1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel IFC VF NIC driver for virtio dataplane offloading 4 * 5 * Copyright (C) 2020 Intel Corporation. 6 * 7 * Author: Zhu Lingshan <lingshan.zhu@intel.com> 8 * 9 */ 10 11 #include "ifcvf_base.h" 12 13 u16 ifcvf_set_vq_vector(struct ifcvf_hw *hw, u16 qid, int vector) 14 { 15 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 16 17 vp_iowrite16(qid, &cfg->queue_select); 18 vp_iowrite16(vector, &cfg->queue_msix_vector); 19 20 return vp_ioread16(&cfg->queue_msix_vector); 21 } 22 23 u16 ifcvf_set_config_vector(struct ifcvf_hw *hw, int vector) 24 { 25 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 26 27 vp_iowrite16(vector, &cfg->msix_config); 28 29 return vp_ioread16(&cfg->msix_config); 30 } 31 32 static void __iomem *get_cap_addr(struct ifcvf_hw *hw, 33 struct virtio_pci_cap *cap) 34 { 35 u32 length, offset; 36 u8 bar; 37 38 length = le32_to_cpu(cap->length); 39 offset = le32_to_cpu(cap->offset); 40 bar = cap->bar; 41 42 if (bar >= IFCVF_PCI_MAX_RESOURCE) { 43 IFCVF_DBG(hw->pdev, 44 "Invalid bar number %u to get capabilities\n", bar); 45 return NULL; 46 } 47 48 if (offset + length > pci_resource_len(hw->pdev, bar)) { 49 IFCVF_DBG(hw->pdev, 50 "offset(%u) + len(%u) overflows bar%u's capability\n", 51 offset, length, bar); 52 return NULL; 53 } 54 55 return hw->base[bar] + offset; 56 } 57 58 static int ifcvf_read_config_range(struct pci_dev *dev, 59 uint32_t *val, int size, int where) 60 { 61 int ret, i; 62 63 for (i = 0; i < size; i += 4) { 64 ret = pci_read_config_dword(dev, where + i, val + i / 4); 65 if (ret < 0) 66 return ret; 67 } 68 69 return 0; 70 } 71 72 u16 ifcvf_get_vq_size(struct ifcvf_hw *hw, u16 qid) 73 { 74 u16 queue_size; 75 76 if (qid >= hw->nr_vring) 77 return 0; 78 79 vp_iowrite16(qid, &hw->common_cfg->queue_select); 80 queue_size = vp_ioread16(&hw->common_cfg->queue_size); 81 82 return queue_size; 83 } 84 85 u16 ifcvf_get_max_vq_size(struct ifcvf_hw *hw) 86 { 87 u16 queue_size, max_size, qid; 88 89 max_size = ifcvf_get_vq_size(hw, 0); 90 for (qid = 1; qid < hw->nr_vring; qid++) { 91 queue_size = ifcvf_get_vq_size(hw, qid); 92 /* 0 means the queue is unavailable */ 93 if (!queue_size) 94 continue; 95 96 max_size = max(queue_size, max_size); 97 } 98 99 return max_size; 100 } 101 102 int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev) 103 { 104 struct virtio_pci_cap cap; 105 u16 notify_off; 106 int ret; 107 u8 pos; 108 u32 i; 109 110 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos); 111 if (ret) { 112 IFCVF_ERR(pdev, "Failed to read PCI capability list\n"); 113 return -EIO; 114 } 115 hw->pdev = pdev; 116 117 while (pos) { 118 ret = ifcvf_read_config_range(pdev, (u32 *)&cap, 119 sizeof(cap), pos); 120 if (ret < 0) { 121 IFCVF_ERR(pdev, 122 "Failed to get PCI capability at %x\n", pos); 123 break; 124 } 125 126 if (cap.cap_vndr != PCI_CAP_ID_VNDR) 127 goto next; 128 129 switch (cap.cfg_type) { 130 case VIRTIO_PCI_CAP_COMMON_CFG: 131 hw->common_cfg = get_cap_addr(hw, &cap); 132 IFCVF_DBG(pdev, "hw->common_cfg = %p\n", 133 hw->common_cfg); 134 break; 135 case VIRTIO_PCI_CAP_NOTIFY_CFG: 136 pci_read_config_dword(pdev, pos + sizeof(cap), 137 &hw->notify_off_multiplier); 138 hw->notify_bar = cap.bar; 139 hw->notify_base = get_cap_addr(hw, &cap); 140 hw->notify_base_pa = pci_resource_start(pdev, cap.bar) + 141 le32_to_cpu(cap.offset); 142 IFCVF_DBG(pdev, "hw->notify_base = %p\n", 143 hw->notify_base); 144 break; 145 case VIRTIO_PCI_CAP_ISR_CFG: 146 hw->isr = get_cap_addr(hw, &cap); 147 IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr); 148 break; 149 case VIRTIO_PCI_CAP_DEVICE_CFG: 150 hw->dev_cfg = get_cap_addr(hw, &cap); 151 hw->cap_dev_config_size = le32_to_cpu(cap.length); 152 