1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VFIO PCI config space virtualization 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * Derived from original vfio: 9 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 10 * Author: Tom Lyon, pugs@cisco.com 11 */ 12 13 /* 14 * This code handles reading and writing of PCI configuration registers. 15 * This is hairy because we want to allow a lot of flexibility to the 16 * user driver, but cannot trust it with all of the config fields. 17 * Tables determine which fields can be read and written, as well as 18 * which fields are 'virtualized' - special actions and translations to 19 * make it appear to the user that he has control, when in fact things 20 * must be negotiated with the underlying OS. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/pci.h> 25 #include <linux/uaccess.h> 26 #include <linux/vfio.h> 27 #include <linux/slab.h> 28 29 #include "vfio_pci_priv.h" 30 31 /* Fake capability ID for standard config space */ 32 #define PCI_CAP_ID_BASIC 0 33 34 #define is_bar(offset) \ 35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \ 36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4)) 37 38 /* 39 * Lengths of PCI Config Capabilities 40 * 0: Removed from the user visible capability list 41 * FF: Variable length 42 */ 43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = { 44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */ 45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF, 46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF, 47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF, 48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */ 49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */ 50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */ 51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */ 52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */ 53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */ 54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */ 55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */ 56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */ 57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */ 58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */ 59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */ 60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */ 61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF, 62 [PCI_CAP_ID_SATA] = 0xFF, 63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF, 64 }; 65 66 /* 67 * Lengths of PCIe/PCI-X Extended Config Capabilities 68 * 0: Removed or masked from the user visible capability list 69 * FF: Variable length 70 */ 71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = { 72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND, 73 [PCI_EXT_CAP_ID_VC] = 0xFF, 74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF, 75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF, 76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */ 77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */ 78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */ 79 [PCI_EXT_CAP_ID_MFVC] = 0xFF, 80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */ 81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */ 82 [PCI_EXT_CAP_ID_VNDR] = 0xFF, 83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */ 84 [PCI_EXT_CAP_ID_ACS] = 0xFF, 85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF, 86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF, 87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF, 88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */ 89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF, 90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF, 91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */ 92 [PCI_EXT_CAP_ID_REBAR] = 0xFF, 93 [PCI_EXT_CAP_ID_DPA] = 0xFF, 94 [PCI_EXT_CAP_ID_TPH] = 0xFF, 95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF, 96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */ 97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */ 98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */ 99 [PCI_EXT_CAP_ID_DVSEC] = 0xFF, 100 }; 101 102 /* 103 * Read/Write Permission Bits - one bit for each bit in capability 104 * Any field can be read if it exists, but what is read depends on 105 * whether the field is 'virtualized', or just pass through to the 106 * hardware. Any virtualized field is also virtualized for writes. 107 * Writes are only permitted if they have a 1 bit here. 108 */ 109 struct perm_bits { 110 u8 *virt; /* read/write virtual data, not hw */ 111 u8 *write; /* writeable bits */ 112 int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count, 113 struct perm_bits *perm, int offset, __le32 *val); 114 int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count, 115 struct perm_bits *perm, int offset, __le32 val); 116 }; 117 118 #define NO_VIRT 0 119 #define ALL_VIRT 0xFFFFFFFFU 120 #define NO_WRITE 0 121 #define ALL_WRITE 0xFFFFFFFFU 122 123 static int vfio_user_config_read(struct pci_dev *pdev, int offset, 124 __le32 *val, int count) 125 { 126 int ret = -EINVAL; 127 u32 tmp_val = 0; 128 129 switch (count) { 130 case 1: 131 { 132 u8 tmp; 133 ret = pci_user_read_config_byte(pdev, offset, &tmp); 134 tmp_val = tmp; 135 break; 136 } 137 case 2: 138 { 139 u16 tmp; 140 ret = pci_user_read_config_word(pdev, offset, &tmp); 141 tmp_val = tmp; 142 break; 143 } 144 case 4: 145 ret = pci_user_read_config_dword(pdev, offset, &tmp_val); 146 break; 147 } 148 149 *val = cpu_to_le32(tmp_val); 150 151 return ret; 152 } 153 154 static int vfio_user_config_write(struct pci_dev *pdev, int offset, 155 __le32 val, int count) 156 { 157 int ret = -EINVAL; 158 u32 tmp_val = le32_to_cpu(val); 159 160 switch (count) { 161 case 1: 162 ret = pci_user_write_config_byte(pdev, offset, tmp_val); 163 break; 164 case 2: 165 ret = pci_user_write_config_word(pdev, offset, tmp_val); 166 break; 167 case 4: 168 ret = pci_user_write_config_dword(pdev, offset, tmp_val); 169 break; 170 } 171 172 return ret; 173 } 174 175 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos, 176 int count, struct perm_bits *perm, 177 int offset, __le32 *val) 178 { 179 __le32 virt = 0; 180 181 memcpy(val, vdev->vconfig + pos, count); 182 183 memcpy(&virt, perm->virt + offset, count); 184 185 /* Any non-virtualized bits? */ 186 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) { 187 struct pci_dev *pdev = vdev->pdev; 188 __le32 phys_val = 0; 189 int ret; 190 191 ret = vfio_user_config_read(pdev, pos, &phys_val, count); 192 if (ret) 193 return ret; 194 195 *val = (phys_val & ~virt) | (*val & virt); 196 } 197 198 return count; 199 } 200 201 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos, 202 int count, struct perm_bits *perm, 203 int offset, __le32 val) 204 { 205 __le32 virt = 0, write = 0; 206 207 memcpy(&write, perm->write + offset, count); 208 209 if (!write) 210 return count; /* drop, no writable bits */ 211 212 memcpy(&virt, perm->virt + offset, count); 213 214 /* Virtualized and writable bits go to vconfig */ 215 if (write & virt) { 216 __le32 virt_val = 0; 217 218 memcpy(&virt_val, vdev->vconfig + pos, count); 219 220 virt_val &= ~(write & virt); 221 virt_val |= (val & (write & virt)); 222 223 memcpy(vdev->vconfig + pos, &virt_val, count); 224 } 225 226 /* Non-virtualized and writable bits go to hardware */ 227 if (write & ~virt) { 228 struct pci_dev *pdev = vdev->pdev; 229 __le32 phys_val = 0; 230 int ret; 231 232 