xref: /linux/drivers/vfio/pci/vfio_pci_config.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * VFIO PCI config space virtualization
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  */
15 
16 /*
17  * This code handles reading and writing of PCI configuration registers.
18  * This is hairy because we want to allow a lot of flexibility to the
19  * user driver, but cannot trust it with all of the config fields.
20  * Tables determine which fields can be read and written, as well as
21  * which fields are 'virtualized' - special actions and translations to
22  * make it appear to the user that he has control, when in fact things
23  * must be negotiated with the underlying OS.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
31 
32 #include "vfio_pci_private.h"
33 
34 #define PCI_CFG_SPACE_SIZE	256
35 
36 /* Fake capability ID for standard config space */
37 #define PCI_CAP_ID_BASIC	0
38 
39 #define is_bar(offset)	\
40 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
42 
43 /*
44  * Lengths of PCI Config Capabilities
45  *   0: Removed from the user visible capability list
46  *   FF: Variable length
47  */
48 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
49 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
50 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
51 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
52 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
53 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
54 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
55 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
56 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
57 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
58 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
59 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
60 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
61 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
62 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
63 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
64 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
65 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
66 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
67 	[PCI_CAP_ID_SATA]	= 0xFF,
68 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
69 };
70 
71 /*
72  * Lengths of PCIe/PCI-X Extended Config Capabilities
73  *   0: Removed or masked from the user visible capabilty list
74  *   FF: Variable length
75  */
76 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
77 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
78 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
79 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
80 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
81 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
83 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
84 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
85 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
86 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
87 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
88 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
89 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
90 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
91 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
92 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
93 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
94 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
95 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
96 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
97 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
98 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
99 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
100 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
101 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
102 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
103 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
104 };
105 
106 /*
107  * Read/Write Permission Bits - one bit for each bit in capability
108  * Any field can be read if it exists, but what is read depends on
109  * whether the field is 'virtualized', or just pass thru to the
110  * hardware.  Any virtualized field is also virtualized for writes.
111  * Writes are only permitted if they have a 1 bit here.
112  */
113 struct perm_bits {
114 	u8	*virt;		/* read/write virtual data, not hw */
115 	u8	*write;		/* writeable bits */
116 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
117 			  struct perm_bits *perm, int offset, __le32 *val);
118 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
119 			   struct perm_bits *perm, int offset, __le32 val);
120 };
121 
122 #define	NO_VIRT		0
123 #define	ALL_VIRT	0xFFFFFFFFU
124 #define	NO_WRITE	0
125 #define	ALL_WRITE	0xFFFFFFFFU
126 
127 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
128 				 __le32 *val, int count)
129 {
130 	int ret = -EINVAL;
131 	u32 tmp_val = 0;
132 
133 	switch (count) {
134 	case 1:
135 	{
136 		u8 tmp;
137 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
138 		tmp_val = tmp;
139 		break;
140 	}
141 	case 2:
142 	{
143 		u16 tmp;
144 		ret = pci_user_read_config_word(pdev, offset, &tmp);
145 		tmp_val = tmp;
146 		break;
147 	}
148 	case 4:
149 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
150 		break;
151 	}
152 
153 	*val = cpu_to_le32(tmp_val);
154 
155 	return pcibios_err_to_errno(ret);
156 }
157 
158 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
159 				  __le32 val, int count)
160 {
161 	int ret = -EINVAL;
162 	u32 tmp_val = le32_to_cpu(val);
163 
164 	switch (count) {
165 	case 1:
166 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
167 		break;
168 	case 2:
169 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
170 		break;
171 	case 4:
172 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
173 		break;
174 	}
175 
176 	return pcibios_err_to_errno(ret);
177 }
178 
179 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
180 				    int count, struct perm_bits *perm,
181 				    int offset, __le32 *val)
182 {
183 	__le32 virt = 0;
184 
185 	memcpy(val, vdev->vconfig + pos, count);
186 
187 	memcpy(&virt, perm->virt + offset, count);
188 
189 	/* Any non-virtualized bits? */
190 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
191 		struct pci_dev *pdev = vdev->pdev;
192 		__le32 phys_val = 0;
193 		int ret;
194 
195 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
196 		if (ret)
197 			return ret;
198 
199 		*val = (phys_val & ~virt) | (*val & virt);
200 	}
201 
202 	return count;
203 }
204 
205 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
206 				     int count, struct perm_bits *perm,
207 				     int offset, __le32 val)
208 {
