xref: /linux/drivers/vfio/pci/vfio_pci_config.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VFIO PCI config space virtualization
4  *
5  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6  *     Author: Alex Williamson <alex.williamson@redhat.com>
7  *
8  * Derived from original vfio:
9  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
10  * Author: Tom Lyon, pugs@cisco.com
11  */
12 
13 /*
14  * This code handles reading and writing of PCI configuration registers.
15  * This is hairy because we want to allow a lot of flexibility to the
16  * user driver, but cannot trust it with all of the config fields.
17  * Tables determine which fields can be read and written, as well as
18  * which fields are 'virtualized' - special actions and translations to
19  * make it appear to the user that he has control, when in fact things
20  * must be negotiated with the underlying OS.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28 
29 #include "vfio_pci_priv.h"
30 
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC	0
33 
34 #define is_bar(offset)	\
35 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37 
38 /*
39  * Lengths of PCI Config Capabilities
40  *   0: Removed from the user visible capability list
41  *   FF: Variable length
42  */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
45 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
46 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
47 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
48 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
49 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
50 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
51 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
52 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
53 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
54 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
55 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
56 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
57 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
58 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
59 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
60 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
61 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
62 	[PCI_CAP_ID_SATA]	= 0xFF,
63 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
64 };
65 
66 /*
67  * Lengths of PCIe/PCI-X Extended Config Capabilities
68  *   0: Removed or masked from the user visible capability list
69  *   FF: Variable length
70  */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
73 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
74 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
75 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
76 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
77 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
78 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
79 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
80 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
81 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
83 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
84 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
85 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
86 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
87 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
88 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
89 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
91 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
92 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
93 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
94 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
95 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
96 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
97 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
98 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
99 	[PCI_EXT_CAP_ID_DVSEC]	=	0xFF,
100 };
101 
102 /*
103  * Read/Write Permission Bits - one bit for each bit in capability
104  * Any field can be read if it exists, but what is read depends on
105  * whether the field is 'virtualized', or just pass through to the
106  * hardware.  Any virtualized field is also virtualized for writes.
107  * Writes are only permitted if they have a 1 bit here.
108  */
109 struct perm_bits {
110 	u8	*virt;		/* read/write virtual data, not hw */
111 	u8	*write;		/* writeable bits */
112 	int	(*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
113 			  struct perm_bits *perm, int offset, __le32 *val);
114 	int	(*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
115 			   struct perm_bits *perm, int offset, __le32 val);
116 };
117 
118 #define	NO_VIRT		0
119 #define	ALL_VIRT	0xFFFFFFFFU
120 #define	NO_WRITE	0
121 #define	ALL_WRITE	0xFFFFFFFFU
122 
123 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
124 				 __le32 *val, int count)
125 {
126 	int ret = -EINVAL;
127 	u32 tmp_val = 0;
128 
129 	switch (count) {
130 	case 1:
131 	{
132 		u8 tmp;
133 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
134 		tmp_val = tmp;
135 		break;
136 	}
137 	case 2:
138 	{
139 		u16 tmp;
140 		ret = pci_user_read_config_word(pdev, offset, &tmp);
141 		tmp_val = tmp;
142 		break;
143 	}
144 	case 4:
145 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
146 		break;
147 	}
148 
149 	*val = cpu_to_le32(tmp_val);
150 
151 	return ret;
152 }
153 
154 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
155 				  __le32 val, int count)
156 {
157 	int ret = -EINVAL;
158 	u32 tmp_val = le32_to_cpu(val);
159 
160 	switch (count) {
161 	case 1:
162 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
163 		break;
164 	case 2:
165 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
166 		break;
167 	case 4:
168 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
169 		break;
170 	}
171 
172 	return ret;
173 }
174 
175 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
176 				    int count, struct perm_bits *perm,
177 				    int offset, __le32 *val)
178 {
179 	__le32 virt = 0;
180 
181 	memcpy(val, vdev->vconfig + pos, count);
182 
183 	memcpy(&virt, perm->virt + offset, count);
184 
185 	/* Any non-virtualized bits? */
186 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
187 		struct pci_dev *pdev = vdev->pdev;
188 		__le32 phys_val = 0;
189 		int ret;
190 
191 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
192 		if (ret)
193 			return ret;
194 
195 		*val = (phys_val & ~virt) | (*val & virt);
196 	}
197 
198 	return count;
199 }
200 
201 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
202 				     int count, struct perm_bits *perm,
203 				     int offset, __le32 val)
204 {
205 	__le32 virt = 0, write = 0;
206 
207 	memcpy(&write, perm->write + offset, count);
208 
209 	if (!write)
210 		return count; /* drop, no writable bits */
211 
212 	memcpy(&virt, perm->virt + offset, count);
213 
214 	/* Virtualized and writable bits go to vconfig */
215 	if (write & virt) {
216 		__le32 virt_val = 0;
217 
218 		memcpy(&virt_val, vdev->vconfig + pos, count);
219 
220 		virt_val &= ~(write & virt);
221 		virt_val |= (val & (write & virt));
222 
223 		memcpy(vdev->vconfig + pos, &virt_val, count);
224 	}
225 
226 	/* Non-virtualized and writable bits go to hardware */
227 	if (write & ~virt) {
228 		struct pci_dev *pdev = vdev->pdev;
229 		__le32 phys_val = 0;
230 		int ret;
231 
232 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
233 		if (ret)
234 			return ret;
235 
236 		phys_val &= ~(write & ~virt);
237 		phys_val |= (val & (write & ~virt));
238 
239 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
240 		if (ret)
241 			return ret;
242 	}
243 
244 	return count;
245 }
246 
247 /* Allow direct read from hardware, except for capability next pointer */
248 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
249 				   int count, struct perm_bits *perm,
250 				   int offset, __le32 *val)
251 {
252 	int ret;
253 
254 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
255 	if (ret)
256 		return ret;
257 
258 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
259 		if (offset < 4)
260 			memcpy(val, vdev->vconfig + pos, count);
261 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
262 		if (offset == PCI_CAP_LIST_ID && count > 1)
263 			memcpy(val, vdev->vconfig + pos,
264 			       min(PCI_CAP_FLAGS, count));
265 		else if (offset == PCI_CAP_LIST_NEXT)
266 			memcpy(val, vdev->vconfig + pos, 1);
267 	}
268 
269 	return count;
270 }
271 
272 /* Raw access skips any kind of virtualization */
273 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
274 				 int count, struct perm_bits *perm,
275 				 int offset, __le32 val)
276 {
277 	int ret;
278 
279 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
280 	if (ret)
281 		return ret;
282 
283 	return count;
284 }
285 
286 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
287 				int count, struct perm_bits *perm,
288 				int offset, __le32 *val)
289 {
290 	int ret;
291 
292 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
293 	if (ret)
294 		return ret;
295 
296 	return count;
297 }
298 
299 /* Virt access uses only virtualization */
300 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
301 				  int count, struct perm_bits *perm,
302 				  int offset, __le32 val)
303 {
304 	memcpy(vdev->vconfig + pos, &val, count);
305 	return count;
306 }
307 
308 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
309 				 int count, struct perm_bits *perm,
310 				 int offset, __le32 *val)
311 {
312 	memcpy(val, vdev->vconfig + pos, count);
313 	return count;
314 }
315 
316 static struct perm_bits direct_ro_perms = {
317 	.readfn = vfio_direct_config_read,
318 };
319 
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
323 };
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
326 };
327 /*
328  * Default unassigned regions to raw read-write access.  Some devices
329  * require this to function as they hide registers between the gaps in
330  * config space (be2net).  Like MMIO and I/O port registers, we have
331  * to trust the hardware isolation.
