1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (C) 2009 Red Hat, Inc. 3 * Copyright (C) 2006 Rusty Russell IBM Corporation 4 * 5 * Author: Michael S. Tsirkin <mst@redhat.com> 6 * 7 * Inspiration, some code, and most witty comments come from 8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 9 * 10 * Generic code for virtio server in host kernel. 11 */ 12 13 #include <linux/eventfd.h> 14 #include <linux/vhost.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 #include <linux/miscdevice.h> 18 #include <linux/mutex.h> 19 #include <linux/poll.h> 20 #include <linux/file.h> 21 #include <linux/highmem.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/kthread.h> 25 #include <linux/cgroup.h> 26 #include <linux/module.h> 27 #include <linux/sort.h> 28 #include <linux/sched/mm.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/vhost_task.h> 31 #include <linux/interval_tree_generic.h> 32 #include <linux/nospec.h> 33 #include <linux/kcov.h> 34 35 #include "vhost.h" 36 37 static ushort max_mem_regions = 64; 38 module_param(max_mem_regions, ushort, 0444); 39 MODULE_PARM_DESC(max_mem_regions, 40 "Maximum number of memory regions in memory map. (default: 64)"); 41 static int max_iotlb_entries = 2048; 42 module_param(max_iotlb_entries, int, 0444); 43 MODULE_PARM_DESC(max_iotlb_entries, 44 "Maximum number of iotlb entries. (default: 2048)"); 45 static bool fork_from_owner_default = VHOST_FORK_OWNER_TASK; 46 47 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL 48 module_param(fork_from_owner_default, bool, 0444); 49 MODULE_PARM_DESC(fork_from_owner_default, 50 "Set task mode as the default(default: Y)"); 51 #endif 52 53 enum { 54 VHOST_MEMORY_F_LOG = 0x1, 55 }; 56 57 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 58 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 59 60 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 61 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 62 { 63 vq->user_be = !virtio_legacy_is_little_endian(); 64 } 65 66 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 67 { 68 vq->user_be = true; 69 } 70 71 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 72 { 73 vq->user_be = false; 74 } 75 76 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 77 { 78 struct vhost_vring_state s; 79 80 if (vq->private_data) 81 return -EBUSY; 82 83 if (copy_from_user(&s, argp, sizeof(s))) 84 return -EFAULT; 85 86 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 87 s.num != VHOST_VRING_BIG_ENDIAN) 88 return -EINVAL; 89 90 if (s.num == VHOST_VRING_BIG_ENDIAN) 91 vhost_enable_cross_endian_big(vq); 92 else 93 vhost_enable_cross_endian_little(vq); 94 95 return 0; 96 } 97 98 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 99 int __user *argp) 100 { 101 struct vhost_vring_state s = { 102 .index = idx, 103 .num = vq->user_be 104 }; 105 106 if (copy_to_user(argp, &s, sizeof(s))) 107 return -EFAULT; 108 109 return 0; 110 } 111 112 static void vhost_init_is_le(struct vhost_virtqueue *vq) 113 { 114 /* Note for legacy virtio: user_be is initialized at reset time 115 * according to the host endianness. If userspace does not set an 116 * explicit endianness, the default behavior is native endian, as 117 * expected by legacy virtio. 118 */ 119 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 120 } 121 #else 122 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 123 { 124 } 125 126 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 127 { 128 return -ENOIOCTLCMD; 129 } 130 131 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 132 int __user *argp) 133 { 134 return -ENOIOCTLCMD; 135 } 136 137 static void vhost_init_is_le(struct vhost_virtqueue *vq) 138 { 139 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 140 || virtio_legacy_is_little_endian(); 141 } 142 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 143 144 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 145 { 146 vhost_init_is_le(vq); 147 } 148 149 struct vhost_flush_struct { 150 struct vhost_work work; 151 struct completion wait_event; 152 }; 153 154 static void vhost_flush_work(struct vhost_work *work) 155 { 156 struct vhost_flush_struct *s; 157 158 s = container_of(work, struct vhost_flush_struct, work); 159 complete(&s->wait_event); 160 } 161 162 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 163 poll_table *pt) 164 { 165 struct vhost_poll *poll; 166 167 poll = container_of(pt, struct vhost_poll, table); 168 poll->wqh = wqh; 169 add_wait_queue(wqh, &poll->wait); 170 } 171 172 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 173 void *key) 174 { 175 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 176 struct vhost_work *work = &poll->work; 177 178 if (!(key_to_poll(key) & poll->mask)) 179 return 0; 180 181 if (!poll->dev->use_worker) 182 work->fn(work); 183 else 184 vhost_poll_queue(poll); 185 186 return 0; 187 } 188 189 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 190 { 191 clear_bit(VHOST_WORK_QUEUED, &work->flags); 192 work->fn = fn; 193 } 194 EXPORT_SYMBOL_GPL(vhost_work_init); 195 196 /* Init poll structure */ 197 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 198 __poll_t mask, struct vhost_dev *dev, 199 struct vhost_virtqueue *vq) 200 { 201 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 202 init_poll_funcptr(&poll->table, vhost_poll_func); 203 poll->mask = mask; 204 poll->dev = dev; 205 poll->wqh = NULL; 206 poll->vq = vq; 207 208 vhost_work_init(&poll->work, fn); 209 } 210 EXPORT_SYMBOL_GPL(vhost_poll_init); 211 212 /* Start polling a file. We add ourselves to file's wait queue. The caller must 213 * keep a reference to a file until after vhost_poll_stop is called. */ 214 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 215 { 216 __poll_t mask; 217 218 if (poll->wqh) 219 return 0; 220 221 mask = vfs_poll(file, &poll->table); 222 if (mask) 223 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 224 if (mask & EPOLLERR) { 225 vhost_poll_stop(poll); 226 return -EINVAL; 227 } 228 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(vhost_poll_start); 232 233 /* Stop polling a file. After this function returns, it becomes safe to drop the 234 * file reference. You must also flush afterwards. */ 235 void vhost_poll_stop(struct vhost_poll *poll) 236 { 237 if (poll->wqh) { 238 remove_wait_queue(poll->wqh, &poll->wait); 239 poll->wqh = NULL; 240 } 241 } 242 EXPORT_SYMBOL_GPL(vhost_poll_stop); 243 244 static void vhost_worker_queue(struct vhost_worker *worker, 245 struct vhost_work *work) 246 { 247 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 248 /* We can only add the work to the list after we're 249 * sure it was not in the list. 250 * test_and_set_bit() implies a memory barrier. 251 */ 252 llist_add(&work->node, &worker->work_list); 253 worker->ops->wakeup(worker); 254 } 255 } 256 257 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work) 258 { 259 struct vhost_worker *worker; 260 bool queued = false; 261 262 rcu_read_lock(); 263 worker = rcu_dereference(vq->worker); 264 if (worker) { 265 queued = true; 266 vhost_worker_queue(worker, work); 267 } 268 rcu_read_unlock(); 269 270 return queued; 271 } 272 EXPORT_SYMBOL_GPL(vhost_vq_work_queue); 273 274 /** 275 * __vhost_worker_flush - flush a worker 276 * @worker: worker to flush 277 * 278 * The worker's flush_mutex must be held. 279 */ 280 static void __vhost_worker_flush(struct vhost_worker *worker) 281 { 282 struct vhost_flush_struct flush; 283 284 if (!worker->attachment_cnt || worker->killed) 285 return; 286 287 init_completion(&flush.wait_event); 288 vhost_work_init(&flush.work, vhost_flush_work); 289 290 vhost_worker_queue(worker, &flush.work); 291 /* 292 * Drop mutex in case our worker is killed and it needs to take the 293 * mutex to force cleanup. 294 */ 295 mutex_unlock(&worker->mutex); 296 wait_for_completion(&flush.wait_event); 297 mutex_lock(&worker->mutex); 298 } 299 300 static void vhost_worker_flush(struct vhost_worker *worker) 301 { 302 mutex_lock(&worker->mutex); 303 __vhost_worker_flush(worker); 304 mutex_unlock(&worker->mutex); 305 } 306 307 void vhost_dev_flush(struct vhost_dev *dev) 308 { 309 struct vhost_worker *worker; 310 unsigned long i; 311 312 xa_for_each(&dev->worker_xa, i, worker) 313 vhost_worker_flush(worker); 314 } 315 EXPORT_SYMBOL_GPL(vhost_dev_flush); 316 317 /* A lockless hint for busy polling code to exit the loop */ 318 bool vhost_vq_has_work(struct vhost_virtqueue *vq) 319 { 320 struct vhost_worker *worker; 321 bool has_work = false; 322 323 rcu_read_lock(); 324 worker = rcu_dereference(vq->worker); 325 if (worker && !llist_empty(&worker->work_list)) 326 has_work = true; 327 rcu_read_unlock(); 328 329 return has_work; 330 } 331 EXPORT_SYMBOL_GPL(vhost_vq_has_work); 332 333 void vhost_poll_queue(struct vhost_poll *poll) 334 { 335 vhost_vq_work_queue(poll->vq, &poll->work); 336 } 337 EXPORT_SYMBOL_GPL(vhost_poll_queue); 338 339 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 340 { 341 int j; 342 343 for (j = 0; j < VHOST_NUM_ADDRS; j++) 344 vq->meta_iotlb[j] = NULL; 345 } 346 347 static void vhost_vq_meta_reset(struct vhost_dev *d) 348 { 349 int i; 350 351 for (i = 0; i < d->nvqs; ++i) 352 __vhost_vq_meta_reset(d->vqs[i]); 353 } 354 355 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx) 356 { 357 call_ctx->ctx = NULL; 358 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer)); 359 } 360 361 bool vhost_vq_is_setup(struct vhost_virtqueue *vq) 362 { 363 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq); 364 } 365 EXPORT_SYMBOL_GPL(vhost_vq_is_setup); 366 367 static void vhost_vq_reset(struct vhost_dev *dev, 368 struct vhost_virtqueue *vq) 369 { 370 vq->num = 1; 371 vq->desc = NULL; 372 vq->avail = NULL; 373 vq->used = NULL; 374 vq->last_avail_idx = 0; 375 vq->next_avail_head = 0; 376 vq->avail_idx = 0; 377 vq->last_used_idx = 0; 378 vq->signalled_used = 0; 379 vq->signalled_used_valid = false; 380 vq->used_flags = 0; 381 vq->log_used = false; 382 vq->log_addr = -1ull; 383 vq->private_data = NULL; 384 virtio_features_zero(vq->acked_features_array); 385 vq->acked_backend_features = 0; 386 vq->log_base = NULL; 387 vq->error_ctx = NULL; 388 vq->kick = NULL; 389 vq->log_ctx = NULL; 390 vhost_disable_cross_endian(vq); 391 vhost_reset_is_le(vq); 392 vq->busyloop_timeout = 0; 393 vq->umem = NULL; 394 vq->iotlb = NULL; 395 rcu_assign_pointer(vq->worker, NULL); 396 vhost_vring_call_reset(&vq->call_ctx); 397 __vhost_vq_meta_reset(vq); 398 } 399 400 static int vhost_run_work_kthread_list(void *data) 401 { 402 struct vhost_worker *worker = data; 403 struct vhost_work *work, *work_next; 404 struct vhost_dev *dev = worker->dev; 405 struct llist_node *node; 406 407 kthread_use_mm(dev->mm); 408 409 for (;;) { 410 /* mb paired w/ kthread_stop */ 411 set_current_state(TASK_INTERRUPTIBLE); 412 413 if (kthread_should_stop()) { 414 __set_current_state(TASK_RUNNING); 415 break; 416 } 417 node = llist_del_all(&worker->work_list); 418 if (!node) 419 schedule(); 420 421 node = llist_reverse_order(node); 422 /* make sure flag is seen after deletion */ 423 smp_wmb(); 424 