209 	__le32 virt = 0, write = 0;
210 
211 	memcpy(&write, perm->write + offset, count);
212 
213 	if (!write)
214 		return count; /* drop, no writable bits */
215 
216 	memcpy(&virt, perm->virt + offset, count);
217 
218 	/* Virtualized and writable bits go to vconfig */
219 	if (write & virt) {
220 		__le32 virt_val = 0;
221 
222 		memcpy(&virt_val, vdev->vconfig + pos, count);
223 
224 		virt_val &= ~(write & virt);
225 		virt_val |= (val & (write & virt));
226 
227 		memcpy(vdev->vconfig + pos, &virt_val, count);
228 	}
229 
230 	/* Non-virtualzed and writable bits go to hardware */
231 	if (write & ~virt) {
232 		struct pci_dev *pdev = vdev->pdev;
233 		__le32 phys_val = 0;
234 		int ret;
235 
236 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
237 		if (ret)
238 			return ret;
239 
240 		phys_val &= ~(write & ~virt);
241 		phys_val |= (val & (write & ~virt));
242 
243 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
244 		if (ret)
245 			return ret;
246 	}
247 
248 	return count;
249 }
250 
251 /* Allow direct read from hardware, except for capability next pointer */
252 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
253 				   int count, struct perm_bits *perm,
254 				   int offset, __le32 *val)
255 {
256 	int ret;
257 
258 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
259 	if (ret)
260 		return pcibios_err_to_errno(ret);
261 
262 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
263 		if (offset < 4)
264 			memcpy(val, vdev->vconfig + pos, count);
265 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
266 		if (offset == PCI_CAP_LIST_ID && count > 1)
267 			memcpy(val, vdev->vconfig + pos,
268 			       min(PCI_CAP_FLAGS, count));
269 		else if (offset == PCI_CAP_LIST_NEXT)
270 			memcpy(val, vdev->vconfig + pos, 1);
271 	}
272 
273 	return count;
274 }
275 
276 /* Raw access skips any kind of virtualization */
277 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
278 				 int count, struct perm_bits *perm,
279 				 int offset, __le32 val)
280 {
281 	int ret;
282 
283 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
284 	if (ret)
285 		return ret;
286 
287 	return count;
288 }
289 
290 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
291 				int count, struct perm_bits *perm,
292 				int offset, __le32 *val)
293 {
294 	int ret;
295 
296 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
297 	if (ret)
298 		return pcibios_err_to_errno(ret);
299 
300 	return count;
301 }
302 
303 /* Virt access uses only virtualization */
304 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
305 				  int count, struct perm_bits *perm,
306 				  int offset, __le32 val)
307 {
308 	memcpy(vdev->vconfig + pos, &val, count);
309 	return count;
310 }
311 
312 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
313 				 int count, struct perm_bits *perm,
314 				 int offset, __le32 *val)
315 {
316 	memcpy(val, vdev->vconfig + pos, count);
317 	return count;
318 }
319 
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
323 };
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
326 };
327 /*
328  * Default unassigned regions to raw read-write access.  Some devices
329  * require this to function as they hide registers between the gaps in
330  * config space (be2net).  Like MMIO and I/O port registers, we have
331  * to trust the hardware isolation.
332  */
333 static struct perm_bits unassigned_perms = {
334 	.readfn = vfio_raw_config_read,
335 	.writefn = vfio_raw_config_write
336 };
337 
338 static struct perm_bits virt_perms = {
339 	.readfn = vfio_virt_config_read,
340 	.writefn = vfio_virt_config_write
341 };
342 
343 static void free_perm_bits(struct perm_bits *perm)
344 {
345 	kfree(perm->virt);
346 	kfree(perm->write);
347 	perm->virt = NULL;
348 	perm->write = NULL;
349 }
350 
351 static int alloc_perm_bits(struct perm_bits *perm, int size)
352 {
353 	/*
354 	 * Round up all permission bits to the next dword, this lets us
355 	 * ignore whether a read/write exceeds the defined capability
356 	 * structure.  We can do this because:
357 	 *  - Standard config space is already dword aligned
358 	 *  - Capabilities are all dword alinged (bits 0:1 of next reserved)
359 	 *  - Express capabilities defined as dword aligned
360 	 */
361 	size = round_up(size, 4);
362 
363 	/*
364 	 * Zero state is
365 	 * - All Readable, None Writeable, None Virtualized
366 	 */
367 	perm->virt = kzalloc(size, GFP_KERNEL);
368 	perm->write = kzalloc(size, GFP_KERNEL);
369 	if (!perm->virt || !perm->write) {
370 		free_perm_bits(perm);
371 		return -ENOMEM;
372 	}
373 
374 	perm->readfn = vfio_default_config_read;
375 	perm->writefn = vfio_default_config_write;
376 
377 	return 0;
378 }
379 
380 /*
381  * Helper functions for filling in permission tables
382  */
383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
384 {
385 	p->virt[off] = virt;
386 	p->write[off] = write;
387 }
388 
389 /* Handle endian-ness - pci and tables are little-endian */
390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
391 {
392 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
394 }
395 
396 /* Handle endian-ness - pci and tables are little-endian */
397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
398 {
399 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
401 }
402 
403 /*
404  * Restore the *real* BARs after we detect a FLR or backdoor reset.
405  * (backdoor = some device specific technique that we didn't catch)
406  */
407 static void vfio_bar_restore(struct vfio_pci_device *vdev)
408 {
409 	struct pci_dev *pdev = vdev->pdev;
410 	u32 *rbar = vdev->rbar;
411 	u16 cmd;
412 	int i;
413 
414 	if (pdev->is_virtfn)
415 		return;
416 
417 	pr_info("%s: %s reset recovery - restoring bars\n",
418 		__func__, dev_name(&pdev->dev));
419 
420 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
421 		pci_user_write_config_dword(pdev, i, *rbar);
422 
423 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
424 
425 	if (vdev->nointx) {
426 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
427 		cmd |= PCI_COMMAND_INTX_DISABLE;
428 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
429 	}
430 }
431 
432 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
433 {
434 	unsigned long flags = pci_resource_flags(pdev, bar);
435 	u32 val;
436 
437 	if (flags & IORESOURCE_IO)
438 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
439 
440 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
441 
442 	if (flags & IORESOURCE_PREFETCH)
443 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
444 
445 	if (flags & IORESOURCE_MEM_64)
446 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
447 
448 	return cpu_to_le32(val);
449 }
450 
451 /*
452  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
453  * to reflect the hardware capabilities.  This implements BAR sizing.