332  */
333 static struct perm_bits unassigned_perms = {
334 	.readfn = vfio_raw_config_read,
335 	.writefn = vfio_raw_config_write
336 };
337 
338 static struct perm_bits virt_perms = {
339 	.readfn = vfio_virt_config_read,
340 	.writefn = vfio_virt_config_write
341 };
342 
343 static void free_perm_bits(struct perm_bits *perm)
344 {
345 	kfree(perm->virt);
346 	kfree(perm->write);
347 	perm->virt = NULL;
348 	perm->write = NULL;
349 }
350 
351 static int alloc_perm_bits(struct perm_bits *perm, int size)
352 {
353 	/*
354 	 * Round up all permission bits to the next dword, this lets us
355 	 * ignore whether a read/write exceeds the defined capability
356 	 * structure.  We can do this because:
357 	 *  - Standard config space is already dword aligned
358 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
359 	 *  - Express capabilities defined as dword aligned
360 	 */
361 	size = round_up(size, 4);
362 
363 	/*
364 	 * Zero state is
365 	 * - All Readable, None Writeable, None Virtualized
366 	 */
367 	perm->virt = kzalloc(size, GFP_KERNEL);
368 	perm->write = kzalloc(size, GFP_KERNEL);
369 	if (!perm->virt || !perm->write) {
370 		free_perm_bits(perm);
371 		return -ENOMEM;
372 	}
373 
374 	perm->readfn = vfio_default_config_read;
375 	perm->writefn = vfio_default_config_write;
376 
377 	return 0;
378 }
379 
380 /*
381  * Helper functions for filling in permission tables
382  */
383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
384 {
385 	p->virt[off] = virt;
386 	p->write[off] = write;
387 }
388 
389 /* Handle endian-ness - pci and tables are little-endian */
390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
391 {
392 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
394 }
395 
396 /* Handle endian-ness - pci and tables are little-endian */
397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
398 {
399 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
401 }
402 
403 /* Caller should hold memory_lock semaphore */
404 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
405 {
406 	struct pci_dev *pdev = vdev->pdev;
407 	u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
408 
409 	/*
410 	 * Memory region cannot be accessed if device power state is D3.
411 	 *
412 	 * SR-IOV VF memory enable is handled by the MSE bit in the
413 	 * PF SR-IOV capability, there's therefore no need to trigger
414 	 * faults based on the virtual value.
415 	 */
416 	return pdev->current_state < PCI_D3hot &&
417 	       (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
418 }
419 
420 /*
421  * Restore the *real* BARs after we detect a FLR or backdoor reset.
422  * (backdoor = some device specific technique that we didn't catch)
423  */
424 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
425 {
426 	struct pci_dev *pdev = vdev->pdev;
427 	u32 *rbar = vdev->rbar;
428 	u16 cmd;
429 	int i;
430 
431 	if (pdev->is_virtfn)
432 		return;
433 
434 	pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
435 
436 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
437 		pci_user_write_config_dword(pdev, i, *rbar);
438 
439 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
440 
441 	if (vdev->nointx) {
442 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
443 		cmd |= PCI_COMMAND_INTX_DISABLE;
444 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
445 	}
446 }
447 
448 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
449 {
450 	unsigned long flags = pci_resource_flags(pdev, bar);
451 	u32 val;
452 
453 	if (flags & IORESOURCE_IO)
454 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
455 
456 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
457 
458 	if (flags & IORESOURCE_PREFETCH)
459 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
460 
461 	if (flags & IORESOURCE_MEM_64)
462 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
463 
464 	return cpu_to_le32(val);
465 }
466 
467 /*
468  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
469  * to reflect the hardware capabilities.  This implements BAR sizing.
470  */
471 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
472 {
473 	struct pci_dev *pdev = vdev->pdev;
474 	int i;
475 	__le32 *vbar;
476 	u64 mask;
477 
478 	if (!vdev->bardirty)
479 		return;
480 
481 	vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
482 
483 	for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
484 		int bar = i + PCI_STD_RESOURCES;
485 
486 		if (!pci_resource_start(pdev, bar)) {
487 			*vbar = 0; /* Unmapped by host = unimplemented to user */
488 			continue;
489 		}
490 
491 		mask = ~(pci_resource_len(pdev, bar) - 1);
492 
493 		*vbar &= cpu_to_le32((u32)mask);
494 		*vbar |= vfio_generate_bar_flags(pdev, bar);
495 
496 		if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
497 			vbar++;
498 			*vbar &= cpu_to_le32((u32)(mask >> 32));
499 			i++;
500 		}
501 	}
502 
503 	vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
504 
505 	/*
506 	 * NB. REGION_INFO will have reported zero size if we weren't able
507 	 * to read the ROM, but we still return the actual BAR size here if
508 	 * it exists (or the shadow ROM space).