ret = vfio_user_config_read(pdev, pos, &phys_val, count); 233 if (ret) 234 return ret; 235 236 phys_val &= ~(write & ~virt); 237 phys_val |= (val & (write & ~virt)); 238 239 ret = vfio_user_config_write(pdev, pos, phys_val, count); 240 if (ret) 241 return ret; 242 } 243 244 return count; 245 } 246 247 /* Allow direct read from hardware, except for capability next pointer */ 248 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos, 249 int count, struct perm_bits *perm, 250 int offset, __le32 *val) 251 { 252 int ret; 253 254 ret = vfio_user_config_read(vdev->pdev, pos, val, count); 255 if (ret) 256 return ret; 257 258 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */ 259 if (offset < 4) 260 memcpy(val, vdev->vconfig + pos, count); 261 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */ 262 if (offset == PCI_CAP_LIST_ID && count > 1) 263 memcpy(val, vdev->vconfig + pos, 264 min(PCI_CAP_FLAGS, count)); 265 else if (offset == PCI_CAP_LIST_NEXT) 266 memcpy(val, vdev->vconfig + pos, 1); 267 } 268 269 return count; 270 } 271 272 /* Raw access skips any kind of virtualization */ 273 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos, 274 int count, struct perm_bits *perm, 275 int offset, __le32 val) 276 { 277 int ret; 278 279 ret = vfio_user_config_write(vdev->pdev, pos, val, count); 280 if (ret) 281 return ret; 282 283 return count; 284 } 285 286 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos, 287 int count, struct perm_bits *perm, 288 int offset, __le32 *val) 289 { 290 int ret; 291 292 ret = vfio_user_config_read(vdev->pdev, pos, val, count); 293 if (ret) 294 return ret; 295 296 return count; 297 } 298 299 /* Virt access uses only virtualization */ 300 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos, 301 int count, struct perm_bits *perm, 302 int offset, __le32 val) 303 { 304 memcpy(vdev->vconfig + pos, &val, count); 305 return count; 306 } 307 308 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos, 309 int count, struct perm_bits *perm, 310 int offset, __le32 *val) 311 { 312 memcpy(val, vdev->vconfig + pos, count); 313 return count; 314 } 315 316 /* Default capability regions to read-only, no-virtualization */ 317 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = { 318 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } 319 }; 320 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = { 321 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } 322 }; 323 /* 324 * Default unassigned regions to raw read-write access. Some devices 325 * require this to function as they hide registers between the gaps in 326 * config space (be2net). Like MMIO and I/O port registers, we have 327 * to trust the hardware isolation. 328 */ 329 static struct perm_bits unassigned_perms = { 330 .readfn = vfio_raw_config_read, 331 .writefn = vfio_raw_config_write 332 }; 333 334 static struct perm_bits virt_perms = { 335 .readfn = vfio_virt_config_read, 336 .writefn = vfio_virt_config_write 337 }; 338 339 static void free_perm_bits(struct perm_bits *perm) 340 { 341 kfree(perm->virt); 342 kfree(perm->write); 343 perm->virt = NULL; 344 perm->write = NULL; 345 } 346 347 static int alloc_perm_bits(struct perm_bits *perm, int size) 348 { 349 /* 350 * Round up all permission bits to the next dword, this lets us 351 * ignore whether a read/write exceeds the defined capability 352 * structure. We can do this because: 353 * - Standard config space is already dword aligned 354 * - Capabilities are all dword aligned (bits 0:1 of next reserved) 355 * - Express capabilities defined as dword aligned 356 */ 357 size = round_up(size, 4); 358 359 /* 360 * Zero state is 361 * - All Readable, None Writeable, None Virtualized 362 */ 363 perm->virt = kzalloc(size, GFP_KERNEL); 364 perm->write = kzalloc(size, GFP_KERNEL); 365 if (!perm->virt || !perm->write) { 366 free_perm_bits(perm); 367 return -ENOMEM; 368 } 369 370 perm->readfn = vfio_default_config_read; 371 perm->writefn = vfio_default_config_write; 372 373 return 0; 374 } 375 376 /* 377 * Helper functions for filling in permission tables 378 */ 379 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write) 380 { 381 p->virt[off] = virt; 382 p->write[off] = write; 383 } 384 385 /* Handle endian-ness - pci and tables are little-endian */ 386 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write) 387 { 388 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt); 389 *(__le16 *)(&p->write[off]) = cpu_to_le16(write); 390 } 391 392 /* Handle endian-ness - pci and tables are little-endian */ 393 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write) 394 { 395 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt); 396 *(__le32 *)(&p->write[off]) = cpu_to_le32(write); 397 } 398 399 /* Caller should hold memory_lock semaphore */ 400 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev) 401 { 402 struct pci_dev *pdev = vdev->pdev; 403 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); 404 405 /* 406 * Memory region cannot be accessed if device power state is D3. 407 * 408 * SR-IOV VF memory enable is handled by the MSE bit in the 409 * PF SR-IOV capability, there's therefore no need to trigger 410 * faults based on the virtual value. 411 */ 412 return pdev->current_state < PCI_D3hot && 413 (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY)); 414 } 415 416 /* 417 * Restore the *real* BARs after we detect a FLR or backdoor reset. 418 * (backdoor = some device specific technique that we didn't catch) 419 */ 420 static void vfio_bar_restore(struct vfio_pci_core_device *vdev) 421 { 422 struct pci_dev *pdev = vdev->pdev; 423 u32 *rbar = vdev->rbar; 424 u16 cmd; 425 int i; 426 427 if (pdev->is_virtfn) 428 return; 429 430 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__); 431 432 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++) 433 pci_user_write_config_dword(pdev, i, *rbar); 434 435 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar); 436 437 if (vdev->nointx) { 438 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd); 439 cmd |= PCI_COMMAND_INTX_DISABLE; 440 pci_user_write_config_word(pdev, PCI_COMMAND, cmd); 441 } 442 } 443 444 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar) 445 { 446 unsigned long flags = pci_resource_flags(pdev, bar); 447 u32 val; 448 449 if (flags & IORESOURCE_IO) 450 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO); 451 452 val = PCI_BASE_ADDRESS_SPACE_MEMORY; 453 454 if (flags & IORESOURCE_PREFETCH) 455 val |= PCI_BASE_ADDRESS_MEM_PREFETCH; 456 457 if (flags & IORESOURCE_MEM_64) 458 val |= PCI_BASE_ADDRESS_MEM_TYPE_64; 459 460 return cpu_to_le32(val); 461 } 462 463 /* 464 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs 465 * to reflect the hardware capabilities. This implements BAR sizing. 466 */ 467 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev) 468 { 469 struct pci_dev *pdev = vdev->pdev; 470 int i; 471 __le32 *vbar; 472 u64 mask; 473 474 if (!vdev->bardirty) 475 return; 476 477 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0]; 478 479 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) { 480 int bar = i + PCI_STD_RESOURCES; 481 482 if (!pci_resource_start(pdev, bar)) { 483 *vbar = 0; /* Unmapped by host = unimplemented to user */ 484 continue; 485 } 486 487 mask = ~(pci_resource_len(pdev, bar) - 1); 488 489 *vbar &= cpu_to_le32((u32)mask); 490 *vbar |= vfio_generate_bar_flags(pdev, bar); 491 492 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) { 493 vbar++; 494 *vbar &= cpu_to_le32((u32)(mask >> 32)); 495 i++; 496 } 497 } 498 499 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS]; 500 501 /* 502 * NB. REGION_INFO will have reported zero size if we weren't able 503 * to read the ROM, but we still return the actual BAR size here if 504 * it exists (or the shadow ROM space). 