xref: /linux/drivers/vfio/pci/vfio_pci_core.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
4  *     Author: Alex Williamson <alex.williamson@redhat.com>
5  *
6  * Derived from original vfio:
7  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
8  * Author: Tom Lyon, pugs@cisco.com
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/aperture.h>
14 #include <linux/device.h>
15 #include <linux/eventfd.h>
16 #include <linux/file.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/pci.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 #include <linux/uaccess.h>
27 #include <linux/vgaarb.h>
28 #include <linux/nospec.h>
29 #include <linux/sched/mm.h>
30 #include <linux/iommufd.h>
31 #if IS_ENABLED(CONFIG_EEH)
32 #include <asm/eeh.h>
33 #endif
34 
35 #include "vfio_pci_priv.h"
36 
37 #define DRIVER_AUTHOR   "Alex Williamson <alex.williamson@redhat.com>"
38 #define DRIVER_DESC "core driver for VFIO based PCI devices"
39 
40 static bool nointxmask;
41 static bool disable_vga;
42 static bool disable_idle_d3;
43 
44 /* List of PF's that vfio_pci_core_sriov_configure() has been called on */
45 static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
46 static LIST_HEAD(vfio_pci_sriov_pfs);
47 
48 struct vfio_pci_dummy_resource {
49 	struct resource		resource;
50 	int			index;
51 	struct list_head	res_next;
52 };
53 
54 struct vfio_pci_vf_token {
55 	struct mutex		lock;
56 	uuid_t			uuid;
57 	int			users;
58 };
59 
60 struct vfio_pci_mmap_vma {
61 	struct vm_area_struct	*vma;
62 	struct list_head	vma_next;
63 };
64 
65 static inline bool vfio_vga_disabled(void)
66 {
67 #ifdef CONFIG_VFIO_PCI_VGA
68 	return disable_vga;
69 #else
70 	return true;
71 #endif
72 }
73 
74 /*
75  * Our VGA arbiter participation is limited since we don't know anything
76  * about the device itself.  However, if the device is the only VGA device
77  * downstream of a bridge and VFIO VGA support is disabled, then we can
78  * safely return legacy VGA IO and memory as not decoded since the user
79  * has no way to get to it and routing can be disabled externally at the
80  * bridge.
81  */
82 static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
83 {
84 	struct pci_dev *tmp = NULL;
85 	unsigned char max_busnr;
86 	unsigned int decodes;
87 
88 	if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
89 		return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
90 		       VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
91 
92 	max_busnr = pci_bus_max_busnr(pdev->bus);
93 	decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
94 
95 	while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
96 		if (tmp == pdev ||
97 		    pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
98 		    pci_is_root_bus(tmp->bus))
99 			continue;
100 
101 		if (tmp->bus->number >= pdev->bus->number &&
102 		    tmp->bus->number <= max_busnr) {
103 			pci_dev_put(tmp);
104 			decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
105 			break;
106 		}
107 	}
108 
109 	return decodes;
110 }
111 
112 static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
113 {
114 	struct resource *res;
115 	int i;
116 	struct vfio_pci_dummy_resource *dummy_res;
117 
118 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
119 		int bar = i + PCI_STD_RESOURCES;
120 
121 		res = &vdev->pdev->resource[bar];
122 
123 		if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
124 			goto no_mmap;
125 
126 		if (!(res->flags & IORESOURCE_MEM))
127 			goto no_mmap;
128 
129 		/*
130 		 * The PCI core shouldn't set up a resource with a
131 		 * type but zero size. But there may be bugs that
132 		 * cause us to do that.
133 		 */
134 		if (!resource_size(res))
135 			goto no_mmap;
136 
137 		if (resource_size(res) >= PAGE_SIZE) {
138 			vdev->bar_mmap_supported[bar] = true;
139 			continue;
140 		}
141 
142 		if (!(res->start & ~PAGE_MASK)) {
143 			/*
144 			 * Add a dummy resource to reserve the remainder
145 			 * of the exclusive page in case that hot-add
146 			 * device's bar is assigned into it.
147 			 */
148 			dummy_res =
149 				kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
150 			if (dummy_res == NULL)
151 				goto no_mmap;
152 
153 			dummy_res->resource.name = "vfio sub-page reserved";
154 			dummy_res->resource.start = res->end + 1;
155 			dummy_res->resource.end = res->start + PAGE_SIZE - 1;
156 			dummy_res->resource.flags = res->flags;
157 			if (request_resource(res->parent,
158 						&dummy_res->resource)) {
159 				kfree(dummy_res);
160 				goto no_mmap;
161 			}
162 			dummy_res->index = bar;
163 			list_add(&dummy_res->res_next,
164 					&vdev->dummy_resources_list);
165 			vdev->bar_mmap_supported[bar] = true;
166 			continue;
167 		}
168 		/*
169 		 * Here we don't handle the case when the BAR is not page
170 		 * aligned because we can't expect the BAR will be
171 		 * assigned into the same location in a page in guest
172 		 * when we passthrough the BAR. And it's hard to access
173 		 * this BAR in userspace because we have no way to get
174 		 * the BAR's location in a page.
175 		 */
176 no_mmap:
177 		vdev->bar_mmap_supported[bar] = false;
178 	}
179 }
180 
181 struct vfio_pci_group_info;
182 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
183 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
184 				      struct vfio_pci_group_info *groups,
185 				      struct iommufd_ctx *iommufd_ctx);
186 
187 /*
188  * INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
189  * _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
190  * If a device implements the former but not the latter we would typically
191  * expect broken_intx_masking be set and require an exclusive interrupt.
192  * However since we do have control of the device's ability to assert INTx,
193  * we can instead pretend that the device does not implement INTx, virtualizing
194  * the pin register to report zero and maintaining DisINTx set on the host.
195  */
196 static bool vfio_pci_nointx(struct pci_dev *pdev)
197 {
198 	switch (pdev->vendor) {
199 	case PCI_VENDOR_ID_INTEL:
200 		switch (pdev->device) {
201 		/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
202 		case 0x1572:
203 		case 0x1574:
204 		case 0x1580 ... 0x1581:
205 		case 0x1583 ... 0x158b:
206 		case 0x37d0 ... 0x37d2:
207 		/* X550 */
208 		case 0x1563:
209 			return true;
210 		default:
211 			return false;
212 		}
213 	}
214 
215 	return false;
216 }
217 
218 static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
219 {
220 	struct pci_dev *pdev = vdev->pdev;
221 	u16 pmcsr;
222 
223 	if (!pdev->pm_cap)
224 		return;
225 
226 	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
227 
228 	vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
229 }
230 
231 /*
232  * pci_set_power_state() wrapper handling devices which perform a soft reset on
233  * D3->D0 transition.  Save state prior to D0/1/2->D3, stash it on the vdev,
234  * restore when returned to D0.  Saved separately from pci_saved_state for use
235  * by PM capability emulation and separately from pci_dev internal saved state
236  * to avoid it being overwritten and consumed around other resets.
237  */
238 int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
239 {
240 	struct pci_dev *pdev = vdev->pdev;
241 	bool needs_restore = false, needs_save = false;
242 	int ret;
243 
244 	/* Prevent changing power state for PFs with VFs enabled */
245 	if (pci_num_vf(pdev) && state > PCI_D0)
246 		return -EBUSY;
247 
248 	if (vdev->needs_pm_restore) {
249 		if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
250 			pci_save_state(pdev);
251 			needs_save = true;
252 		}
253 
254 		if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
255 			needs_restore = true;
256 	}
257 
258 	ret = pci_set_power_state(pdev, state);
259 
260 	if (!ret) {
261 		/* D3 might be unsupported via quirk, skip unless in D3 */
262 		if (needs_save && pdev->current_state >= PCI_D3hot) {
263 			/*
264 			 * The current PCI state will be saved locally in
265 			 * 'pm_save' during the D3hot transition. When the
266 			 * device state is changed to D0 again with the current
267 			 * function, then pci_store_saved_state() will restore
268 			 * the state and will free the memory pointed by
269 			 * 'pm_save'. There are few cases where the PCI power
270 			 * state can be changed to D0 without the involvement
271 			 * of the driver. For these cases, free the earlier
272 			 * allocated memory first before overwriting 'pm_save'
273 			 * to prevent the memory leak.
274 			 */
275 			kfree(vdev->pm_save);
276 			vdev->pm_save = pci_store_saved_state(pdev);
277 		} else if (needs_restore) {
278 			pci_load_and_free_saved_state(pdev, &vdev->pm_save);
279 			pci_restore_state(pdev);
280 		}
281 	}
282 
283 	return ret;
284 }
285 
286 static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
287 				     struct eventfd_ctx *efdctx)
288 {
289 	/*
290 	 * The vdev power related flags are protected with 'memory_lock'
291 	 * semaphore.
292 	 */
293 	vfio_pci_zap_and_down_write_memory_lock(vdev);
294 	if (vdev->pm_runtime_engaged) {
295 		up_write(&vdev->memory_lock);
296 		return -EINVAL;
297 	}
298 
299 	vdev->pm_runtime_engaged = true;
300 	vdev->pm_wake_eventfd_ctx = efdctx;
301 	pm_runtime_put_noidle(&vdev->pdev->dev);
302 	up_write(&vdev->memory_lock);
303 
304 	return 0;
305 }
306 
307 static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
308 				  void __user *arg, size_t argsz)
309 {
310 	struct vfio_pci_core_device *vdev =
311 		container_of(device, struct vfio_pci_core_device, vdev);
312 	int ret;
313 
314 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
315 	if (ret != 1)
316 		return ret;
317 
318 	/*
319 	 * Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
320 	 * will be decremented. The pm_runtime_put() will be invoked again
321 	 * while returning from the ioctl and then the device can go into
322 	 * runtime suspended state.
323 	 */
324 	return vfio_pci_runtime_pm_entry(vdev, NULL);
325 }
326 
327 static int vfio_pci_core_pm_entry_with_wakeup(
328 	struct vfio_device *device, u32 flags,
329 	struct vfio_device_low_power_entry_with_wakeup __user *arg,
330 	size_t argsz)
331 {
332 	struct vfio_pci_core_device *vdev =
333 		container_of(device, struct vfio_pci_core_device, vdev);
334 	struct vfio_device_low_power_entry_with_wakeup entry;
335 	struct eventfd_ctx *efdctx;
336 	int ret;
337 
338 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
339 				 sizeof(entry));
340 	if (ret != 1)
341 		return ret;
342 
343 	if (copy_from_user(&entry, arg, sizeof(entry)))
344 		return -EFAULT;
345 
346 	if (entry.wakeup_eventfd < 0)
347 		return -EINVAL;
348 
349 	efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
350 	if (IS_ERR(efdctx))
351 		return PTR_ERR(efdctx);
352 
353 	ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
354 	if (ret)
355 		eventfd_ctx_put(efdctx);
356 
357 	return ret;
358 }
359 
360 static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
361 {
362 	if (vdev->pm_runtime_engaged) {
363 		vdev->pm_runtime_engaged = false;
364 		pm_runtime_get_noresume(&vdev->pdev->dev);
365 
366 		if (vdev->pm_wake_eventfd_ctx) {
367 			eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
368 			vdev->pm_wake_eventfd_ctx = NULL;
369 		}
370 	}
371 }
372 
373 static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
374 {
375 	/*
376 	 * The vdev power related flags are protected with 'memory_lock'
377 	 * semaphore.
