1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 4 * Author: Alex Williamson <alex.williamson@redhat.com> 5 * 6 * Derived from original vfio: 7 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 8 * Author: Tom Lyon, pugs@cisco.com 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/aperture.h> 14 #include <linux/device.h> 15 #include <linux/eventfd.h> 16 #include <linux/file.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/notifier.h> 22 #include <linux/pci.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/types.h> 26 #include <linux/uaccess.h> 27 #include <linux/vgaarb.h> 28 #include <linux/nospec.h> 29 #include <linux/sched/mm.h> 30 #include <linux/iommufd.h> 31 #if IS_ENABLED(CONFIG_EEH) 32 #include <asm/eeh.h> 33 #endif 34 35 #include "vfio_pci_priv.h" 36 37 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" 38 #define DRIVER_DESC "core driver for VFIO based PCI devices" 39 40 static bool nointxmask; 41 static bool disable_vga; 42 static bool disable_idle_d3; 43 44 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */ 45 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex); 46 static LIST_HEAD(vfio_pci_sriov_pfs); 47 48 struct vfio_pci_dummy_resource { 49 struct resource resource; 50 int index; 51 struct list_head res_next; 52 }; 53 54 struct vfio_pci_vf_token { 55 struct mutex lock; 56 uuid_t uuid; 57 int users; 58 }; 59 60 struct vfio_pci_mmap_vma { 61 struct vm_area_struct *vma; 62 struct list_head vma_next; 63 }; 64 65 static inline bool vfio_vga_disabled(void) 66 { 67 #ifdef CONFIG_VFIO_PCI_VGA 68 return disable_vga; 69 #else 70 return true; 71 #endif 72 } 73 74 /* 75 * Our VGA arbiter participation is limited since we don't know anything 76 * about the device itself. However, if the device is the only VGA device 77 * downstream of a bridge and VFIO VGA support is disabled, then we can 78 * safely return legacy VGA IO and memory as not decoded since the user 79 * has no way to get to it and routing can be disabled externally at the 80 * bridge. 81 */ 82 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga) 83 { 84 struct pci_dev *tmp = NULL; 85 unsigned char max_busnr; 86 unsigned int decodes; 87 88 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus)) 89 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 90 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 91 92 max_busnr = pci_bus_max_busnr(pdev->bus); 93 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 94 95 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) { 96 if (tmp == pdev || 97 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) || 98 pci_is_root_bus(tmp->bus)) 99 continue; 100 101 if (tmp->bus->number >= pdev->bus->number && 102 tmp->bus->number <= max_busnr) { 103 pci_dev_put(tmp); 104 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 105 break; 106 } 107 } 108 109 return decodes; 110 } 111 112 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev) 113 { 114 struct resource *res; 115 int i; 116 struct vfio_pci_dummy_resource *dummy_res; 117 118 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 119 int bar = i + PCI_STD_RESOURCES; 120 121 res = &vdev->pdev->resource[bar]; 122 123 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP)) 124 goto no_mmap; 125 126 if (!(res->flags & IORESOURCE_MEM)) 127 goto no_mmap; 128 129 /* 130 * The PCI core shouldn't set up a resource with a 131 * type but zero size. But there may be bugs that 132 * cause us to do that. 133 */ 134 if (!resource_size(res)) 135 goto no_mmap; 136 137 if (resource_size(res) >= PAGE_SIZE) { 138 vdev->bar_mmap_supported[bar] = true; 139 continue; 140 } 141 142 if (!(res->start & ~PAGE_MASK)) { 143 /* 144 * Add a dummy resource to reserve the remainder 145 * of the exclusive page in case that hot-add 146 * device's bar is assigned into it. 147 */ 148 dummy_res = 149 kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT); 150 if (dummy_res == NULL) 151 goto no_mmap; 152 153 dummy_res->resource.name = "vfio sub-page reserved"; 154 dummy_res->resource.start = res->end + 1; 155 dummy_res->resource.end = res->start + PAGE_SIZE - 1; 156 dummy_res->resource.flags = res->flags; 157 if (request_resource(res->parent, 158 &dummy_res->resource)) { 159 kfree(dummy_res); 160 goto no_mmap; 161 } 162 dummy_res->index = bar; 163 list_add(&dummy_res->res_next, 164 &vdev->dummy_resources_list); 165 vdev->bar_mmap_supported[bar] = true; 166 continue; 167 } 168 /* 169 * Here we don't handle the case when the BAR is not page 170 * aligned because we can't expect the BAR will be 171 * assigned into the same location in a page in guest 172 * when we passthrough the BAR. And it's hard to access 173 * this BAR in userspace because we have no way to get 174 * the BAR's location in a page. 175 */ 176 no_mmap: 177 vdev->bar_mmap_supported[bar] = false; 178 } 179 } 180 181 struct vfio_pci_group_info; 182 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set); 183 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 184 struct vfio_pci_group_info *groups, 185 struct iommufd_ctx *iommufd_ctx); 186 187 /* 188 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND 189 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS. 190 * If a device implements the former but not the latter we would typically 191 * expect broken_intx_masking be set and require an exclusive interrupt. 192 * However since we do have control of the device's ability to assert INTx, 193 * we can instead pretend that the device does not implement INTx, virtualizing 194 * the pin register to report zero and maintaining DisINTx set on the host. 195 */ 196 static bool vfio_pci_nointx(struct pci_dev *pdev) 197 { 198 switch (pdev->vendor) { 199 case PCI_VENDOR_ID_INTEL: 200 switch (pdev->device) { 201 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */ 202 case 0x1572: 203 case 0x1574: 204 case 0x1580 ... 0x1581: 205 case 0x1583 ... 0x158b: 206 case 0x37d0 ... 0x37d2: 207 /* X550 */ 208 case 0x1563: 209 return true; 210 default: 211 return false; 212 } 213 } 214 215 return false; 216 } 217 218 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev) 219 { 220 struct pci_dev *pdev = vdev->pdev; 221 u16 pmcsr; 222 223 if (!pdev->pm_cap) 224 return; 225 226 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 227 228 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 229 } 230 231 /* 232 * pci_set_power_state() wrapper handling devices which perform a soft reset on 233 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev, 234 * restore when returned to D0. Saved separately from pci_saved_state for use 235 * by PM capability emulation and separately from pci_dev internal saved state 236 * to avoid it being overwritten and consumed around other resets. 237 */ 238 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state) 239 { 240 struct pci_dev *pdev = vdev->pdev; 241 bool needs_restore = false, needs_save = false; 242 int ret; 243 244 /* Prevent changing power state for PFs with VFs enabled */ 245 if (pci_num_vf(pdev) && state > PCI_D0) 246 return -EBUSY; 247 248 if (vdev->needs_pm_restore) { 249 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) { 250 pci_save_state(pdev); 251 needs_save = true; 252 } 253 254 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0) 255 needs_restore = true; 256 } 257 258 ret = pci_set_power_state(pdev, state); 259 260 if (!ret) { 261 /* D3 might be unsupported via quirk, skip unless in D3 */ 262 if (needs_save && pdev->current_state >= PCI_D3hot) { 263 /* 264 * The current PCI state will be saved locally in 265 * 'pm_save' during the D3hot transition. When the 266 * device state is changed to D0 again with the current 267 * function, then pci_store_saved_state() will restore 268 * the state and will free the memory pointed by 269 * 'pm_save'. There are few cases where the PCI power 270 * state can be changed to D0 without the involvement 271 * of the driver. For these cases, free the earlier 272 * allocated memory first before overwriting 'pm_save' 273 * to prevent the memory leak. 274 */ 275 kfree(vdev->pm_save); 276 vdev->pm_save = pci_store_saved_state(pdev); 277 } else if (needs_restore) { 278 pci_load_and_free_saved_state(pdev, &vdev->pm_save); 279 pci_restore_state(pdev); 280 } 281 } 282 283 return ret; 284 } 285 286 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev, 287 struct eventfd_ctx *efdctx) 288 { 289 /* 290 * The vdev power related flags are protected with 'memory_lock' 291 * semaphore. 292 */ 293 vfio_pci_zap_and_down_write_memory_lock(vdev); 294 if (vdev->pm_runtime_engaged) { 295 up_write(&vdev->memory_lock); 296 return -EINVAL; 297 } 298 299 vdev->pm_runtime_engaged = true; 300 vdev->pm_wake_eventfd_ctx = efdctx; 301 pm_runtime_put_noidle(&vdev->pdev->dev); 302 up_write(&vdev->memory_lock); 303 304 return 0; 305 } 306 307 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags, 308 void __user *arg, size_t argsz) 309 { 310 struct vfio_pci_core_device *vdev = 311 container_of(device, struct vfio_pci_core_device, vdev); 312 int ret; 313 314 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 315 if (ret != 1) 316 return ret; 317 318 /* 319 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count 320 * will be decremented. The pm_runtime_put() will be invoked again 321 * while returning from the ioctl and then the device can go into 322 * runtime suspended state. 