1 /* 2 * VFIO PCI interrupt handling 3 * 4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 5 * Author: Alex Williamson <alex.williamson@redhat.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * Derived from original vfio: 12 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 13 * Author: Tom Lyon, pugs@cisco.com 14 */ 15 16 #include <linux/device.h> 17 #include <linux/interrupt.h> 18 #include <linux/eventfd.h> 19 #include <linux/msi.h> 20 #include <linux/pci.h> 21 #include <linux/file.h> 22 #include <linux/vfio.h> 23 #include <linux/wait.h> 24 #include <linux/slab.h> 25 26 #include "vfio_pci_private.h" 27 28 /* 29 * INTx 30 */ 31 static void vfio_send_intx_eventfd(void *opaque, void *unused) 32 { 33 struct vfio_pci_device *vdev = opaque; 34 35 if (likely(is_intx(vdev) && !vdev->virq_disabled)) 36 eventfd_signal(vdev->ctx[0].trigger, 1); 37 } 38 39 void vfio_pci_intx_mask(struct vfio_pci_device *vdev) 40 { 41 struct pci_dev *pdev = vdev->pdev; 42 unsigned long flags; 43 44 spin_lock_irqsave(&vdev->irqlock, flags); 45 46 /* 47 * Masking can come from interrupt, ioctl, or config space 48 * via INTx disable. The latter means this can get called 49 * even when not using intx delivery. In this case, just 50 * try to have the physical bit follow the virtual bit. 51 */ 52 if (unlikely(!is_intx(vdev))) { 53 if (vdev->pci_2_3) 54 pci_intx(pdev, 0); 55 } else if (!vdev->ctx[0].masked) { 56 /* 57 * Can't use check_and_mask here because we always want to 58 * mask, not just when something is pending. 59 */ 60 if (vdev->pci_2_3) 61 pci_intx(pdev, 0); 62 else 63 disable_irq_nosync(pdev->irq); 64 65 vdev->ctx[0].masked = true; 66 } 67 68 spin_unlock_irqrestore(&vdev->irqlock, flags); 69 } 70 71 /* 72 * If this is triggered by an eventfd, we can't call eventfd_signal 73 * or else we'll deadlock on the eventfd wait queue. Return >0 when 74 * a signal is necessary, which can then be handled via a work queue 75 * or directly depending on the caller. 76 */ 77 static int vfio_pci_intx_unmask_handler(void *opaque, void *unused) 78 { 79 struct vfio_pci_device *vdev = opaque; 80 struct pci_dev *pdev = vdev->pdev; 81 unsigned long flags; 82 int ret = 0; 83 84 spin_lock_irqsave(&vdev->irqlock, flags); 85 86 /* 87 * Unmasking comes from ioctl or config, so again, have the 88 * physical bit follow the virtual even when not using INTx. 89 */ 90 if (unlikely(!is_intx(vdev))) { 91 if (vdev->pci_2_3) 92 pci_intx(pdev, 1); 93 } else if (vdev->ctx[0].masked && !vdev->virq_disabled) { 94 /* 95 * A pending interrupt here would immediately trigger, 96 * but we can avoid that overhead by just re-sending 97 * the interrupt to the user. 98 */ 99 if (vdev->pci_2_3) { 100 if (!pci_check_and_unmask_intx(pdev)) 101 ret = 1; 102 } else 103 enable_irq(pdev->irq); 104 105 vdev->ctx[0].masked = (ret > 0); 106 } 107 108 spin_unlock_irqrestore(&vdev->irqlock, flags); 109 110 return ret; 111 } 112 113 void vfio_pci_intx_unmask(struct