xref: /linux/drivers/vfio/pci/qat/main.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright(c) 2024 Intel Corporation */
3 
4 #include <linux/anon_inodes.h>
5 #include <linux/container_of.h>
6 #include <linux/device.h>
7 #include <linux/file.h>
8 #include <linux/init.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/pci.h>
13 #include <linux/sizes.h>
14 #include <linux/types.h>
15 #include <linux/uaccess.h>
16 #include <linux/vfio_pci_core.h>
17 #include <linux/qat/qat_mig_dev.h>
18 
19 /*
20  * The migration data of each Intel QAT VF device is encapsulated into a
21  * 4096 bytes block. The data consists of two parts.
22  * The first is a pre-configured set of attributes of the VF being migrated,
23  * which are only set when it is created. This can be migrated during pre-copy
24  * stage and used for a device compatibility check.
25  * The second is the VF state. This includes the required MMIO regions and
26  * the shadow states maintained by the QAT PF driver. This part can only be
27  * saved when the VF is fully quiesced and be migrated during stop-copy stage.
28  * Both these 2 parts of data are saved in hierarchical structures including
29  * a preamble section and several raw state sections.
30  * When the pre-configured part of the migration data is fully retrieved from
31  * user space, the preamble section are used to validate the correctness of
32  * the data blocks and check the version compatibility. The raw state sections
33  * are then used to do a device compatibility check.
34  * When the device transits from RESUMING state, the VF states are extracted
35  * from the raw state sections of the VF state part of the migration data and
36  * then loaded into the device.
37  */
38 
39 struct qat_vf_migration_file {
40 	struct file *filp;
41 	/* protects migration region context */
42 	struct mutex lock;
43 	bool disabled;
44 	struct qat_vf_core_device *qat_vdev;
45 	ssize_t filled_size;
46 };
47 
48 struct qat_vf_core_device {
49 	struct vfio_pci_core_device core_device;
50 	struct qat_mig_dev *mdev;
51 	/* protects migration state */
52 	struct mutex state_mutex;
53 	enum vfio_device_mig_state mig_state;
54 	struct qat_vf_migration_file *resuming_migf;
55 	struct qat_vf_migration_file *saving_migf;
56 };
57 
58 static int qat_vf_pci_open_device(struct vfio_device *core_vdev)
59 {
60 	struct qat_vf_core_device *qat_vdev =
61 		container_of(core_vdev, struct qat_vf_core_device,
62 			     core_device.vdev);
63 	struct vfio_pci_core_device *vdev = &qat_vdev->core_device;
64 	int ret;
65 
66 	ret = vfio_pci_core_enable(vdev);
67 	if (ret)
68 		return ret;
69 
70 	ret = qat_vfmig_open(qat_vdev->mdev);
71 	if (ret) {
72 		vfio_pci_core_disable(vdev);
73 		return ret;
74 	}
75 	qat_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
76 
77 	vfio_pci_core_finish_enable(vdev);
78 
79 	return 0;
80 }
81 
82 static void qat_vf_disable_fd(struct qat_vf_migration_file *migf)
83 {
84 	mutex_lock(&migf->lock);
85 	migf->disabled = true;
86 	migf->filp->f_pos = 0;
87 	migf->filled_size = 0;
88 	mutex_unlock(&migf->lock);
89 }
90 
91 static void qat_vf_disable_fds(struct qat_vf_core_device *qat_vdev)
92 {
93 	if (qat_vdev->resuming_migf) {
94 		qat_vf_disable_fd(qat_vdev->resuming_migf);
95 		fput(qat_vdev->resuming_migf->filp);
96 		qat_vdev->resuming_migf = NULL;
97 	}
98 
99 	if (qat_vdev->saving_migf) {
100 		qat_vf_disable_fd(qat_vdev->saving_migf);
101 		fput(qat_vdev->saving_migf->filp);
102 		qat_vdev->saving_migf = NULL;
103 	}
104 }
105 
106 static void qat_vf_pci_close_device(struct vfio_device *core_vdev)
107 {
108 	struct qat_vf_core_device *qat_vdev = container_of(core_vdev,
109 			struct qat_vf_core_device, core_device.vdev);
110 
111 	qat_vfmig_close(qat_vdev->mdev);
112 	qat_vf_disable_fds(qat_vdev);
113 	vfio_pci_core_close_device(core_vdev);
