1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 4 * Author: Alex Williamson <alex.williamson@redhat.com> 5 * 6 * Derived from original vfio: 7 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 8 * Author: Tom Lyon, pugs@cisco.com 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/aperture.h> 14 #include <linux/device.h> 15 #include <linux/eventfd.h> 16 #include <linux/file.h> 17 #include <linux/interrupt.h> 18 #include <linux/iommu.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/notifier.h> 22 #include <linux/pci.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 #include <linux/types.h> 26 #include <linux/uaccess.h> 27 #include <linux/vgaarb.h> 28 #include <linux/nospec.h> 29 #include <linux/sched/mm.h> 30 #if IS_ENABLED(CONFIG_EEH) 31 #include <asm/eeh.h> 32 #endif 33 34 #include "vfio_pci_priv.h" 35 36 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" 37 #define DRIVER_DESC "core driver for VFIO based PCI devices" 38 39 static bool nointxmask; 40 static bool disable_vga; 41 static bool disable_idle_d3; 42 43 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */ 44 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex); 45 static LIST_HEAD(vfio_pci_sriov_pfs); 46 47 struct vfio_pci_dummy_resource { 48 struct resource resource; 49 int index; 50 struct list_head res_next; 51 }; 52 53 struct vfio_pci_vf_token { 54 struct mutex lock; 55 uuid_t uuid; 56 int users; 57 }; 58 59 struct vfio_pci_mmap_vma { 60 struct vm_area_struct *vma; 61 struct list_head vma_next; 62 }; 63 64 static inline bool vfio_vga_disabled(void) 65 { 66 #ifdef CONFIG_VFIO_PCI_VGA 67 return disable_vga; 68 #else 69 return true; 70 #endif 71 } 72 73 /* 74 * Our VGA arbiter participation is limited since we don't know anything 75 * about the device itself. However, if the device is the only VGA device 76 * downstream of a bridge and VFIO VGA support is disabled, then we can 77 * safely return legacy VGA IO and memory as not decoded since the user 78 * has no way to get to it and routing can be disabled externally at the 79 * bridge. 80 */ 81 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga) 82 { 83 struct pci_dev *tmp = NULL; 84 unsigned char max_busnr; 85 unsigned int decodes; 86 87 if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus)) 88 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 89 VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 90 91 max_busnr = pci_bus_max_busnr(pdev->bus); 92 decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM; 93 94 while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) { 95 if (tmp == pdev || 96 pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) || 97 pci_is_root_bus(tmp->bus)) 98 continue; 99 100 if (tmp->bus->number >= pdev->bus->number && 101 tmp->bus->number <= max_busnr) { 102 pci_dev_put(tmp); 103 decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM; 104 break; 105 } 106 } 107 108 return decodes; 109 } 110 111 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev) 112 { 113 struct resource *res; 114 int i; 115 struct vfio_pci_dummy_resource *dummy_res; 116 117 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 118 int bar = i + PCI_STD_RESOURCES; 119 120 res = &vdev->pdev->resource[bar]; 121 122 if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP)) 123 goto no_mmap; 124 125 if (!(res->flags & IORESOURCE_MEM)) 126 goto no_mmap; 127 128 /* 129 * The PCI core shouldn't set up a resource with a 130 * type but zero size. But there may be bugs that 131 * cause us to do that. 132 */ 133 if (!resource_size(res)) 134 goto no_mmap; 135 136 if (resource_size(res) >= PAGE_SIZE) { 137 vdev->bar_mmap_supported[bar] = true; 138 continue; 139 } 140 141 if (!(res->start & ~PAGE_MASK)) { 142 /* 143 * Add a dummy resource to reserve the remainder 144 * of the exclusive page in case that hot-add 145 * device's bar is assigned into it. 146 */ 147 dummy_res = kzalloc(sizeof(*dummy_res), GFP_KERNEL); 148 if (dummy_res == NULL) 149 goto no_mmap; 150 151 dummy_res->resource.name = "vfio sub-page reserved"; 152 dummy_res->resource.start = res->end + 1; 153 dummy_res->resource.end = res->start + PAGE_SIZE - 1; 154 dummy_res->resource.flags = res->flags; 155 if (request_resource(res->parent, 156 &dummy_res->resource)) { 157 kfree(dummy_res); 158 goto no_mmap; 159 } 160 dummy_res->index = bar; 161 list_add(&dummy_res->res_next, 162 &vdev->dummy_resources_list); 163 vdev->bar_mmap_supported[bar] = true; 164 continue; 165 } 166 /* 167 * Here we don't handle the case when the BAR is not page 168 * aligned because we can't expect the BAR will be 169 * assigned into the same location in a page in guest 170 * when we passthrough the BAR. And it's hard to access 171 * this BAR in userspace because we have no way to get 172 * the BAR's location in a page. 173 */ 174 no_mmap: 175 vdev->bar_mmap_supported[bar] = false; 176 } 177 } 178 179 struct vfio_pci_group_info; 180 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set); 181 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 182 struct vfio_pci_group_info *groups); 183 184 /* 185 * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND 186 * _and_ the ability detect when the device is asserting INTx via PCI_STATUS. 187 * If a device implements the former but not the latter we would typically 188 * expect broken_intx_masking be set and require an exclusive interrupt. 189 * However since we do have control of the device's ability to assert INTx, 190 * we can instead pretend that the device does not implement INTx, virtualizing 191 * the pin register to report zero and maintaining DisINTx set on the host. 192 */ 193 static bool vfio_pci_nointx(struct pci_dev *pdev) 194 { 195 switch (pdev->vendor) { 196 case PCI_VENDOR_ID_INTEL: 197 switch (pdev->device) { 198 /* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */ 199 case 0x1572: 200 case 0x1574: 201 case 0x1580 ... 0x1581: 202 case 0x1583 ... 0x158b: 203 case 0x37d0 ... 0x37d2: 204 /* X550 */ 205 case 0x1563: 206 return true; 207 default: 208 return false; 209 } 210 } 211 212 return false; 213 } 214 215 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev) 216 { 217 struct pci_dev *pdev = vdev->pdev; 218 u16 pmcsr; 219 220 if (!pdev->pm_cap) 221 return; 222 223 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 224 225 vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 226 } 227 228 /* 229 * pci_set_power_state() wrapper handling devices which perform a soft reset on 230 * D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev, 231 * restore when returned to D0. Saved separately from pci_saved_state for use 232 * by PM capability emulation and separately from pci_dev internal saved state 233 * to avoid it being overwritten and consumed around other resets. 234 */ 235 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state) 236 { 237 struct pci_dev *pdev = vdev->pdev; 238 bool needs_restore = false, needs_save = false; 239 int ret; 240 241 /* Prevent changing power state for PFs with VFs enabled */ 242 if (pci_num_vf(pdev) && state > PCI_D0) 243 return -EBUSY; 244 245 if (vdev->needs_pm_restore) { 246 if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) { 247 pci_save_state(pdev); 248 needs_save = true; 249 } 250 251 if (pdev->current_state >= PCI_D3hot && state <= PCI_D0) 252 needs_restore = true; 253 } 254 255 ret = pci_set_power_state(pdev, state); 256 257 if (!ret) { 258 /* D3 might be unsupported via quirk, skip unless in D3 */ 259 if (needs_save && pdev->current_state >= PCI_D3hot) { 260 /* 261 * The current PCI state will be saved locally in 262 * 'pm_save' during the D3hot transition. When the 263 * device state is changed to D0 again with the current 264 * function, then pci_store_saved_state() will restore 265 * the state and will free the memory pointed by 266 * 'pm_save'. There are few cases where the PCI power 267 * state can be changed to D0 without the involvement 268 * of the driver. For these cases, free the earlier 269 * allocated memory first before overwriting 'pm_save' 270 * to prevent the memory leak. 271 */ 272 kfree(vdev->pm_save); 273 vdev->pm_save = pci_store_saved_state(pdev); 274 } else if (needs_restore) { 275 pci_load_and_free_saved_state(pdev, &vdev->pm_save); 276 pci_restore_state(pdev); 277 } 278 } 279 280 return ret; 281 } 282 283 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev, 284 struct eventfd_ctx *efdctx) 285 { 286 /* 287 * The vdev power related flags are protected with 'memory_lock' 288 * semaphore. 289 */ 290 vfio_pci_zap_and_down_write_memory_lock(vdev); 291 if (vdev->pm_runtime_engaged) { 292 up_write(&vdev->memory_lock); 293 return -EINVAL; 294 } 295 296 vdev->pm_runtime_engaged = true; 297 vdev->pm_wake_eventfd_ctx = efdctx; 298 pm_runtime_put_noidle(&vdev->pdev->dev); 299 up_write(&vdev->memory_lock); 300 301 return 0; 302 } 303 304 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags, 305 void __user *arg, size_t argsz) 306 { 307 struct vfio_pci_core_device *vdev = 308 container_of(device, struct vfio_pci_core_device, vdev); 309 int ret; 310 311 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 312 if (ret != 1) 313 return ret; 314 315 /* 316 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count 317 * will be decremented. The pm_runtime_put() will be invoked again 318 * while returning from the ioctl and then the device can go into 319 * runtime suspended state. 