323 */ 324 return vfio_pci_runtime_pm_entry(vdev, NULL); 325 } 326 327 static int vfio_pci_core_pm_entry_with_wakeup( 328 struct vfio_device *device, u32 flags, 329 struct vfio_device_low_power_entry_with_wakeup __user *arg, 330 size_t argsz) 331 { 332 struct vfio_pci_core_device *vdev = 333 container_of(device, struct vfio_pci_core_device, vdev); 334 struct vfio_device_low_power_entry_with_wakeup entry; 335 struct eventfd_ctx *efdctx; 336 int ret; 337 338 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 339 sizeof(entry)); 340 if (ret != 1) 341 return ret; 342 343 if (copy_from_user(&entry, arg, sizeof(entry))) 344 return -EFAULT; 345 346 if (entry.wakeup_eventfd < 0) 347 return -EINVAL; 348 349 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd); 350 if (IS_ERR(efdctx)) 351 return PTR_ERR(efdctx); 352 353 ret = vfio_pci_runtime_pm_entry(vdev, efdctx); 354 if (ret) 355 eventfd_ctx_put(efdctx); 356 357 return ret; 358 } 359 360 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 361 { 362 if (vdev->pm_runtime_engaged) { 363 vdev->pm_runtime_engaged = false; 364 pm_runtime_get_noresume(&vdev->pdev->dev); 365 366 if (vdev->pm_wake_eventfd_ctx) { 367 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx); 368 vdev->pm_wake_eventfd_ctx = NULL; 369 } 370 } 371 } 372 373 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 374 { 375 /* 376 * The vdev power related flags are protected with 'memory_lock' 377 * semaphore. 378 */ 379 down_write(&vdev->memory_lock); 380 __vfio_pci_runtime_pm_exit(vdev); 381 up_write(&vdev->memory_lock); 382 } 383 384 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags, 385 void __user *arg, size_t argsz) 386 { 387 struct vfio_pci_core_device *vdev = 388 container_of(device, struct vfio_pci_core_device, vdev); 389 int ret; 390 391 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 392 if (ret != 1) 393 return ret; 394 395 /* 396 * The device is always in the active state here due to pm wrappers 397 * around ioctls. If the device had entered a low power state and 398 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has 399 * already signaled the eventfd and exited low power mode itself. 400 * pm_runtime_engaged protects the redundant call here. 401 */ 402 vfio_pci_runtime_pm_exit(vdev); 403 return 0; 404 } 405 406 #ifdef CONFIG_PM 407 static int vfio_pci_core_runtime_suspend(struct device *dev) 408 { 409 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 410 411 down_write(&vdev->memory_lock); 412 /* 413 * The user can move the device into D3hot state before invoking 414 * power management IOCTL. Move the device into D0 state here and then 415 * the pci-driver core runtime PM suspend function will move the device 416 * into the low power state. Also, for the devices which have 417 * NoSoftRst-, it will help in restoring the original state 418 * (saved locally in 'vdev->pm_save'). 419 */ 420 vfio_pci_set_power_state(vdev, PCI_D0); 421 up_write(&vdev->memory_lock); 422 423 /* 424 * If INTx is enabled, then mask INTx before going into the runtime 425 * suspended state and unmask the same in the runtime resume. 426 * If INTx has already been masked by the user, then 427 * vfio_pci_intx_mask() will return false and in that case, INTx 428 * should not be unmasked in the runtime resume. 429 */ 430 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) && 431 vfio_pci_intx_mask(vdev)); 432 433 return 0; 434 } 435 436 static int vfio_pci_core_runtime_resume(struct device *dev) 437 { 438 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 439 440 /* 441 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit 442 * low power mode. 443 */ 444 down_write(&vdev->memory_lock); 445 if (vdev->pm_wake_eventfd_ctx) { 446 eventfd_signal(vdev->pm_wake_eventfd_ctx); 447 __vfio_pci_runtime_pm_exit(vdev); 448 } 449 up_write(&vdev->memory_lock); 450 451 if (vdev->pm_intx_masked) 452 vfio_pci_intx_unmask(vdev); 453 454 return 0; 455 } 456 #endif /* CONFIG_PM */ 457 458 /* 459 * The pci-driver core runtime PM routines always save the device state 460 * before going into suspended state. If the device is going into low power 461 * state with only with runtime PM ops, then no explicit handling is needed 462 * for the devices which have NoSoftRst-. 463 */ 464 static const struct dev_pm_ops vfio_pci_core_pm_ops = { 465 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend, 466 vfio_pci_core_runtime_resume, 467 NULL) 468 }; 469 470 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev) 471 { 472 struct pci_dev *pdev = vdev->pdev; 473 int ret; 474 u16 cmd; 475 u8 msix_pos; 476 477 if (!disable_idle_d3) { 478 ret = pm_runtime_resume_and_get(&pdev->dev); 479 if (ret < 0) 480 return ret; 481 } 482 483 /* Don't allow our initial saved state to include busmaster */ 484 pci_clear_master(pdev); 485 486 ret = pci_enable_device(pdev); 487 if (ret) 488 goto out_power; 489 490 /* If reset fails because of the device lock, fail this path entirely */ 491 ret = pci_try_reset_function(pdev); 492 if (ret == -EAGAIN) 493 goto out_disable_device; 494 495 vdev->reset_works = !ret; 496 pci_save_state(pdev); 497 vdev->pci_saved_state = pci_store_saved_state(pdev); 498 if (!vdev->pci_saved_state) 499 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__); 500 501 if (likely(!nointxmask)) { 502 if (vfio_pci_nointx(pdev)) { 503 pci_info(pdev, "Masking broken INTx support\n"); 504 vdev->nointx = true; 505 pci_intx(pdev, 0); 506 } else 507 vdev->pci_2_3 = pci_intx_mask_supported(pdev); 508 } 509 510 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 511 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) { 512 cmd &= ~PCI_COMMAND_INTX_DISABLE; 513 pci_write_config_word(pdev, PCI_COMMAND, cmd); 514 } 515 516 ret = vfio_pci_zdev_open_device(vdev); 517 if (ret) 518 goto out_free_state; 519 520 ret = vfio_config_init(vdev); 521 if (ret) 522 goto out_free_zdev; 523 524 msix_pos = pdev->msix_cap; 525 if (msix_pos) { 526 u16 flags; 527 u32 table; 528 529 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags); 530 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table); 531 532 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR; 533 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET; 534 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16; 535 vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev); 536 } else { 537 vdev->msix_bar = 0xFF; 538 vdev->has_dyn_msix = false; 539 } 540 541 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev)) 542 vdev->has_vga = true; 543 544 545 return 0; 546 547 out_free_zdev: 548 vfio_pci_zdev_close_device(vdev); 549 out_free_state: 550 kfree(vdev->pci_saved_state); 551 vdev->pci_saved_state = NULL; 552 out_disable_device: 553 pci_disable_device(pdev); 554 out_power: 555 if (!disable_idle_d3) 556 pm_runtime_put(&pdev->dev); 557 return ret; 558 } 559 EXPORT_SYMBOL_GPL(vfio_pci_core_enable); 560 561 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev) 562 { 563 struct pci_dev *pdev = vdev->pdev; 564 struct vfio_pci_dummy_resource *dummy_res, *tmp; 565 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp; 566 int i, bar; 567 568 /* For needs_reset */ 569 lockdep_assert_held(&vdev->vdev.dev_set->lock); 570 571 /* 572 * This function can be invoked while the power state is non-D0. 573 * This non-D0 power state can be with or without runtime PM. 574 * vfio_pci_runtime_pm_exit() will internally increment the usage 575 * count corresponding to pm_runtime_put() called during low power 576 * feature entry and then pm_runtime_resume() will wake up the device, 577 * if the device has already gone into the suspended state. Otherwise, 578 * the vfio_pci_set_power_state() will change the device power state 579 * to D0. 580 */ 581 vfio_pci_runtime_pm_exit(vdev); 582 pm_runtime_resume(&pdev->dev); 583 584 /* 585 * This function calls __pci_reset_function_locked() which internally 586 * can use pci_pm_reset() for the function reset. pci_pm_reset() will 587 * fail if the power state is non-D0. Also, for the devices which 588 * have NoSoftRst-, the reset function can cause the PCI config space 589 * reset without restoring the original state (saved locally in 590 * 'vdev->pm_save'). 591 */ 592 vfio_pci_set_power_state(vdev, PCI_D0); 593 594 /* Stop the device from further DMA */ 595 pci_clear_master(pdev); 596 597 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE | 598 VFIO_IRQ_SET_ACTION_TRIGGER, 599 vdev->irq_type, 0, 0, NULL); 600 601 /* Device closed, don't need mutex here */ 602 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp, 603 &vdev->ioeventfds_list, next) { 604 vfio_virqfd_disable(&ioeventfd->virqfd); 605 list_del(&ioeventfd->next); 606 kfree(ioeventfd); 607 } 608 vdev->ioeventfds_nr = 0; 609 610 vdev->virq_disabled = false; 611 612 for (i = 0; i < vdev->num_regions; i++) 613 vdev->region[i].ops->release(vdev, &vdev->region[i]); 614 615 vdev->num_regions = 0; 616 kfree(vdev->region); 617 vdev->region = NULL; /* don't krealloc a freed pointer */ 618 619 vfio_config_free(vdev); 620 621 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 622 bar = i + PCI_STD_RESOURCES; 623 if (!vdev->barmap[bar]) 624 continue; 625 pci_iounmap(pdev, vdev->barmap[bar]); 626 pci_release_selected_regions(pdev, 1 << bar); 627 vdev->barmap[bar] = NULL; 628 } 629 630 list_for_each_entry_safe(dummy_res, tmp, 631 &vdev->dummy_resources_list, res_next) { 632 list_del(&dummy_res->res_next); 633 release_resource(&dummy_res->resource); 634 kfree(dummy_res); 635 } 636 637 vdev->needs_reset = true; 638 639 vfio_pci_zdev_close_device(vdev); 640 641 /* 642 * If we have saved state, restore it. If we can reset the device, 643 * even better. Resetting with current state seems better than 644 * nothing, but saving and restoring current state without reset 645 * is just busy work. 646 */ 647 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) { 648 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__); 649 650 if (!vdev->reset_works) 651 goto out; 652 653 pci_save_state(pdev); 654 } 655 656 /* 657 * Disable INTx and MSI, presumably to avoid spurious interrupts 658 * during reset. Stolen from pci_reset_function() 659 */ 660 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 661 662 /* 663 * Try to get the locks ourselves to prevent a deadlock. The 664 * success of this is dependent on being able to lock the device, 665 * which is not always possible. 666 * We can not use the "try" reset interface here, which will 667 * overwrite the previously restored configuration information. 668 */ 669 if (vdev->reset_works && pci_dev_trylock(pdev)) { 670 if (!