 /* 940 * This should be done last, because vsock can queue work 941 * before VHOST_SET_OWNER so it simplifies the failure path 942 * below since we don't have to worry about vsock queueing 943 * while we free the worker. 944 */ 945 worker = vhost_worker_create(dev); 946 if (!worker) { 947 err = -ENOMEM; 948 goto err_worker; 949 } 950 951 for (i = 0; i < dev->nvqs; i++) 952 __vhost_vq_attach_worker(dev->vqs[i], worker); 953 } 954 955 return 0; 956 957 err_worker: 958 vhost_dev_free_iovecs(dev); 959 err_iovecs: 960 vhost_detach_mm(dev); 961 err_mm: 962 return err; 963 } 964 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 965 966 static struct vhost_iotlb *iotlb_alloc(void) 967 { 968 return vhost_iotlb_alloc(max_iotlb_entries, 969 VHOST_IOTLB_FLAG_RETIRE); 970 } 971 972 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void) 973 { 974 return iotlb_alloc(); 975 } 976 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 977 978 /* Caller should have device mutex */ 979 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem) 980 { 981 int i; 982 983 vhost_dev_cleanup(dev); 984 985 dev->umem = umem; 986 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 987 * VQs aren't running. 988 */ 989 for (i = 0; i < dev->nvqs; ++i) 990 dev->vqs[i]->umem = umem; 991 } 992 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 993 994 void vhost_dev_stop(struct vhost_dev *dev) 995 { 996 int i; 997 998 for (i = 0; i < dev->nvqs; ++i) { 999 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) 1000 vhost_poll_stop(&dev->vqs[i]->poll); 1001 } 1002 1003 vhost_dev_flush(dev); 1004 } 1005 EXPORT_SYMBOL_GPL(vhost_dev_stop); 1006 1007 void vhost_clear_msg(struct vhost_dev *dev) 1008 { 1009 struct vhost_msg_node *node, *n; 1010 1011 spin_lock(&dev->iotlb_lock); 1012 1013 list_for_each_entry_safe(node, n, &dev->read_list, node) { 1014 list_del(&node->node); 1015 kfree(node); 1016 } 1017 1018 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 1019 list_del(&node->node); 1020 kfree(node); 1021 } 1022 1023 spin_unlock(&dev->iotlb_lock); 1024 } 1025 EXPORT_SYMBOL_GPL(vhost_clear_msg); 1026 1027 void vhost_dev_cleanup(struct vhost_dev *dev) 1028 { 1029 int i; 1030 1031 for (i = 0; i < dev->nvqs; ++i) { 1032 if (dev->vqs[i]->error_ctx) 1033 eventfd_ctx_put(dev->vqs[i]->error_ctx); 1034 if (dev->vqs[i]->kick) 1035 fput(dev->vqs[i]->kick); 1036 if (dev->vqs[i]->call_ctx.ctx) 1037 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx); 1038 vhost_vq_reset(dev, dev->vqs[i]); 1039 } 1040 vhost_dev_free_iovecs(dev); 1041 if (dev->log_ctx) 1042 eventfd_ctx_put(dev->log_ctx); 1043 dev->log_ctx = NULL; 1044 /* No one will access memory at this point */ 1045 vhost_iotlb_free(dev->umem); 1046 dev->umem = NULL; 1047 vhost_iotlb_free(dev->iotlb); 1048 dev->iotlb = NULL; 1049 vhost_clear_msg(dev); 1050 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 1051 vhost_workers_free(dev); 1052 vhost_detach_mm(dev); 1053 } 1054 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 1055 1056 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 1057 { 1058 u64 a = addr / VHOST_PAGE_SIZE / 8; 1059 1060 /* Make sure 64 bit math will not overflow. */ 1061 if (a > ULONG_MAX - (unsigned long)log_base || 1062 a + (unsigned long)log_base > ULONG_MAX) 1063 return false; 1064 1065 return access_ok(log_base + a, 1066 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 1067 } 1068 1069 /* Make sure 64 bit math will not overflow. */ 1070 static bool vhost_overflow(u64 uaddr, u64 size) 1071 { 1072 if (uaddr > ULONG_MAX || size > ULONG_MAX) 1073 return true; 1074 1075 if (!size) 1076 return false; 1077 1078 return uaddr > ULONG_MAX - size + 1; 1079 } 1080 1081 /* Caller should have vq mutex and device mutex. */ 1082 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem, 1083 int log_all) 1084 { 1085 struct vhost_iotlb_map *map; 1086 1087 if (!umem) 1088 return false; 1089 1090 list_for_each_entry(map, &umem->list, link) { 1091 unsigned long a = map->addr; 1092 1093 if (vhost_overflow(map->addr, map->size)) 1094 return false; 1095 1096 1097 if (!access_ok((void __user *)a, map->size)) 1098 return false; 1099 else if (log_all && !log_access_ok(log_base, 1100 map->start, 1101 map->size)) 1102 return false; 1103 } 1104 return true; 1105 } 1106 1107 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 1108 u64 addr, unsigned int size, 1109 int type) 1110 { 1111 const struct vhost_iotlb_map *map = vq->meta_iotlb[type]; 1112 1113 if (!map) 1114 return NULL; 1115 1116 return (void __user *)(uintptr_t)(map->addr + addr - map->start); 1117 } 1118 1119 /* Can we switch to this memory table? */ 1120 /* Caller should have device mutex but not vq mutex */ 1121 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem, 1122 int log_all) 1123 { 1124 int i; 1125 1126 for (i = 0; i < d->nvqs; ++i) { 1127 bool ok; 1128 bool log; 1129 1130 mutex_lock(&d->vqs[i]->mutex); 1131 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 1132 /* If ring is inactive, will check when it's enabled. */ 1133 if (d->vqs[i]->private_data) 1134 ok = vq_memory_access_ok(d->vqs[i]->log_base, 1135 umem, log); 1136 else 1137 ok = true; 1138 mutex_unlock(&d->vqs[i]->mutex); 1139 if (!ok) 1140 return false; 1141 } 1142 return true; 1143 } 1144 1145 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1146 struct iovec iov[], int iov_size, int access); 1147 1148 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 1149 const void *from, unsigned size) 1150 { 1151 int ret; 1152 1153 if (!vq->iotlb) 1154 return __copy_to_user(to, from, size); 1155 else { 1156 /* This function should be called after iotlb 1157 * prefetch, which means we're sure that all vq 1158 * could be access through iotlb. So -EAGAIN should 1159 * not happen in this case. 1160 */ 1161 struct iov_iter t; 1162 void __user *uaddr = vhost_vq_meta_fetch(vq, 1163 (u64)(uintptr_t)to, size, 1164 VHOST_ADDR_USED); 1165 1166 if (uaddr) 1167 return __copy_to_user(uaddr, from, size); 1168 1169 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 1170 ARRAY_SIZE(vq->iotlb_iov), 1171 VHOST_ACCESS_WO); 1172 if (ret < 0) 1173 goto out; 1174 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size); 1175 ret = copy_to_iter(from, size, &t); 1176 if (ret == size) 1177 ret = 0; 1178 } 1179 out: 1180 return ret; 1181 } 1182 1183 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 1184 void __user *from, unsigned size) 1185 { 1186 int ret; 1187 1188 if (!vq->iotlb) 1189 return __copy_from_user(to, from, size); 1190 else { 1191 /* This function should be called after iotlb 1192 * prefetch, which means we're sure that vq 1193 * could be access through iotlb. So -EAGAIN should 1194 * not happen in this case. 1195 */ 1196 void __user *uaddr = vhost_vq_meta_fetch(vq, 1197 (u64)(uintptr_t)from, size, 1198 VHOST_ADDR_DESC); 1199 struct iov_iter f; 1200 1201 if (uaddr) 1202 return __copy_from_user(to, uaddr, size); 1203 1204 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 1205 ARRAY_SIZE(vq->iotlb_iov), 1206 VHOST_ACCESS_RO); 1207 if (ret < 0) { 1208 vq_err(vq, "IOTLB