IFCVF_DBG(pdev, "hw->dev_cfg = %p\n", hw->dev_cfg); 153 break; 154 } 155 156 next: 157 pos = cap.cap_next; 158 } 159 160 if (hw->common_cfg == NULL || hw->notify_base == NULL || 161 hw->isr == NULL || hw->dev_cfg == NULL) { 162 IFCVF_ERR(pdev, "Incomplete PCI capabilities\n"); 163 return -EIO; 164 } 165 166 hw->nr_vring = vp_ioread16(&hw->common_cfg->num_queues); 167 hw->vring = kzalloc(sizeof(struct vring_info) * hw->nr_vring, GFP_KERNEL); 168 if (!hw->vring) 169 return -ENOMEM; 170 171 for (i = 0; i < hw->nr_vring; i++) { 172 vp_iowrite16(i, &hw->common_cfg->queue_select); 173 notify_off = vp_ioread16(&hw->common_cfg->queue_notify_off); 174 hw->vring[i].notify_addr = hw->notify_base + 175 notify_off * hw->notify_off_multiplier; 176 hw->vring[i].notify_pa = hw->notify_base_pa + 177 notify_off * hw->notify_off_multiplier; 178 hw->vring[i].irq = -EINVAL; 179 } 180 181 hw->lm_cfg = hw->base[IFCVF_LM_BAR]; 182 183 IFCVF_DBG(pdev, 184 "PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n", 185 hw->common_cfg, hw->notify_base, hw->isr, 186 hw->dev_cfg, hw->notify_off_multiplier); 187 188 hw->vqs_reused_irq = -EINVAL; 189 hw->config_irq = -EINVAL; 190 191 return 0; 192 } 193 194 u8 ifcvf_get_status(struct ifcvf_hw *hw) 195 { 196 return vp_ioread8(&hw->common_cfg->device_status); 197 } 198 199 void ifcvf_set_status(struct ifcvf_hw *hw, u8 status) 200 { 201 vp_iowrite8(status, &hw->common_cfg->device_status); 202 } 203 204 void ifcvf_reset(struct ifcvf_hw *hw) 205 { 206 ifcvf_set_status(hw, 0); 207 while (ifcvf_get_status(hw)) 208 msleep(1); 209 } 210 211 u64 ifcvf_get_hw_features(struct ifcvf_hw *hw) 212 { 213 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 214 u32 features_lo, features_hi; 215 u64 features; 216 217 vp_iowrite32(0, &cfg->device_feature_select); 218 features_lo = vp_ioread32(&cfg->device_feature); 219 220 vp_iowrite32(1, &cfg->device_feature_select); 221 features_hi = vp_ioread32(&cfg->device_feature); 222 223 features = ((u64)features_hi << 32) | features_lo; 224 225 return features; 226 } 227 228 /* return provisioned vDPA dev features */ 229 u64 ifcvf_get_dev_features(struct ifcvf_hw *hw) 230 { 231 return hw->dev_features; 232 } 233 234 u64 ifcvf_get_driver_features(struct ifcvf_hw *hw) 235 { 236 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 237 u32 features_lo, features_hi; 238 u64 features; 239 240 vp_iowrite32(0, &cfg->device_feature_select); 241 features_lo = vp_ioread32(&cfg->guest_feature); 242 243 vp_iowrite32(1, &cfg->device_feature_select); 244 features_hi = vp_ioread32(&cfg->guest_feature); 245 246 features = ((u64)features_hi << 32) | features_lo; 247 248 return features; 249 } 250 251 int ifcvf_verify_min_features(struct ifcvf_hw *hw, u64 features) 252 { 253 if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)) && features) { 254 IFCVF_ERR(hw->pdev, "VIRTIO_F_ACCESS_PLATFORM is not negotiated\n"); 255 return -EINVAL; 256 } 257 258 return 0; 259 } 260 261 u32 ifcvf_get_config_size(struct ifcvf_hw *hw) 262 { 263 u32 net_config_size = sizeof(struct virtio_net_config); 264 u32 blk_config_size = sizeof(struct virtio_blk_config); 265 u32 cap_size = hw->cap_dev_config_size; 266 u32 config_size; 267 268 /* If the onboard device config space size is greater than 269 * the size of struct virtio_net/blk_config, only the spec 270 * implementing contents size is returned, this is very 271 * unlikely, defensive programming. 