378 	 */
379 	down_write(&vdev->memory_lock);
380 	__vfio_pci_runtime_pm_exit(vdev);
381 	up_write(&vdev->memory_lock);
382 }
383 
384 static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
385 				 void __user *arg, size_t argsz)
386 {
387 	struct vfio_pci_core_device *vdev =
388 		container_of(device, struct vfio_pci_core_device, vdev);
389 	int ret;
390 
391 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
392 	if (ret != 1)
393 		return ret;
394 
395 	/*
396 	 * The device is always in the active state here due to pm wrappers
397 	 * around ioctls. If the device had entered a low power state and
398 	 * pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
399 	 * already signaled the eventfd and exited low power mode itself.
400 	 * pm_runtime_engaged protects the redundant call here.
401 	 */
402 	vfio_pci_runtime_pm_exit(vdev);
403 	return 0;
404 }
405 
406 #ifdef CONFIG_PM
407 static int vfio_pci_core_runtime_suspend(struct device *dev)
408 {
409 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
410 
411 	down_write(&vdev->memory_lock);
412 	/*
413 	 * The user can move the device into D3hot state before invoking
414 	 * power management IOCTL. Move the device into D0 state here and then
415 	 * the pci-driver core runtime PM suspend function will move the device
416 	 * into the low power state. Also, for the devices which have
417 	 * NoSoftRst-, it will help in restoring the original state
418 	 * (saved locally in 'vdev->pm_save').
419 	 */
420 	vfio_pci_set_power_state(vdev, PCI_D0);
421 	up_write(&vdev->memory_lock);
422 
423 	/*
424 	 * If INTx is enabled, then mask INTx before going into the runtime
425 	 * suspended state and unmask the same in the runtime resume.
426 	 * If INTx has already been masked by the user, then
427 	 * vfio_pci_intx_mask() will return false and in that case, INTx
428 	 * should not be unmasked in the runtime resume.
429 	 */
430 	vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
431 				vfio_pci_intx_mask(vdev));
432 
433 	return 0;
434 }
435 
436 static int vfio_pci_core_runtime_resume(struct device *dev)
437 {
438 	struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
439 
440 	/*
441 	 * Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
442 	 * low power mode.
443 	 */
444 	down_write(&vdev->memory_lock);
445 	if (vdev->pm_wake_eventfd_ctx) {
446 		eventfd_signal(vdev->pm_wake_eventfd_ctx);
447 		__vfio_pci_runtime_pm_exit(vdev);
448 	}
449 	up_write(&vdev->memory_lock);
450 
451 	if (vdev->pm_intx_masked)
452 		vfio_pci_intx_unmask(vdev);
453 
454 	return 0;
455 }
456 #endif /* CONFIG_PM */
457 
458 /*
459  * The pci-driver core runtime PM routines always save the device state
460  * before going into suspended state. If the device is going into low power
461  * state with only with runtime PM ops, then no explicit handling is needed
462  * for the devices which have NoSoftRst-.
463  */
464 static const struct dev_pm_ops vfio_pci_core_pm_ops = {
465 	SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
466 			   vfio_pci_core_runtime_resume,
467 			   NULL)
468 };
469 
470 int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
471 {
472 	struct pci_dev *pdev = vdev->pdev;
473 	int ret;
474 	u16 cmd;
475 	u8 msix_pos;
476 
477 	if (!disable_idle_d3) {
478 		ret = pm_runtime_resume_and_get(&pdev->dev);
479 		if (ret < 0)
480 			return ret;
481 	}
482 
483 	/* Don't allow our initial saved state to include busmaster */
484 	pci_clear_master(pdev);
485 
486 	ret = pci_enable_device(pdev);
487 	if (ret)
488 		goto out_power;
489 
490 	/* If reset fails because of the device lock, fail this path entirely */
491 	ret = pci_try_reset_function(pdev);
492 	if (ret == -EAGAIN)
493 		goto out_disable_device;
494 
495 	vdev->reset_works = !ret;
496 	pci_save_state(pdev);
497 	vdev->pci_saved_state = pci_store_saved_state(pdev);
498 	if (!vdev->pci_saved_state)
499 		pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
500 
501 	if (likely(!nointxmask)) {
502 		if (vfio_pci_nointx(pdev)) {
503 			pci_info(pdev, "Masking broken INTx support\n");
504 			vdev->nointx = true;
505 			pci_intx(pdev, 0);
506 		} else
507 			vdev->pci_2_3 = pci_intx_mask_supported(pdev);
508 	}
509 
510 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
511 	if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
512 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
513 		pci_write_config_word(pdev, PCI_COMMAND, cmd);
514 	}
515 
516 	ret = vfio_pci_zdev_open_device(vdev);
517 	if (ret)
518 		goto out_free_state;
519 
520 	ret = vfio_config_init(vdev);
521 	if (ret)
522 		goto out_free_zdev;
523 
524 	msix_pos = pdev->msix_cap;
525 	if (msix_pos) {
526 		u16 flags;
527 		u32 table;
528 
529 		pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
530 		pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
531 
532 		vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
533 		vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
534 		vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
535 		vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
536 	} else {
537 		vdev->msix_bar = 0xFF;
538 		vdev->has_dyn_msix = false;
539 	}
540 
541 	if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
542 		vdev->has_vga = true;
543 
544 
545 	return 0;
546 
547 out_free_zdev:
548 	vfio_pci_zdev_close_device(vdev);
549 out_free_state:
550 	kfree(vdev->pci_saved_state);
551 	vdev->pci_saved_state = NULL;
552 out_disable_device:
553 	pci_disable_device(pdev);
554 out_power:
555 	if (!disable_idle_d3)
556 		pm_runtime_put(&pdev->dev);
557 	return ret;
558 }
559 EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
560 
561 void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
562 {
563 	struct pci_dev *pdev = vdev->pdev;
564 	struct vfio_pci_dummy_resource *dummy_res, *tmp;
565 	struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
566 	int i, bar;
567 
568 	/* For needs_reset */
569 	lockdep_assert_held(&vdev->vdev.dev_set->lock);
570 
571 	/*
572 	 * This function can be invoked while the power state is non-D0.
573 	 * This non-D0 power state can be with or without runtime PM.
574 	 * vfio_pci_runtime_pm_exit() will internally increment the usage
575 	 * count corresponding to pm_runtime_put() called during low power
576 	 * feature entry and then pm_runtime_resume() will wake up the device,
577 	 * if the device has already gone into the suspended state. Otherwise,
578 	 * the vfio_pci_set_power_state() will change the device power state
579 	 * to D0.
580 	 */
581 	vfio_pci_runtime_pm_exit(vdev);
582 	pm_runtime_resume(&pdev->dev);
583 
584 	/*
585 	 * This function calls __pci_reset_function_locked() which internally
586 	 * can use pci_pm_reset() for the function reset. pci_pm_reset() will
587 	 * fail if the power state is non-D0. Also, for the devices which
588 	 * have NoSoftRst-, the reset function can cause the PCI config space
589 	 * reset without restoring the original state (saved locally in
590 	 * 'vdev->pm_save').
591 	 */
592 	vfio_pci_set_power_state(vdev, PCI_D0);
593 
594 	/* Stop the device from further DMA */
595 	pci_clear_master(pdev);
596 
597 	vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
598 				VFIO_IRQ_SET_ACTION_TRIGGER,
599 				vdev->irq_type, 0, 0, NULL);
600 
601 	/* Device closed, don't need mutex here */
602 	list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
603 				 &vdev->ioeventfds_list, next) {
604 		vfio_virqfd_disable(&ioeventfd->virqfd);
605 		list_del(&ioeventfd->next);
606 		kfree(ioeventfd);
607 	}
608 	vdev->ioeventfds_nr = 0;
609 
610 	vdev->virq_disabled = false;
611 
612 	for (i = 0; i < vdev->num_regions; i++)
613 		vdev->region[i].ops->release(vdev, &vdev->region[i]);
614 
615 	vdev->num_regions = 0;
616 	kfree(vdev->region);
617 	vdev->region = NULL; /* don't krealloc a freed pointer */
618 
619 	vfio_config_free(vdev);
620 
621 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
622 		bar = i + PCI_STD_RESOURCES;
623 		if (!vdev->barmap[bar])
624 			continue;
625 		pci_iounmap(pdev, vdev->barmap[bar]);
626 		pci_release_selected_regions(pdev, 1 << bar);
627 		vdev->barmap[bar] = NULL;
628 	}
629 
630 	list_for_each_entry_safe(dummy_res, tmp,
631 				 &vdev->dummy_resources_list, res_next) {
632 		list_del(&dummy_res->res_next);
633 		release_resource(&dummy_res->resource);
634 		kfree(dummy_res);
635 	}
636 
637 	vdev->needs_reset = true;
638 
639 	vfio_pci_zdev_close_device(vdev);
640 
641 	/*
642 	 * If we have saved state, restore it.  If we can reset the device,
643 	 * even better.  Resetting with current state seems better than
644 	 * nothing, but saving and restoring current state without reset
645 	 * is just busy work.
646 	 */
647 	if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
648 		pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
649 
650 		if (!vdev->reset_works)
651 			goto out;
652 
653 		pci_save_state(pdev);
654 	}
655 
656 	/*
657 	 * Disable INTx and MSI, presumably to avoid spurious interrupts
658 	 * during reset.  Stolen from pci_reset_function()
659 	 */
660 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
661 
662 	/*
663 	 * Try to get the locks ourselves to prevent a deadlock. The
664 	 * success of this is dependent on being able to lock the device,
665 	 * which is not always possible.
666 	 * We can not use the "try" reset interface here, which will
667 	 * overwrite the previously restored configuration information.