vfio_pci_device *vdev) 114 { 115 if (vfio_pci_intx_unmask_handler(vdev, NULL) > 0) 116 vfio_send_intx_eventfd(vdev, NULL); 117 } 118 119 static irqreturn_t vfio_intx_handler(int irq, void *dev_id) 120 { 121 struct vfio_pci_device *vdev = dev_id; 122 unsigned long flags; 123 int ret = IRQ_NONE; 124 125 spin_lock_irqsave(&vdev->irqlock, flags); 126 127 if (!vdev->pci_2_3) { 128 disable_irq_nosync(vdev->pdev->irq); 129 vdev->ctx[0].masked = true; 130 ret = IRQ_HANDLED; 131 } else if (!vdev->ctx[0].masked && /* may be shared */ 132 pci_check_and_mask_intx(vdev->pdev)) { 133 vdev->ctx[0].masked = true; 134 ret = IRQ_HANDLED; 135 } 136 137 spin_unlock_irqrestore(&vdev->irqlock, flags); 138 139 if (ret == IRQ_HANDLED) 140 vfio_send_intx_eventfd(vdev, NULL); 141 142 return ret; 143 } 144 145 static int vfio_intx_enable(struct vfio_pci_device *vdev) 146 { 147 if (!is_irq_none(vdev)) 148 return -EINVAL; 149 150 if (!vdev->pdev->irq) 151 return -ENODEV; 152 153 vdev->ctx = kzalloc(sizeof(struct vfio_pci_irq_ctx), GFP_KERNEL); 154 if (!vdev->ctx) 155 return -ENOMEM; 156 157 vdev->num_ctx = 1; 158 159 /* 160 * If the virtual interrupt is masked, restore it. Devices 161 * supporting DisINTx can be masked at the hardware level 162 * here, non-PCI-2.3 devices will have to wait until the 163 * interrupt is enabled. 164 */ 165 vdev->ctx[0].masked = vdev->virq_disabled; 166 if (vdev->pci_2_3) 167 pci_intx(vdev->pdev, !vdev->ctx[0].masked); 168 169 vdev->irq_type = VFIO_PCI_INTX_IRQ_INDEX; 170 171 return 0; 172 } 173 174 static int vfio_intx_set_signal(struct vfio_pci_device *vdev, int fd) 175 { 176 struct pci_dev *pdev = vdev->pdev; 177 unsigned long irqflags = IRQF_SHARED; 178 struct eventfd_ctx *trigger; 179 unsigned long flags; 180 int ret; 181 182 if (vdev->ctx[0].trigger) { 183 free_irq(pdev->irq, vdev); 184 kfree(vdev->ctx[0].name); 185 eventfd_ctx_put(vdev->ctx[0].trigger); 186 vdev->ctx[0].trigger = NULL; 187 } 188 189 if (fd < 0) /* Disable only */ 190 return 0; 191 192 vdev->ctx[0].name = kasprintf(GFP_KERNEL, "vfio-intx(%s)", 193 pci_name(pdev)); 194 if (!vdev->ctx[0].name) 195 return -ENOMEM; 196 197 trigger = eventfd_ctx_fdget(fd); 198 if (IS_ERR(trigger)) { 199 kfree(vdev->ctx[0].name); 200 return PTR_ERR(trigger); 201 } 202 203 vdev->ctx[0].trigger = trigger; 204 205 if (!vdev->pci_2_3) 206 irqflags = 0; 207 208 ret = request_irq(pdev->irq, vfio_intx_handler, 209 irqflags, vdev->ctx[0].name, vdev); 210 if (ret) { 211 vdev->ctx[0].trigger = NULL; 212 kfree(vdev->ctx[0].name); 213 eventfd_ctx_put(trigger); 214 return ret; 215 } 216 217 /* 218 * INTx disable will stick across the new irq setup, 219 * disable_irq won't. 220 */ 221 spin_lock_irqsave(&vdev->irqlock, flags); 222 if (!vdev->pci_2_3 && vdev->ctx[0].masked) 223 disable_irq_nosync(pdev->irq); 224 spin_unlock_irqrestore(&vdev->irqlock, flags); 225 226 return 0; 227 } 228 229 static void vfio_intx_disable(struct vfio_pci_device *vdev) 230 { 231 