translation failure: uaddr " 1209 "%p size 0x%llx\n", from, 1210 (unsigned long long) size); 1211 goto out; 1212 } 1213 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size); 1214 ret = copy_from_iter(to, size, &f); 1215 if (ret == size) 1216 ret = 0; 1217 } 1218 1219 out: 1220 return ret; 1221 } 1222 1223 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 1224 void __user *addr, unsigned int size, 1225 int type) 1226 { 1227 int ret; 1228 1229 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 1230 ARRAY_SIZE(vq->iotlb_iov), 1231 VHOST_ACCESS_RO); 1232 if (ret < 0) { 1233 vq_err(vq, "IOTLB translation failure: uaddr " 1234 "%p size 0x%llx\n", addr, 1235 (unsigned long long) size); 1236 return NULL; 1237 } 1238 1239 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 1240 vq_err(vq, "Non atomic userspace memory access: uaddr " 1241 "%p size 0x%llx\n", addr, 1242 (unsigned long long) size); 1243 return NULL; 1244 } 1245 1246 return vq->iotlb_iov[0].iov_base; 1247 } 1248 1249 /* This function should be called after iotlb 1250 * prefetch, which means we're sure that vq 1251 * could be access through iotlb. So -EAGAIN should 1252 * not happen in this case. 1253 */ 1254 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 1255 void __user *addr, unsigned int size, 1256 int type) 1257 { 1258 void __user *uaddr = vhost_vq_meta_fetch(vq, 1259 (u64)(uintptr_t)addr, size, type); 1260 if (uaddr) 1261 return uaddr; 1262 1263 return __vhost_get_user_slow(vq, addr, size, type); 1264 } 1265 1266 #define vhost_put_user(vq, x, ptr) \ 1267 ({ \ 1268 int ret; \ 1269 if (!vq->iotlb) { \ 1270 ret = __put_user(x, ptr); \ 1271 } else { \ 1272 __typeof__(ptr) to = \ 1273 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1274 sizeof(*ptr), VHOST_ADDR_USED); \ 1275 if (to != NULL) \ 1276 ret = __put_user(x, to); \ 1277 else \ 1278 ret = -EFAULT; \ 1279 } \ 1280 ret; \ 1281 }) 1282 1283 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) 1284 { 1285 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1286 vhost_avail_event(vq)); 1287 } 1288 1289 static inline int vhost_put_used(struct vhost_virtqueue *vq, 1290 struct vring_used_elem *head, int idx, 1291 int count) 1292 { 1293 return vhost_copy_to_user(vq, vq->used->ring + idx, head, 1294 count * sizeof(*head)); 1295 } 1296 1297 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) 1298 1299 { 1300 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1301 &vq->used->flags); 1302 } 1303 1304 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) 1305 1306 { 1307 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 1308 &vq->used->idx); 1309 } 1310 1311 #define vhost_get_user(vq, x, ptr, type) \ 1312 ({ \ 1313 int ret; \ 1314 if (!vq->iotlb) { \ 1315 ret = __get_user(x, ptr); \ 1316 } else { \ 1317 __typeof__(ptr) from = \ 1318 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1319 sizeof(*ptr), \ 1320 type); \ 1321 if (from != NULL) \ 1322 ret = __get_user(x, from); \ 1323 else \ 1324 ret = -EFAULT; \ 1325 } \ 1326 ret; \ 1327 }) 1328 1329 #define vhost_get_avail(vq, x, ptr) \ 1330 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 1331 1332 #define vhost_get_used(vq, x, ptr) \ 1333 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 1334 1335 static void vhost_dev_lock_vqs(struct vhost_dev *d) 1336 { 1337 int i = 0; 1338 for (i = 0; i < d->nvqs; ++i) 1339 mutex_lock_nested(&d->vqs[i]->mutex, i); 1340 } 1341 1342 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 1343 { 1344 int i = 0; 1345 for (i = 0; i < d->nvqs; ++i) 1346 mutex_unlock(&d->vqs[i]->mutex); 1347 } 1348 1349 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq, 1350 __virtio16 *idx) 1351 { 1352 return vhost_get_avail(vq, *idx, &vq->avail->idx); 1353 } 1354 1355 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, 1356 __virtio16 *head, int idx) 1357 { 1358 return vhost_get_avail(vq, *head, 1359 &vq->avail->ring[idx & (vq->num - 1)]); 1360 } 1361 1362 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, 1363 __virtio16 *flags) 1364 { 1365 return vhost_get_avail(vq, *flags, &vq->avail->flags); 1366 } 1367 1368 static inline int vhost_get_used_event(struct vhost_virtqueue *vq, 1369 __virtio16 *event) 1370 { 1371 return vhost_get_avail(vq, *event, vhost_used_event(vq)); 1372 } 1373 1374 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, 1375 __virtio16 *idx) 1376 { 1377 return vhost_get_used(vq, *idx, &vq->used->idx); 1378 } 1379 1380 static inline int vhost_get_desc(struct vhost_virtqueue *vq, 1381 struct vring_desc *desc, int idx) 1382 { 1383 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); 1384 } 1385 1386 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 1387 struct vhost_iotlb_msg *msg) 1388 { 1389 struct vhost_msg_node *node, *n; 1390 1391 spin_lock(&d->iotlb_lock); 1392 1393 list_for_each_entry_safe(node, n, &d->pending_list, node) { 1394 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 1395 if (msg->iova <= vq_msg->iova && 1396 msg->iova + msg->size - 1 >= vq_msg->iova && 1397 vq_msg->type == VHOST_IOTLB_MISS) { 1398 vhost_poll_queue(&node->vq->poll); 1399 list_del(&node->node); 1400 kfree(node); 1401 } 1402 } 1403 1404 spin_unlock(&d->iotlb_lock); 1405 } 1406 1407 static bool umem_access_ok(u64 uaddr, u64 size, int access) 1408 { 1409 unsigned long a = uaddr; 1410 1411 /* Make sure 64 bit math will not overflow. */ 1412 if (vhost_overflow(uaddr, size)) 1413 return false; 1414 1415 if ((access & VHOST_ACCESS_RO) && 1416 !access_ok((void __user *)a, size)) 1417 return false; 1418 if ((access & VHOST_ACCESS_WO) && 1419 !access_ok((void __user *)a, size)) 1420 return false; 1421 return true; 1422 } 1423 1424 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid, 1425 struct vhost_iotlb_msg *msg) 1426 { 1427 int ret = 0; 1428 1429 if (asid != 0) 1430 return -EINVAL; 1431 1432 mutex_lock(&dev->mutex); 1433 vhost_dev_lock_vqs(dev); 1434 switch (msg->type) { 1435 case VHOST_IOTLB_UPDATE: 1436 if (!dev->iotlb) { 1437 ret = -EFAULT; 1438 break; 1439 } 1440 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1441 ret = -EFAULT; 1442 break; 1443 } 1444 vhost_vq_meta_reset(dev); 1445 if (vhost_iotlb_add_range(dev->iotlb, msg->iova, 1446 msg->iova + msg->size - 1, 1447 msg->uaddr, msg->perm)) { 1448 ret = -ENOMEM; 1449 break; 1450 } 1451 vhost_iotlb_notify_vq(dev, msg); 1452 break; 1453 case VHOST_IOTLB_INVALIDATE: 1454 if (!dev->iotlb) { 1455 ret = -EFAULT; 1456 break; 1457 } 1458 vhost_vq_meta_reset(dev); 1459 vhost_iotlb_del_range(dev->iotlb, msg->iova, 1460 msg->iova + msg->size - 1); 1461 break; 1462 default: 1463 ret = -EINVAL; 1464 break; 1465 } 1466 1467 vhost_dev_unlock_vqs(dev); 1468 mutex_unlock(&dev->mutex); 1469 1470 return ret; 1471 } 1472 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1473 struct iov_iter *from) 1474 { 1475 struct vhost_iotlb_msg msg; 1476 size_t offset; 1477 int type, ret; 1478 u32 asid = 0; 1479 1480 ret = copy_from_iter(&type, sizeof(type), from); 1481 if (ret != sizeof(type)) { 1482 ret = -EINVAL; 1483 goto done; 1484 } 1485 1486 switch (type) { 1487 case VHOST_IOTLB_MSG: 1488 /* There maybe a hole after type for V1 message type, 1489 * so skip it here. 1490 */ 1491 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1492 break; 1493 case VHOST_IOTLB_MSG_V2: 1494 if (vhost_backend_has_feature(dev->vqs[0], 1495 VHOST_BACKEND_F_IOTLB_ASID)) { 1496 ret = copy_from_iter(&asid, sizeof(asid), from); 1497 if (ret != sizeof(asid)) { 1498 ret = -EINVAL; 1499 goto done; 1500 } 1501 offset = 0; 1502 } else 1503 offset = sizeof(__u32); 1504 break; 1505 default: 1506 ret = -EINVAL; 1507 goto done; 1508 } 1509 1510 iov_iter_advance(from, offset); 1511 ret = copy_from_iter(&msg, sizeof(msg), from); 1512 if (ret != sizeof(msg)) { 1513 ret = -EINVAL; 1514 goto done; 1515 } 1516 1517 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) { 1518 ret = -EINVAL; 1519 goto done; 1520 } 1521 1522 if (dev->msg_handler) 1523 ret = dev->msg_handler(dev, asid, &msg); 1524 else 1525 ret = vhost_process_iotlb_msg(dev, asid, &msg); 1526 if (ret) { 1527 ret = -EFAULT; 1528 goto done; 1529 } 1530 1531 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1532 sizeof(struct vhost_msg_v2); 1533 done: 1534 return ret; 1535 } 1536 EXPORT_SYMBOL(vhost_chr_write_iter); 1537 1538 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1539 poll_table *wait) 1540 { 1541 __poll_t mask = 0; 1542 1543 poll_wait(file, &dev->wait, wait); 1544 1545 if (!list_empty(&dev->read_list)) 1546 mask |= EPOLLIN | EPOLLRDNORM; 1547 1548 return mask; 1549 } 1550 EXPORT_SYMBOL(vhost_chr_poll); 1551 1552 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1553 int noblock) 1554 { 1555 DEFINE_WAIT(wait); 1556 struct vhost_msg_node *node; 1557 ssize_t ret = 0; 1558 unsigned size = sizeof(struct vhost_msg); 1559 1560 if (iov_iter_count(to) < size) 1561 return 0; 1562 1563 while (1) { 1564 if (!noblock) 1565 prepare_to_wait(&dev->wait, &wait, 1566 TASK_INTERRUPTIBLE); 1567 1568 node = vhost_dequeue_msg(dev, &dev->read_list); 1569 if (node) 1570 break; 1571 if (noblock) { 1572 ret = -EAGAIN; 1573 break; 1574 } 1575 if (signal_pending(current)) { 1576 ret = -ERESTARTSYS; 1577 break; 1578 } 1579 if (!dev->iotlb) { 1580 ret = -EBADFD; 1581 break; 1582 } 1583 1584 schedule(); 1585 } 1586 1587 if (!noblock) 1588 finish_wait(&dev->wait, &wait); 1589 1590 if (node) { 1591 struct vhost_iotlb_msg *msg; 1592 void *start = &node->msg; 1593 1594 switch (node->msg.type) { 1595 case VHOST_IOTLB_MSG: 1596 size = sizeof(node->msg); 1597 msg = &node->msg.iotlb; 1598 break; 1599 case VHOST_IOTLB_MSG_V2: 1600 size = sizeof(node->msg_v2); 1601 msg = &node->msg_v2.iotlb; 1602 break; 1603 default: 1604 BUG(); 1605 break; 1606 } 1607 1608 ret = copy_to_iter(start, size, to); 1609 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1610 kfree(node); 1611 return ret; 1612 } 1613 vhost_enqueue_msg(dev, &dev->pending_list, node); 1614 } 1615 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1619 1620 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1621 { 1622 struct vhost_dev *dev = vq->dev; 1623 struct vhost_msg_node *node; 1624 struct vhost_iotlb_msg *msg; 1625 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1626 1627 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1628 if (!node) 1629 return -ENOMEM; 1630 1631 if (v2) { 1632 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1633 msg = &node->msg_v2.iotlb; 1634 } else { 1635 msg = &node->msg.iotlb; 1636 } 1637 1638 msg->type = VHOST_IOTLB_MISS; 1639 msg->iova = iova; 1640 msg->perm = access; 1641 1642 vhost_enqueue_msg(dev, &dev->read_list, node); 1643 1644 return 0; 1645 } 1646 1647 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1648 vring_desc_t __user *desc, 1649 vring_avail_t __user *avail, 1650 vring_used_t __user *used) 1651 1652 { 1653 /* If an IOTLB device is present, the vring addresses are 1654 * GIOVAs. Access validation occurs at prefetch time. */ 1655 if (vq->iotlb) 1656 return true; 1657 1658 return access_ok(desc, vhost_get_desc_size(vq, num)) && 1659 access_ok(avail, vhost_get_avail_size(vq, num)) && 1660 access_ok(used, vhost_get_used_size(vq, num)); 1661 } 1662 1663 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1664 const struct vhost_iotlb_map *map, 1665 int type) 1666 { 1667 int access = (type == VHOST_ADDR_USED) ? 1668 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1669 1670 if (likely(map->perm & access)) 1671 vq->meta_iotlb[type] = map; 1672 } 1673 1674 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1675 int access, u64 addr, u64 len, int type) 1676 { 1677 const struct vhost_iotlb_map *map; 1678 struct vhost_iotlb *umem = vq->iotlb; 1679 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1680 1681 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1682 return true; 1683 1684 while (len > s) { 1685 map = vhost_iotlb_itree_first(umem, addr, last); 1686 if (map == NULL || map->start > addr) { 1687 vhost_iotlb_miss(vq, addr, access); 1688 return false; 1689 } else if (!(map->perm & access)) { 1690 /* Report the possible access violation by 1691 * request another translation from userspace. 1692 */ 1693 return false; 1694 } 1695 1696 size = map->size - addr + map->start; 1697 1698 if (orig_addr == addr && size >= len) 1699 vhost_vq_meta_update(vq, map, type); 1700 1701 s += size; 1702 addr += size; 1703 } 1704 1705 return true; 1706 } 1707 1708 int vq_meta_prefetch(struct vhost_virtqueue *vq) 1709 { 1710 unsigned int num = vq->num; 1711 1712 if (!vq->iotlb) 1713 return 1; 1714 1715 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc, 1716 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && 1717 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail, 1718 vhost_get_avail_size(vq, num), 1719 VHOST_ADDR_AVAIL) && 1720 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used, 1721 vhost_get_used_size(vq, num), VHOST_ADDR_USED); 1722 } 1723 EXPORT_SYMBOL_GPL(vq_meta_prefetch); 1724 1725 /* Can we log writes? */ 1726 /* Caller should have device mutex but not vq mutex */ 1727 bool vhost_log_access_ok(struct vhost_dev *dev) 1728 { 1729 return memory_access_ok(dev, dev->umem, 1); 1730 } 1731 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1732 1733 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq, 1734 void __user *log_base, 1735 bool log_used, 1736 u64 log_addr) 1737 { 1738 /* If an IOTLB device is present, log_addr is a GIOVA that 1739 * will never be logged by log_used(). */ 1740 if (vq->iotlb) 1741 return true; 1742 1743 return !log_used || log_access_ok(log_base, log_addr, 1744 vhost_get_used_size(vq, vq->num)); 1745 } 1746 1747 /* Verify access for write logging. */ 1748 /* Caller should have vq mutex and device mutex */ 1749 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1750 void __user *log_base) 1751 { 1752 return vq_memory_access_ok(log_base, vq->umem, 1753 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1754 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr); 1755 } 1756 1757 /* Can we start vq? */ 1758 /* Caller should have vq mutex and device mutex */ 1759 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1760 { 1761 if (!vq_log_access_ok(vq, vq->log_base)) 1762 return false; 1763 1764 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1765 } 1766 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1767 1768 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1769 { 1770 struct vhost_memory mem, *newmem; 1771 struct vhost_memory_region *region; 1772 struct vhost_iotlb *newumem, *oldumem; 1773 unsigned long size = offsetof(struct vhost_memory, regions); 1774 int i; 1775 1776 if (copy_from_user(&mem, m, size)) 1777 return -EFAULT; 1778 if (mem.padding) 1779 return -EOPNOTSUPP; 1780 if (mem.nregions > max_mem_regions) 1781 return -E2BIG; 1782 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1783 GFP_KERNEL); 1784 if (!newmem) 1785 return -ENOMEM; 1786 1787 memcpy(newmem, &mem, size); 1788 if (copy_from_user(newmem->regions, m->regions, 1789 flex_array_size(newmem, regions, mem.nregions))) { 1790 kvfree(newmem); 1791 return -EFAULT; 1792 } 1793 1794 newumem = iotlb_alloc(); 1795 if (!newumem) { 1796 kvfree(newmem); 1797 return -ENOMEM; 1798 } 1799 1800 for (region = newmem->regions; 1801 region < newmem->regions + mem.nregions; 1802 region++) { 1803 if (vhost_iotlb_add_range(newumem, 1804 region->guest_phys_addr, 1805 region->guest_phys_addr + 1806 region->memory_size - 1, 1807 region->userspace_addr, 1808 VHOST_MAP_RW)) 1809 goto err; 1810 } 1811 1812 if (!memory_access_ok(d, newumem, 0)) 1813 goto err; 1814 1815 oldumem = d->umem; 1816 d->umem = newumem; 1817 1818 /* All memory accesses are done under some VQ mutex. */ 1819 for (i = 0; i < d->nvqs; ++i) { 1820 mutex_lock(&d->vqs[i]->mutex); 1821 d->vqs[i]->umem = newumem; 1822 mutex_unlock(&d->vqs[i]->mutex); 1823 } 1824 1825 kvfree(newmem); 1826 vhost_iotlb_free(oldumem); 1827 return 0; 1828 1829 err: 1830 vhost_iotlb_free(newumem); 1831 kvfree(newmem); 1832 return -EFAULT; 1833 } 1834 1835 static long vhost_vring_set_num(struct vhost_dev *d, 1836 struct vhost_virtqueue *vq, 1837 void __user *argp) 1838 { 1839 struct vhost_vring_state s; 1840 1841 /* Resizing ring with an active backend? 1842 * You don't want to do that. */ 1843 if (vq->private_data) 1844 return -EBUSY; 1845 1846 if (copy_from_user(&s, argp, sizeof s)) 1847 return -EFAULT; 1848 1849 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) 1850 return -EINVAL; 1851 vq->num = s.num; 1852 1853 return 0; 1854 } 1855 1856 static long vhost_vring_set_addr(struct vhost_dev *d, 1857 struct vhost_virtqueue *vq, 1858 void __user *argp) 1859 { 1860 struct vhost_vring_addr a; 1861 1862 if (copy_from_user(&a, argp, sizeof a)) 1863 return -EFAULT; 1864 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) 1865 return -EOPNOTSUPP; 1866 1867 /* For 32bit, verify that the top 32bits of the user 1868 data are set to zero. */ 1869 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1870 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1871 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) 1872 return -EFAULT; 1873 1874 /* Make sure it's safe to cast pointers to vring types. */ 1875 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1876 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1877 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1878 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1879 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) 1880 return -EINVAL; 1881 1882 /* We only verify access here if backend is configured. 1883 * If it is not, we don't as size might not have been setup. 1884 * We will verify when backend is configured. */ 1885 if (vq->private_data) { 1886 if (!vq_access_ok(vq, vq->num, 1887 (void __user *)(unsigned long)a.desc_user_addr, 1888 (void __user *)(unsigned long)a.avail_user_addr, 1889 (void __user *)(unsigned long)a.used_user_addr)) 1890 return -EINVAL; 1891 1892 /* Also validate log access for used ring if enabled. */ 1893 if (!vq_log_used_access_ok(vq, vq->log_base, 1894 a.flags & (0x1 << VHOST_VRING_F_LOG), 1895 a.log_guest_addr)) 1896 return -EINVAL; 1897 } 1898 1899 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1900 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1901 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1902 vq->log_addr = a.log_guest_addr; 1903 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1904 1905 return 0; 1906 } 1907 1908 static long vhost_vring_set_num_addr(struct vhost_dev *d, 1909 struct vhost_virtqueue *vq, 1910 unsigned int ioctl, 1911 void __user *argp) 1912 { 1913 long r; 1914 1915 mutex_lock(&vq->mutex); 1916 1917 switch (ioctl) { 1918 case VHOST_SET_VRING_NUM: 1919 r = vhost_vring_set_num(d, vq, argp); 1920 break; 1921 case VHOST_SET_VRING_ADDR: 1922 r = vhost_vring_set_addr(d, vq, argp); 1923 break; 1924 default: 1925 BUG(); 1926 } 1927 1928 mutex_unlock(&vq->mutex); 1929 1930 return r; 1931 } 1932 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1933 { 1934 struct file *eventfp, *filep = NULL; 1935 bool pollstart = false, pollstop = false; 1936 struct eventfd_ctx *ctx = NULL; 1937 struct vhost_virtqueue *vq; 1938 struct vhost_vring_state s; 1939 struct vhost_vring_file f; 1940 u32 idx; 1941 long r; 1942 1943 r = vhost_get_vq_from_user(d, argp, &vq, &idx); 1944 if (r < 0) 1945 return r; 1946 1947 if (ioctl == VHOST_SET_VRING_NUM || 1948 ioctl == VHOST_SET_VRING_ADDR) { 1949 return vhost_vring_set_num_addr(d, vq, ioctl, argp); 1950 } 1951 1952 mutex_lock(&vq->mutex); 1953 1954 switch (ioctl) { 1955 case VHOST_SET_VRING_BASE: 1956 /* Moving base with an active backend? 1957 * You don't want to do that. */ 1958 if (vq->private_data) { 1959 r = -EBUSY; 1960 break; 1961 } 1962 if (copy_from_user(&s, argp, sizeof s)) { 1963 r = -EFAULT; 1964 break; 1965 } 1966 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) { 1967 vq->last_avail_idx = s.num & 0xffff; 1968 vq->last_used_idx = (s.num >> 16) & 0xffff; 1969 } else { 1970 if (s.num > 0xffff) { 1971 r = -EINVAL; 1972 break; 1973 } 1974 vq->last_avail_idx = s.num; 1975 } 1976 /* Forget the cached index value. */ 1977 vq->avail_idx = vq->last_avail_idx; 1978 break; 1979 case VHOST_GET_VRING_BASE: 1980 s.index = idx; 1981 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) 1982 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16); 1983 else 1984 s.num = vq->last_avail_idx; 1985 if (copy_to_user(argp, &s, sizeof s)) 1986 r = -EFAULT; 1987 break; 1988 case VHOST_SET_VRING_KICK: 1989 if (copy_from_user(&f, argp, sizeof f)) { 1990 r = -EFAULT; 1991 break; 1992 } 1993 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd); 1994 if (IS_ERR(eventfp)) { 1995 r = PTR_ERR(eventfp); 1996 break; 1997 } 1998 if (eventfp != vq->kick) { 1999 pollstop = (filep = vq->kick) != NULL; 2000 pollstart = (vq->kick = eventfp) != NULL; 2001 } else 2002 filep = eventfp; 2003 break; 2004 case VHOST_SET_VRING_CALL: 2005 if (copy_from_user(&f, argp, sizeof f)) { 2006 r = -EFAULT; 2007 break; 2008 } 2009 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2010 if (IS_ERR(ctx)) { 2011 r = PTR_ERR(ctx); 2012 break; 2013 } 2014 2015 swap(ctx, vq->call_ctx.ctx); 