668 	 */
669 	if (vdev->reset_works && pci_dev_trylock(pdev)) {
670 		if (!__pci_reset_function_locked(pdev))
671 			vdev->needs_reset = false;
672 		pci_dev_unlock(pdev);
673 	}
674 
675 	pci_restore_state(pdev);
676 out:
677 	pci_disable_device(pdev);
678 
679 	vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
680 
681 	/* Put the pm-runtime usage counter acquired during enable */
682 	if (!disable_idle_d3)
683 		pm_runtime_put(&pdev->dev);
684 }
685 EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
686 
687 void vfio_pci_core_close_device(struct vfio_device *core_vdev)
688 {
689 	struct vfio_pci_core_device *vdev =
690 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
691 
692 	if (vdev->sriov_pf_core_dev) {
693 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
694 		WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
695 		vdev->sriov_pf_core_dev->vf_token->users--;
696 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
697 	}
698 #if IS_ENABLED(CONFIG_EEH)
699 	eeh_dev_release(vdev->pdev);
700 #endif
701 	vfio_pci_core_disable(vdev);
702 
703 	mutex_lock(&vdev->igate);
704 	if (vdev->err_trigger) {
705 		eventfd_ctx_put(vdev->err_trigger);
706 		vdev->err_trigger = NULL;
707 	}
708 	if (vdev->req_trigger) {
709 		eventfd_ctx_put(vdev->req_trigger);
710 		vdev->req_trigger = NULL;
711 	}
712 	mutex_unlock(&vdev->igate);
713 }
714 EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
715 
716 void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
717 {
718 	vfio_pci_probe_mmaps(vdev);
719 #if IS_ENABLED(CONFIG_EEH)
720 	eeh_dev_open(vdev->pdev);
721 #endif
722 
723 	if (vdev->sriov_pf_core_dev) {
724 		mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
725 		vdev->sriov_pf_core_dev->vf_token->users++;
726 		mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
727 	}
728 }
729 EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
730 
731 static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
732 {
733 	if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
734 		u8 pin;
735 
736 		if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
737 		    vdev->nointx || vdev->pdev->is_virtfn)
738 			return 0;
739 
740 		pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
741 
742 		return pin ? 1 : 0;
743 	} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
744 		u8 pos;
745 		u16 flags;
746 
747 		pos = vdev->pdev->msi_cap;
748 		if (pos) {
749 			pci_read_config_word(vdev->pdev,
750 					     pos + PCI_MSI_FLAGS, &flags);
751 			return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
752 		}
753 	} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
754 		u8 pos;
755 		u16 flags;
756 
757 		pos = vdev->pdev->msix_cap;
758 		if (pos) {
759 			pci_read_config_word(vdev->pdev,
760 					     pos + PCI_MSIX_FLAGS, &flags);
761 
762 			return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
763 		}
764 	} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
765 		if (pci_is_pcie(vdev->pdev))
766 			return 1;
767 	} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
768 		return 1;
769 	}
770 
771 	return 0;
772 }
773 
774 static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
775 {
776 	(*(int *)data)++;
777 	return 0;
778 }
779 
780 struct vfio_pci_fill_info {
781 	struct vfio_device *vdev;
782 	struct vfio_pci_dependent_device *devices;
783 	int nr_devices;
784 	u32 count;
785 	u32 flags;
786 };
787 
788 static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
789 {
790 	struct vfio_pci_dependent_device *info;
791 	struct vfio_pci_fill_info *fill = data;
792 
793 	/* The topology changed since we counted devices */
794 	if (fill->count >= fill->nr_devices)
795 		return -EAGAIN;
796 
797 	info = &fill->devices[fill->count++];
798 	info->segment = pci_domain_nr(pdev->bus);
799 	info->bus = pdev->bus->number;
800 	info->devfn = pdev->devfn;
801 
802 	if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
803 		struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
804 		struct vfio_device_set *dev_set = fill->vdev->dev_set;
805 		struct vfio_device *vdev;
806 
807 		/*
808 		 * hot-reset requires all affected devices be represented in
809 		 * the dev_set.
810 		 */
811 		vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
812 		if (!vdev) {
813 			info->devid = VFIO_PCI_DEVID_NOT_OWNED;
814 		} else {
815 			int id = vfio_iommufd_get_dev_id(vdev, iommufd);
816 
817 			if (id > 0)
818 				info->devid = id;
819 			else if (id == -ENOENT)
820 				info->devid = VFIO_PCI_DEVID_OWNED;
821 			else
822 				info->devid = VFIO_PCI_DEVID_NOT_OWNED;
823 		}
824 		/* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
825 		if (info->devid == VFIO_PCI_DEVID_NOT_OWNED)
826 			fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
827 	} else {
828 		struct iommu_group *iommu_group;
829 
830 		iommu_group = iommu_group_get(&pdev->dev);
831 		if (!iommu_group)
832 			return -EPERM; /* Cannot reset non-isolated devices */
833 
834 		info->group_id = iommu_group_id(iommu_group);
835 		iommu_group_put(iommu_group);
836 	}
837 
838 	return 0;
839 }
840 
841 struct vfio_pci_group_info {
842 	int count;
843 	struct file **files;
844 };
845 
846 static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
847 {
848 	for (; pdev; pdev = pdev->bus->self)
849 		if (pdev->bus == slot->bus)
850 			return (pdev->slot == slot);
851 	return false;
852 }
853 
854 struct vfio_pci_walk_info {
855 	int (*fn)(struct pci_dev *pdev, void *data);
856 	void *data;
857 	struct pci_dev *pdev;
858 	bool slot;
859 	int ret;
860 };
861 
862 static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
863 {
864 	struct vfio_pci_walk_info *walk = data;
865 
866 	if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
867 		walk->ret = walk->fn(pdev, walk->data);
868 
869 	return walk->ret;
870 }
871 
872 static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
873 					 int (*fn)(struct pci_dev *,
874 						   void *data), void *data,
875 					 bool slot)
876 {
877 	struct vfio_pci_walk_info walk = {
878 		.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
879 	};
880 
881 	pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
882 
883 	return walk.ret;
884 }
885 
886 static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
887 			      struct vfio_info_cap *caps)
888 {
889 	struct vfio_info_cap_header header = {
890 		.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
891 		.version = 1
892 	};
893 
894 	return vfio_info_add_capability(caps, &header, sizeof(header));
895 }
896 
897 int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
898 				      unsigned int type, unsigned int subtype,
899 				      const struct vfio_pci_regops *ops,
900 				      size_t size, u32 flags, void *data)
901 {
902 	struct vfio_pci_region *region;
903 
904 	region = krealloc(vdev->region,
905 			  (vdev->num_regions + 1) * sizeof(*region),
906 			  GFP_KERNEL_ACCOUNT);
907 	if (!region)
908 		return -ENOMEM;
909 
910 	vdev->region = region;
911 	vdev->region[vdev->num_regions].type = type;
912 	vdev->region[vdev->num_regions].subtype = subtype;
913 	vdev->region[vdev->num_regions].ops = ops;
914 	vdev->region[vdev->num_regions].size = size;
915 	vdev->region[vdev->num_regions].flags = flags;
916 	vdev->region[vdev->num_regions].data = data;
917 
918 	vdev->num_regions++;
919 
920 	return 0;
921 }
922 EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
923 
924 static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
925 				    struct vfio_info_cap *caps)
926 {
927 	struct vfio_device_info_cap_pci_atomic_comp cap = {
928 		.header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
929 		.header.version = 1
930 	};
931 	struct pci_dev *pdev = pci_physfn(vdev->pdev);
932 	u32 devcap2;
933 
934 	pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
935 
936 	if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
937 	    !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
938 		cap.flags |= VFIO_PCI_ATOMIC_COMP32;
939 
940 	if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
941 	    !pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
942 		cap.flags |= VFIO_PCI_ATOMIC_COMP64;
943 
944 	if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
945 	    !pci_enable_atomic_ops_to_root(pdev,
946 					   PCI_EXP_DEVCAP2_ATOMIC_COMP128))
947 		cap.flags |= VFIO_PCI_ATOMIC_COMP128;
948 
949 	if (!cap.flags)
950 		return -ENODEV;
951 
952 	return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
953 }
954 
955 static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
956 				   struct vfio_device_info __user *arg)
957 {
958 	unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
959 	struct vfio_device_info info = {};
960 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
961 	int ret;
962 
963 	if (copy_from_user(&info, arg, minsz))
964 		return -EFAULT;
965 
966 	if (info.argsz < minsz)
967 		return -EINVAL;
968 
969 	minsz = min_t(size_t, info.argsz, sizeof(info));
970 
971 	info.flags = VFIO_DEVICE_FLAGS_PCI;
972 
973 	if (vdev->reset_works)
974 		info.flags |= VFIO_DEVICE_FLAGS_RESET;
975 
976 	info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
977 	info.num_irqs = VFIO_PCI_NUM_IRQS;
978 
979 	ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
980 	if (ret && ret != -ENODEV) {
981 		pci_warn(vdev->pdev,
982 			 "Failed to setup zPCI info capabilities\n");
983 		return ret;
984 	}
985 
986 	ret = vfio_pci_info_atomic_cap(vdev, &caps);
987 	if (ret && ret != -ENODEV) {
988 		pci_warn(vdev->pdev,
989 			 "Failed to setup AtomicOps info capability\n");
990 		return ret;
991 	}
992 
993 	if (caps.size) {
994 		info.flags |= VFIO_DEVICE_FLAGS_CAPS;
995 		if (info.argsz < sizeof(info) + caps.size) {
996 			info.argsz = sizeof(info) + caps.size;
997 		} else {
998 			vfio_info_cap_shift(&caps, sizeof(info));
999 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1000 				kfree(caps.buf);
1001 				return -EFAULT;
1002 			}
1003 			info.cap_offset = sizeof(*arg);
1004 		}
1005 
1006 		kfree(caps.buf);
1007 	}
1008 
1009 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1010 }
1011 
1012 static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
1013 					  struct vfio_region_info __user *arg)
1014 {
1015 	unsigned long minsz = offsetofend(struct vfio_region_info, offset);
1016 	struct pci_dev *pdev = vdev->pdev;
1017 	struct vfio_region_info info;
1018 	struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
1019 	int i, ret;
1020 
1021 	if (copy_from_user(&info, arg, minsz))
1022 		return -EFAULT;
1023 
1024 	if (info.argsz < minsz)
1025 		return -EINVAL;
1026 
1027 	switch (info.index) {
1028 	case VFIO_PCI_CONFIG_REGION_INDEX:
1029 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1030 		info.size = pdev->cfg_size;
1031 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1032 			     VFIO_REGION_INFO_FLAG_WRITE;
1033 		break;
1034 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1035 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1036 		info.size = pci_resource_len(pdev, info.index);
1037 		if (!info.size) {
1038 			info.flags = 0;
1039 			break;
1040 		}
1041 
1042 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1043 			     VFIO_REGION_INFO_FLAG_WRITE;
1044 		if (vdev->bar_mmap_supported[info.index]) {
1045 			info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
1046 			if (info.index == vdev->msix_bar) {
1047 				ret = msix_mmappable_cap(vdev, &caps);
1048 				if (ret)
1049 					return ret;
1050 			}
1051 		}
1052 
1053 		break;
1054 	case VFIO_PCI_ROM_REGION_INDEX: {
1055 		void __iomem *io;
1056 		size_t size;
1057 		u16 cmd;
1058 
1059 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1060 		info.flags = 0;
1061 
1062 		/* Report the BAR size, not the ROM size */
1063 		info.size = pci_resource_len(pdev, info.index);
1064 		if (!info.size) {
1065 			/* Shadow ROMs appear as PCI option ROMs */
1066 			if (pdev->resource[PCI_ROM_RESOURCE].flags &
1067 			    IORESOURCE_ROM_SHADOW)
1068 				info.size = 0x20000;
1069 			else
1070 				break;
1071 		}
1072 
1073 		/*
1074 		 * Is it really there?  Enable memory decode for implicit access
1075 		 * in pci_map_rom().