vfio_virqfd_disable(&vdev->ctx[0].unmask); 232 vfio_virqfd_disable(&vdev->ctx[0].mask); 233 vfio_intx_set_signal(vdev, -1); 234 vdev->irq_type = VFIO_PCI_NUM_IRQS; 235 vdev->num_ctx = 0; 236 kfree(vdev->ctx); 237 } 238 239 /* 240 * MSI/MSI-X 241 */ 242 static irqreturn_t vfio_msihandler(int irq, void *arg) 243 { 244 struct eventfd_ctx *trigger = arg; 245 246 eventfd_signal(trigger, 1); 247 return IRQ_HANDLED; 248 } 249 250 static int vfio_msi_enable(struct vfio_pci_device *vdev, int nvec, bool msix) 251 { 252 struct pci_dev *pdev = vdev->pdev; 253 unsigned int flag = msix ? PCI_IRQ_MSIX : PCI_IRQ_MSI; 254 int ret; 255 256 if (!is_irq_none(vdev)) 257 return -EINVAL; 258 259 vdev->ctx = kcalloc(nvec, sizeof(struct vfio_pci_irq_ctx), GFP_KERNEL); 260 if (!vdev->ctx) 261 return -ENOMEM; 262 263 /* return the number of supported vectors if we can't get all: */ 264 ret = pci_alloc_irq_vectors(pdev, 1, nvec, flag); 265 if (ret < nvec) { 266 if (ret > 0) 267 pci_free_irq_vectors(pdev); 268 kfree(vdev->ctx); 269 return ret; 270 } 271 272 vdev->num_ctx = nvec; 273 vdev->irq_type = msix ? VFIO_PCI_MSIX_IRQ_INDEX : 274 VFIO_PCI_MSI_IRQ_INDEX; 275 276 if (!msix) { 277 /* 278 * Compute the virtual hardware field for max msi vectors - 279 * it is the log base 2 of the number of vectors. 280 */ 281 vdev->msi_qmax = fls(nvec * 2 - 1) - 1; 282 } 283 284 return 0; 285 } 286 287 static int vfio_msi_set_vector_signal(struct vfio_pci_device *vdev, 288 int vector, int fd, bool msix) 289 { 290 struct pci_dev *pdev = vdev->pdev; 291 struct eventfd_ctx *trigger; 292 int irq, ret; 293 294 if (vector < 0 || vector >= vdev->num_ctx) 295 return -EINVAL; 296 297 irq = pci_irq_vector(pdev, vector); 298 299 if (vdev->ctx[vector].trigger) { 300 free_irq(irq, vdev->ctx[vector].trigger); 301 irq_bypass_unregister_producer(&vdev->ctx[vector].producer); 302 kfree(vdev->ctx[vector].name); 303 eventfd_ctx_put(vdev->ctx[vector].trigger); 304 vdev->ctx[vector].trigger = NULL; 305 } 306 307 if (fd < 0) 308 return 0; 309 310 vdev->ctx[vector].name = kasprintf(GFP_KERNEL, "vfio-msi%s[%d](%s)", 311 msix ? "x" : "", vector, 312 pci_name(pdev)); 313 if (!vdev->ctx[vector].name) 314 return -ENOMEM; 315 316 trigger = eventfd_ctx_fdget(fd); 317 if (IS_ERR(trigger)) { 318 kfree(vdev->ctx[vector].name); 319 return PTR_ERR(trigger); 320 } 321 322 /* 323 * The MSIx vector table resides in device memory which may be cleared 324 * via backdoor resets. We don't allow direct access to the vector 325 * table so even if a userspace driver attempts to save/restore around 326 * such a reset it would be unsuccessful. To avoid this, restore the 327 * cached value of the message prior to enabling. 