114 }
115 
116 static long qat_vf_precopy_ioctl(struct file *filp, unsigned int cmd,
117 				 unsigned long arg)
118 {
119 	struct qat_vf_migration_file *migf = filp->private_data;
120 	struct qat_vf_core_device *qat_vdev = migf->qat_vdev;
121 	struct qat_mig_dev *mig_dev = qat_vdev->mdev;
122 	struct vfio_precopy_info info;
123 	loff_t *pos = &filp->f_pos;
124 	unsigned long minsz;
125 	int ret = 0;
126 
127 	if (cmd != VFIO_MIG_GET_PRECOPY_INFO)
128 		return -ENOTTY;
129 
130 	minsz = offsetofend(struct vfio_precopy_info, dirty_bytes);
131 
132 	if (copy_from_user(&info, (void __user *)arg, minsz))
133 		return -EFAULT;
134 	if (info.argsz < minsz)
135 		return -EINVAL;
136 
137 	mutex_lock(&qat_vdev->state_mutex);
138 	if (qat_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY &&
139 	    qat_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY_P2P) {
140 		mutex_unlock(&qat_vdev->state_mutex);
141 		return -EINVAL;
142 	}
143 
144 	mutex_lock(&migf->lock);
145 	if (migf->disabled) {
146 		ret = -ENODEV;
147 		goto out;
148 	}
149 
150 	if (*pos > mig_dev->setup_size) {
151 		ret = -EINVAL;
152 		goto out;
153 	}
154 
155 	info.dirty_bytes = 0;
156 	info.initial_bytes = mig_dev->setup_size - *pos;
157 
158 out:
159 	mutex_unlock(&migf->lock);
160 	mutex_unlock(&qat_vdev->state_mutex);
161 	if (ret)
162 		return ret;
163 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
164 }
165 
166 static ssize_t qat_vf_save_read(struct file *filp, char __user *buf,
167 				size_t len, loff_t *pos)
168 {
169 	struct qat_vf_migration_file *migf = filp->private_data;
170 	struct qat_mig_dev *mig_dev = migf->qat_vdev->mdev;
171 	ssize_t done = 0;
172 	loff_t *offs;
173 	int ret;
174 
175 	if (pos)
176 		return -ESPIPE;
177 	offs = &filp->f_pos;
178 
179 	mutex_lock(&migf->lock);
180 	if (*offs > migf->filled_size || *offs < 0) {
181 		done = -EINVAL;
182 		goto out_unlock;
183 	}
184 
185 	if (migf->disabled) {
186 		done = -ENODEV;
187 		goto out_unlock;
188 	}
189 
190 	len = min_t(size_t, migf->filled_size - *offs, len);
191 	if (len) {
192 		ret = copy_to_user(buf, mig_dev->state + *offs, len);
193 		if (ret) {
194 			done = -EFAULT;
195 			goto out_unlock;
196 		}
197 		*offs += len;
198 		done = len;
199 	}
200 
201 out_unlock:
202 	mutex_unlock(&migf->lock);
203 	return done;
204 }
205 
206 static int qat_vf_release_file(struct inode *inode, struct file *filp)
207 {
208 	struct qat_vf_migration_file *migf = filp->private_data;
209 
210 	qat_vf_disable_fd(migf);
211 	mutex_destroy(&migf->lock);
212 	kfree(migf);
213 
214 	return 0;
215 }
216 
217 static const struct file_operations qat_vf_save_fops = {
218 	.owner = THIS_MODULE,
219 	.read = qat_vf_save_read,
220 	.unlocked_ioctl = qat_vf_precopy_ioctl,
221 	.compat_ioctl = compat_ptr_ioctl,
222 	.release = qat_vf_release_file,
223 };
224 
225 static int qat_vf_save_state(struct qat_vf_core_device *qat_vdev,
226 			     struct qat_vf_migration_file *migf)
227 {
228 	int ret;
229 
230 	ret = qat_vfmig_save_state(qat_vdev->mdev);
231 	if (ret)
232 		return ret;
233 	migf->filled_size = qat_vdev->mdev->state_size;
234 
235 	return 0;
236 }
237 
238 static int qat_vf_save_setup(struct qat_vf_core_device *qat_vdev,
239 			     struct qat_vf_migration_file *migf)
240 {
241 	int ret;
242 
243 	ret = qat_vfmig_save_setup(qat_vdev->mdev);
244 	if (ret)
245 		return ret;
246 	migf->filled_size = qat_vdev->mdev->setup_size;
247 
248 	return 0;
249 }
250 
251 /*
252  * Allocate a file handler for user space and then save the migration data for
253  * the device being migrated. If this is called in the pre-copy stage, save the
254  * pre-configured device data. Otherwise, if this is called in the stop-copy
255  * stage, save the device state. In both cases, update the data size which can
256  * then be read from user space.