505 */ 506 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) { 507 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1); 508 mask |= PCI_ROM_ADDRESS_ENABLE; 509 *vbar &= cpu_to_le32((u32)mask); 510 } else if (pdev->resource[PCI_ROM_RESOURCE].flags & 511 IORESOURCE_ROM_SHADOW) { 512 mask = ~(0x20000 - 1); 513 mask |= PCI_ROM_ADDRESS_ENABLE; 514 *vbar &= cpu_to_le32((u32)mask); 515 } else 516 *vbar = 0; 517 518 vdev->bardirty = false; 519 } 520 521 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos, 522 int count, struct perm_bits *perm, 523 int offset, __le32 *val) 524 { 525 if (is_bar(offset)) /* pos == offset for basic config */ 526 vfio_bar_fixup(vdev); 527 528 count = vfio_default_config_read(vdev, pos, count, perm, offset, val); 529 530 /* Mask in virtual memory enable */ 531 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) { 532 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); 533 u32 tmp_val = le32_to_cpu(*val); 534 535 tmp_val |= cmd & PCI_COMMAND_MEMORY; 536 *val = cpu_to_le32(tmp_val); 537 } 538 539 return count; 540 } 541 542 /* Test whether BARs match the value we think they should contain */ 543 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev) 544 { 545 int i = 0, pos = PCI_BASE_ADDRESS_0, ret; 546 u32 bar; 547 548 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) { 549 if (vdev->rbar[i]) { 550 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar); 551 if (ret || vdev->rbar[i] != bar) 552 return true; 553 } 554 } 555 556 return false; 557 } 558 559 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos, 560 int count, struct perm_bits *perm, 561 int offset, __le32 val) 562 { 563 struct pci_dev *pdev = vdev->pdev; 564 __le16 *virt_cmd; 565 u16 new_cmd = 0; 566 int ret; 567 568 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND]; 569 570 if (offset == PCI_COMMAND) { 571 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io; 572 u16 phys_cmd; 573 574 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd); 575 if (ret) 576 return ret; 577 578 new_cmd = le32_to_cpu(val); 579 580 phys_io = !!(phys_cmd & PCI_COMMAND_IO); 581 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO); 582 new_io = !!(new_cmd & PCI_COMMAND_IO); 583 584 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY); 585 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY); 586 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY); 587 588 if (!new_mem) 589 vfio_pci_zap_and_down_write_memory_lock(vdev); 590 else 591 down_write(&vdev->memory_lock); 592 593 /* 594 * If the user is writing mem/io enable (new_mem/io) and we 595 * think it's already enabled (virt_mem/io), but the hardware 596 * shows it disabled (phys_mem/io, then the device has 597 * undergone some kind of backdoor reset and needs to be 598 * restored before we allow it to enable the bars. 599 * SR-IOV devices will trigger this - for mem enable let's 600 * catch this now and for io enable it will be caught later 601 */ 602 if ((new_mem && virt_mem && !phys_mem && 603 !pdev->no_command_memory) || 604 (new_io && virt_io && !phys_io) || 605 vfio_need_bar_restore(vdev)) 606 vfio_bar_restore(vdev); 607 } 608 609 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 610 if (count < 0) { 611 if (offset == PCI_COMMAND) 612 up_write(&vdev->memory_lock); 613 return count; 614 } 615 616 /* 617 * Save current memory/io enable bits in vconfig to allow for 618 * the test above next time. 619 */ 620 if (offset == PCI_COMMAND) { 621 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO; 622 623 *virt_cmd &= cpu_to_le16(~mask); 624 *virt_cmd |= cpu_to_le16(new_cmd & mask); 625 626 up_write(&vdev->memory_lock); 627 } 628 629 /* Emulate INTx disable */ 630 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) { 631 bool virt_intx_disable; 632 633 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) & 634 PCI_COMMAND_INTX_DISABLE); 635 636 if (virt_intx_disable && !vdev->virq_disabled) { 637 vdev->virq_disabled = true; 638 vfio_pci_intx_mask(vdev); 639 } else if (!virt_intx_disable && vdev->virq_disabled) { 640 vdev->virq_disabled = false; 641 vfio_pci_intx_unmask(vdev); 642 } 643 } 644 645 if (is_bar(offset)) 646 vdev->bardirty = true; 647 648 return count; 649 } 650 651 /* Permissions for the Basic PCI Header */ 652 static int __init init_pci_cap_basic_perm(struct perm_bits *perm) 653 { 654 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF)) 655 return -ENOMEM; 656 657 perm->readfn = vfio_basic_config_read; 658 perm->writefn = vfio_basic_config_write; 659 660 /* Virtualized for SR-IOV functions, which just have FFFF */ 661 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE); 662 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE); 663 664 /* 665 * Virtualize INTx disable, we use it internally for interrupt 666 * control and can emulate it for non-PCI 2.3 devices. 667 */ 668 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE); 669 670 /* Virtualize capability list, we might want to skip/disable */ 671 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE); 672 673 /* No harm to write */ 674 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE); 675 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE); 676 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE); 677 678 /* Virtualize all bars, can't touch the real ones */ 679 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE); 680 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE); 681 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE); 682 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE); 683 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE); 684 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE); 685 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE); 686 687 /* Allow us to adjust capability chain */ 688 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE); 689 690 /* Sometimes used by sw, just virtualize */ 691 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE); 692 693 /* Virtualize interrupt pin to allow hiding INTx */ 694 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE); 695 696 return 0; 697 } 698 699 /* 700 * It takes all the required locks to protect the access of power related 701 * variables and then invokes vfio_pci_set_power_state(). 702 */ 703 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev, 704 pci_power_t state) 705 { 706 if (state >= PCI_D3hot) 707 vfio_pci_zap_and_down_write_memory_lock(vdev); 708 else 709 down_write(&vdev->memory_lock); 710 711 vfio_pci_set_power_state(vdev, state); 712 up_write(&vdev->memory_lock); 713 } 714 715 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos, 716 int count, struct perm_bits *perm, 717 int offset, __le32 val) 718 { 719 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 720 if (count < 0) 721 return count; 722 723 if (offset == PCI_PM_CTRL) { 724 pci_power_t state; 725 726 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) { 727 case 0: 728 state = PCI_D0; 729 break; 730 case 1: 731 state = PCI_D1; 732 break; 733 case 2: 734 state = PCI_D2; 735 break; 736 case 3: 737 state = PCI_D3hot; 738 break; 739 } 740 741 vfio_lock_and_set_power_state(vdev, state); 742 } 743 744 return count; 745 } 746 747 /* Permissions for the Power Management capability */ 748 static int __init init_pci_cap_pm_perm(struct perm_bits *perm) 749 { 750 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM])) 751 return -ENOMEM; 752 753 perm->writefn = vfio_pm_config_write; 754 755 /* 756 * We always virtualize the next field so we can remove 757 * capabilities from the chain if we want to. 758 */ 759 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 760 761 /* 762 * The guests can't process PME events. If any PME event will be 763 * generated, then it will be mostly handled in the host and the 764 * host will clear the PME_STATUS. So virtualize PME_Support bits. 765 * The vconfig bits will be cleared during device capability 766 * initialization. 