1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VFIO PCI config space virtualization 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * Derived from original vfio: 9 * Copyright 2010 Cisco Systems, Inc. All rights reserved. 10 * Author: Tom Lyon, pugs@cisco.com 11 */ 12 13 /* 14 * This code handles reading and writing of PCI configuration registers. 15 * This is hairy because we want to allow a lot of flexibility to the 16 * user driver, but cannot trust it with all of the config fields. 17 * Tables determine which fields can be read and written, as well as 18 * which fields are 'virtualized' - special actions and translations to 19 * make it appear to the user that he has control, when in fact things 20 * must be negotiated with the underlying OS. 21 */ 22 23 #include <linux/fs.h> 24 #include <linux/pci.h> 25 #include <linux/uaccess.h> 26 #include <linux/vfio.h> 27 #include <linux/slab.h> 28 29 #include "vfio_pci_private.h" 30 31 /* Fake capability ID for standard config space */ 32 #define PCI_CAP_ID_BASIC 0 33 34 #define is_bar(offset) \ 35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \ 36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4)) 37 38 /* 39 * Lengths of PCI Config Capabilities 40 * 0: Removed from the user visible capability list 41 * FF: Variable length 42 */ 43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = { 44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */ 45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF, 46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF, 47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF, 48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */ 49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */ 50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */ 51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */ 52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */ 53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */ 54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */ 55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */ 56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */ 57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */ 58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */ 59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */ 60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */ 61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF, 62 [PCI_CAP_ID_SATA] = 0xFF, 63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF, 64 }; 65 66 /* 67 * Lengths of PCIe/PCI-X Extended Config Capabilities 68 * 0: Removed or masked from the user visible capability list 69 * FF: Variable length 70 */ 71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = { 72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND, 73 [PCI_EXT_CAP_ID_VC] = 0xFF, 74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF, 75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF, 76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */ 77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */ 78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */ 79 [PCI_EXT_CAP_ID_MFVC] = 0xFF, 80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */ 81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */ 82 [PCI_EXT_CAP_ID_VNDR] = 0xFF, 83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */ 84 [PCI_EXT_CAP_ID_ACS] = 0xFF, 85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF, 86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF, 87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF, 88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */ 89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF, 90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF, 91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */ 92 [PCI_EXT_CAP_ID_REBAR] = 0xFF, 93 [PCI_EXT_CAP_ID_DPA] = 0xFF, 94 [PCI_EXT_CAP_ID_TPH] = 0xFF, 95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF, 96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */ 97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */ 98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */ 99 }; 100 101 /* 102 * Read/Write Permission Bits - one bit for each bit in capability 103 * Any field can be read if it exists, but what is read depends on 104 * whether the field is 'virtualized', or just pass through to the 105 * hardware. Any virtualized field is also virtualized for writes. 106 * Writes are only permitted if they have a 1 bit here. 107 */ 108 struct perm_bits { 109 u8 *virt; /* read/write virtual data, not hw */ 110 u8 *write; /* writeable bits */ 111 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count, 112 struct perm_bits *perm, int offset, __le32 *val); 113 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count, 114 struct perm_bits *perm, int offset, __le32 val); 115 }; 116 117 #define NO_VIRT 0 118 #define ALL_VIRT 0xFFFFFFFFU 119 #define NO_WRITE 0 120 #define ALL_WRITE 0xFFFFFFFFU 121 122 static int vfio_user_config_read(struct pci_dev *pdev, int offset, 123 __le32 *val, int count) 124 { 125 int ret = -EINVAL; 126 u32 tmp_val = 0; 127 128 switch (count) { 129 case 1: 130 { 131 u8 tmp; 132 ret = pci_user_read_config_byte(pdev, offset, &tmp); 133 tmp_val = tmp; 134 break; 135 } 136 case 2: 137 { 138 u16 tmp; 139 ret = pci_user_read_config_word(pdev, offset, &tmp); 140 tmp_val = tmp; 141 break; 142 } 143 case 4: 144 ret = pci_user_read_config_dword(pdev, offset, &tmp_val); 145 break; 146 } 147 148 *val = cpu_to_le32(tmp_val); 149 150 return ret; 151 } 152 153 static int vfio_user_config_write(struct pci_dev *pdev, int offset, 154 __le32 val, int count) 155 { 156 int ret = -EINVAL; 157 u32 tmp_val = le32_to_cpu(val); 158 159 switch (count) { 160 case 1: 161 ret = pci_user_write_config_byte(pdev, offset, tmp_val); 162 break; 163 case 2: 164 ret = pci_user_write_config_word(pdev, offset, tmp_val); 165 break; 166 case 4: 167 ret = pci_user_write_config_dword(pdev, offset, tmp_val); 168 break; 169 } 170 171 return ret; 172 } 173 174 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos, 175 int count, struct perm_bits *perm, 176 int offset, __le32 *val) 177 { 178 __le32 virt = 0; 179 180 memcpy(val, vdev->vconfig + pos, count); 181 182 memcpy(&virt, perm->virt + offset, count); 183 184 /* Any non-virtualized bits? */ 185 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) { 186 struct pci_dev *pdev = vdev->pdev; 187 __le32 phys_val = 0; 188 int ret; 189 190 ret = vfio_user_config_read(pdev, pos, &phys_val, count); 191 if (ret) 192 return ret; 193 194 *val = (phys_val & ~virt) | (*val & virt); 195 } 196 197 return count; 198 } 199 200 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos, 201 int count, struct perm_bits *perm, 202 int offset, __le32 val) 203 { 204 __le32 virt = 0, write = 0; 205 206 memcpy(&write, perm->write + offset, count); 207 208 if (!write) 209 return count; /* drop, no writable bits */ 210 211 memcpy(&virt, perm->virt + offset, count); 212 213 /* Virtualized and writable bits go to vconfig */ 214 if (write & virt) { 215 __le32 virt_val = 0; 216 217 memcpy(&virt_val, vdev->vconfig + pos, count); 218 219 virt_val &= ~(write & virt); 220 virt_val |= (val & (write & virt)); 221 222 memcpy(vdev->vconfig + pos, &virt_val, count); 223 } 224 225 /* Non-virtualzed and writable bits go to hardware */ 226 if (write & ~virt) { 227 struct pci_dev *pdev = vdev->pdev; 228 __le32 phys_val = 0; 229 int ret; 230 231 ret = vfio_user_config_read(pdev, pos, &phys_val, count); 232 if (ret) 233 return ret; 234 235 phys_val &= ~(write & ~virt); 236 phys_val |= (val & (write & ~virt)); 237 238 ret = vfio_user_config_write(pdev, pos, phys_val, count); 239 if (ret) 240 return ret; 241 } 242 243 return count; 244 } 245 246 /* Allow direct read from hardware, except for capability next pointer */ 247 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos, 248 int count, struct perm_bits *perm, 249 int offset, __le32 *val) 250 { 251 int ret; 252 253 ret = vfio_user_config_read(vdev->pdev, pos, val, count); 254 if (ret) 255 return ret; 256 257 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */ 258 if (offset < 4) 259 memcpy(val, vdev->vconfig + pos, count); 260 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */ 261 if (offset == PCI_CAP_LIST_ID && count > 1) 262 memcpy(val, vdev->vconfig + pos, 263 min(PCI_CAP_FLAGS, count)); 264 else if (offset == PCI_CAP_LIST_NEXT) 265 memcpy(val, vdev->vconfig + pos, 1); 266 } 267 268 return count; 269 } 270 271 /* Raw access skips any kind of virtualization */ 272 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos, 273 int count, struct perm_bits *perm, 274 int offset, __le32 val) 275 { 276 int ret; 277 278 ret = vfio_user_config_write(vdev->pdev, pos, val, count); 279 if (ret) 280 return ret; 281 282 return count; 283 } 284 285 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos, 286 int count, struct perm_bits *perm, 287 int offset, __le32 *val) 288 { 289 int ret; 290 291 ret = vfio_user_config_read(vdev->pdev, pos, val, count); 292 if (ret) 293 return ret; 294 295 return count; 296 } 297 298 /* Virt access uses only virtualization */ 299 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos, 300 int count, struct perm_bits *perm, 301 int offset, __le32 val) 302 { 303 memcpy(vdev->vconfig + pos, &val, count); 304 return count; 305 } 306 307 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos, 308 int count, struct perm_bits *perm, 309 int offset, __le32 *val) 310 { 311 memcpy(val, vdev->vconfig + pos, count); 312 return count; 313 } 314 315 /* Default capability regions to read-only, no-virtualization */ 316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = { 317 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } 318 }; 319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = { 320 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read } 321 }; 322 /* 323 * Default unassigned regions to raw read-write access. Some devices 324 * require this to function as they hide registers between the gaps in 325 * config space (be2net). Like MMIO and I/O port registers, we have 326 * to trust the hardware isolation. 327 */ 328 static struct perm_bits unassigned_perms = { 329 .readfn = vfio_raw_config_read, 330 .writefn = vfio_raw_config_write 331 }; 332 333 static struct perm_bits virt_perms = { 334 .readfn = vfio_virt_config_read, 335 .writefn = vfio_virt_config_write 336 }; 337 338 static void free_perm_bits(struct perm_bits *perm) 339 { 340 kfree(perm->virt); 341 kfree(perm->write); 342 perm->virt = NULL; 343 perm->write = NULL; 344 } 345 346 static int alloc_perm_bits(struct perm_bits *perm, int size) 347 { 348 /* 349 * Round up all permission bits to the next dword, this lets us 350 * ignore whether a read/write exceeds the defined capability 351 * structure. We can do this because: 352 * - Standard config space is already dword aligned 353 * - Capabilities are all dword aligned (bits 0:1 of next reserved) 354 * - Express capabilities defined as dword aligned 355 */ 356 size = round_up(size, 4); 357 358 /* 359 * Zero state is 360 * - All Readable, None Writeable, None Virtualized 361 */ 362 perm->virt = kzalloc(size, GFP_KERNEL); 363 perm->write = kzalloc(size, GFP_KERNEL); 364 if (!perm->virt || !perm->write) { 365 free_perm_bits(perm); 366 return -ENOMEM; 367 } 368 369 perm->readfn = vfio_default_config_read; 370 perm->writefn = vfio_default_config_write; 371 372 return 0; 373 } 374 375 /* 376 * Helper functions for filling in permission tables 377 */ 378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write) 379 { 380 p->virt[off] = virt; 381 p->write[off] = write; 382 } 383 384 /* Handle endian-ness - pci and tables are little-endian */ 385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write) 386 { 387 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt); 388 *(__le16 *)(&p->write[off]) = cpu_to_le16(write); 389 } 390 391 /* Handle endian-ness - pci and tables are little-endian */ 392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write) 393 { 394 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt); 395 *(__le32 *)(&p->write[off]) = cpu_to_le32(write); 396 } 397 398 /* Caller should hold memory_lock semaphore */ 399 bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev) 400 { 401 struct pci_dev *pdev = vdev->pdev; 402 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); 403 404 /* 405 * SR-IOV VF memory enable is handled by the MSE bit in the 406 * PF SR-IOV capability, there's therefore no need to trigger 407 * faults based on the virtual value. 408 */ 409 return pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY); 410 } 411 412 /* 413 * Restore the *real* BARs after we detect a FLR or backdoor reset. 414 * (backdoor = some device specific technique that we didn't catch) 415 */ 416 static void vfio_bar_restore(struct vfio_pci_device *vdev) 417 { 418 struct pci_dev *pdev = vdev->pdev; 419 u32 *rbar = vdev->rbar; 420 u16 cmd; 421 int i; 422 423 if (pdev->is_virtfn) 424 return; 425 426 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__); 427 428 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++) 429 pci_user_write_config_dword(pdev, i, *rbar); 430 431 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar); 432 433 if (vdev->nointx) { 434 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd); 435 cmd |= PCI_COMMAND_INTX_DISABLE; 436 pci_user_write_config_word(pdev, PCI_COMMAND, cmd); 437 } 438 } 439 440 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar) 441 { 442 unsigned long flags = pci_resource_flags(pdev, bar); 443 u32 val; 444 445 if (flags & IORESOURCE_IO) 446 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO); 447 448 val = PCI_BASE_ADDRESS_SPACE_MEMORY; 449 450 if (flags & IORESOURCE_PREFETCH) 451 val |= PCI_BASE_ADDRESS_MEM_PREFETCH; 452 453 if (flags & IORESOURCE_MEM_64) 454 val |= PCI_BASE_ADDRESS_MEM_TYPE_64; 455 456 return cpu_to_le32(val); 457 } 458 459 /* 460 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs 461 * to reflect the hardware capabilities. This implements BAR sizing. 