__pci_reset_function_locked(pdev)) 671 vdev->needs_reset = false; 672 pci_dev_unlock(pdev); 673 } 674 675 pci_restore_state(pdev); 676 out: 677 pci_disable_device(pdev); 678 679 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set); 680 681 /* Put the pm-runtime usage counter acquired during enable */ 682 if (!disable_idle_d3) 683 pm_runtime_put(&pdev->dev); 684 } 685 EXPORT_SYMBOL_GPL(vfio_pci_core_disable); 686 687 void vfio_pci_core_close_device(struct vfio_device *core_vdev) 688 { 689 struct vfio_pci_core_device *vdev = 690 container_of(core_vdev, struct vfio_pci_core_device, vdev); 691 692 if (vdev->sriov_pf_core_dev) { 693 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 694 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users); 695 vdev->sriov_pf_core_dev->vf_token->users--; 696 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 697 } 698 #if IS_ENABLED(CONFIG_EEH) 699 eeh_dev_release(vdev->pdev); 700 #endif 701 vfio_pci_core_disable(vdev); 702 703 mutex_lock(&vdev->igate); 704 if (vdev->err_trigger) { 705 eventfd_ctx_put(vdev->err_trigger); 706 vdev->err_trigger = NULL; 707 } 708 if (vdev->req_trigger) { 709 eventfd_ctx_put(vdev->req_trigger); 710 vdev->req_trigger = NULL; 711 } 712 mutex_unlock(&vdev->igate); 713 } 714 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device); 715 716 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev) 717 { 718 vfio_pci_probe_mmaps(vdev); 719 #if IS_ENABLED(CONFIG_EEH) 720 eeh_dev_open(vdev->pdev); 721 #endif 722 723 if (vdev->sriov_pf_core_dev) { 724 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 725 vdev->sriov_pf_core_dev->vf_token->users++; 726 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 727 } 728 } 729 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable); 730 731 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type) 732 { 733 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) { 734 u8 pin; 735 736 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || 737 vdev->nointx || vdev->pdev->is_virtfn) 738 return 0; 739 740 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin); 741 742 return pin ? 1 : 0; 743 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) { 744 u8 pos; 745 u16 flags; 746 747 pos = vdev->pdev->msi_cap; 748 if (pos) { 749 pci_read_config_word(vdev->pdev, 750 pos + PCI_MSI_FLAGS, &flags); 751 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1); 752 } 753 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) { 754 u8 pos; 755 u16 flags; 756 757 pos = vdev->pdev->msix_cap; 758 if (pos) { 759 pci_read_config_word(vdev->pdev, 760 pos + PCI_MSIX_FLAGS, &flags); 761 762 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1; 763 } 764 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) { 765 if (pci_is_pcie(vdev->pdev)) 766 return 1; 767 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) { 768 return 1; 769 } 770 771 return 0; 772 } 773 774 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data) 775 { 776 (*(int *)data)++; 777 return 0; 778 } 779 780 struct vfio_pci_fill_info { 781 struct vfio_pci_dependent_device __user *devices; 782 struct vfio_pci_dependent_device __user *devices_end; 783 struct vfio_device *vdev; 784 u32 count; 785 u32 flags; 786 }; 787 788 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data) 789 { 790 struct vfio_pci_dependent_device info = { 791 .segment = pci_domain_nr(pdev->bus), 792 .bus = pdev->bus->number, 793 .devfn = pdev->devfn, 794 }; 795 struct vfio_pci_fill_info *fill = data; 796 797 fill->count++; 798 if (fill->devices >= fill->devices_end) 799 return 0; 800 801 if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) { 802 struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev); 803 struct vfio_device_set *dev_set = fill->vdev->dev_set; 804 struct vfio_device *vdev; 805 806 /* 807 * hot-reset requires all affected devices be represented in 808 * the dev_set. 809 */ 810 vdev = vfio_find_device_in_devset(dev_set, &pdev->dev); 811 if (!vdev) { 812 info.devid = VFIO_PCI_DEVID_NOT_OWNED; 813 } else { 814 int id = vfio_iommufd_get_dev_id(vdev, iommufd); 815 816 if (id > 0) 817 info.devid = id; 818 else if (id == -ENOENT) 819 info.devid = VFIO_PCI_DEVID_OWNED; 820 else 821 info.devid = VFIO_PCI_DEVID_NOT_OWNED; 822 } 823 /* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */ 824 if (info.devid == VFIO_PCI_DEVID_NOT_OWNED) 825 fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED; 826 } else { 827 struct iommu_group *iommu_group; 828 829 iommu_group = iommu_group_get(&pdev->dev); 830 if (!iommu_group) 831 return -EPERM; /* Cannot reset non-isolated devices */ 832 833 info.group_id = iommu_group_id(iommu_group); 834 iommu_group_put(iommu_group); 835 } 836 837 if (copy_to_user(fill->devices, &info, sizeof(info))) 838 return -EFAULT; 839 fill->devices++; 840 return 0; 841 } 842 843 struct vfio_pci_group_info { 844 int count; 845 struct file **files; 846 }; 847 848 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot) 849 { 850 for (; pdev; pdev = pdev->bus->self) 851 if (pdev->bus == slot->bus) 852 return (pdev->slot == slot); 853 return false; 854 } 855 856 struct vfio_pci_walk_info { 857 int (*fn)(struct pci_dev *pdev, void *data); 858 void *data; 859 struct pci_dev *pdev; 860 bool slot; 861 int ret; 862 }; 863 864 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data) 865 { 866 struct vfio_pci_walk_info *walk = data; 867 868 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot)) 869 walk->ret = walk->fn(pdev, walk->data); 870 871 return walk->ret; 872 } 873 874 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev, 875 int (*fn)(struct pci_dev *, 876 void *data), void *data, 877 bool slot) 878 { 879 struct vfio_pci_walk_info walk = { 880 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0, 881 }; 882 883 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk); 884 885 return walk.ret; 886 } 887 888 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev, 889 struct vfio_info_cap *caps) 890 { 891 struct vfio_info_cap_header header = { 892 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE, 893 .version = 1 894 }; 895 896 return vfio_info_add_capability(caps, &header, sizeof(header)); 897 } 898 899 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev, 900 unsigned int type, unsigned int subtype, 901 const struct vfio_pci_regops *ops, 902 size_t size, u32 flags, void *data) 903 { 904 struct vfio_pci_region *region; 905 906 region = krealloc(vdev->region, 907 (vdev->num_regions + 1) * sizeof(*region), 908 GFP_KERNEL_ACCOUNT); 909 if (!region) 910 return -ENOMEM; 911 912 vdev->region = region; 913 vdev->region[vdev->num_regions].type = type; 914 vdev->region[vdev->num_regions].subtype = subtype; 915 vdev->region[vdev->num_regions].ops = ops; 916 vdev->region[vdev->num_regions].size = size; 917 vdev->region[vdev->num_regions].flags = flags; 918 vdev->region[vdev->num_regions].data = data; 919 920 vdev->num_regions++; 921 922 return 0; 923 } 924 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region); 925 926 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev, 927 struct vfio_info_cap *caps) 928 { 929 struct vfio_device_info_cap_pci_atomic_comp cap = { 930 .header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP, 931 .header.version = 1 932 }; 933 struct pci_dev *pdev = pci_physfn(vdev->pdev); 934 u32 devcap2; 935 936 pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2); 937 938 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) && 939 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32)) 940 cap.flags |= VFIO_PCI_ATOMIC_COMP32; 941 942 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) && 943 !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64)) 944 cap.flags |= VFIO_PCI_ATOMIC_COMP64; 945 946 if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) && 947 !pci_enable_atomic_ops_to_root(pdev, 948 PCI_EXP_DEVCAP2_ATOMIC_COMP128)) 949 cap.flags |= VFIO_PCI_ATOMIC_COMP128; 950 951 if (!cap.flags) 952 return -ENODEV; 953 954 return vfio_info_add_capability(caps, &cap.header, sizeof(cap)); 955 } 956 957 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev, 958 struct vfio_device_info __user *arg) 959 { 960 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs); 961 struct vfio_device_info info = {}; 962 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 963 int ret; 964 965 if (copy_from_user(&info, arg, minsz)) 966 return -EFAULT; 967 968 if (info.argsz < minsz) 969 return -EINVAL; 970 971 minsz = min_t(size_t, info.argsz, sizeof(info)); 972 973 info.flags = VFIO_DEVICE_FLAGS_PCI; 974 975 if (vdev->reset_works) 976 info.flags |= VFIO_DEVICE_FLAGS_RESET; 977 978 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions; 979 info.num_irqs = VFIO_PCI_NUM_IRQS; 980 981 ret = vfio_pci_info_zdev_add_caps(vdev, &caps); 982 if (ret && ret != -ENODEV) { 983 pci_warn(vdev->pdev, 984 "Failed to setup zPCI info capabilities\n"); 985 return ret; 986 } 987 988 ret = vfio_pci_info_atomic_cap(vdev, &caps); 989 if (ret && ret != -ENODEV) { 990 pci_warn(vdev->pdev, 991 "Failed to setup AtomicOps info capability\n"); 992 return ret; 993 } 994 995 if (caps.size) { 996 info.flags |= VFIO_DEVICE_FLAGS_CAPS; 997 if (info.argsz < sizeof(info) + caps.size) { 998 info.argsz = sizeof(info) + caps.size; 999 } else { 1000 vfio_info_cap_shift(&caps, sizeof(info)); 1001 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1002 kfree(caps.buf); 1003 return -EFAULT; 1004 } 1005 info.cap_offset = sizeof(*arg); 1006 } 1007 1008 kfree(caps.buf); 1009 } 1010 1011 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1012 } 1013 1014 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev, 1015 struct vfio_region_info __user *arg) 1016 { 1017 unsigned long minsz = offsetofend(struct vfio_region_info, offset); 1018 struct pci_dev *pdev = vdev->pdev; 1019 struct vfio_region_info info; 1020 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 1021 int