1076 		 */
1077 		cmd = vfio_pci_memory_lock_and_enable(vdev);
1078 		io = pci_map_rom(pdev, &size);
1079 		if (io) {
1080 			info.flags = VFIO_REGION_INFO_FLAG_READ;
1081 			pci_unmap_rom(pdev, io);
1082 		} else {
1083 			info.size = 0;
1084 		}
1085 		vfio_pci_memory_unlock_and_restore(vdev, cmd);
1086 
1087 		break;
1088 	}
1089 	case VFIO_PCI_VGA_REGION_INDEX:
1090 		if (!vdev->has_vga)
1091 			return -EINVAL;
1092 
1093 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1094 		info.size = 0xc0000;
1095 		info.flags = VFIO_REGION_INFO_FLAG_READ |
1096 			     VFIO_REGION_INFO_FLAG_WRITE;
1097 
1098 		break;
1099 	default: {
1100 		struct vfio_region_info_cap_type cap_type = {
1101 			.header.id = VFIO_REGION_INFO_CAP_TYPE,
1102 			.header.version = 1
1103 		};
1104 
1105 		if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1106 			return -EINVAL;
1107 		info.index = array_index_nospec(
1108 			info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
1109 
1110 		i = info.index - VFIO_PCI_NUM_REGIONS;
1111 
1112 		info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
1113 		info.size = vdev->region[i].size;
1114 		info.flags = vdev->region[i].flags;
1115 
1116 		cap_type.type = vdev->region[i].type;
1117 		cap_type.subtype = vdev->region[i].subtype;
1118 
1119 		ret = vfio_info_add_capability(&caps, &cap_type.header,
1120 					       sizeof(cap_type));
1121 		if (ret)
1122 			return ret;
1123 
1124 		if (vdev->region[i].ops->add_capability) {
1125 			ret = vdev->region[i].ops->add_capability(
1126 				vdev, &vdev->region[i], &caps);
1127 			if (ret)
1128 				return ret;
1129 		}
1130 	}
1131 	}
1132 
1133 	if (caps.size) {
1134 		info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
1135 		if (info.argsz < sizeof(info) + caps.size) {
1136 			info.argsz = sizeof(info) + caps.size;
1137 			info.cap_offset = 0;
1138 		} else {
1139 			vfio_info_cap_shift(&caps, sizeof(info));
1140 			if (copy_to_user(arg + 1, caps.buf, caps.size)) {
1141 				kfree(caps.buf);
1142 				return -EFAULT;
1143 			}
1144 			info.cap_offset = sizeof(*arg);
1145 		}
1146 
1147 		kfree(caps.buf);
1148 	}
1149 
1150 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1151 }
1152 
1153 static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
1154 				       struct vfio_irq_info __user *arg)
1155 {
1156 	unsigned long minsz = offsetofend(struct vfio_irq_info, count);
1157 	struct vfio_irq_info info;
1158 
1159 	if (copy_from_user(&info, arg, minsz))
1160 		return -EFAULT;
1161 
1162 	if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
1163 		return -EINVAL;
1164 
1165 	switch (info.index) {
1166 	case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
1167 	case VFIO_PCI_REQ_IRQ_INDEX:
1168 		break;
1169 	case VFIO_PCI_ERR_IRQ_INDEX:
1170 		if (pci_is_pcie(vdev->pdev))
1171 			break;
1172 		fallthrough;
1173 	default:
1174 		return -EINVAL;
1175 	}
1176 
1177 	info.flags = VFIO_IRQ_INFO_EVENTFD;
1178 
1179 	info.count = vfio_pci_get_irq_count(vdev, info.index);
1180 
1181 	if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
1182 		info.flags |=
1183 			(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
1184 	else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
1185 		info.flags |= VFIO_IRQ_INFO_NORESIZE;
1186 
1187 	return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
1188 }
1189 
1190 static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
1191 				   struct vfio_irq_set __user *arg)
1192 {
1193 	unsigned long minsz = offsetofend(struct vfio_irq_set, count);
1194 	struct vfio_irq_set hdr;
1195 	u8 *data = NULL;
1196 	int max, ret = 0;
1197 	size_t data_size = 0;
1198 
1199 	if (copy_from_user(&hdr, arg, minsz))
1200 		return -EFAULT;
1201 
1202 	max = vfio_pci_get_irq_count(vdev, hdr.index);
1203 
1204 	ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
1205 						 &data_size);
1206 	if (ret)
1207 		return ret;
1208 
1209 	if (data_size) {
1210 		data = memdup_user(&arg->data, data_size);
1211 		if (IS_ERR(data))
1212 			return PTR_ERR(data);
1213 	}
1214 
1215 	mutex_lock(&vdev->igate);
1216 
1217 	ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
1218 				      hdr.count, data);
1219 
1220 	mutex_unlock(&vdev->igate);
1221 	kfree(data);
1222 
1223 	return ret;
1224 }
1225 
1226 static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
1227 				void __user *arg)
1228 {
1229 	int ret;
1230 
1231 	if (!vdev->reset_works)
1232 		return -EINVAL;
1233 
1234 	vfio_pci_zap_and_down_write_memory_lock(vdev);
1235 
1236 	/*
1237 	 * This function can be invoked while the power state is non-D0. If
1238 	 * pci_try_reset_function() has been called while the power state is
1239 	 * non-D0, then pci_try_reset_function() will internally set the power
1240 	 * state to D0 without vfio driver involvement. For the devices which
1241 	 * have NoSoftRst-, the reset function can cause the PCI config space
1242 	 * reset without restoring the original state (saved locally in
1243 	 * 'vdev->pm_save').
1244 	 */
1245 	vfio_pci_set_power_state(vdev, PCI_D0);
1246 
1247 	ret = pci_try_reset_function(vdev->pdev);
1248 	up_write(&vdev->memory_lock);
1249 
1250 	return ret;
1251 }
1252 
1253 static int vfio_pci_ioctl_get_pci_hot_reset_info(
1254 	struct vfio_pci_core_device *vdev,
1255 	struct vfio_pci_hot_reset_info __user *arg)
1256 {
1257 	unsigned long minsz =
1258 		offsetofend(struct vfio_pci_hot_reset_info, count);
1259 	struct vfio_pci_dependent_device *devices = NULL;
1260 	struct vfio_pci_hot_reset_info hdr;
1261 	struct vfio_pci_fill_info fill = {};
1262 	bool slot = false;
1263 	int ret, count;
1264 
1265 	if (copy_from_user(&hdr, arg, minsz))
1266 		return -EFAULT;
1267 
1268 	if (hdr.argsz < minsz)
1269 		return -EINVAL;
1270 
1271 	hdr.flags = 0;
1272 
1273 	/* Can we do a slot or bus reset or neither? */
1274 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1275 		slot = true;
1276 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1277 		return -ENODEV;
1278 
1279 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1280 					    &count, slot);
1281 	if (ret)
1282 		return ret;
1283 
1284 	if (WARN_ON(!count)) /* Should always be at least one */
1285 		return -ERANGE;
1286 
1287 	if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) {
1288 		hdr.count = count;
1289 		ret = -ENOSPC;
1290 		goto header;
1291 	}
1292 
1293 	devices = kcalloc(count, sizeof(*devices), GFP_KERNEL);
1294 	if (!devices)
1295 		return -ENOMEM;
1296 
1297 	fill.devices = devices;
1298 	fill.nr_devices = count;
1299 	fill.vdev = &vdev->vdev;
1300 
1301 	if (vfio_device_cdev_opened(&vdev->vdev))
1302 		fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
1303 			     VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
1304 
1305 	mutex_lock(&vdev->vdev.dev_set->lock);
1306 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
1307 					    &fill, slot);
1308 	mutex_unlock(&vdev->vdev.dev_set->lock);
1309 	if (ret)
1310 		goto out;
1311 
1312 	if (copy_to_user(arg->devices, devices,
1313 			 sizeof(*devices) * fill.count)) {
1314 		ret = -EFAULT;
1315 		goto out;
1316 	}
1317 
1318 	hdr.count = fill.count;
1319 	hdr.flags = fill.flags;
1320 
1321 header:
1322 	if (copy_to_user(arg, &hdr, minsz))
1323 		ret = -EFAULT;
1324 out:
1325 	kfree(devices);
1326 	return ret;
1327 }
1328 
1329 static int
1330 vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
1331 				    int array_count, bool slot,
1332 				    struct vfio_pci_hot_reset __user *arg)
1333 {
1334 	int32_t *group_fds;
1335 	struct file **files;
1336 	struct vfio_pci_group_info info;
1337 	int file_idx, count = 0, ret = 0;
1338 
1339 	/*
1340 	 * We can't let userspace give us an arbitrarily large buffer to copy,
1341 	 * so verify how many we think there could be.  Note groups can have
1342 	 * multiple devices so one group per device is the max.