320 */ 321 return vfio_pci_runtime_pm_entry(vdev, NULL); 322 } 323 324 static int vfio_pci_core_pm_entry_with_wakeup( 325 struct vfio_device *device, u32 flags, 326 struct vfio_device_low_power_entry_with_wakeup __user *arg, 327 size_t argsz) 328 { 329 struct vfio_pci_core_device *vdev = 330 container_of(device, struct vfio_pci_core_device, vdev); 331 struct vfio_device_low_power_entry_with_wakeup entry; 332 struct eventfd_ctx *efdctx; 333 int ret; 334 335 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 336 sizeof(entry)); 337 if (ret != 1) 338 return ret; 339 340 if (copy_from_user(&entry, arg, sizeof(entry))) 341 return -EFAULT; 342 343 if (entry.wakeup_eventfd < 0) 344 return -EINVAL; 345 346 efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd); 347 if (IS_ERR(efdctx)) 348 return PTR_ERR(efdctx); 349 350 ret = vfio_pci_runtime_pm_entry(vdev, efdctx); 351 if (ret) 352 eventfd_ctx_put(efdctx); 353 354 return ret; 355 } 356 357 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 358 { 359 if (vdev->pm_runtime_engaged) { 360 vdev->pm_runtime_engaged = false; 361 pm_runtime_get_noresume(&vdev->pdev->dev); 362 363 if (vdev->pm_wake_eventfd_ctx) { 364 eventfd_ctx_put(vdev->pm_wake_eventfd_ctx); 365 vdev->pm_wake_eventfd_ctx = NULL; 366 } 367 } 368 } 369 370 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev) 371 { 372 /* 373 * The vdev power related flags are protected with 'memory_lock' 374 * semaphore. 375 */ 376 down_write(&vdev->memory_lock); 377 __vfio_pci_runtime_pm_exit(vdev); 378 up_write(&vdev->memory_lock); 379 } 380 381 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags, 382 void __user *arg, size_t argsz) 383 { 384 struct vfio_pci_core_device *vdev = 385 container_of(device, struct vfio_pci_core_device, vdev); 386 int ret; 387 388 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0); 389 if (ret != 1) 390 return ret; 391 392 /* 393 * The device is always in the active state here due to pm wrappers 394 * around ioctls. If the device had entered a low power state and 395 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has 396 * already signaled the eventfd and exited low power mode itself. 397 * pm_runtime_engaged protects the redundant call here. 398 */ 399 vfio_pci_runtime_pm_exit(vdev); 400 return 0; 401 } 402 403 #ifdef CONFIG_PM 404 static int vfio_pci_core_runtime_suspend(struct device *dev) 405 { 406 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 407 408 down_write(&vdev->memory_lock); 409 /* 410 * The user can move the device into D3hot state before invoking 411 * power management IOCTL. Move the device into D0 state here and then 412 * the pci-driver core runtime PM suspend function will move the device 413 * into the low power state. Also, for the devices which have 414 * NoSoftRst-, it will help in restoring the original state 415 * (saved locally in 'vdev->pm_save'). 416 */ 417 vfio_pci_set_power_state(vdev, PCI_D0); 418 up_write(&vdev->memory_lock); 419 420 /* 421 * If INTx is enabled, then mask INTx before going into the runtime 422 * suspended state and unmask the same in the runtime resume. 423 * If INTx has already been masked by the user, then 424 * vfio_pci_intx_mask() will return false and in that case, INTx 425 * should not be unmasked in the runtime resume. 426 */ 427 vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) && 428 vfio_pci_intx_mask(vdev)); 429 430 return 0; 431 } 432 433 static int vfio_pci_core_runtime_resume(struct device *dev) 434 { 435 struct vfio_pci_core_device *vdev = dev_get_drvdata(dev); 436 437 /* 438 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit 439 * low power mode. 440 */ 441 down_write(&vdev->memory_lock); 442 if (vdev->pm_wake_eventfd_ctx) { 443 eventfd_signal(vdev->pm_wake_eventfd_ctx, 1); 444 __vfio_pci_runtime_pm_exit(vdev); 445 } 446 up_write(&vdev->memory_lock); 447 448 if (vdev->pm_intx_masked) 449 vfio_pci_intx_unmask(vdev); 450 451 return 0; 452 } 453 #endif /* CONFIG_PM */ 454 455 /* 456 * The pci-driver core runtime PM routines always save the device state 457 * before going into suspended state. If the device is going into low power 458 * state with only with runtime PM ops, then no explicit handling is needed 459 * for the devices which have NoSoftRst-. 460 */ 461 static const struct dev_pm_ops vfio_pci_core_pm_ops = { 462 SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend, 463 vfio_pci_core_runtime_resume, 464 NULL) 465 }; 466 467 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev) 468 { 469 struct pci_dev *pdev = vdev->pdev; 470 int ret; 471 u16 cmd; 472 u8 msix_pos; 473 474 if (!disable_idle_d3) { 475 ret = pm_runtime_resume_and_get(&pdev->dev); 476 if (ret < 0) 477 return ret; 478 } 479 480 /* Don't allow our initial saved state to include busmaster */ 481 pci_clear_master(pdev); 482 483 ret = pci_enable_device(pdev); 484 if (ret) 485 goto out_power; 486 487 /* If reset fails because of the device lock, fail this path entirely */ 488 ret = pci_try_reset_function(pdev); 489 if (ret == -EAGAIN) 490 goto out_disable_device; 491 492 vdev->reset_works = !ret; 493 pci_save_state(pdev); 494 vdev->pci_saved_state = pci_store_saved_state(pdev); 495 if (!vdev->pci_saved_state) 496 pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__); 497 498 if (likely(!nointxmask)) { 499 if (vfio_pci_nointx(pdev)) { 500 pci_info(pdev, "Masking broken INTx support\n"); 501 vdev->nointx = true; 502 pci_intx(pdev, 0); 503 } else 504 vdev->pci_2_3 = pci_intx_mask_supported(pdev); 505 } 506 507 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 508 if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) { 509 cmd &= ~PCI_COMMAND_INTX_DISABLE; 510 pci_write_config_word(pdev, PCI_COMMAND, cmd); 511 } 512 513 ret = vfio_pci_zdev_open_device(vdev); 514 if (ret) 515 goto out_free_state; 516 517 ret = vfio_config_init(vdev); 518 if (ret) 519 goto out_free_zdev; 520 521 msix_pos = pdev->msix_cap; 522 if (msix_pos) { 523 u16 flags; 524 u32 table; 525 526 pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags); 527 pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table); 528 529 vdev->msix_bar = table & PCI_MSIX_TABLE_BIR; 530 vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET; 531 vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16; 532 } else 533 vdev->msix_bar = 0xFF; 534 535 if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev)) 536 vdev->has_vga = true; 537 538 539 return 0; 540 541 out_free_zdev: 542 vfio_pci_zdev_close_device(vdev); 543 out_free_state: 544 kfree(vdev->pci_saved_state); 545 vdev->pci_saved_state = NULL; 546 out_disable_device: 547 pci_disable_device(pdev); 548 out_power: 549 if (!disable_idle_d3) 550 pm_runtime_put(&pdev->dev); 551 return ret; 552 } 553 EXPORT_SYMBOL_GPL(vfio_pci_core_enable); 554 555 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev) 556 { 557 struct pci_dev *pdev = vdev->pdev; 558 struct vfio_pci_dummy_resource *dummy_res, *tmp; 559 struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp; 560 int i, bar; 561 562 /* For needs_reset */ 563 lockdep_assert_held(&vdev->vdev.dev_set->lock); 564 565 /* 566 * This function can be invoked while the power state is non-D0. 567 * This non-D0 power state can be with or without runtime PM. 568 * vfio_pci_runtime_pm_exit() will internally increment the usage 569 * count corresponding to pm_runtime_put() called during low power 570 * feature entry and then pm_runtime_resume() will wake up the device, 571 * if the device has already gone into the suspended state. Otherwise, 572 * the vfio_pci_set_power_state() will change the device power state 573 * to D0. 574 */ 575 vfio_pci_runtime_pm_exit(vdev); 576 pm_runtime_resume(&pdev->dev); 577 578 /* 579 * This function calls __pci_reset_function_locked() which internally 580 * can use pci_pm_reset() for the function reset. pci_pm_reset() will 581 * fail if the power state is non-D0. Also, for the devices which 582 * have NoSoftRst-, the reset function can cause the PCI config space 583 * reset without restoring the original state (saved locally in 584 * 'vdev->pm_save'). 585 */ 586 vfio_pci_set_power_state(vdev, PCI_D0); 587 588 /* Stop the device from further DMA */ 589 pci_clear_master(pdev); 590 591 vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE | 592 VFIO_IRQ_SET_ACTION_TRIGGER, 593 vdev->irq_type, 0, 0, NULL); 594 595 /* Device closed, don't need mutex here */ 596 list_for_each_entry_safe(ioeventfd, ioeventfd_tmp, 597 &vdev->ioeventfds_list, next) { 598 vfio_virqfd_disable(&ioeventfd->virqfd); 599 list_del(&ioeventfd->next); 600 kfree(ioeventfd); 601 } 602 vdev->ioeventfds_nr = 0; 603 604 vdev->virq_disabled = false; 605 606 for (i = 0; i < vdev->num_regions; i++) 607 vdev->region[i].ops->release(vdev, &vdev->region[i]); 608 609 vdev->num_regions = 0; 610 kfree(vdev->region); 611 vdev->region = NULL; /* don't krealloc a freed pointer */ 612 613 vfio_config_free(vdev); 614 615 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 616 bar = i + PCI_STD_RESOURCES; 617 if (!vdev->barmap[bar]) 618 continue; 619 pci_iounmap(pdev, vdev->barmap[bar]); 620 pci_release_selected_regions(pdev, 1 << bar); 621 vdev->barmap[bar] = NULL; 622 } 623 624 list_for_each_entry_safe(dummy_res, tmp, 625 &vdev->dummy_resources_list, res_next) { 626 list_del(&dummy_res->res_next); 627 release_resource(&dummy_res->resource); 628 kfree(dummy_res); 629 } 630 631 vdev->needs_reset = true; 632 633 vfio_pci_zdev_close_device(vdev); 634 635 /* 636 * If we have saved state, restore it. If we can reset the device, 637 * even better. Resetting with current state seems better than 638 * nothing, but saving and restoring current state without reset 639 * is just busy work. 640 */ 641 if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) { 642 pci_info(pdev, "%s: Couldn't reload saved state\n", __func__); 643 644 if (!vdev->reset_works) 645 goto out; 646 647 pci_save_state(pdev); 648 } 649 650 /* 651 * Disable INTx and MSI, presumably to avoid spurious interrupts 652 * during reset. Stolen from pci_reset_function() 653 */ 654 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 655 656 /* 657 * Try to get the locks ourselves to prevent a deadlock. The 658 * success of this is dependent on being able to lock the device, 659 * which is not always possible. 