i, ret; 1022 1023 if (copy_from_user(&info, arg, minsz)) 1024 return -EFAULT; 1025 1026 if (info.argsz < minsz) 1027 return -EINVAL; 1028 1029 switch (info.index) { 1030 case VFIO_PCI_CONFIG_REGION_INDEX: 1031 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1032 info.size = pdev->cfg_size; 1033 info.flags = VFIO_REGION_INFO_FLAG_READ | 1034 VFIO_REGION_INFO_FLAG_WRITE; 1035 break; 1036 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1037 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1038 info.size = pci_resource_len(pdev, info.index); 1039 if (!info.size) { 1040 info.flags = 0; 1041 break; 1042 } 1043 1044 info.flags = VFIO_REGION_INFO_FLAG_READ | 1045 VFIO_REGION_INFO_FLAG_WRITE; 1046 if (vdev->bar_mmap_supported[info.index]) { 1047 info.flags |= VFIO_REGION_INFO_FLAG_MMAP; 1048 if (info.index == vdev->msix_bar) { 1049 ret = msix_mmappable_cap(vdev, &caps); 1050 if (ret) 1051 return ret; 1052 } 1053 } 1054 1055 break; 1056 case VFIO_PCI_ROM_REGION_INDEX: { 1057 void __iomem *io; 1058 size_t size; 1059 u16 cmd; 1060 1061 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1062 info.flags = 0; 1063 1064 /* Report the BAR size, not the ROM size */ 1065 info.size = pci_resource_len(pdev, info.index); 1066 if (!info.size) { 1067 /* Shadow ROMs appear as PCI option ROMs */ 1068 if (pdev->resource[PCI_ROM_RESOURCE].flags & 1069 IORESOURCE_ROM_SHADOW) 1070 info.size = 0x20000; 1071 else 1072 break; 1073 } 1074 1075 /* 1076 * Is it really there? Enable memory decode for implicit access 1077 * in pci_map_rom(). 1078 */ 1079 cmd = vfio_pci_memory_lock_and_enable(vdev); 1080 io = pci_map_rom(pdev, &size); 1081 if (io) { 1082 info.flags = VFIO_REGION_INFO_FLAG_READ; 1083 pci_unmap_rom(pdev, io); 1084 } else { 1085 info.size = 0; 1086 } 1087 vfio_pci_memory_unlock_and_restore(vdev, cmd); 1088 1089 break; 1090 } 1091 case VFIO_PCI_VGA_REGION_INDEX: 1092 if (!vdev->has_vga) 1093 return -EINVAL; 1094 1095 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1096 info.size = 0xc0000; 1097 info.flags = VFIO_REGION_INFO_FLAG_READ | 1098 VFIO_REGION_INFO_FLAG_WRITE; 1099 1100 break; 1101 default: { 1102 struct vfio_region_info_cap_type cap_type = { 1103 .header.id = VFIO_REGION_INFO_CAP_TYPE, 1104 .header.version = 1 1105 }; 1106 1107 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1108 return -EINVAL; 1109 info.index = array_index_nospec( 1110 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions); 1111 1112 i = info.index - VFIO_PCI_NUM_REGIONS; 1113 1114 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1115 info.size = vdev->region[i].size; 1116 info.flags = vdev->region[i].flags; 1117 1118 cap_type.type = vdev->region[i].type; 1119 cap_type.subtype = vdev->region[i].subtype; 1120 1121 ret = vfio_info_add_capability(&caps, &cap_type.header, 1122 sizeof(cap_type)); 1123 if (ret) 1124 return ret; 1125 1126 if (vdev->region[i].ops->add_capability) { 1127 ret = vdev->region[i].ops->add_capability( 1128 vdev, &vdev->region[i], &caps); 1129 if (ret) 1130 return ret; 1131 } 1132 } 1133 } 1134 1135 if (caps.size) { 1136 info.flags |= VFIO_REGION_INFO_FLAG_CAPS; 1137 if (info.argsz < sizeof(info) + caps.size) { 1138 info.argsz = sizeof(info) + caps.size; 1139 info.cap_offset = 0; 1140 } else { 1141 vfio_info_cap_shift(&caps, sizeof(info)); 1142 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1143 kfree(caps.buf); 1144 return -EFAULT; 1145 } 1146 info.cap_offset = sizeof(*arg); 1147 } 1148 1149 kfree(caps.buf); 1150 } 1151 1152 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1153 } 1154 1155 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev, 1156 struct vfio_irq_info __user *arg) 1157 { 1158 unsigned long minsz = offsetofend(struct vfio_irq_info, count); 1159 struct vfio_irq_info info; 1160 1161 if (copy_from_user(&info, arg, minsz)) 1162 return -EFAULT; 1163 1164 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) 1165 return -EINVAL; 1166 1167 switch (info.index) { 1168 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX: 1169 case VFIO_PCI_REQ_IRQ_INDEX: 1170 break; 1171 case VFIO_PCI_ERR_IRQ_INDEX: 1172 if (pci_is_pcie(vdev->pdev)) 1173 break; 1174 fallthrough; 1175 default: 1176 return -EINVAL; 1177 } 1178 1179 info.flags = VFIO_IRQ_INFO_EVENTFD; 1180 1181 info.count = vfio_pci_get_irq_count(vdev, info.index); 1182 1183 if (info.index == VFIO_PCI_INTX_IRQ_INDEX) 1184 info.flags |= 1185 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); 1186 else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix) 1187 info.flags |= VFIO_IRQ_INFO_NORESIZE; 1188 1189 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1190 } 1191 1192 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev, 1193 struct vfio_irq_set __user *arg) 1194 { 1195 unsigned long minsz = offsetofend(struct vfio_irq_set, count); 1196 struct vfio_irq_set hdr; 1197 u8 *data = NULL; 1198 int max, ret = 0; 1199 size_t data_size = 0; 1200 1201 if (copy_from_user(&hdr, arg, minsz)) 1202 return -EFAULT; 1203 1204 max = vfio_pci_get_irq_count(vdev, hdr.index); 1205 1206 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, 1207 &data_size); 1208 if (ret) 1209 return ret; 1210 1211 if (data_size) { 1212 data = memdup_user(&arg->data, data_size); 1213 if (IS_ERR(data)) 1214 return PTR_ERR(data); 1215 } 1216 1217 mutex_lock(&vdev->igate); 1218 1219 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start, 1220 hdr.count, data); 1221 1222 mutex_unlock(&vdev->igate); 1223 kfree(data); 1224 1225 return ret; 1226 } 1227 1228 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev, 1229 void __user *arg) 1230 { 1231 int ret; 1232 1233 if (!vdev->reset_works) 1234 return -EINVAL; 1235 1236 vfio_pci_zap_and_down_write_memory_lock(vdev); 1237 1238 /* 1239 * This function can be invoked while the power state is non-D0. If 1240 * pci_try_reset_function() has been called while the power state is 1241 * non-D0, then pci_try_reset_function() will internally set the power 1242 * state to D0 without vfio driver involvement. For the devices which 1243 * have NoSoftRst-, the reset function can cause the PCI config space 1244 * reset without restoring the original state (saved locally in 1245 * 'vdev->pm_save'). 1246 */ 1247 vfio_pci_set_power_state(vdev, PCI_D0); 1248 1249 ret = pci_try_reset_function(vdev->pdev); 1250 up_write(&vdev->memory_lock); 1251 1252 return ret; 1253 } 1254 1255 static int vfio_pci_ioctl_get_pci_hot_reset_info( 1256 struct vfio_pci_core_device *vdev, 1257 struct vfio_pci_hot_reset_info __user *arg) 1258 { 1259 unsigned long minsz = 1260 offsetofend(struct vfio_pci_hot_reset_info, count); 1261 struct vfio_pci_hot_reset_info hdr; 1262 struct vfio_pci_fill_info fill = {}; 1263 bool slot = false; 1264 int ret = 0; 1265 1266 if (copy_from_user(&hdr, arg, minsz)) 1267 return -EFAULT; 1268 1269 if (hdr.argsz < minsz) 1270 return -EINVAL; 1271 1272 hdr.flags = 0; 1273 1274 /* Can we do a slot or bus reset or neither? */ 1275 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1276 slot = true; 1277 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1278 return -ENODEV; 1279 1280 fill.devices = arg->devices; 1281 fill.devices_end = arg->devices + 1282 (hdr.argsz - sizeof(hdr)) / sizeof(arg->devices[0]); 1283 fill.vdev = &vdev->vdev; 1284 1285 if (vfio_device_cdev_opened(&vdev->vdev)) 1286 fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID | 1287 VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED; 1288 1289 mutex_lock(&vdev->vdev.dev_set->lock); 1290 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs, 1291 &fill, slot); 1292 mutex_unlock(&vdev->vdev.dev_set->lock); 1293 if (ret) 1294 return ret; 1295 1296 hdr.count = fill.count; 1297 hdr.flags = fill.flags; 1298 if (copy_to_user(arg, &hdr, minsz)) 1299 return -EFAULT; 1300 1301 if (fill.count > fill.devices - arg->devices) 1302 return -ENOSPC; 1303 return 0; 1304 } 1305 1306 static int 1307 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev, 1308 int array_count, bool slot, 1309 struct vfio_pci_hot_reset __user *arg) 1310 { 1311 int32_t *group_fds; 1312 struct file **files; 1313 struct vfio_pci_group_info info; 1314 int file_idx, count = 0, ret = 0; 1315 1316 /* 1317 * We can't let userspace give us an arbitrarily large buffer to copy, 1318 * so verify how many we think there could be. Note groups can have 1319 * multiple devices so one group per device is the max. 1320 */ 1321 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1322 &count, slot); 1323 if (ret) 1324 return ret; 1325 1326 if (array_count > count) 1327 return -EINVAL; 1328 1329 group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL); 1330 files = kcalloc(array_count, sizeof(*files), GFP_KERNEL); 1331 if (!group_fds || !files) { 1332 kfree(group_fds); 1333 kfree(files); 1334 return -ENOMEM; 1335 } 1336 1337 if (copy_from_user(group_fds, arg->group_fds, 1338 array_count * sizeof(*group_fds))) { 1339 kfree(group_fds); 1340 kfree(files); 1341 return -EFAULT; 1342 } 1343 1344 /* 1345 * Get the group file for each fd to ensure the group is held across 1346 * the reset 1347 */ 1348 for (file_idx = 0; file_idx < array_count; file_idx++) { 1349 struct file *file = fget(group_fds[file_idx]); 1350 1351 if (!file) { 1352 ret = -EBADF; 1353 break; 1354 } 1355 1356 /* Ensure the FD is a vfio group FD.