328 */ 329 if (msix) { 330 struct msi_msg msg; 331 332 get_cached_msi_msg(irq, &msg); 333 pci_write_msi_msg(irq, &msg); 334 } 335 336 ret = request_irq(irq, vfio_msihandler, 0, 337 vdev->ctx[vector].name, trigger); 338 if (ret) { 339 kfree(vdev->ctx[vector].name); 340 eventfd_ctx_put(trigger); 341 return ret; 342 } 343 344 vdev->ctx[vector].producer.token = trigger; 345 vdev->ctx[vector].producer.irq = irq; 346 ret = irq_bypass_register_producer(&vdev->ctx[vector].producer); 347 if (unlikely(ret)) 348 dev_info(&pdev->dev, 349 "irq bypass producer (token %p) registration fails: %d\n", 350 vdev->ctx[vector].producer.token, ret); 351 352 vdev->ctx[vector].trigger = trigger; 353 354 return 0; 355 } 356 357 static int vfio_msi_set_block(struct vfio_pci_device *vdev, unsigned start, 358 unsigned count, int32_t *fds, bool msix) 359 { 360 int i, j, ret = 0; 361 362 if (start >= vdev->num_ctx || start + count > vdev->num_ctx) 363 return -EINVAL; 364 365 for (i = 0, j = start; i < count && !ret; i++, j++) { 366 int fd = fds ? fds[i] : -1; 367 ret = vfio_msi_set_vector_signal(vdev, j, fd, msix); 368 } 369 370 if (ret) { 371 for (--j; j >= (int)start; j--) 372 vfio_msi_set_vector_signal(vdev, j, -1, msix); 373 } 374 375 return ret; 376 } 377 378 static void vfio_msi_disable(struct vfio_pci_device *vdev, bool msix) 379 { 380 struct pci_dev *pdev = vdev->pdev; 381 int i; 382 383 for (i = 0; i < vdev->num_ctx; i++) { 384 vfio_virqfd_disable(&vdev->ctx[i].unmask); 385 vfio_virqfd_disable(&vdev->ctx[i].mask); 386 } 387 388 vfio_msi_set_block(vdev, 0, vdev->num_ctx, NULL, msix); 389 390 pci_free_irq_vectors(pdev); 391 392 /* 393 * Both disable paths above use pci_intx_for_msi() to clear DisINTx 394 * via their shutdown paths. Restore for NoINTx devices. 395 */ 396 if (vdev->nointx) 397 pci_intx(pdev, 0); 398 399 vdev->irq_type = VFIO_PCI_NUM_IRQS; 400 vdev->num_ctx = 0; 401 kfree(vdev->ctx); 402 } 403 404 /* 405 * IOCTL support 406 */ 407 static int vfio_pci_set_intx_unmask(struct vfio_pci_device *vdev, 408 unsigned index, unsigned start, 409 unsigned count, uint32_t flags, void *data) 410 { 411 if (!is_intx(vdev) || start != 0 || count != 1) 412 return -EINVAL; 413 414 if (flags & VFIO_IRQ_SET_DATA_NONE) { 415 vfio_pci_intx_unmask(vdev); 416 } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { 417 uint8_t unmask = *(uint8_t *)data; 418 if (unmask) 419 vfio_pci_intx_unmask(vdev); 420 } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { 421 int32_t fd = *(int32_t *)data; 422 if (fd >= 0) 423 return vfio_virqfd_enable((void *) vdev, 424 vfio_pci_intx_unmask_handler, 425 vfio_send_intx_eventfd, NULL, 426 &vdev->ctx[0].unmask, fd); 427 428 vfio_virqfd_disable(&vdev->ctx[0].unmask); 429 } 430 431 return 0; 432 } 433 434 static int vfio_pci_set_intx_mask(struct vfio_pci_device *vdev, 435 unsigned index, unsigned start, 436 unsigned count, uint32_t flags, void *data) 437 { 438 if (!is_intx(vdev) || start != 0 || count != 1) 439 return -EINVAL; 440 441 if (flags & VFIO_IRQ_SET_DATA_NONE) { 442 vfio_pci_intx_mask(vdev); 443 } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { 444 uint8_t mask = *(uint8_t *)data; 445 if (mask) 446 vfio_pci_intx_mask(vdev); 447 } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { 448 return -ENOTTY; /* XXX implement me */ 449 } 450 451 return 0; 452 } 453 454 static int vfio_pci_set_intx_trigger(struct vfio_pci_device *vdev, 455 unsigned index, unsigned start, 456 unsigned count, uint32_t flags, void *data) 457 { 458 if (is_intx(vdev) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) { 459 vfio_intx_disable(vdev); 460 return 0; 461 } 462 463 if (!