660 * We can not use the "try" reset interface here, which will 661 * overwrite the previously restored configuration information. 662 */ 663 if (vdev->reset_works && pci_dev_trylock(pdev)) { 664 if (!__pci_reset_function_locked(pdev)) 665 vdev->needs_reset = false; 666 pci_dev_unlock(pdev); 667 } 668 669 pci_restore_state(pdev); 670 out: 671 pci_disable_device(pdev); 672 673 vfio_pci_dev_set_try_reset(vdev->vdev.dev_set); 674 675 /* Put the pm-runtime usage counter acquired during enable */ 676 if (!disable_idle_d3) 677 pm_runtime_put(&pdev->dev); 678 } 679 EXPORT_SYMBOL_GPL(vfio_pci_core_disable); 680 681 void vfio_pci_core_close_device(struct vfio_device *core_vdev) 682 { 683 struct vfio_pci_core_device *vdev = 684 container_of(core_vdev, struct vfio_pci_core_device, vdev); 685 686 if (vdev->sriov_pf_core_dev) { 687 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 688 WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users); 689 vdev->sriov_pf_core_dev->vf_token->users--; 690 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 691 } 692 #if IS_ENABLED(CONFIG_EEH) 693 eeh_dev_release(vdev->pdev); 694 #endif 695 vfio_pci_core_disable(vdev); 696 697 mutex_lock(&vdev->igate); 698 if (vdev->err_trigger) { 699 eventfd_ctx_put(vdev->err_trigger); 700 vdev->err_trigger = NULL; 701 } 702 if (vdev->req_trigger) { 703 eventfd_ctx_put(vdev->req_trigger); 704 vdev->req_trigger = NULL; 705 } 706 mutex_unlock(&vdev->igate); 707 } 708 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device); 709 710 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev) 711 { 712 vfio_pci_probe_mmaps(vdev); 713 #if IS_ENABLED(CONFIG_EEH) 714 eeh_dev_open(vdev->pdev); 715 #endif 716 717 if (vdev->sriov_pf_core_dev) { 718 mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock); 719 vdev->sriov_pf_core_dev->vf_token->users++; 720 mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock); 721 } 722 } 723 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable); 724 725 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type) 726 { 727 if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) { 728 u8 pin; 729 730 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || 731 vdev->nointx || vdev->pdev->is_virtfn) 732 return 0; 733 734 pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin); 735 736 return pin ? 1 : 0; 737 } else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) { 738 u8 pos; 739 u16 flags; 740 741 pos = vdev->pdev->msi_cap; 742 if (pos) { 743 pci_read_config_word(vdev->pdev, 744 pos + PCI_MSI_FLAGS, &flags); 745 return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1); 746 } 747 } else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) { 748 u8 pos; 749 u16 flags; 750 751 pos = vdev->pdev->msix_cap; 752 if (pos) { 753 pci_read_config_word(vdev->pdev, 754 pos + PCI_MSIX_FLAGS, &flags); 755 756 return (flags & PCI_MSIX_FLAGS_QSIZE) + 1; 757 } 758 } else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) { 759 if (pci_is_pcie(vdev->pdev)) 760 return 1; 761 } else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) { 762 return 1; 763 } 764 765 return 0; 766 } 767 768 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data) 769 { 770 (*(int *)data)++; 771 return 0; 772 } 773 774 struct vfio_pci_fill_info { 775 int max; 776 int cur; 777 struct vfio_pci_dependent_device *devices; 778 }; 779 780 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data) 781 { 782 struct vfio_pci_fill_info *fill = data; 783 struct iommu_group *iommu_group; 784 785 if (fill->cur == fill->max) 786 return -EAGAIN; /* Something changed, try again */ 787 788 iommu_group = iommu_group_get(&pdev->dev); 789 if (!iommu_group) 790 return -EPERM; /* Cannot reset non-isolated devices */ 791 792 fill->devices[fill->cur].group_id = iommu_group_id(iommu_group); 793 fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus); 794 fill->devices[fill->cur].bus = pdev->bus->number; 795 fill->devices[fill->cur].devfn = pdev->devfn; 796 fill->cur++; 797 iommu_group_put(iommu_group); 798 return 0; 799 } 800 801 struct vfio_pci_group_info { 802 int count; 803 struct file **files; 804 }; 805 806 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot) 807 { 808 for (; pdev; pdev = pdev->bus->self) 809 if (pdev->bus == slot->bus) 810 return (pdev->slot == slot); 811 return false; 812 } 813 814 struct vfio_pci_walk_info { 815 int (*fn)(struct pci_dev *pdev, void *data); 816 void *data; 817 struct pci_dev *pdev; 818 bool slot; 819 int ret; 820 }; 821 822 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data) 823 { 824 struct vfio_pci_walk_info *walk = data; 825 826 if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot)) 827 walk->ret = walk->fn(pdev, walk->data); 828 829 return walk->ret; 830 } 831 832 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev, 833 int (*fn)(struct pci_dev *, 834 void *data), void *data, 835 bool slot) 836 { 837 struct vfio_pci_walk_info walk = { 838 .fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0, 839 }; 840 841 pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk); 842 843 return walk.ret; 844 } 845 846 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev, 847 struct vfio_info_cap *caps) 848 { 849 struct vfio_info_cap_header header = { 850 .id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE, 851 .version = 1 852 }; 853 854 return vfio_info_add_capability(caps, &header, sizeof(header)); 855 } 856 857 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev, 858 unsigned int type, unsigned int subtype, 859 const struct vfio_pci_regops *ops, 860 size_t size, u32 flags, void *data) 861 { 862 struct vfio_pci_region *region; 863 864 region = krealloc(vdev->region, 865 (vdev->num_regions + 1) * sizeof(*region), 866 GFP_KERNEL); 867 if (!region) 868 return -ENOMEM; 869 870 vdev->region = region; 871 vdev->region[vdev->num_regions].type = type; 872 vdev->region[vdev->num_regions].subtype = subtype; 873 vdev->region[vdev->num_regions].ops = ops; 874 vdev->region[vdev->num_regions].size = size; 875 vdev->region[vdev->num_regions].flags = flags; 876 vdev->region[vdev->num_regions].data = data; 877 878 vdev->num_regions++; 879 880 return 0; 881 } 882 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region); 883 884 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev, 885 struct vfio_device_info __user *arg) 886 { 887 unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs); 888 struct vfio_device_info info; 889 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 890 unsigned long capsz; 891 int ret; 892 893 /* For backward compatibility, cannot require this */ 894 capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset); 895 896 if (copy_from_user(&info, arg, minsz)) 897 return -EFAULT; 898 899 if (info.argsz < minsz) 900 return -EINVAL; 901 902 if (info.argsz >= capsz) { 903 minsz = capsz; 904 info.cap_offset = 0; 905 } 906 907 info.flags = VFIO_DEVICE_FLAGS_PCI; 908 909 if (vdev->reset_works) 910 info.flags |= VFIO_DEVICE_FLAGS_RESET; 911 912 info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions; 913 info.num_irqs = VFIO_PCI_NUM_IRQS; 914 915 ret = vfio_pci_info_zdev_add_caps(vdev, &caps); 916 if (ret && ret != -ENODEV) { 917 pci_warn(vdev->pdev, 918 "Failed to setup zPCI info capabilities\n"); 919 return ret; 920 } 921 922 if (caps.size) { 923 info.flags |= VFIO_DEVICE_FLAGS_CAPS; 924 if (info.argsz < sizeof(info) + caps.size) { 925 info.argsz = sizeof(info) + caps.size; 926 } else { 927 vfio_info_cap_shift(&caps, sizeof(info)); 928 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 929 kfree(caps.buf); 930 return -EFAULT; 931 } 932 info.cap_offset = sizeof(*arg); 933 } 934 935 kfree(caps.buf); 936 } 937 938 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 939 } 940 941 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev, 942 struct vfio_region_info __user *arg) 943 { 944 unsigned long minsz = offsetofend(struct vfio_region_info, offset); 945 struct pci_dev *pdev = vdev->pdev; 946 struct vfio_region_info info; 947 struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; 948 int i, ret; 949 950 if (copy_from_user(&info, arg, minsz)) 951 return -EFAULT; 952 953 if (info.argsz < minsz) 954 return -EINVAL; 955 956 switch (info.index) { 957 case VFIO_PCI_CONFIG_REGION_INDEX: 958 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 959 info.size = pdev->cfg_size; 960 info.flags = VFIO_REGION_INFO_FLAG_READ | 961 VFIO_REGION_INFO_FLAG_WRITE; 962 break; 963 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 964 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 965 info.size = pci_resource_len(pdev, info.index); 966 if (!info.size) { 967 info.flags = 0; 968 break; 969 } 970 971 info.flags = VFIO_REGION_INFO_FLAG_READ | 972 VFIO_REGION_INFO_FLAG_WRITE; 973 if (vdev->bar_mmap_supported[info.index]) { 974 info.flags |= VFIO_REGION_INFO_FLAG_MMAP; 975 if (info.index == vdev->msix_bar) { 976 ret = msix_mmappable_cap(vdev, &caps); 977 if (ret) 978 return ret; 979 } 980 } 981 982 break; 983 case VFIO_PCI_ROM_REGION_INDEX: { 984 void __iomem *io; 985 size_t size; 986 u16 cmd; 987 988 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 989 info.flags = 0; 990 991 /* Report the BAR size, not the ROM size */ 992 info.size = pci_resource_len(pdev, info.index); 993 if (!info.size) { 994 /* Shadow ROMs appear as PCI option ROMs */ 995 if (pdev->resource[PCI_ROM_RESOURCE].flags & 996 IORESOURCE_ROM_SHADOW) 997 info.size = 0x20000; 998 else 999 break; 1000 } 1001 1002 /* 1003 * Is it really there? Enable memory decode for implicit access 1004 * in pci_map_rom(). 