*/ 1357 if (!vfio_file_is_group(file)) { 1358 fput(file); 1359 ret = -EINVAL; 1360 break; 1361 } 1362 1363 files[file_idx] = file; 1364 } 1365 1366 kfree(group_fds); 1367 1368 /* release reference to groups on error */ 1369 if (ret) 1370 goto hot_reset_release; 1371 1372 info.count = array_count; 1373 info.files = files; 1374 1375 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL); 1376 1377 hot_reset_release: 1378 for (file_idx--; file_idx >= 0; file_idx--) 1379 fput(files[file_idx]); 1380 1381 kfree(files); 1382 return ret; 1383 } 1384 1385 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev, 1386 struct vfio_pci_hot_reset __user *arg) 1387 { 1388 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count); 1389 struct vfio_pci_hot_reset hdr; 1390 bool slot = false; 1391 1392 if (copy_from_user(&hdr, arg, minsz)) 1393 return -EFAULT; 1394 1395 if (hdr.argsz < minsz || hdr.flags) 1396 return -EINVAL; 1397 1398 /* zero-length array is only for cdev opened devices */ 1399 if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev)) 1400 return -EINVAL; 1401 1402 /* Can we do a slot or bus reset or neither? */ 1403 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1404 slot = true; 1405 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1406 return -ENODEV; 1407 1408 if (hdr.count) 1409 return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg); 1410 1411 return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL, 1412 vfio_iommufd_device_ictx(&vdev->vdev)); 1413 } 1414 1415 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev, 1416 struct vfio_device_ioeventfd __user *arg) 1417 { 1418 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd); 1419 struct vfio_device_ioeventfd ioeventfd; 1420 int count; 1421 1422 if (copy_from_user(&ioeventfd, arg, minsz)) 1423 return -EFAULT; 1424 1425 if (ioeventfd.argsz < minsz) 1426 return -EINVAL; 1427 1428 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK) 1429 return -EINVAL; 1430 1431 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK; 1432 1433 if (hweight8(count) != 1 || ioeventfd.fd < -1) 1434 return -EINVAL; 1435 1436 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count, 1437 ioeventfd.fd); 1438 } 1439 1440 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd, 1441 unsigned long arg) 1442 { 1443 struct vfio_pci_core_device *vdev = 1444 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1445 void __user *uarg = (void __user *)arg; 1446 1447 switch (cmd) { 1448 case VFIO_DEVICE_GET_INFO: 1449 return vfio_pci_ioctl_get_info(vdev, uarg); 1450 case VFIO_DEVICE_GET_IRQ_INFO: 1451 return vfio_pci_ioctl_get_irq_info(vdev, uarg); 1452 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO: 1453 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg); 1454 case VFIO_DEVICE_GET_REGION_INFO: 1455 return vfio_pci_ioctl_get_region_info(vdev, uarg); 1456 case VFIO_DEVICE_IOEVENTFD: 1457 return vfio_pci_ioctl_ioeventfd(vdev, uarg); 1458 case VFIO_DEVICE_PCI_HOT_RESET: 1459 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg); 1460 case VFIO_DEVICE_RESET: 1461 return vfio_pci_ioctl_reset(vdev, uarg); 1462 case VFIO_DEVICE_SET_IRQS: 1463 return vfio_pci_ioctl_set_irqs(vdev, uarg); 1464 default: 1465 return -ENOTTY; 1466 } 1467 } 1468 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl); 1469 1470 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags, 1471 uuid_t __user *arg, size_t argsz) 1472 { 1473 struct vfio_pci_core_device *vdev = 1474 container_of(device, struct vfio_pci_core_device, vdev); 1475 uuid_t uuid; 1476 int ret; 1477 1478 if (!vdev->vf_token) 1479 return -ENOTTY; 1480 /* 1481 * We do not support GET of the VF Token UUID as this could 1482 * expose the token of the previous device user. 1483 */ 1484 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 1485 sizeof(uuid)); 1486 if (ret != 1) 1487 return ret; 1488 1489 if (copy_from_user(&uuid, arg, sizeof(uuid))) 1490 return -EFAULT; 1491 1492 mutex_lock(&vdev->vf_token->lock); 1493 uuid_copy(&vdev->vf_token->uuid, &uuid); 1494 mutex_unlock(&vdev->vf_token->lock); 1495 return 0; 1496 } 1497 1498 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags, 1499 void __user *arg, size_t argsz) 1500 { 1501 switch (flags & VFIO_DEVICE_FEATURE_MASK) { 1502 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY: 1503 return vfio_pci_core_pm_entry(device, flags, arg, argsz); 1504 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP: 1505 return vfio_pci_core_pm_entry_with_wakeup(device, flags, 1506 arg, argsz); 1507 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT: 1508 return vfio_pci_core_pm_exit(device, flags, arg, argsz); 1509 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN: 1510 return vfio_pci_core_feature_token(device, flags, arg, argsz); 1511 default: 1512 return -ENOTTY; 1513 } 1514 } 1515 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature); 1516 1517 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1518 size_t count, loff_t *ppos, bool iswrite) 1519 { 1520 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); 1521 int ret; 1522 1523 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1524 return -EINVAL; 1525 1526 ret = pm_runtime_resume_and_get(&vdev->pdev->dev); 1527 if (ret) { 1528 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n", 1529 ret); 1530 return -EIO; 1531 } 1532 1533 switch (index) { 1534 case VFIO_PCI_CONFIG_REGION_INDEX: 1535 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite); 1536 break; 1537 1538 case VFIO_PCI_ROM_REGION_INDEX: 1539 if (iswrite) 1540 ret = -EINVAL; 1541 else 1542 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false); 1543 break; 1544 1545 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1546 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite); 1547 break; 1548 1549 case VFIO_PCI_VGA_REGION_INDEX: 1550 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite); 1551 break; 1552 1553 default: 1554 index -= VFIO_PCI_NUM_REGIONS; 1555 ret = vdev->region[index].ops->rw(vdev, buf, 1556 count, ppos, iswrite); 1557 break; 1558 } 1559 1560 pm_runtime_put(&vdev->pdev->dev); 1561 return ret; 1562 } 1563 1564 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf, 1565 size_t count, loff_t *ppos) 1566 { 1567 struct vfio_pci_core_device *vdev = 1568 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1569 1570 if (!count) 1571 return 0; 1572 1573 return vfio_pci_rw(vdev, buf, count, ppos, false); 1574 } 1575 EXPORT_SYMBOL_GPL(vfio_pci_core_read); 1576 1577 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf, 1578 size_t count, loff_t *ppos) 1579 { 1580 struct vfio_pci_core_device *vdev = 1581 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1582 1583 if (!count) 1584 return 0; 1585 1586 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true); 1587 } 1588 EXPORT_SYMBOL_GPL(vfio_pci_core_write); 1589 1590 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */ 1591 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try) 1592 { 1593 struct vfio_pci_mmap_vma *mmap_vma, *tmp; 1594 1595 /* 1596 * Lock ordering: 1597 * vma_lock is nested under mmap_lock for vm_ops callback paths. 1598 * The memory_lock semaphore is used by both code paths calling 1599 * into this function to zap vmas and the vm_ops.fault callback 1600 * to protect the memory enable state of the device. 1601 * 1602 * When zapping vmas we need to maintain the mmap_lock => vma_lock 1603 * ordering, which requires using vma_lock to walk vma_list to 1604 * acquire an mm, then dropping vma_lock to get the mmap_lock and 1605 * reacquiring vma_lock. This logic is derived from similar 1606 * requirements in uverbs_user_mmap_disassociate(). 1607 * 1608 * mmap_lock must always be the top-level lock when it is taken. 1609 * Therefore we can only hold the memory_lock write lock when 1610 * vma_list is empty, as we'd need to take mmap_lock to clear 1611 * entries. vma_list can only be guaranteed empty when holding 1612 * vma_lock, thus memory_lock is nested under vma_lock. 1613 * 1614 * This enables the vm_ops.fault callback to acquire vma_lock, 1615 * followed by memory_lock read lock, while already holding 1616 * mmap_lock without risk of deadlock. 1617 */ 1618 while (1) { 1619 struct mm_struct *mm = NULL; 1620 1621 if (try) { 1622 if (!mutex_trylock(&vdev->vma_lock)) 1623 return 0; 1624 } else { 1625 mutex_lock(&vdev->vma_lock); 1626 } 1627 while (!list_empty(&vdev->vma_list)) { 1628 mmap_vma = list_first_entry(&vdev->vma_list, 1629 struct vfio_pci_mmap_vma, 1630 vma_next); 1631 mm = mmap_vma->vma->vm_mm; 1632 if (mmget_not_zero(mm)) 1633 break; 1634 1635 list_del(&mmap_vma->vma_next); 1636 kfree(mmap_vma); 1637 mm = NULL; 1638 } 1639 if (!mm) 1640 return 1; 1641 mutex_unlock(&vdev->vma_lock); 1642 1643 if (try) { 1644 if (!mmap_read_trylock(mm)) { 1645 mmput(mm); 1646 return 0; 1647 } 1648 } else { 1649 mmap_read_lock(mm); 1650 } 1651 if (try) { 1652 if (!mutex_trylock(&vdev->vma_lock)) { 1653 mmap_read_unlock(mm); 1654 mmput(mm); 1655 return 0; 1656 } 1657 } else { 1658 mutex_lock(&vdev->vma_lock); 1659 } 1660 list_for_each_entry_safe(mmap_vma, tmp, 1661 &vdev->vma_list, vma_next) { 1662 struct vm_area_struct *vma = mmap_vma->vma; 1663 1664 if (vma->vm_mm != mm) 1665 continue; 1666 1667 list_del(&mmap_vma->vma_next); 1668 kfree(mmap_vma); 1669 1670 zap_vma_ptes(vma, vma->vm_start, 1671 vma->vm_end - vma->vm_start); 1672 } 1673 mutex_unlock(&vdev->vma_lock); 1674 mmap_read_unlock(mm); 1675 mmput(mm); 1676 } 1677 } 1678 1679 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev) 1680 { 1681 vfio_pci_zap_and_vma_lock(vdev, false); 1682 down_write(&vdev->memory_lock); 1683 mutex_unlock(&vdev->vma_lock); 1684 } 1685 1686 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev) 1687 { 1688 u16 cmd; 1689 1690 down_write(&vdev->memory_lock); 1691 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); 1692 if (!