1343 	 */
1344 	ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
1345 					    &count, slot);
1346 	if (ret)
1347 		return ret;
1348 
1349 	if (array_count > count)
1350 		return -EINVAL;
1351 
1352 	group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
1353 	files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
1354 	if (!group_fds || !files) {
1355 		kfree(group_fds);
1356 		kfree(files);
1357 		return -ENOMEM;
1358 	}
1359 
1360 	if (copy_from_user(group_fds, arg->group_fds,
1361 			   array_count * sizeof(*group_fds))) {
1362 		kfree(group_fds);
1363 		kfree(files);
1364 		return -EFAULT;
1365 	}
1366 
1367 	/*
1368 	 * Get the group file for each fd to ensure the group is held across
1369 	 * the reset
1370 	 */
1371 	for (file_idx = 0; file_idx < array_count; file_idx++) {
1372 		struct file *file = fget(group_fds[file_idx]);
1373 
1374 		if (!file) {
1375 			ret = -EBADF;
1376 			break;
1377 		}
1378 
1379 		/* Ensure the FD is a vfio group FD.*/
1380 		if (!vfio_file_is_group(file)) {
1381 			fput(file);
1382 			ret = -EINVAL;
1383 			break;
1384 		}
1385 
1386 		files[file_idx] = file;
1387 	}
1388 
1389 	kfree(group_fds);
1390 
1391 	/* release reference to groups on error */
1392 	if (ret)
1393 		goto hot_reset_release;
1394 
1395 	info.count = array_count;
1396 	info.files = files;
1397 
1398 	ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
1399 
1400 hot_reset_release:
1401 	for (file_idx--; file_idx >= 0; file_idx--)
1402 		fput(files[file_idx]);
1403 
1404 	kfree(files);
1405 	return ret;
1406 }
1407 
1408 static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
1409 					struct vfio_pci_hot_reset __user *arg)
1410 {
1411 	unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
1412 	struct vfio_pci_hot_reset hdr;
1413 	bool slot = false;
1414 
1415 	if (copy_from_user(&hdr, arg, minsz))
1416 		return -EFAULT;
1417 
1418 	if (hdr.argsz < minsz || hdr.flags)
1419 		return -EINVAL;
1420 
1421 	/* zero-length array is only for cdev opened devices */
1422 	if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
1423 		return -EINVAL;
1424 
1425 	/* Can we do a slot or bus reset or neither? */
1426 	if (!pci_probe_reset_slot(vdev->pdev->slot))
1427 		slot = true;
1428 	else if (pci_probe_reset_bus(vdev->pdev->bus))
1429 		return -ENODEV;
1430 
1431 	if (hdr.count)
1432 		return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
1433 
1434 	return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
1435 					  vfio_iommufd_device_ictx(&vdev->vdev));
1436 }
1437 
1438 static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
1439 				    struct vfio_device_ioeventfd __user *arg)
1440 {
1441 	unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
1442 	struct vfio_device_ioeventfd ioeventfd;
1443 	int count;
1444 
1445 	if (copy_from_user(&ioeventfd, arg, minsz))
1446 		return -EFAULT;
1447 
1448 	if (ioeventfd.argsz < minsz)
1449 		return -EINVAL;
1450 
1451 	if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
1452 		return -EINVAL;
1453 
1454 	count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
1455 
1456 	if (hweight8(count) != 1 || ioeventfd.fd < -1)
1457 		return -EINVAL;
1458 
1459 	return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
1460 				  ioeventfd.fd);
1461 }
1462 
1463 long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
1464 			 unsigned long arg)
1465 {
1466 	struct vfio_pci_core_device *vdev =
1467 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1468 	void __user *uarg = (void __user *)arg;
1469 
1470 	switch (cmd) {
1471 	case VFIO_DEVICE_GET_INFO:
1472 		return vfio_pci_ioctl_get_info(vdev, uarg);
1473 	case VFIO_DEVICE_GET_IRQ_INFO:
1474 		return vfio_pci_ioctl_get_irq_info(vdev, uarg);
1475 	case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
1476 		return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
1477 	case VFIO_DEVICE_GET_REGION_INFO:
1478 		return vfio_pci_ioctl_get_region_info(vdev, uarg);
1479 	case VFIO_DEVICE_IOEVENTFD:
1480 		return vfio_pci_ioctl_ioeventfd(vdev, uarg);
1481 	case VFIO_DEVICE_PCI_HOT_RESET:
1482 		return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
1483 	case VFIO_DEVICE_RESET:
1484 		return vfio_pci_ioctl_reset(vdev, uarg);
1485 	case VFIO_DEVICE_SET_IRQS:
1486 		return vfio_pci_ioctl_set_irqs(vdev, uarg);
1487 	default:
1488 		return -ENOTTY;
1489 	}
1490 }
1491 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
1492 
1493 static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
1494 				       uuid_t __user *arg, size_t argsz)
1495 {
1496 	struct vfio_pci_core_device *vdev =
1497 		container_of(device, struct vfio_pci_core_device, vdev);
1498 	uuid_t uuid;
1499 	int ret;
1500 
1501 	if (!vdev->vf_token)
1502 		return -ENOTTY;
1503 	/*
1504 	 * We do not support GET of the VF Token UUID as this could
1505 	 * expose the token of the previous device user.
1506 	 */
1507 	ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
1508 				 sizeof(uuid));
1509 	if (ret != 1)
1510 		return ret;
1511 
1512 	if (copy_from_user(&uuid, arg, sizeof(uuid)))
1513 		return -EFAULT;
1514 
1515 	mutex_lock(&vdev->vf_token->lock);
1516 	uuid_copy(&vdev->vf_token->uuid, &uuid);
1517 	mutex_unlock(&vdev->vf_token->lock);
1518 	return 0;
1519 }
1520 
1521 int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
1522 				void __user *arg, size_t argsz)
1523 {
1524 	switch (flags & VFIO_DEVICE_FEATURE_MASK) {
1525 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
1526 		return vfio_pci_core_pm_entry(device, flags, arg, argsz);
1527 	case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
1528 		return vfio_pci_core_pm_entry_with_wakeup(device, flags,
1529 							  arg, argsz);
1530 	case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
1531 		return vfio_pci_core_pm_exit(device, flags, arg, argsz);
1532 	case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
1533 		return vfio_pci_core_feature_token(device, flags, arg, argsz);
1534 	default:
1535 		return -ENOTTY;
1536 	}
1537 }
1538 EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
1539 
1540 static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1541 			   size_t count, loff_t *ppos, bool iswrite)
1542 {
1543 	unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
1544 	int ret;
1545 
1546 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1547 		return -EINVAL;
1548 
1549 	ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
1550 	if (ret) {
1551 		pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
1552 				     ret);
1553 		return -EIO;
1554 	}
1555 
1556 	switch (index) {
1557 	case VFIO_PCI_CONFIG_REGION_INDEX:
1558 		ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
1559 		break;
1560 
1561 	case VFIO_PCI_ROM_REGION_INDEX:
1562 		if (iswrite)
1563 			ret = -EINVAL;
1564 		else
1565 			ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
1566 		break;
1567 
1568 	case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
1569 		ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
1570 		break;
1571 
1572 	case VFIO_PCI_VGA_REGION_INDEX:
1573 		ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
1574 		break;
1575 
1576 	default:
1577 		index -= VFIO_PCI_NUM_REGIONS;
1578 		ret = vdev->region[index].ops->rw(vdev, buf,
1579 						   count, ppos, iswrite);
1580 		break;
1581 	}
1582 
1583 	pm_runtime_put(&vdev->pdev->dev);
1584 	return ret;
1585 }
1586 
1587 ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
1588 		size_t count, loff_t *ppos)
1589 {
1590 	struct vfio_pci_core_device *vdev =
1591 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1592 
1593 	if (!count)
1594 		return 0;
1595 
1596 	return vfio_pci_rw(vdev, buf, count, ppos, false);
1597 }
1598 EXPORT_SYMBOL_GPL(vfio_pci_core_read);
1599 
1600 ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
1601 		size_t count, loff_t *ppos)
1602 {
1603 	struct vfio_pci_core_device *vdev =
1604 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1605 
1606 	if (!count)
1607 		return 0;
1608 
1609 	return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
1610 }
1611 EXPORT_SYMBOL_GPL(vfio_pci_core_write);
1612 
1613 /* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
1614 static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
1615 {
1616 	struct vfio_pci_mmap_vma *mmap_vma, *tmp;
1617 
1618 	/*
1619 	 * Lock ordering:
1620 	 * vma_lock is nested under mmap_lock for vm_ops callback paths.
1621 	 * The memory_lock semaphore is used by both code paths calling
1622 	 * into this function to zap vmas and the vm_ops.fault callback
1623 	 * to protect the memory enable state of the device.
1624 	 *
1625 	 * When zapping vmas we need to maintain the mmap_lock => vma_lock
1626 	 * ordering, which requires using vma_lock to walk vma_list to
1627 	 * acquire an mm, then dropping vma_lock to get the mmap_lock and
1628 	 * reacquiring vma_lock.  This logic is derived from similar
1629 	 * requirements in uverbs_user_mmap_disassociate().
1630 	 *
1631 	 * mmap_lock must always be the top-level lock when it is taken.
1632 	 * Therefore we can only hold the memory_lock write lock when
1633 	 * vma_list is empty, as we'd need to take mmap_lock to clear
1634 	 * entries.  vma_list can only be guaranteed empty when holding
1635 	 * vma_lock, thus memory_lock is nested under vma_lock.
1636 	 *
1637 	 * This enables the vm_ops.fault callback to acquire vma_lock,
1638 	 * followed by memory_lock read lock, while already holding
1639 	 * mmap_lock without risk of deadlock.
1640 	 */
1641 	while (1) {
1642 		struct mm_struct *mm = NULL;
1643 
1644 		if (try) {
1645 			if (!mutex_trylock(&vdev->vma_lock))
1646 				return 0;
1647 		} else {
1648 			mutex_lock(&vdev->vma_lock);
1649 		}
1650 		while (!list_empty(&vdev->vma_list)) {
1651 			mmap_vma = list_first_entry(&vdev->vma_list,
1652 						    struct vfio_pci_mmap_vma,
1653 						    vma_next);
1654 			mm = mmap_vma->vma->vm_mm;
1655 			if (mmget_not_zero(mm))
1656 				break;
1657 
1658 			list_del(&mmap_vma->vma_next);
1659 			kfree(mmap_vma);
1660 			mm = NULL;
1661 		}
1662 		if (!mm)
1663 			return 1;
1664 		mutex_unlock(&vdev->vma_lock);
1665 
1666 		if (try) {
1667 			if (!mmap_read_trylock(mm)) {
1668 				mmput(mm);
1669 				return 0;
1670 			}
1671 		} else {
1672 			mmap_read_lock(mm);
1673 		}
1674 		if (try) {
1675 			if (!mutex_trylock(&vdev->vma_lock)) {
1676 				mmap_read_unlock(mm);
1677 				mmput(mm);
1678 				return 0;
1679 			}
1680 		} else {
1681 			mutex_lock(&vdev->vma_lock);
1682 		}
1683 		list_for_each_entry_safe(mmap_vma, tmp,
1684 					 &vdev->vma_list, vma_next) {
1685 			struct vm_area_struct *vma = mmap_vma->vma;
1686 
1687 			if (vma->vm_mm != mm)
1688 				continue;
1689 
1690 			list_del(&mmap_vma->vma_next);
1691 			kfree(mmap_vma);
1692 
1693 			zap_vma_ptes(vma, vma->vm_start,
1694 				     vma->vm_end - vma->vm_start);
1695 		}
1696 		mutex_unlock(&vdev->vma_lock);
1697 		mmap_read_unlock(mm);
1698 		mmput(mm);
1699 	}
1700 }
1701 
1702 void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
1703 {
1704 	vfio_pci_zap_and_vma_lock(vdev, false);
1705 	down_write(&vdev->memory_lock);
1706 	mutex_unlock(&vdev->vma_lock);
1707 }
1708 
1709 u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
1710 {
1711 	u16 cmd;
1712 
1713 	down_write(&vdev->memory_lock);
1714 	pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
1715 	if (!(cmd & PCI_COMMAND_MEMORY))
1716 		pci_write_config_word(vdev->pdev, PCI_COMMAND,
1717 				      cmd | PCI_COMMAND_MEMORY);
1718 
1719 	return cmd;
1720 }
1721 
1722 void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
1723 {
1724 	pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
1725 	up_write(&vdev->memory_lock);
1726 }
1727 
1728 /* Caller holds vma_lock */
1729 static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
1730 			      struct vm_area_struct *vma)
1731 {
1732 	struct vfio_pci_mmap_vma *mmap_vma;
1733 
1734 	mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
1735 	if (!mmap_vma)
1736 		return -ENOMEM;
1737 
1738 	mmap_vma->vma = vma;
1739 	list_add(&mmap_vma->vma_next, &vdev->vma_list);
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * Zap mmaps on open so that we can fault them in on access and therefore
1746  * our vma_list only tracks mappings accessed since last zap.