509 	 */
510 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
511 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
512 		mask |= PCI_ROM_ADDRESS_ENABLE;
513 		*vbar &= cpu_to_le32((u32)mask);
514 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
515 					IORESOURCE_ROM_SHADOW) {
516 		mask = ~(0x20000 - 1);
517 		mask |= PCI_ROM_ADDRESS_ENABLE;
518 		*vbar &= cpu_to_le32((u32)mask);
519 	} else
520 		*vbar = 0;
521 
522 	vdev->bardirty = false;
523 }
524 
525 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
526 				  int count, struct perm_bits *perm,
527 				  int offset, __le32 *val)
528 {
529 	if (is_bar(offset)) /* pos == offset for basic config */
530 		vfio_bar_fixup(vdev);
531 
532 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
533 
534 	/* Mask in virtual memory enable */
535 	if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
536 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
537 		u32 tmp_val = le32_to_cpu(*val);
538 
539 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
540 		*val = cpu_to_le32(tmp_val);
541 	}
542 
543 	return count;
544 }
545 
546 /* Test whether BARs match the value we think they should contain */
547 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
548 {
549 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
550 	u32 bar;
551 
552 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
553 		if (vdev->rbar[i]) {
554 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
555 			if (ret || vdev->rbar[i] != bar)
556 				return true;
557 		}
558 	}
559 
560 	return false;
561 }
562 
563 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
564 				   int count, struct perm_bits *perm,
565 				   int offset, __le32 val)
566 {
567 	struct pci_dev *pdev = vdev->pdev;
568 	__le16 *virt_cmd;
569 	u16 new_cmd = 0;
570 	int ret;
571 
572 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
573 
574 	if (offset == PCI_COMMAND) {
575 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
576 		u16 phys_cmd;
577 
578 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
579 		if (ret)
580 			return ret;
581 
582 		new_cmd = le32_to_cpu(val);
583 
584 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
585 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
586 		new_io = !!(new_cmd & PCI_COMMAND_IO);
587 
588 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
589 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
590 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
591 
592 		if (!new_mem)
593 			vfio_pci_zap_and_down_write_memory_lock(vdev);
594 		else
595 			down_write(&vdev->memory_lock);
596 
597 		/*
598 		 * If the user is writing mem/io enable (new_mem/io) and we
599 		 * think it's already enabled (virt_mem/io), but the hardware
600 		 * shows it disabled (phys_mem/io, then the device has
601 		 * undergone some kind of backdoor reset and needs to be
602 		 * restored before we allow it to enable the bars.
603 		 * SR-IOV devices will trigger this - for mem enable let's
604 		 * catch this now and for io enable it will be caught later
605 		 */
606 		if ((new_mem && virt_mem && !phys_mem &&
607 		     !pdev->no_command_memory) ||
608 		    (new_io && virt_io && !phys_io) ||
609 		    vfio_need_bar_restore(vdev))
610 			vfio_bar_restore(vdev);
611 	}
612 
613 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
614 	if (count < 0) {
615 		if (offset == PCI_COMMAND)
616 			up_write(&vdev->memory_lock);
617 		return count;
618 	}
619 
620 	/*
621 	 * Save current memory/io enable bits in vconfig to allow for
622 	 * the test above next time.
623 	 */
624 	if (offset == PCI_COMMAND) {
625 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
626 
627 		*virt_cmd &= cpu_to_le16(~mask);
628 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
629 
630 		up_write(&vdev->memory_lock);
631 	}
632 
633 	/* Emulate INTx disable */
634 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
635 		bool virt_intx_disable;
636 
637 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
638 				       PCI_COMMAND_INTX_DISABLE);
639 
640 		if (virt_intx_disable && !vdev->virq_disabled) {
641 			vdev->virq_disabled = true;
642 			vfio_pci_intx_mask(vdev);
643 		} else if (!virt_intx_disable && vdev->virq_disabled) {
644 			vdev->virq_disabled = false;
645 			vfio_pci_intx_unmask(vdev);
646 		}
647 	}
648 
649 	if (is_bar(offset))
650 		vdev->bardirty = true;
651 
652 	return count;
653 }
654 
655 /* Permissions for the Basic PCI Header */
656 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
657 {
658 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
659 		return -ENOMEM;
660 
661 	perm->readfn = vfio_basic_config_read;
662 	perm->writefn = vfio_basic_config_write;
663 
664 	/* Virtualized for SR-IOV functions, which just have FFFF */
665 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
666 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
667 
668 	/*
669 	 * Virtualize INTx disable, we use it internally for interrupt
670 	 * control and can emulate it for non-PCI 2.3 devices.
671 	 */
672 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
673 
674 	/* Virtualize capability list, we might want to skip/disable */
675 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
676 
677 	/* No harm to write */
678 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
679 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
680 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
681 
682 	/* Virtualize all bars, can't touch the real ones */
683 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
684 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
685 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
686 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
687 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
688 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
689 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
690 
691 	/* Allow us to adjust capability chain */
692 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
693 
694 	/* Sometimes used by sw, just virtualize */
695 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
696 
697 	/* Virtualize interrupt pin to allow hiding INTx */
698 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
699 
700 	return 0;
701 }
702 
703 /*
704  * It takes all the required locks to protect the access of power related
705  * variables and then invokes vfio_pci_set_power_state().
706  */
707 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
708 					  pci_power_t state)
709 {
710 	if (state >= PCI_D3hot)
711 		vfio_pci_zap_and_down_write_memory_lock(vdev);
712 	else
713 		down_write(&vdev->memory_lock);
714 
715 	vfio_pci_set_power_state(vdev, state);
716 	up_write(&vdev->memory_lock);
717 }
718 
719 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
720 				int count, struct perm_bits *perm,
721 				int offset, __le32 val)
722 {
723 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
724 	if (count < 0)
725 		return count;
726 
727 	if (offset == PCI_PM_CTRL) {
728 		pci_power_t state;
729 
730 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
731 		case 0:
732 			state = PCI_D0;
733 			break;
734 		case 1:
735 			state = PCI_D1;
736 			break;
737 		case 2:
738 			state = PCI_D2;
739 			break;
740 		case 3:
741 			state = PCI_D3hot;
742 			break;
743 		}
744 
745 		vfio_lock_and_set_power_state(vdev, state);
746 	}
747 
748 	return count;
749 }
750 
751 /* Permissions for the Power Management capability */
752 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
753 {
754 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
755 		return -ENOMEM;
756 
757 	perm->writefn = vfio_pm_config_write;
758 
759 	/*
760 	 * We always virtualize the next field so we can remove
761 	 * capabilities from the chain if we want to.
762 	 */
763 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
764 
765 	/*
766 	 * The guests can't process PME events. If any PME event will be
767 	 * generated, then it will be mostly handled in the host and the
768 	 * host will clear the PME_STATUS. So virtualize PME_Support bits.
769 	 * The vconfig bits will be cleared during device capability
770 	 * initialization.
771 	 */
772 	p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
773 
774 	/*
775 	 * Power management is defined *per function*, so we can let
776 	 * the user change power state, but we trap and initiate the
777 	 * change ourselves, so the state bits are read-only.
778 	 *
779 	 * The guest can't process PME from D3cold so virtualize PME_Status
780 	 * and PME_En bits. The vconfig bits will be cleared during device
781 	 * capability initialization.
782 	 */
783 	p_setd(perm, PCI_PM_CTRL,
784 	       PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
785 	       ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
786 		 PCI_PM_CTRL_STATE_MASK));
787 
788 	return 0;
789 }
790 
791 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
792 				 int count, struct perm_bits *perm,
793 				 int offset, __le32 val)
794 {
795 	struct pci_dev *pdev = vdev->pdev;
796 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
797 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
798 	u16 addr;
799 	u32 data;
800 
801 	/*
802 	 * Write through to emulation.  If the write includes the upper byte
803 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
804 	 * have work to do.