462 */ 463 static void vfio_bar_fixup(struct vfio_pci_device *vdev) 464 { 465 struct pci_dev *pdev = vdev->pdev; 466 int i; 467 __le32 *vbar; 468 u64 mask; 469 470 if (!vdev->bardirty) 471 return; 472 473 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0]; 474 475 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) { 476 int bar = i + PCI_STD_RESOURCES; 477 478 if (!pci_resource_start(pdev, bar)) { 479 *vbar = 0; /* Unmapped by host = unimplemented to user */ 480 continue; 481 } 482 483 mask = ~(pci_resource_len(pdev, bar) - 1); 484 485 *vbar &= cpu_to_le32((u32)mask); 486 *vbar |= vfio_generate_bar_flags(pdev, bar); 487 488 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) { 489 vbar++; 490 *vbar &= cpu_to_le32((u32)(mask >> 32)); 491 i++; 492 } 493 } 494 495 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS]; 496 497 /* 498 * NB. REGION_INFO will have reported zero size if we weren't able 499 * to read the ROM, but we still return the actual BAR size here if 500 * it exists (or the shadow ROM space). 501 */ 502 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) { 503 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1); 504 mask |= PCI_ROM_ADDRESS_ENABLE; 505 *vbar &= cpu_to_le32((u32)mask); 506 } else if (pdev->resource[PCI_ROM_RESOURCE].flags & 507 IORESOURCE_ROM_SHADOW) { 508 mask = ~(0x20000 - 1); 509 mask |= PCI_ROM_ADDRESS_ENABLE; 510 *vbar &= cpu_to_le32((u32)mask); 511 } else 512 *vbar = 0; 513 514 vdev->bardirty = false; 515 } 516 517 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos, 518 int count, struct perm_bits *perm, 519 int offset, __le32 *val) 520 { 521 if (is_bar(offset)) /* pos == offset for basic config */ 522 vfio_bar_fixup(vdev); 523 524 count = vfio_default_config_read(vdev, pos, count, perm, offset, val); 525 526 /* Mask in virtual memory enable */ 527 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) { 528 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]); 529 u32 tmp_val = le32_to_cpu(*val); 530 531 tmp_val |= cmd & PCI_COMMAND_MEMORY; 532 *val = cpu_to_le32(tmp_val); 533 } 534 535 return count; 536 } 537 538 /* Test whether BARs match the value we think they should contain */ 539 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev) 540 { 541 int i = 0, pos = PCI_BASE_ADDRESS_0, ret; 542 u32 bar; 543 544 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) { 545 if (vdev->rbar[i]) { 546 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar); 547 if (ret || vdev->rbar[i] != bar) 548 return true; 549 } 550 } 551 552 return false; 553 } 554 555 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos, 556 int count, struct perm_bits *perm, 557 int offset, __le32 val) 558 { 559 struct pci_dev *pdev = vdev->pdev; 560 __le16 *virt_cmd; 561 u16 new_cmd = 0; 562 int ret; 563 564 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND]; 565 566 if (offset == PCI_COMMAND) { 567 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io; 568 u16 phys_cmd; 569 570 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd); 571 if (ret) 572 return ret; 573 574 new_cmd = le32_to_cpu(val); 575 576 phys_io = !!(phys_cmd & PCI_COMMAND_IO); 577 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO); 578 new_io = !!(new_cmd & PCI_COMMAND_IO); 579 580 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY); 581 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY); 582 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY); 583 584 if (!new_mem) 585 vfio_pci_zap_and_down_write_memory_lock(vdev); 586 else 587 down_write(&vdev->memory_lock); 588 589 /* 590 * If the user is writing mem/io enable (new_mem/io) and we 591 * think it's already enabled (virt_mem/io), but the hardware 592 * shows it disabled (phys_mem/io, then the device has 593 * undergone some kind of backdoor reset and needs to be 594 * restored before we allow it to enable the bars. 595 * SR-IOV devices will trigger this - for mem enable let's 596 * catch this now and for io enable it will be caught later 597 */ 598 if ((new_mem && virt_mem && !phys_mem && 599 !pdev->no_command_memory) || 600 (new_io && virt_io && !phys_io) || 601 vfio_need_bar_restore(vdev)) 602 vfio_bar_restore(vdev); 603 } 604 605 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 606 if (count < 0) { 607 if (offset == PCI_COMMAND) 608 up_write(&vdev->memory_lock); 609 return count; 610 } 611 612 /* 613 * Save current memory/io enable bits in vconfig to allow for 614 * the test above next time. 615 */ 616 if (offset == PCI_COMMAND) { 617 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO; 618 619 *virt_cmd &= cpu_to_le16(~mask); 620 *virt_cmd |= cpu_to_le16(new_cmd & mask); 621 622 up_write(&vdev->memory_lock); 623 } 624 625 /* Emulate INTx disable */ 626 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) { 627 bool virt_intx_disable; 628 629 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) & 630 PCI_COMMAND_INTX_DISABLE); 631 632 if (virt_intx_disable && !vdev->virq_disabled) { 633 vdev->virq_disabled = true; 634 vfio_pci_intx_mask(vdev); 635 } else if (!virt_intx_disable && vdev->virq_disabled) { 636 vdev->virq_disabled = false; 637 vfio_pci_intx_unmask(vdev); 638 } 639 } 640 641 if (is_bar(offset)) 642 vdev->bardirty = true; 643 644 return count; 645 } 646 647 /* Permissions for the Basic PCI Header */ 648 static int __init init_pci_cap_basic_perm(struct perm_bits *perm) 649 { 650 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF)) 651 return -ENOMEM; 652 653 perm->readfn = vfio_basic_config_read; 654 perm->writefn = vfio_basic_config_write; 655 656 /* Virtualized for SR-IOV functions, which just have FFFF */ 657 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE); 658 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE); 659 660 /* 661 * Virtualize INTx disable, we use it internally for interrupt 662 * control and can emulate it for non-PCI 2.3 devices. 663 */ 664 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE); 665 666 /* Virtualize capability list, we might want to skip/disable */ 667 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE); 668 669 /* No harm to write */ 670 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE); 671 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE); 672 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE); 673 674 /* Virtualize all bars, can't touch the real ones */ 675 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE); 676 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE); 677 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE); 678 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE); 679 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE); 680 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE); 681 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE); 682 683 /* Allow us to adjust capability chain */ 684 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE); 685 686 /* Sometimes used by sw, just virtualize */ 687 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE); 688 689 /* Virtualize interrupt pin to allow hiding INTx */ 690 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE); 691 692 return 0; 693 } 694 695 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos, 696 int count, struct perm_bits *perm, 697 int offset, __le32 val) 698 { 699 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 700 if (count < 0) 701 return count; 702 703 if (offset == PCI_PM_CTRL) { 704 pci_power_t state; 705 706 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) { 707 case 0: 