257  */
258 static struct qat_vf_migration_file *
259 qat_vf_save_device_data(struct qat_vf_core_device *qat_vdev, bool pre_copy)
260 {
261 	struct qat_vf_migration_file *migf;
262 	int ret;
263 
264 	migf = kzalloc(sizeof(*migf), GFP_KERNEL);
265 	if (!migf)
266 		return ERR_PTR(-ENOMEM);
267 
268 	migf->filp = anon_inode_getfile("qat_vf_mig", &qat_vf_save_fops,
269 					migf, O_RDONLY);
270 	ret = PTR_ERR_OR_ZERO(migf->filp);
271 	if (ret) {
272 		kfree(migf);
273 		return ERR_PTR(ret);
274 	}
275 
276 	stream_open(migf->filp->f_inode, migf->filp);
277 	mutex_init(&migf->lock);
278 
279 	if (pre_copy)
280 		ret = qat_vf_save_setup(qat_vdev, migf);
281 	else
282 		ret = qat_vf_save_state(qat_vdev, migf);
283 	if (ret) {
284 		fput(migf->filp);
285 		return ERR_PTR(ret);
286 	}
287 
288 	migf->qat_vdev = qat_vdev;
289 
290 	return migf;
291 }
292 
293 static ssize_t qat_vf_resume_write(struct file *filp, const char __user *buf,
294 				   size_t len, loff_t *pos)
295 {
296 	struct qat_vf_migration_file *migf = filp->private_data;
297 	struct qat_mig_dev *mig_dev = migf->qat_vdev->mdev;
298 	loff_t end, *offs;
299 	ssize_t done = 0;
300 	int ret;
301 
302 	if (pos)
303 		return -ESPIPE;
304 	offs = &filp->f_pos;
305 
306 	if (*offs < 0 ||
307 	    check_add_overflow(len, *offs, &end))
308 		return -EOVERFLOW;
309 
310 	if (end > mig_dev->state_size)
311 		return -ENOMEM;
312 
313 	mutex_lock(&migf->lock);
314 	if (migf->disabled) {
315 		done = -ENODEV;
316 		goto out_unlock;
317 	}
318 
319 	ret = copy_from_user(mig_dev->state + *offs, buf, len);
320 	if (ret) {
321 		done = -EFAULT;
322 		goto out_unlock;
323 	}
324 	*offs += len;
325 	migf->filled_size += len;
326 
327 	/*
328 	 * Load the pre-configured device data first to check if the target
329 	 * device is compatible with the source device.
330 	 */
331 	ret = qat_vfmig_load_setup(mig_dev, migf->filled_size);
332 	if (ret && ret != -EAGAIN) {
333 		done = ret;
334 		goto out_unlock;
335 	}
336 	done = len;
337 
338 out_unlock:
339 	mutex_unlock(&migf->lock);
340 	return done;
341 }
342 
343 static const struct file_operations qat_vf_resume_fops = {
344 	.owner = THIS_MODULE,
345 	.write = qat_vf_resume_write,
346 	.release = qat_vf_release_file,
347 };
348 
349 static struct qat_vf_migration_file *
350 qat_vf_resume_device_data(struct qat_vf_core_device *qat_vdev)
351 {
352 	struct qat_vf_migration_file *migf;
353 	int ret;
354 
355 	migf = kzalloc(sizeof(*migf), GFP_KERNEL);
356 	if (!migf)
357 		return ERR_PTR(-ENOMEM);
358 
359 	migf->filp = anon_inode_getfile("qat_vf_mig", &qat_vf_resume_fops, migf, O_WRONLY);
360 	ret = PTR_ERR_OR_ZERO(migf->filp);
361 	if (ret) {
362 		kfree(migf);
363 		return ERR_PTR(ret);
364 	}
365 
366 	migf->qat_vdev = qat_vdev;
367 	migf->filled_size = 0;
368 	stream_open(migf->filp->f_inode, migf->filp);
369 	mutex_init(&migf->lock);
370 
371 	return migf;
372 }
373 
374 static int qat_vf_load_device_data(struct qat_vf_core_device *qat_vdev)
375 {
376 	return qat_vfmig_load_state(qat_vdev->mdev);
377 }
378 
379 static struct file *qat_vf_pci_step_device_state(struct qat_vf_core_device *qat_vdev, u32 new)
380 {
381 	u32 cur = qat_vdev->mig_state;
382 	int ret;
383 
384 	/*
385 	 * As the device is not capable of just stopping P2P DMAs, suspend the
386 	 * device completely once any of the P2P states are reached.