1747  */
1748 static void vfio_pci_mmap_open(struct vm_area_struct *vma)
1749 {
1750 	zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1751 }
1752 
1753 static void vfio_pci_mmap_close(struct vm_area_struct *vma)
1754 {
1755 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1756 	struct vfio_pci_mmap_vma *mmap_vma;
1757 
1758 	mutex_lock(&vdev->vma_lock);
1759 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1760 		if (mmap_vma->vma == vma) {
1761 			list_del(&mmap_vma->vma_next);
1762 			kfree(mmap_vma);
1763 			break;
1764 		}
1765 	}
1766 	mutex_unlock(&vdev->vma_lock);
1767 }
1768 
1769 static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
1770 {
1771 	struct vm_area_struct *vma = vmf->vma;
1772 	struct vfio_pci_core_device *vdev = vma->vm_private_data;
1773 	struct vfio_pci_mmap_vma *mmap_vma;
1774 	vm_fault_t ret = VM_FAULT_NOPAGE;
1775 
1776 	mutex_lock(&vdev->vma_lock);
1777 	down_read(&vdev->memory_lock);
1778 
1779 	/*
1780 	 * Memory region cannot be accessed if the low power feature is engaged
1781 	 * or memory access is disabled.
1782 	 */
1783 	if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
1784 		ret = VM_FAULT_SIGBUS;
1785 		goto up_out;
1786 	}
1787 
1788 	/*
1789 	 * We populate the whole vma on fault, so we need to test whether
1790 	 * the vma has already been mapped, such as for concurrent faults
1791 	 * to the same vma.  io_remap_pfn_range() will trigger a BUG_ON if
1792 	 * we ask it to fill the same range again.
1793 	 */
1794 	list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
1795 		if (mmap_vma->vma == vma)
1796 			goto up_out;
1797 	}
1798 
1799 	if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
1800 			       vma->vm_end - vma->vm_start,
1801 			       vma->vm_page_prot)) {
1802 		ret = VM_FAULT_SIGBUS;
1803 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1804 		goto up_out;
1805 	}
1806 
1807 	if (__vfio_pci_add_vma(vdev, vma)) {
1808 		ret = VM_FAULT_OOM;
1809 		zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
1810 	}
1811 
1812 up_out:
1813 	up_read(&vdev->memory_lock);
1814 	mutex_unlock(&vdev->vma_lock);
1815 	return ret;
1816 }
1817 
1818 static const struct vm_operations_struct vfio_pci_mmap_ops = {
1819 	.open = vfio_pci_mmap_open,
1820 	.close = vfio_pci_mmap_close,
1821 	.fault = vfio_pci_mmap_fault,
1822 };
1823 
1824 int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
1825 {
1826 	struct vfio_pci_core_device *vdev =
1827 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1828 	struct pci_dev *pdev = vdev->pdev;
1829 	unsigned int index;
1830 	u64 phys_len, req_len, pgoff, req_start;
1831 	int ret;
1832 
1833 	index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
1834 
1835 	if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
1836 		return -EINVAL;
1837 	if (vma->vm_end < vma->vm_start)
1838 		return -EINVAL;
1839 	if ((vma->vm_flags & VM_SHARED) == 0)
1840 		return -EINVAL;
1841 	if (index >= VFIO_PCI_NUM_REGIONS) {
1842 		int regnum = index - VFIO_PCI_NUM_REGIONS;
1843 		struct vfio_pci_region *region = vdev->region + regnum;
1844 
1845 		if (region->ops && region->ops->mmap &&
1846 		    (region->flags & VFIO_REGION_INFO_FLAG_MMAP))
1847 			return region->ops->mmap(vdev, region, vma);
1848 		return -EINVAL;
1849 	}
1850 	if (index >= VFIO_PCI_ROM_REGION_INDEX)
1851 		return -EINVAL;
1852 	if (!vdev->bar_mmap_supported[index])
1853 		return -EINVAL;
1854 
1855 	phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
1856 	req_len = vma->vm_end - vma->vm_start;
1857 	pgoff = vma->vm_pgoff &
1858 		((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
1859 	req_start = pgoff << PAGE_SHIFT;
1860 
1861 	if (req_start + req_len > phys_len)
1862 		return -EINVAL;
1863 
1864 	/*
1865 	 * Even though we don't make use of the barmap for the mmap,
1866 	 * we need to request the region and the barmap tracks that.
1867 	 */
1868 	if (!vdev->barmap[index]) {
1869 		ret = pci_request_selected_regions(pdev,
1870 						   1 << index, "vfio-pci");
1871 		if (ret)
1872 			return ret;
1873 
1874 		vdev->barmap[index] = pci_iomap(pdev, index, 0);
1875 		if (!vdev->barmap[index]) {
1876 			pci_release_selected_regions(pdev, 1 << index);
1877 			return -ENOMEM;
1878 		}
1879 	}
1880 
1881 	vma->vm_private_data = vdev;
1882 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1883 	vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
1884 
1885 	/*
1886 	 * See remap_pfn_range(), called from vfio_pci_fault() but we can't
1887 	 * change vm_flags within the fault handler.  Set them now.
1888 	 *
1889 	 * VM_ALLOW_ANY_UNCACHED: The VMA flag is implemented for ARM64,
1890 	 * allowing KVM stage 2 device mapping attributes to use Normal-NC
1891 	 * rather than DEVICE_nGnRE, which allows guest mappings
1892 	 * supporting write-combining attributes (WC). ARM does not
1893 	 * architecturally guarantee this is safe, and indeed some MMIO
1894 	 * regions like the GICv2 VCPU interface can trigger uncontained
1895 	 * faults if Normal-NC is used.
1896 	 *
1897 	 * To safely use VFIO in KVM the platform must guarantee full
1898 	 * safety in the guest where no action taken against a MMIO
1899 	 * mapping can trigger an uncontained failure. The assumption is
1900 	 * that most VFIO PCI platforms support this for both mapping types,
1901 	 * at least in common flows, based on some expectations of how
1902 	 * PCI IP is integrated. Hence VM_ALLOW_ANY_UNCACHED is set in
1903 	 * the VMA flags.
1904 	 */
1905 	vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED | VM_IO | VM_PFNMAP |
1906 			VM_DONTEXPAND | VM_DONTDUMP);
1907 	vma->vm_ops = &vfio_pci_mmap_ops;
1908 
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
1912 
1913 void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
1914 {
1915 	struct vfio_pci_core_device *vdev =
1916 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
1917 	struct pci_dev *pdev = vdev->pdev;
1918 
1919 	mutex_lock(&vdev->igate);
1920 
1921 	if (vdev->req_trigger) {
1922 		if (!(count % 10))
1923 			pci_notice_ratelimited(pdev,
1924 				"Relaying device request to user (#%u)\n",
1925 				count);
1926 		eventfd_signal(vdev->req_trigger);
1927 	} else if (count == 0) {
1928 		pci_warn(pdev,
1929 			"No device request channel registered, blocked until released by user\n");
1930 	}
1931 
1932 	mutex_unlock(&vdev->igate);
1933 }
1934 EXPORT_SYMBOL_GPL(vfio_pci_core_request);
1935 
1936 static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
1937 				      bool vf_token, uuid_t *uuid)
1938 {
1939 	/*
1940 	 * There's always some degree of trust or collaboration between SR-IOV
1941 	 * PF and VFs, even if just that the PF hosts the SR-IOV capability and
1942 	 * can disrupt VFs with a reset, but often the PF has more explicit
1943 	 * access to deny service to the VF or access data passed through the
1944 	 * VF.  We therefore require an opt-in via a shared VF token (UUID) to
1945 	 * represent this trust.  This both prevents that a VF driver might
1946 	 * assume the PF driver is a trusted, in-kernel driver, and also that
1947 	 * a PF driver might be replaced with a rogue driver, unknown to in-use
1948 	 * VF drivers.
1949 	 *
1950 	 * Therefore when presented with a VF, if the PF is a vfio device and
1951 	 * it is bound to the vfio-pci driver, the user needs to provide a VF
1952 	 * token to access the device, in the form of appending a vf_token to
1953 	 * the device name, for example:
1954 	 *
1955 	 * "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
1956 	 *
1957 	 * When presented with a PF which has VFs in use, the user must also
1958 	 * provide the current VF token to prove collaboration with existing
1959 	 * VF users.  If VFs are not in use, the VF token provided for the PF
1960 	 * device will act to set the VF token.
1961 	 *
1962 	 * If the VF token is provided but unused, an error is generated.
1963 	 */
1964 	if (vdev->pdev->is_virtfn) {
1965 		struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
1966 		bool match;
1967 
1968 		if (!pf_vdev) {
1969 			if (!vf_token)
1970 				return 0; /* PF is not vfio-pci, no VF token */
1971 
1972 			pci_info_ratelimited(vdev->pdev,
1973 				"VF token incorrectly provided, PF not bound to vfio-pci\n");
1974 			return -EINVAL;
1975 		}
1976 
1977 		if (!vf_token) {
1978 			pci_info_ratelimited(vdev->pdev,
1979 				"VF token required to access device\n");
1980 			return -EACCES;
1981 		}
1982 
1983 		mutex_lock(&pf_vdev->vf_token->lock);
1984 		match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
1985 		mutex_unlock(&pf_vdev->vf_token->lock);
1986 
1987 		if (!match) {
1988 			pci_info_ratelimited(vdev->pdev,
1989 				"Incorrect VF token provided for device\n");
1990 			return -EACCES;
1991 		}
1992 	} else if (vdev->vf_token) {
1993 		mutex_lock(&vdev->vf_token->lock);
1994 		if (vdev->vf_token->users) {
1995 			if (!vf_token) {
1996 				mutex_unlock(&vdev->vf_token->lock);
1997 				pci_info_ratelimited(vdev->pdev,
1998 					"VF token required to access device\n");
1999 				return -EACCES;
2000 			}
2001 
2002 			if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
2003 				mutex_unlock(&vdev->vf_token->lock);
2004 				pci_info_ratelimited(vdev->pdev,
2005 					"Incorrect VF token provided for device\n");
2006 				return -EACCES;
2007 			}
2008 		} else if (vf_token) {
2009 			uuid_copy(&vdev->vf_token->uuid, uuid);
2010 		}
2011 
2012 		mutex_unlock(&vdev->vf_token->lock);
2013 	} else if (vf_token) {
2014 		pci_info_ratelimited(vdev->pdev,
2015 			"VF token incorrectly provided, not a PF or VF\n");
2016 		return -EINVAL;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 #define VF_TOKEN_ARG "vf_token="
2023 
2024 int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
2025 {
2026 	struct vfio_pci_core_device *vdev =
2027 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2028 	bool vf_token = false;
2029 	uuid_t uuid;
2030 	int ret;
2031 
2032 	if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
2033 		return 0; /* No match */
2034 
2035 	if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
2036 		buf += strlen(pci_name(vdev->pdev));
2037 
2038 		if (*buf != ' ')
2039 			return 0; /* No match: non-whitespace after name */
2040 
2041 		while (*buf) {
2042 			if (*buf == ' ') {
2043 				buf++;
2044 				continue;
2045 			}
2046 
2047 			if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
2048 						  strlen(VF_TOKEN_ARG))) {
2049 				buf += strlen(VF_TOKEN_ARG);
2050 
2051 				if (strlen(buf) < UUID_STRING_LEN)
2052 					return -EINVAL;
2053 
2054 				ret = uuid_parse(buf, &uuid);
2055 				if (ret)
2056 					return ret;
2057 
2058 				vf_token = true;
2059 				buf += UUID_STRING_LEN;
2060 			} else {
2061 				/* Unknown/duplicate option */
2062 				return -EINVAL;
2063 			}
2064 		}
2065 	}
2066 
2067 	ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
2068 	if (ret)
2069 		return ret;
2070 
2071 	return 1; /* Match */
2072 }
2073 EXPORT_SYMBOL_GPL(vfio_pci_core_match);
2074 
2075 static int vfio_pci_bus_notifier(struct notifier_block *nb,
2076 				 unsigned long action, void *data)
2077 {
2078 	struct vfio_pci_core_device *vdev = container_of(nb,
2079 						    struct vfio_pci_core_device, nb);
2080 	struct device *dev = data;
2081 	struct pci_dev *pdev = to_pci_dev(dev);
2082 	struct pci_dev *physfn = pci_physfn(pdev);
2083 
2084 	if (action == BUS_NOTIFY_ADD_DEVICE &&
2085 	    pdev->is_virtfn && physfn == vdev->pdev) {
2086 		pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
2087 			 pci_name(pdev));
2088 		pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
2089 						  vdev->vdev.ops->name);
2090 		WARN_ON(!pdev->driver_override);
2091 	} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
2092 		   pdev->is_virtfn && physfn == vdev->pdev) {
2093 		struct pci_driver *drv = pci_dev_driver(pdev);
2094 
2095 		if (drv && drv != pci_dev_driver(vdev->pdev))
2096 			pci_warn(vdev->pdev,
2097 				 "VF %s bound to driver %s while PF bound to driver %s\n",
2098 				 pci_name(pdev), drv->name,
2099 				 pci_dev_driver(vdev->pdev)->name);
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
2106 {
2107 	struct pci_dev *pdev = vdev->pdev;
2108 	struct vfio_pci_core_device *cur;
2109 	struct pci_dev *physfn;
2110 	int ret;
2111 
2112 	if (pdev->is_virtfn) {
2113 		/*
2114 		 * If this VF was created by our vfio_pci_core_sriov_configure()
2115 		 * then we can find the PF vfio_pci_core_device now, and due to
2116 		 * the locking in pci_disable_sriov() it cannot change until
2117 		 * this VF device driver is removed.