708 state = PCI_D0; 709 break; 710 case 1: 711 state = PCI_D1; 712 break; 713 case 2: 714 state = PCI_D2; 715 break; 716 case 3: 717 state = PCI_D3hot; 718 break; 719 } 720 721 vfio_pci_set_power_state(vdev, state); 722 } 723 724 return count; 725 } 726 727 /* Permissions for the Power Management capability */ 728 static int __init init_pci_cap_pm_perm(struct perm_bits *perm) 729 { 730 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM])) 731 return -ENOMEM; 732 733 perm->writefn = vfio_pm_config_write; 734 735 /* 736 * We always virtualize the next field so we can remove 737 * capabilities from the chain if we want to. 738 */ 739 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 740 741 /* 742 * Power management is defined *per function*, so we can let 743 * the user change power state, but we trap and initiate the 744 * change ourselves, so the state bits are read-only. 745 */ 746 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK); 747 return 0; 748 } 749 750 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos, 751 int count, struct perm_bits *perm, 752 int offset, __le32 val) 753 { 754 struct pci_dev *pdev = vdev->pdev; 755 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR); 756 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA); 757 u16 addr; 758 u32 data; 759 760 /* 761 * Write through to emulation. If the write includes the upper byte 762 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we 763 * have work to do. 764 */ 765 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 766 if (count < 0 || offset > PCI_VPD_ADDR + 1 || 767 offset + count <= PCI_VPD_ADDR + 1) 768 return count; 769 770 addr = le16_to_cpu(*paddr); 771 772 if (addr & PCI_VPD_ADDR_F) { 773 data = le32_to_cpu(*pdata); 774 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4) 775 return count; 776 } else { 777 data = 0; 778 if (pci_read_vpd(pdev, addr, 4, &data) < 0) 779 return count; 780 *pdata = cpu_to_le32(data); 781 } 782 783 /* 784 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to 785 * signal completion. If an error occurs above, we assume that not 786 * toggling this bit will induce a driver timeout. 787 */ 788 addr ^= PCI_VPD_ADDR_F; 789 *paddr = cpu_to_le16(addr); 790 791 return count; 792 } 793 794 /* Permissions for Vital Product Data capability */ 795 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm) 796 { 797 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD])) 798 return -ENOMEM; 799 800 perm->writefn = vfio_vpd_config_write; 801 802 /* 803 * We always virtualize the next field so we can remove 804 * capabilities from the chain if we want to. 805 */ 806 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 807 808 /* 809 * Both the address and data registers are virtualized to 810 * enable access through the pci_vpd_read/write functions 811 */ 812 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE); 813 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE); 814 815 return 0; 816 } 817 818 /* Permissions for PCI-X capability */ 819 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm) 820 { 821 /* Alloc 24, but only 8 are used in v0 */ 822 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2)) 823 return -ENOMEM; 824 825 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 826 827 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE); 828 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE); 829 return 0; 830 } 831 832 static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos, 833 int count, struct perm_bits *perm, 834 int offset, __le32 val) 835 { 836 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos - 837 offset + PCI_EXP_DEVCTL); 838 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ; 839 840 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 841 if (count < 0) 842 return count; 843 844 /* 845 * The FLR bit is virtualized, if set and the device supports PCIe 846 * FLR, issue a reset_function. Regardless, clear the bit, the spec 847 * requires it to be always read as zero. NB, reset_function might 848 * not use a PCIe FLR, we don't have that level of granularity. 849 */ 850 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) { 851 u32 cap; 852 int ret; 853 854 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR); 855 856 ret = pci_user_read_config_dword(vdev->pdev, 857 pos - offset + PCI_EXP_DEVCAP, 858 &cap); 859 860 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) { 861 vfio_pci_zap_and_down_write_memory_lock(vdev); 862 pci_try_reset_function(vdev->pdev); 863 up_write(&vdev->memory_lock); 864 } 865 } 866 867 /* 868 * MPS is virtualized to the user, writes do not change the physical 869 * register since determining a proper MPS value requires a system wide 870 * device view. The MRRS is largely independent of MPS, but since the 871 * user does not have that system-wide view, they might set a safe, but 872 * inefficiently low value. Here we allow writes through to hardware, 873 * but we set the floor to the physical device MPS setting, so that 874 * we can at least use full TLPs, as defined by the MPS value. 875 * 876 * NB, if any devices actually depend on an artificially low MRRS 877 * setting, this will need to be revisited, perhaps with a quirk 878 * though pcie_set_readrq(). 879 */ 880 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) { 881 readrq = 128 << 882 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12); 883 readrq = max(readrq, pcie_get_mps(vdev->pdev)); 884 885 pcie_set_readrq(vdev->pdev, readrq); 886 } 887 888 return count; 889 } 890 891 /* Permissions for PCI Express capability */ 892 static int __init init_pci_cap_exp_perm(struct perm_bits *perm) 893 { 894 /* Alloc largest of possible sizes */ 895 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2)) 896 return -ENOMEM; 897 898 perm->writefn = vfio_exp_config_write; 899 900 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 901 902 /* 903 * Allow writes to device control fields, except devctl_phantom, 904 * which could confuse IOMMU, MPS, which can break communication 905 * with other physical devices, and the ARI bit in devctl2, which 906 * is set at probe time. FLR and MRRS get virtualized via our 907 * writefn. 908 */ 909 p_setw(perm, PCI_EXP_DEVCTL, 910 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD | 911 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM); 912 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI); 913 return 0; 914 } 915 916 static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos, 917 int count, struct perm_bits *perm, 918 int offset, __le32 val) 919 { 920 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL; 921 922 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 923 if (count < 0) 924 return count; 925 926 /* 927 * The FLR bit is virtualized, if set and the device supports AF 928 * FLR, issue a reset_function. Regardless, clear the bit, the spec 929 * requires it to be always read as zero. NB, reset_function might 930 * not use an AF FLR, we don't have that level of granularity. 