387 	 * When it is suspended, all its MMIO registers can still be operated
388 	 * correctly, jobs submitted through ring are queued while no jobs are
389 	 * processed by the device. The MMIO states can be safely migrated to
390 	 * the target VF during stop-copy stage and restored correctly in the
391 	 * target VF. All queued jobs can be resumed then.
392 	 */
393 	if ((cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_RUNNING_P2P) ||
394 	    (cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_PRE_COPY_P2P)) {
395 		ret = qat_vfmig_suspend(qat_vdev->mdev);
396 		if (ret)
397 			return ERR_PTR(ret);
398 		return NULL;
399 	}
400 
401 	if ((cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_RUNNING) ||
402 	    (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_PRE_COPY)) {
403 		qat_vfmig_resume(qat_vdev->mdev);
404 		return NULL;
405 	}
406 
407 	if ((cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_STOP) ||
408 	    (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RUNNING_P2P))
409 		return NULL;
410 
411 	if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_STOP_COPY) {
412 		struct qat_vf_migration_file *migf;
413 
414 		migf = qat_vf_save_device_data(qat_vdev, false);
415 		if (IS_ERR(migf))
416 			return ERR_CAST(migf);
417 		get_file(migf->filp);
418 		qat_vdev->saving_migf = migf;
419 		return migf->filp;
420 	}
421 
422 	if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RESUMING) {
423 		struct qat_vf_migration_file *migf;
424 
425 		migf = qat_vf_resume_device_data(qat_vdev);
426 		if (IS_ERR(migf))
427 			return ERR_CAST(migf);
428 		get_file(migf->filp);
429 		qat_vdev->resuming_migf = migf;
430 		return migf->filp;
431 	}
432 
433 	if ((cur == VFIO_DEVICE_STATE_STOP_COPY && new == VFIO_DEVICE_STATE_STOP) ||
434 	    (cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_RUNNING) ||
435 	    (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_RUNNING_P2P)) {
436 		qat_vf_disable_fds(qat_vdev);
437 		return NULL;
438 	}
439 
440 	if ((cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_PRE_COPY) ||
441 	    (cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_PRE_COPY_P2P)) {
442 		struct qat_vf_migration_file *migf;
443 
444 		migf = qat_vf_save_device_data(qat_vdev, true);
445 		if (IS_ERR(migf))
446 			return ERR_CAST(migf);
447 		get_file(migf->filp);
448 		qat_vdev->saving_migf = migf;
449 		return migf->filp;
450 	}
451 
452 	if (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_STOP_COPY) {
453 		struct qat_vf_migration_file *migf = qat_vdev->saving_migf;
454 
455 		if (!migf)
456 			return ERR_PTR(-EINVAL);
457 		ret = qat_vf_save_state(qat_vdev, migf);
458 		if (ret)
459 			return ERR_PTR(ret);
460 		return NULL;
461 	}
462 
463 	if (cur == VFIO_DEVICE_STATE_RESUMING && new == VFIO_DEVICE_STATE_STOP) {
464 		ret = qat_vf_load_device_data(qat_vdev);
465 		if (ret)
466 			return ERR_PTR(ret);
467 
468 		qat_vf_disable_fds(qat_vdev);
469 		return NULL;
470 	}
471 
472 	/* vfio_mig_get_next_state() does not use arcs other than the above */
473 	WARN_ON(true);
474 	return ERR_PTR(-EINVAL);
475 }
476 
477 static void qat_vf_reset_done(struct qat_vf_core_device *qat_vdev)
478 {
479 	qat_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
480 	qat_vfmig_reset(qat_vdev->mdev);
481 	qat_vf_disable_fds(qat_vdev);
482 }
483 
484 static struct file *qat_vf_pci_set_device_state(struct vfio_device *vdev,