454  */
455 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
456 {
457 	struct pci_dev *pdev = vdev->pdev;
458 	int i;
459 	__le32 *bar;
460 	u64 mask;
461 
462 	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
463 
464 	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
465 		if (!pci_resource_start(pdev, i)) {
466 			*bar = 0; /* Unmapped by host = unimplemented to user */
467 			continue;
468 		}
469 
470 		mask = ~(pci_resource_len(pdev, i) - 1);
471 
472 		*bar &= cpu_to_le32((u32)mask);
473 		*bar |= vfio_generate_bar_flags(pdev, i);
474 
475 		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
476 			bar++;
477 			*bar &= cpu_to_le32((u32)(mask >> 32));
478 			i++;
479 		}
480 	}
481 
482 	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
483 
484 	/*
485 	 * NB. REGION_INFO will have reported zero size if we weren't able
486 	 * to read the ROM, but we still return the actual BAR size here if
487 	 * it exists (or the shadow ROM space).
488 	 */
489 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
490 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
491 		mask |= PCI_ROM_ADDRESS_ENABLE;
492 		*bar &= cpu_to_le32((u32)mask);
493 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
494 					IORESOURCE_ROM_SHADOW) {
495 		mask = ~(0x20000 - 1);
496 		mask |= PCI_ROM_ADDRESS_ENABLE;
497 		*bar &= cpu_to_le32((u32)mask);
498 	} else
499 		*bar = 0;
500 
501 	vdev->bardirty = false;
502 }
503 
504 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
505 				  int count, struct perm_bits *perm,
506 				  int offset, __le32 *val)
507 {
508 	if (is_bar(offset)) /* pos == offset for basic config */
509 		vfio_bar_fixup(vdev);
510 
511 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
512 
513 	/* Mask in virtual memory enable for SR-IOV devices */
514 	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
515 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
516 		u32 tmp_val = le32_to_cpu(*val);
517 
518 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
519 		*val = cpu_to_le32(tmp_val);
520 	}
521 
522 	return count;
523 }
524 
525 /* Test whether BARs match the value we think they should contain */
526 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
527 {
528 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
529 	u32 bar;
530 
531 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
532 		if (vdev->rbar[i]) {
533 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
534 			if (ret || vdev->rbar[i] != bar)
535 				return true;
536 		}
537 	}
538 
539 	return false;
540 }
541 
542 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
543 				   int count, struct perm_bits *perm,
544 				   int offset, __le32 val)
545 {
546 	struct pci_dev *pdev = vdev->pdev;
547 	__le16 *virt_cmd;
548 	u16 new_cmd = 0;
549 	int ret;
550 
551 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
552 
553 	if (offset == PCI_COMMAND) {
554 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
555 		u16 phys_cmd;
556 
557 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
558 		if (ret)
559 			return ret;
560 
561 		new_cmd = le32_to_cpu(val);
562 
563 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
564 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
565 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
566 
567 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
568 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
569 		new_io = !!(new_cmd & PCI_COMMAND_IO);
570 
571 		/*
572 		 * If the user is writing mem/io enable (new_mem/io) and we
573 		 * think it's already enabled (virt_mem/io), but the hardware
574 		 * shows it disabled (phys_mem/io, then the device has
575 		 * undergone some kind of backdoor reset and needs to be
576 		 * restored before we allow it to enable the bars.
577 		 * SR-IOV devices will trigger this, but we catch them later
578 		 */
579 		if ((new_mem && virt_mem && !phys_mem) ||
580 		    (new_io && virt_io && !phys_io) ||
581 		    vfio_need_bar_restore(vdev))
582 			vfio_bar_restore(vdev);
583 	}
584 
585 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
586 	if (count < 0)
587 		return count;
588 
589 	/*
590 	 * Save current memory/io enable bits in vconfig to allow for
591 	 * the test above next time.
592 	 */
593 	if (offset == PCI_COMMAND) {
594 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
595 
596 		*virt_cmd &= cpu_to_le16(~mask);
597 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
598 	}
599 
600 	/* Emulate INTx disable */
601 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
602 		bool virt_intx_disable;
603 
604 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
605 				       PCI_COMMAND_INTX_DISABLE);
606 
607 		if (virt_intx_disable && !vdev->virq_disabled) {
608 			vdev->virq_disabled = true;
609 			vfio_pci_intx_mask(vdev);
610 		} else if (!virt_intx_disable && vdev->virq_disabled) {
611 			vdev->virq_disabled = false;
612 			vfio_pci_intx_unmask(vdev);
613 		}
614 	}
615 
616 	if (is_bar(offset))
617 		vdev->bardirty = true;
618 
619 	return count;
620 }
621 
622 /* Permissions for the Basic PCI Header */
623 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
624 {
625 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
626 		return -ENOMEM;
627 
628 	perm->readfn = vfio_basic_config_read;
629 	perm->writefn = vfio_basic_config_write;
630 
631 	/* Virtualized for SR-IOV functions, which just have FFFF */
632 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
633 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
634 
635 	/*
636 	 * Virtualize INTx disable, we use it internally for interrupt
637 	 * control and can emulate it for non-PCI 2.3 devices.