1005 */ 1006 cmd = vfio_pci_memory_lock_and_enable(vdev); 1007 io = pci_map_rom(pdev, &size); 1008 if (io) { 1009 info.flags = VFIO_REGION_INFO_FLAG_READ; 1010 pci_unmap_rom(pdev, io); 1011 } else { 1012 info.size = 0; 1013 } 1014 vfio_pci_memory_unlock_and_restore(vdev, cmd); 1015 1016 break; 1017 } 1018 case VFIO_PCI_VGA_REGION_INDEX: 1019 if (!vdev->has_vga) 1020 return -EINVAL; 1021 1022 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1023 info.size = 0xc0000; 1024 info.flags = VFIO_REGION_INFO_FLAG_READ | 1025 VFIO_REGION_INFO_FLAG_WRITE; 1026 1027 break; 1028 default: { 1029 struct vfio_region_info_cap_type cap_type = { 1030 .header.id = VFIO_REGION_INFO_CAP_TYPE, 1031 .header.version = 1 1032 }; 1033 1034 if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1035 return -EINVAL; 1036 info.index = array_index_nospec( 1037 info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions); 1038 1039 i = info.index - VFIO_PCI_NUM_REGIONS; 1040 1041 info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); 1042 info.size = vdev->region[i].size; 1043 info.flags = vdev->region[i].flags; 1044 1045 cap_type.type = vdev->region[i].type; 1046 cap_type.subtype = vdev->region[i].subtype; 1047 1048 ret = vfio_info_add_capability(&caps, &cap_type.header, 1049 sizeof(cap_type)); 1050 if (ret) 1051 return ret; 1052 1053 if (vdev->region[i].ops->add_capability) { 1054 ret = vdev->region[i].ops->add_capability( 1055 vdev, &vdev->region[i], &caps); 1056 if (ret) 1057 return ret; 1058 } 1059 } 1060 } 1061 1062 if (caps.size) { 1063 info.flags |= VFIO_REGION_INFO_FLAG_CAPS; 1064 if (info.argsz < sizeof(info) + caps.size) { 1065 info.argsz = sizeof(info) + caps.size; 1066 info.cap_offset = 0; 1067 } else { 1068 vfio_info_cap_shift(&caps, sizeof(info)); 1069 if (copy_to_user(arg + 1, caps.buf, caps.size)) { 1070 kfree(caps.buf); 1071 return -EFAULT; 1072 } 1073 info.cap_offset = sizeof(*arg); 1074 } 1075 1076 kfree(caps.buf); 1077 } 1078 1079 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1080 } 1081 1082 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev, 1083 struct vfio_irq_info __user *arg) 1084 { 1085 unsigned long minsz = offsetofend(struct vfio_irq_info, count); 1086 struct vfio_irq_info info; 1087 1088 if (copy_from_user(&info, arg, minsz)) 1089 return -EFAULT; 1090 1091 if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) 1092 return -EINVAL; 1093 1094 switch (info.index) { 1095 case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX: 1096 case VFIO_PCI_REQ_IRQ_INDEX: 1097 break; 1098 case VFIO_PCI_ERR_IRQ_INDEX: 1099 if (pci_is_pcie(vdev->pdev)) 1100 break; 1101 fallthrough; 1102 default: 1103 return -EINVAL; 1104 } 1105 1106 info.flags = VFIO_IRQ_INFO_EVENTFD; 1107 1108 info.count = vfio_pci_get_irq_count(vdev, info.index); 1109 1110 if (info.index == VFIO_PCI_INTX_IRQ_INDEX) 1111 info.flags |= 1112 (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); 1113 else 1114 info.flags |= VFIO_IRQ_INFO_NORESIZE; 1115 1116 return copy_to_user(arg, &info, minsz) ? -EFAULT : 0; 1117 } 1118 1119 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev, 1120 struct vfio_irq_set __user *arg) 1121 { 1122 unsigned long minsz = offsetofend(struct vfio_irq_set, count); 1123 struct vfio_irq_set hdr; 1124 u8 *data = NULL; 1125 int max, ret = 0; 1126 size_t data_size = 0; 1127 1128 if (copy_from_user(&hdr, arg, minsz)) 1129 return -EFAULT; 1130 1131 max = vfio_pci_get_irq_count(vdev, hdr.index); 1132 1133 ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, 1134 &data_size); 1135 if (ret) 1136 return ret; 1137 1138 if (data_size) { 1139 data = memdup_user(&arg->data, data_size); 1140 if (IS_ERR(data)) 1141 return PTR_ERR(data); 1142 } 1143 1144 mutex_lock(&vdev->igate); 1145 1146 ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start, 1147 hdr.count, data); 1148 1149 mutex_unlock(&vdev->igate); 1150 kfree(data); 1151 1152 return ret; 1153 } 1154 1155 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev, 1156 void __user *arg) 1157 { 1158 int ret; 1159 1160 if (!vdev->reset_works) 1161 return -EINVAL; 1162 1163 vfio_pci_zap_and_down_write_memory_lock(vdev); 1164 1165 /* 1166 * This function can be invoked while the power state is non-D0. If 1167 * pci_try_reset_function() has been called while the power state is 1168 * non-D0, then pci_try_reset_function() will internally set the power 1169 * state to D0 without vfio driver involvement. For the devices which 1170 * have NoSoftRst-, the reset function can cause the PCI config space 1171 * reset without restoring the original state (saved locally in 1172 * 'vdev->pm_save'). 1173 */ 1174 vfio_pci_set_power_state(vdev, PCI_D0); 1175 1176 ret = pci_try_reset_function(vdev->pdev); 1177 up_write(&vdev->memory_lock); 1178 1179 return ret; 1180 } 1181 1182 static int vfio_pci_ioctl_get_pci_hot_reset_info( 1183 struct vfio_pci_core_device *vdev, 1184 struct vfio_pci_hot_reset_info __user *arg) 1185 { 1186 unsigned long minsz = 1187 offsetofend(struct vfio_pci_hot_reset_info, count); 1188 struct vfio_pci_hot_reset_info hdr; 1189 struct vfio_pci_fill_info fill = { 0 }; 1190 struct vfio_pci_dependent_device *devices = NULL; 1191 bool slot = false; 1192 int ret = 0; 1193 1194 if (copy_from_user(&hdr, arg, minsz)) 1195 return -EFAULT; 1196 1197 if (hdr.argsz < minsz) 1198 return -EINVAL; 1199 1200 hdr.flags = 0; 1201 1202 /* Can we do a slot or bus reset or neither? */ 1203 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1204 slot = true; 1205 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1206 return -ENODEV; 1207 1208 /* How many devices are affected? */ 1209 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1210 &fill.max, slot); 1211 if (ret) 1212 return ret; 1213 1214 WARN_ON(!fill.max); /* Should always be at least one */ 1215 1216 /* 1217 * If there's enough space, fill it now, otherwise return -ENOSPC and 1218 * the number of devices affected. 1219 */ 1220 if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) { 1221 ret = -ENOSPC; 1222 hdr.count = fill.max; 1223 goto reset_info_exit; 1224 } 1225 1226 devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL); 1227 if (!devices) 1228 return -ENOMEM; 1229 1230 fill.devices = devices; 1231 1232 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs, 1233 &fill, slot); 1234 1235 /* 1236 * If a device was removed between counting and filling, we may come up 1237 * short of fill.max. If a device was added, we'll have a return of 1238 * -EAGAIN above. 1239 */ 1240 if (!ret) 1241 hdr.count = fill.cur; 1242 1243 reset_info_exit: 1244 if (copy_to_user(arg, &hdr, minsz)) 1245 ret = -EFAULT; 1246 1247 if (!ret) { 1248 if (copy_to_user(&arg->devices, devices, 1249 hdr.count * sizeof(*devices))) 1250 ret = -EFAULT; 1251 } 1252 1253 kfree(devices); 1254 return ret; 1255 } 1256 1257 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev, 1258 struct vfio_pci_hot_reset __user *arg) 1259 { 1260 unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count); 1261 struct vfio_pci_hot_reset hdr; 1262 int32_t *group_fds; 1263 struct file **files; 1264 struct vfio_pci_group_info info; 1265 bool slot = false; 1266 int file_idx, count = 0, ret = 0; 1267 1268 if (copy_from_user(&hdr, arg, minsz)) 1269 return -EFAULT; 1270 1271 if (hdr.argsz < minsz || hdr.flags) 1272 return -EINVAL; 1273 1274 /* Can we do a slot or bus reset or neither? */ 1275 if (!pci_probe_reset_slot(vdev->pdev->slot)) 1276 slot = true; 1277 else if (pci_probe_reset_bus(vdev->pdev->bus)) 1278 return -ENODEV; 1279 1280 /* 1281 * We can't let userspace give us an arbitrarily large buffer to copy, 1282 * so verify how many we think there could be. Note groups can have 1283 * multiple devices so one group per device is the max. 1284 */ 1285 ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs, 1286 &count, slot); 1287 if (ret) 1288 return ret; 1289 1290 /* Somewhere between 1 and count is OK */ 1291 if (!hdr.count || hdr.count > count) 1292 return -EINVAL; 1293 1294 group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL); 1295 files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL); 1296 if (!group_fds || !files) { 1297 kfree(group_fds); 1298 kfree(files); 1299 return -ENOMEM; 1300 } 1301 1302 if (copy_from_user(group_fds, arg->group_fds, 1303 hdr.count * sizeof(*group_fds))) { 1304 kfree(group_fds); 1305 kfree(files); 1306 return -EFAULT; 1307 } 1308 1309 /* 1310 * For each group_fd, get the group through the vfio external user 1311 * interface and store the group and iommu ID. This ensures the group 1312 * is held across the reset. 