931 */ 932 if (*ctrl & PCI_AF_CTRL_FLR) { 933 u8 cap; 934 int ret; 935 936 *ctrl &= ~PCI_AF_CTRL_FLR; 937 938 ret = pci_user_read_config_byte(vdev->pdev, 939 pos - offset + PCI_AF_CAP, 940 &cap); 941 942 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) { 943 vfio_pci_zap_and_down_write_memory_lock(vdev); 944 pci_try_reset_function(vdev->pdev); 945 up_write(&vdev->memory_lock); 946 } 947 } 948 949 return count; 950 } 951 952 /* Permissions for Advanced Function capability */ 953 static int __init init_pci_cap_af_perm(struct perm_bits *perm) 954 { 955 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF])) 956 return -ENOMEM; 957 958 perm->writefn = vfio_af_config_write; 959 960 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 961 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR); 962 return 0; 963 } 964 965 /* Permissions for Advanced Error Reporting extended capability */ 966 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm) 967 { 968 u32 mask; 969 970 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR])) 971 return -ENOMEM; 972 973 /* 974 * Virtualize the first dword of all express capabilities 975 * because it includes the next pointer. This lets us later 976 * remove capabilities from the chain if we need to. 977 */ 978 p_setd(perm, 0, ALL_VIRT, NO_WRITE); 979 980 /* Writable bits mask */ 981 mask = PCI_ERR_UNC_UND | /* Undefined */ 982 PCI_ERR_UNC_DLP | /* Data Link Protocol */ 983 PCI_ERR_UNC_SURPDN | /* Surprise Down */ 984 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */ 985 PCI_ERR_UNC_FCP | /* Flow Control Protocol */ 986 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */ 987 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */ 988 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */ 989 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */ 990 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */ 991 PCI_ERR_UNC_ECRC | /* ECRC Error Status */ 992 PCI_ERR_UNC_UNSUP | /* Unsupported Request */ 993 PCI_ERR_UNC_ACSV | /* ACS Violation */ 994 PCI_ERR_UNC_INTN | /* internal error */ 995 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */ 996 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */ 997 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */ 998 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask); 999 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask); 1000 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask); 1001 1002 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */ 1003 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */ 1004 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */ 1005 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */ 1006 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */ 1007 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */ 1008 PCI_ERR_COR_INTERNAL | /* Corrected Internal */ 1009 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */ 1010 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask); 1011 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask); 1012 1013 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */ 1014 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */ 1015 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask); 1016 return 0; 1017 } 1018 1019 /* Permissions for Power Budgeting extended capability */ 1020 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm) 1021 { 1022 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR])) 1023 return -ENOMEM; 1024 1025 p_setd(perm, 0, ALL_VIRT, NO_WRITE); 1026 1027 /* Writing the data selector is OK, the info is still read-only */ 1028 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE); 1029 return 0; 1030 } 1031 1032 /* 1033 * Initialize the shared permission tables 1034 */ 1035 void vfio_pci_uninit_perm_bits(void) 1036 { 1037 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]); 1038 1039 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]); 1040 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]); 1041 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]); 1042 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]); 1043 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]); 1044 1045 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]); 1046 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]); 1047 } 1048 1049 int __init vfio_pci_init_perm_bits(void) 1050 { 1051 int ret; 1052 1053 /* Basic config space */ 1054 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]); 1055 1056 /* Capabilities */ 1057 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]); 1058 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]); 1059 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]); 1060 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write; 1061 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]); 1062 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]); 1063 1064 /* Extended capabilities */ 1065 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]); 1066 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]); 1067 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write; 1068 1069 if (ret) 1070 vfio_pci_uninit_perm_bits(); 1071 1072 return ret; 1073 } 1074 1075 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos) 1076 { 1077 u8 cap; 1078 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE : 1079 PCI_STD_HEADER_SIZEOF; 1080 cap = vdev->pci_config_map[pos]; 1081 1082 if (cap == PCI_CAP_ID_BASIC) 1083 return 0; 1084 1085 /* XXX Can we have to abutting capabilities of the same type? */ 1086 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap) 1087 pos--; 1088 1089 return pos; 1090 } 1091 1092 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos, 1093 int count, struct perm_bits *perm, 1094 int offset, __le32 *val) 1095 { 1096 /* Update max available queue size from msi_qmax */ 1097 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { 1098 __le16 *flags; 1099 int start; 1100 1101 start = vfio_find_cap_start(vdev, pos); 1102 1103 flags = (__le16 *)&vdev->vconfig[start]; 1104 1105 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK); 1106 *flags |= cpu_to_le16(vdev->msi_qmax << 1); 1107 } 1108 1109 return vfio_default_config_read(vdev, pos, count, perm, offset, val); 1110 } 1111 1112 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos, 1113 int count, struct perm_bits *perm, 1114 int offset, __le32 val) 1115 { 1116 count = vfio_default_config_write(vdev, pos, count, perm, offset, val); 1117 if (count < 0) 1118 return count; 1119 1120 /* Fixup and write configured queue size and enable to hardware */ 1121 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) { 1122 __le16 *pflags; 1123 u16 flags; 1124 int start, ret; 1125 1126 start = vfio_find_cap_start(vdev, pos); 1127 1128 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS]; 1129 1130 flags = le16_to_cpu(*pflags); 1131 1132 /* MSI is enabled via ioctl */ 1133 if (!is_msi(vdev)) 1134 flags &= ~PCI_MSI_FLAGS_ENABLE; 1135 1136 /* Check queue size */ 1137 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) { 1138 flags &= ~PCI_MSI_FLAGS_QSIZE; 1139 flags |= vdev->msi_qmax << 4; 1140 } 1141 1142 /* Write back to virt and to hardware */ 1143 *pflags = cpu_to_le16(flags); 1144 ret = pci_user_write_config_word(vdev->pdev, 1145 start + PCI_MSI_FLAGS, 1146 flags); 1147 if (ret) 1148 return ret; 1149 } 1150 