767 */ 768 p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE); 769 770 /* 771 * Power management is defined *per function*, so we can let 772 * the user change power state, but we trap and initiate the 773 * change ourselves, so the state bits are read-only. 774 * 775 * The guest can't process PME from D3cold so virtualize PME_Status 776 * and PME_En bits. The vconfig bits will be cleared during device 777 * capability initialization. 778 */ 779 p_setd(perm, PCI_PM_CTRL, 780 PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS, 781 ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS | 782 PCI_PM_CTRL_STATE_MASK)); 783 784 return 0; 785 } 786 787 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos, 788 int count, struct perm_bits *perm, 789 int offset, __le32 val) 790 { 791 struct pci_dev *pdev = vdev->pdev; 792 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR); 793 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA); 794 u16 addr; 795 u32 data; 796 797 /* 798 * Write through to emulation. If the write includes the upper byte 799 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we 800 * have work to do. 801 */ 802 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 803 if (count < 0 || offset > PCI_VPD_ADDR + 1 || 804 offset + count <= PCI_VPD_ADDR + 1) 805 return count; 806 807 addr = le16_to_cpu(*paddr); 808 809 if (addr & PCI_VPD_ADDR_F) { 810 data = le32_to_cpu(*pdata); 811 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4) 812 return count; 813 } else { 814 data = 0; 815 if (pci_read_vpd(pdev, addr, 4, &data) < 0) 816 return count; 817 *pdata = cpu_to_le32(data); 818 } 819 820 /* 821 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to 822 * signal completion. If an error occurs above, we assume that not 823 * toggling this bit will induce a driver timeout. 824 */ 825 addr ^= PCI_VPD_ADDR_F; 826 *paddr = cpu_to_le16(addr); 827 828 return count; 829 } 830 831 /* Permissions for Vital Product Data capability */ 832 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm) 833 { 834 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD])) 835 return -ENOMEM; 836 837 perm->writefn = vfio_vpd_config_write; 838 839 /* 840 * We always virtualize the next field so we can remove 841 * capabilities from the chain if we want to. 842 */ 843 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 844 845 /* 846 * Both the address and data registers are virtualized to 847 * enable access through the pci_vpd_read/write functions 848 */ 849 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE); 850 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE); 851 852 return 0; 853 } 854 855 /* Permissions for PCI-X capability */ 856 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm) 857 { 858 /* Alloc 24, but only 8 are used in v0 */ 859 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2)) 860 return -ENOMEM; 861 862 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 863 864 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE); 865 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE); 866 return 0; 867 } 868 869 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos, 870 int count, struct perm_bits *perm, 871 int offset, __le32 val) 872 { 873 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos - 874 offset + PCI_EXP_DEVCTL); 875 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ; 876 877 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 878 if (count < 0) 879 return count; 880 881 /* 882 * The FLR bit is virtualized, if set and the device supports PCIe 883 * FLR, issue a reset_function. Regardless, clear the bit, the spec 884 * requires it to be always read as zero. NB, reset_function might 885 * not use a PCIe FLR, we don't have that level of granularity. 886 */ 887 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) { 888 u32 cap; 889 int ret; 890 891 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR); 892 893 ret = pci_user_read_config_dword(vdev->pdev, 894 pos - offset + PCI_EXP_DEVCAP, 895 &cap); 896 897 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) { 898 vfio_pci_zap_and_down_write_memory_lock(vdev); 899 pci_try_reset_function(vdev->pdev); 900 up_write(&vdev->memory_lock); 901 } 902 } 903 904 /* 905 * MPS is virtualized to the user, writes do not change the physical 906 * register since determining a proper MPS value requires a system wide 907 * device view. The MRRS is largely independent of MPS, but since the 908 * user does not have that system-wide view, they might set a safe, but 909 * inefficiently low value. Here we allow writes through to hardware, 910 * but we set the floor to the physical device MPS setting, so that 911 * we can at least use full TLPs, as defined by the MPS value. 912 * 913 * NB, if any devices actually depend on an artificially low MRRS 914 * setting, this will need to be revisited, perhaps with a quirk 915 * though pcie_set_readrq(). 916 */ 917 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) { 918 readrq = 128 << 919 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12); 920 readrq = max(readrq, pcie_get_mps(vdev->pdev)); 921 922 pcie_set_readrq(vdev->pdev, readrq); 923 } 924 925 return count; 926 } 927 928 /* Permissions for PCI Express capability */ 929 static int __init init_pci_cap_exp_perm(struct perm_bits *perm) 930 { 931 /* Alloc largest of possible sizes */ 932 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2)) 933 return -ENOMEM; 934 935 perm->writefn = vfio_exp_config_write; 936 937 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 938 939 /* 940 * Allow writes to device control fields, except devctl_phantom, 941 * which could confuse IOMMU, MPS, which can break communication 942 * with other physical devices, and the ARI bit in devctl2, which 943 * is set at probe time. FLR and MRRS get virtualized via our 944 * writefn. 945 */ 946 p_setw(perm, PCI_EXP_DEVCTL, 947 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD | 948 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM); 949 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI); 950 return 0; 951 } 952 953 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos, 954 int count, struct perm_bits *perm, 955 int offset, __le32 val) 956 { 957 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL; 958 959 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 960 if (count < 0) 961 return count; 962 963 /* 964 * The FLR bit is virtualized, if set and the device supports AF 965 * FLR, issue a reset_function. Regardless, clear the bit, the spec 966 * requires it to be always read as zero. NB, reset_function might 967 * not use an AF FLR, we don't have that level of granularity. 