llist_for_each_entry_safe(work, work_next, node, node) { 425 clear_bit(VHOST_WORK_QUEUED, &work->flags); 426 __set_current_state(TASK_RUNNING); 427 kcov_remote_start_common(worker->kcov_handle); 428 work->fn(work); 429 kcov_remote_stop(); 430 cond_resched(); 431 } 432 } 433 kthread_unuse_mm(dev->mm); 434 435 return 0; 436 } 437 438 static bool vhost_run_work_list(void *data) 439 { 440 struct vhost_worker *worker = data; 441 struct vhost_work *work, *work_next; 442 struct llist_node *node; 443 444 node = llist_del_all(&worker->work_list); 445 if (node) { 446 __set_current_state(TASK_RUNNING); 447 448 node = llist_reverse_order(node); 449 /* make sure flag is seen after deletion */ 450 smp_wmb(); 451 llist_for_each_entry_safe(work, work_next, node, node) { 452 clear_bit(VHOST_WORK_QUEUED, &work->flags); 453 kcov_remote_start_common(worker->kcov_handle); 454 work->fn(work); 455 kcov_remote_stop(); 456 cond_resched(); 457 } 458 } 459 460 return !!node; 461 } 462 463 static void vhost_worker_killed(void *data) 464 { 465 struct vhost_worker *worker = data; 466 struct vhost_dev *dev = worker->dev; 467 struct vhost_virtqueue *vq; 468 int i, attach_cnt = 0; 469 470 mutex_lock(&worker->mutex); 471 worker->killed = true; 472 473 for (i = 0; i < dev->nvqs; i++) { 474 vq = dev->vqs[i]; 475 476 mutex_lock(&vq->mutex); 477 if (worker == 478 rcu_dereference_check(vq->worker, 479 lockdep_is_held(&vq->mutex))) { 480 rcu_assign_pointer(vq->worker, NULL); 481 attach_cnt++; 482 } 483 mutex_unlock(&vq->mutex); 484 } 485 486 worker->attachment_cnt -= attach_cnt; 487 if (attach_cnt) 488 synchronize_rcu(); 489 /* 490 * Finish vhost_worker_flush calls and any other works that snuck in 491 * before the synchronize_rcu. 492 */ 493 vhost_run_work_list(worker); 494 mutex_unlock(&worker->mutex); 495 } 496 497 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 498 { 499 kfree(vq->indirect); 500 vq->indirect = NULL; 501 kfree(vq->log); 502 vq->log = NULL; 503 kfree(vq->heads); 504 vq->heads = NULL; 505 kfree(vq->nheads); 506 vq->nheads = NULL; 507 } 508 509 /* Helper to allocate iovec buffers for all vqs. */ 510 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 511 { 512 struct vhost_virtqueue *vq; 513 int i; 514 515 for (i = 0; i < dev->nvqs; ++i) { 516 vq = dev->vqs[i]; 517 vq->indirect = kmalloc_array(UIO_MAXIOV, 518 sizeof(*vq->indirect), 519 GFP_KERNEL); 520 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log), 521 GFP_KERNEL); 522 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads), 523 GFP_KERNEL); 524 vq->nheads = kmalloc_array(dev->iov_limit, sizeof(*vq->nheads), 525 GFP_KERNEL); 526 if (!vq->indirect || !vq->log || !vq->heads || !vq->nheads) 527 goto err_nomem; 528 } 529 return 0; 530 531 err_nomem: 532 for (; i >= 0; --i) 533 vhost_vq_free_iovecs(dev->vqs[i]); 534 return -ENOMEM; 535 } 536 537 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 538 { 539 int i; 540 541 for (i = 0; i < dev->nvqs; ++i) 542 vhost_vq_free_iovecs(dev->vqs[i]); 543 } 544 545 bool vhost_exceeds_weight(struct vhost_virtqueue *vq, 546 int pkts, int total_len) 547 { 548 struct vhost_dev *dev = vq->dev; 549 550 if ((dev->byte_weight && total_len >= dev->byte_weight) || 551 pkts >= dev->weight) { 552 vhost_poll_queue(&vq->poll); 553 return true; 554 } 555 556 return false; 557 } 558 EXPORT_SYMBOL_GPL(vhost_exceeds_weight); 559 560 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq, 561 unsigned int num) 562 { 563 size_t event __maybe_unused = 564 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 565 566 return size_add(struct_size(vq->avail, ring, num), event); 567 } 568 569 static size_t vhost_get_used_size(struct vhost_virtqueue *vq, 570 unsigned int num) 571 { 572 size_t event __maybe_unused = 573 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 574 575 return size_add(struct_size(vq->used, ring, num), event); 576 } 577 578 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq, 579 unsigned int num) 580 { 581 return sizeof(*vq->desc) * num; 582 } 583 584 void vhost_dev_init(struct vhost_dev *dev, 585 struct vhost_virtqueue **vqs, int nvqs, 586 int iov_limit, int weight, int byte_weight, 587 bool use_worker, 588 int (*msg_handler)(struct vhost_dev *dev, u32 asid, 589 struct vhost_iotlb_msg *msg)) 590 { 591 struct vhost_virtqueue *vq; 592 int i; 593 594 dev->vqs = vqs; 595 dev->nvqs = nvqs; 596 mutex_init(&dev->mutex); 597 dev->log_ctx = NULL; 598 dev->umem = NULL; 599 dev->iotlb = NULL; 600 dev->mm = NULL; 601 dev->iov_limit = iov_limit; 602 dev->weight = weight; 603 dev->byte_weight = byte_weight; 604 dev->use_worker = use_worker; 605 dev->msg_handler = msg_handler; 606 dev->fork_owner = fork_from_owner_default; 607 init_waitqueue_head(&dev->wait); 608 INIT_LIST_HEAD(&dev->read_list); 609 INIT_LIST_HEAD(&dev->pending_list); 610 spin_lock_init(&dev->iotlb_lock); 611 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC); 612 613 for (i = 0; i < dev->nvqs; ++i) { 614 vq = dev->vqs[i]; 615 vq->log = NULL; 616 vq->indirect = NULL; 617 vq->heads = NULL; 618 vq->nheads = NULL; 619 vq->dev = dev; 620 mutex_init(&vq->mutex); 621 vhost_vq_reset(dev, vq); 622 if (vq->handle_kick) 623 vhost_poll_init(&vq->poll, vq->handle_kick, 624 EPOLLIN, dev, vq); 625 } 626 } 627 EXPORT_SYMBOL_GPL(vhost_dev_init); 628 629 /* Caller should have device mutex */ 630 long vhost_dev_check_owner(struct vhost_dev *dev) 631 { 632 /* Are you the owner? If not, I don't think you mean to do that */ 633 return dev->mm == current->mm ? 0 : -EPERM; 634 } 635 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 636 637 struct vhost_attach_cgroups_struct { 638 struct vhost_work work; 639 struct task_struct *owner; 640 int ret; 641 }; 642 643 static void vhost_attach_cgroups_work(struct vhost_work *work) 644 { 645 struct vhost_attach_cgroups_struct *s; 646 647 s = container_of(work, struct vhost_attach_cgroups_struct, work); 648 s->ret = cgroup_attach_task_all(s->owner, current); 649 } 650 651 static int vhost_attach_task_to_cgroups(struct vhost_worker *worker) 652 { 653 struct vhost_attach_cgroups_struct attach; 654 int saved_cnt; 655 656 attach.owner = current; 657 658 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 659 vhost_worker_queue(worker, &attach.work); 660 661 mutex_lock(&worker->mutex); 662 663 /* 664 * Bypass attachment_cnt check in __vhost_worker_flush: 665 * Temporarily change it to INT_MAX to bypass the check 666 */ 667 saved_cnt = worker->attachment_cnt; 668 worker->attachment_cnt = INT_MAX; 669 __vhost_worker_flush(worker); 670 worker->attachment_cnt = saved_cnt; 671 672 mutex_unlock(&worker->mutex); 673 674 return attach.ret; 675 } 676 677 /* Caller should have device mutex */ 678 bool vhost_dev_has_owner(struct vhost_dev *dev) 679 { 680 return dev->mm; 681 } 682 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 683 684 static void vhost_attach_mm(struct vhost_dev *dev) 685 { 686 /* No owner, become one */ 687 if (dev->use_worker) { 688 dev->mm = get_task_mm(current); 689 } else { 690 /* vDPA device does not use worker thread, so there's 691 * no need to hold the address space for mm. This helps 692 * to avoid deadlock in the case of mmap() which may 693 * hold the refcnt of the file and depends on release 694 * method to remove vma. 695 */ 696 dev->mm = current->mm; 697 mmgrab(dev->mm); 698 } 699 } 700 701 static void vhost_detach_mm(struct vhost_dev *dev) 702 { 703 if (!dev->mm) 704 return; 705 706 if (dev->use_worker) 707 mmput(dev->mm); 708 else 709 mmdrop(dev->mm); 710 711 dev->mm = NULL; 712 } 713 714 static void vhost_worker_destroy(struct vhost_dev *dev, 715 struct vhost_worker *worker) 716 { 717 if (!worker) 718 return; 719 720 WARN_ON(!llist_empty(&worker->work_list)); 721 xa_erase(&dev->worker_xa, worker->id); 722 worker->ops->stop(worker); 723 kfree(worker); 724 } 725 726 static void vhost_workers_free(struct vhost_dev *dev) 727 { 728 struct vhost_worker *worker; 729 unsigned long i; 730 731 if (!dev->use_worker) 732 return; 733 734 for (i = 0; i < dev->nvqs; i++) 735 rcu_assign_pointer(dev->vqs[i]->worker, NULL); 736 /* 737 * Free the default worker we created and cleanup workers userspace 738 * created but couldn't clean up (it forgot or crashed). 739 */ 740 xa_for_each(&dev->worker_xa, i, worker) 741 vhost_worker_destroy(dev, worker); 742 xa_destroy(&dev->worker_xa); 743 } 744 745 static void vhost_task_wakeup(struct vhost_worker *worker) 746 { 747 return vhost_task_wake(worker->vtsk); 748 } 749 750 static void vhost_kthread_wakeup(struct vhost_worker *worker) 751 { 752 wake_up_process(worker->kthread_task); 753 } 754 755 static void vhost_task_do_stop(struct vhost_worker *worker) 756 { 757 return vhost_task_stop(worker->vtsk); 758 } 759 760 static void vhost_kthread_do_stop(struct vhost_worker *worker) 761 { 762 kthread_stop(worker->kthread_task); 763 } 764 765 static int vhost_task_worker_create(struct vhost_worker *worker, 766 struct vhost_dev *dev, const char *name) 767 { 768 struct vhost_task *vtsk; 769 u32 id; 770 int ret; 771 772 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed, 773 worker, name); 774 if (IS_ERR(vtsk)) 775 return PTR_ERR(vtsk); 776 777 worker->vtsk = vtsk; 778 vhost_task_start(vtsk); 779 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 780 if (ret < 0) { 781 vhost_task_do_stop(worker); 782 return ret; 783 } 784 worker->id = id; 785 return 0; 786 } 787 788 static int vhost_kthread_worker_create(struct vhost_worker *worker, 789 struct vhost_dev *dev, const char *name) 790 { 791 struct task_struct *task; 792 u32 id; 793 int ret; 794 795 task = kthread_create(vhost_run_work_kthread_list, worker, "%s", name); 796 if (IS_ERR(task)) 797 return PTR_ERR(task); 798 799 worker->kthread_task = task; 800 wake_up_process(task); 801 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL); 802 if (ret < 0) 803 goto stop_worker; 804 805 ret = vhost_attach_task_to_cgroups(worker); 806 if (ret) 807 goto stop_worker; 808 809 worker->id = id; 810 return 0; 811 812 stop_worker: 813 vhost_kthread_do_stop(worker); 814 return ret; 815 } 816 817 static const struct vhost_worker_ops kthread_ops = { 818 .create = vhost_kthread_worker_create, 819 .stop = vhost_kthread_do_stop, 820 .wakeup = vhost_kthread_wakeup, 821 }; 822 823 static const struct vhost_worker_ops vhost_task_ops = { 824 .create = vhost_task_worker_create, 825 .stop = vhost_task_do_stop, 826 .wakeup = vhost_task_wakeup, 827 }; 828 829 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev) 830 { 831 struct vhost_worker *worker; 832 char name[TASK_COMM_LEN]; 833 int ret; 834 const struct vhost_worker_ops *ops = dev->fork_owner ? &vhost_task_ops : 835 &kthread_ops; 836 837 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT); 838 if (!worker) 839 return NULL; 840 841 worker->dev = dev; 842 worker->ops = ops; 843 snprintf(name, sizeof(name), "vhost-%d", current->pid); 844 845 mutex_init(&worker->mutex); 846 init_llist_head(&worker->work_list); 847 worker->kcov_handle = kcov_common_handle(); 848 ret = ops->create(worker, dev, name); 849 if (ret < 0) 850 goto free_worker; 851 852 return worker; 853 854 free_worker: 855 kfree(worker); 856 return NULL; 857 } 858 859 /* Caller must have device mutex */ 860 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq, 861 struct vhost_worker *worker) 862 { 863 struct vhost_worker *old_worker; 864 865 mutex_lock(&worker->mutex); 866 if (worker->killed) { 867 mutex_unlock(&worker->mutex); 868 return; 869 } 870 871 mutex_lock(&vq->mutex); 872 873 old_worker = rcu_dereference_check(vq->worker, 874 lockdep_is_held(&vq->mutex)); 875 rcu_assign_pointer(vq->worker, worker); 876 worker->attachment_cnt++; 877 878 if (!old_worker) { 879 mutex_unlock(&vq->mutex); 880 mutex_unlock(&worker->mutex); 881 return; 882 } 883 mutex_unlock(&vq->mutex); 884 mutex_unlock(&worker->mutex); 885 886 /* 887 * Take the worker mutex to make sure we see the work queued from 888 * device wide flushes which doesn't use RCU for execution. 