638 	 */
639 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
640 
641 	/* Virtualize capability list, we might want to skip/disable */
642 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
643 
644 	/* No harm to write */
645 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
646 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
647 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
648 
649 	/* Virtualize all bars, can't touch the real ones */
650 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
651 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
652 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
653 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
654 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
655 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
656 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
657 
658 	/* Allow us to adjust capability chain */
659 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
660 
661 	/* Sometimes used by sw, just virtualize */
662 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
663 
664 	/* Virtualize interrupt pin to allow hiding INTx */
665 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
666 
667 	return 0;
668 }
669 
670 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
671 				int count, struct perm_bits *perm,
672 				int offset, __le32 val)
673 {
674 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
675 	if (count < 0)
676 		return count;
677 
678 	if (offset == PCI_PM_CTRL) {
679 		pci_power_t state;
680 
681 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
682 		case 0:
683 			state = PCI_D0;
684 			break;
685 		case 1:
686 			state = PCI_D1;
687 			break;
688 		case 2:
689 			state = PCI_D2;
690 			break;
691 		case 3:
692 			state = PCI_D3hot;
693 			break;
694 		}
695 
696 		pci_set_power_state(vdev->pdev, state);
697 	}
698 
699 	return count;
700 }
701 
702 /* Permissions for the Power Management capability */
703 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
704 {
705 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
706 		return -ENOMEM;
707 
708 	perm->writefn = vfio_pm_config_write;
709 
710 	/*
711 	 * We always virtualize the next field so we can remove
712 	 * capabilities from the chain if we want to.
713 	 */
714 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
715 
716 	/*
717 	 * Power management is defined *per function*, so we can let
718 	 * the user change power state, but we trap and initiate the
719 	 * change ourselves, so the state bits are read-only.
720 	 */
721 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
722 	return 0;
723 }
724 
725 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
726 				 int count, struct perm_bits *perm,
727 				 int offset, __le32 val)
728 {
729 	struct pci_dev *pdev = vdev->pdev;
730 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
731 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
732 	u16 addr;
733 	u32 data;
734 
735 	/*
736 	 * Write through to emulation.  If the write includes the upper byte
737 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
738 	 * have work to do.
739 	 */
740 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
741 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
742 	    offset + count <= PCI_VPD_ADDR + 1)
743 		return count;
744 
745 	addr = le16_to_cpu(*paddr);
746 
747 	if (addr & PCI_VPD_ADDR_F) {
748 		data = le32_to_cpu(*pdata);
749 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
750 			return count;
751 	} else {
752 		data = 0;
753 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
754 			return count;
755 		*pdata = cpu_to_le32(data);
756 	}
757 
758 	/*
759 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
760 	 * signal completion.  If an error occurs above, we assume that not
761 	 * toggling this bit will induce a driver timeout.
762 	 */
763 	addr ^= PCI_VPD_ADDR_F;
764 	*paddr = cpu_to_le16(addr);
765 
766 	return count;
767 }
768 
769 /* Permissions for Vital Product Data capability */
770 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
771 {
772 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
773 		return -ENOMEM;
774 
775 	perm->writefn = vfio_vpd_config_write;
776 
777 	/*
778 	 * We always virtualize the next field so we can remove
779 	 * capabilities from the chain if we want to.
780 	 */
781 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
782 
783 	/*
784 	 * Both the address and data registers are virtualized to
785 	 * enable access through the pci_vpd_read/write functions
786 	 */
787 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
788 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
789 
790 	return 0;
791 }
792 
793 /* Permissions for PCI-X capability */
794 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
795 {
796 	/* Alloc 24, but only 8 are used in v0 */
797 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
798 		return -ENOMEM;
799 
800 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
801 
802 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
803 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
804 	return 0;
805 }
806 
807 /* Permissions for PCI Express capability */
808 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
809 {
810 	/* Alloc larger of two possible sizes */
811 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
812 		return -ENOMEM;
813 
814 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
815 
816 	/*
817 	 * Allow writes to device control fields (includes FLR!)
818 	 * but not to devctl_phantom which could confuse IOMMU
819 	 * or to the ARI bit in devctl2 which is set at probe time
820 	 */
821 	p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
822 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
823 	return 0;
824 }
825 
826 /* Permissions for Advanced Function capability */
827 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
828 {
829 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
830 		return -ENOMEM;
831 
832 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
833 	p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
834 	return 0;
835 }
836 
837 /* Permissions for Advanced Error Reporting extended capability */
838 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
839 {
840 	u32 mask;
841 
842 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
843 		return -ENOMEM;
844 
845 	/*
846 	 * Virtualize the first dword of all express capabilities
847 	 * because it includes the next pointer.  This lets us later
848 	 * remove capabilities from the chain if we need to.