968 */ 969 if (*ctrl & PCI_AF_CTRL_FLR) { 970 u8 cap; 971 int ret; 972 973 *ctrl &= ~PCI_AF_CTRL_FLR; 974 975 ret = pci_user_read_config_byte(vdev->pdev, 976 pos - offset + PCI_AF_CAP, 977 &cap); 978 979 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) { 980 vfio_pci_zap_and_down_write_memory_lock(vdev); 981 pci_try_reset_function(vdev->pdev); 982 up_write(&vdev->memory_lock); 983 } 984 } 985 986 return count; 987 } 988 989 /* Permissions for Advanced Function capability */ 990 static int __init init_pci_cap_af_perm(struct perm_bits *perm) 991 { 992 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF])) 993 return -ENOMEM; 994 995 perm->writefn = vfio_af_config_write; 996 997 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 998 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR); 999 return 0; 1000 } 1001 1002 /* Permissions for Advanced Error Reporting extended capability */ 1003 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm) 1004 { 1005 u32 mask; 1006 1007 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR])) 1008 return -ENOMEM; 1009 1010 /* 1011 * Virtualize the first dword of all express capabilities 1012 * because it includes the next pointer. This lets us later 1013 * remove capabilities from the chain if we need to. 1014 */ 1015 p_setd(perm, 0, ALL_VIRT, NO_WRITE); 1016 1017 /* Writable bits mask */ 1018 mask = PCI_ERR_UNC_UND | /* Undefined */ 1019 PCI_ERR_UNC_DLP | /* Data Link Protocol */ 1020 PCI_ERR_UNC_SURPDN | /* Surprise Down */ 1021 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */ 1022 PCI_ERR_UNC_FCP | /* Flow Control Protocol */ 1023 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */ 1024 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */ 1025 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */ 1026 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */ 1027 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */ 1028 PCI_ERR_UNC_ECRC | /* ECRC Error Status */ 1029 PCI_ERR_UNC_UNSUP | /* Unsupported Request */ 1030 PCI_ERR_UNC_ACSV | /* ACS Violation */ 1031 PCI_ERR_UNC_INTN | /* internal error */ 1032 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */ 1033 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */ 1034 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */ 1035 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask); 1036 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask); 1037 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask); 1038 1039 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */ 1040 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */ 1041 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */ 1042 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */ 1043 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */ 1044 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */ 1045 PCI_ERR_COR_INTERNAL | /* Corrected Internal */ 1046 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */ 1047 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask); 1048 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask); 1049 1050 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */ 1051 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */ 1052 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask); 1053 return 0; 1054 } 1055 1056 /* Permissions for Power Budgeting extended capability */ 1057 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm) 1058 { 1059 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR])) 1060 return -ENOMEM; 1061 1062 p_setd(perm, 0, ALL_VIRT, NO_WRITE); 1063 1064 /* Writing the data selector is OK, the info is still read-only */ 1065 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE); 1066 return 0; 1067 } 1068 1069 /* 1070 * Initialize the shared permission tables 1071 */ 1072 void vfio_pci_uninit_perm_bits(void) 1073 { 1074 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]); 1075 1076 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]); 1077 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]); 1078 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]); 1079 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]); 1080 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]); 1081 1082 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]); 1083 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]); 1084 } 1085 1086 int __init vfio_pci_init_perm_bits(void) 1087 { 1088 int ret; 1089 1090 /* Basic config space */ 1091 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]); 1092 1093 /* Capabilities */ 1094 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]); 1095 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]); 1096 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]); 1097 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write; 1098 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]); 1099 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]); 1100 1101 /* Extended capabilities */ 1102 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]); 1103 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]); 1104 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write; 1105 ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write; 1106 1107 if (ret) 1108 vfio_pci_uninit_perm_bits(); 1109 1110 return ret; 1111 } 1112 1113 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos) 1114 { 1115 u8 cap; 1116 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE : 1117 PCI_STD_HEADER_SIZEOF; 1118 cap = vdev->pci_config_map[pos]; 1119 1120 if (cap == PCI_CAP_ID_BASIC) 1121 return 0; 1122 1123 /* XXX Can we have to abutting capabilities of the same type? */ 1124 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap) 1125 pos--; 1126 1127 return pos; 1128 } 1129 1130 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos, 1131 int count, struct perm_bits *perm, 1132 int offset, __le32 *val) 1133 { 1134 /* Update max available queue size from msi_qmax */ 1135 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { 1136 __le16 *flags; 1137 int start; 1138 1139 start = vfio_find_cap_start(vdev, pos); 1140 1141 flags = (__le16 *)&vdev->vconfig[start]; 1142 1143 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK); 1144 *flags |= cpu_to_le16(vdev->msi_qmax << 1); 1145 } 1146 1147 return vfio_default_config_read(vdev, pos, count, perm, offset, val); 1148 } 1149 1150 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos, 1151 int count, struct perm_bits *perm, 1152 int offset, __le32 val) 1153 { 1154 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 1155 if (count < 0) 1156 return count; 1157 1158 /* Fixup and write configured queue size and enable to hardware */ 1159 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { 1160 __le16 *pflags; 1161 u16 flags; 1162 int start, ret; 1163 1164 start = vfio_find_cap_start(vdev, pos); 1165 1166 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS]; 1167 1168 flags = le16_to_cpu(*pflags); 1169 1170 /* MSI is enabled via ioctl */ 1171 if (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX) 1172 flags &= ~PCI_MSI_FLAGS_ENABLE; 1173 1174 /* Check queue size */ 1175 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) { 1176 flags &= ~PCI_MSI_FLAGS_QSIZE; 1177 flags |= vdev->msi_qmax << 4; 1178 } 1179 1180 /* Write back to virt and to hardware */ 1181 *pflags = cpu_to_le16(flags); 1182 ret = pci_user_write_config_word(vdev->pdev, 1183 start + PCI_MSI_FLAGS, 1184 flags); 1185 if (ret) 1186 return