1151 return count; 1152 } 1153 1154 /* 1155 * MSI determination is per-device, so this routine gets used beyond 1156 * initialization time. Don't add __init 1157 */ 1158 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags) 1159 { 1160 if (alloc_perm_bits(perm, len)) 1161 return -ENOMEM; 1162 1163 perm->readfn = vfio_msi_config_read; 1164 perm->writefn = vfio_msi_config_write; 1165 1166 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE); 1167 1168 /* 1169 * The upper byte of the control register is reserved, 1170 * just setup the lower byte. 1171 */ 1172 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE); 1173 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE); 1174 if (flags & PCI_MSI_FLAGS_64BIT) { 1175 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE); 1176 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE); 1177 if (flags & PCI_MSI_FLAGS_MASKBIT) { 1178 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE); 1179 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE); 1180 } 1181 } else { 1182 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE); 1183 if (flags & PCI_MSI_FLAGS_MASKBIT) { 1184 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE); 1185 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE); 1186 } 1187 } 1188 return 0; 1189 } 1190 1191 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */ 1192 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos) 1193 { 1194 struct pci_dev *pdev = vdev->pdev; 1195 int len, ret; 1196 u16 flags; 1197 1198 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags); 1199 if (ret) 1200 return pcibios_err_to_errno(ret); 1201 1202 len = 10; /* Minimum size */ 1203 if (flags & PCI_MSI_FLAGS_64BIT) 1204 len += 4; 1205 if (flags & PCI_MSI_FLAGS_MASKBIT) 1206 len += 10; 1207 1208 if (vdev->msi_perm) 1209 return len; 1210 1211 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL); 1212 if (!vdev->msi_perm) 1213 return -ENOMEM; 1214 1215 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags); 1216 if (ret) { 1217 kfree(vdev->msi_perm); 1218 return ret; 1219 } 1220 1221 return len; 1222 } 1223 1224 /* Determine extended capability length for VC (2 & 9) and MFVC */ 1225 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos) 1226 { 1227 struct pci_dev *pdev = vdev->pdev; 1228 u32 tmp; 1229 int ret, evcc, phases, vc_arb; 1230 int len = PCI_CAP_VC_BASE_SIZEOF; 1231 1232 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp); 1233 if (ret) 1234 return pcibios_err_to_errno(ret); 1235 1236 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */ 1237 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp); 1238 if (ret) 1239 return pcibios_err_to_errno(ret); 1240 1241 if (tmp & PCI_VC_CAP2_128_PHASE) 1242 phases = 128; 1243 else if (tmp & PCI_VC_CAP2_64_PHASE) 1244 phases = 64; 1245 else if (tmp & PCI_VC_CAP2_32_PHASE) 1246 phases = 32; 1247 else 1248 phases = 0; 1249 1250 vc_arb = phases * 4; 1251 1252 /* 1253 * Port arbitration tables are root & switch only; 1254 * function arbitration tables are function 0 only. 1255 * In either case, we'll never let user write them so 1256 * we don't care how big they are 1257 */ 1258 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF; 1259 if (vc_arb) { 1260 len = round_up(len, 16); 1261 len += vc_arb / 8; 1262 } 1263 return len; 1264 } 1265 1266 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos) 1267 { 1268 struct pci_dev *pdev = vdev->pdev; 1269 u32 dword; 1270 u16 word; 1271 u8 byte; 1272 int ret; 1273 1274 switch (cap) { 1275 case PCI_CAP_ID_MSI: 1276 return vfio_msi_cap_len(vdev, pos); 1277 case PCI_CAP_ID_PCIX: 1278 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word); 1279 if (ret) 1280 return pcibios_err_to_errno(ret); 1281 1282 if (PCI_X_CMD_VERSION(word)) { 1283 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { 1284 /* Test for extended capabilities */ 1285 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, 1286 &dword); 1287 vdev->extended_caps = (dword != 0); 1288 } 1289 return PCI_CAP_PCIX_SIZEOF_V2; 1290 } else 1291 return PCI_CAP_PCIX_SIZEOF_V0; 1292 case PCI_CAP_ID_VNDR: 1293 /* length follows next field */ 1294 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte); 1295 if (ret) 1296 return pcibios_err_to_errno(ret); 1297 1298 return byte; 1299 case PCI_CAP_ID_EXP: 1300 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) { 1301 /* Test for extended capabilities */ 1302 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword); 1303 vdev->extended_caps = (dword != 0); 1304 } 1305 1306 /* length based on version and type */ 1307 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) { 1308 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) 1309 return 0xc; /* "All Devices" only, no link */ 1310 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1; 1311 } else { 1312 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END) 1313 return 0x2c; /* No link */ 1314 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2; 1315 } 1316 case PCI_CAP_ID_HT: 1317 ret = pci_read_config_byte(pdev, pos + 3, &byte); 1318 if (ret) 1319 return pcibios_err_to_errno(ret); 1320 1321 return (byte & HT_3BIT_CAP_MASK) ? 1322 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG; 1323 case PCI_CAP_ID_SATA: 1324 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte); 1325 if (ret) 1326 return pcibios_err_to_errno(ret); 1327 1328 byte &= PCI_SATA_REGS_MASK; 1329 if (byte == PCI_SATA_REGS_INLINE) 1330 return PCI_SATA_SIZEOF_LONG; 1331 else 1332 return PCI_SATA_SIZEOF_SHORT; 1333 default: 1334 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n", 1335 __func__, cap, pos); 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos) 1342 { 1343 struct pci_dev *pdev = vdev->pdev; 1344 u8 byte; 1345 u32 dword; 1346 int ret; 1347 1348 switch (ecap) { 1349 case PCI_EXT_CAP_ID_VNDR: 1350 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword); 1351 if (ret) 1352 return pcibios_err_to_errno(ret); 1353 1354 return dword >> PCI_VSEC_HDR_LEN_SHIFT; 1355 case PCI_EXT_CAP_ID_VC: 1356 case PCI_EXT_CAP_ID_VC9: 1357 case PCI_EXT_CAP_ID_MFVC: 1358 return vfio_vc_cap_len(vdev, epos); 1359 case PCI_EXT_CAP_ID_ACS: 1360 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte); 1361 if (ret) 1362 return pcibios_err_to_errno(ret); 1363 1364 if (byte & PCI_ACS_EC) { 1365 int bits; 1366 1367 ret = pci_read_config_byte(pdev, 1368 epos + PCI_ACS_EGRESS_BITS, 1369 &byte); 1370 if (ret) 1371 return pcibios_err_to_errno(ret); 1372 1373 bits = byte ? round_up(byte, 32) : 256; 1374 return 8 + (bits / 8); 1375 } 1376 return 8; 1377 1378 case PCI_EXT_CAP_ID_REBAR: 1379 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte); 1380 if (ret) 1381 return pcibios_err_to_errno(ret); 1382 1383 byte &= PCI_REBAR_CTRL_NBAR_MASK; 1384 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT; 1385 1386 return 4 + (byte * 8); 1387 case PCI_EXT_CAP_ID_DPA: 1388 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte); 1389 if (ret) 1390 return pcibios_err_to_errno(ret); 1391 1392 byte &= PCI_DPA_CAP_SUBSTATE_MASK; 1393 return PCI_DPA_BASE_SIZEOF + byte + 1; 1394 case PCI_EXT_CAP_ID_TPH: 1395 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword); 1396 if (ret) 1397 return pcibios_err_to_errno(ret); 1398 1399 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) { 1400 int sts; 1401 1402 sts = dword & PCI_TPH_CAP_ST_MASK; 1403 sts >>= PCI_TPH_CAP_ST_SHIFT; 1404 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2; 1405 } 1406 return PCI_TPH_BASE_SIZEOF; 1407 default: 1408 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n", 1409 __func__, ecap, epos); 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev, 1416 int offset, int size) 1417 { 1418 struct pci_dev *pdev = vdev->pdev; 1419 int ret = 0; 1420 1421 /* 1422 * We try to read physical config space in the largest chunks 1423 * we can, assuming that all of the fields support dword access. 