1313 */ 1314 for (file_idx = 0; file_idx < hdr.count; file_idx++) { 1315 struct file *file = fget(group_fds[file_idx]); 1316 1317 if (!file) { 1318 ret = -EBADF; 1319 break; 1320 } 1321 1322 /* Ensure the FD is a vfio group FD.*/ 1323 if (!vfio_file_is_group(file)) { 1324 fput(file); 1325 ret = -EINVAL; 1326 break; 1327 } 1328 1329 files[file_idx] = file; 1330 } 1331 1332 kfree(group_fds); 1333 1334 /* release reference to groups on error */ 1335 if (ret) 1336 goto hot_reset_release; 1337 1338 info.count = hdr.count; 1339 info.files = files; 1340 1341 ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info); 1342 1343 hot_reset_release: 1344 for (file_idx--; file_idx >= 0; file_idx--) 1345 fput(files[file_idx]); 1346 1347 kfree(files); 1348 return ret; 1349 } 1350 1351 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev, 1352 struct vfio_device_ioeventfd __user *arg) 1353 { 1354 unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd); 1355 struct vfio_device_ioeventfd ioeventfd; 1356 int count; 1357 1358 if (copy_from_user(&ioeventfd, arg, minsz)) 1359 return -EFAULT; 1360 1361 if (ioeventfd.argsz < minsz) 1362 return -EINVAL; 1363 1364 if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK) 1365 return -EINVAL; 1366 1367 count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK; 1368 1369 if (hweight8(count) != 1 || ioeventfd.fd < -1) 1370 return -EINVAL; 1371 1372 return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count, 1373 ioeventfd.fd); 1374 } 1375 1376 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd, 1377 unsigned long arg) 1378 { 1379 struct vfio_pci_core_device *vdev = 1380 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1381 void __user *uarg = (void __user *)arg; 1382 1383 switch (cmd) { 1384 case VFIO_DEVICE_GET_INFO: 1385 return vfio_pci_ioctl_get_info(vdev, uarg); 1386 case VFIO_DEVICE_GET_IRQ_INFO: 1387 return vfio_pci_ioctl_get_irq_info(vdev, uarg); 1388 case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO: 1389 return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg); 1390 case VFIO_DEVICE_GET_REGION_INFO: 1391 return vfio_pci_ioctl_get_region_info(vdev, uarg); 1392 case VFIO_DEVICE_IOEVENTFD: 1393 return vfio_pci_ioctl_ioeventfd(vdev, uarg); 1394 case VFIO_DEVICE_PCI_HOT_RESET: 1395 return vfio_pci_ioctl_pci_hot_reset(vdev, uarg); 1396 case VFIO_DEVICE_RESET: 1397 return vfio_pci_ioctl_reset(vdev, uarg); 1398 case VFIO_DEVICE_SET_IRQS: 1399 return vfio_pci_ioctl_set_irqs(vdev, uarg); 1400 default: 1401 return -ENOTTY; 1402 } 1403 } 1404 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl); 1405 1406 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags, 1407 uuid_t __user *arg, size_t argsz) 1408 { 1409 struct vfio_pci_core_device *vdev = 1410 container_of(device, struct vfio_pci_core_device, vdev); 1411 uuid_t uuid; 1412 int ret; 1413 1414 if (!vdev->vf_token) 1415 return -ENOTTY; 1416 /* 1417 * We do not support GET of the VF Token UUID as this could 1418 * expose the token of the previous device user. 1419 */ 1420 ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 1421 sizeof(uuid)); 1422 if (ret != 1) 1423 return ret; 1424 1425 if (copy_from_user(&uuid, arg, sizeof(uuid))) 1426 return -EFAULT; 1427 1428 mutex_lock(&vdev->vf_token->lock); 1429 uuid_copy(&vdev->vf_token->uuid, &uuid); 1430 mutex_unlock(&vdev->vf_token->lock); 1431 return 0; 1432 } 1433 1434 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags, 1435 void __user *arg, size_t argsz) 1436 { 1437 switch (flags & VFIO_DEVICE_FEATURE_MASK) { 1438 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY: 1439 return vfio_pci_core_pm_entry(device, flags, arg, argsz); 1440 case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP: 1441 return vfio_pci_core_pm_entry_with_wakeup(device, flags, 1442 arg, argsz); 1443 case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT: 1444 return vfio_pci_core_pm_exit(device, flags, arg, argsz); 1445 case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN: 1446 return vfio_pci_core_feature_token(device, flags, arg, argsz); 1447 default: 1448 return -ENOTTY; 1449 } 1450 } 1451 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature); 1452 1453 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1454 size_t count, loff_t *ppos, bool iswrite) 1455 { 1456 unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); 1457 int ret; 1458 1459 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1460 return -EINVAL; 1461 1462 ret = pm_runtime_resume_and_get(&vdev->pdev->dev); 1463 if (ret) { 1464 pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n", 1465 ret); 1466 return -EIO; 1467 } 1468 1469 switch (index) { 1470 case VFIO_PCI_CONFIG_REGION_INDEX: 1471 ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite); 1472 break; 1473 1474 case VFIO_PCI_ROM_REGION_INDEX: 1475 if (iswrite) 1476 ret = -EINVAL; 1477 else 1478 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false); 1479 break; 1480 1481 case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: 1482 ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite); 1483 break; 1484 1485 case VFIO_PCI_VGA_REGION_INDEX: 1486 ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite); 1487 break; 1488 1489 default: 1490 index -= VFIO_PCI_NUM_REGIONS; 1491 ret = vdev->region[index].ops->rw(vdev, buf, 1492 count, ppos, iswrite); 1493 break; 1494 } 1495 1496 pm_runtime_put(&vdev->pdev->dev); 1497 return ret; 1498 } 1499 1500 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf, 1501 size_t count, loff_t *ppos) 1502 { 1503 struct vfio_pci_core_device *vdev = 1504 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1505 1506 if (!count) 1507 return 0; 1508 1509 return vfio_pci_rw(vdev, buf, count, ppos, false); 1510 } 1511 EXPORT_SYMBOL_GPL(vfio_pci_core_read); 1512 1513 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf, 1514 size_t count, loff_t *ppos) 1515 { 1516 struct vfio_pci_core_device *vdev = 1517 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1518 1519 if (!count) 1520 return 0; 1521 1522 return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true); 1523 } 1524 EXPORT_SYMBOL_GPL(vfio_pci_core_write); 1525 1526 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */ 1527 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try) 1528 { 1529 struct vfio_pci_mmap_vma *mmap_vma, *tmp; 1530 1531 /* 1532 * Lock ordering: 1533 * vma_lock is nested under mmap_lock for vm_ops callback paths. 1534 * The memory_lock semaphore is used by both code paths calling 1535 * into this function to zap vmas and the vm_ops.fault callback 1536 * to protect the memory enable state of the device. 1537 * 1538 * When zapping vmas we need to maintain the mmap_lock => vma_lock 1539 * ordering, which requires using vma_lock to walk vma_list to 1540 * acquire an mm, then dropping vma_lock to get the mmap_lock and 1541 * reacquiring vma_lock. This logic is derived from similar 1542 * requirements in uverbs_user_mmap_disassociate(). 1543 * 1544 * mmap_lock must always be the top-level lock when it is taken. 1545 * Therefore we can only hold the memory_lock write lock when 1546 * vma_list is empty, as we'd need to take mmap_lock to clear 1547 * entries. vma_list can only be guaranteed empty when holding 1548 * vma_lock, thus memory_lock is nested under vma_lock. 1549 * 1550 * This enables the vm_ops.fault callback to acquire vma_lock, 1551 * followed by memory_lock read lock, while already holding 1552 * mmap_lock without risk of deadlock. 1553 */ 1554 while (1) { 1555 struct mm_struct *mm = NULL; 1556 1557 if (try) { 1558 if (!mutex_trylock(&vdev->vma_lock)) 1559 return 0; 1560 } else { 1561 mutex_lock(&vdev->vma_lock); 1562 } 1563 while (!list_empty(&vdev->vma_list)) { 1564 mmap_vma = list_first_entry(&vdev->vma_list, 1565 struct vfio_pci_mmap_vma, 1566 vma_next); 1567 mm = mmap_vma->vma->vm_mm; 1568 if (mmget_not_zero(mm)) 1569 break; 1570 1571 list_del(&mmap_vma->vma_next); 1572 kfree(mmap_vma); 1573 mm = NULL; 1574 } 1575 if (!mm) 1576 return 1; 1577 mutex_unlock(&vdev->vma_lock); 1578 1579 if (try) { 1580 if (!mmap_read_trylock(mm)) { 1581 mmput(mm); 1582 return 0; 1583 } 1584 } else { 1585 mmap_read_lock(mm); 1586 } 1587 if (try) { 1588 if (!mutex_trylock(&vdev->vma_lock)) { 1589 mmap_read_unlock(mm); 1590 mmput(mm); 1591 return 0; 1592 } 1593 } else { 1594 mutex_lock(&vdev->vma_lock); 1595 } 1596 list_for_each_entry_safe(mmap_vma, tmp, 1597 &vdev->vma_list, vma_next) { 1598 struct vm_area_struct *vma = mmap_vma->vma; 1599 1600 if (vma->vm_mm != mm) 1601 continue; 1602 1603 list_del(&mmap_vma->vma_next); 1604 kfree(mmap_vma); 1605 1606 zap_vma_ptes(vma, vma->vm_start, 1607 vma->vm_end - vma->vm_start); 1608 } 1609 mutex_unlock(&vdev->vma_lock); 1610 mmap_read_unlock(mm); 1611 mmput(mm); 1612 } 1613 } 1614 1615 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev) 1616 { 1617 vfio_pci_zap_and_vma_lock(vdev, false); 1618 down_write(&vdev->memory_lock); 1619 mutex_unlock(&vdev->vma_lock); 1620 } 1621 1622 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev) 1623 { 1624 u16 cmd; 1625 1626 down_write(&vdev->memory_lock); 1627 pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd); 1628 if (!