ret; 1187 } 1188 1189 return count; 1190 } 1191 1192 /* 1193 * MSI determination is per-device, so this routine gets used beyond 1194 * initialization time. Don't add __init 1195 */ 1196 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags) 1197 { 1198 if (alloc_perm_bits(perm, len)) 1199 return -ENOMEM; 1200 1201 perm->readfn = vfio_msi_config_read; 1202 perm->writefn = vfio_msi_config_write; 1203 1204 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 1205 1206 /* 1207 * The upper byte of the control register is reserved, 1208 * just setup the lower byte. 1209 */ 1210 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE); 1211 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE); 1212 if (flags & PCI_MSI_FLAGS_64BIT) { 1213 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE); 1214 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE); 1215 if (flags & PCI_MSI_FLAGS_MASKBIT) { 1216 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE); 1217 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE); 1218 } 1219 } else { 1220 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE); 1221 if (flags & PCI_MSI_FLAGS_MASKBIT) { 1222 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE); 1223 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE); 1224 } 1225 } 1226 return 0; 1227 } 1228 1229 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */ 1230 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos) 1231 { 1232 struct pci_dev *pdev = vdev->pdev; 1233 int len, ret; 1234 u16 flags; 1235 1236 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags); 1237 if (ret) 1238 return pcibios_err_to_errno(ret); 1239 1240 len = 10; /* Minimum size */ 1241 if (flags & PCI_MSI_FLAGS_64BIT) 1242 len += 4; 1243 if (flags & PCI_MSI_FLAGS_MASKBIT) 1244 len += 10; 1245 1246 if (vdev->msi_perm) 1247 return len; 1248 1249 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT); 1250 if (!vdev->msi_perm) 1251 return -ENOMEM; 1252 1253 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags); 1254 if (ret) { 1255 kfree(vdev->msi_perm); 1256 return ret; 1257 } 1258 1259 return len; 1260 } 1261 1262 /* Determine extended capability length for VC (2 & 9) and MFVC */ 1263 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos) 1264 { 1265 struct pci_dev *pdev = vdev->pdev; 1266 u32 tmp; 1267 int ret, evcc, phases, vc_arb; 1268 int len = PCI_CAP_VC_BASE_SIZEOF; 1269 1270 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp); 1271 if (ret) 1272 return pcibios_err_to_errno(ret); 1273 1274 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */ 1275 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp); 1276 if (ret) 1277 return pcibios_err_to_errno(ret); 1278 1279 if (tmp & PCI_VC_CAP2_128_PHASE) 1280 phases = 128; 1281 else if (tmp & PCI_VC_CAP2_64_PHASE) 1282 phases = 64; 1283 else if (tmp & PCI_VC_CAP2_32_PHASE) 1284 phases = 32; 1285 else 1286 phases = 0; 1287 1288 vc_arb = phases * 4; 1289 1290 /* 1291 * Port arbitration tables are root & switch only; 1292 * function arbitration tables are function 0 only. 1293 * In either case, we'll never let user write them so 1294 * we don't care how big they are 1295 */ 1296 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF; 1297 if (vc_arb) { 1298 len = round_up(len, 16); 1299 len += vc_arb / 8; 1300 } 1301 return len; 1302 } 1303 1304 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos) 1305 { 1306 struct pci_dev *pdev = vdev->pdev; 1307 u32 dword; 1308 u16 word; 1309 u8 byte; 1310 int ret; 1311 1312 switch (cap) { 1313 case PCI_CAP_ID_MSI: 1314 return vfio_msi_cap_len(vdev, pos); 1315 case PCI_CAP_ID_PCIX: 1316 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word); 1317 if (ret) 1318 return pcibios_err_to_errno(ret); 1319 1320 if (PCI_X_CMD_VERSION(word)) { 1321 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { 1322 /* Test for extended capabilities */ 1323 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, 1324 &dword); 1325 vdev->extended_caps = (dword != 0); 1326 } 1327 return PCI_CAP_PCIX_SIZEOF_V2; 1328 } else 1329 return PCI_CAP_PCIX_SIZEOF_V0; 1330 case PCI_CAP_ID_VNDR: 1331 /* length follows next field */ 1332 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte); 1333 if (ret) 1334 return pcibios_err_to_errno(ret); 1335 1336 return byte; 1337 case PCI_CAP_ID_EXP: 1338 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { 1339 /* Test for extended capabilities */ 1340 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword); 1341 vdev->extended_caps = (dword != 0); 1342 } 1343 1344 /* length based on version and type */ 1345 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) { 1346 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) 1347 return 0xc; /* "All Devices" only, no link */ 1348 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1; 1349 } else { 1350 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) 1351 return 0x2c; /* No link */ 1352 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2; 1353 } 1354 case PCI_CAP_ID_HT: 1355 ret = pci_read_config_byte(pdev, pos + 3, &byte); 1356 if (ret) 1357 return pcibios_err_to_errno(ret); 1358 1359 return (byte & HT_3BIT_CAP_MASK) ? 1360 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG; 1361 case PCI_CAP_ID_SATA: 1362 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte); 1363 if (ret) 1364 return pcibios_err_to_errno(ret); 1365 1366 byte &= PCI_SATA_REGS_MASK; 1367 if (byte == PCI_SATA_REGS_INLINE) 1368 return PCI_SATA_SIZEOF_LONG; 1369 else 1370 return PCI_SATA_SIZEOF_SHORT; 1371 default: 1372 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n", 1373 __func__, cap, pos); 1374 } 1375 1376 return 0; 1377 } 1378 1379 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos) 1380 { 1381 struct pci_dev *pdev = vdev->pdev; 1382 u8 byte; 1383 u32 dword; 1384 int ret; 1385 1386 switch (ecap) { 1387 case PCI_EXT_CAP_ID_VNDR: 1388 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword); 1389 if (ret) 1390 return pcibios_err_to_errno(ret); 1391 1392 return dword >> PCI_VSEC_HDR_LEN_SHIFT; 1393 case PCI_EXT_CAP_ID_VC: 1394 case PCI_EXT_CAP_ID_VC9: 1395 case PCI_EXT_CAP_ID_MFVC: 1396 return vfio_vc_cap_len(vdev, epos); 1397 case PCI_EXT_CAP_ID_ACS: 1398 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte); 1399 if (ret) 1400 return pcibios_err_to_errno(ret); 1401 1402 if (byte & PCI_ACS_EC) { 1403 int bits; 1404 1405 ret = pci_read_config_byte(pdev, 1406 epos + PCI_ACS_EGRESS_BITS, 1407 &byte); 1408 if (ret) 1409 return pcibios_err_to_errno(ret); 1410 1411 bits = byte ? round_up(byte, 32) : 256; 1412 return 8 + (bits / 8); 1413 } 1414 return 8; 1415 1416 case PCI_EXT_CAP_ID_REBAR: 1417 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte); 1418 if (ret) 1419 return pcibios_err_to_errno(ret); 1420 1421 byte &= PCI_REBAR_CTRL_NBAR_MASK; 1422 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT; 1423 1424 return 4 + (byte * 8); 1425 case PCI_EXT_CAP_ID_DPA: 1426 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte); 1427 if (ret) 1428 return pcibios_err_to_errno(ret); 1429 1430 byte &= PCI_DPA_CAP_SUBSTATE_MASK; 1431 return PCI_DPA_BASE_SIZEOF + byte + 1; 1432 case PCI_EXT_CAP_ID_TPH: 1433 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword); 1434 if (ret) 1435 return pcibios_err_to_errno(ret); 1436 1437 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) { 1438 int sts; 1439 1440 sts = dword & PCI_TPH_CAP_ST_MASK; 1441 sts >>= PCI_TPH_CAP_ST_SHIFT; 1442 