889 */ 890 mutex_lock(&old_worker->mutex); 891 if (old_worker->killed) { 892 mutex_unlock(&old_worker->mutex); 893 return; 894 } 895 896 /* 897 * We don't want to call synchronize_rcu for every vq during setup 898 * because it will slow down VM startup. If we haven't done 899 * VHOST_SET_VRING_KICK and not done the driver specific 900 * SET_ENDPOINT/RUNNING then we can skip the sync since there will 901 * not be any works queued for scsi and net. 902 */ 903 mutex_lock(&vq->mutex); 904 if (!vhost_vq_get_backend(vq) && !vq->kick) { 905 mutex_unlock(&vq->mutex); 906 907 old_worker->attachment_cnt--; 908 mutex_unlock(&old_worker->mutex); 909 /* 910 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID. 911 * Warn if it adds support for multiple workers but forgets to 912 * handle the early queueing case. 913 */ 914 WARN_ON(!old_worker->attachment_cnt && 915 !llist_empty(&old_worker->work_list)); 916 return; 917 } 918 mutex_unlock(&vq->mutex); 919 920 /* Make sure new vq queue/flush/poll calls see the new worker */ 921 synchronize_rcu(); 922 /* Make sure whatever was queued gets run */ 923 __vhost_worker_flush(old_worker); 924 old_worker->attachment_cnt--; 925 mutex_unlock(&old_worker->mutex); 926 } 927 928 /* Caller must have device mutex */ 929 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq, 930 struct vhost_vring_worker *info) 931 { 932 unsigned long index = info->worker_id; 933 struct vhost_dev *dev = vq->dev; 934 struct vhost_worker *worker; 935 936 if (!dev->use_worker) 937 return -EINVAL; 938 939 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 940 if (!worker || worker->id != info->worker_id) 941 return -ENODEV; 942 943 __vhost_vq_attach_worker(vq, worker); 944 return 0; 945 } 946 947 /* Caller must have device mutex */ 948 static int vhost_new_worker(struct vhost_dev *dev, 949 struct vhost_worker_state *info) 950 { 951 struct vhost_worker *worker; 952 953 worker = vhost_worker_create(dev); 954 if (!worker) 955 return -ENOMEM; 956 957 info->worker_id = worker->id; 958 return 0; 959 } 960 961 /* Caller must have device mutex */ 962 static int vhost_free_worker(struct vhost_dev *dev, 963 struct vhost_worker_state *info) 964 { 965 unsigned long index = info->worker_id; 966 struct vhost_worker *worker; 967 968 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT); 969 if (!worker || worker->id != info->worker_id) 970 return -ENODEV; 971 972 mutex_lock(&worker->mutex); 973 if (worker->attachment_cnt || worker->killed) { 974 mutex_unlock(&worker->mutex); 975 return -EBUSY; 976 } 977 /* 978 * A flush might have raced and snuck in before attachment_cnt was set 979 * to zero. Make sure flushes are flushed from the queue before 980 * freeing. 981 */ 982 __vhost_worker_flush(worker); 983 mutex_unlock(&worker->mutex); 984 985 vhost_worker_destroy(dev, worker); 986 return 0; 987 } 988 989 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp, 990 struct vhost_virtqueue **vq, u32 *id) 991 { 992 u32 __user *idxp = argp; 993 u32 idx; 994 long r; 995 996 r = get_user(idx, idxp); 997 if (r < 0) 998 return r; 999 1000 if (idx >= dev->nvqs) 1001 return -ENOBUFS; 1002 1003 idx = array_index_nospec(idx, dev->nvqs); 1004 1005 *vq = dev->vqs[idx]; 1006 *id = idx; 1007 return 0; 1008 } 1009 1010 /* Caller must have device mutex */ 1011 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl, 1012 void __user *argp) 1013 { 1014 struct vhost_vring_worker ring_worker; 1015 struct vhost_worker_state state; 1016 struct vhost_worker *worker; 1017 struct vhost_virtqueue *vq; 1018 long ret; 1019 u32 idx; 1020 1021 if (!dev->use_worker) 1022 return -EINVAL; 1023 1024 if (!vhost_dev_has_owner(dev)) 1025 return -EINVAL; 1026 1027 ret = vhost_dev_check_owner(dev); 1028 if (ret) 1029 return ret; 1030 1031 switch (ioctl) { 1032 /* dev worker ioctls */ 1033 case VHOST_NEW_WORKER: 1034 /* 1035 * vhost_tasks will account for worker threads under the parent's 1036 * NPROC value but kthreads do not. To avoid userspace overflowing 1037 * the system with worker threads fork_owner must be true. 1038 */ 1039 if (!dev->fork_owner) 1040 return -EFAULT; 1041 1042 ret = vhost_new_worker(dev, &state); 1043 if (!ret && copy_to_user(argp, &state, sizeof(state))) 1044 ret = -EFAULT; 1045 return ret; 1046 case VHOST_FREE_WORKER: 1047 if (copy_from_user(&state, argp, sizeof(state))) 1048 return -EFAULT; 1049 return vhost_free_worker(dev, &state); 1050 /* vring worker ioctls */ 1051 case VHOST_ATTACH_VRING_WORKER: 1052 case VHOST_GET_VRING_WORKER: 1053 break; 1054 default: 1055 return -ENOIOCTLCMD; 1056 } 1057 1058 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx); 1059 if (ret) 1060 return ret; 1061 1062 switch (ioctl) { 1063 case VHOST_ATTACH_VRING_WORKER: 1064 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) { 1065 ret = -EFAULT; 1066 break; 1067 } 1068 1069 ret = vhost_vq_attach_worker(vq, &ring_worker); 1070 break; 1071 case VHOST_GET_VRING_WORKER: 1072 worker = rcu_dereference_check(vq->worker, 1073 lockdep_is_held(&dev->mutex)); 1074 if (!worker) { 1075 ret = -EINVAL; 1076 break; 1077 } 1078 1079 ring_worker.index = idx; 1080 ring_worker.worker_id = worker->id; 1081 1082 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker))) 1083 ret = -EFAULT; 1084 break; 1085 default: 1086 ret = -ENOIOCTLCMD; 1087 break; 1088 } 1089 1090 return ret; 1091 } 1092 EXPORT_SYMBOL_GPL(vhost_worker_ioctl); 1093 1094 /* Caller should have device mutex */ 1095 long vhost_dev_set_owner(struct vhost_dev *dev) 1096 { 1097 struct vhost_worker *worker; 1098 int err, i; 1099 1100 /* Is there an owner already? */ 1101 if (vhost_dev_has_owner(dev)) { 1102 err = -EBUSY; 1103 goto err_mm; 1104 } 1105 1106 vhost_attach_mm(dev); 1107 1108 err = vhost_dev_alloc_iovecs(dev); 1109 if (err) 1110 goto err_iovecs; 1111 1112 if (dev->use_worker) { 1113 /* 1114 * This should be done last, because vsock can queue work 1115 * before VHOST_SET_OWNER so it simplifies the failure path 1116 * below since we don't have to worry about vsock queueing 1117 * while we free the worker. 1118 */ 1119 worker = vhost_worker_create(dev); 1120 if (!worker) { 1121 err = -ENOMEM; 1122 goto err_worker; 1123 } 1124 1125 for (i = 0; i < dev->nvqs; i++) 1126 __vhost_vq_attach_worker(dev->vqs[i], worker); 1127 } 1128 1129 return 0; 1130 1131 err_worker: 1132 vhost_dev_free_iovecs(dev); 1133 err_iovecs: 1134 vhost_detach_mm(dev); 1135 err_mm: 1136 return err; 1137 } 1138 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 1139 1140 static struct vhost_iotlb *iotlb_alloc(void) 1141 { 1142 return vhost_iotlb_alloc(max_iotlb_entries, 1143 VHOST_IOTLB_FLAG_RETIRE); 1144 } 1145 1146 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void) 1147 { 1148 return iotlb_alloc(); 1149 } 1150 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 1151 1152 /* Caller should have device mutex */ 1153 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem) 1154 { 1155 int i; 1156 1157 vhost_dev_cleanup(dev); 1158 1159 dev->fork_owner = fork_from_owner_default; 1160 dev->umem = umem; 1161 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 1162 * VQs aren't running. 1163 */ 1164 for (i = 0; i < dev->nvqs; ++i) 1165 dev->vqs[i]->umem = umem; 1166 } 1167 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 1168 1169 void vhost_dev_stop(struct vhost_dev *dev) 1170 { 1171 int i; 1172 1173 for (i = 0; i < dev->nvqs; ++i) { 1174 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) 1175 vhost_poll_stop(&dev->vqs[i]->poll); 1176 } 1177 1178 vhost_dev_flush(dev); 1179 } 1180 EXPORT_SYMBOL_GPL(vhost_dev_stop); 1181 1182 void vhost_clear_msg(struct vhost_dev *dev) 1183 { 1184 struct vhost_msg_node *node, *n; 1185 1186 spin_lock(&dev->iotlb_lock); 1187 1188 list_for_each_entry_safe(node, n, &dev->read_list, node) { 1189 list_del(&node->node); 1190 kfree(node); 1191 } 1192 1193 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 1194 list_del(&node->node); 1195 kfree(node); 1196 } 1197 1198 spin_unlock(&dev->iotlb_lock); 1199 } 1200 EXPORT_SYMBOL_GPL(vhost_clear_msg); 1201 1202 void vhost_dev_cleanup(struct vhost_dev *dev) 1203 { 1204 int i; 1205 1206 for (i = 0; i < dev->nvqs; ++i) { 1207 if (dev->vqs[i]->error_ctx) 1208 eventfd_ctx_put(dev->vqs[i]->error_ctx); 1209 if (dev->vqs[i]->kick) 1210 fput(dev->vqs[i]->kick); 1211 if (dev->vqs[i]->call_ctx.ctx) 1212 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx); 1213 vhost_vq_reset(dev, dev->vqs[i]); 1214 } 1215 vhost_dev_free_iovecs(dev); 1216 if (dev->log_ctx) 1217 eventfd_ctx_put(dev->log_ctx); 1218 dev->log_ctx = NULL; 1219 /* No one will access memory at this point */ 1220 vhost_iotlb_free(dev->umem); 1221 dev->umem = NULL; 1222 vhost_iotlb_free(dev->iotlb); 1223 dev->iotlb = NULL; 1224 vhost_clear_msg(dev); 1225 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 1226 vhost_workers_free(dev); 1227 vhost_detach_mm(dev); 1228 } 1229 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 1230 1231 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 1232 { 1233 u64 a = addr / VHOST_PAGE_SIZE / 8; 1234 1235 /* Make sure 64 bit math will not overflow. */ 1236 if (a > ULONG_MAX - (unsigned long)log_base || 1237 a + (unsigned long)log_base > ULONG_MAX) 1238 return false; 1239 1240 return access_ok(log_base + a, 1241 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 1242 } 1243 1244 /* Make sure 64 bit math will not overflow. */ 1245 static bool vhost_overflow(u64 uaddr, u64 size) 1246 { 1247 if (uaddr > ULONG_MAX || size > ULONG_MAX) 1248 return true; 1249 1250 if (!size) 1251 return false; 1252 1253 return uaddr > ULONG_MAX - size + 1; 1254 } 1255 1256 /* Caller should have vq mutex and device mutex. */ 1257 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem, 1258 int log_all) 1259 { 1260 struct vhost_iotlb_map *map; 1261 1262 if (!umem) 1263 return false; 1264 1265 list_for_each_entry(map, &umem->list, link) { 1266 unsigned long a = map->addr; 1267 1268 if (vhost_overflow(map->addr, map->size)) 1269 return false; 1270 1271 1272 if (!access_ok((void __user *)a, map->size)) 1273 return false; 1274 else if (log_all && !log_access_ok(log_base, 1275 map->start, 1276 map->size)) 1277 return false; 1278 } 1279 return true; 