(cmd & PCI_COMMAND_MEMORY)) 1629 pci_write_config_word(vdev->pdev, PCI_COMMAND, 1630 cmd | PCI_COMMAND_MEMORY); 1631 1632 return cmd; 1633 } 1634 1635 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd) 1636 { 1637 pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd); 1638 up_write(&vdev->memory_lock); 1639 } 1640 1641 /* Caller holds vma_lock */ 1642 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev, 1643 struct vm_area_struct *vma) 1644 { 1645 struct vfio_pci_mmap_vma *mmap_vma; 1646 1647 mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL); 1648 if (!mmap_vma) 1649 return -ENOMEM; 1650 1651 mmap_vma->vma = vma; 1652 list_add(&mmap_vma->vma_next, &vdev->vma_list); 1653 1654 return 0; 1655 } 1656 1657 /* 1658 * Zap mmaps on open so that we can fault them in on access and therefore 1659 * our vma_list only tracks mappings accessed since last zap. 1660 */ 1661 static void vfio_pci_mmap_open(struct vm_area_struct *vma) 1662 { 1663 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1664 } 1665 1666 static void vfio_pci_mmap_close(struct vm_area_struct *vma) 1667 { 1668 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1669 struct vfio_pci_mmap_vma *mmap_vma; 1670 1671 mutex_lock(&vdev->vma_lock); 1672 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1673 if (mmap_vma->vma == vma) { 1674 list_del(&mmap_vma->vma_next); 1675 kfree(mmap_vma); 1676 break; 1677 } 1678 } 1679 mutex_unlock(&vdev->vma_lock); 1680 } 1681 1682 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf) 1683 { 1684 struct vm_area_struct *vma = vmf->vma; 1685 struct vfio_pci_core_device *vdev = vma->vm_private_data; 1686 struct vfio_pci_mmap_vma *mmap_vma; 1687 vm_fault_t ret = VM_FAULT_NOPAGE; 1688 1689 mutex_lock(&vdev->vma_lock); 1690 down_read(&vdev->memory_lock); 1691 1692 /* 1693 * Memory region cannot be accessed if the low power feature is engaged 1694 * or memory access is disabled. 1695 */ 1696 if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) { 1697 ret = VM_FAULT_SIGBUS; 1698 goto up_out; 1699 } 1700 1701 /* 1702 * We populate the whole vma on fault, so we need to test whether 1703 * the vma has already been mapped, such as for concurrent faults 1704 * to the same vma. io_remap_pfn_range() will trigger a BUG_ON if 1705 * we ask it to fill the same range again. 1706 */ 1707 list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) { 1708 if (mmap_vma->vma == vma) 1709 goto up_out; 1710 } 1711 1712 if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 1713 vma->vm_end - vma->vm_start, 1714 vma->vm_page_prot)) { 1715 ret = VM_FAULT_SIGBUS; 1716 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1717 goto up_out; 1718 } 1719 1720 if (__vfio_pci_add_vma(vdev, vma)) { 1721 ret = VM_FAULT_OOM; 1722 zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start); 1723 } 1724 1725 up_out: 1726 up_read(&vdev->memory_lock); 1727 mutex_unlock(&vdev->vma_lock); 1728 return ret; 1729 } 1730 1731 static const struct vm_operations_struct vfio_pci_mmap_ops = { 1732 .open = vfio_pci_mmap_open, 1733 .close = vfio_pci_mmap_close, 1734 .fault = vfio_pci_mmap_fault, 1735 }; 1736 1737 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma) 1738 { 1739 struct vfio_pci_core_device *vdev = 1740 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1741 struct pci_dev *pdev = vdev->pdev; 1742 unsigned int index; 1743 u64 phys_len, req_len, pgoff, req_start; 1744 int ret; 1745 1746 index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); 1747 1748 if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions) 1749 return -EINVAL; 1750 if (vma->vm_end < vma->vm_start) 1751 return -EINVAL; 1752 if ((vma->vm_flags & VM_SHARED) == 0) 1753 return -EINVAL; 1754 if (index >= VFIO_PCI_NUM_REGIONS) { 1755 int regnum = index - VFIO_PCI_NUM_REGIONS; 1756 struct vfio_pci_region *region = vdev->region + regnum; 1757 1758 if (region->ops && region->ops->mmap && 1759 (region->flags & VFIO_REGION_INFO_FLAG_MMAP)) 1760 return region->ops->mmap(vdev, region, vma); 1761 return -EINVAL; 1762 } 1763 if (index >= VFIO_PCI_ROM_REGION_INDEX) 1764 return -EINVAL; 1765 if (!vdev->bar_mmap_supported[index]) 1766 return -EINVAL; 1767 1768 phys_len = PAGE_ALIGN(pci_resource_len(pdev, index)); 1769 req_len = vma->vm_end - vma->vm_start; 1770 pgoff = vma->vm_pgoff & 1771 ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); 1772 req_start = pgoff << PAGE_SHIFT; 1773 1774 if (req_start + req_len > phys_len) 1775 return -EINVAL; 1776 1777 /* 1778 * Even though we don't make use of the barmap for the mmap, 1779 * we need to request the region and the barmap tracks that. 1780 */ 1781 if (!vdev->barmap[index]) { 1782 ret = pci_request_selected_regions(pdev, 1783 1 << index, "vfio-pci"); 1784 if (ret) 1785 return ret; 1786 1787 vdev->barmap[index] = pci_iomap(pdev, index, 0); 1788 if (!vdev->barmap[index]) { 1789 pci_release_selected_regions(pdev, 1 << index); 1790 return -ENOMEM; 1791 } 1792 } 1793 1794 vma->vm_private_data = vdev; 1795 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 1796 vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff; 1797 1798 /* 1799 * See remap_pfn_range(), called from vfio_pci_fault() but we can't 1800 * change vm_flags within the fault handler. Set them now. 1801 */ 1802 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1803 vma->vm_ops = &vfio_pci_mmap_ops; 1804 1805 return 0; 1806 } 1807 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap); 1808 1809 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count) 1810 { 1811 struct vfio_pci_core_device *vdev = 1812 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1813 struct pci_dev *pdev = vdev->pdev; 1814 1815 mutex_lock(&vdev->igate); 1816 1817 if (vdev->req_trigger) { 1818 if (!(count % 10)) 1819 pci_notice_ratelimited(pdev, 1820 "Relaying device request to user (#%u)\n", 1821 count); 1822 eventfd_signal(vdev->req_trigger, 1); 1823 } else if (count == 0) { 1824 pci_warn(pdev, 1825 "No device request channel registered, blocked until released by user\n"); 1826 } 1827 1828 mutex_unlock(&vdev->igate); 1829 } 1830 EXPORT_SYMBOL_GPL(vfio_pci_core_request); 1831 1832 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev, 1833 bool vf_token, uuid_t *uuid) 1834 { 1835 /* 1836 * There's always some degree of trust or collaboration between SR-IOV 1837 * PF and VFs, even if just that the PF hosts the SR-IOV capability and 1838 * can disrupt VFs with a reset, but often the PF has more explicit 1839 * access to deny service to the VF or access data passed through the 1840 * VF. We therefore require an opt-in via a shared VF token (UUID) to 1841 * represent this trust. This both prevents that a VF driver might 1842 * assume the PF driver is a trusted, in-kernel driver, and also that 1843 * a PF driver might be replaced with a rogue driver, unknown to in-use 1844 * VF drivers. 1845 * 1846 * Therefore when presented with a VF, if the PF is a vfio device and 1847 * it is bound to the vfio-pci driver, the user needs to provide a VF 1848 * token to access the device, in the form of appending a vf_token to 1849 * the device name, for example: 1850 * 1851 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3" 1852 * 1853 * When presented with a PF which has VFs in use, the user must also 1854 * provide the current VF token to prove collaboration with existing 1855 * VF users. If VFs are not in use, the VF token provided for the PF 1856 * device will act to set the VF token. 1857 * 1858 * If the VF token is provided but unused, an error is generated. 1859 */ 1860 if (vdev->pdev->is_virtfn) { 1861 struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev; 1862 bool match; 1863 1864 if (!pf_vdev) { 1865 if (!vf_token) 1866 return 0; /* PF is not vfio-pci, no VF token */ 1867 1868 pci_info_ratelimited(vdev->pdev, 1869 "VF token incorrectly provided, PF not bound to vfio-pci\n"); 1870 return -EINVAL; 1871 } 1872 1873 if (!vf_token) { 1874 pci_info_ratelimited(vdev->pdev, 1875 "VF token required to access device\n"); 1876 return -EACCES; 1877 } 1878 1879 mutex_lock(&pf_vdev->vf_token->lock); 1880 match = uuid_equal(uuid, &pf_vdev->vf_token->uuid); 1881 mutex_unlock(&pf_vdev->vf_token->lock); 1882 1883 if (!match) { 1884 pci_info_ratelimited(vdev->pdev, 1885 "Incorrect VF token provided for device\n"); 1886 return -EACCES; 1887 } 1888 } else if (vdev->vf_token) { 1889 mutex_lock(&vdev->vf_token->lock); 1890 if (vdev->vf_token->users) { 1891 if (!vf_token) { 1892 mutex_unlock(&vdev->vf_token->lock); 1893 pci_info_ratelimited(vdev->pdev, 1894 "VF token required to access device\n"); 1895 return -EACCES; 1896 } 1897 1898 if (!uuid_equal(uuid, &vdev->vf_token->uuid)) { 1899 mutex_unlock(&vdev->vf_token->lock); 1900 pci_info_ratelimited(vdev->pdev, 1901 "Incorrect VF token provided for device\n"); 1902 return -EACCES; 1903 } 1904 } else if (vf_token) { 1905 uuid_copy(&vdev->vf_token->uuid, uuid); 1906 } 1907 1908 mutex_unlock(&vdev->vf_token->lock); 1909 } else if (vf_token) { 1910 pci_info_ratelimited(vdev->pdev, 1911 "VF token incorrectly provided, not a PF or VF\n"); 1912 return -EINVAL; 1913 } 1914 1915 return 0; 1916 } 1917 1918 #define VF_TOKEN_ARG "vf_token=" 1919 1920 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf) 1921 { 1922 struct vfio_pci_core_device *vdev = 1923 container_of(core_vdev, struct vfio_pci_core_device, vdev); 1924 bool vf_token = false; 1925 uuid_t uuid; 1926 int ret; 1927 1928 if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev)))) 1929 return 0; /* No match */ 1930 1931 if (strlen(buf) > strlen(pci_name(vdev->pdev))) { 1932 buf += strlen(pci_name(vdev->pdev)); 1933 1934 if (*buf != ' ') 1935 return 0; /* No match: non-whitespace after name */ 1936 1937 while (*buf) { 1938 if (*buf == ' ') { 1939 buf++; 1940 continue; 1941 } 1942 1943 if (!vf_token && !strncmp(buf, VF_TOKEN_ARG, 1944 strlen(VF_TOKEN_ARG))) { 1945 buf += strlen(VF_TOKEN_ARG); 1946 1947 if (strlen(buf) < UUID_STRING_LEN) 1948 return -EINVAL; 1949 1950 ret = uuid_parse(buf, &uuid); 1951 if (ret) 1952 return ret; 1953 1954 vf_token = true; 1955 buf += UUID_STRING_LEN; 1956 } else { 1957 /* Unknown/duplicate option */ 1958 return -EINVAL; 1959 } 1960 } 1961 } 1962 1963 ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid); 1964 if (ret) 1965 return ret; 1966 1967 return 1; /* Match */ 1968 } 1969 EXPORT_SYMBOL_GPL(vfio_pci_core_match); 1970 1971 static int vfio_pci_bus_notifier(struct notifier_block *nb, 1972 unsigned long action, void *data) 1973 { 1974 struct vfio_pci_core_device *vdev = container_of(nb, 1975 struct vfio_pci_core_device, nb); 1976 struct device *dev = data; 1977 struct pci_dev *pdev = to_pci_dev(dev); 1978 struct pci_dev *physfn = pci_physfn(pdev); 1979 1980 if (action == BUS_NOTIFY_ADD_DEVICE && 1981 pdev->is_virtfn && physfn == vdev->pdev) { 1982 pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n", 1983 pci_name(pdev)); 1984 pdev->driver_override = kasprintf(GFP_KERNEL, "%s", 1985 vdev->vdev.ops->name); 1986 } else if (action == BUS_NOTIFY_BOUND_DRIVER && 1987 pdev->is_virtfn && physfn == vdev->pdev) { 1988 struct pci_driver *drv = pci_dev_driver(pdev); 1989 1990 if (drv && drv != pci_dev_driver(vdev->pdev)) 1991 pci_warn(vdev->pdev, 1992 "VF %s bound to driver %s while PF bound to driver %s\n", 1993 pci_name(pdev), drv->name, 1994 pci_dev_driver(vdev->pdev)->name); 1995 } 1996 1997 return 0; 1998 } 1999 2000 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev) 2001 { 2002 struct pci_dev *pdev = vdev->pdev; 2003 struct vfio_pci_core_device *cur; 2004 struct pci_dev *physfn; 2005 int ret; 2006 2007 if (pdev->is_virtfn) { 2008 /* 2009 * If this VF was created by our vfio_pci_core_sriov_configure() 2010 * then we can find the PF vfio_pci_core_device now, and due to 2011 * the locking in pci_disable_sriov() it cannot change until 2012 * this VF device driver is removed. 2013 */ 2014 physfn = pci_physfn(vdev->pdev); 2015 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2016 list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) { 2017 if (cur->pdev == physfn) { 2018 vdev->sriov_pf_core_dev = cur; 2019 break; 2020 } 2021 } 2022 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2023 return 0; 2024 } 2025 2026 /* Not a SRIOV PF */ 2027 if (!pdev->is_physfn) 2028 return 0; 2029 2030 vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL); 2031 if (!vdev->vf_token) 2032 return -ENOMEM; 2033 2034 mutex_init(&vdev->vf_token->lock); 2035 uuid_gen(&vdev->vf_token->uuid); 2036 2037 vdev->nb.notifier_call = vfio_pci_bus_notifier; 2038 ret = bus_register_notifier(&pci_bus_type, &vdev->nb); 2039 if (ret) { 2040 kfree(vdev->vf_token); 2041 return ret; 2042 } 2043 return 0; 2044 } 2045 2046 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev) 2047 { 2048 if (!vdev->vf_token) 2049 return; 2050 2051 bus_unregister_notifier(&pci_bus_type, &vdev->nb); 2052 WARN_ON(vdev->vf_token->users); 2053 mutex_destroy(&vdev->vf_token->lock); 2054 kfree(vdev->vf_token); 2055 } 2056 2057 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev) 2058 { 2059 struct pci_dev *pdev = vdev->pdev; 2060 int ret; 2061 2062 if (!vfio_pci_is_vga(pdev)) 2063 return 0; 2064 2065 ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name); 2066 if (ret) 2067 return ret; 2068 2069 ret = vga_client_register(pdev, vfio_pci_set_decode); 2070 if (ret) 2071 return ret; 2072 vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false)); 2073 return 0; 2074 } 2075 2076 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev) 2077 { 2078 struct pci_dev *pdev = vdev->pdev; 2079 2080 if (!vfio_pci_is_vga(pdev)) 2081 return; 2082 vga_client_unregister(pdev); 2083 vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM | 2084 VGA_RSRC_LEGACY_IO | 2085 VGA_RSRC_LEGACY_MEM); 2086 } 2087 2088 int vfio_pci_core_init_dev(struct vfio_device *core_vdev) 2089 { 2090 struct vfio_pci_core_device *vdev = 2091 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2092 2093 vdev->pdev = to_pci_dev(core_vdev->dev); 2094 vdev->irq_type = VFIO_PCI_NUM_IRQS; 2095 mutex_init(&vdev->igate); 2096 spin_lock_init(&vdev->irqlock); 2097 mutex_init(&vdev->ioeventfds_lock); 2098 INIT_LIST_HEAD(&vdev->dummy_resources_list); 2099 INIT_LIST_HEAD(&vdev->ioeventfds_list); 2100 mutex_init(&vdev->vma_lock); 2101 INIT_LIST_HEAD(&vdev->vma_list); 2102 INIT_LIST_HEAD(&vdev->sriov_pfs_item); 2103 init_rwsem(&vdev->memory_lock); 2104 2105 return 0; 2106 } 2107 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev); 2108 2109 void vfio_pci_core_release_dev(struct vfio_device *core_vdev) 2110 { 2111 struct vfio_pci_core_device *vdev = 2112 container_of(core_vdev, struct vfio_pci_core_device, vdev); 2113 2114 mutex_destroy(&vdev->igate); 2115 mutex_destroy(&vdev->ioeventfds_lock); 2116 mutex_destroy(&vdev->vma_lock); 2117 kfree(vdev->region); 2118 kfree(vdev->pm_save); 2119 } 2120 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev); 2121 2122 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev) 2123 { 2124 struct pci_dev *pdev = vdev->pdev; 2125 struct device *dev = &pdev->dev; 2126 int ret; 2127 2128 /* Drivers must set the vfio_pci_core_device to their drvdata */ 2129 if (WARN_ON(vdev != dev_get_drvdata(dev))) 2130 return -EINVAL; 2131 2132 if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) 2133 return -EINVAL; 2134 2135 if (vdev->vdev.mig_ops) { 2136 if (!(vdev->vdev.mig_ops->migration_get_state && 2137 vdev->vdev.mig_ops->migration_set_state && 2138 vdev->vdev.mig_ops->migration_get_data_size) || 2139 !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY)) 2140 return -EINVAL; 2141 } 2142 2143 if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start && 2144 vdev->vdev.log_ops->log_stop && 2145 vdev->vdev.log_ops->log_read_and_clear)) 2146 return -EINVAL; 2147 2148 /* 2149 * Prevent binding to PFs with VFs enabled, the VFs might be in use 2150 * by the host or other users. We cannot capture the VFs if they 2151 * already exist, nor can we track VF users. Disabling SR-IOV here 2152 * would initiate removing the VFs, which would unbind the driver, 2153 * which is prone to blocking if that VF is also in use by vfio-pci. 2154 * Just reject these PFs and let the user sort it out. 2155 */ 2156 if (pci_num_vf(pdev)) { 2157 pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n"); 2158 return -EBUSY; 2159 } 2160 2161 if (pci_is_root_bus(pdev->bus)) { 2162 ret = vfio_assign_device_set(&vdev->vdev, vdev); 2163 } else if (!pci_probe_reset_slot(pdev->slot)) { 2164 ret = vfio_assign_device_set(&vdev->vdev, pdev->slot); 2165 } else { 2166 /* 2167 * If there is no slot reset support for this device, the whole 2168 * bus needs to be grouped together to support bus-wide resets. 2169 */ 2170 ret = vfio_assign_device_set(&vdev->vdev, pdev->bus); 2171 } 2172 2173 if (ret) 2174 return ret; 2175 ret = vfio_pci_vf_init(vdev); 2176 if (ret) 2177 return ret; 2178 ret = vfio_pci_vga_init(vdev); 2179 if (ret) 2180 goto out_vf; 2181 2182 vfio_pci_probe_power_state(vdev); 2183 2184 /* 2185 * pci-core sets the device power state to an unknown value at 2186 * bootup and after being removed from a driver. The only 2187 * transition it allows from this unknown state is to D0, which 2188 * typically happens when a driver calls pci_enable_device(). 2189 * We're not ready to enable the device yet, but we do want to 2190 * be able to get to D3. Therefore first do a D0 transition 2191 * before enabling runtime PM. 2192 */ 2193 vfio_pci_set_power_state(vdev, PCI_D0); 2194 2195 dev->driver->pm = &vfio_pci_core_pm_ops; 2196 pm_runtime_allow(dev); 2197 if (!disable_idle_d3) 2198 pm_runtime_put(dev); 2199 2200 ret = vfio_register_group_dev(&vdev->vdev); 2201 if (ret) 2202 goto out_power; 2203 return 0; 2204 2205 out_power: 2206 if (!disable_idle_d3) 2207 pm_runtime_get_noresume(dev); 2208 2209 pm_runtime_forbid(dev); 2210 out_vf: 2211 vfio_pci_vf_uninit(vdev); 2212 return ret; 2213 } 2214 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device); 2215 2216 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev) 2217 { 2218 vfio_pci_core_sriov_configure(vdev, 0); 2219 2220 vfio_unregister_group_dev(&vdev->vdev); 2221 2222 vfio_pci_vf_uninit(vdev); 2223 vfio_pci_vga_uninit(vdev); 2224 2225 if (!disable_idle_d3) 2226 pm_runtime_get_noresume(&vdev->pdev->dev); 2227 2228 pm_runtime_forbid(&vdev->pdev->dev); 2229 } 2230 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device); 2231 2232 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev, 2233 pci_channel_state_t state) 2234 { 2235 struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev); 2236 2237 mutex_lock(&vdev->igate); 2238 2239 if (vdev->err_trigger) 2240 eventfd_signal(vdev->err_trigger, 1); 2241 2242 mutex_unlock(&vdev->igate); 2243 2244 return PCI_ERS_RESULT_CAN_RECOVER; 2245 } 2246 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected); 2247 2248 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev, 2249 int nr_virtfn) 2250 { 2251 struct pci_dev *pdev = vdev->pdev; 2252 int ret = 0; 2253 2254 device_lock_assert(&pdev->dev); 2255 2256 if (nr_virtfn) { 2257 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2258 /* 2259 * The thread that adds the vdev to the list is the only thread 2260 * that gets to call pci_enable_sriov() and we will only allow 2261 * it to be called once without going through 2262 * pci_disable_sriov() 2263 */ 2264 if (!list_empty(&vdev->sriov_pfs_item)) { 2265 ret = -EINVAL; 2266 goto out_unlock; 2267 } 2268 list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs); 2269 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2270 2271 /* 2272 * The PF power state should always be higher than the VF power 2273 * state. The PF can be in low power state either with runtime 2274 * power management (when there is no user) or PCI_PM_CTRL 2275 * register write by the user. If PF is in the low power state, 2276 * then change the power state to D0 first before enabling 2277 * SR-IOV. Also, this function can be called at any time, and 2278 * userspace PCI_PM_CTRL write can race against this code path, 2279 * so protect the same with 'memory_lock'. 