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2; 1443 } 1444 return PCI_TPH_BASE_SIZEOF; 1445 case PCI_EXT_CAP_ID_DVSEC: 1446 ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword); 1447 if (ret) 1448 return pcibios_err_to_errno(ret); 1449 return PCI_DVSEC_HEADER1_LEN(dword); 1450 default: 1451 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n", 1452 __func__, ecap, epos); 1453 } 1454 1455 return 0; 1456 } 1457 1458 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev, 1459 int offset) 1460 { 1461 __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC]; 1462 __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL]; 1463 1464 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */ 1465 *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK); 1466 *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS); 1467 } 1468 1469 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev, 1470 int offset, int size) 1471 { 1472 struct pci_dev *pdev = vdev->pdev; 1473 int ret = 0; 1474 1475 /* 1476 * We try to read physical config space in the largest chunks 1477 * we can, assuming that all of the fields support dword access. 1478 * pci_save_state() makes this same assumption and seems to do ok. 1479 */ 1480 while (size) { 1481 int filled; 1482 1483 if (size >= 4 && !(offset % 4)) { 1484 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset]; 1485 u32 dword; 1486 1487 ret = pci_read_config_dword(pdev, offset, &dword); 1488 if (ret) 1489 return ret; 1490 *dwordp = cpu_to_le32(dword); 1491 filled = 4; 1492 } else if (size >= 2 && !(offset % 2)) { 1493 __le16 *wordp = (__le16 *)&vdev->vconfig[offset]; 1494 u16 word; 1495 1496 ret = pci_read_config_word(pdev, offset, &word); 1497 if (ret) 1498 return ret; 1499 *wordp = cpu_to_le16(word); 1500 filled = 2; 1501 } else { 1502 u8 *byte = &vdev->vconfig[offset]; 1503 ret = pci_read_config_byte(pdev, offset, byte); 1504 if (ret) 1505 return ret; 1506 filled = 1; 1507 } 1508 1509 offset += filled; 1510 size -= filled; 1511 } 1512 1513 return ret; 1514 } 1515 1516 static int vfio_cap_init(struct vfio_pci_core_device *vdev) 1517 { 1518 struct pci_dev *pdev = vdev->pdev; 1519 u8 *map = vdev->pci_config_map; 1520 u16 status; 1521 u8 pos, *prev, cap; 1522 int loops, ret, caps = 0; 1523 1524 /* Any capabilities? */ 1525 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 1526 if (ret) 1527 return ret; 1528 1529 if (!(status & PCI_STATUS_CAP_LIST)) 1530 return 0; /* Done */ 1531 1532 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); 1533 if (ret) 1534 return ret; 1535 1536 /* Mark the previous position in case we want to skip a capability */ 1537 prev = &vdev->vconfig[PCI_CAPABILITY_LIST]; 1538 1539 /* We can bound our loop, capabilities are dword aligned */ 1540 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF; 1541 while (pos && loops--) { 1542 u8 next; 1543 int i, len = 0; 1544 1545 ret = pci_read_config_byte(pdev, pos, &cap); 1546 if (ret) 1547 return ret; 1548 1549 ret = pci_read_config_byte(pdev, 1550 pos + PCI_CAP_LIST_NEXT, &next); 1551 if (ret) 1552 return ret; 1553 1554 /* 1555 * ID 0 is a NULL capability, conflicting with our fake 1556 * PCI_CAP_ID_BASIC. As it has no content, consider it 1557 * hidden for now. 1558 */ 1559 if (cap && cap <= PCI_CAP_ID_MAX) { 1560 len = pci_cap_length[cap]; 1561 if (len == 0xFF) { /* Variable length */ 1562 len = vfio_cap_len(vdev, cap, pos); 1563 if (len < 0) 1564 return len; 1565 } 1566 } 1567 1568 if (!len) { 1569 pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__, 1570 cap, pos); 1571 *prev = next; 1572 pos = next; 1573 continue; 1574 } 1575 1576 /* Sanity check, do we overlap other capabilities? */ 1577 for (i = 0; i < len; i++) { 1578 if (likely(map[pos + i] == PCI_CAP_ID_INVALID)) 1579 continue; 1580 1581 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n", 1582 __func__, pos + i, map[pos + i], cap); 1583 } 1584 1585 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); 1586 1587 memset(map + pos, cap, len); 1588 ret = vfio_fill_vconfig_bytes(vdev, pos, len); 1589 if (ret) 1590 return ret; 1591 1592 if (cap == PCI_CAP_ID_PM) 1593 vfio_update_pm_vconfig_bytes(vdev, pos); 1594 1595 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT]; 1596 pos = next; 1597 caps++; 1598 } 1599 1600 /* If we didn't fill any capabilities, clear the status flag */ 1601 if (!caps) { 1602 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS]; 1603 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST); 1604 } 1605 1606 return 0; 1607 } 1608 1609 static int vfio_ecap_init(struct vfio_pci_core_device *vdev) 1610 { 1611 struct pci_dev *pdev = vdev->pdev; 1612 u8 *map = vdev->pci_config_map; 1613 u16 epos; 1614 __le32 *prev = NULL; 1615 int loops, ret, ecaps = 0; 1616 1617 if (!vdev->extended_caps) 1618 return 0; 1619 1620 epos = PCI_CFG_SPACE_SIZE; 1621 1622 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF; 1623 1624 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) { 1625 u32 header; 1626 u16 ecap; 1627 int i, len = 0; 1628 bool hidden = false; 1629 1630 ret = pci_read_config_dword(pdev, epos, &header); 1631 if (ret) 1632 return ret; 1633 1634 ecap = PCI_EXT_CAP_ID(header); 1635 1636 if (ecap <= PCI_EXT_CAP_ID_MAX) { 1637 len = pci_ext_cap_length[ecap]; 1638 if (len == 0xFF) { 1639 len = vfio_ext_cap_len(vdev, ecap, epos); 1640 if (len < 0) 1641 return len; 1642 } 1643 } 1644 1645 if (!len) { 1646 pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n", 1647 __func__, ecap, epos); 1648 1649 /* If not the first in the chain, we can skip over it */ 1650 if (prev) { 1651 u32 val = epos = PCI_EXT_CAP_NEXT(header); 1652 *prev &= cpu_to_le32(~(0xffcU << 20)); 1653 *prev |= cpu_to_le32(val << 20); 1654 continue; 1655 } 1656 1657 /* 1658 * Otherwise, fill in a placeholder, the direct 1659 * readfn will virtualize this automatically 1660 */ 1661 len = PCI_CAP_SIZEOF; 1662 hidden = true; 1663 } 1664 1665 for (i = 0; i < len; i++) { 1666 if (likely(map[epos + i] == PCI_CAP_ID_INVALID)) 1667 continue; 1668 1669 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n", 1670 __func__, epos + i, map[epos + i], ecap); 1671 } 1672 1673 /* 1674 * Even though ecap is 2 bytes, we're currently a long way 1675 * from exceeding 1 byte capabilities. If we ever make it 1676 * up to 0xFE we'll need to up this to a two-byte, byte map. 1677 */ 1678 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); 1679 1680 memset(map + epos, ecap, len); 1681 ret = vfio_fill_vconfig_bytes(vdev, epos, len); 1682 if (ret) 1683 return ret; 1684 1685 /* 1686 * If we're just using this capability to anchor the list, 1687 * hide the real ID. Only count real ecaps. XXX PCI spec 1688 * indicates to use cap id = 0, version = 0, next = 0 if 1689 * ecaps are absent, hope users check all the way to next. 1690 */ 1691 if (hidden) 1692 *(__le32 *)&vdev->vconfig[epos] &= 1693 cpu_to_le32((0xffcU << 20)); 1694 else 1695 ecaps++; 1696 1697 prev = (__le32 *)&vdev->vconfig[epos]; 1698 epos = PCI_EXT_CAP_NEXT(header); 1699 } 1700 1701 if (!ecaps) 1702 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0; 1703 1704 return 0; 1705 } 1706 1707 /* 1708 * Nag about hardware bugs, hopefully to have vendors fix them, but at least 1709 * to collect a list of dependencies for the VF INTx pin quirk below. 