1280 } 1281 1282 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 1283 u64 addr, unsigned int size, 1284 int type) 1285 { 1286 const struct vhost_iotlb_map *map = vq->meta_iotlb[type]; 1287 1288 if (!map) 1289 return NULL; 1290 1291 return (void __user *)(uintptr_t)(map->addr + addr - map->start); 1292 } 1293 1294 /* Can we switch to this memory table? */ 1295 /* Caller should have device mutex but not vq mutex */ 1296 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem, 1297 int log_all) 1298 { 1299 int i; 1300 1301 for (i = 0; i < d->nvqs; ++i) { 1302 bool ok; 1303 bool log; 1304 1305 mutex_lock(&d->vqs[i]->mutex); 1306 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 1307 /* If ring is inactive, will check when it's enabled. */ 1308 if (d->vqs[i]->private_data) 1309 ok = vq_memory_access_ok(d->vqs[i]->log_base, 1310 umem, log); 1311 else 1312 ok = true; 1313 mutex_unlock(&d->vqs[i]->mutex); 1314 if (!ok) 1315 return false; 1316 } 1317 return true; 1318 } 1319 1320 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1321 struct iovec iov[], int iov_size, int access); 1322 1323 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 1324 const void *from, unsigned size) 1325 { 1326 int ret; 1327 1328 if (!vq->iotlb) 1329 return __copy_to_user(to, from, size); 1330 else { 1331 /* This function should be called after iotlb 1332 * prefetch, which means we're sure that all vq 1333 * could be access through iotlb. So -EAGAIN should 1334 * not happen in this case. 1335 */ 1336 struct iov_iter t; 1337 void __user *uaddr = vhost_vq_meta_fetch(vq, 1338 (u64)(uintptr_t)to, size, 1339 VHOST_ADDR_USED); 1340 1341 if (uaddr) 1342 return __copy_to_user(uaddr, from, size); 1343 1344 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 1345 ARRAY_SIZE(vq->iotlb_iov), 1346 VHOST_ACCESS_WO); 1347 if (ret < 0) 1348 goto out; 1349 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size); 1350 ret = copy_to_iter(from, size, &t); 1351 if (ret == size) 1352 ret = 0; 1353 } 1354 out: 1355 return ret; 1356 } 1357 1358 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 1359 void __user *from, unsigned size) 1360 { 1361 int ret; 1362 1363 if (!vq->iotlb) 1364 return __copy_from_user(to, from, size); 1365 else { 1366 /* This function should be called after iotlb 1367 * prefetch, which means we're sure that vq 1368 * could be access through iotlb. So -EAGAIN should 1369 * not happen in this case. 1370 */ 1371 void __user *uaddr = vhost_vq_meta_fetch(vq, 1372 (u64)(uintptr_t)from, size, 1373 VHOST_ADDR_DESC); 1374 struct iov_iter f; 1375 1376 if (uaddr) 1377 return __copy_from_user(to, uaddr, size); 1378 1379 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 1380 ARRAY_SIZE(vq->iotlb_iov), 1381 VHOST_ACCESS_RO); 1382 if (ret < 0) { 1383 vq_err(vq, "IOTLB translation failure: uaddr " 1384 "%p size 0x%llx\n", from, 1385 (unsigned long long) size); 1386 goto out; 1387 } 1388 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size); 1389 ret = copy_from_iter(to, size, &f); 1390 if (ret == size) 1391 ret = 0; 1392 } 1393 1394 out: 1395 return ret; 1396 } 1397 1398 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 1399 void __user *addr, unsigned int size, 1400 int type) 1401 { 1402 int ret; 1403 1404 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 1405 ARRAY_SIZE(vq->iotlb_iov), 1406 VHOST_ACCESS_RO); 1407 if (ret < 0) { 1408 vq_err(vq, "IOTLB translation failure: uaddr " 1409 "%p size 0x%llx\n", addr, 1410 (unsigned long long) size); 1411 return NULL; 1412 } 1413 1414 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 1415 vq_err(vq, "Non atomic userspace memory access: uaddr " 1416 "%p size 0x%llx\n", addr, 1417 (unsigned long long) size); 1418 return NULL; 1419 } 1420 1421 return vq->iotlb_iov[0].iov_base; 1422 } 1423 1424 /* This function should be called after iotlb 1425 * prefetch, which means we're sure that vq 1426 * could be access through iotlb. So -EAGAIN should 1427 * not happen in this case. 1428 */ 1429 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 1430 void __user *addr, unsigned int size, 1431 int type) 1432 { 1433 void __user *uaddr = vhost_vq_meta_fetch(vq, 1434 (u64)(uintptr_t)addr, size, type); 1435 if (uaddr) 1436 return uaddr; 1437 1438 return __vhost_get_user_slow(vq, addr, size, type); 1439 } 1440 1441 #define vhost_put_user(vq, x, ptr) \ 1442 ({ \ 1443 int ret; \ 1444 if (!vq->iotlb) { \ 1445 ret = __put_user(x, ptr); \ 1446 } else { \ 1447 __typeof__(ptr) to = \ 1448 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1449 sizeof(*ptr), VHOST_ADDR_USED); \ 1450 if (to != NULL) \ 1451 ret = __put_user(x, to); \ 1452 else \ 1453 ret = -EFAULT; \ 1454 } \ 1455 ret; \ 1456 }) 1457 1458 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq) 1459 { 1460 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1461 vhost_avail_event(vq)); 1462 } 1463 1464 static inline int vhost_put_used(struct vhost_virtqueue *vq, 1465 struct vring_used_elem *head, int idx, 1466 int count) 1467 { 1468 return vhost_copy_to_user(vq, vq->used->ring + idx, head, 1469 count * sizeof(*head)); 1470 } 1471 1472 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq) 1473 1474 { 1475 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1476 &vq->used->flags); 1477 } 1478 1479 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq) 1480 1481 { 1482 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 1483 &vq->used->idx); 1484 } 1485 1486 #define vhost_get_user(vq, x, ptr, type) \ 1487 ({ \ 1488 int ret; \ 1489 if (!vq->iotlb) { \ 1490 ret = __get_user(x, ptr); \ 1491 } else { \ 1492 __typeof__(ptr) from = \ 1493 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 1494 sizeof(*ptr), \ 1495 type); \ 1496 if (from != NULL) \ 1497 ret = __get_user(x, from); \ 1498 else \ 1499 ret = -EFAULT; \ 1500 } \ 1501 ret; \ 1502 }) 1503 1504 #define vhost_get_avail(vq, x, ptr) \ 1505 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 1506 1507 #define vhost_get_used(vq, x, ptr) \ 1508 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 1509 1510 static void vhost_dev_lock_vqs(struct vhost_dev *d) 1511 { 1512 int i = 0; 1513 for (i = 0; i < d->nvqs; ++i) 1514 mutex_lock_nested(&d->vqs[i]->mutex, i); 1515 } 1516 1517 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 1518 { 1519 int i = 0; 1520 for (i = 0; i < d->nvqs; ++i) 1521 mutex_unlock(&d->vqs[i]->mutex); 1522 } 1523 1524 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq) 1525 { 1526 __virtio16 idx; 1527 int r; 1528 1529 r = vhost_get_avail(vq, idx, &vq->avail->idx); 1530 if (unlikely(r < 0)) { 1531 vq_err(vq, "Failed to access available index at %p (%d)\n", 1532 &vq->avail->idx, r); 1533 return r; 1534 } 1535 1536 /* Check it isn't doing very strange thing with available indexes */ 1537 vq->avail_idx = vhost16_to_cpu(vq, idx); 1538 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) { 1539 vq_err(vq, "Invalid available index change from %u to %u", 1540 vq->last_avail_idx, vq->avail_idx); 1541 return -EINVAL; 1542 } 1543 1544 /* We're done if there is nothing new */ 1545 if (vq->avail_idx == vq->last_avail_idx) 1546 return 0; 1547 1548 /* 1549 * We updated vq->avail_idx so we need a memory barrier between 1550 * the index read above and the caller reading avail ring entries. 1551 */ 1552 smp_rmb(); 1553 return 1; 1554 } 1555 1556 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq, 1557 __virtio16 *head, int idx) 1558 { 1559 return vhost_get_avail(vq, *head, 1560 &vq->avail->ring[idx & (vq->num - 1)]); 1561 } 1562 1563 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq, 1564 __virtio16 *flags) 1565 { 1566 return vhost_get_avail(vq, *flags, &vq->avail->flags); 1567 } 1568 1569 static inline int vhost_get_used_event(struct vhost_virtqueue *vq, 1570 __virtio16 *event) 1571 { 1572 return vhost_get_avail(vq, *event, vhost_used_event(vq)); 1573 } 1574 1575 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq, 1576 __virtio16 *idx) 1577 { 1578 return vhost_get_used(vq, *idx, &vq->used->idx); 1579 } 1580 1581 static inline int vhost_get_desc(struct vhost_virtqueue *vq, 1582 struct vring_desc *desc, int idx) 1583 { 1584 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc)); 1585 } 1586 1587 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 1588 struct vhost_iotlb_msg *msg) 1589 { 1590 struct vhost_msg_node *node, *n; 1591 1592 spin_lock(&d->iotlb_lock); 1593 1594 list_for_each_entry_safe(node, n, &d->pending_list, node) { 1595 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 1596 if (msg->iova <= vq_msg->iova && 1597 msg->iova + msg->size - 1 >= vq_msg->iova && 1598 vq_msg->type == VHOST_IOTLB_MISS) { 1599 vhost_poll_queue(&node->vq->poll); 1600 list_del(&node->node); 1601 kfree(node); 1602 } 1603 } 1604 1605 spin_unlock(&d->iotlb_lock); 1606 } 1607 1608 static bool umem_access_ok(u64 uaddr, u64 size, int access) 1609 { 1610 unsigned long a = uaddr; 1611 1612 /* Make sure 64 bit math will not overflow. */ 1613 if (vhost_overflow(uaddr, size)) 1614 return false; 1615 1616 if ((access & VHOST_ACCESS_RO) && 1617 !access_ok((void __user *)a, size)) 1618 return false; 1619 if ((access & VHOST_ACCESS_WO) && 1620 !access_ok((void __user *)a, size)) 1621 return false; 1622 return true; 1623 } 1624 1625 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid, 1626 struct vhost_iotlb_msg *msg) 1627 { 1628 int ret = 0; 1629 1630 if (asid != 0) 1631 return -EINVAL; 1632 1633 mutex_lock(&dev->mutex); 1634 vhost_dev_lock_vqs(dev); 1635 switch (msg->type) { 1636 case VHOST_IOTLB_UPDATE: 1637 if (!dev->iotlb) { 1638 ret = -EFAULT; 1639 break; 1640 } 1641 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 1642 ret = -EFAULT; 1643 break; 1644 } 1645 vhost_vq_meta_reset(dev); 1646 if (vhost_iotlb_add_range(dev->iotlb, msg->iova, 1647 msg->iova + msg->size - 1, 1648 msg->uaddr, msg->perm)) { 1649 ret = -ENOMEM; 1650 break; 1651 } 1652 vhost_iotlb_notify_vq(dev, msg); 1653 break; 1654 case VHOST_IOTLB_INVALIDATE: 1655 if (!dev->iotlb) { 1656 ret = -EFAULT; 1657 break; 1658 } 1659 vhost_vq_meta_reset(dev); 1660 vhost_iotlb_del_range(dev->iotlb, msg->iova, 1661 msg->iova + msg->size - 1); 1662 break; 1663 default: 1664 ret = -EINVAL; 1665 break; 1666 } 1667 1668 vhost_dev_unlock_vqs(dev); 1669 mutex_unlock(&dev->mutex); 1670 1671 return ret; 1672 } 1673 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1674 struct iov_iter *from) 1675 { 1676 struct vhost_iotlb_msg msg; 1677 size_t offset; 1678 int type, ret; 1679 u32 asid = 0; 1680 1681 ret = copy_from_iter(&type, sizeof(type), from); 1682 if (ret != sizeof(type)) { 1683 ret = -EINVAL; 1684 goto done; 1685 } 1686 1687 switch (type) { 1688 case VHOST_IOTLB_MSG: 1689 /* There maybe a hole after type for V1 message type, 1690 * so skip it here. 1691 */ 1692 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int); 1693 break; 1694 case VHOST_IOTLB_MSG_V2: 1695 if (vhost_backend_has_feature(dev->vqs[0], 1696 VHOST_BACKEND_F_IOTLB_ASID)) { 1697 ret = copy_from_iter(&asid, sizeof(asid), from); 1698 if (ret != sizeof(asid)) { 1699 ret = -EINVAL; 1700 goto done; 1701 } 1702 offset = 0; 1703 } else 1704 offset = sizeof(__u32); 1705 break; 1706 default: 1707 ret = -EINVAL; 1708 goto done; 1709 } 1710 1711 iov_iter_advance(from, offset); 1712 ret = copy_from_iter(&msg, sizeof(msg), from); 1713 if (ret != sizeof(msg)) { 1714 ret = -EINVAL; 1715 goto done; 1716 } 1717 1718 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) { 1719 ret = -EINVAL; 1720 goto done; 1721 } 1722 1723 if (dev->msg_handler) 1724 ret = dev->msg_handler(dev, asid, &msg); 1725 else 1726 ret = vhost_process_iotlb_msg(dev, asid, &msg); 1727 if (ret) { 1728 ret = -EFAULT; 1729 goto done; 1730 } 1731 1732 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) : 1733 sizeof(struct vhost_msg_v2); 1734 done: 1735 return ret; 1736 } 1737 EXPORT_SYMBOL(vhost_chr_write_iter); 1738 1739 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1740 poll_table *wait) 1741 { 1742 __poll_t mask = 0; 1743 1744 poll_wait(file, &dev->wait, wait); 1745 1746 if (!list_empty(&dev->read_list)) 1747 mask |= EPOLLIN | EPOLLRDNORM; 1748 1749 return mask; 1750 } 1751 EXPORT_SYMBOL(vhost_chr_poll); 1752 1753 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1754 int noblock) 1755 { 1756 DEFINE_WAIT(wait); 1757 struct vhost_msg_node *node; 1758 ssize_t ret = 0; 1759 unsigned size = sizeof(struct vhost_msg); 1760 1761 if (iov_iter_count(to) < size) 1762 return 0; 1763 1764 while (1) { 1765 if (!noblock) 1766 prepare_to_wait(&dev->wait, &wait, 1767 TASK_INTERRUPTIBLE); 1768 1769 node = vhost_dequeue_msg(dev, &dev->read_list); 1770 if (node) 1771 break; 1772 if (noblock) { 1773 ret = -EAGAIN; 1774 break; 1775 } 1776 if (signal_pending(current)) { 1777 ret = -ERESTARTSYS; 1778 break; 1779 } 1780 if (!dev->iotlb) { 1781 ret = -EBADFD; 1782 break; 1783 } 1784 1785 schedule(); 1786 } 1787 1788 if (!noblock) 1789 finish_wait(&dev->wait, &wait); 1790 1791 if (node) { 1792 struct vhost_iotlb_msg *msg; 1793 void *start = &node->msg; 1794 1795 switch (node->msg.type) { 1796 case VHOST_IOTLB_MSG: 1797 size = sizeof(node->msg); 1798 msg = &node->msg.iotlb; 1799 break; 1800 case VHOST_IOTLB_MSG_V2: 1801 size = sizeof(node->msg_v2); 1802 msg = &node->msg_v2.iotlb; 1803 break; 1804 default: 1805 BUG(); 1806 break; 1807 } 1808 1809 ret = copy_to_iter(start, size, to); 1810 if (ret != size || msg->type != VHOST_IOTLB_MISS) { 1811 kfree(node); 1812 return ret; 1813 } 1814 vhost_enqueue_msg(dev, &dev->pending_list, node); 1815 } 1816 1817 return ret; 1818 } 1819 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1820 1821 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1822 { 1823 struct vhost_dev *dev = vq->dev; 1824 struct vhost_msg_node *node; 1825 struct vhost_iotlb_msg *msg; 1826 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2); 1827 1828 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG); 1829 if (!node) 1830 return -ENOMEM; 1831 1832 if (v2) { 1833 node->msg_v2.type = VHOST_IOTLB_MSG_V2; 1834 msg = &node->msg_v2.iotlb; 1835 } else { 1836 msg = &node->msg.iotlb; 1837 } 1838 1839 msg->type = VHOST_IOTLB_MISS; 1840 msg->iova = iova; 1841 msg->perm = access; 1842 1843 vhost_enqueue_msg(dev, &dev->read_list, node); 1844 1845 return 0; 1846 } 1847 1848 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1849 vring_desc_t __user *desc, 1850 vring_avail_t __user *avail, 1851 vring_used_t __user *used) 1852 1853 { 1854 /* If an IOTLB device is present, the vring addresses are 1855 * GIOVAs. Access validation occurs at prefetch time. */ 1856 if (vq->iotlb) 1857 return true; 1858 1859 return access_ok(desc, vhost_get_desc_size(vq, num)) && 1860 access_ok(avail, vhost_get_avail_size(vq, num)) && 1861 access_ok(used, vhost_get_used_size(vq, num)); 1862 } 1863 1864 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1865 const struct vhost_iotlb_map *map, 1866 int type) 1867 { 1868 int access = (type == VHOST_ADDR_USED) ? 1869 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1870 1871 if (likely(map->perm & access)) 1872 vq->meta_iotlb[type] = map; 1873 } 1874 1875 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1876 int access, u64 addr, u64 len, int type) 1877 { 1878 const struct vhost_iotlb_map *map; 1879 struct vhost_iotlb *umem = vq->iotlb; 1880 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1881 1882 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1883 return true; 1884 1885 while (len > s) { 1886 map = vhost_iotlb_itree_first(umem, addr, last); 1887 if (map == NULL || map->start > addr) { 1888 vhost_iotlb_miss(vq, addr, access); 1889 return false; 1890 } else if (!(map->perm & access)) { 1891 /* Report the possible access violation by 1892 * request another translation from userspace. 1893 */ 1894 return false; 1895 } 1896 1897 size = map->size - addr + map->start; 1898 1899 if (orig_addr == addr && size >= len) 1900 vhost_vq_meta_update(vq, map, type); 1901 1902 s += size; 1903 addr += size; 1904 } 1905 1906 return true; 1907 } 1908 1909 int vq_meta_prefetch(struct vhost_virtqueue *vq) 1910 { 1911 unsigned int num = vq->num; 1912 1913 if (!vq->iotlb) 1914 return 1; 1915 1916 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc, 1917 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) && 1918 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail, 1919 vhost_get_avail_size(vq, num), 1920 VHOST_ADDR_AVAIL) && 1921 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used, 1922 vhost_get_used_size(vq, num), VHOST_ADDR_USED); 1923 } 1924 EXPORT_SYMBOL_GPL(vq_meta_prefetch); 1925 1926 /* Can we log writes? */ 1927 /* Caller should have device mutex but not vq mutex */ 1928 bool vhost_log_access_ok(struct vhost_dev *dev) 1929 { 1930 return memory_access_ok(dev, dev->umem, 1); 1931 } 1932 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1933 1934 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq, 1935 void __user *log_base, 1936 bool log_used, 1937 u64 log_addr) 1938 { 1939 /* If an IOTLB device is present, log_addr is a GIOVA that 1940 * will never be logged by log_used(). */ 1941 if (vq->iotlb) 1942 return true; 1943 1944 return !log_used || log_access_ok(log_base, log_addr, 1945 vhost_get_used_size(vq, vq->num)); 1946 } 1947 1948 /* Verify access for write logging. */ 1949 /* Caller should have vq mutex and device mutex */ 1950 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1951 void __user *log_base) 1952 { 1953 return vq_memory_access_ok(log_base, vq->umem, 1954 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1955 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr); 1956 } 1957 1958 /* Can we start vq? */ 1959 /* Caller should have vq mutex and device mutex */ 1960 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1961 { 1962 if (!vq_log_access_ok(vq, vq->log_base)) 1963 return false; 1964 1965 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1966 } 1967 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1968 1969 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1970 { 1971 struct vhost_memory mem, *newmem; 1972 struct vhost_memory_region *region; 1973 struct vhost_iotlb *newumem, *oldumem; 1974 unsigned long size = offsetof(struct vhost_memory, regions); 1975 int i; 1976 1977 if (copy_from_user(&mem, m, size)) 1978 return -EFAULT; 1979 if (mem.padding) 1980 return -EOPNOTSUPP; 1981 if (mem.nregions > max_mem_regions) 1982 return -E2BIG; 1983 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1984 GFP_KERNEL); 1985 if (!newmem) 1986 return -ENOMEM; 1987 1988 memcpy(newmem, &mem, size); 1989 if (copy_from_user(newmem->regions, m->regions, 1990 flex_array_size(newmem, regions, mem.nregions))) { 1991 kvfree(newmem); 1992 return -EFAULT; 1993 } 1994 1995 newumem = iotlb_alloc(); 1996 if (!newumem) { 1997 kvfree(newmem); 1998 return -ENOMEM; 1999 } 2000 2001 for (region = newmem->regions; 2002 region < newmem->regions + mem.nregions; 2003 region++) { 2004 if (vhost_iotlb_add_range(newumem, 2005 region->guest_phys_addr, 2006 region->guest_phys_addr + 2007 region->memory_size - 1, 2008 region->userspace_addr, 2009 VHOST_MAP_RW)) 2010 goto err; 2011 } 2012 2013 if (!memory_access_ok(d, newumem, 0)) 2014 goto err; 2015 2016 oldumem = d->umem; 2017 d->umem = newumem; 2018 2019 /* All memory accesses are done under some VQ mutex. */ 2020 for (i = 0; i < d->nvqs; ++i) { 2021 mutex_lock(&d->vqs[i]->mutex); 2022 d->vqs[i]->umem = newumem; 2023 mutex_unlock(&d->vqs[i]->mutex); 2024 } 2025 2026 kvfree(newmem); 2027 vhost_iotlb_free(oldumem); 2028 return 0; 2029 2030 err: 2031 vhost_iotlb_free(newumem); 2032 kvfree(newmem); 2033 return -EFAULT; 2034 } 2035 2036 static long vhost_vring_set_num(struct vhost_dev *d, 2037 struct vhost_virtqueue *vq, 2038 void __user *argp) 2039 { 2040 struct vhost_vring_state s; 2041 2042 /* Resizing ring with an active backend? 2043 * You don't want to do that. */ 2044 if (vq->private_data) 2045 return -EBUSY; 2046 2047 if (copy_from_user(&s, argp, sizeof s)) 2048 return -EFAULT; 2049 2050 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) 2051 return -EINVAL; 2052 vq->num = s.num; 2053 2054 return 0; 2055 } 2056 2057 static long vhost_vring_set_addr(struct vhost_dev *d, 2058 struct vhost_virtqueue *vq, 2059 void __user *argp) 2060 { 2061 struct vhost_vring_addr a; 2062 2063 if (copy_from_user(&a, argp, sizeof a)) 2064 return -EFAULT; 2065 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) 2066 return -EOPNOTSUPP; 2067 2068 /* For 32bit, verify that the top 32bits of the user 2069 data are set to zero. */ 2070 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 2071 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 2072 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) 2073 return -EFAULT; 2074 2075 /* Make sure it's safe to cast pointers to vring types. */ 2076 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 2077 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 2078 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 2079 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 2080 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) 2081 return -EINVAL; 2082 2083 /* We only verify access here if backend is configured. 2084 * If it is not, we don't as size might not have been setup. 