849 	 */
850 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
851 
852 	/* Writable bits mask */
853 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
854 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
855 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
856 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
857 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
858 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
859 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
860 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
861 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
862 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
863 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
864 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
865 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
866 		PCI_ERR_UNC_INTN |		/* internal error */
867 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
868 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
869 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
870 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
871 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
872 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
873 
874 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
875 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
876 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
877 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
878 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
879 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
880 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
881 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
882 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
883 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
884 
885 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
886 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
887 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
888 	return 0;
889 }
890 
891 /* Permissions for Power Budgeting extended capability */
892 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
893 {
894 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
895 		return -ENOMEM;
896 
897 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
898 
899 	/* Writing the data selector is OK, the info is still read-only */
900 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
901 	return 0;
902 }
903 
904 /*
905  * Initialize the shared permission tables
906  */
907 void vfio_pci_uninit_perm_bits(void)
908 {
909 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
910 
911 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
912 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
913 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
914 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
915 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
916 
917 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
918 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
919 }
920 
921 int __init vfio_pci_init_perm_bits(void)
922 {
923 	int ret;
924 
925 	/* Basic config space */
926 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
927 
928 	/* Capabilities */
929 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
930 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
931 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
932 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
933 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
934 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
935 
936 	/* Extended capabilities */
937 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
938 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
939 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
940 
941 	if (ret)
942 		vfio_pci_uninit_perm_bits();
943 
944 	return ret;
945 }
946 
947 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
948 {
949 	u8 cap;
950 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
951 						 PCI_STD_HEADER_SIZEOF;
952 	cap = vdev->pci_config_map[pos];
953 
954 	if (cap == PCI_CAP_ID_BASIC)
955 		return 0;
956 
957 	/* XXX Can we have to abutting capabilities of the same type? */
958 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
959 		pos--;
960 
961 	return pos;
962 }
963 
964 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
965 				int count, struct perm_bits *perm,
966 				int offset, __le32 *val)
967 {
968 	/* Update max available queue size from msi_qmax */
969 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
970 		__le16 *flags;
971 		int start;
972 
973 		start = vfio_find_cap_start(vdev, pos);
974 
975 		flags = (__le16 *)&vdev->vconfig[start];
976 
977 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
978 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
979 	}
980 
981 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
982 }
983 
984 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
985 				 int count, struct perm_bits *perm,
986 				 int offset, __le32 val)
987 {
988 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
989 	if (count < 0)
990 		return count;
991 
992 	/* Fixup and write configured queue size and enable to hardware */
993 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
994 		__le16 *pflags;
995 		u16 flags;
996 		int start, ret;
997 
998 		start = vfio_find_cap_start(vdev, pos);
999 
1000 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1001 
1002 		flags = le16_to_cpu(*pflags);
1003 
1004 		/* MSI is enabled via ioctl */
1005 		if  (!is_msi(vdev))
1006 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1007 
1008 		/* Check queue size */
1009 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1010 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1011 			flags |= vdev->msi_qmax << 4;
1012 		}
1013 
1014 		/* Write back to virt and to hardware */
1015 		*pflags = cpu_to_le16(flags);
1016 		ret = pci_user_write_config_word(vdev->pdev,
1017 						 start + PCI_MSI_FLAGS,
1018 						 flags);
1019 		if (ret)
1020 			return pcibios_err_to_errno(ret);
1021 	}
1022 
1023 	return count;
1024 }
1025 
1026 /*
1027  * MSI determination is per-device, so this routine gets used beyond
1028  * initialization time. Don't add __init
1029  */
1030 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1031 {
1032 	if (alloc_perm_bits(perm, len))
1033 		return -ENOMEM;
1034 
1035 	perm->readfn = vfio_msi_config_read;
1036 	perm->writefn = vfio_msi_config_write;
1037 
1038 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1039 
1040 	/*
1041 	 * The upper byte of the control register is reserved,
1042 	 * just setup the lower byte.
1043 	 */
1044 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1045 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1046 	if (flags & PCI_MSI_FLAGS_64BIT) {
1047 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1048 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1049 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1050 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1051 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1052 		}
1053 	} else {
1054 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1055 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1056 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1057 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1058 		}
1059 	}
1060 	return 0;
1061 }
1062 
1063 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1064 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1065 {
1066 	struct pci_dev *pdev = vdev->pdev;
1067 	int len, ret;
1068 	u16 flags;
1069 
1070 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1071 	if (ret)
1072 		return pcibios_err_to_errno(ret);
1073 
1074 	len = 10; /* Minimum size */
1075 	if (flags & PCI_MSI_FLAGS_64BIT)
1076 		len += 4;
1077 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1078 		len += 10;
1079 
1080 	if (vdev->msi_perm)
1081 		return len;
1082 
1083 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1084 	if (!vdev->msi_perm)
1085 		return -ENOMEM;
1086 
1087 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1088 	if (ret)
1089 		return ret;
1090 
1091 	return len;
1092 }
1093 
1094 /* Determine extended capability length for VC (2 & 9) and MFVC */
1095 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1096 {
1097 	struct pci_dev *pdev = vdev->pdev;
1098 	u32 tmp;
1099 	int ret, evcc, phases, vc_arb;
1100 	int len = PCI_CAP_VC_BASE_SIZEOF;
1101 
1102 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1103 	if (ret)
1104 		return pcibios_err_to_errno(ret);
1105 
1106 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1107 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1108 	if (ret)
1109 		return pcibios_err_to_errno(ret);
1110 
1111 	if (tmp & PCI_VC_CAP2_128_PHASE)
1112 		phases = 128;
1113 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1114 		phases = 64;
1115 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1116 		phases = 32;
1117 	else
1118 		phases = 0;
1119 
1120 	vc_arb = phases * 4;
1121 
1122 	/*
1123 	 * Port arbitration tables are root & switch only;
1124 	 * function arbitration tables are function 0 only.
1125 	 * In either case, we'll never let user write them so
1126 	 * we don't care how big they are
1127 	 */
1128 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1129 	if (vc_arb) {
1130 		len = round_up(len, 16);
1131 		len += vc_arb / 8;
1132 	}
1133 	return len;
1134 }
1135 
1136 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1137 {
1138 	struct pci_dev *pdev = vdev->pdev;
1139 	u32 dword;
1140 	u16 word;
1141 	u8 byte;
1142 	int ret;
1143 
1144 	switch (cap) {
1145 	case PCI_CAP_ID_MSI:
1146 		return vfio_msi_cap_len(vdev, pos);
1147 	case PCI_CAP_ID_PCIX:
1148 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1149 		if (ret)
1150 			return pcibios_err_to_errno(ret);
1151 
1152 		if (PCI_X_CMD_VERSION(word)) {
1153 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1154 				/* Test for extended capabilities */
1155 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1156 						      &dword);
1157 				vdev->extended_caps = (dword != 0);
1158 			}
1159 			return PCI_CAP_PCIX_SIZEOF_V2;
1160 		} else
1161 			return PCI_CAP_PCIX_SIZEOF_V0;
1162 	case PCI_CAP_ID_VNDR:
1163 		/* length follows next field */
1164 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1165 		if (ret)
1166 			return pcibios_err_to_errno(ret);
1167 
1168 		return byte;
1169 	case PCI_CAP_ID_EXP:
1170 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1171 			/* Test for extended capabilities */
1172 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1173 			vdev->extended_caps = (dword != 0);
1174 		}
1175 
1176 		/* length based on version */
1177 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1178 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1179 		else
1180 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1181 	case PCI_CAP_ID_HT:
1182 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1183 		if (ret)
1184 			return pcibios_err_to_errno(ret);
1185 
1186 		return (byte & HT_3BIT_CAP_MASK) ?