1424 * pci_save_state() makes this same assumption and seems to do ok. 1425 */ 1426 while (size) { 1427 int filled; 1428 1429 if (size >= 4 && !(offset % 4)) { 1430 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset]; 1431 u32 dword; 1432 1433 ret = pci_read_config_dword(pdev, offset, &dword); 1434 if (ret) 1435 return ret; 1436 *dwordp = cpu_to_le32(dword); 1437 filled = 4; 1438 } else if (size >= 2 && !(offset % 2)) { 1439 __le16 *wordp = (__le16 *)&vdev->vconfig[offset]; 1440 u16 word; 1441 1442 ret = pci_read_config_word(pdev, offset, &word); 1443 if (ret) 1444 return ret; 1445 *wordp = cpu_to_le16(word); 1446 filled = 2; 1447 } else { 1448 u8 *byte = &vdev->vconfig[offset]; 1449 ret = pci_read_config_byte(pdev, offset, byte); 1450 if (ret) 1451 return ret; 1452 filled = 1; 1453 } 1454 1455 offset += filled; 1456 size -= filled; 1457 } 1458 1459 return ret; 1460 } 1461 1462 static int vfio_cap_init(struct vfio_pci_device *vdev) 1463 { 1464 struct pci_dev *pdev = vdev->pdev; 1465 u8 *map = vdev->pci_config_map; 1466 u16 status; 1467 u8 pos, *prev, cap; 1468 int loops, ret, caps = 0; 1469 1470 /* Any capabilities? */ 1471 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 1472 if (ret) 1473 return ret; 1474 1475 if (!(status & PCI_STATUS_CAP_LIST)) 1476 return 0; /* Done */ 1477 1478 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); 1479 if (ret) 1480 return ret; 1481 1482 /* Mark the previous position in case we want to skip a capability */ 1483 prev = &vdev->vconfig[PCI_CAPABILITY_LIST]; 1484 1485 /* We can bound our loop, capabilities are dword aligned */ 1486 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF; 1487 while (pos && loops--) { 1488 u8 next; 1489 int i, len = 0; 1490 1491 ret = pci_read_config_byte(pdev, pos, &cap); 1492 if (ret) 1493 return ret; 1494 1495 ret = pci_read_config_byte(pdev, 1496 pos + PCI_CAP_LIST_NEXT, &next); 1497 if (ret) 1498 return ret; 1499 1500 /* 1501 * ID 0 is a NULL capability, conflicting with our fake 1502 * PCI_CAP_ID_BASIC. As it has no content, consider it 1503 * hidden for now. 1504 */ 1505 if (cap && cap <= PCI_CAP_ID_MAX) { 1506 len = pci_cap_length[cap]; 1507 if (len == 0xFF) { /* Variable length */ 1508 len = vfio_cap_len(vdev, cap, pos); 1509 if (len < 0) 1510 return len; 1511 } 1512 } 1513 1514 if (!len) { 1515 pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__, 1516 cap, pos); 1517 *prev = next; 1518 pos = next; 1519 continue; 1520 } 1521 1522 /* Sanity check, do we overlap other capabilities? */ 1523 for (i = 0; i < len; i++) { 1524 if (likely(map[pos + i] == PCI_CAP_ID_INVALID)) 1525 continue; 1526 1527 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n", 1528 __func__, pos + i, map[pos + i], cap); 1529 } 1530 1531 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); 1532 1533 memset(map + pos, cap, len); 1534 ret = vfio_fill_vconfig_bytes(vdev, pos, len); 1535 if (ret) 1536 return ret; 1537 1538 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT]; 1539 pos = next; 1540 caps++; 1541 } 1542 1543 /* If we didn't fill any capabilities, clear the status flag */ 1544 if (!caps) { 1545 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS]; 1546 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST); 1547 } 1548 1549 return 0; 1550 } 1551 1552 static int vfio_ecap_init(struct vfio_pci_device *vdev) 1553 { 1554 struct pci_dev *pdev = vdev->pdev; 1555 u8 *map = vdev->pci_config_map; 1556 u16 epos; 1557 __le32 *prev = NULL; 1558 int loops, ret, ecaps = 0; 1559 1560 if (!vdev->extended_caps) 1561 return 0; 1562 1563 epos = PCI_CFG_SPACE_SIZE; 1564 1565 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF; 1566 1567 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) { 1568 u32 header; 1569 u16 ecap; 1570 int i, len = 0; 1571 bool hidden = false; 1572 1573 ret = pci_read_config_dword(pdev, epos, &header); 1574 if (ret) 1575 return ret; 1576 1577 ecap = PCI_EXT_CAP_ID(header); 1578 1579 if (ecap <= PCI_EXT_CAP_ID_MAX) { 1580 len = pci_ext_cap_length[ecap]; 1581 if (len == 0xFF) { 1582 len = vfio_ext_cap_len(vdev, ecap, epos); 1583 if (len < 0) 1584 return len; 1585 } 1586 } 1587 1588 if (!len) { 1589 pci_info(pdev, "%s: hiding ecap %#x@%#x\n", 1590 __func__, ecap, epos); 1591 1592 /* If not the first in the chain, we can skip over it */ 1593 if (prev) { 1594 u32 val = epos = PCI_EXT_CAP_NEXT(header); 1595 *prev &= cpu_to_le32(~(0xffcU << 20)); 1596 *prev |= cpu_to_le32(val << 20); 1597 continue; 1598 } 1599 1600 /* 1601 * Otherwise, fill in a placeholder, the direct 1602 * readfn will virtualize this automatically 1603 */ 1604 len = PCI_CAP_SIZEOF; 1605 hidden = true; 1606 } 1607 1608 for (i = 0; i < len; i++) { 1609 if (likely(map[epos + i] == PCI_CAP_ID_INVALID)) 1610 continue; 1611 1612 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n", 1613 __func__, epos + i, map[epos + i], ecap); 1614 } 1615 1616 /* 1617 * Even though ecap is 2 bytes, we're currently a long way 1618 * from exceeding 1 byte capabilities. If we ever make it 1619 * up to 0xFE we'll need to up this to a two-byte, byte map. 1620 */ 1621 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT); 1622 1623 memset(map + epos, ecap, len); 1624 ret = vfio_fill_vconfig_bytes(vdev, epos, len); 1625 if (ret) 1626 return ret; 1627 1628 /* 1629 * If we're just using this capability to anchor the list, 1630 * hide the real ID. Only count real ecaps. XXX PCI spec 1631 * indicates to use cap id = 0, version = 0, next = 0 if 1632 * ecaps are absent, hope users check all the way to next. 1633 */ 1634 if (hidden) 1635 *(__le32 *)&vdev->vconfig[epos] &= 1636 cpu_to_le32((0xffcU << 20)); 1637 else 1638 ecaps++; 1639 1640 prev = (__le32 *)&vdev->vconfig[epos]; 1641 epos = PCI_EXT_CAP_NEXT(header); 1642 } 1643 1644 if (!ecaps) 1645 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0; 1646 1647 return 0; 1648 } 1649 1650 /* 1651 * Nag about hardware bugs, hopefully to have vendors fix them, but at least 1652 * to collect a list of dependencies for the VF INTx pin quirk below. 1653 */ 1654 static const struct pci_device_id known_bogus_vf_intx_pin[] = { 1655 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) }, 1656 {} 1657 }; 1658 1659 /* 1660 * For each device we allocate a pci_config_map that indicates the 1661 * capability occupying each dword and thus the struct perm_bits we 1662 * use for read and write. We also allocate a virtualized config 1663 * space which tracks reads and writes to bits that we emulate for 1664 * the user. Initial values filled from device. 