(cmd & PCI_COMMAND_MEMORY)) 1693 pci_write_config_word(vdev->pdev, PCI_COMMAND, 1694 cmd | PCI_COMMAND_MEMORY); 1695 1696 return cmd; 1697 } 1698 1699 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd) 1700 { 1701 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); 1702 up_write(&vdev->memory_lock); 1703 } 1704 1705 /* Caller holds vma_lock */ 1706 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev, 1707 struct vm_area_struct *vma) 1708 { 1709 struct vfio_pci_mmap_vma *mmap_vma; 1710 1711 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT); 1712 if (!mmap_vma) 1713 return -ENOMEM; 1714 1715 mmap_vma->vma = vma; 1716 list_add(&mmap_vma->vma_next, &vdev->vma_list); 1717 1718 return 0; 1719 } 1720 1721 /* 1722 * Zap mmaps on open so that we can fault them in on access and therefore 1723 * our vma_list only tracks mappings accessed since last zap. 1724 */ 1725 static void vfio_pci_mmap_open(struct vm_area_struct *vma) 1726 { 1727 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1728 } 1729 1730 static void vfio_pci_mmap_close(struct vm_area_struct *vma) 1731 { 1732 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1733 struct vfio_pci_mmap_vma *mmap_vma; 1734 1735 mutex_lock(&vdev->vma_lock); 1736 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1737 if (mmap_vma->vma == vma) { 1738 list_del(&mmap_vma->vma_next); 1739 kfree(mmap_vma); 1740 break; 1741 } 1742 } 1743 mutex_unlock(&vdev->vma_lock); 1744 } 1745 1746 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) 1747 { 1748 struct vm_area_struct *vma = vmf->vma; 1749 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1750 struct vfio_pci_mmap_vma *mmap_vma; 1751 vm_fault_t ret = VM_FAULT_NOPAGE; 1752 1753 mutex_lock(&vdev->vma_lock); 1754 down_read(&vdev->memory_lock); 1755 1756 /* 1757 * Memory region cannot be accessed if the low power feature is engaged 1758 * or memory access is disabled. 1759 */ 1760 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) { 1761 ret = VM_FAULT_SIGBUS; 1762 goto up_out; 1763 } 1764 1765 /* 1766 * We populate the whole vma on fault, so we need to test whether 1767 * the vma has already been mapped, such as for concurrent faults 1768 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if 1769 * we ask it to fill the same range again. 1770 */ 1771 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1772 if (mmap_vma->vma == vma) 1773 goto up_out; 1774 } 1775 1776 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 1777 vma->vm_end - vma->vm_start, 1778 vma->vm_page_prot)) { 1779 ret = VM_FAULT_SIGBUS; 1780 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1781 goto up_out; 1782 } 1783 1784 if (__vfio_pci_add_vma(vdev, vma)) { 1785 ret = VM_FAULT_OOM; 1786 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1787 } 1788 1789 up_out: 1790 up_read(&vdev->memory_lock); 1791 mutex_unlock(&vdev->vma_lock); 1792 return ret; 1793 } 1794 1795 static const struct vm_operations_struct vfio_pci_mmap_ops = { 1796 .open = vfio_pci_mmap_open, 1797 .close = vfio_pci_mmap_close, 1798 .fault = vfio_pci_mmap_fault, 1799 }; 1800 1801 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) 1802 { 1803 struct vfio_pci_core_device *vdev = 1804 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1805 struct pci_dev *pdev = vdev->pdev; 1806 unsigned int index; 1807 u64 phys_len, req_len, pgoff, req_start; 1808 int ret; 1809 1810 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); 1811 1812 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1813 return -EINVAL; 1814 if (vma->vm_end < vma->vm_start) 1815 return -EINVAL; 1816 if ((vma->vm_flags & VM_SHARED) == 0) 1817 return -EINVAL; 1818 if (index >= VFIO_PCI_NUM_REGIONS) { 1819 int regnum = index - VFIO_PCI_NUM_REGIONS; 1820 struct vfio_pci_region *region = vdev->region + regnum; 1821 1822 if (region->ops && region->ops->mmap && 1823 (region->flags & VFIO_REGION_INFO_FLAG_MMAP)) 1824 return region->ops->mmap(vdev, region, vma); 1825 return -EINVAL; 1826 } 1827 if (index >= VFIO_PCI_ROM_REGION_INDEX) 1828 return -EINVAL; 1829 if (!vdev->bar_mmap_supported[index]) 1830 return -EINVAL; 1831 1832 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index)); 1833 req_len = vma->vm_end - vma->vm_start; 1834 pgoff = vma->vm_pgoff & 1835 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); 1836 req_start = pgoff << PAGE_SHIFT; 1837 1838 if (req_start + req_len > phys_len) 1839 return -EINVAL; 1840 1841 /* 1842 * Even though we don't make use of the barmap for the mmap, 1843 * we need to request the region and the barmap tracks that. 1844 */ 1845 if (!vdev->barmap[index]) { 1846 ret = pci_request_selected_regions(pdev, 1847 1 << index, "vfio-pci"); 1848 if (ret) 1849 return ret; 1850 1851 vdev->barmap[index] = pci_iomap(pdev, index, 0); 1852 if (!vdev->barmap[index]) { 1853 pci_release_selected_regions(pdev, 1 << index); 1854 return -ENOMEM; 1855 } 1856 } 1857 1858 vma->vm_private_data = vdev; 1859 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1860 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff; 1861 1862 /* 1863 * See remap_pfn_range(), called from vfio_pci_fault() but we can't 1864 * change vm_flags within the fault handler. Set them now. 1865 * 1866 * VM_ALLOW_ANY_UNCACHED: The VMA flag is implemented for ARM64, 1867 * allowing KVM stage 2 device mapping attributes to use Normal-NC 1868 * rather than DEVICE_nGnRE, which allows guest mappings 1869 * supporting write-combining attributes (WC). ARM does not 1870 * architecturally guarantee this is safe, and indeed some MMIO 1871 * regions like the GICv2 VCPU interface can trigger uncontained 1872 * faults if Normal-NC is used. 1873 * 1874 * To safely use VFIO in KVM the platform must guarantee full 1875 * safety in the guest where no action taken against a MMIO 1876 * mapping can trigger an uncontained failure. The assumption is 1877 * that most VFIO PCI platforms support this for both mapping types, 1878 * at least in common flows, based on some expectations of how 1879 * PCI IP is integrated. Hence VM_ALLOW_ANY_UNCACHED is set in 1880 * the VMA flags. 1881 */ 1882 vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED | VM_IO | VM_PFNMAP | 1883 VM_DONTEXPAND | VM_DONTDUMP); 1884 vma->vm_ops = &vfio_pci_mmap_ops; 1885 1886 return 0; 1887 } 1888 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap); 1889 1890 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count) 1891 { 1892 struct vfio_pci_core_device *vdev = 1893 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1894 struct pci_dev *pdev = vdev->pdev; 1895 1896 mutex_lock(&vdev->igate); 1897 1898 if (vdev->req_trigger) { 1899 if (!(count % 10)) 1900 pci_notice_ratelimited(pdev, 1901 "Relaying device request to user (#%u)\n", 1902 count); 1903 eventfd_signal(vdev->req_trigger); 1904 } else if (count == 0) { 1905 pci_warn(pdev, 1906 "No device request channel registered, blocked until released by user\n"); 1907 } 1908 1909 mutex_unlock(&vdev->igate); 1910 } 1911 EXPORT_SYMBOL_GPL(vfio_pci_core_request); 1912 1913 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev, 1914 bool vf_token, uuid_t *uuid) 1915 { 1916 /* 1917 * There's always some degree of trust or collaboration between SR-IOV 1918 * PF and VFs, even if just that the PF hosts the SR-IOV capability and 1919 * can disrupt VFs with a reset, but often the PF has more explicit 1920 * access to deny service to the VF or access data passed through the 1921 * VF. We therefore require an opt-in via a shared VF token (UUID) to 1922 * represent this trust. This both prevents that a VF driver might 1923 * assume the PF driver is a trusted, in-kernel driver, and also that 1924 * a PF driver might be replaced with a rogue driver, unknown to in-use 1925 * VF drivers. 1926 * 1927 * Therefore when presented with a VF, if the PF is a vfio device and 1928 * it is bound to the vfio-pci driver, the user needs to provide a VF 1929 * token to access the device, in the form of appending a vf_token to 1930 * the device name, for example: 1931 * 1932 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3" 1933 * 1934 * When presented with a PF which has VFs in use, the user must also 1935 * provide the current VF token to prove collaboration with existing 1936 * VF users. If VFs are not in use, the VF token provided for the PF 1937 * device will act to set the VF token. 1938 * 1939 * If the VF token is provided but unused, an error is generated. 1940 */ 1941 if (vdev->pdev->is_virtfn) { 1942 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev; 1943 bool match; 1944 1945 if (!pf_vdev) { 1946 if (!vf_token) 1947 return 0; /* PF is not vfio-pci, no VF token */ 1948 1949 pci_info_ratelimited(vdev->pdev, 1950 "VF token incorrectly provided, PF not bound to vfio-pci\n"); 1951 return -EINVAL; 1952 } 1953 1954 if (!vf_token) { 1955 pci_info_ratelimited(vdev->pdev, 1956 "VF token required to access device\n"); 1957 return -EACCES; 1958 } 1959 1960 mutex_lock(&pf_vdev->vf_token->lock); 1961 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid); 1962 mutex_unlock(&pf_vdev->vf_token->lock); 1963 1964 if (!match) { 1965 pci_info_ratelimited(vdev->pdev, 1966 "Incorrect VF token provided for device\n"); 1967 return -EACCES; 1968 } 1969 } else if (vdev->vf_token) { 1970 mutex_lock(&vdev->vf_token->lock); 1971 if (vdev->vf_token->users) { 1972 if (!vf_token) { 1973 mutex_unlock(&vdev->vf_token->lock); 1974 pci_info_ratelimited(vdev->pdev, 1975 "VF token required to access device\n"); 1976 return -EACCES; 1977 } 1978 1979 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) { 1980 mutex_unlock(&vdev->vf_token->lock); 1981 pci_info_ratelimited(vdev->pdev, 1982 "Incorrect VF token provided for device\n"); 1983 return -EACCES; 1984 } 1985 } else if (vf_token) { 1986 uuid_copy(&vdev->vf_token->uuid, uuid); 1987 } 1988 1989 mutex_unlock(&vdev->vf_token->lock); 1990 } else if (vf_token) { 1991 pci_info_ratelimited(vdev->pdev, 1992 "VF token incorrectly provided, not a PF or VF\n"); 1993 return -EINVAL; 1994 } 1995 1996 return 0; 1997 } 1998 1999 #define VF_TOKEN_ARG "vf_token=" 2000 2001 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf) 2002 { 2003 struct vfio_pci_core_device *vdev = 2004 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2005 bool vf_token = false; 2006 uuid_t uuid; 2007 int ret; 2008 2009 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev)))) 2010 return 0; /* No match */ 2011 2012 if (strlen(buf) > strlen(pci_name(vdev->pdev))) { 2013 buf += strlen(pci_name(vdev->pdev)); 2014 2015 if (*buf != ' ') 2016 return 0; /* No match: non-whitespace after name */ 2017 2018 while (*buf) { 2019 if (*buf == ' ') { 2020 buf++; 2021 continue; 2022 } 2023 2024 