805 	 */
806 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
807 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
808 	    offset + count <= PCI_VPD_ADDR + 1)
809 		return count;
810 
811 	addr = le16_to_cpu(*paddr);
812 
813 	if (addr & PCI_VPD_ADDR_F) {
814 		data = le32_to_cpu(*pdata);
815 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
816 			return count;
817 	} else {
818 		data = 0;
819 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
820 			return count;
821 		*pdata = cpu_to_le32(data);
822 	}
823 
824 	/*
825 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
826 	 * signal completion.  If an error occurs above, we assume that not
827 	 * toggling this bit will induce a driver timeout.
828 	 */
829 	addr ^= PCI_VPD_ADDR_F;
830 	*paddr = cpu_to_le16(addr);
831 
832 	return count;
833 }
834 
835 /* Permissions for Vital Product Data capability */
836 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
837 {
838 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
839 		return -ENOMEM;
840 
841 	perm->writefn = vfio_vpd_config_write;
842 
843 	/*
844 	 * We always virtualize the next field so we can remove
845 	 * capabilities from the chain if we want to.
846 	 */
847 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
848 
849 	/*
850 	 * Both the address and data registers are virtualized to
851 	 * enable access through the pci_vpd_read/write functions
852 	 */
853 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
854 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
855 
856 	return 0;
857 }
858 
859 /* Permissions for PCI-X capability */
860 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
861 {
862 	/* Alloc 24, but only 8 are used in v0 */
863 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
864 		return -ENOMEM;
865 
866 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
867 
868 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
869 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
870 	return 0;
871 }
872 
873 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
874 				 int count, struct perm_bits *perm,
875 				 int offset, __le32 val)
876 {
877 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
878 				  offset + PCI_EXP_DEVCTL);
879 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
880 
881 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
882 	if (count < 0)
883 		return count;
884 
885 	/*
886 	 * The FLR bit is virtualized, if set and the device supports PCIe
887 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
888 	 * requires it to be always read as zero.  NB, reset_function might
889 	 * not use a PCIe FLR, we don't have that level of granularity.
890 	 */
891 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
892 		u32 cap;
893 		int ret;
894 
895 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
896 
897 		ret = pci_user_read_config_dword(vdev->pdev,
898 						 pos - offset + PCI_EXP_DEVCAP,
899 						 &cap);
900 
901 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
902 			vfio_pci_zap_and_down_write_memory_lock(vdev);
903 			pci_try_reset_function(vdev->pdev);
904 			up_write(&vdev->memory_lock);
905 		}
906 	}
907 
908 	/*
909 	 * MPS is virtualized to the user, writes do not change the physical
910 	 * register since determining a proper MPS value requires a system wide
911 	 * device view.  The MRRS is largely independent of MPS, but since the
912 	 * user does not have that system-wide view, they might set a safe, but
913 	 * inefficiently low value.  Here we allow writes through to hardware,
914 	 * but we set the floor to the physical device MPS setting, so that
915 	 * we can at least use full TLPs, as defined by the MPS value.
916 	 *
917 	 * NB, if any devices actually depend on an artificially low MRRS
918 	 * setting, this will need to be revisited, perhaps with a quirk
919 	 * though pcie_set_readrq().
920 	 */
921 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
922 		readrq = 128 <<
923 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
924 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
925 
926 		pcie_set_readrq(vdev->pdev, readrq);
927 	}
928 
929 	return count;
930 }
931 
932 /* Permissions for PCI Express capability */
933 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
934 {
935 	/* Alloc largest of possible sizes */
936 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
937 		return -ENOMEM;
938 
939 	perm->writefn = vfio_exp_config_write;
940 
941 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
942 
943 	/*
944 	 * Allow writes to device control fields, except devctl_phantom,
945 	 * which could confuse IOMMU, MPS, which can break communication
946 	 * with other physical devices, and the ARI bit in devctl2, which
947 	 * is set at probe time.  FLR and MRRS get virtualized via our
948 	 * writefn.
949 	 */
950 	p_setw(perm, PCI_EXP_DEVCTL,
951 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
952 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
953 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
954 	return 0;
955 }
956 
957 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
958 				int count, struct perm_bits *perm,
959 				int offset, __le32 val)
960 {
961 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
962 
963 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
964 	if (count < 0)
965 		return count;
966 
967 	/*
968 	 * The FLR bit is virtualized, if set and the device supports AF
969 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
970 	 * requires it to be always read as zero.  NB, reset_function might
971 	 * not use an AF FLR, we don't have that level of granularity.
972 	 */
973 	if (*ctrl & PCI_AF_CTRL_FLR) {
974 		u8 cap;
975 		int ret;
976 
977 		*ctrl &= ~PCI_AF_CTRL_FLR;
978 
979 		ret = pci_user_read_config_byte(vdev->pdev,
980 						pos - offset + PCI_AF_CAP,
981 						&cap);
982 
983 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
984 			vfio_pci_zap_and_down_write_memory_lock(vdev);
985 			pci_try_reset_function(vdev->pdev);
986 			up_write(&vdev->memory_lock);
987 		}
988 	}
989 
990 	return count;
991 }
992 
993 /* Permissions for Advanced Function capability */
994 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
995 {
996 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
997 		return -ENOMEM;
998 
999 	perm->writefn = vfio_af_config_write;
1000 
1001 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1002 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
1003 	return 0;
1004 }
1005 
1006 /* Permissions for Advanced Error Reporting extended capability */
1007 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1008 {
1009 	u32 mask;
1010 
1011 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1012 		return -ENOMEM;
1013 
1014 	/*
1015 	 * Virtualize the first dword of all express capabilities
1016 	 * because it includes the next pointer.  This lets us later
1017 	 * remove capabilities from the chain if we need to.