2016 break; 2017 case VHOST_SET_VRING_ERR: 2018 if (copy_from_user(&f, argp, sizeof f)) { 2019 r = -EFAULT; 2020 break; 2021 } 2022 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2023 if (IS_ERR(ctx)) { 2024 r = PTR_ERR(ctx); 2025 break; 2026 } 2027 swap(ctx, vq->error_ctx); 2028 break; 2029 case VHOST_SET_VRING_ENDIAN: 2030 r = vhost_set_vring_endian(vq, argp); 2031 break; 2032 case VHOST_GET_VRING_ENDIAN: 2033 r = vhost_get_vring_endian(vq, idx, argp); 2034 break; 2035 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 2036 if (copy_from_user(&s, argp, sizeof(s))) { 2037 r = -EFAULT; 2038 break; 2039 } 2040 vq->busyloop_timeout = s.num; 2041 break; 2042 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 2043 s.index = idx; 2044 s.num = vq->busyloop_timeout; 2045 if (copy_to_user(argp, &s, sizeof(s))) 2046 r = -EFAULT; 2047 break; 2048 default: 2049 r = -ENOIOCTLCMD; 2050 } 2051 2052 if (pollstop && vq->handle_kick) 2053 vhost_poll_stop(&vq->poll); 2054 2055 if (!IS_ERR_OR_NULL(ctx)) 2056 eventfd_ctx_put(ctx); 2057 if (filep) 2058 fput(filep); 2059 2060 if (pollstart && vq->handle_kick) 2061 r = vhost_poll_start(&vq->poll, vq->kick); 2062 2063 mutex_unlock(&vq->mutex); 2064 2065 if (pollstop && vq->handle_kick) 2066 vhost_dev_flush(vq->poll.dev); 2067 return r; 2068 } 2069 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 2070 2071 int vhost_init_device_iotlb(struct vhost_dev *d) 2072 { 2073 struct vhost_iotlb *niotlb, *oiotlb; 2074 int i; 2075 2076 niotlb = iotlb_alloc(); 2077 if (!niotlb) 2078 return -ENOMEM; 2079 2080 oiotlb = d->iotlb; 2081 d->iotlb = niotlb; 2082 2083 for (i = 0; i < d->nvqs; ++i) { 2084 struct vhost_virtqueue *vq = d->vqs[i]; 2085 2086 mutex_lock(&vq->mutex); 2087 vq->iotlb = niotlb; 2088 __vhost_vq_meta_reset(vq); 2089 mutex_unlock(&vq->mutex); 2090 } 2091 2092 vhost_iotlb_free(oiotlb); 2093 2094 return 0; 2095 } 2096 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 2097 2098 /* Caller must have device mutex */ 2099 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2100 { 2101 struct eventfd_ctx *ctx; 2102 u64 p; 2103 long r; 2104 int i, fd; 2105 2106 /* If you are not the owner, you can become one */ 2107 if (ioctl == VHOST_SET_OWNER) { 2108 r = vhost_dev_set_owner(d); 2109 goto done; 2110 } 2111 2112 /* You must be the owner to do anything else */ 2113 r = vhost_dev_check_owner(d); 2114 if (r) 2115 goto done; 2116 2117 switch (ioctl) { 2118 case VHOST_SET_MEM_TABLE: 2119 r = vhost_set_memory(d, argp); 2120 break; 2121 case VHOST_SET_LOG_BASE: 2122 if (copy_from_user(&p, argp, sizeof p)) { 2123 r = -EFAULT; 2124 break; 2125 } 2126 if ((u64)(unsigned long)p != p) { 2127 r = -EFAULT; 2128 break; 2129 } 2130 for (i = 0; i < d->nvqs; ++i) { 2131 struct vhost_virtqueue *vq; 2132 void __user *base = (void __user *)(unsigned long)p; 2133 vq = d->vqs[i]; 2134 mutex_lock(&vq->mutex); 2135 /* If ring is inactive, will check when it's enabled. */ 2136 if (vq->private_data && !vq_log_access_ok(vq, base)) 2137 r = -EFAULT; 2138 else 2139 vq->log_base = base; 2140 mutex_unlock(&vq->mutex); 2141 } 2142 break; 2143 case VHOST_SET_LOG_FD: 2144 r = get_user(fd, (int __user *)argp); 2145 if (r < 0) 2146 break; 2147 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd); 2148 if (IS_ERR(ctx)) { 2149 r = PTR_ERR(ctx); 2150 break; 2151 } 2152 swap(ctx, d->log_ctx); 2153 for (i = 0; i < d->nvqs; ++i) { 2154 mutex_lock(&d->vqs[i]->mutex); 2155 d->vqs[i]->log_ctx = d->log_ctx; 2156 mutex_unlock(&d->vqs[i]->mutex); 2157 } 2158 if (ctx) 2159 eventfd_ctx_put(ctx); 2160 break; 2161 default: 2162 r = -ENOIOCTLCMD; 2163 break; 2164 } 2165 done: 2166 return r; 2167 } 2168 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 2169 2170 /* TODO: This is really inefficient. We need something like get_user() 2171 * (instruction directly accesses the data, with an exception table entry 2172 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst. 2173 */ 2174 static int set_bit_to_user(int nr, void __user *addr) 2175 { 2176 unsigned long log = (unsigned long)addr; 2177 struct page *page; 2178 void *base; 2179 int bit = nr + (log % PAGE_SIZE) * 8; 2180 int r; 2181 2182 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page); 2183 if (r < 0) 2184 return r; 2185 BUG_ON(r != 1); 2186 base = kmap_atomic(page); 2187 set_bit(bit, base); 2188 kunmap_atomic(base); 2189 unpin_user_pages_dirty_lock(&page, 1, true); 2190 return 0; 2191 } 2192 2193 static int log_write(void __user *log_base, 2194 u64 write_address, u64 write_length) 2195 { 2196 u64 write_page = write_address / VHOST_PAGE_SIZE; 2197 int r; 2198 2199 if (!write_length) 2200 return 0; 2201 write_length += write_address % VHOST_PAGE_SIZE; 2202 for (;;) { 2203 u64 base = (u64)(unsigned long)log_base; 2204 u64 log = base + write_page / 8; 2205 int bit = write_page % 8; 2206 if ((u64)(unsigned long)log != log) 2207 return -EFAULT; 2208 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 2209 if (r < 0) 2210 return r; 2211 if (write_length <= VHOST_PAGE_SIZE) 2212 break; 2213 write_length -= VHOST_PAGE_SIZE; 2214 write_page += 1; 2215 } 2216 return r; 2217 } 2218 2219 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 2220 { 2221 struct vhost_iotlb *umem = vq->umem; 2222 struct vhost_iotlb_map *u; 2223 u64 start, end, l, min; 2224 int r; 2225 bool hit = false; 2226 2227 while (len) { 2228 min = len; 2229 /* More than one GPAs can be mapped into a single HVA. So 2230 * iterate all possible umems here to be safe. 2231 */ 2232 list_for_each_entry(u, &umem->list, link) { 2233 if (u->addr > hva - 1 + len || 2234 u->addr - 1 + u->size < hva) 2235 continue; 2236 start = max(u->addr, hva); 2237 end = min(u->addr - 1 + u->size, hva - 1 + len); 2238 l = end - start + 1; 2239 r = log_write(vq->log_base, 2240 u->start + start - u->addr, 2241 l); 2242 if (r < 0) 2243 return r; 2244 hit = true; 2245 min = min(l, min); 2246 } 2247 2248 if (!hit) 2249 return -EFAULT; 2250 2251 len -= min; 2252 hva += min; 2253 } 2254 2255 return 0; 2256 } 2257 2258 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 2259 { 2260 struct iovec *iov = vq->log_iov; 2261 int i, ret; 2262 2263 if (!vq->iotlb) 2264 return log_write(vq->log_base, vq->log_addr + used_offset, len); 2265 2266 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 2267 len, iov, 64, VHOST_ACCESS_WO); 2268 if (ret < 0) 2269 return ret; 2270 2271 for (i = 0; i < ret; i++) { 2272 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2273 iov[i].iov_len); 2274 if (ret) 2275 return ret; 2276 } 2277 2278 return 0; 2279 } 2280 2281 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 2282 unsigned int log_num, u64 len, struct iovec *iov, int count) 2283 { 2284 int i, r; 2285 2286 /* Make sure data written is seen before log. */ 2287 smp_wmb(); 2288 2289 if (vq->iotlb) { 2290 for (i = 0; i < count; i++) { 2291 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2292 iov[i].iov_len); 2293 if (r < 0) 2294 return r; 2295 } 2296 return 0; 2297 } 2298 2299 for (i = 0; i < log_num; ++i) { 2300 u64 l = min(log[i].len, len); 2301 