2118 		 */
2119 		physfn = pci_physfn(vdev->pdev);
2120 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2121 		list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
2122 			if (cur->pdev == physfn) {
2123 				vdev->sriov_pf_core_dev = cur;
2124 				break;
2125 			}
2126 		}
2127 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2128 		return 0;
2129 	}
2130 
2131 	/* Not a SRIOV PF */
2132 	if (!pdev->is_physfn)
2133 		return 0;
2134 
2135 	vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
2136 	if (!vdev->vf_token)
2137 		return -ENOMEM;
2138 
2139 	mutex_init(&vdev->vf_token->lock);
2140 	uuid_gen(&vdev->vf_token->uuid);
2141 
2142 	vdev->nb.notifier_call = vfio_pci_bus_notifier;
2143 	ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
2144 	if (ret) {
2145 		kfree(vdev->vf_token);
2146 		return ret;
2147 	}
2148 	return 0;
2149 }
2150 
2151 static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
2152 {
2153 	if (!vdev->vf_token)
2154 		return;
2155 
2156 	bus_unregister_notifier(&pci_bus_type, &vdev->nb);
2157 	WARN_ON(vdev->vf_token->users);
2158 	mutex_destroy(&vdev->vf_token->lock);
2159 	kfree(vdev->vf_token);
2160 }
2161 
2162 static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
2163 {
2164 	struct pci_dev *pdev = vdev->pdev;
2165 	int ret;
2166 
2167 	if (!vfio_pci_is_vga(pdev))
2168 		return 0;
2169 
2170 	ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
2171 	if (ret)
2172 		return ret;
2173 
2174 	ret = vga_client_register(pdev, vfio_pci_set_decode);
2175 	if (ret)
2176 		return ret;
2177 	vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
2178 	return 0;
2179 }
2180 
2181 static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
2182 {
2183 	struct pci_dev *pdev = vdev->pdev;
2184 
2185 	if (!vfio_pci_is_vga(pdev))
2186 		return;
2187 	vga_client_unregister(pdev);
2188 	vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
2189 					      VGA_RSRC_LEGACY_IO |
2190 					      VGA_RSRC_LEGACY_MEM);
2191 }
2192 
2193 int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
2194 {
2195 	struct vfio_pci_core_device *vdev =
2196 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2197 
2198 	vdev->pdev = to_pci_dev(core_vdev->dev);
2199 	vdev->irq_type = VFIO_PCI_NUM_IRQS;
2200 	mutex_init(&vdev->igate);
2201 	spin_lock_init(&vdev->irqlock);
2202 	mutex_init(&vdev->ioeventfds_lock);
2203 	INIT_LIST_HEAD(&vdev->dummy_resources_list);
2204 	INIT_LIST_HEAD(&vdev->ioeventfds_list);
2205 	mutex_init(&vdev->vma_lock);
2206 	INIT_LIST_HEAD(&vdev->vma_list);
2207 	INIT_LIST_HEAD(&vdev->sriov_pfs_item);
2208 	init_rwsem(&vdev->memory_lock);
2209 	xa_init(&vdev->ctx);
2210 
2211 	return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
2214 
2215 void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
2216 {
2217 	struct vfio_pci_core_device *vdev =
2218 		container_of(core_vdev, struct vfio_pci_core_device, vdev);
2219 
2220 	mutex_destroy(&vdev->igate);
2221 	mutex_destroy(&vdev->ioeventfds_lock);
2222 	mutex_destroy(&vdev->vma_lock);
2223 	kfree(vdev->region);
2224 	kfree(vdev->pm_save);
2225 }
2226 EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
2227 
2228 int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
2229 {
2230 	struct pci_dev *pdev = vdev->pdev;
2231 	struct device *dev = &pdev->dev;
2232 	int ret;
2233 
2234 	/* Drivers must set the vfio_pci_core_device to their drvdata */
2235 	if (WARN_ON(vdev != dev_get_drvdata(dev)))
2236 		return -EINVAL;
2237 
2238 	if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2239 		return -EINVAL;
2240 
2241 	if (vdev->vdev.mig_ops) {
2242 		if (!(vdev->vdev.mig_ops->migration_get_state &&
2243 		      vdev->vdev.mig_ops->migration_set_state &&
2244 		      vdev->vdev.mig_ops->migration_get_data_size) ||
2245 		    !(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
2246 			return -EINVAL;
2247 	}
2248 
2249 	if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
2250 	    vdev->vdev.log_ops->log_stop &&
2251 	    vdev->vdev.log_ops->log_read_and_clear))
2252 		return -EINVAL;
2253 
2254 	/*
2255 	 * Prevent binding to PFs with VFs enabled, the VFs might be in use
2256 	 * by the host or other users.  We cannot capture the VFs if they
2257 	 * already exist, nor can we track VF users.  Disabling SR-IOV here
2258 	 * would initiate removing the VFs, which would unbind the driver,
2259 	 * which is prone to blocking if that VF is also in use by vfio-pci.
2260 	 * Just reject these PFs and let the user sort it out.
2261 	 */
2262 	if (pci_num_vf(pdev)) {
2263 		pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
2264 		return -EBUSY;
2265 	}
2266 
2267 	if (pci_is_root_bus(pdev->bus)) {
2268 		ret = vfio_assign_device_set(&vdev->vdev, vdev);
2269 	} else if (!pci_probe_reset_slot(pdev->slot)) {
2270 		ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
2271 	} else {
2272 		/*
2273 		 * If there is no slot reset support for this device, the whole
2274 		 * bus needs to be grouped together to support bus-wide resets.
2275 		 */
2276 		ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
2277 	}
2278 
2279 	if (ret)
2280 		return ret;
2281 	ret = vfio_pci_vf_init(vdev);
2282 	if (ret)
2283 		return ret;
2284 	ret = vfio_pci_vga_init(vdev);
2285 	if (ret)
2286 		goto out_vf;
2287 
2288 	vfio_pci_probe_power_state(vdev);
2289 
2290 	/*
2291 	 * pci-core sets the device power state to an unknown value at
2292 	 * bootup and after being removed from a driver.  The only
2293 	 * transition it allows from this unknown state is to D0, which
2294 	 * typically happens when a driver calls pci_enable_device().
2295 	 * We're not ready to enable the device yet, but we do want to
2296 	 * be able to get to D3.  Therefore first do a D0 transition
2297 	 * before enabling runtime PM.
2298 	 */
2299 	vfio_pci_set_power_state(vdev, PCI_D0);
2300 
2301 	dev->driver->pm = &vfio_pci_core_pm_ops;
2302 	pm_runtime_allow(dev);
2303 	if (!disable_idle_d3)
2304 		pm_runtime_put(dev);
2305 
2306 	ret = vfio_register_group_dev(&vdev->vdev);
2307 	if (ret)
2308 		goto out_power;
2309 	return 0;
2310 
2311 out_power:
2312 	if (!disable_idle_d3)
2313 		pm_runtime_get_noresume(dev);
2314 
2315 	pm_runtime_forbid(dev);
2316 out_vf:
2317 	vfio_pci_vf_uninit(vdev);
2318 	return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
2321 
2322 void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
2323 {
2324 	vfio_pci_core_sriov_configure(vdev, 0);
2325 
2326 	vfio_unregister_group_dev(&vdev->vdev);
2327 
2328 	vfio_pci_vf_uninit(vdev);
2329 	vfio_pci_vga_uninit(vdev);
2330 
2331 	if (!disable_idle_d3)
2332 		pm_runtime_get_noresume(&vdev->pdev->dev);
2333 
2334 	pm_runtime_forbid(&vdev->pdev->dev);
2335 }
2336 EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
2337 
2338 pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
2339 						pci_channel_state_t state)
2340 {
2341 	struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
2342 
2343 	mutex_lock(&vdev->igate);
2344 
2345 	if (vdev->err_trigger)
2346 		eventfd_signal(vdev->err_trigger);
2347 
2348 	mutex_unlock(&vdev->igate);
2349 
2350 	return PCI_ERS_RESULT_CAN_RECOVER;
2351 }
2352 EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
2353 
2354 int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
2355 				  int nr_virtfn)
2356 {
2357 	struct pci_dev *pdev = vdev->pdev;
2358 	int ret = 0;
2359 
2360 	device_lock_assert(&pdev->dev);
2361 
2362 	if (nr_virtfn) {
2363 		mutex_lock(&vfio_pci_sriov_pfs_mutex);
2364 		/*
2365 		 * The thread that adds the vdev to the list is the only thread
2366 		 * that gets to call pci_enable_sriov() and we will only allow
2367 		 * it to be called once without going through
2368 		 * pci_disable_sriov()
2369 		 */
2370 		if (!list_empty(&vdev->sriov_pfs_item)) {
2371 			ret = -EINVAL;
2372 			goto out_unlock;
2373 		}
2374 		list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
2375 		mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2376 
2377 		/*
2378 		 * The PF power state should always be higher than the VF power
2379 		 * state. The PF can be in low power state either with runtime
2380 		 * power management (when there is no user) or PCI_PM_CTRL
2381 		 * register write by the user. If PF is in the low power state,
2382 		 * then change the power state to D0 first before enabling
2383 		 * SR-IOV. Also, this function can be called at any time, and
2384 		 * userspace PCI_PM_CTRL write can race against this code path,
2385 		 * so protect the same with 'memory_lock'.