1018 	 */
1019 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1020 
1021 	/* Writable bits mask */
1022 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
1023 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
1024 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
1025 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
1026 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
1027 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
1028 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
1029 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
1030 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
1031 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
1032 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
1033 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
1034 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
1035 		PCI_ERR_UNC_INTN |		/* internal error */
1036 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
1037 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
1038 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
1039 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1040 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1041 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1042 
1043 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
1044 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
1045 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
1046 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
1047 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
1048 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
1049 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
1050 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
1051 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1052 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1053 
1054 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
1055 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
1056 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1057 	return 0;
1058 }
1059 
1060 /* Permissions for Power Budgeting extended capability */
1061 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1062 {
1063 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1064 		return -ENOMEM;
1065 
1066 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1067 
1068 	/* Writing the data selector is OK, the info is still read-only */
1069 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1070 	return 0;
1071 }
1072 
1073 /*
1074  * Initialize the shared permission tables
1075  */
1076 void vfio_pci_uninit_perm_bits(void)
1077 {
1078 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1079 
1080 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1081 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1082 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1083 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1084 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1085 
1086 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1087 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1088 }
1089 
1090 int __init vfio_pci_init_perm_bits(void)
1091 {
1092 	int ret;
1093 
1094 	/* Basic config space */
1095 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1096 
1097 	/* Capabilities */
1098 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1099 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1100 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1101 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1102 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1103 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1104 
1105 	/* Extended capabilities */
1106 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1107 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1108 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1109 	ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write;
1110 
1111 	if (ret)
1112 		vfio_pci_uninit_perm_bits();
1113 
1114 	return ret;
1115 }
1116 
1117 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1118 {
1119 	u8 cap;
1120 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1121 						 PCI_STD_HEADER_SIZEOF;
1122 	cap = vdev->pci_config_map[pos];
1123 
1124 	if (cap == PCI_CAP_ID_BASIC)
1125 		return 0;
1126 
1127 	/* XXX Can we have to abutting capabilities of the same type? */
1128 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1129 		pos--;
1130 
1131 	return pos;
1132 }
1133 
1134 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1135 				int count, struct perm_bits *perm,
1136 				int offset, __le32 *val)
1137 {
1138 	/* Update max available queue size from msi_qmax */
1139 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1140 		__le16 *flags;
1141 		int start;
1142 
1143 		start = vfio_find_cap_start(vdev, pos);
1144 
1145 		flags = (__le16 *)&vdev->vconfig[start];
1146 
1147 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1148 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1149 	}
1150 
1151 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1152 }
1153 
1154 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1155 				 int count, struct perm_bits *perm,
1156 				 int offset, __le32 val)
1157 {
1158 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1159 	if (count < 0)
1160 		return count;
1161 
1162 	/* Fixup and write configured queue size and enable to hardware */
1163 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1164 		__le16 *pflags;
1165 		u16 flags;
1166 		int start, ret;
1167 
1168 		start = vfio_find_cap_start(vdev, pos);
1169 
1170 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1171 
1172 		flags = le16_to_cpu(*pflags);
1173 
1174 		/* MSI is enabled via ioctl */
1175 		if  (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1176 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1177 
1178 		/* Check queue size */
1179 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1180 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1181 			flags |= vdev->msi_qmax << 4;
1182 		}
1183 
1184 		/* Write back to virt and to hardware */
1185 		*pflags = cpu_to_le16(flags);
1186 		ret = pci_user_write_config_word(vdev->pdev,
1187 						 start + PCI_MSI_FLAGS,
1188 						 flags);
1189 		if (ret)
1190 			return ret;
1191 	}
1192 
1193 	return count;
1194 }
1195 
1196 /*
1197  * MSI determination is per-device, so this routine gets used beyond
1198  * initialization time. Don't add __init
1199  */
1200 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1201 {
1202 	if (alloc_perm_bits(perm, len))
1203 		return -ENOMEM;
1204 
1205 	perm->readfn = vfio_msi_config_read;
1206 	perm->writefn = vfio_msi_config_write;
1207 
1208 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1209 
1210 	/*
1211 	 * The upper byte of the control register is reserved,
1212 	 * just setup the lower byte.
1213 	 */
1214 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1215 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1216 	if (flags & PCI_MSI_FLAGS_64BIT) {
1217 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1218 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1219 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1220 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1221 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1222 		}
1223 	} else {
1224 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1225 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1226 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1227 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1228 		}
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1234 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1235 {
1236 	struct pci_dev *pdev = vdev->pdev;
1237 	int len, ret;
1238 	u16 flags;
1239 
1240 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1241 	if (ret)
1242 		return pcibios_err_to_errno(ret);
1243 
1244 	len = 10; /* Minimum size */
1245 	if (flags & PCI_MSI_FLAGS_64BIT)
1246 		len += 4;
1247 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1248 		len += 10;
1249 
1250 	if (vdev->msi_perm)
1251 		return len;
1252 
1253 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT);
1254 	if (!vdev->msi_perm)
1255 		return -ENOMEM;
1256 
1257 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1258 	if (ret) {
1259 		kfree(vdev->msi_perm);
1260 		return ret;
1261 	}
1262 
1263 	return len;
1264 }
1265 
1266 /* Determine extended capability length for VC (2 & 9) and MFVC */
1267 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1268 {
1269 	struct pci_dev *pdev = vdev->pdev;
1270 	u32 tmp;
1271 	int ret, evcc, phases, vc_arb;
1272 	int len = PCI_CAP_VC_BASE_SIZEOF;
1273 
1274 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1275 	if (ret)
1276 		return pcibios_err_to_errno(ret);
1277 
1278 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1279 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1280 	if (ret)
1281 		return pcibios_err_to_errno(ret);
1282 
1283 	if (tmp & PCI_VC_CAP2_128_PHASE)
1284 		phases = 128;
1285 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1286 		phases = 64;
1287 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1288 		phases = 32;
1289 	else
1290 		phases = 0;
1291 
1292 	vc_arb = phases * 4;
1293 
1294 	/*
1295 	 * Port arbitration tables are root & switch only;
1296 	 * function arbitration tables are function 0 only.
1297 	 * In either case, we'll never let user write them so
1298 	 * we don't care how big they are
1299 	 */
1300 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1301 	if (vc_arb) {
1302 		len = round_up(len, 16);
1303 		len += vc_arb / 8;
1304 	}
1305 	return len;
1306 }
1307 
1308 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1309 {
1310 	struct pci_dev *pdev = vdev->pdev;
1311 	u32 dword;
1312 	u16 word;
1313 	u8 byte;
1314 	int ret;
1315 
1316 	switch (cap) {
1317 	case PCI_CAP_ID_MSI:
1318 		return vfio_msi_cap_len(vdev, pos);
1319 	case PCI_CAP_ID_PCIX:
1320 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1321 		if (ret)
1322 			return pcibios_err_to_errno(ret);
1323 
1324 		if (PCI_X_CMD_VERSION(word)) {
1325 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1326 				/* Test for extended capabilities */
1327 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1328 						      &dword);
1329 				vdev->extended_caps = (dword != 0);
1330 			}
1331 			return PCI_CAP_PCIX_SIZEOF_V2;
1332 		} else
1333 			return PCI_CAP_PCIX_SIZEOF_V0;
1334 	case PCI_CAP_ID_VNDR:
1335 		/* length follows next field */
1336 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1337 		if (ret)
1338 			return pcibios_err_to_errno(ret);
1339 
1340 		return byte;
1341 	case PCI_CAP_ID_EXP:
1342 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1343 			/* Test for extended capabilities */
1344 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1345 			vdev->extended_caps = (dword != 0);
1346 		}
1347 
1348 		/* length based on version and type */
1349 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1350 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1351 				return 0xc; /* "All Devices" only, no link */
1352 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1353 		} else {
1354 			if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1355 				return 0x2c; /* No link */
1356 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1357 		}
1358 	case PCI_CAP_ID_HT:
1359 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1360 		if (ret)
1361 			return pcibios_err_to_errno(ret);
1362 
1363 		return (byte & HT_3BIT_CAP_MASK) ?