r = log_write(vq->log_base, log[i].addr, l); 2302 if (r < 0) 2303 return r; 2304 len -= l; 2305 if (!len) { 2306 if (vq->log_ctx) 2307 eventfd_signal(vq->log_ctx); 2308 return 0; 2309 } 2310 } 2311 /* Length written exceeds what we have stored. This is a bug. */ 2312 BUG(); 2313 return 0; 2314 } 2315 EXPORT_SYMBOL_GPL(vhost_log_write); 2316 2317 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 2318 { 2319 void __user *used; 2320 if (vhost_put_used_flags(vq)) 2321 return -EFAULT; 2322 if (unlikely(vq->log_used)) { 2323 /* Make sure the flag is seen before log. */ 2324 smp_wmb(); 2325 /* Log used flag write. */ 2326 used = &vq->used->flags; 2327 log_used(vq, (used - (void __user *)vq->used), 2328 sizeof vq->used->flags); 2329 if (vq->log_ctx) 2330 eventfd_signal(vq->log_ctx); 2331 } 2332 return 0; 2333 } 2334 2335 static int vhost_update_avail_event(struct vhost_virtqueue *vq) 2336 { 2337 if (vhost_put_avail_event(vq)) 2338 return -EFAULT; 2339 if (unlikely(vq->log_used)) { 2340 void __user *used; 2341 /* Make sure the event is seen before log. */ 2342 smp_wmb(); 2343 /* Log avail event write */ 2344 used = vhost_avail_event(vq); 2345 log_used(vq, (used - (void __user *)vq->used), 2346 sizeof *vhost_avail_event(vq)); 2347 if (vq->log_ctx) 2348 eventfd_signal(vq->log_ctx); 2349 } 2350 return 0; 2351 } 2352 2353 int vhost_vq_init_access(struct vhost_virtqueue *vq) 2354 { 2355 __virtio16 last_used_idx; 2356 int r; 2357 bool is_le = vq->is_le; 2358 2359 if (!vq->private_data) 2360 return 0; 2361 2362 vhost_init_is_le(vq); 2363 2364 r = vhost_update_used_flags(vq); 2365 if (r) 2366 goto err; 2367 vq->signalled_used_valid = false; 2368 if (!vq->iotlb && 2369 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 2370 r = -EFAULT; 2371 goto err; 2372 } 2373 r = vhost_get_used_idx(vq, &last_used_idx); 2374 if (r) { 2375 vq_err(vq, "Can't access used idx at %p\n", 2376 &vq->used->idx); 2377 goto err; 2378 } 2379 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 2380 return 0; 2381 2382 err: 2383 vq->is_le = is_le; 2384 return r; 2385 } 2386 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 2387 2388 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 2389 struct iovec iov[], int iov_size, int access) 2390 { 2391 const struct vhost_iotlb_map *map; 2392 struct vhost_dev *dev = vq->dev; 2393 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem; 2394 struct iovec *_iov; 2395 u64 s = 0, last = addr + len - 1; 2396 int ret = 0; 2397 2398 while ((u64)len > s) { 2399 u64 size; 2400 if (unlikely(ret >= iov_size)) { 2401 ret = -ENOBUFS; 2402 break; 2403 } 2404 2405 map = vhost_iotlb_itree_first(umem, addr, last); 2406 if (map == NULL || map->start > addr) { 2407 if (umem != dev->iotlb) { 2408 ret = -EFAULT; 2409 break; 2410 } 2411 ret = -EAGAIN; 2412 break; 2413 } else if (!(map->perm & access)) { 2414 ret = -EPERM; 2415 break; 2416 } 2417 2418 _iov = iov + ret; 2419 size = map->size - addr + map->start; 2420 _iov->iov_len = min((u64)len - s, size); 2421 _iov->iov_base = (void __user *)(unsigned long) 2422 (map->addr + addr - map->start); 2423 s += size; 2424 addr += size; 2425 ++ret; 2426 } 2427 2428 if (ret == -EAGAIN) 2429 vhost_iotlb_miss(vq, addr, access); 2430 return ret; 2431 } 2432 2433 /* Each buffer in the virtqueues is actually a chain of descriptors. This 2434 * function returns the next descriptor in the chain, 2435 * or -1U if we're at the end. */ 2436 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 2437 { 2438 unsigned int next; 2439 2440 /* If this descriptor says it doesn't chain, we're done. */ 2441 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 2442 return -1U; 2443 2444 /* Check they're not leading us off end of descriptors. */ 2445 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 2446 return next; 2447 } 2448 2449 static int get_indirect(struct vhost_virtqueue *vq, 2450 struct iovec iov[], unsigned int iov_size, 2451 unsigned int *out_num, unsigned int *in_num, 2452 struct vhost_log *log, unsigned int *log_num, 2453 struct vring_desc *indirect) 2454 { 2455 struct vring_desc desc; 2456 unsigned int i = 0, count, found = 0; 2457 u32 len = vhost32_to_cpu(vq, indirect->len); 2458 struct iov_iter from; 2459 int ret, access; 2460 2461 /* Sanity check */ 2462 if (unlikely(len % sizeof desc)) { 2463 vq_err(vq, "Invalid length in indirect descriptor: " 2464 "len 0x%llx not multiple of 0x%zx\n", 2465 (unsigned long long)len, 2466 sizeof desc); 2467 return -EINVAL; 2468 } 2469 2470 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2471 UIO_MAXIOV, VHOST_ACCESS_RO); 2472 if (unlikely(ret < 0)) { 2473 if (ret != -EAGAIN) 2474 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2475 return ret; 2476 } 2477 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len); 2478 count = len / sizeof desc; 2479 /* Buffers are chained via a 16 bit next field, so 2480 * we can have at most 2^16 of these. */ 2481 if (unlikely(count > USHRT_MAX + 1)) { 2482 vq_err(vq, "Indirect buffer length too big: %d\n", 2483 indirect->len); 2484 return -E2BIG; 2485 } 2486 2487 do { 2488 unsigned iov_count = *in_num + *out_num; 2489 if (unlikely(++found > count)) { 2490 vq_err(vq, "Loop detected: last one at %u " 2491 "indirect size %u\n", 2492 i, count); 2493 return -EINVAL; 2494 } 2495 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2496 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2497 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2498 return -EINVAL; 2499 } 2500 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2501 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2502 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2503 return -EINVAL; 2504 } 2505 2506 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2507 access = VHOST_ACCESS_WO; 2508 else 2509 access = VHOST_ACCESS_RO; 2510 2511 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2512 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2513 iov_size - iov_count, access); 2514 if (unlikely(ret < 0)) { 2515 if (ret != -EAGAIN) 2516 vq_err(vq, "Translation failure %d indirect idx %d\n", 2517 ret, i); 2518 return ret; 2519 } 2520 /* If this is an input descriptor, increment that count. */ 2521 if (access == VHOST_ACCESS_WO) { 2522 *in_num += ret; 2523 if (unlikely(log && ret)) { 2524 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2525 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2526 ++*log_num; 2527 } 2528 } else { 2529 /* If it's an output descriptor, they're all supposed 2530 * to come before any input descriptors. */ 2531 if (unlikely(*in_num)) { 2532 vq_err(vq, "Indirect descriptor " 2533 "has out after in: idx %d\n", i); 2534 return -EINVAL; 2535 } 2536 *out_num += ret; 2537 } 2538 } while ((i = next_desc(vq, &desc)) != -1); 2539 return 0; 2540 } 2541 2542 /* This looks in the virtqueue and for the first available buffer, and converts 2543 * it to an iovec for convenient access. Since descriptors consist of some 2544 * number of output then some number of input descriptors, it's actually two 2545 * iovecs, but we pack