2386 		 */
2387 		ret = pm_runtime_resume_and_get(&pdev->dev);
2388 		if (ret)
2389 			goto out_del;
2390 
2391 		down_write(&vdev->memory_lock);
2392 		vfio_pci_set_power_state(vdev, PCI_D0);
2393 		ret = pci_enable_sriov(pdev, nr_virtfn);
2394 		up_write(&vdev->memory_lock);
2395 		if (ret) {
2396 			pm_runtime_put(&pdev->dev);
2397 			goto out_del;
2398 		}
2399 		return nr_virtfn;
2400 	}
2401 
2402 	if (pci_num_vf(pdev)) {
2403 		pci_disable_sriov(pdev);
2404 		pm_runtime_put(&pdev->dev);
2405 	}
2406 
2407 out_del:
2408 	mutex_lock(&vfio_pci_sriov_pfs_mutex);
2409 	list_del_init(&vdev->sriov_pfs_item);
2410 out_unlock:
2411 	mutex_unlock(&vfio_pci_sriov_pfs_mutex);
2412 	return ret;
2413 }
2414 EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
2415 
2416 const struct pci_error_handlers vfio_pci_core_err_handlers = {
2417 	.error_detected = vfio_pci_core_aer_err_detected,
2418 };
2419 EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
2420 
2421 static bool vfio_dev_in_groups(struct vfio_device *vdev,
2422 			       struct vfio_pci_group_info *groups)
2423 {
2424 	unsigned int i;
2425 
2426 	if (!groups)
2427 		return false;
2428 
2429 	for (i = 0; i < groups->count; i++)
2430 		if (vfio_file_has_dev(groups->files[i], vdev))
2431 			return true;
2432 	return false;
2433 }
2434 
2435 static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
2436 {
2437 	struct vfio_device_set *dev_set = data;
2438 
2439 	return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
2440 }
2441 
2442 /*
2443  * vfio-core considers a group to be viable and will create a vfio_device even
2444  * if some devices are bound to drivers like pci-stub or pcieport. Here we
2445  * require all PCI devices to be inside our dev_set since that ensures they stay
2446  * put and that every driver controlling the device can co-ordinate with the
2447  * device reset.
2448  *
2449  * Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
2450  * reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
2451  */
2452 static struct pci_dev *
2453 vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
2454 {
2455 	struct pci_dev *pdev;
2456 
2457 	lockdep_assert_held(&dev_set->lock);
2458 
2459 	/*
2460 	 * By definition all PCI devices in the dev_set share the same PCI
2461 	 * reset, so any pci_dev will have the same outcomes for
2462 	 * pci_probe_reset_*() and pci_reset_bus().
2463 	 */
2464 	pdev = list_first_entry(&dev_set->device_list,
2465 				struct vfio_pci_core_device,
2466 				vdev.dev_set_list)->pdev;
2467 
2468 	/* pci_reset_bus() is supported */
2469 	if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
2470 		return NULL;
2471 
2472 	if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
2473 					  dev_set,
2474 					  !pci_probe_reset_slot(pdev->slot)))
2475 		return NULL;
2476 	return pdev;
2477 }
2478 
2479 static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
2480 {
2481 	struct vfio_pci_core_device *cur;
2482 	int ret;
2483 
2484 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2485 		ret = pm_runtime_resume_and_get(&cur->pdev->dev);
2486 		if (ret)
2487 			goto unwind;
2488 	}
2489 
2490 	return 0;
2491 
2492 unwind:
2493 	list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
2494 					     vdev.dev_set_list)
2495 		pm_runtime_put(&cur->pdev->dev);
2496 
2497 	return ret;
2498 }
2499 
2500 /*
2501  * We need to get memory_lock for each device, but devices can share mmap_lock,
2502  * therefore we need to zap and hold the vma_lock for each device, and only then
2503  * get each memory_lock.
2504  */
2505 static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
2506 				      struct vfio_pci_group_info *groups,
2507 				      struct iommufd_ctx *iommufd_ctx)
2508 {
2509 	struct vfio_pci_core_device *cur_mem;
2510 	struct vfio_pci_core_device *cur_vma;
2511 	struct vfio_pci_core_device *cur;
2512 	struct pci_dev *pdev;
2513 	bool is_mem = true;
2514 	int ret;
2515 
2516 	mutex_lock(&dev_set->lock);
2517 	cur_mem = list_first_entry(&dev_set->device_list,
2518 				   struct vfio_pci_core_device,
2519 				   vdev.dev_set_list);
2520 
2521 	pdev = vfio_pci_dev_set_resettable(dev_set);
2522 	if (!pdev) {
2523 		ret = -EINVAL;
2524 		goto err_unlock;
2525 	}
2526 
2527 	/*
2528 	 * Some of the devices in the dev_set can be in the runtime suspended
2529 	 * state. Increment the usage count for all the devices in the dev_set
2530 	 * before reset and decrement the same after reset.
2531 	 */
2532 	ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
2533 	if (ret)
2534 		goto err_unlock;
2535 
2536 	list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
2537 		bool owned;
2538 
2539 		/*
2540 		 * Test whether all the affected devices can be reset by the
2541 		 * user.
2542 		 *
2543 		 * If called from a group opened device and the user provides
2544 		 * a set of groups, all the devices in the dev_set should be
2545 		 * contained by the set of groups provided by the user.
2546 		 *
2547 		 * If called from a cdev opened device and the user provides
2548 		 * a zero-length array, all the devices in the dev_set must
2549 		 * be bound to the same iommufd_ctx as the input iommufd_ctx.
2550 		 * If there is any device that has not been bound to any
2551 		 * iommufd_ctx yet, check if its iommu_group has any device
2552 		 * bound to the input iommufd_ctx.  Such devices can be
2553 		 * considered owned by the input iommufd_ctx as the device
2554 		 * cannot be owned by another iommufd_ctx when its iommu_group
2555 		 * is owned.
2556 		 *
2557 		 * Otherwise, reset is not allowed.
2558 		 */
2559 		if (iommufd_ctx) {
2560 			int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev,
2561 							    iommufd_ctx);
2562 
2563 			owned = (devid > 0 || devid == -ENOENT);
2564 		} else {
2565 			owned = vfio_dev_in_groups(&cur_vma->vdev, groups);
2566 		}
2567 
2568 		if (!owned) {
2569 			ret = -EINVAL;
2570 			goto err_undo;
2571 		}
2572 
2573 		/*
2574 		 * Locking multiple devices is prone to deadlock, runaway and
2575 		 * unwind if we hit contention.
2576 		 */
2577 		if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
2578 			ret = -EBUSY;
2579 			goto err_undo;
2580 		}
2581 	}
2582 	cur_vma = NULL;
2583 
2584 	list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
2585 		if (!down_write_trylock(&cur_mem->memory_lock)) {
2586 			ret = -EBUSY;
2587 			goto err_undo;
2588 		}
2589 		mutex_unlock(&cur_mem->vma_lock);
2590 	}
2591 	cur_mem = NULL;
2592 
2593 	/*
2594 	 * The pci_reset_bus() will reset all the devices in the bus.
2595 	 * The power state can be non-D0 for some of the devices in the bus.
2596 	 * For these devices, the pci_reset_bus() will internally set
2597 	 * the power state to D0 without vfio driver involvement.
2598 	 * For the devices which have NoSoftRst-, the reset function can
2599 	 * cause the PCI config space reset without restoring the original
2600 	 * state (saved locally in 'vdev->pm_save').
2601 	 */
2602 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2603 		vfio_pci_set_power_state(cur, PCI_D0);
2604 
2605 	ret = pci_reset_bus(pdev);
2606 
2607 err_undo:
2608 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2609 		if (cur == cur_mem)
2610 			is_mem = false;
2611 		if (cur == cur_vma)
2612 			break;
2613 		if (is_mem)
2614 			up_write(&cur->memory_lock);
2615 		else
2616 			mutex_unlock(&cur->vma_lock);
2617 	}
2618 
2619 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2620 		pm_runtime_put(&cur->pdev->dev);
2621 err_unlock:
2622 	mutex_unlock(&dev_set->lock);
2623 	return ret;
2624 }
2625 
2626 static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
2627 {
2628 	struct vfio_pci_core_device *cur;
2629 	bool needs_reset = false;
2630 
2631 	/* No other VFIO device in the set can be open. */
2632 	if (vfio_device_set_open_count(dev_set) > 1)
2633 		return false;
2634 
2635 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
2636 		needs_reset |= cur->needs_reset;
2637 	return needs_reset;
2638 }
2639 
2640 /*
2641  * If a bus or slot reset is available for the provided dev_set and:
2642  *  - All of the devices affected by that bus or slot reset are unused
2643  *  - At least one of the affected devices is marked dirty via
2644  *    needs_reset (such as by lack of FLR support)
2645  * Then attempt to perform that bus or slot reset.
2646  */
2647 static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
2648 {
2649 	struct vfio_pci_core_device *cur;
2650 	struct pci_dev *pdev;
2651 	bool reset_done = false;
2652 
2653 	if (!vfio_pci_dev_set_needs_reset(dev_set))
2654 		return;
2655 
2656 	pdev = vfio_pci_dev_set_resettable(dev_set);
2657 	if (!pdev)
2658 		return;
2659 
2660 	/*
2661 	 * Some of the devices in the bus can be in the runtime suspended
2662 	 * state. Increment the usage count for all the devices in the dev_set
2663 	 * before reset and decrement the same after reset.
2664 	 */
2665 	if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
2666 		return;
2667 
2668 	if (!pci_reset_bus(pdev))
2669 		reset_done = true;
2670 
2671 	list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
2672 		if (reset_done)
2673 			cur->needs_reset = false;
2674 
2675 		if (!disable_idle_d3)
2676 			pm_runtime_put(&cur->pdev->dev);
2677 	}
2678 }
2679 
2680 void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
2681 			      bool is_disable_idle_d3)
2682 {
2683 	nointxmask = is_nointxmask;
2684 	disable_vga = is_disable_vga;
2685 	disable_idle_d3 = is_disable_idle_d3;
2686 }
2687 EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
2688 
2689 static void vfio_pci_core_cleanup(void)
2690 {
2691 	vfio_pci_uninit_perm_bits();
2692 }
2693 
2694 static int __init vfio_pci_core_init(void)
2695 {
2696 	/* Allocate shared config space permission data used by all devices */
2697 	return vfio_pci_init_perm_bits();
2698 }
2699 
2700 module_init(vfio_pci_core_init);
2701 module_exit(vfio_pci_core_cleanup);
2702 
2703 MODULE_LICENSE("GPL v2");
2704 MODULE_AUTHOR(DRIVER_AUTHOR);
2705 MODULE_DESCRIPTION(DRIVER_DESC);
2706