1364 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1365 	case PCI_CAP_ID_SATA:
1366 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1367 		if (ret)
1368 			return pcibios_err_to_errno(ret);
1369 
1370 		byte &= PCI_SATA_REGS_MASK;
1371 		if (byte == PCI_SATA_REGS_INLINE)
1372 			return PCI_SATA_SIZEOF_LONG;
1373 		else
1374 			return PCI_SATA_SIZEOF_SHORT;
1375 	default:
1376 		pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1377 			 __func__, cap, pos);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1384 {
1385 	struct pci_dev *pdev = vdev->pdev;
1386 	u8 byte;
1387 	u32 dword;
1388 	int ret;
1389 
1390 	switch (ecap) {
1391 	case PCI_EXT_CAP_ID_VNDR:
1392 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1393 		if (ret)
1394 			return pcibios_err_to_errno(ret);
1395 
1396 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1397 	case PCI_EXT_CAP_ID_VC:
1398 	case PCI_EXT_CAP_ID_VC9:
1399 	case PCI_EXT_CAP_ID_MFVC:
1400 		return vfio_vc_cap_len(vdev, epos);
1401 	case PCI_EXT_CAP_ID_ACS:
1402 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1403 		if (ret)
1404 			return pcibios_err_to_errno(ret);
1405 
1406 		if (byte & PCI_ACS_EC) {
1407 			int bits;
1408 
1409 			ret = pci_read_config_byte(pdev,
1410 						   epos + PCI_ACS_EGRESS_BITS,
1411 						   &byte);
1412 			if (ret)
1413 				return pcibios_err_to_errno(ret);
1414 
1415 			bits = byte ? round_up(byte, 32) : 256;
1416 			return 8 + (bits / 8);
1417 		}
1418 		return 8;
1419 
1420 	case PCI_EXT_CAP_ID_REBAR:
1421 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1422 		if (ret)
1423 			return pcibios_err_to_errno(ret);
1424 
1425 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1426 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1427 
1428 		return 4 + (byte * 8);
1429 	case PCI_EXT_CAP_ID_DPA:
1430 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1431 		if (ret)
1432 			return pcibios_err_to_errno(ret);
1433 
1434 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1435 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1436 	case PCI_EXT_CAP_ID_TPH:
1437 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1438 		if (ret)
1439 			return pcibios_err_to_errno(ret);
1440 
1441 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1442 			int sts;
1443 
1444 			sts = dword & PCI_TPH_CAP_ST_MASK;
1445 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1446 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1447 		}
1448 		return PCI_TPH_BASE_SIZEOF;
1449 	case PCI_EXT_CAP_ID_DVSEC:
1450 		ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword);
1451 		if (ret)
1452 			return pcibios_err_to_errno(ret);
1453 		return PCI_DVSEC_HEADER1_LEN(dword);
1454 	default:
1455 		pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1456 			 __func__, ecap, epos);
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1463 					 int offset)
1464 {
1465 	__le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1466 	__le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1467 
1468 	/* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1469 	*pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1470 	*ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1471 }
1472 
1473 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1474 				   int offset, int size)
1475 {
1476 	struct pci_dev *pdev = vdev->pdev;
1477 	int ret = 0;
1478 
1479 	/*
1480 	 * We try to read physical config space in the largest chunks
1481 	 * we can, assuming that all of the fields support dword access.
1482 	 * pci_save_state() makes this same assumption and seems to do ok.
1483 	 */
1484 	while (size) {
1485 		int filled;
1486 
1487 		if (size >= 4 && !(offset % 4)) {
1488 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1489 			u32 dword;
1490 
1491 			ret = pci_read_config_dword(pdev, offset, &dword);
1492 			if (ret)
1493 				return ret;
1494 			*dwordp = cpu_to_le32(dword);
1495 			filled = 4;
1496 		} else if (size >= 2 && !(offset % 2)) {
1497 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1498 			u16 word;
1499 
1500 			ret = pci_read_config_word(pdev, offset, &word);
1501 			if (ret)
1502 				return ret;
1503 			*wordp = cpu_to_le16(word);
1504 			filled = 2;
1505 		} else {
1506 			u8 *byte = &vdev->vconfig[offset];
1507 			ret = pci_read_config_byte(pdev, offset, byte);
1508 			if (ret)
1509 				return ret;
1510 			filled = 1;
1511 		}
1512 
1513 		offset += filled;
1514 		size -= filled;
1515 	}
1516 
1517 	return ret;
1518 }
1519 
1520 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1521 {
1522 	struct pci_dev *pdev = vdev->pdev;
1523 	u8 *map = vdev->pci_config_map;
1524 	u16 status;
1525 	u8 pos, *prev, cap;
1526 	int loops, ret, caps = 0;
1527 
1528 	/* Any capabilities? */
1529 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1530 	if (ret)
1531 		return ret;
1532 
1533 	if (!(status & PCI_STATUS_CAP_LIST))
1534 		return 0; /* Done */
1535 
1536 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1537 	if (ret)
1538 		return ret;
1539 
1540 	/* Mark the previous position in case we want to skip a capability */
1541 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1542 
1543 	/* We can bound our loop, capabilities are dword aligned */
1544 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1545 	while (pos && loops--) {
1546 		u8 next;
1547 		int i, len = 0;
1548 
1549 		ret = pci_read_config_byte(pdev, pos, &cap);
1550 		if (ret)
1551 			return ret;
1552 
1553 		ret = pci_read_config_byte(pdev,
1554 					   pos + PCI_CAP_LIST_NEXT, &next);
1555 		if (ret)
1556 			return ret;
1557 
1558 		/*
1559 		 * ID 0 is a NULL capability, conflicting with our fake
1560 		 * PCI_CAP_ID_BASIC.  As it has no content, consider it
1561 		 * hidden for now.