(is_intx(vdev) || is_irq_none(vdev)) || start != 0 || count != 1) 464 return -EINVAL; 465 466 if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { 467 int32_t fd = *(int32_t *)data; 468 int ret; 469 470 if (is_intx(vdev)) 471 return vfio_intx_set_signal(vdev, fd); 472 473 ret = vfio_intx_enable(vdev); 474 if (ret) 475 return ret; 476 477 ret = vfio_intx_set_signal(vdev, fd); 478 if (ret) 479 vfio_intx_disable(vdev); 480 481 return ret; 482 } 483 484 if (!is_intx(vdev)) 485 return -EINVAL; 486 487 if (flags & VFIO_IRQ_SET_DATA_NONE) { 488 vfio_send_intx_eventfd(vdev, NULL); 489 } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { 490 uint8_t trigger = *(uint8_t *)data; 491 if (trigger) 492 vfio_send_intx_eventfd(vdev, NULL); 493 } 494 return 0; 495 } 496 497 static int vfio_pci_set_msi_trigger(struct vfio_pci_device *vdev, 498 unsigned index, unsigned start, 499 unsigned count, uint32_t flags, void *data) 500 { 501 int i; 502 bool msix = (index == VFIO_PCI_MSIX_IRQ_INDEX) ? true : false; 503 504 if (irq_is(vdev, index) && !count && (flags & VFIO_IRQ_SET_DATA_NONE)) { 505 vfio_msi_disable(vdev, msix); 506 return 0; 507 } 508 509 if (!(irq_is(vdev, index) || is_irq_none(vdev))) 510 return -EINVAL; 511 512 if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { 513 int32_t *fds = data; 514 int ret; 515 516 if (vdev->irq_type == index) 517 return vfio_msi_set_block(vdev, start, count, 518 fds, msix); 519 520 ret = vfio_msi_enable(vdev, start + count, msix); 521 if (ret) 522 return ret; 523 524 ret = vfio_msi_set_block(vdev, start, count, fds, msix); 525 if (ret) 526 vfio_msi_disable(vdev, msix); 527 528 return ret; 529 } 530 531 if (!irq_is(vdev, index) || start + count > vdev->num_ctx) 532 return -EINVAL; 533 534 for (i = start; i < start + count; i++) { 535 if (!vdev->ctx[i].trigger) 536 continue; 537 if (flags & VFIO_IRQ_SET_DATA_NONE) { 538 eventfd_signal(vdev->ctx[i].trigger, 1); 539 } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { 540 uint8_t *bools = data; 541 if (bools[i - start]) 542 eventfd_signal(vdev->ctx[i].trigger, 1); 543 } 544 } 545 return 0; 546 } 547 548 static int vfio_pci_set_ctx_trigger_single(struct eventfd_ctx **ctx, 549 unsigned int count, uint32_t flags, 550 void *data) 551 { 552 /* DATA_NONE/DATA_BOOL enables loopback testing */ 553 if (flags & VFIO_IRQ_SET_DATA_NONE) { 554 if (*ctx) { 555 if (count) { 556 eventfd_signal(*ctx, 1); 557 } else { 558 eventfd_ctx_put(*ctx); 559 *ctx = NULL; 560 } 561 return 0; 562 } 563 } else if (flags & VFIO_IRQ_SET_DATA_BOOL) { 564 uint8_t