2085 * We will verify when backend is configured. */ 2086 if (vq->private_data) { 2087 if (!vq_access_ok(vq, vq->num, 2088 (void __user *)(unsigned long)a.desc_user_addr, 2089 (void __user *)(unsigned long)a.avail_user_addr, 2090 (void __user *)(unsigned long)a.used_user_addr)) 2091 return -EINVAL; 2092 2093 /* Also validate log access for used ring if enabled. */ 2094 if (!vq_log_used_access_ok(vq, vq->log_base, 2095 a.flags & (0x1 << VHOST_VRING_F_LOG), 2096 a.log_guest_addr)) 2097 return -EINVAL; 2098 } 2099 2100 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 2101 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 2102 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 2103 vq->log_addr = a.log_guest_addr; 2104 vq->used = (void __user *)(unsigned long)a.used_user_addr; 2105 2106 return 0; 2107 } 2108 2109 static long vhost_vring_set_num_addr(struct vhost_dev *d, 2110 struct vhost_virtqueue *vq, 2111 unsigned int ioctl, 2112 void __user *argp) 2113 { 2114 long r; 2115 2116 mutex_lock(&vq->mutex); 2117 2118 switch (ioctl) { 2119 case VHOST_SET_VRING_NUM: 2120 r = vhost_vring_set_num(d, vq, argp); 2121 break; 2122 case VHOST_SET_VRING_ADDR: 2123 r = vhost_vring_set_addr(d, vq, argp); 2124 break; 2125 default: 2126 BUG(); 2127 } 2128 2129 mutex_unlock(&vq->mutex); 2130 2131 return r; 2132 } 2133 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2134 { 2135 struct file *eventfp, *filep = NULL; 2136 bool pollstart = false, pollstop = false; 2137 struct eventfd_ctx *ctx = NULL; 2138 struct vhost_virtqueue *vq; 2139 struct vhost_vring_state s; 2140 struct vhost_vring_file f; 2141 u32 idx; 2142 long r; 2143 2144 r = vhost_get_vq_from_user(d, argp, &vq, &idx); 2145 if (r < 0) 2146 return r; 2147 2148 if (ioctl == VHOST_SET_VRING_NUM || 2149 ioctl == VHOST_SET_VRING_ADDR) { 2150 return vhost_vring_set_num_addr(d, vq, ioctl, argp); 2151 } 2152 2153 mutex_lock(&vq->mutex); 2154 2155 switch (ioctl) { 2156 case VHOST_SET_VRING_BASE: 2157 /* Moving base with an active backend? 2158 * You don't want to do that. */ 2159 if (vq->private_data) { 2160 r = -EBUSY; 2161 break; 2162 } 2163 if (copy_from_user(&s, argp, sizeof s)) { 2164 r = -EFAULT; 2165 break; 2166 } 2167 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) { 2168 vq->next_avail_head = vq->last_avail_idx = 2169 s.num & 0xffff; 2170 vq->last_used_idx = (s.num >> 16) & 0xffff; 2171 } else { 2172 if (s.num > 0xffff) { 2173 r = -EINVAL; 2174 break; 2175 } 2176 vq->next_avail_head = vq->last_avail_idx = s.num; 2177 } 2178 /* Forget the cached index value. */ 2179 vq->avail_idx = vq->last_avail_idx; 2180 break; 2181 case VHOST_GET_VRING_BASE: 2182 s.index = idx; 2183 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) 2184 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16); 2185 else 2186 s.num = vq->last_avail_idx; 2187 if (copy_to_user(argp, &s, sizeof s)) 2188 r = -EFAULT; 2189 break; 2190 case VHOST_SET_VRING_KICK: 2191 if (copy_from_user(&f, argp, sizeof f)) { 2192 r = -EFAULT; 2193 break; 2194 } 2195 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd); 2196 if (IS_ERR(eventfp)) { 2197 r = PTR_ERR(eventfp); 2198 break; 2199 } 2200 if (eventfp != vq->kick) { 2201 pollstop = (filep = vq->kick) != NULL; 2202 pollstart = (vq->kick = eventfp) != NULL; 2203 } else 2204 filep = eventfp; 2205 break; 2206 case VHOST_SET_VRING_CALL: 2207 if (copy_from_user(&f, argp, sizeof f)) { 2208 r = -EFAULT; 2209 break; 2210 } 2211 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2212 if (IS_ERR(ctx)) { 2213 r = PTR_ERR(ctx); 2214 break; 2215 } 2216 2217 swap(ctx, vq->call_ctx.ctx); 2218 break; 2219 case VHOST_SET_VRING_ERR: 2220 if (copy_from_user(&f, argp, sizeof f)) { 2221 r = -EFAULT; 2222 break; 2223 } 2224 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd); 2225 if (IS_ERR(ctx)) { 2226 r = PTR_ERR(ctx); 2227 break; 2228 } 2229 swap(ctx, vq->error_ctx); 2230 break; 2231 case VHOST_SET_VRING_ENDIAN: 2232 r = vhost_set_vring_endian(vq, argp); 2233 break; 2234 case VHOST_GET_VRING_ENDIAN: 2235 r = vhost_get_vring_endian(vq, idx, argp); 2236 break; 2237 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 2238 if (copy_from_user(&s, argp, sizeof(s))) { 2239 r = -EFAULT; 2240 break; 2241 } 2242 vq->busyloop_timeout = s.num; 2243 break; 2244 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 2245 s.index = idx; 2246 s.num = vq->busyloop_timeout; 2247 if (copy_to_user(argp, &s, sizeof(s))) 2248 r = -EFAULT; 2249 break; 2250 default: 2251 r = -ENOIOCTLCMD; 2252 } 2253 2254 if (pollstop && vq->handle_kick) 2255 vhost_poll_stop(&vq->poll); 2256 2257 if (!IS_ERR_OR_NULL(ctx)) 2258 eventfd_ctx_put(ctx); 2259 if (filep) 2260 fput(filep); 2261 2262 if (pollstart && vq->handle_kick) 2263 r = vhost_poll_start(&vq->poll, vq->kick); 2264 2265 mutex_unlock(&vq->mutex); 2266 2267 if (pollstop && vq->handle_kick) 2268 vhost_dev_flush(vq->poll.dev); 2269 return r; 2270 } 2271 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 2272 2273 int vhost_init_device_iotlb(struct vhost_dev *d) 2274 { 2275 struct vhost_iotlb *niotlb, *oiotlb; 2276 int i; 2277 2278 niotlb = iotlb_alloc(); 2279 if (!niotlb) 2280 return -ENOMEM; 2281 2282 oiotlb = d->iotlb; 2283 d->iotlb = niotlb; 2284 2285 for (i = 0; i < d->nvqs; ++i) { 2286 struct vhost_virtqueue *vq = d->vqs[i]; 2287 2288 mutex_lock(&vq->mutex); 2289 vq->iotlb = niotlb; 2290 __vhost_vq_meta_reset(vq); 2291 mutex_unlock(&vq->mutex); 2292 } 2293 2294 vhost_iotlb_free(oiotlb); 2295 2296 return 0; 2297 } 2298 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 2299 2300 /* Caller must have device mutex */ 2301 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 2302 { 2303 struct eventfd_ctx *ctx; 2304 u64 p; 2305 long r; 2306 int i, fd; 2307 2308 /* If you are not the owner, you can become one */ 2309 if (ioctl == VHOST_SET_OWNER) { 2310 r = vhost_dev_set_owner(d); 2311 goto done; 2312 } 2313 2314 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL 2315 if (ioctl == VHOST_SET_FORK_FROM_OWNER) { 2316 /* Only allow modification before owner is set */ 2317 if (vhost_dev_has_owner(d)) { 2318 r = -EBUSY; 2319 goto done; 2320 } 2321 u8 fork_owner_val; 2322 2323 if (get_user(fork_owner_val, (u8 __user *)argp)) { 2324 r = -EFAULT; 2325 goto done; 2326 } 2327 if (fork_owner_val != VHOST_FORK_OWNER_TASK && 2328 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) { 2329 r = -EINVAL; 2330 goto done; 2331 } 2332 d->fork_owner = !!fork_owner_val; 2333 r = 0; 2334 goto done; 2335 } 2336 if (ioctl == VHOST_GET_FORK_FROM_OWNER) { 2337 u8 fork_owner_val = d->fork_owner; 2338 2339 if (fork_owner_val != VHOST_FORK_OWNER_TASK && 2340 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) { 2341 r = -EINVAL; 2342 goto done; 2343 } 2344 if (put_user(fork_owner_val, (u8 __user *)argp)) { 2345 r = -EFAULT; 2346 goto done; 2347 } 2348 r = 0; 2349 goto done; 2350 } 2351 #endif 2352 2353 /* You must be the owner to do anything else */ 2354 r = vhost_dev_check_owner(d); 2355 if (r) 2356 goto done; 2357 2358 switch (ioctl) { 2359 case VHOST_SET_MEM_TABLE: 2360 r = vhost_set_memory(d, argp); 2361 break; 2362 case VHOST_SET_LOG_BASE: 2363 if (copy_from_user(&p, argp, sizeof p)) { 2364 r = -EFAULT; 2365 break; 2366 } 2367 if ((u64)(unsigned long)p != p) { 2368 r = -EFAULT; 2369 break; 2370 } 2371 for (i = 0; i < d->nvqs; ++i) { 2372 struct vhost_virtqueue *vq; 2373 void __user *base = (void __user *)(unsigned long)p; 2374 vq = d->vqs[i]; 2375 mutex_lock(&vq->mutex); 2376 /* If ring is inactive, will check when it's enabled. */ 2377 if (vq->private_data && !vq_log_access_ok(vq, base)) 2378 r = -EFAULT; 2379 else 2380 vq->log_base = base; 2381 mutex_unlock(&vq->mutex); 2382 } 2383 break; 2384 case VHOST_SET_LOG_FD: 2385 r = get_user(fd, (int __user *)argp); 2386 if (r < 0) 2387 break; 2388 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd); 2389 if (IS_ERR(ctx)) { 2390 r = PTR_ERR(ctx); 2391 break; 2392 } 2393 swap(ctx, d->log_ctx); 2394 for (i = 0; i < d->nvqs; ++i) { 2395 mutex_lock(&d->vqs[i]->mutex); 2396 d->vqs[i]->log_ctx = d->log_ctx; 2397 mutex_unlock(&d->vqs[i]->mutex); 2398 } 2399 if (ctx) 2400 eventfd_ctx_put(ctx); 2401 break; 2402 default: 2403 r = -ENOIOCTLCMD; 2404 break; 2405 } 2406 done: 2407 return r; 2408 } 2409 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 2410 2411 /* TODO: This is really inefficient. We need something like get_user() 2412 * (instruction directly accesses the data, with an exception table entry 2413 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst. 2414 */ 2415 static int set_bit_to_user(int nr, void __user *addr) 2416 { 2417 unsigned long log = (unsigned long)addr; 2418 struct page *page; 2419 void *base; 2420 int bit = nr + (log % PAGE_SIZE) * 8; 2421 int r; 2422 2423 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page); 2424 if (r < 0) 2425 return r; 2426 BUG_ON(r != 1); 2427 base = kmap_atomic(page); 2428 set_bit(bit, base); 2429 kunmap_atomic(base); 2430 unpin_user_pages_dirty_lock(&page, 1, true); 2431 return 0; 2432 } 2433 2434 static int log_write(void __user *log_base, 2435 u64 write_address, u64 write_length) 2436 { 2437 u64 write_page = write_address / VHOST_PAGE_SIZE; 2438 int r; 2439 2440 if (!write_length) 2441 return 0; 2442 write_length += write_address % VHOST_PAGE_SIZE; 2443 for (;;) { 2444 u64 base = (u64)(unsigned long)log_base; 2445 u64 log = base + write_page / 8; 2446 int bit = write_page % 8; 2447 if ((u64)(unsigned long)log != log) 2448 return -EFAULT; 2449 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 2450 if (r < 0) 2451 return r; 2452 if (write_length <= VHOST_PAGE_SIZE) 2453 break; 2454 write_length -= VHOST_PAGE_SIZE; 2455 write_page += 1; 2456 } 2457 return r; 2458 } 2459 2460 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len) 2461 { 2462 struct vhost_iotlb *umem = vq->umem; 2463 struct vhost_iotlb_map *u; 2464 u64 start, end, l, min; 2465 int r; 2466 bool hit = false; 2467 2468 while (len) { 2469 min = len; 2470 /* More than one GPAs can be mapped into a single HVA. So 2471 * iterate all possible umems here to be safe. 2472 */ 2473 list_for_each_entry(u, &umem->list, link) { 2474 if (u->addr > hva - 1 + len || 2475 u->addr - 1 + u->size < hva) 2476 continue; 2477 start = max(u->addr, hva); 2478 end = min(u->addr - 1 + u->size, hva - 1 + len); 2479 l = end - start + 1; 2480 r = log_write(vq->log_base, 2481 u->start + start - u->addr, 2482 l); 2483 if (r < 0) 2484 return r; 2485 hit = true; 2486 min = min(l, min); 2487 } 2488 2489 if (!hit) 2490 return -EFAULT; 2491 2492 len -= min; 2493 hva += min; 2494 } 2495 2496 return 0; 2497 } 2498 2499 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len) 2500 { 2501 struct iovec *iov = vq->log_iov; 2502 int i, ret; 2503 2504 if (!vq->iotlb) 2505 return log_write(vq->log_base, vq->log_addr + used_offset, len); 2506 2507 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset, 2508 len, iov, 64, VHOST_ACCESS_WO); 2509 if (ret < 0) 2510 return ret; 2511 2512 for (i = 0; i < ret; i++) { 2513 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2514 iov[i].iov_len); 2515 if (ret) 2516 return ret; 2517 } 2518 2519 return 0; 2520 } 2521 2522 /* 2523 * vhost_log_write() - Log in dirty page bitmap 2524 * @vq: vhost virtqueue. 2525 * @log: Array of dirty memory in GPA. 2526 * @log_num: Size of vhost_log arrary. 2527 * @len: The total length of memory buffer to log in the dirty bitmap. 2528 * Some drivers may only partially use pages shared via the last 2529 * vring descriptor (i.e. vhost-net RX buffer). 2530 * Use (len == U64_MAX) to indicate the driver would log all 2531 * pages of vring descriptors. 2532 * @iov: Array of dirty memory in HVA. 2533 * @count: Size of iovec array. 