1562 		 */
1563 		if (cap && cap <= PCI_CAP_ID_MAX) {
1564 			len = pci_cap_length[cap];
1565 			if (len == 0xFF) { /* Variable length */
1566 				len = vfio_cap_len(vdev, cap, pos);
1567 				if (len < 0)
1568 					return len;
1569 			}
1570 		}
1571 
1572 		if (!len) {
1573 			pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1574 				cap, pos);
1575 			*prev = next;
1576 			pos = next;
1577 			continue;
1578 		}
1579 
1580 		/* Sanity check, do we overlap other capabilities? */
1581 		for (i = 0; i < len; i++) {
1582 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1583 				continue;
1584 
1585 			pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1586 				 __func__, pos + i, map[pos + i], cap);
1587 		}
1588 
1589 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1590 
1591 		memset(map + pos, cap, len);
1592 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1593 		if (ret)
1594 			return ret;
1595 
1596 		if (cap == PCI_CAP_ID_PM)
1597 			vfio_update_pm_vconfig_bytes(vdev, pos);
1598 
1599 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1600 		pos = next;
1601 		caps++;
1602 	}
1603 
1604 	/* If we didn't fill any capabilities, clear the status flag */
1605 	if (!caps) {
1606 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1607 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1614 {
1615 	struct pci_dev *pdev = vdev->pdev;
1616 	u8 *map = vdev->pci_config_map;
1617 	u16 epos;
1618 	__le32 *prev = NULL;
1619 	int loops, ret, ecaps = 0;
1620 
1621 	if (!vdev->extended_caps)
1622 		return 0;
1623 
1624 	epos = PCI_CFG_SPACE_SIZE;
1625 
1626 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1627 
1628 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1629 		u32 header;
1630 		u16 ecap;
1631 		int i, len = 0;
1632 		bool hidden = false;
1633 
1634 		ret = pci_read_config_dword(pdev, epos, &header);
1635 		if (ret)
1636 			return ret;
1637 
1638 		ecap = PCI_EXT_CAP_ID(header);
1639 
1640 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1641 			len = pci_ext_cap_length[ecap];
1642 			if (len == 0xFF) {
1643 				len = vfio_ext_cap_len(vdev, ecap, epos);
1644 				if (len < 0)
1645 					return len;
1646 			}
1647 		}
1648 
1649 		if (!len) {
1650 			pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n",
1651 				__func__, ecap, epos);
1652 
1653 			/* If not the first in the chain, we can skip over it */
1654 			if (prev) {
1655 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1656 				*prev &= cpu_to_le32(~(0xffcU << 20));
1657 				*prev |= cpu_to_le32(val << 20);
1658 				continue;
1659 			}
1660 
1661 			/*
1662 			 * Otherwise, fill in a placeholder, the direct
1663 			 * readfn will virtualize this automatically
1664 			 */
1665 			len = PCI_CAP_SIZEOF;
1666 			hidden = true;
1667 		}
1668 
1669 		for (i = 0; i < len; i++) {
1670 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1671 				continue;
1672 
1673 			pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1674 				 __func__, epos + i, map[epos + i], ecap);
1675 		}
1676 
1677 		/*
1678 		 * Even though ecap is 2 bytes, we're currently a long way
1679 		 * from exceeding 1 byte capabilities.  If we ever make it
1680 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1681 		 */
1682 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1683 
1684 		memset(map + epos, ecap, len);
1685 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1686 		if (ret)
1687 			return ret;
1688 
1689 		/*
1690 		 * If we're just using this capability to anchor the list,
1691 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1692 		 * indicates to use cap id = 0, version = 0, next = 0 if
1693 		 * ecaps are absent, hope users check all the way to next.
1694 		 */
1695 		if (hidden)
1696 			*(__le32 *)&vdev->vconfig[epos] &=
1697 				cpu_to_le32((0xffcU << 20));
1698 		else
1699 			ecaps++;
1700 
1701 		prev = (__le32 *)&vdev->vconfig[epos];
1702 		epos = PCI_EXT_CAP_NEXT(header);
1703 	}
1704 
1705 	if (!ecaps)
1706 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1707 
1708 	return 0;
1709 }
1710 
1711 /*
1712  * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1713  * to collect a list of dependencies for the VF INTx pin quirk below.
1714  */
1715 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1716 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1717 	{}
1718 };
1719 
1720 /*
1721  * For each device we allocate a pci_config_map that indicates the
1722  * capability occupying each dword and thus the struct perm_bits we
1723  * use for read and write.  We also allocate a virtualized config
1724  * space which tracks reads and writes to bits that we emulate for
1725  * the user.  Initial values filled from device.
1726  *
1727  * Using shared struct perm_bits between all vfio-pci devices saves
1728  * us from allocating cfg_size buffers for virt and write for every
1729  * device.  We could remove vconfig and allocate individual buffers
1730  * for each area requiring emulated bits, but the array of pointers
1731  * would be comparable in size (at least for standard config space).
1732  */
1733 int vfio_config_init(struct vfio_pci_core_device *vdev)
1734 {
1735 	struct pci_dev *pdev = vdev->pdev;
1736 	u8 *map, *vconfig;
1737 	int ret;
1738 
1739 	/*
1740 	 * Config space, caps and ecaps are all dword aligned, so we could
1741 	 * use one byte per dword to record the type.  However, there are
1742 	 * no requirements on the length of a capability, so the gap between
1743 	 * capabilities needs byte granularity.
1744 	 */
1745 	map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1746 	if (!map)
1747 		return -ENOMEM;
1748 
1749 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1750 	if (!vconfig) {
1751 		kfree(map);
1752 		return -ENOMEM;
1753 	}
1754 
1755 	vdev->pci_config_map = map;
1756 	vdev->vconfig = vconfig;
1757 
1758 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1759 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1760 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1761 
1762 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1763 	if (ret)
1764 		goto out;
1765 
1766 	vdev->bardirty = true;
1767 
1768 	/*
1769 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1770 	 * may need to rebuild vconfig after that
1771 	 */
1772 
1773 	/* For restore after reset */
1774 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1775 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1776 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1777 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1778 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1779 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1780 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1781 
1782 	if (pdev->is_virtfn) {
1783 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1784 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1785 
1786 		/*
1787 		 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1788 		 * does not apply to VFs and VFs must implement this register
1789 		 * as read-only with value zero.  Userspace is not readily able
1790 		 * to identify whether a device is a VF and thus that the pin
1791 		 * definition on the device is bogus should it violate this
1792 		 * requirement.  We already virtualize the pin register for
1793 		 * other purposes, so we simply need to replace the bogus value
1794 		 * and consider VFs when we determine INTx IRQ count.
1795 		 */
1796 		if (vconfig[PCI_INTERRUPT_PIN] &&
1797 		    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1798 			pci_warn(pdev,
1799 				 "Hardware bug: VF reports bogus INTx pin %d\n",
1800 				 vconfig[PCI_INTERRUPT_PIN]);
1801 
1802 		vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1803 	}
1804 	if (pdev->no_command_memory) {
1805 		/*
1806 		 * VFs and devices that set pdev->no_command_memory do not
1807 		 * implement the memory enable bit of the COMMAND register
1808 		 * therefore we'll not have it set in our initial copy of
1809 		 * config space after pci_enable_device().  For consistency
1810 		 * with PFs, set the virtual enable bit here.