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG, 2025 strlen(VF_TOKEN_ARG))) { 2026 buf += strlen(VF_TOKEN_ARG); 2027 2028 if (strlen(buf) < UUID_STRING_LEN) 2029 return -EINVAL; 2030 2031 ret = uuid_parse(buf, &uuid); 2032 if (ret) 2033 return ret; 2034 2035 vf_token = true; 2036 buf += UUID_STRING_LEN; 2037 } else { 2038 /* Unknown/duplicate option */ 2039 return -EINVAL; 2040 } 2041 } 2042 } 2043 2044 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid); 2045 if (ret) 2046 return ret; 2047 2048 return 1; /* Match */ 2049 } 2050 EXPORT_SYMBOL_GPL(vfio_pci_core_match); 2051 2052 static int vfio_pci_bus_notifier(struct notifier_block *nb, 2053 unsigned long action, void *data) 2054 { 2055 struct vfio_pci_core_device *vdev = container_of(nb, 2056 struct vfio_pci_core_device, nb); 2057 struct device *dev = data; 2058 struct pci_dev *pdev = to_pci_dev(dev); 2059 struct pci_dev *physfn = pci_physfn(pdev); 2060 2061 if (action == BUS_NOTIFY_ADD_DEVICE && 2062 pdev->is_virtfn && physfn == vdev->pdev) { 2063 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n", 2064 pci_name(pdev)); 2065 pdev->driver_override = kasprintf(GFP_KERNEL, "%s", 2066 vdev->vdev.ops->name); 2067 WARN_ON(!pdev->driver_override); 2068 } else if (action == BUS_NOTIFY_BOUND_DRIVER && 2069 pdev->is_virtfn && physfn == vdev->pdev) { 2070 struct pci_driver *drv = pci_dev_driver(pdev); 2071 2072 if (drv && drv != pci_dev_driver(vdev->pdev)) 2073 pci_warn(vdev->pdev, 2074 "VF %s bound to driver %s while PF bound to driver %s\n", 2075 pci_name(pdev), drv->name, 2076 pci_dev_driver(vdev->pdev)->name); 2077 } 2078 2079 return 0; 2080 } 2081 2082 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev) 2083 { 2084 struct pci_dev *pdev = vdev->pdev; 2085 struct vfio_pci_core_device *cur; 2086 struct pci_dev *physfn; 2087 int ret; 2088 2089 if (pdev->is_virtfn) { 2090 /* 2091 * If this VF was created by our vfio_pci_core_sriov_configure() 2092 * then we can find the PF vfio_pci_core_device now, and due to 2093 * the locking in pci_disable_sriov() it cannot change until 2094 * this VF device driver is removed. 2095 */ 2096 physfn = pci_physfn(vdev->pdev); 2097 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2098 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) { 2099 if (cur->pdev == physfn) { 2100 vdev->sriov_pf_core_dev = cur; 2101 break; 2102 } 2103 } 2104 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2105 return 0; 2106 } 2107 2108 /* Not a SRIOV PF */ 2109 if (!pdev->is_physfn) 2110 return 0; 2111 2112 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL); 2113 if (!vdev->vf_token) 2114 return -ENOMEM; 2115 2116 mutex_init(&vdev->vf_token->lock); 2117 uuid_gen(&vdev->vf_token->uuid); 2118 2119 vdev->nb.notifier_call = vfio_pci_bus_notifier; 2120 ret = bus_register_notifier(&pci_bus_type, &vdev->nb); 2121 if (ret) { 2122 kfree(vdev->vf_token); 2123 return ret; 2124 } 2125 return 0; 2126 } 2127 2128 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev) 2129 { 2130 if (!vdev->vf_token) 2131 return; 2132 2133 bus_unregister_notifier(&pci_bus_type, &vdev->nb); 2134 WARN_ON(vdev->vf_token->users); 2135 mutex_destroy(&vdev->vf_token->lock); 2136 kfree(vdev->vf_token); 2137 } 2138 2139 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev) 2140 { 2141 struct pci_dev *pdev = vdev->pdev; 2142 int ret; 2143 2144 if (!vfio_pci_is_vga(pdev)) 2145 return 0; 2146 2147 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name); 2148 if (ret) 2149 return ret; 2150 2151 ret = vga_client_register(pdev, vfio_pci_set_decode); 2152 if (ret) 2153 return ret; 2154 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false)); 2155 return 0; 2156 } 2157 2158 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev) 2159 { 2160 struct pci_dev *pdev = vdev->pdev; 2161 2162 if (!vfio_pci_is_vga(pdev)) 2163 return; 2164 vga_client_unregister(pdev); 2165 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 2166 VGA_RSRC_LEGACY_IO | 2167 VGA_RSRC_LEGACY_MEM); 2168 } 2169 2170 int vfio_pci_core_init_dev(struct vfio_device *core_vdev) 2171 { 2172 struct vfio_pci_core_device *vdev = 2173 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2174 2175 vdev->pdev = to_pci_dev(core_vdev->dev); 2176 vdev->irq_type = VFIO_PCI_NUM_IRQS; 2177 mutex_init(&vdev->igate); 2178 spin_lock_init(&vdev->irqlock); 2179 mutex_init(&vdev->ioeventfds_lock); 2180 INIT_LIST_HEAD(&vdev->dummy_resources_list); 2181 INIT_LIST_HEAD(&vdev->ioeventfds_list); 2182 mutex_init(&vdev->vma_lock); 2183 INIT_LIST_HEAD(&vdev->vma_list); 2184 INIT_LIST_HEAD(&vdev->sriov_pfs_item); 2185 init_rwsem(&vdev->memory_lock); 2186 xa_init(&vdev->ctx); 2187 2188 return 0; 2189 } 2190 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev); 2191 2192 void vfio_pci_core_release_dev(struct vfio_device *core_vdev) 2193 { 2194 struct vfio_pci_core_device *vdev = 2195 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2196 2197 mutex_destroy(&vdev->igate); 2198 mutex_destroy(&vdev->ioeventfds_lock); 2199 mutex_destroy(&vdev->vma_lock); 2200 kfree(vdev->region); 2201 kfree(vdev->pm_save); 2202 } 2203 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev); 2204 2205 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev) 2206 { 2207 struct pci_dev *pdev = vdev->pdev; 2208 struct device *dev = &pdev->dev; 2209 int ret; 2210 2211 /* Drivers must set the vfio_pci_core_device to their drvdata */ 2212 if (WARN_ON(vdev != dev_get_drvdata(dev))) 2213 return -EINVAL; 2214 2215 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2216 return -EINVAL; 2217 2218 if (vdev->vdev.mig_ops) { 2219 if (!(vdev->vdev.mig_ops->migration_get_state && 2220 vdev->vdev.mig_ops->migration_set_state && 2221 vdev->vdev.mig_ops->migration_get_data_size) || 2222 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY)) 2223 return -EINVAL; 2224 } 2225 2226 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start && 2227 vdev->vdev.log_ops->log_stop && 2228 vdev->vdev.log_ops->log_read_and_clear)) 2229 return -EINVAL; 2230 2231 /* 2232 * Prevent binding to PFs with VFs enabled, the VFs might be in use 2233 * by the host or other users. We cannot capture the VFs if they 2234 * already exist, nor can we track VF users. Disabling SR-IOV here 2235 * would initiate removing the VFs, which would unbind the driver, 2236 * which is prone to blocking if that VF is also in use by vfio-pci. 2237 * Just reject these PFs and let the user sort it out. 2238 */ 2239 if (pci_num_vf(pdev)) { 2240 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n"); 2241 return -EBUSY; 2242 } 2243 2244 if (pci_is_root_bus(pdev->bus)) { 2245 ret = vfio_assign_device_set(&vdev->vdev, vdev); 2246 } else if (!pci_probe_reset_slot(pdev->slot)) { 2247 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot); 2248 } else { 2249 /* 2250 * If there is no slot reset support for this device, the whole 2251 * bus needs to be grouped together to support bus-wide resets. 2252 */ 2253 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus); 2254 } 2255 2256 if (ret) 2257 return ret; 2258 ret = vfio_pci_vf_init(vdev); 2259 if (ret) 2260 return ret; 2261 ret = vfio_pci_vga_init(vdev); 2262 if (ret) 2263 goto out_vf; 2264 2265 vfio_pci_probe_power_state(vdev); 2266 2267 /* 2268 * pci-core sets the device power state to an unknown value at 2269 * bootup and after being removed from a driver. The only 2270 * transition it allows from this unknown state is to D0, which 2271 * typically happens when a driver calls pci_enable_device(). 2272 * We're not ready to enable the device yet, but we do want to 2273 * be able to get to D3. Therefore first do a D0 transition 2274 * before enabling runtime PM. 2275 */ 2276 vfio_pci_set_power_state(vdev, PCI_D0); 2277 2278 dev->driver->pm = &vfio_pci_core_pm_ops; 2279 pm_runtime_allow(dev); 2280 if (!disable_idle_d3) 2281 pm_runtime_put(dev); 2282 2283 ret = vfio_register_group_dev(&vdev->vdev); 2284 if (ret) 2285 goto out_power; 2286 return 0; 2287 2288 out_power: 2289 if (!disable_idle_d3) 2290 pm_runtime_get_noresume(dev); 2291 2292 pm_runtime_forbid(dev); 2293 out_vf: 2294 vfio_pci_vf_uninit(vdev); 2295 return ret; 2296 } 2297 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device); 2298 2299 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev) 2300 { 2301 vfio_pci_core_sriov_configure(vdev, 0); 2302 2303 vfio_unregister_group_dev(&vdev->vdev); 2304 2305 vfio_pci_vf_uninit(vdev); 2306 vfio_pci_vga_uninit(vdev); 2307 2308 if (!disable_idle_d3) 2309 pm_runtime_get_noresume(&vdev->pdev->dev); 2310 2311 pm_runtime_forbid(&vdev->pdev->dev); 2312 } 2313 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device); 2314 2315 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev, 2316 pci_channel_state_t state) 2317 { 2318 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev); 2319 2320 mutex_lock(&vdev->igate); 2321 2322 if (vdev->err_trigger) 2323 eventfd_signal(vdev->err_trigger); 2324 2325 mutex_unlock(&vdev->igate); 2326 2327 return PCI_ERS_RESULT_CAN_RECOVER; 2328 } 2329 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected); 2330 2331 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev, 2332 int nr_virtfn) 2333 { 2334 struct pci_dev *pdev = vdev->pdev; 2335 int ret = 0; 2336 2337 device_lock_assert(&pdev->dev); 2338 2339 if (nr_virtfn) { 2340 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2341 /* 2342 * The thread that adds the vdev to the list is the only thread 2343 * that gets to call pci_enable_sriov() and we will only allow 2344 * it to be called once without going through 2345 * pci_disable_sriov() 2346 */ 2347 if (!list_empty(&vdev->sriov_pfs_item)) { 2348 ret = -EINVAL; 2349 goto out_unlock; 2350 } 2351 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs); 2352 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2353 2354 /* 2355 * The PF power state should always be higher than the VF power 2356 * state. The PF can be in low power state either with runtime 2357 * power management (when there is no user) or PCI_PM_CTRL 2358 * register write by the user. If PF is in the low power state, 2359 * then change the power state to D0 first before enabling 2360 * SR-IOV. Also, this function can be called at any time, and 2361 * userspace PCI_PM_CTRL write can race against this code path, 2362 * so protect the same with 'memory_lock'. 