2534 */ 2535 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 2536 unsigned int log_num, u64 len, struct iovec *iov, int count) 2537 { 2538 int i, r; 2539 2540 /* Make sure data written is seen before log. */ 2541 smp_wmb(); 2542 2543 if (vq->iotlb) { 2544 for (i = 0; i < count; i++) { 2545 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base, 2546 iov[i].iov_len); 2547 if (r < 0) 2548 return r; 2549 } 2550 return 0; 2551 } 2552 2553 for (i = 0; i < log_num; ++i) { 2554 u64 l = min(log[i].len, len); 2555 r = log_write(vq->log_base, log[i].addr, l); 2556 if (r < 0) 2557 return r; 2558 2559 if (len != U64_MAX) 2560 len -= l; 2561 } 2562 2563 if (vq->log_ctx) 2564 eventfd_signal(vq->log_ctx); 2565 2566 return 0; 2567 } 2568 EXPORT_SYMBOL_GPL(vhost_log_write); 2569 2570 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 2571 { 2572 void __user *used; 2573 if (vhost_put_used_flags(vq)) 2574 return -EFAULT; 2575 if (unlikely(vq->log_used)) { 2576 /* Make sure the flag is seen before log. */ 2577 smp_wmb(); 2578 /* Log used flag write. */ 2579 used = &vq->used->flags; 2580 log_used(vq, (used - (void __user *)vq->used), 2581 sizeof vq->used->flags); 2582 if (vq->log_ctx) 2583 eventfd_signal(vq->log_ctx); 2584 } 2585 return 0; 2586 } 2587 2588 static int vhost_update_avail_event(struct vhost_virtqueue *vq) 2589 { 2590 if (vhost_put_avail_event(vq)) 2591 return -EFAULT; 2592 if (unlikely(vq->log_used)) { 2593 void __user *used; 2594 /* Make sure the event is seen before log. */ 2595 smp_wmb(); 2596 /* Log avail event write */ 2597 used = vhost_avail_event(vq); 2598 log_used(vq, (used - (void __user *)vq->used), 2599 sizeof *vhost_avail_event(vq)); 2600 if (vq->log_ctx) 2601 eventfd_signal(vq->log_ctx); 2602 } 2603 return 0; 2604 } 2605 2606 int vhost_vq_init_access(struct vhost_virtqueue *vq) 2607 { 2608 __virtio16 last_used_idx; 2609 int r; 2610 bool is_le = vq->is_le; 2611 2612 if (!vq->private_data) 2613 return 0; 2614 2615 vhost_init_is_le(vq); 2616 2617 r = vhost_update_used_flags(vq); 2618 if (r) 2619 goto err; 2620 vq->signalled_used_valid = false; 2621 if (!vq->iotlb && 2622 !access_ok(&vq->used->idx, sizeof vq->used->idx)) { 2623 r = -EFAULT; 2624 goto err; 2625 } 2626 r = vhost_get_used_idx(vq, &last_used_idx); 2627 if (r) { 2628 vq_err(vq, "Can't access used idx at %p\n", 2629 &vq->used->idx); 2630 goto err; 2631 } 2632 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 2633 return 0; 2634 2635 err: 2636 vq->is_le = is_le; 2637 return r; 2638 } 2639 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 2640 2641 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 2642 struct iovec iov[], int iov_size, int access) 2643 { 2644 const struct vhost_iotlb_map *map; 2645 struct vhost_dev *dev = vq->dev; 2646 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem; 2647 struct iovec *_iov; 2648 u64 s = 0, last = addr + len - 1; 2649 int ret = 0; 2650 2651 while ((u64)len > s) { 2652 u64 size; 2653 if (unlikely(ret >= iov_size)) { 2654 ret = -ENOBUFS; 2655 break; 2656 } 2657 2658 map = vhost_iotlb_itree_first(umem, addr, last); 2659 if (map == NULL || map->start > addr) { 2660 if (umem != dev->iotlb) { 2661 ret = -EFAULT; 2662 break; 2663 } 2664 ret = -EAGAIN; 2665 break; 2666 } else if (!(map->perm & access)) { 2667 ret = -EPERM; 2668 break; 2669 } 2670 2671 _iov = iov + ret; 2672 size = map->size - addr + map->start; 2673 _iov->iov_len = min((u64)len - s, size); 2674 _iov->iov_base = (void __user *)(unsigned long) 2675 (map->addr + addr - map->start); 2676 s += size; 2677 addr += size; 2678 ++ret; 2679 } 2680 2681 if (ret == -EAGAIN) 2682 vhost_iotlb_miss(vq, addr, access); 2683 return ret; 2684 } 2685 2686 /* Each buffer in the virtqueues is actually a chain of descriptors. This 2687 * function returns the next descriptor in the chain, 2688 * or -1U if we're at the end. */ 2689 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 2690 { 2691 unsigned int next; 2692 2693 /* If this descriptor says it doesn't chain, we're done. */ 2694 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 2695 return -1U; 2696 2697 /* Check they're not leading us off end of descriptors. */ 2698 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 2699 return next; 2700 } 2701 2702 static int get_indirect(struct vhost_virtqueue *vq, 2703 struct iovec iov[], unsigned int iov_size, 2704 unsigned int *out_num, unsigned int *in_num, 2705 struct vhost_log *log, unsigned int *log_num, 2706 struct vring_desc *indirect) 2707 { 2708 struct vring_desc desc; 2709 unsigned int i = 0, count, found = 0; 2710 u32 len = vhost32_to_cpu(vq, indirect->len); 2711 struct iov_iter from; 2712 int ret, access; 2713 2714 /* Sanity check */ 2715 if (unlikely(len % sizeof desc)) { 2716 vq_err(vq, "Invalid length in indirect descriptor: " 2717 "len 0x%llx not multiple of 0x%zx\n", 2718 (unsigned long long)len, 2719 sizeof desc); 2720 return -EINVAL; 2721 } 2722 2723 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 2724 UIO_MAXIOV, VHOST_ACCESS_RO); 2725 if (unlikely(ret < 0)) { 2726 if (ret != -EAGAIN) 2727 vq_err(vq, "Translation failure %d in indirect.\n", ret); 2728 return ret; 2729 } 2730 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len); 2731 count = len / sizeof desc; 2732 /* Buffers are chained via a 16 bit next field, so 2733 * we can have at most 2^16 of these. */ 2734 if (unlikely(count > USHRT_MAX + 1)) { 2735 vq_err(vq, "Indirect buffer length too big: %d\n", 2736 indirect->len); 2737 return -E2BIG; 2738 } 2739 2740 do { 2741 unsigned iov_count = *in_num + *out_num; 2742 if (unlikely(++found > count)) { 2743 vq_err(vq, "Loop detected: last one at %u " 2744 "indirect size %u\n", 2745 i, count); 2746 return -EINVAL; 2747 } 2748 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 2749 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 2750 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2751 return -EINVAL; 2752 } 2753 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 2754 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 2755 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 2756 return -EINVAL; 2757 } 2758 2759 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2760 access = VHOST_ACCESS_WO; 2761 else 2762 access = VHOST_ACCESS_RO; 2763 2764 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2765 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2766 iov_size - iov_count, access); 2767 if (unlikely(ret < 0)) { 2768 if (ret != -EAGAIN) 2769 vq_err(vq, "Translation failure %d indirect idx %d\n", 2770 ret, i); 2771 return ret; 2772 } 2773 /* If this is an input descriptor, increment that count. */ 2774 if (access == VHOST_ACCESS_WO) { 2775 *in_num += ret; 2776 if (unlikely(log && ret)) { 2777 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2778 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2779 ++*log_num; 2780 } 2781 } else { 2782 /* If it's an output descriptor, they're all supposed 2783 * to come before any input descriptors. */ 2784 if (unlikely(*in_num)) { 2785 vq_err(vq, "Indirect descriptor " 2786 "has out after in: idx %d\n", i); 2787 return -EINVAL; 2788 } 2789 *out_num += ret; 2790 } 2791 } while ((i = next_desc(vq, &desc)) != -1); 2792 return 0; 2793 } 2794 2795 /* This looks in the virtqueue and for the first available buffer, and converts 2796 * it to an iovec for convenient access. Since descriptors consist of some 2797 * number of output then some number of input descriptors, it's actually two 2798 * iovecs, but we pack them into one and note how many of each there were. 2799 * 2800 * This function returns the descriptor number found, or vq->num (which is 2801 * never a valid descriptor number) if none was found. A negative code is 2802 * returned on error. */ 2803 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 2804 struct iovec iov[], unsigned int iov_size, 2805 unsigned int *out_num, unsigned int *in_num, 2806 struct vhost_log *log, unsigned int *log_num) 2807 { 2808 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER); 2809 struct vring_desc desc; 2810 unsigned int i, head, found = 0; 2811 u16 last_avail_idx = vq->last_avail_idx; 2812 __virtio16 ring_head; 2813 int ret, access, c = 0; 2814 2815 if (vq->avail_idx == vq->last_avail_idx) { 2816 ret = vhost_get_avail_idx(vq); 2817 if (unlikely(ret < 0)) 2818 return ret; 2819 2820 if (!ret) 2821 return vq->num; 2822 } 2823 2824 if (in_order) 2825 head = vq->next_avail_head & (vq->num - 1); 2826 else { 2827 /* Grab the next descriptor number they're 2828 * advertising, and increment the index we've seen. */ 2829 if (unlikely(vhost_get_avail_head(vq, &ring_head, 2830 last_avail_idx))) { 2831 vq_err(vq, "Failed to read head: idx %d address %p\n", 2832 last_avail_idx, 2833 &vq->avail->ring[last_avail_idx % vq->num]); 2834 return -EFAULT; 2835 } 2836 head = vhost16_to_cpu(vq, ring_head); 2837 } 2838 2839 /* If their number is silly, that's an error. */ 2840 if (unlikely(head >= vq->num)) { 2841 vq_err(vq, "Guest says index %u > %u is available", 2842 head, vq->num); 2843 return -EINVAL; 2844 } 2845 2846 /* When we start there are none of either input nor output. */ 2847 *out_num = *in_num = 0; 2848 if (unlikely(log)) 2849 *log_num = 0; 2850 2851 i = head; 2852 do { 2853 unsigned iov_count = *in_num + *out_num; 2854 if (unlikely(i >= vq->num)) { 2855 vq_err(vq, "Desc index is %u > %u, head = %u", 2856 i, vq->num, head); 2857 return -EINVAL; 2858 } 2859 if (unlikely(++found > vq->num)) { 2860 vq_err(vq, "Loop detected: last one at %u " 2861 "vq size %u head %u\n", 2862 i, vq->num, head); 2863 return -EINVAL; 2864 } 2865 ret = vhost_get_desc(vq, &desc, i); 2866 if (unlikely(ret)) { 2867 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2868 i, vq->desc + i); 2869 return -EFAULT; 2870 } 2871 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2872 ret = get_indirect(vq, iov, iov_size, 2873 out_num, in_num, 2874 log, log_num, &desc); 2875 if (unlikely(ret < 0)) { 2876 if (ret != -EAGAIN) 2877 vq_err(vq, "Failure detected " 2878 "in indirect descriptor at idx %d\n", i); 2879 return ret; 2880 } 2881 ++c; 2882 continue; 2883 } 2884 2885 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2886 access = VHOST_ACCESS_WO; 2887 else 2888 access = VHOST_ACCESS_RO; 2889 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2890 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2891 iov_size - iov_count, access); 2892 if (unlikely(ret < 0)) { 2893 if (ret != -EAGAIN) 2894 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2895 ret, i); 2896 return ret; 2897 } 2898 if (access == VHOST_ACCESS_WO) { 2899 /* If this is an input descriptor, 2900 * increment that count. */ 2901 *in_num += ret; 2902 if (unlikely(log && ret)) { 2903 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2904 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2905 ++*log_num; 2906 } 2907 } else { 2908 /* If it's an output descriptor, they're all supposed 2909 * to come before any input descriptors. */ 2910 if (unlikely(*in_num)) { 2911 vq_err(vq, "Descriptor has out after in: " 2912 "idx %d\n", i); 2913 return -EINVAL; 2914 } 2915 *out_num += ret; 2916 } 2917 ++c; 2918 } while ((i = next_desc(vq, &desc)) != -1); 2919 2920 /* On success, increment avail