them into one and note how many of each there were. 2546 * 2547 * This function returns the descriptor number found, or vq->num (which is 2548 * never a valid descriptor number) if none was found. A negative code is 2549 * returned on error. */ 2550 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2551 struct iovec iov[], unsigned int iov_size, 2552 unsigned int *out_num, unsigned int *in_num, 2553 struct vhost_log *log, unsigned int *log_num) 2554 { 2555 struct vring_desc desc; 2556 unsigned int i, head, found = 0; 2557 u16 last_avail_idx; 2558 __virtio16 avail_idx; 2559 __virtio16 ring_head; 2560 int ret, access; 2561 2562 /* Check it isn't doing very strange things with descriptor numbers. */ 2563 last_avail_idx = vq->last_avail_idx; 2564 2565 if (vq->avail_idx == vq->last_avail_idx) { 2566 if (unlikely(vhost_get_avail_idx(vq, &avail_idx))) { 2567 vq_err(vq, "Failed to access avail idx at %p\n", 2568 &vq->avail->idx); 2569 return -EFAULT; 2570 } 2571 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2572 2573 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 2574 vq_err(vq, "Guest moved avail index from %u to %u", 2575 last_avail_idx, vq->avail_idx); 2576 return -EFAULT; 2577 } 2578 2579 /* If there's nothing new since last we looked, return 2580 * invalid. 2581 */ 2582 if (vq->avail_idx == last_avail_idx) 2583 return vq->num; 2584 2585 /* Only get avail ring entries after they have been 2586 * exposed by guest. 2587 */ 2588 smp_rmb(); 2589 } 2590 2591 /* Grab the next descriptor number they're advertising, and increment 2592 * the index we've seen. */ 2593 if (unlikely(vhost_get_avail_head(vq, &ring_head, last_avail_idx))) { 2594 vq_err(vq, "Failed to read head: idx %d address %p\n", 2595 last_avail_idx, 2596 &vq->avail->ring[last_avail_idx % vq->num]); 2597 return -EFAULT; 2598 } 2599 2600 head = vhost16_to_cpu(vq, ring_head); 2601 2602 /* If their number is silly, that's an error. */ 2603 if (unlikely(head >= vq->num)) { 2604 vq_err(vq, "Guest says index %u > %u is available", 2605 head, vq->num); 2606 return -EINVAL; 2607 } 2608 2609 /* When we start there are none of either input nor output. */ 2610 *out_num = *in_num = 0; 2611 if (unlikely(log)) 2612 *log_num = 0; 2613 2614 i = head; 2615 do { 2616 unsigned iov_count = *in_num + *out_num; 2617 if (unlikely(i >= vq->num)) { 2618 vq_err(vq, "Desc index is %u > %u, head = %u", 2619 i, vq->num, head); 2620 return -EINVAL; 2621 } 2622 if (unlikely(++found > vq->num)) { 2623 vq_err(vq, "Loop detected: last one at %u " 2624 "vq size %u head %u\n", 2625 i, vq->num, head); 2626 return -EINVAL; 2627 } 2628 ret = vhost_get_desc(vq, &desc, i); 2629 if (unlikely(ret)) { 2630 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2631 i, vq->desc + i); 2632 return -EFAULT; 2633 } 2634 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2635 ret = get_indirect(vq, iov, iov_size, 2636 out_num, in_num, 2637 log, log_num, &desc); 2638 if (unlikely(ret < 0)) { 2639 if (ret != -EAGAIN) 2640 vq_err(vq, "Failure detected " 2641 "in indirect descriptor at idx %d\n", i); 2642 return ret; 2643 } 2644 continue; 2645 } 2646 2647 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2648 access = VHOST_ACCESS_WO; 2649 else 2650 access = VHOST_ACCESS_RO; 2651 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2652 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2653 iov_size - iov_count, access); 2654 if (unlikely(ret < 0)) { 2655 if (ret != -EAGAIN) 2656 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2657 ret, i); 2658 return ret; 2659 } 2660 if (access == VHOST_ACCESS_WO) { 2661 /* If this is an input descriptor, 2662 * increment that count. */ 2663 *in_num += ret; 2664 if (unlikely(log && ret)) { 2665 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2666 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2667 ++*log_num; 2668 } 2669 } else { 2670 /* If it's an output descriptor, they're all supposed 2671 * to come before any input descriptors. */ 2672 if (unlikely(*in_num)) { 2673 vq_err(vq, "Descriptor has out after in: " 2674 "idx %d\n", i); 2675 return -EINVAL; 2676 } 2677 *out_num += ret; 2678 } 2679 } while ((i = next_desc(vq, &desc)) != -1); 2680 2681 /* On success, increment avail index. */ 2682 vq->last_avail_idx++; 2683 2684 /* Assume notifications from guest are disabled at this point, 2685 * if they aren't we would need to update avail_event index. */ 2686 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2687 return head; 2688 } 2689 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2690 2691 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2692 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2693 { 2694 vq->last_avail_idx -= n; 2695 } 2696 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2697 2698 /* After we've used one of their buffers, we tell them about it. We'll then 2699 * want to notify the guest, using eventfd. */ 2700 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2701 { 2702 struct vring_used_elem heads = { 2703 cpu_to_vhost32(vq, head), 2704 cpu_to_vhost32(vq, len) 2705 }; 2706 2707 return vhost_add_used_n(vq, &heads, 1); 2708 } 2709 EXPORT_SYMBOL_GPL(vhost_add_used); 2710 2711 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2712 struct vring_used_elem *heads, 2713 unsigned count) 2714 { 2715 vring_used_elem_t __user *used; 2716 u16 old, new; 2717 int start; 2718 2719 start = vq->last_used_idx & (vq->num - 1); 2720 used = vq->used->ring + start; 2721 if (vhost_put_used(vq, heads, start, count)) { 2722 vq_err(vq, "Failed to write used"); 2723 return -EFAULT; 2724 } 2725 if (unlikely(vq->log_used)) { 2726 /* Make sure data is seen before log. */ 2727 smp_wmb(); 2728 /* Log used ring entry write. */ 2729 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2730 count * sizeof *used); 2731 } 2732 old = vq->last_used_idx; 2733 new = (vq->last_used_idx += count); 2734 /* If the driver never bothers to signal in a very long while, 2735 * used index might wrap around. If that happens, invalidate 2736 * signalled_used index we stored. TODO: make sure driver 2737 * signals at least once in 2^16 and remove this. */ 2738 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2739 vq->signalled_used_valid = false; 2740 return 0; 2741 } 2742 2743 /* After we've used one of their buffers, we tell them about it. We'll then 2744 * want to notify the guest, using eventfd. */ 2745 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2746 unsigned count) 2747 { 2748 int start, n, r; 2749 2750 start = vq->last_used_idx & (vq->num - 1); 2751 n = vq->num - start; 2752 if (n < count) { 2753 r = __vhost_add_used_n(vq, heads, n); 2754 if (r < 0) 2755 return r; 2756 heads += n; 2757 count -= n; 2758 } 2759 r = __vhost_add_used_n(vq, heads, count); 2760 2761 /* Make sure buffer is written before we update index. */ 2762 smp_wmb(); 2763 if (vhost_put_used_idx(vq)) { 2764 vq_err(vq, "Failed to increment used idx"); 2765 return -EFAULT; 2766 } 2767 if (unlikely(vq->log_used)) { 2768 /* Make sure used idx is seen before log. */ 2769 smp_wmb(); 