2363 */ 2364 ret = pm_runtime_resume_and_get(&pdev->dev); 2365 if (ret) 2366 goto out_del; 2367 2368 down_write(&vdev->memory_lock); 2369 vfio_pci_set_power_state(vdev, PCI_D0); 2370 ret = pci_enable_sriov(pdev, nr_virtfn); 2371 up_write(&vdev->memory_lock); 2372 if (ret) { 2373 pm_runtime_put(&pdev->dev); 2374 goto out_del; 2375 } 2376 return nr_virtfn; 2377 } 2378 2379 if (pci_num_vf(pdev)) { 2380 pci_disable_sriov(pdev); 2381 pm_runtime_put(&pdev->dev); 2382 } 2383 2384 out_del: 2385 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2386 list_del_init(&vdev->sriov_pfs_item); 2387 out_unlock: 2388 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2389 return ret; 2390 } 2391 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure); 2392 2393 const struct pci_error_handlers vfio_pci_core_err_handlers = { 2394 .error_detected = vfio_pci_core_aer_err_detected, 2395 }; 2396 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers); 2397 2398 static bool vfio_dev_in_groups(struct vfio_device *vdev, 2399 struct vfio_pci_group_info *groups) 2400 { 2401 unsigned int i; 2402 2403 if (!groups) 2404 return false; 2405 2406 for (i = 0; i < groups->count; i++) 2407 if (vfio_file_has_dev(groups->files[i], vdev)) 2408 return true; 2409 return false; 2410 } 2411 2412 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data) 2413 { 2414 struct vfio_device_set *dev_set = data; 2415 2416 return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV; 2417 } 2418 2419 /* 2420 * vfio-core considers a group to be viable and will create a vfio_device even 2421 * if some devices are bound to drivers like pci-stub or pcieport. Here we 2422 * require all PCI devices to be inside our dev_set since that ensures they stay 2423 * put and that every driver controlling the device can co-ordinate with the 2424 * device reset. 2425 * 2426 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be 2427 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise. 2428 */ 2429 static struct pci_dev * 2430 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set) 2431 { 2432 struct pci_dev *pdev; 2433 2434 lockdep_assert_held(&dev_set->lock); 2435 2436 /* 2437 * By definition all PCI devices in the dev_set share the same PCI 2438 * reset, so any pci_dev will have the same outcomes for 2439 * pci_probe_reset_*() and pci_reset_bus(). 2440 */ 2441 pdev = list_first_entry(&dev_set->device_list, 2442 struct vfio_pci_core_device, 2443 vdev.dev_set_list)->pdev; 2444 2445 /* pci_reset_bus() is supported */ 2446 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus)) 2447 return NULL; 2448 2449 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set, 2450 dev_set, 2451 !pci_probe_reset_slot(pdev->slot))) 2452 return NULL; 2453 return pdev; 2454 } 2455 2456 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set) 2457 { 2458 struct vfio_pci_core_device *cur; 2459 int ret; 2460 2461 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2462 ret = pm_runtime_resume_and_get(&cur->pdev->dev); 2463 if (ret) 2464 goto unwind; 2465 } 2466 2467 return 0; 2468 2469 unwind: 2470 list_for_each_entry_continue_reverse(cur, &dev_set->device_list, 2471 vdev.dev_set_list) 2472 pm_runtime_put(&cur->pdev->dev); 2473 2474 return ret; 2475 } 2476 2477 /* 2478 * We need to get memory_lock for each device, but devices can share mmap_lock, 2479 * therefore we need to zap and hold the vma_lock for each device, and only then 2480 * get each memory_lock. 2481 */ 2482 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 2483 struct vfio_pci_group_info *groups, 2484 struct iommufd_ctx *iommufd_ctx) 2485 { 2486 struct vfio_pci_core_device *cur_mem; 2487 struct vfio_pci_core_device *cur_vma; 2488 struct vfio_pci_core_device *cur; 2489 struct pci_dev *pdev; 2490 bool is_mem = true; 2491 int ret; 2492 2493 mutex_lock(&dev_set->lock); 2494 cur_mem = list_first_entry(&dev_set->device_list, 2495 struct vfio_pci_core_device, 2496 vdev.dev_set_list); 2497 2498 pdev = vfio_pci_dev_set_resettable(dev_set); 2499 if (!pdev) { 2500 ret = -EINVAL; 2501 goto err_unlock; 2502 } 2503 2504 /* 2505 * Some of the devices in the dev_set can be in the runtime suspended 2506 * state. Increment the usage count for all the devices in the dev_set 2507 * before reset and decrement the same after reset. 2508 */ 2509 ret = vfio_pci_dev_set_pm_runtime_get(dev_set); 2510 if (ret) 2511 goto err_unlock; 2512 2513 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) { 2514 bool owned; 2515 2516 /* 2517 * Test whether all the affected devices can be reset by the 2518 * user. 2519 * 2520 * If called from a group opened device and the user provides 2521 * a set of groups, all the devices in the dev_set should be 2522 * contained by the set of groups provided by the user. 2523 * 2524 * If called from a cdev opened device and the user provides 2525 * a zero-length array, all the devices in the dev_set must 2526 * be bound to the same iommufd_ctx as the input iommufd_ctx. 2527 * If there is any device that has not been bound to any 2528 * iommufd_ctx yet, check if its iommu_group has any device 2529 * bound to the input iommufd_ctx. Such devices can be 2530 * considered owned by the input iommufd_ctx as the device 2531 * cannot be owned by another iommufd_ctx when its iommu_group 2532 * is owned. 2533 * 2534 * Otherwise, reset is not allowed. 2535 */ 2536 if (iommufd_ctx) { 2537 int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev, 2538 iommufd_ctx); 2539 2540 owned = (devid > 0 || devid == -ENOENT); 2541 } else { 2542 owned = vfio_dev_in_groups(&cur_vma->vdev, groups); 2543 } 2544 2545 if (!owned) { 2546 ret = -EINVAL; 2547 goto err_undo; 2548 } 2549 2550 /* 2551 * Locking multiple devices is prone to deadlock, runaway and 2552 * unwind if we hit contention. 2553 */ 2554 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) { 2555 ret = -EBUSY; 2556 goto err_undo; 2557 } 2558 } 2559 cur_vma = NULL; 2560 2561 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) { 2562 if (!down_write_trylock(&cur_mem->memory_lock)) { 2563 ret = -EBUSY; 2564 goto err_undo; 2565 } 2566 mutex_unlock(&cur_mem->vma_lock); 2567 } 2568 cur_mem = NULL; 2569 2570 /* 2571 * The pci_reset_bus() will reset all the devices in the bus. 2572 * The power state can be non-D0 for some of the devices in the bus. 2573 * For these devices, the pci_reset_bus() will internally set 2574 * the power state to D0 without vfio driver involvement. 2575 * For the devices which have NoSoftRst-, the reset function can 2576 * cause the PCI config space reset without restoring the original 2577 * state (saved locally in 'vdev->pm_save'). 2578 */ 2579 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2580 vfio_pci_set_power_state(cur, PCI_D0); 2581 2582 ret = pci_reset_bus(pdev); 2583 2584 err_undo: 2585 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2586 if (cur == cur_mem) 2587 is_mem = false; 2588 if (cur == cur_vma) 2589 break; 2590 if (is_mem) 2591 up_write(&cur->memory_lock); 2592 else 2593 mutex_unlock(&cur->vma_lock); 2594 } 2595 2596 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2597 pm_runtime_put(&cur->pdev->dev); 2598 err_unlock: 2599 mutex_unlock(&dev_set->lock); 2600 return ret; 2601 } 2602 2603 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set) 2604 { 2605 struct vfio_pci_core_device *cur; 2606 bool needs_reset = false; 2607 2608 /* No other VFIO device in the set can be open. */ 2609 if (vfio_device_set_open_count(dev_set) > 1) 2610 return false; 2611 2612 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2613 needs_reset |= cur->needs_reset; 2614 return needs_reset; 2615 } 2616 2617 /* 2618 * If a bus or slot reset is available for the provided dev_set and: 2619 * - All of the devices affected by that bus or slot reset are unused 2620 * - At least one of the affected devices is marked dirty via 2621 * needs_reset (such as by lack of FLR support) 2622 * Then attempt to perform that bus or slot reset. 2623 */ 2624 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set) 2625 { 2626 struct vfio_pci_core_device *cur; 2627 struct pci_dev *pdev; 2628 bool reset_done = false; 2629 2630 if (!vfio_pci_dev_set_needs_reset(dev_set)) 2631 return; 2632 2633 pdev = vfio_pci_dev_set_resettable(dev_set); 2634 if (!pdev) 2635 return; 2636 2637 /* 2638 * Some of the devices in the bus can be in the runtime suspended 2639 * state. Increment the usage count for all the devices in the dev_set 2640 * before reset and decrement the same after reset. 2641 */ 2642 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set)) 2643 return; 2644 2645 if (!pci_reset_bus(pdev)) 2646 reset_done = true; 2647 2648 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2649 if (reset_done) 2650 cur->needs_reset = false; 2651 2652 if (!disable_idle_d3) 2653 pm_runtime_put(&cur->pdev->dev); 2654 } 2655 } 2656 2657 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga, 2658 bool is_disable_idle_d3) 2659 { 2660 nointxmask = is_nointxmask; 2661 disable_vga = is_disable_vga; 2662 disable_idle_d3 = is_disable_idle_d3; 2663 } 2664 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params); 2665 2666 static void vfio_pci_core_cleanup(void) 2667 { 2668 vfio_pci_uninit_perm_bits(); 2669 } 2670 2671 static int __init vfio_pci_core_init(void) 2672 { 2673 /* Allocate shared config space permission data used by all devices */ 2674 return vfio_pci_init_perm_bits(); 2675 } 2676 2677 module_init(vfio_pci_core_init); 2678 module_exit(vfio_pci_core_cleanup); 2679 2680 MODULE_LICENSE("GPL v2"); 2681 MODULE_AUTHOR(DRIVER_AUTHOR); 2682 MODULE_DESCRIPTION(DRIVER_DESC); 2683