485 						enum vfio_device_mig_state new_state)
486 {
487 	struct qat_vf_core_device *qat_vdev = container_of(vdev,
488 			struct qat_vf_core_device, core_device.vdev);
489 	enum vfio_device_mig_state next_state;
490 	struct file *res = NULL;
491 	int ret;
492 
493 	mutex_lock(&qat_vdev->state_mutex);
494 	while (new_state != qat_vdev->mig_state) {
495 		ret = vfio_mig_get_next_state(vdev, qat_vdev->mig_state,
496 					      new_state, &next_state);
497 		if (ret) {
498 			res = ERR_PTR(ret);
499 			break;
500 		}
501 		res = qat_vf_pci_step_device_state(qat_vdev, next_state);
502 		if (IS_ERR(res))
503 			break;
504 		qat_vdev->mig_state = next_state;
505 		if (WARN_ON(res && new_state != qat_vdev->mig_state)) {
506 			fput(res);
507 			res = ERR_PTR(-EINVAL);
508 			break;
509 		}
510 	}
511 	mutex_unlock(&qat_vdev->state_mutex);
512 
513 	return res;
514 }
515 
516 static int qat_vf_pci_get_device_state(struct vfio_device *vdev,
517 				       enum vfio_device_mig_state *curr_state)
518 {
519 	struct qat_vf_core_device *qat_vdev = container_of(vdev,
520 			struct qat_vf_core_device, core_device.vdev);
521 
522 	mutex_lock(&qat_vdev->state_mutex);
523 	*curr_state = qat_vdev->mig_state;
524 	mutex_unlock(&qat_vdev->state_mutex);
525 
526 	return 0;
527 }
528 
529 static int qat_vf_pci_get_data_size(struct vfio_device *vdev,
530 				    unsigned long *stop_copy_length)
531 {
532 	struct qat_vf_core_device *qat_vdev = container_of(vdev,
533 			struct qat_vf_core_device, core_device.vdev);
534 
535 	mutex_lock(&qat_vdev->state_mutex);
536 	*stop_copy_length = qat_vdev->mdev->state_size;
537 	mutex_unlock(&qat_vdev->state_mutex);
538 
539 	return 0;
540 }
541 
542 static const struct vfio_migration_ops qat_vf_pci_mig_ops = {
543 	.migration_set_state = qat_vf_pci_set_device_state,
544 	.migration_get_state = qat_vf_pci_get_device_state,
545 	.migration_get_data_size = qat_vf_pci_get_data_size,
546 };
547 
548 static void qat_vf_pci_release_dev(struct vfio_device *core_vdev)
549 {
550 	struct qat_vf_core_device *qat_vdev = container_of(core_vdev,
551 			struct qat_vf_core_device, core_device.vdev);
552 
553 	qat_vfmig_cleanup(qat_vdev->mdev);
554 	qat_vfmig_destroy(qat_vdev->mdev);
555 	mutex_destroy(&qat_vdev->state_mutex);
556 	vfio_pci_core_release_dev(core_vdev);
557 }
558 
559 static int qat_vf_pci_init_dev(struct vfio_device *core_vdev)
560 {
561 	struct qat_vf_core_device *qat_vdev = container_of(core_vdev,
562 			struct qat_vf_core_device, core_device.vdev);
563 	struct qat_mig_dev *mdev;
564 	struct pci_dev *parent;
565 	int ret, vf_id;
566 
567 	core_vdev->migration_flags = VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P |
568 				     VFIO_MIGRATION_PRE_COPY;
569 	core_vdev->mig_ops = &qat_vf_pci_mig_ops;
570 
571 	ret = vfio_pci_core_init_dev(core_vdev);
572 	if (ret)
573 		return ret;
574 
575 	mutex_init(&qat_vdev->state_mutex);
576 
577 	parent = pci_physfn(qat_vdev->core_device.pdev);
578 	vf_id = pci_iov_vf_id(qat_vdev->core_device.pdev);
579 	if (vf_id < 0) {
580 		ret = -ENODEV;
581 		goto err_rel;
582 	}
583 
584 	mdev = qat_vfmig_create(parent, vf_id);
585 	if (IS_ERR(mdev)) {
586 		ret = PTR_ERR(mdev);
587 		goto err_rel;
588 	}
589 
590 	ret = qat_vfmig_init(mdev);
591 	if (ret)
592 		goto err_destroy;
593 
594 	qat_vdev->mdev = mdev;
595 
596 	return 0;
597 
598 err_destroy:
599 	qat_vfmig_destroy(mdev);
600 err_rel:
601 	vfio_pci_core_release_dev(core_vdev);
602 	return ret;
603 }
604 
605 static const struct vfio_device_ops qat_vf_pci_ops = {
606 	.name = "qat-vf-vfio-pci",
607 	.init = qat_vf_pci_init_dev,
608 	.release = qat_vf_pci_release_dev,
609 	.open_device = qat_vf_pci_open_device,
610 	.close_device = qat_vf_pci_close_device,
611 	.ioctl = vfio_pci_core_ioctl,
612 	.read = vfio_pci_core_read,
613 	.write = vfio_pci_core_write,
614 	.mmap = vfio_pci_core_mmap,
615 	.request = vfio_pci_core_request,
616 	.match = vfio_pci_core_match,
617 	.bind_iommufd = vfio_iommufd_physical_bind,
618 	.unbind_iommufd = vfio_iommufd_physical_unbind,
619 	.attach_ioas = vfio_iommufd_physical_attach_ioas,
620 	.detach_ioas = vfio_iommufd_physical_detach_ioas,
621 };
622 
623 static struct qat_vf_core_device *qat_vf_drvdata(struct pci_dev *pdev)
624 {
625 	struct vfio_pci_core_device *core_device = pci_get_drvdata(pdev);
626 
627 	return container_of(core_device, struct qat_vf_core_device, core_device);
628 }
629 
630 static void qat_vf_pci_aer_reset_done(struct pci_dev *pdev)
631 {
632 	struct qat_vf_core_device *qat_vdev = qat_vf_drvdata(pdev);
633 
634 	if (!qat_vdev->mdev)
635 		return;
636 
637 	mutex_lock(&qat_vdev->state_mutex);
638 	qat_vf_reset_done(qat_vdev);
639 	mutex_unlock(&qat_vdev->state_mutex);
640 }
641 
642 static int
643 qat_vf_vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
644 {
645 	struct device *dev = &pdev->dev;
646 	struct qat_vf_core_device *qat_vdev;
647 	int ret;
648 
649 	qat_vdev = vfio_alloc_device(qat_vf_core_device, core_device.vdev, dev, &qat_vf_pci_ops);
650 	if (IS_ERR(qat_vdev))
651 		return PTR_ERR(qat_vdev);
652 
653 	pci_set_drvdata(pdev, &qat_vdev->core_device);
654 	ret = vfio_pci_core_register_device(&qat_vdev->core_device);
655 	if (ret)
656 		goto out_put_device;
657 
658 	return 0;
659 
660 out_put_device:
661 	vfio_put_device(&qat_vdev->core_device.vdev);
662 	return ret;
663 }
664 
665 static void qat_vf_vfio_pci_remove(struct pci_dev *pdev)
666 {
667 	struct qat_vf_core_device *qat_vdev = qat_vf_drvdata(pdev);
668 
669 	vfio_pci_core_unregister_device(&qat_vdev->core_device);
670 	vfio_put_device(&qat_vdev->core_device.vdev);
671 }
672 
673 static const struct pci_device_id qat_vf_vfio_pci_table[] = {
674 	/* Intel QAT GEN4 4xxx VF device */
675 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4941) },
676 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4943) },
677 	{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4945) },
678 	{}
679 };
680 MODULE_DEVICE_TABLE(pci, qat_vf_vfio_pci_table);
681 
682 static const struct pci_error_handlers qat_vf_err_handlers = {
683 	.reset_done = qat_vf_pci_aer_reset_done,
684 	.error_detected = vfio_pci_core_aer_err_detected,
685 };
686 
687 static struct pci_driver qat_vf_vfio_pci_driver = {
688 	.name = "qat_vfio_pci",
689 	.id_table = qat_vf_vfio_pci_table,
690 	.probe = qat_vf_vfio_pci_probe,
691 	.remove = qat_vf_vfio_pci_remove,
692 	.err_handler = &qat_vf_err_handlers,
693 	.driver_managed_dma = true,
694 };
695 module_pci_driver(qat_vf_vfio_pci_driver);
696 
697 MODULE_LICENSE("GPL");
698 MODULE_AUTHOR("Xin Zeng <xin.zeng@intel.com>");
699 MODULE_DESCRIPTION("QAT VFIO PCI - VFIO PCI driver with live migration support for Intel(R) QAT GEN4 device family");
700 MODULE_IMPORT_NS(CRYPTO_QAT);
701