2770 /* Log used index update. */ 2771 log_used(vq, offsetof(struct vring_used, idx), 2772 sizeof vq->used->idx); 2773 if (vq->log_ctx) 2774 eventfd_signal(vq->log_ctx); 2775 } 2776 return r; 2777 } 2778 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2779 2780 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2781 { 2782 __u16 old, new; 2783 __virtio16 event; 2784 bool v; 2785 /* Flush out used index updates. This is paired 2786 * with the barrier that the Guest executes when enabling 2787 * interrupts. */ 2788 smp_mb(); 2789 2790 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2791 unlikely(vq->avail_idx == vq->last_avail_idx)) 2792 return true; 2793 2794 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2795 __virtio16 flags; 2796 if (vhost_get_avail_flags(vq, &flags)) { 2797 vq_err(vq, "Failed to get flags"); 2798 return true; 2799 } 2800 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2801 } 2802 old = vq->signalled_used; 2803 v = vq->signalled_used_valid; 2804 new = vq->signalled_used = vq->last_used_idx; 2805 vq->signalled_used_valid = true; 2806 2807 if (unlikely(!v)) 2808 return true; 2809 2810 if (vhost_get_used_event(vq, &event)) { 2811 vq_err(vq, "Failed to get used event idx"); 2812 return true; 2813 } 2814 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2815 } 2816 2817 /* This actually signals the guest, using eventfd. */ 2818 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2819 { 2820 /* Signal the Guest tell them we used something up. */ 2821 if (vq->call_ctx.ctx && vhost_notify(dev, vq)) 2822 eventfd_signal(vq->call_ctx.ctx); 2823 } 2824 EXPORT_SYMBOL_GPL(vhost_signal); 2825 2826 /* And here's the combo meal deal. Supersize me! */ 2827 void vhost_add_used_and_signal(struct vhost_dev *dev, 2828 struct vhost_virtqueue *vq, 2829 unsigned int head, int len) 2830 { 2831 vhost_add_used(vq, head, len); 2832 vhost_signal(dev, vq); 2833 } 2834 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2835 2836 /* multi-buffer version of vhost_add_used_and_signal */ 2837 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2838 struct vhost_virtqueue *vq, 2839 struct vring_used_elem *heads, unsigned count) 2840 { 2841 vhost_add_used_n(vq, heads, count); 2842 vhost_signal(dev, vq); 2843 } 2844 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2845 2846 /* return true if we're sure that avaiable ring is empty */ 2847 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2848 { 2849 __virtio16 avail_idx; 2850 int r; 2851 2852 if (vq->avail_idx != vq->last_avail_idx) 2853 return false; 2854 2855 r = vhost_get_avail_idx(vq, &avail_idx); 2856 if (unlikely(r)) 2857 return false; 2858 2859 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2860 if (vq->avail_idx != vq->last_avail_idx) { 2861 /* Since we have updated avail_idx, the following 2862 * call to vhost_get_vq_desc() will read available 2863 * ring entries. Make sure that read happens after 2864 * the avail_idx read. 2865 */ 2866 smp_rmb(); 2867 return false; 2868 } 2869 2870 return true; 2871 } 2872 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2873 2874 /* OK, now we need to know about added descriptors. */ 2875 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2876 { 2877 __virtio16 avail_idx; 2878 int r; 2879 2880 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2881 return false; 2882 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2883 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2884 r = vhost_update_used_flags(vq); 2885 if (r) { 2886 vq_err(vq, "Failed to enable notification at %p: %d\n", 2887 &vq->used->flags, r); 2888 return false; 2889 } 2890 } else { 2891 r = vhost_update_avail_event(vq); 2892 if (r) { 2893 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2894 vhost_avail_event(vq), r); 2895 return false; 2896 } 2897 } 2898 /* They could have slipped one in as we were doing that: make 2899 * sure it's written, then check again. */ 2900 smp_mb(); 2901 r = vhost_get_avail_idx(vq, &avail_idx); 2902 if (r) { 2903 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2904 &vq->avail->idx, r); 2905 return false; 2906 } 2907 2908 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2909 if (vq->avail_idx != vq->last_avail_idx) { 2910 /* Since we have updated avail_idx, the following 2911 * call to vhost_get_vq_desc() will read available 2912 * ring entries. Make sure that read happens after 2913 * the avail_idx read. 2914 */ 2915 smp_rmb(); 2916 return true; 2917 } 2918 2919 return false; 2920 } 2921 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2922 2923 /* We don't need to be notified again. */ 2924 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2925 { 2926 int r; 2927 2928 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2929 return; 2930 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2931 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2932 r = vhost_update_used_flags(vq); 2933 if (r) 2934 vq_err(vq, "Failed to disable notification at %p: %d\n", 2935 &vq->used->flags, r); 2936 } 2937 } 2938 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2939 2940 /* Create a new message. */ 2941 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2942 { 2943 /* Make sure all padding within the structure is initialized. */ 2944 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL); 2945 if (!node) 2946 return NULL; 2947 2948 node->vq = vq; 2949 node->msg.type = type; 2950 return node; 2951 } 2952 EXPORT_SYMBOL_GPL(vhost_new_msg); 2953 2954 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2955 struct vhost_msg_node *node) 2956 { 2957 spin_lock(&dev->iotlb_lock); 2958 list_add_tail(&node->node, head); 2959 spin_unlock(&dev->iotlb_lock); 2960 2961 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2962 } 2963 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2964 2965 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2966 struct list_head *head) 2967 { 2968 struct vhost_msg_node *node = NULL; 2969 2970 spin_lock(&dev->iotlb_lock); 2971 if (!list_empty(head)) { 2972 node = list_first_entry(head, struct vhost_msg_node, 2973 node); 2974 list_del(&node->node); 2975 } 2976 spin_unlock(&dev->iotlb_lock); 2977 2978 return node; 2979 } 2980 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2981 2982 void vhost_set_backend_features(struct vhost_dev *dev, u64 features) 2983 { 2984 struct vhost_virtqueue *vq; 2985 int i; 2986 2987 mutex_lock(&dev->mutex); 2988 for (i = 0; i < dev->nvqs; ++i) { 2989 vq = dev->vqs[i]; 2990 mutex_lock(&vq->mutex); 2991 vq->acked_backend_features = features; 2992 mutex_unlock(&vq->mutex); 2993 } 2994 mutex_unlock(&dev->mutex); 2995 } 2996 EXPORT_SYMBOL_GPL(vhost_set_backend_features); 2997 2998 static int __init vhost_init(void) 2999 { 3000 return 0; 3001 } 3002 3003 static void __exit vhost_exit(void) 3004 { 3005 } 3006 3007 module_init(vhost_init); 3008 module_exit(vhost_exit); 3009 3010 MODULE_VERSION("0.0.1"); 3011 MODULE_LICENSE("GPL v2"); 3012 MODULE_AUTHOR("Michael S. Tsirkin"); 3013 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 3014