1187 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1188 	case PCI_CAP_ID_SATA:
1189 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1190 		if (ret)
1191 			return pcibios_err_to_errno(ret);
1192 
1193 		byte &= PCI_SATA_REGS_MASK;
1194 		if (byte == PCI_SATA_REGS_INLINE)
1195 			return PCI_SATA_SIZEOF_LONG;
1196 		else
1197 			return PCI_SATA_SIZEOF_SHORT;
1198 	default:
1199 		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1200 			dev_name(&pdev->dev), __func__, cap, pos);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1207 {
1208 	struct pci_dev *pdev = vdev->pdev;
1209 	u8 byte;
1210 	u32 dword;
1211 	int ret;
1212 
1213 	switch (ecap) {
1214 	case PCI_EXT_CAP_ID_VNDR:
1215 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1216 		if (ret)
1217 			return pcibios_err_to_errno(ret);
1218 
1219 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1220 	case PCI_EXT_CAP_ID_VC:
1221 	case PCI_EXT_CAP_ID_VC9:
1222 	case PCI_EXT_CAP_ID_MFVC:
1223 		return vfio_vc_cap_len(vdev, epos);
1224 	case PCI_EXT_CAP_ID_ACS:
1225 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1226 		if (ret)
1227 			return pcibios_err_to_errno(ret);
1228 
1229 		if (byte & PCI_ACS_EC) {
1230 			int bits;
1231 
1232 			ret = pci_read_config_byte(pdev,
1233 						   epos + PCI_ACS_EGRESS_BITS,
1234 						   &byte);
1235 			if (ret)
1236 				return pcibios_err_to_errno(ret);
1237 
1238 			bits = byte ? round_up(byte, 32) : 256;
1239 			return 8 + (bits / 8);
1240 		}
1241 		return 8;
1242 
1243 	case PCI_EXT_CAP_ID_REBAR:
1244 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1245 		if (ret)
1246 			return pcibios_err_to_errno(ret);
1247 
1248 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1249 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1250 
1251 		return 4 + (byte * 8);
1252 	case PCI_EXT_CAP_ID_DPA:
1253 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1254 		if (ret)
1255 			return pcibios_err_to_errno(ret);
1256 
1257 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1258 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1259 	case PCI_EXT_CAP_ID_TPH:
1260 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1261 		if (ret)
1262 			return pcibios_err_to_errno(ret);
1263 
1264 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1265 			int sts;
1266 
1267 			sts = dword & PCI_TPH_CAP_ST_MASK;
1268 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1269 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1270 		}
1271 		return PCI_TPH_BASE_SIZEOF;
1272 	default:
1273 		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1274 			dev_name(&pdev->dev), __func__, ecap, epos);
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1281 				   int offset, int size)
1282 {
1283 	struct pci_dev *pdev = vdev->pdev;
1284 	int ret = 0;
1285 
1286 	/*
1287 	 * We try to read physical config space in the largest chunks
1288 	 * we can, assuming that all of the fields support dword access.
1289 	 * pci_save_state() makes this same assumption and seems to do ok.
1290 	 */
1291 	while (size) {
1292 		int filled;
1293 
1294 		if (size >= 4 && !(offset % 4)) {
1295 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1296 			u32 dword;
1297 
1298 			ret = pci_read_config_dword(pdev, offset, &dword);
1299 			if (ret)
1300 				return ret;
1301 			*dwordp = cpu_to_le32(dword);
1302 			filled = 4;
1303 		} else if (size >= 2 && !(offset % 2)) {
1304 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1305 			u16 word;
1306 
1307 			ret = pci_read_config_word(pdev, offset, &word);
1308 			if (ret)
1309 				return ret;
1310 			*wordp = cpu_to_le16(word);
1311 			filled = 2;
1312 		} else {
1313 			u8 *byte = &vdev->vconfig[offset];
1314 			ret = pci_read_config_byte(pdev, offset, byte);
1315 			if (ret)
1316 				return ret;
1317 			filled = 1;
1318 		}
1319 
1320 		offset += filled;
1321 		size -= filled;
1322 	}
1323 
1324 	return ret;
1325 }
1326 
1327 static int vfio_cap_init(struct vfio_pci_device *vdev)
1328 {
1329 	struct pci_dev *pdev = vdev->pdev;
1330 	u8 *map = vdev->pci_config_map;
1331 	u16 status;
1332 	u8 pos, *prev, cap;
1333 	int loops, ret, caps = 0;
1334 
1335 	/* Any capabilities? */
1336 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1337 	if (ret)
1338 		return ret;
1339 
1340 	if (!(status & PCI_STATUS_CAP_LIST))
1341 		return 0; /* Done */
1342 
1343 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1344 	if (ret)
1345 		return ret;
1346 
1347 	/* Mark the previous position in case we want to skip a capability */
1348 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1349 
1350 	/* We can bound our loop, capabilities are dword aligned */
1351 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1352 	while (pos && loops--) {
1353 		u8 next;
1354 		int i, len = 0;
1355 
1356 		ret = pci_read_config_byte(pdev, pos, &cap);
1357 		if (ret)
1358 			return ret;
1359 