index. */ 2921 vq->last_avail_idx++; 2922 vq->next_avail_head += c; 2923 2924 /* Assume notifications from guest are disabled at this point, 2925 * if they aren't we would need to update avail_event index. */ 2926 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2927 return head; 2928 } 2929 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2930 2931 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2932 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2933 { 2934 vq->last_avail_idx -= n; 2935 } 2936 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2937 2938 /* After we've used one of their buffers, we tell them about it. We'll then 2939 * want to notify the guest, using eventfd. */ 2940 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2941 { 2942 struct vring_used_elem heads = { 2943 cpu_to_vhost32(vq, head), 2944 cpu_to_vhost32(vq, len) 2945 }; 2946 u16 nheads = 1; 2947 2948 return vhost_add_used_n(vq, &heads, &nheads, 1); 2949 } 2950 EXPORT_SYMBOL_GPL(vhost_add_used); 2951 2952 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2953 struct vring_used_elem *heads, 2954 unsigned count) 2955 { 2956 vring_used_elem_t __user *used; 2957 u16 old, new; 2958 int start; 2959 2960 start = vq->last_used_idx & (vq->num - 1); 2961 used = vq->used->ring + start; 2962 if (vhost_put_used(vq, heads, start, count)) { 2963 vq_err(vq, "Failed to write used"); 2964 return -EFAULT; 2965 } 2966 if (unlikely(vq->log_used)) { 2967 /* Make sure data is seen before log. */ 2968 smp_wmb(); 2969 /* Log used ring entry write. */ 2970 log_used(vq, ((void __user *)used - (void __user *)vq->used), 2971 count * sizeof *used); 2972 } 2973 old = vq->last_used_idx; 2974 new = (vq->last_used_idx += count); 2975 /* If the driver never bothers to signal in a very long while, 2976 * used index might wrap around. If that happens, invalidate 2977 * signalled_used index we stored. TODO: make sure driver 2978 * signals at least once in 2^16 and remove this. */ 2979 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2980 vq->signalled_used_valid = false; 2981 return 0; 2982 } 2983 2984 static int vhost_add_used_n_ooo(struct vhost_virtqueue *vq, 2985 struct vring_used_elem *heads, 2986 unsigned count) 2987 { 2988 int start, n, r; 2989 2990 start = vq->last_used_idx & (vq->num - 1); 2991 n = vq->num - start; 2992 if (n < count) { 2993 r = __vhost_add_used_n(vq, heads, n); 2994 if (r < 0) 2995 return r; 2996 heads += n; 2997 count -= n; 2998 } 2999 return __vhost_add_used_n(vq, heads, count); 3000 } 3001 3002 static int vhost_add_used_n_in_order(struct vhost_virtqueue *vq, 3003 struct vring_used_elem *heads, 3004 const u16 *nheads, 3005 unsigned count) 3006 { 3007 vring_used_elem_t __user *used; 3008 u16 old, new = vq->last_used_idx; 3009 int start, i; 3010 3011 if (!nheads) 3012 return -EINVAL; 3013 3014 start = vq->last_used_idx & (vq->num - 1); 3015 used = vq->used->ring + start; 3016 3017 for (i = 0; i < count; i++) { 3018 if (vhost_put_used(vq, &heads[i], start, 1)) { 3019 vq_err(vq, "Failed to write used"); 3020 return -EFAULT; 3021 } 3022 start += nheads[i]; 3023 new += nheads[i]; 3024 if (start >= vq->num) 3025 start -= vq->num; 3026 } 3027 3028 if (unlikely(vq->log_used)) { 3029 /* Make sure data is seen before log. */ 3030 smp_wmb(); 3031 /* Log used ring entry write. */ 3032 log_used(vq, ((void __user *)used - (void __user *)vq->used), 3033 (vq->num - start) * sizeof *used); 3034 if (start + count > vq->num) 3035 log_used(vq, 0, 3036 (start + count - vq->num) * sizeof *used); 3037 } 3038 3039 old = vq->last_used_idx; 3040 vq->last_used_idx = new; 3041 /* If the driver never bothers to signal in a very long while, 3042 * used index might wrap around. If that happens, invalidate 3043 * signalled_used index we stored. TODO: make sure driver 3044 * signals at least once in 2^16 and remove this. */ 3045 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 3046 vq->signalled_used_valid = false; 3047 return 0; 3048 } 3049 3050 /* After we've used one of their buffers, we tell them about it. We'll then 3051 * want to notify the guest, using eventfd. */ 3052 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 3053 u16 *nheads, unsigned count) 3054 { 3055 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER); 3056 int r; 3057 3058 if (!in_order || !nheads) 3059 r = vhost_add_used_n_ooo(vq, heads, count); 3060 else 3061 r = vhost_add_used_n_in_order(vq, heads, nheads, count); 3062 3063 if (r < 0) 3064 return r; 3065 3066 /* Make sure buffer is written before we update index. */ 3067 smp_wmb(); 3068 if (vhost_put_used_idx(vq)) { 3069 vq_err(vq, "Failed to increment used idx"); 3070 return -EFAULT; 3071 } 3072 if (unlikely(vq->log_used)) { 3073 /* Make sure used idx is seen before log. */ 3074 smp_wmb(); 3075 /* Log used index update. */ 3076 log_used(vq, offsetof(struct vring_used, idx), 3077 sizeof vq->used->idx); 3078 if (vq->log_ctx) 3079 eventfd_signal(vq->log_ctx); 3080 } 3081 return r; 3082 } 3083 EXPORT_SYMBOL_GPL(vhost_add_used_n); 3084 3085 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3086 { 3087 __u16 old, new; 3088 __virtio16 event; 3089 bool v; 3090 /* Flush out used index updates. This is paired 3091 * with the barrier that the Guest executes when enabling 3092 * interrupts. */ 3093 smp_mb(); 3094 3095 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 3096 unlikely(vq->avail_idx == vq->last_avail_idx)) 3097 return true; 3098 3099 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 3100 __virtio16 flags; 3101 if (vhost_get_avail_flags(vq, &flags)) { 3102 vq_err(vq, "Failed to get flags"); 3103 return true; 3104 } 3105 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 3106 } 3107 old = vq->signalled_used; 3108 v = vq->signalled_used_valid; 3109 new = vq->signalled_used = vq->last_used_idx; 3110 vq->signalled_used_valid = true; 3111 3112 if (unlikely(!v)) 3113 return true; 3114 3115 if (vhost_get_used_event(vq, &event)) { 3116 vq_err(vq, "Failed to get used event idx"); 3117 return true; 3118 } 3119 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 3120 } 3121 3122 /* This actually signals the guest, using eventfd. */ 3123 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3124 { 3125 /* Signal the Guest tell them we used something up. */ 3126 if (vq->call_ctx.ctx && vhost_notify(dev, vq)) 3127 eventfd_signal(vq->call_ctx.ctx); 3128 } 3129 EXPORT_SYMBOL_GPL(vhost_signal); 3130 3131 /* And here's the combo meal deal. Supersize me! */ 3132 void vhost_add_used_and_signal(struct vhost_dev *dev, 3133 struct vhost_virtqueue *vq, 3134 unsigned int head, int len) 3135 { 3136 vhost_add_used(vq, head, len); 3137 vhost_signal(dev, vq); 3138 } 3139 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 3140 3141 /* multi-buffer version of vhost_add_used_and_signal */ 3142 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 3143 struct vhost_virtqueue *vq, 3144 struct vring_used_elem *heads, 3145 u16 *nheads, 3146 unsigned count) 3147 { 3148 vhost_add_used_n(vq, heads, nheads, count); 3149 vhost_signal(dev, vq); 3150 } 3151 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 3152 3153 /* return true if we're sure that available ring is empty */ 3154 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3155 { 3156 int r; 3157 3158 if (vq->avail_idx != vq->last_avail_idx) 3159 return false; 3160 3161 r = vhost_get_avail_idx(vq); 3162 3163 /* Note: we treat error as non-empty here */ 3164 return r == 0; 3165 } 3166 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 3167 3168 /* OK, now we need to know about added descriptors. */ 3169 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3170 { 3171 int r; 3172 3173 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 3174 return false; 3175 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 3176 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 3177 r = vhost_update_used_flags(vq); 3178 if (r) { 3179 vq_err(vq, "Failed to enable notification at %p: %d\n", 3180 &vq->used->flags, r); 3181 return false; 3182 } 3183 } else { 3184 r = vhost_update_avail_event(vq); 3185 if (r) { 3186 vq_err(vq, "Failed to update avail event index at %p: %d\n", 3187 vhost_avail_event(vq), r); 3188 return false; 3189 } 3190 } 3191 /* They could have slipped one in as we were doing that: make 3192 * sure it's written, then check again. */ 3193 smp_mb(); 3194 3195 r = vhost_get_avail_idx(vq); 3196 /* Note: we treat error as empty here */ 3197 if (unlikely(r < 0)) 3198 return false; 3199 3200 return r; 3201 } 3202 EXPORT_SYMBOL_GPL(vhost_enable_notify); 3203 3204 /* We don't need to be notified again. */ 3205 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 3206 { 3207 int r; 3208 3209 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 3210 return; 3211 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 3212 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 3213 r = vhost_update_used_flags(vq); 3214 if (r) 3215 vq_err(vq, "Failed to disable notification at %p: %d\n", 3216 &vq->used->flags, r); 3217 } 3218 } 3219 EXPORT_SYMBOL_GPL(vhost_disable_notify); 3220 3221 /* Create a new message. */ 3222 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 3223 { 3224 /* Make sure all padding within the structure is initialized. */ 3225 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL); 3226 if (!node) 3227 return NULL; 3228 3229 node->vq = vq; 3230 node->msg.type = type; 3231 return node; 3232 } 3233 EXPORT_SYMBOL_GPL(vhost_new_msg); 3234 3235 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 3236 struct vhost_msg_node *node) 3237 { 3238 spin_lock(&dev->iotlb_lock); 3239 list_add_tail(&node->node, head); 3240 spin_unlock(&dev->iotlb_lock); 3241 3242 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 3243 } 3244 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 3245 3246 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 3247 struct list_head *head) 3248 { 3249 struct vhost_msg_node *node = NULL; 3250 3251 spin_lock(&dev->iotlb_lock); 3252 if (!list_empty(head)) { 3253 node = list_first_entry(head, struct vhost_msg_node, 3254 node); 3255 list_del(&node->node); 3256 } 3257 spin_unlock(&dev->iotlb_lock); 3258 3259 return node; 3260 } 3261 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 3262 3263 void vhost_set_backend_features(struct vhost_dev *dev, u64 features) 3264 { 3265 struct vhost_virtqueue *vq; 3266 int i; 3267 3268 mutex_lock(&dev->mutex); 3269 for (i = 0; i < dev->nvqs; ++i) { 3270 vq = dev->vqs[i]; 3271 mutex_lock(&vq->mutex); 3272 vq->acked_backend_features = features; 3273 mutex_unlock(&vq->mutex); 3274 } 3275 mutex_unlock(&dev->mutex); 3276 } 3277 EXPORT_SYMBOL_GPL(vhost_set_backend_features); 3278 3279 static int __init vhost_init(void) 3280 { 3281 return 0; 3282 } 3283 3284 static void __exit vhost_exit(void) 3285 { 3286 } 3287 3288 module_init(vhost_init); 3289 module_exit(vhost_exit); 3290 3291 MODULE_VERSION("0.0.1"); 3292 MODULE_LICENSE("GPL v2"); 3293 MODULE_AUTHOR("Michael S. Tsirkin"); 3294 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 3295