1665 * 1666 * Using shared struct perm_bits between all vfio-pci devices saves 1667 * us from allocating cfg_size buffers for virt and write for every 1668 * device. We could remove vconfig and allocate individual buffers 1669 * for each area requiring emulated bits, but the array of pointers 1670 * would be comparable in size (at least for standard config space). 1671 */ 1672 int vfio_config_init(struct vfio_pci_device *vdev) 1673 { 1674 struct pci_dev *pdev = vdev->pdev; 1675 u8 *map, *vconfig; 1676 int ret; 1677 1678 /* 1679 * Config space, caps and ecaps are all dword aligned, so we could 1680 * use one byte per dword to record the type. However, there are 1681 * no requiremenst on the length of a capability, so the gap between 1682 * capabilities needs byte granularity. 1683 */ 1684 map = kmalloc(pdev->cfg_size, GFP_KERNEL); 1685 if (!map) 1686 return -ENOMEM; 1687 1688 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL); 1689 if (!vconfig) { 1690 kfree(map); 1691 return -ENOMEM; 1692 } 1693 1694 vdev->pci_config_map = map; 1695 vdev->vconfig = vconfig; 1696 1697 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF); 1698 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID, 1699 pdev->cfg_size - PCI_STD_HEADER_SIZEOF); 1700 1701 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF); 1702 if (ret) 1703 goto out; 1704 1705 vdev->bardirty = true; 1706 1707 /* 1708 * XXX can we just pci_load_saved_state/pci_restore_state? 1709 * may need to rebuild vconfig after that 1710 */ 1711 1712 /* For restore after reset */ 1713 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]); 1714 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]); 1715 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]); 1716 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]); 1717 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]); 1718 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]); 1719 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]); 1720 1721 if (pdev->is_virtfn) { 1722 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor); 1723 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device); 1724 1725 /* 1726 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register 1727 * does not apply to VFs and VFs must implement this register 1728 * as read-only with value zero. Userspace is not readily able 1729 * to identify whether a device is a VF and thus that the pin 1730 * definition on the device is bogus should it violate this 1731 * requirement. We already virtualize the pin register for 1732 * other purposes, so we simply need to replace the bogus value 1733 * and consider VFs when we determine INTx IRQ count. 1734 */ 1735 if (vconfig[PCI_INTERRUPT_PIN] && 1736 !pci_match_id(known_bogus_vf_intx_pin, pdev)) 1737 pci_warn(pdev, 1738 "Hardware bug: VF reports bogus INTx pin %d\n", 1739 vconfig[PCI_INTERRUPT_PIN]); 1740 1741 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */ 1742 } 1743 if (pdev->no_command_memory) { 1744 /* 1745 * VFs and devices that set pdev->no_command_memory do not 1746 * implement the memory enable bit of the COMMAND register 1747 * therefore we'll not have it set in our initial copy of 1748 * config space after pci_enable_device(). For consistency 1749 * with PFs, set the virtual enable bit here. 1750 */ 1751 *(__le16 *)&vconfig[PCI_COMMAND] |= 1752 cpu_to_le16(PCI_COMMAND_MEMORY); 1753 } 1754 1755 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx) 1756 vconfig[PCI_INTERRUPT_PIN] = 0; 1757 1758 ret = vfio_cap_init(vdev); 1759 if (ret) 1760 goto out; 1761 1762 ret = vfio_ecap_init(vdev); 1763 if (ret) 1764 goto out; 1765 1766 return 0; 1767 1768 out: 1769 kfree(map); 1770 vdev->pci_config_map = NULL; 1771 kfree(vconfig); 1772 vdev->vconfig = NULL; 1773 return pcibios_err_to_errno(ret); 1774 } 1775 1776 void vfio_config_free(struct vfio_pci_device *vdev) 1777 { 1778 kfree(vdev->vconfig); 1779 vdev->vconfig = NULL; 1780 kfree(vdev->pci_config_map); 1781 vdev->pci_config_map = NULL; 1782 if (vdev->msi_perm) { 1783 free_perm_bits(vdev->msi_perm); 1784 kfree(vdev->msi_perm); 1785 vdev->msi_perm = NULL; 1786 } 1787 } 1788 1789 /* 1790 * Find the remaining number of bytes in a dword that match the given 1791 * position. Stop at either the end of the capability or the dword boundary. 1792 */ 1793 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev, 1794 loff_t pos) 1795 { 1796 u8 cap = vdev->pci_config_map[pos]; 1797 size_t i; 1798 1799 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++) 1800 /* nop */; 1801 1802 return i; 1803 } 1804 1805 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf, 1806 size_t count, loff_t *ppos, bool iswrite) 1807 { 1808 struct pci_dev *pdev = vdev->pdev; 1809 struct perm_bits *perm; 1810 __le32 val = 0; 1811 int cap_start = 0, offset; 1812 u8 cap_id; 1813 ssize_t ret; 1814 1815 if (*ppos < 0 || *ppos >= pdev->cfg_size || 1816 *ppos + count > pdev->cfg_size) 1817 return -EFAULT; 1818 1819 /* 1820 * Chop accesses into aligned chunks containing no more than a 1821 * single capability. Caller increments to the next chunk. 1822 */ 1823 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos)); 1824 if (count >= 4 && !(*ppos % 4)) 1825 count = 4; 1826 else if (count >= 2 && !(*ppos % 2)) 1827 count = 2; 1828 else 1829 count = 1; 1830 1831 ret = count; 1832 1833 cap_id = vdev->pci_config_map[*ppos]; 1834 1835 if (cap_id == PCI_CAP_ID_INVALID) { 1836 perm = &unassigned_perms; 1837 cap_start = *ppos; 1838 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) { 1839 perm = &virt_perms; 1840 cap_start = *ppos; 1841 } else { 1842 if (*ppos >= PCI_CFG_SPACE_SIZE) { 1843 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX); 1844 1845 perm = &ecap_perms[cap_id]; 1846 cap_start = vfio_find_cap_start(vdev, *ppos); 1847 } else { 1848 WARN_ON(cap_id > PCI_CAP_ID_MAX); 1849 1850 perm = &cap_perms[cap_id]; 1851 1852 if (cap_id == PCI_CAP_ID_MSI) 1853 perm = vdev->msi_perm; 1854 1855 if (cap_id > PCI_CAP_ID_BASIC) 1856 cap_start = vfio_find_cap_start(vdev, *ppos); 1857 } 1858 } 1859 1860 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC); 1861 WARN_ON(cap_start > *ppos); 1862 1863 offset = *ppos - cap_start; 1864 1865 if (iswrite) { 1866 if (!perm->writefn) 1867 return ret; 1868 1869 if (copy_from_user(&val, buf, count)) 1870 return -EFAULT; 1871 1872 ret = perm->writefn(vdev, *ppos, count, perm, offset, val); 1873 } else { 1874 if (perm->readfn) { 1875 ret = perm->readfn(vdev, *ppos, count, 1876 perm, offset, &val); 1877 if (ret < 0) 1878 return ret; 1879 } 1880 1881 if (copy_to_user(buf, &val, count)) 1882 return -EFAULT; 1883 } 1884 1885 return ret; 1886 } 1887 1888 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf, 1889 size_t count, loff_t *ppos, bool iswrite) 1890 { 1891 size_t done = 0; 1892 int ret = 0; 1893 loff_t pos = *ppos; 1894 1895 pos &= VFIO_PCI_OFFSET_MASK; 1896 1897 while (count) { 1898 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite); 1899 if (ret < 0) 1900 return ret; 1901 1902 count -= ret; 1903 done += ret; 1904 buf += ret; 1905 pos += ret; 1906 } 1907 1908 *ppos += done; 1909 1910 return done; 1911 } 1912