trigger; 565 566 if (!count) 567 return -EINVAL; 568 569 trigger = *(uint8_t *)data; 570 if (trigger && *ctx) 571 eventfd_signal(*ctx, 1); 572 573 return 0; 574 } else if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { 575 int32_t fd; 576 577 if (!count) 578 return -EINVAL; 579 580 fd = *(int32_t *)data; 581 if (fd == -1) { 582 if (*ctx) 583 eventfd_ctx_put(*ctx); 584 *ctx = NULL; 585 } else if (fd >= 0) { 586 struct eventfd_ctx *efdctx; 587 588 efdctx = eventfd_ctx_fdget(fd); 589 if (IS_ERR(efdctx)) 590 return PTR_ERR(efdctx); 591 592 if (*ctx) 593 eventfd_ctx_put(*ctx); 594 595 *ctx = efdctx; 596 } 597 return 0; 598 } 599 600 return -EINVAL; 601 } 602 603 static int vfio_pci_set_err_trigger(struct vfio_pci_device *vdev, 604 unsigned index, unsigned start, 605 unsigned count, uint32_t flags, void *data) 606 { 607 if (index != VFIO_PCI_ERR_IRQ_INDEX || start != 0 || count > 1) 608 return -EINVAL; 609 610 return vfio_pci_set_ctx_trigger_single(&vdev->err_trigger, 611 count, flags, data); 612 } 613 614 static int vfio_pci_set_req_trigger(struct vfio_pci_device *vdev, 615 unsigned index, unsigned start, 616 unsigned count, uint32_t flags, void *data) 617 { 618 if (index != VFIO_PCI_REQ_IRQ_INDEX || start != 0 || count > 1) 619 return -EINVAL; 620 621 return vfio_pci_set_ctx_trigger_single(&vdev->req_trigger, 622 count, flags, data); 623 } 624 625 int vfio_pci_set_irqs_ioctl(struct vfio_pci_device *vdev, uint32_t flags, 626 unsigned index, unsigned start, unsigned count, 627 void *data) 628 { 629 int (*func)(struct vfio_pci_device *vdev, unsigned index, 630 unsigned start, unsigned count, uint32_t flags, 631 void *data) = NULL; 632 633 switch (index) { 634 case VFIO_PCI_INTX_IRQ_INDEX: 635 switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { 636 case VFIO_IRQ_SET_ACTION_MASK: 637 func = vfio_pci_set_intx_mask; 638 break; 639 case VFIO_IRQ_SET_ACTION_UNMASK: 640 func = vfio_pci_set_intx_unmask; 641 break; 642 case VFIO_IRQ_SET_ACTION_TRIGGER: 643 func = vfio_pci_set_intx_trigger; 644 break; 645 } 646 break; 647 case VFIO_PCI_MSI_IRQ_INDEX: 648 case VFIO_PCI_MSIX_IRQ_INDEX: 649 switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { 650 case VFIO_IRQ_SET_ACTION_MASK: 651 case VFIO_IRQ_SET_ACTION_UNMASK: 652 /* XXX Need masking support exported */ 653 break; 654 case VFIO_IRQ_SET_ACTION_TRIGGER: 655 func = vfio_pci_set_msi_trigger; 656 break; 657 } 658 break; 659 case VFIO_PCI_ERR_IRQ_INDEX: 660 switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { 661 case VFIO_IRQ_SET_ACTION_TRIGGER: 662 if (pci_is_pcie(vdev->pdev)) 663 func = vfio_pci_set_err_trigger; 664 break; 665 } 666 break; 667 case VFIO_PCI_REQ_IRQ_INDEX: 668 switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { 669 case VFIO_IRQ_SET_ACTION_TRIGGER: 670 func = vfio_pci_set_req_trigger; 671 break; 672 } 673 break; 674 } 675 676 if (!func) 677 return -ENOTTY; 678 679 return func(vdev, index, start, count, flags, data); 680 } 681