1710 */ 1711 static const struct pci_device_id known_bogus_vf_intx_pin[] = { 1712 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) }, 1713 {} 1714 }; 1715 1716 /* 1717 * For each device we allocate a pci_config_map that indicates the 1718 * capability occupying each dword and thus the struct perm_bits we 1719 * use for read and write. We also allocate a virtualized config 1720 * space which tracks reads and writes to bits that we emulate for 1721 * the user. Initial values filled from device. 1722 * 1723 * Using shared struct perm_bits between all vfio-pci devices saves 1724 * us from allocating cfg_size buffers for virt and write for every 1725 * device. We could remove vconfig and allocate individual buffers 1726 * for each area requiring emulated bits, but the array of pointers 1727 * would be comparable in size (at least for standard config space). 1728 */ 1729 int vfio_config_init(struct vfio_pci_core_device *vdev) 1730 { 1731 struct pci_dev *pdev = vdev->pdev; 1732 u8 *map, *vconfig; 1733 int ret; 1734 1735 /* 1736 * Config space, caps and ecaps are all dword aligned, so we could 1737 * use one byte per dword to record the type. However, there are 1738 * no requirements on the length of a capability, so the gap between 1739 * capabilities needs byte granularity. 1740 */ 1741 map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT); 1742 if (!map) 1743 return -ENOMEM; 1744 1745 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT); 1746 if (!vconfig) { 1747 kfree(map); 1748 return -ENOMEM; 1749 } 1750 1751 vdev->pci_config_map = map; 1752 vdev->vconfig = vconfig; 1753 1754 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF); 1755 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID, 1756 pdev->cfg_size - PCI_STD_HEADER_SIZEOF); 1757 1758 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF); 1759 if (ret) 1760 goto out; 1761 1762 vdev->bardirty = true; 1763 1764 /* 1765 * XXX can we just pci_load_saved_state/pci_restore_state? 1766 * may need to rebuild vconfig after that 1767 */ 1768 1769 /* For restore after reset */ 1770 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]); 1771 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]); 1772 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]); 1773 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]); 1774 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]); 1775 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]); 1776 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]); 1777 1778 if (pdev->is_virtfn) { 1779 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor); 1780 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device); 1781 1782 /* 1783 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register 1784 * does not apply to VFs and VFs must implement this register 1785 * as read-only with value zero. Userspace is not readily able 1786 * to identify whether a device is a VF and thus that the pin 1787 * definition on the device is bogus should it violate this 1788 * requirement. We already virtualize the pin register for 1789 * other purposes, so we simply need to replace the bogus value 1790 * and consider VFs when we determine INTx IRQ count. 1791 */ 1792 if (vconfig[PCI_INTERRUPT_PIN] && 1793 !pci_match_id(known_bogus_vf_intx_pin, pdev)) 1794 pci_warn(pdev, 1795 "Hardware bug: VF reports bogus INTx pin %d\n", 1796 vconfig[PCI_INTERRUPT_PIN]); 1797 1798 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */ 1799 } 1800 if (pdev->no_command_memory) { 1801 /* 1802 * VFs and devices that set pdev->no_command_memory do not 1803 * implement the memory enable bit of the COMMAND register 1804 * therefore we'll not have it set in our initial copy of 1805 * config space after pci_enable_device(). For consistency 1806 * with PFs, set the virtual enable bit here. 1807 */ 1808 *(__le16 *)&vconfig[PCI_COMMAND] |= 1809 cpu_to_le16(PCI_COMMAND_MEMORY); 1810 } 1811 1812 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx) 1813 vconfig[PCI_INTERRUPT_PIN] = 0; 1814 1815 ret = vfio_cap_init(vdev); 1816 if (ret) 1817 goto out; 1818 1819 ret = vfio_ecap_init(vdev); 1820 if (ret) 1821 goto out; 1822 1823 return 0; 1824 1825 out: 1826 kfree(map); 1827 vdev->pci_config_map = NULL; 1828 kfree(vconfig); 1829 vdev->vconfig = NULL; 1830 return pcibios_err_to_errno(ret); 1831 } 1832 1833 void vfio_config_free(struct vfio_pci_core_device *vdev) 1834 { 1835 kfree(vdev->vconfig); 1836 vdev->vconfig = NULL; 1837 kfree(vdev->pci_config_map); 1838 vdev->pci_config_map = NULL; 1839 if (vdev->msi_perm) { 1840 free_perm_bits(vdev->msi_perm); 1841 kfree(vdev->msi_perm); 1842 vdev->msi_perm = NULL; 1843 } 1844 } 1845 1846 /* 1847 * Find the remaining number of bytes in a dword that match the given 1848 * position. Stop at either the end of the capability or the dword boundary. 1849 */ 1850 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev, 1851 loff_t pos) 1852 { 1853 u8 cap = vdev->pci_config_map[pos]; 1854 size_t i; 1855 1856 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++) 1857 /* nop */; 1858 1859 return i; 1860 } 1861 1862 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1863 size_t count, loff_t *ppos, bool iswrite) 1864 { 1865 struct pci_dev *pdev = vdev->pdev; 1866 struct perm_bits *perm; 1867 __le32 val = 0; 1868 int cap_start = 0, offset; 1869 u8 cap_id; 1870 ssize_t ret; 1871 1872 if (*ppos < 0 || *ppos >= pdev->cfg_size || 1873 *ppos + count > pdev->cfg_size) 1874 return -EFAULT; 1875 1876 /* 1877 * Chop accesses into aligned chunks containing no more than a 1878 * single capability. Caller increments to the next chunk. 1879 */ 1880 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos)); 1881 if (count >= 4 && !(*ppos % 4)) 1882 count = 4; 1883 else if (count >= 2 && !(*ppos % 2)) 1884 count = 2; 1885 else 1886 count = 1; 1887 1888 ret = count; 1889 1890 cap_id = vdev->pci_config_map[*ppos]; 1891 1892 if (cap_id == PCI_CAP_ID_INVALID) { 1893 perm = &unassigned_perms; 1894 cap_start = *ppos; 1895 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) { 1896 perm = &virt_perms; 1897 cap_start = *ppos; 1898 } else { 1899 if (*ppos >= PCI_CFG_SPACE_SIZE) { 1900 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX); 1901 1902 perm = &ecap_perms[cap_id]; 1903 cap_start = vfio_find_cap_start(vdev, *ppos); 1904 } else { 1905 WARN_ON(cap_id > PCI_CAP_ID_MAX); 1906 1907 perm = &cap_perms[cap_id]; 1908 1909 if (cap_id == PCI_CAP_ID_MSI) 1910 perm = vdev->msi_perm; 1911 1912 if (cap_id > PCI_CAP_ID_BASIC) 1913 cap_start = vfio_find_cap_start(vdev, *ppos); 1914 } 1915 } 1916 1917 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC); 1918 WARN_ON(cap_start > *ppos); 1919 1920 offset = *ppos - cap_start; 1921 1922 if (iswrite) { 1923 if (!perm->writefn) 1924 return ret; 1925 1926 if (copy_from_user(&val, buf, count)) 1927 return -EFAULT; 1928 1929 ret = perm->writefn(vdev, *ppos, count, perm, offset, val); 1930 } else { 1931 if (perm->readfn) { 1932 ret = perm->readfn(vdev, *ppos, count, 1933 perm, offset, &val); 1934 if (ret < 0) 1935 return ret; 1936 } 1937 1938 if (copy_to_user(buf, &val, count)) 1939 return -EFAULT; 1940 } 1941 1942 return ret; 1943 } 1944 1945 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf, 1946 size_t count, loff_t *ppos, bool iswrite) 1947 { 1948 size_t done = 0; 1949 int ret = 0; 1950 loff_t pos = *ppos; 1951 1952 pos &= VFIO_PCI_OFFSET_MASK; 1953 1954 while (count) { 1955 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite); 1956 if (ret < 0) 1957 return ret; 1958 1959 count -= ret; 1960 done += ret; 1961 buf += ret; 1962 pos += ret; 1963 } 1964 1965 *ppos += done; 1966 1967 return done; 1968 } 1969