2280 */ 2281 ret = pm_runtime_resume_and_get(&pdev->dev); 2282 if (ret) 2283 goto out_del; 2284 2285 down_write(&vdev->memory_lock); 2286 vfio_pci_set_power_state(vdev, PCI_D0); 2287 ret = pci_enable_sriov(pdev, nr_virtfn); 2288 up_write(&vdev->memory_lock); 2289 if (ret) { 2290 pm_runtime_put(&pdev->dev); 2291 goto out_del; 2292 } 2293 return nr_virtfn; 2294 } 2295 2296 if (pci_num_vf(pdev)) { 2297 pci_disable_sriov(pdev); 2298 pm_runtime_put(&pdev->dev); 2299 } 2300 2301 out_del: 2302 mutex_lock(&vfio_pci_sriov_pfs_mutex); 2303 list_del_init(&vdev->sriov_pfs_item); 2304 out_unlock: 2305 mutex_unlock(&vfio_pci_sriov_pfs_mutex); 2306 return ret; 2307 } 2308 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure); 2309 2310 const struct pci_error_handlers vfio_pci_core_err_handlers = { 2311 .error_detected = vfio_pci_core_aer_err_detected, 2312 }; 2313 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers); 2314 2315 static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev, 2316 struct vfio_pci_group_info *groups) 2317 { 2318 unsigned int i; 2319 2320 for (i = 0; i < groups->count; i++) 2321 if (vfio_file_has_dev(groups->files[i], &vdev->vdev)) 2322 return true; 2323 return false; 2324 } 2325 2326 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data) 2327 { 2328 struct vfio_device_set *dev_set = data; 2329 struct vfio_device *cur; 2330 2331 list_for_each_entry(cur, &dev_set->device_list, dev_set_list) 2332 if (cur->dev == &pdev->dev) 2333 return 0; 2334 return -EBUSY; 2335 } 2336 2337 /* 2338 * vfio-core considers a group to be viable and will create a vfio_device even 2339 * if some devices are bound to drivers like pci-stub or pcieport. Here we 2340 * require all PCI devices to be inside our dev_set since that ensures they stay 2341 * put and that every driver controlling the device can co-ordinate with the 2342 * device reset. 2343 * 2344 * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be 2345 * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise. 2346 */ 2347 static struct pci_dev * 2348 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set) 2349 { 2350 struct pci_dev *pdev; 2351 2352 lockdep_assert_held(&dev_set->lock); 2353 2354 /* 2355 * By definition all PCI devices in the dev_set share the same PCI 2356 * reset, so any pci_dev will have the same outcomes for 2357 * pci_probe_reset_*() and pci_reset_bus(). 2358 */ 2359 pdev = list_first_entry(&dev_set->device_list, 2360 struct vfio_pci_core_device, 2361 vdev.dev_set_list)->pdev; 2362 2363 /* pci_reset_bus() is supported */ 2364 if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus)) 2365 return NULL; 2366 2367 if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set, 2368 dev_set, 2369 !pci_probe_reset_slot(pdev->slot))) 2370 return NULL; 2371 return pdev; 2372 } 2373 2374 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set) 2375 { 2376 struct vfio_pci_core_device *cur; 2377 int ret; 2378 2379 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2380 ret = pm_runtime_resume_and_get(&cur->pdev->dev); 2381 if (ret) 2382 goto unwind; 2383 } 2384 2385 return 0; 2386 2387 unwind: 2388 list_for_each_entry_continue_reverse(cur, &dev_set->device_list, 2389 vdev.dev_set_list) 2390 pm_runtime_put(&cur->pdev->dev); 2391 2392 return ret; 2393 } 2394 2395 /* 2396 * We need to get memory_lock for each device, but devices can share mmap_lock, 2397 * therefore we need to zap and hold the vma_lock for each device, and only then 2398 * get each memory_lock. 2399 */ 2400 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set, 2401 struct vfio_pci_group_info *groups) 2402 { 2403 struct vfio_pci_core_device *cur_mem; 2404 struct vfio_pci_core_device *cur_vma; 2405 struct vfio_pci_core_device *cur; 2406 struct pci_dev *pdev; 2407 bool is_mem = true; 2408 int ret; 2409 2410 mutex_lock(&dev_set->lock); 2411 cur_mem = list_first_entry(&dev_set->device_list, 2412 struct vfio_pci_core_device, 2413 vdev.dev_set_list); 2414 2415 pdev = vfio_pci_dev_set_resettable(dev_set); 2416 if (!pdev) { 2417 ret = -EINVAL; 2418 goto err_unlock; 2419 } 2420 2421 /* 2422 * Some of the devices in the dev_set can be in the runtime suspended 2423 * state. Increment the usage count for all the devices in the dev_set 2424 * before reset and decrement the same after reset. 2425 */ 2426 ret = vfio_pci_dev_set_pm_runtime_get(dev_set); 2427 if (ret) 2428 goto err_unlock; 2429 2430 list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) { 2431 /* 2432 * Test whether all the affected devices are contained by the 2433 * set of groups provided by the user. 2434 */ 2435 if (!vfio_dev_in_groups(cur_vma, groups)) { 2436 ret = -EINVAL; 2437 goto err_undo; 2438 } 2439 2440 /* 2441 * Locking multiple devices is prone to deadlock, runaway and 2442 * unwind if we hit contention. 2443 */ 2444 if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) { 2445 ret = -EBUSY; 2446 goto err_undo; 2447 } 2448 } 2449 cur_vma = NULL; 2450 2451 list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) { 2452 if (!down_write_trylock(&cur_mem->memory_lock)) { 2453 ret = -EBUSY; 2454 goto err_undo; 2455 } 2456 mutex_unlock(&cur_mem->vma_lock); 2457 } 2458 cur_mem = NULL; 2459 2460 /* 2461 * The pci_reset_bus() will reset all the devices in the bus. 2462 * The power state can be non-D0 for some of the devices in the bus. 2463 * For these devices, the pci_reset_bus() will internally set 2464 * the power state to D0 without vfio driver involvement. 2465 * For the devices which have NoSoftRst-, the reset function can 2466 * cause the PCI config space reset without restoring the original 2467 * state (saved locally in 'vdev->pm_save'). 2468 */ 2469 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2470 vfio_pci_set_power_state(cur, PCI_D0); 2471 2472 ret = pci_reset_bus(pdev); 2473 2474 err_undo: 2475 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2476 if (cur == cur_mem) 2477 is_mem = false; 2478 if (cur == cur_vma) 2479 break; 2480 if (is_mem) 2481 up_write(&cur->memory_lock); 2482 else 2483 mutex_unlock(&cur->vma_lock); 2484 } 2485 2486 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2487 pm_runtime_put(&cur->pdev->dev); 2488 err_unlock: 2489 mutex_unlock(&dev_set->lock); 2490 return ret; 2491 } 2492 2493 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set) 2494 { 2495 struct vfio_pci_core_device *cur; 2496 bool needs_reset = false; 2497 2498 /* No other VFIO device in the set can be open. */ 2499 if (vfio_device_set_open_count(dev_set) > 1) 2500 return false; 2501 2502 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) 2503 needs_reset |= cur->needs_reset; 2504 return needs_reset; 2505 } 2506 2507 /* 2508 * If a bus or slot reset is available for the provided dev_set and: 2509 * - All of the devices affected by that bus or slot reset are unused 2510 * - At least one of the affected devices is marked dirty via 2511 * needs_reset (such as by lack of FLR support) 2512 * Then attempt to perform that bus or slot reset. 2513 */ 2514 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set) 2515 { 2516 struct vfio_pci_core_device *cur; 2517 struct pci_dev *pdev; 2518 bool reset_done = false; 2519 2520 if (!vfio_pci_dev_set_needs_reset(dev_set)) 2521 return; 2522 2523 pdev = vfio_pci_dev_set_resettable(dev_set); 2524 if (!pdev) 2525 return; 2526 2527 /* 2528 * Some of the devices in the bus can be in the runtime suspended 2529 * state. Increment the usage count for all the devices in the dev_set 2530 * before reset and decrement the same after reset. 2531 */ 2532 if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set)) 2533 return; 2534 2535 if (!pci_reset_bus(pdev)) 2536 reset_done = true; 2537 2538 list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) { 2539 if (reset_done) 2540 cur->needs_reset = false; 2541 2542 if (!disable_idle_d3) 2543 pm_runtime_put(&cur->pdev->dev); 2544 } 2545 } 2546 2547 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga, 2548 bool is_disable_idle_d3) 2549 { 2550 nointxmask = is_nointxmask; 2551 disable_vga = is_disable_vga; 2552 disable_idle_d3 = is_disable_idle_d3; 2553 } 2554 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params); 2555 2556 static void vfio_pci_core_cleanup(void) 2557 { 2558 vfio_pci_uninit_perm_bits(); 2559 } 2560 2561 static int __init vfio_pci_core_init(void) 2562 { 2563 /* Allocate shared config space permission data used by all devices */ 2564 return vfio_pci_init_perm_bits(); 2565 } 2566 2567 module_init(vfio_pci_core_init); 2568 module_exit(vfio_pci_core_cleanup); 2569 2570 MODULE_LICENSE("GPL v2"); 2571 MODULE_AUTHOR(DRIVER_AUTHOR); 2572 MODULE_DESCRIPTION(DRIVER_DESC); 2573