1811 		 */
1812 		*(__le16 *)&vconfig[PCI_COMMAND] |=
1813 					cpu_to_le16(PCI_COMMAND_MEMORY);
1814 	}
1815 
1816 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1817 		vconfig[PCI_INTERRUPT_PIN] = 0;
1818 
1819 	ret = vfio_cap_init(vdev);
1820 	if (ret)
1821 		goto out;
1822 
1823 	ret = vfio_ecap_init(vdev);
1824 	if (ret)
1825 		goto out;
1826 
1827 	return 0;
1828 
1829 out:
1830 	kfree(map);
1831 	vdev->pci_config_map = NULL;
1832 	kfree(vconfig);
1833 	vdev->vconfig = NULL;
1834 	return pcibios_err_to_errno(ret);
1835 }
1836 
1837 void vfio_config_free(struct vfio_pci_core_device *vdev)
1838 {
1839 	kfree(vdev->vconfig);
1840 	vdev->vconfig = NULL;
1841 	kfree(vdev->pci_config_map);
1842 	vdev->pci_config_map = NULL;
1843 	if (vdev->msi_perm) {
1844 		free_perm_bits(vdev->msi_perm);
1845 		kfree(vdev->msi_perm);
1846 		vdev->msi_perm = NULL;
1847 	}
1848 }
1849 
1850 /*
1851  * Find the remaining number of bytes in a dword that match the given
1852  * position.  Stop at either the end of the capability or the dword boundary.
1853  */
1854 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1855 					   loff_t pos)
1856 {
1857 	u8 cap = vdev->pci_config_map[pos];
1858 	size_t i;
1859 
1860 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1861 		/* nop */;
1862 
1863 	return i;
1864 }
1865 
1866 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1867 				 size_t count, loff_t *ppos, bool iswrite)
1868 {
1869 	struct pci_dev *pdev = vdev->pdev;
1870 	struct perm_bits *perm;
1871 	__le32 val = 0;
1872 	int cap_start = 0, offset;
1873 	u8 cap_id;
1874 	ssize_t ret;
1875 
1876 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1877 	    *ppos + count > pdev->cfg_size)
1878 		return -EFAULT;
1879 
1880 	/*
1881 	 * Chop accesses into aligned chunks containing no more than a
1882 	 * single capability.  Caller increments to the next chunk.
1883 	 */
1884 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1885 	if (count >= 4 && !(*ppos % 4))
1886 		count = 4;
1887 	else if (count >= 2 && !(*ppos % 2))
1888 		count = 2;
1889 	else
1890 		count = 1;
1891 
1892 	ret = count;
1893 
1894 	cap_id = vdev->pci_config_map[*ppos];
1895 
1896 	if (cap_id == PCI_CAP_ID_INVALID) {
1897 		perm = &unassigned_perms;
1898 		cap_start = *ppos;
1899 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1900 		perm = &virt_perms;
1901 		cap_start = *ppos;
1902 	} else {
1903 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1904 			/*
1905 			 * We can get a cap_id that exceeds PCI_EXT_CAP_ID_MAX
1906 			 * if we're hiding an unknown capability at the start
1907 			 * of the extended capability list.  Use default, ro
1908 			 * access, which will virtualize the id and next values.
1909 			 */
1910 			if (cap_id > PCI_EXT_CAP_ID_MAX)
1911 				perm = &direct_ro_perms;
1912 			else
1913 				perm = &ecap_perms[cap_id];
1914 
1915 			cap_start = vfio_find_cap_start(vdev, *ppos);
1916 		} else {
1917 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1918 
1919 			perm = &cap_perms[cap_id];
1920 
1921 			if (cap_id == PCI_CAP_ID_MSI)
1922 				perm = vdev->msi_perm;
1923 
1924 			if (cap_id > PCI_CAP_ID_BASIC)
1925 				cap_start = vfio_find_cap_start(vdev, *ppos);
1926 		}
1927 	}
1928 
1929 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1930 	WARN_ON(cap_start > *ppos);
1931 
1932 	offset = *ppos - cap_start;
1933 
1934 	if (iswrite) {
1935 		if (!perm->writefn)
1936 			return ret;
1937 
1938 		if (copy_from_user(&val, buf, count))
1939 			return -EFAULT;
1940 
1941 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1942 	} else {
1943 		if (perm->readfn) {
1944 			ret = perm->readfn(vdev, *ppos, count,
1945 					   perm, offset, &val);
1946 			if (ret < 0)
1947 				return ret;
1948 		}
1949 
1950 		if (copy_to_user(buf, &val, count))
1951 			return -EFAULT;
1952 	}
1953 
1954 	return ret;
1955 }
1956 
1957 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1958 			   size_t count, loff_t *ppos, bool iswrite)
1959 {
1960 	size_t done = 0;
1961 	int ret = 0;
1962 	loff_t pos = *ppos;
1963 
1964 	pos &= VFIO_PCI_OFFSET_MASK;
1965 
1966 	while (count) {
1967 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1968 		if (ret < 0)
1969 			return ret;
1970 
1971 		count -= ret;
1972 		done += ret;
1973 		buf += ret;
1974 		pos += ret;
1975 	}
1976 
1977 	*ppos += done;
1978 
1979 	return done;
1980 }
1981 
1982 /**
1983  * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
1984  *					   and register offset ranges.
1985  * @buf_start:		start offset of the buffer
1986  * @buf_cnt:		number of buffer bytes
1987  * @reg_start:		start register offset
1988  * @reg_cnt:		number of register bytes
1989  * @buf_offset:	start offset of overlap in the buffer
1990  * @intersect_count:	number of overlapping bytes
1991  * @register_offset:	start offset of overlap in register
1992  *
1993  * Returns: true if there is overlap, false if not.
1994  * The overlap start and size is returned through function args.
1995  */
1996 bool vfio_pci_core_range_intersect_range(loff_t buf_start, size_t buf_cnt,
1997 					 loff_t reg_start, size_t reg_cnt,
1998 					 loff_t *buf_offset,
1999 					 size_t *intersect_count,
2000 					 size_t *register_offset)
2001 {
2002 	if (buf_start <= reg_start &&
2003 	    buf_start + buf_cnt > reg_start) {
2004 		*buf_offset = reg_start - buf_start;
2005 		*intersect_count = min_t(size_t, reg_cnt,
2006 					 buf_start + buf_cnt - reg_start);
2007 		*register_offset = 0;
2008 		return true;
2009 	}
2010 
2011 	if (buf_start > reg_start &&
2012 	    buf_start < reg_start + reg_cnt) {
2013 		*buf_offset = 0;
2014 		*intersect_count = min_t(size_t, buf_cnt,
2015 					 reg_start + reg_cnt - buf_start);
2016 		*register_offset = buf_start - reg_start;
2017 		return true;
2018 	}
2019 
2020 	return false;
2021 }
2022 EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range);
2023