1360 		ret = pci_read_config_byte(pdev,
1361 					   pos + PCI_CAP_LIST_NEXT, &next);
1362 		if (ret)
1363 			return ret;
1364 
1365 		if (cap <= PCI_CAP_ID_MAX) {
1366 			len = pci_cap_length[cap];
1367 			if (len == 0xFF) { /* Variable length */
1368 				len = vfio_cap_len(vdev, cap, pos);
1369 				if (len < 0)
1370 					return len;
1371 			}
1372 		}
1373 
1374 		if (!len) {
1375 			pr_info("%s: %s hiding cap 0x%x\n",
1376 				__func__, dev_name(&pdev->dev), cap);
1377 			*prev = next;
1378 			pos = next;
1379 			continue;
1380 		}
1381 
1382 		/* Sanity check, do we overlap other capabilities? */
1383 		for (i = 0; i < len; i++) {
1384 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1385 				continue;
1386 
1387 			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1388 				__func__, dev_name(&pdev->dev),
1389 				pos + i, map[pos + i], cap);
1390 		}
1391 
1392 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1393 
1394 		memset(map + pos, cap, len);
1395 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1396 		if (ret)
1397 			return ret;
1398 
1399 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1400 		pos = next;
1401 		caps++;
1402 	}
1403 
1404 	/* If we didn't fill any capabilities, clear the status flag */
1405 	if (!caps) {
1406 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1407 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1414 {
1415 	struct pci_dev *pdev = vdev->pdev;
1416 	u8 *map = vdev->pci_config_map;
1417 	u16 epos;
1418 	__le32 *prev = NULL;
1419 	int loops, ret, ecaps = 0;
1420 
1421 	if (!vdev->extended_caps)
1422 		return 0;
1423 
1424 	epos = PCI_CFG_SPACE_SIZE;
1425 
1426 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1427 
1428 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1429 		u32 header;
1430 		u16 ecap;
1431 		int i, len = 0;
1432 		bool hidden = false;
1433 
1434 		ret = pci_read_config_dword(pdev, epos, &header);
1435 		if (ret)
1436 			return ret;
1437 
1438 		ecap = PCI_EXT_CAP_ID(header);
1439 
1440 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1441 			len = pci_ext_cap_length[ecap];
1442 			if (len == 0xFF) {
1443 				len = vfio_ext_cap_len(vdev, ecap, epos);
1444 				if (len < 0)
1445 					return ret;
1446 			}
1447 		}
1448 
1449 		if (!len) {
1450 			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1451 				__func__, dev_name(&pdev->dev), ecap, epos);
1452 
1453 			/* If not the first in the chain, we can skip over it */
1454 			if (prev) {
1455 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1456 				*prev &= cpu_to_le32(~(0xffcU << 20));
1457 				*prev |= cpu_to_le32(val << 20);
1458 				continue;
1459 			}
1460 
1461 			/*
1462 			 * Otherwise, fill in a placeholder, the direct
1463 			 * readfn will virtualize this automatically
1464 			 */
1465 			len = PCI_CAP_SIZEOF;
1466 			hidden = true;
1467 		}
1468 
1469 		for (i = 0; i < len; i++) {
1470 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1471 				continue;
1472 
1473 			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1474 				__func__, dev_name(&pdev->dev),
1475 				epos + i, map[epos + i], ecap);
1476 		}
1477 
1478 		/*
1479 		 * Even though ecap is 2 bytes, we're currently a long way
1480 		 * from exceeding 1 byte capabilities.  If we ever make it
1481 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1482 		 */
1483 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1484 
1485 		memset(map + epos, ecap, len);
1486 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1487 		if (ret)
1488 			return ret;
1489 
1490 		/*
1491 		 * If we're just using this capability to anchor the list,
1492 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1493 		 * indicates to use cap id = 0, version = 0, next = 0 if
1494 		 * ecaps are absent, hope users check all the way to next.
1495 		 */
1496 		if (hidden)
1497 			*(__le32 *)&vdev->vconfig[epos] &=
1498 				cpu_to_le32((0xffcU << 20));
1499 		else
1500 			ecaps++;
1501 
1502 		prev = (__le32 *)&vdev->vconfig[epos];
1503 		epos = PCI_EXT_CAP_NEXT(header);
1504 	}
1505 
1506 	if (!ecaps)
1507 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1508 
1509 	return 0;
1510 }
1511 
1512 /*
1513  * For each device we allocate a pci_config_map that indicates the
1514  * capability occupying each dword and thus the struct perm_bits we
1515  * use for read and write.  We also allocate a virtualized config
1516  * space which tracks reads and writes to bits that we emulate for
1517  * the user.  Initial values filled from device.
1518  *
1519  * Using shared stuct perm_bits between all vfio-pci devices saves
1520  * us from allocating cfg_size buffers for virt and write for every
1521  * device.  We could remove vconfig and allocate individual buffers
1522  * for each area requring emulated bits, but the array of pointers
1523  * would be comparable in size (at least for standard config space).
1524  */
1525 int vfio_config_init(struct vfio_pci_device *vdev)
1526 {
1527 	struct pci_dev *pdev = vdev->pdev;
1528 	u8 *map, *vconfig;
1529 	int ret;
1530 
1531 	/*
1532 	 * Config space, caps and ecaps are all dword aligned, so we could
1533 	 * use one byte per dword to record the type.  However, there are
1534 	 * no requiremenst on the length of a capability, so the gap between
1535 	 * capabilities needs byte granularity.
1536 	 */
1537 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1538 	if (!map)
1539 		return -ENOMEM;
1540 
1541 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1542 	if (!vconfig) {
1543 		kfree(map);
1544 		return -ENOMEM;
1545 	}
1546 
1547 	vdev->pci_config_map = map;
1548 	vdev->vconfig = vconfig;
1549 
1550 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1551 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1552 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1553 
1554 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1555 	if (ret)
1556 		goto out;
1557 
1558 	vdev->bardirty = true;
1559 
1560 	/*
1561 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1562 	 * may need to rebuild vconfig after that
1563 	 */
1564 
1565 	/* For restore after reset */
1566 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1567 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1568 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1569 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1570 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1571 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1572 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1573 
1574 	if (pdev->is_virtfn) {
1575 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1576 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1577 	}
1578 
1579 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1580 		vconfig[PCI_INTERRUPT_PIN] = 0;
1581 
1582 	ret = vfio_cap_init(vdev);
1583 	if (ret)
1584 		goto out;
1585 
1586 	ret = vfio_ecap_init(vdev);
1587 	if (ret)
1588 		goto out;
1589 
1590 	return 0;
1591 
1592 out:
1593 	kfree(map);
1594 	vdev->pci_config_map = NULL;
1595 	kfree(vconfig);
1596 	vdev->vconfig = NULL;
1597 	return pcibios_err_to_errno(ret);
1598 }
1599 
1600 void vfio_config_free(struct vfio_pci_device *vdev)
1601 {
1602 	kfree(vdev->vconfig);
1603 	vdev->vconfig = NULL;
1604 	kfree(vdev->pci_config_map);
1605 	vdev->pci_config_map = NULL;
1606 	kfree(vdev->msi_perm);
1607 	vdev->msi_perm = NULL;
1608 }
1609 
1610 /*
1611  * Find the remaining number of bytes in a dword that match the given
1612  * position.  Stop at either the end of the capability or the dword boundary.
1613  */
1614 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1615 					   loff_t pos)
1616 {
1617 	u8 cap = vdev->pci_config_map[pos];
1618 	size_t i;
1619 
1620 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1621 		/* nop */;
1622 
1623 	return i;
1624 }
1625 
1626 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1627 				 size_t count, loff_t *ppos, bool iswrite)
1628 {
1629 	struct pci_dev *pdev = vdev->pdev;
1630 	struct perm_bits *perm;
1631 	__le32 val = 0;
1632 	int cap_start = 0, offset;
1633 	u8 cap_id;
1634 	ssize_t ret;
1635 
1636 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1637 	    *ppos + count > pdev->cfg_size)
1638 		return -EFAULT;
1639 
1640 	/*
1641 	 * Chop accesses into aligned chunks containing no more than a
1642 	 * single capability.  Caller increments to the next chunk.
1643 	 */
1644 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1645 	if (count >= 4 && !(*ppos % 4))
1646 		count = 4;
1647 	else if (count >= 2 && !(*ppos % 2))
1648 		count = 2;
1649 	else
1650 		count = 1;
1651 
1652 	ret = count;
1653 
1654 	cap_id = vdev->pci_config_map[*ppos];
1655 
1656 	if (cap_id == PCI_CAP_ID_INVALID) {
1657 		perm = &unassigned_perms;
1658 		cap_start = *ppos;
1659 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1660 		perm = &virt_perms;
1661 		cap_start = *ppos;
1662 	} else {
1663 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1664 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1665 
1666 			perm = &ecap_perms[cap_id];
1667 			cap_start = vfio_find_cap_start(vdev, *ppos);
1668 		} else {
1669 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1670 
1671 			perm = &cap_perms[cap_id];
1672 
1673 			if (cap_id == PCI_CAP_ID_MSI)
1674 				perm = vdev->msi_perm;
1675 
1676 			if (cap_id > PCI_CAP_ID_BASIC)
1677 				cap_start = vfio_find_cap_start(vdev, *ppos);
1678 		}
1679 	}
1680 
1681 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1682 	WARN_ON(cap_start > *ppos);
1683 
1684 	offset = *ppos - cap_start;
1685 
1686 	if (iswrite) {
1687 		if (!perm->writefn)
1688 			return ret;
1689 
1690 		if (copy_from_user(&val, buf, count))
1691 			return -EFAULT;
1692 
1693 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1694 	} else {
1695 		if (perm->readfn) {
1696 			ret = perm->readfn(vdev, *ppos, count,
1697 					   perm, offset, &val);
1698 			if (ret < 0)
1699 				return ret;
1700 		}
1701 
1702 		if (copy_to_user(buf, &val, count))
1703 			return -EFAULT;
1704 	}
1705 
1706 	return ret;
1707 }
1708 
1709 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1710 			   size_t count, loff_t *ppos, bool iswrite)
1711 {
1712 	size_t done = 0;
1713 	int ret = 0;
1714 	loff_t pos = *ppos;
1715 
1716 	pos &= VFIO_PCI_OFFSET_MASK;
1717 
1718 	while (count) {
1719 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1720 		if (ret < 0)
1721 			return ret;
1722 
1723 		count -= ret;
1724 		done += ret;
1725 		buf += ret;
1726 		pos += ret;
1727 	}
1728 
1729 	*ppos += done;
1730 
1731 	return done;
1732 }
1733