272 */ 273 switch (hw->dev_type) { 274 case VIRTIO_ID_NET: 275 config_size = min(cap_size, net_config_size); 276 break; 277 case VIRTIO_ID_BLOCK: 278 config_size = min(cap_size, blk_config_size); 279 break; 280 default: 281 config_size = 0; 282 IFCVF_ERR(hw->pdev, "VIRTIO ID %u not supported\n", hw->dev_type); 283 } 284 285 return config_size; 286 } 287 288 void ifcvf_read_dev_config(struct ifcvf_hw *hw, u64 offset, 289 void *dst, int length) 290 { 291 u8 old_gen, new_gen, *p; 292 int i; 293 294 WARN_ON(offset + length > hw->config_size); 295 do { 296 old_gen = vp_ioread8(&hw->common_cfg->config_generation); 297 p = dst; 298 for (i = 0; i < length; i++) 299 *p++ = vp_ioread8(hw->dev_cfg + offset + i); 300 301 new_gen = vp_ioread8(&hw->common_cfg->config_generation); 302 } while (old_gen != new_gen); 303 } 304 305 void ifcvf_write_dev_config(struct ifcvf_hw *hw, u64 offset, 306 const void *src, int length) 307 { 308 const u8 *p; 309 int i; 310 311 p = src; 312 WARN_ON(offset + length > hw->config_size); 313 for (i = 0; i < length; i++) 314 vp_iowrite8(*p++, hw->dev_cfg + offset + i); 315 } 316 317 void ifcvf_set_driver_features(struct ifcvf_hw *hw, u64 features) 318 { 319 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 320 321 vp_iowrite32(0, &cfg->guest_feature_select); 322 vp_iowrite32((u32)features, &cfg->guest_feature); 323 324 vp_iowrite32(1, &cfg->guest_feature_select); 325 vp_iowrite32(features >> 32, &cfg->guest_feature); 326 } 327 328 u16 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid) 329 { 330 struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg; 331 u16 last_avail_idx; 332 333 last_avail_idx = vp_ioread16(&lm_cfg->vq_state_region + qid * 2); 334 335 return last_avail_idx; 336 } 337 338 int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u16 num) 339 { 340 struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg; 341 342 vp_iowrite16(num, &lm_cfg->vq_state_region + qid * 2); 343 344 return 0; 345 } 346 347 void ifcvf_set_vq_num(struct ifcvf_hw *hw, u16 qid, u32 num) 348 { 349 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 350 351 vp_iowrite16(qid, &cfg->queue_select); 352 vp_iowrite16(num, &cfg->queue_size); 353 } 354 355 int ifcvf_set_vq_address(struct ifcvf_hw *hw, u16 qid, u64 desc_area, 356 u64 driver_area, u64 device_area) 357 { 358 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 359 360 vp_iowrite16(qid, &cfg->queue_select); 361 vp_iowrite64_twopart(desc_area, &cfg->queue_desc_lo, 362 &cfg->queue_desc_hi); 363 vp_iowrite64_twopart(driver_area, &cfg->queue_avail_lo, 364 &cfg->queue_avail_hi); 365 vp_iowrite64_twopart(device_area, &cfg->queue_used_lo, 366 &cfg->queue_used_hi); 367 368 return 0; 369 } 370 371 bool ifcvf_get_vq_ready(struct ifcvf_hw *hw, u16 qid) 372 { 373 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 374 u16 queue_enable; 375 376 vp_iowrite16(qid, &cfg->queue_select); 377 queue_enable = vp_ioread16(&cfg->queue_enable); 378 379 return (bool)queue_enable; 380 } 381 382 void ifcvf_set_vq_ready(struct ifcvf_hw *hw, u16 qid, bool ready) 383 { 384 struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg; 385 386 vp_iowrite16(qid, &cfg->queue_select); 387 vp_iowrite16(ready, &cfg->queue_enable); 388 } 389 390 static void ifcvf_reset_vring(struct ifcvf_hw *hw) 391 { 392 u16 qid; 393 394 for (qid = 0; qid < hw->nr_vring; qid++) { 395 hw->vring[qid].cb.callback = NULL; 396 hw->vring[qid].cb.private = NULL; 397 ifcvf_set_vq_vector(hw, qid, VIRTIO_MSI_NO_VECTOR); 398 } 399 } 400 401 static void ifcvf_reset_config_handler(struct ifcvf_hw *hw) 402 { 403 hw->config_cb.callback = NULL; 404 hw->config_cb.private = NULL; 405 ifcvf_set_config_vector(hw, VIRTIO_MSI_NO_VECTOR); 406 } 407 408 static void ifcvf_synchronize_irq(struct ifcvf_hw *hw) 409 { 410 u32 nvectors = hw->num_msix_vectors; 411 struct pci_dev *pdev = hw->pdev; 412 int i, irq; 413 414 for (i = 0; i < nvectors; i++) { 415 irq = pci_irq_vector(pdev, i); 416 if (irq >= 0) 417 synchronize_irq(irq); 418 } 419 } 420 421 void ifcvf_stop(struct ifcvf_hw *hw) 422 { 423 ifcvf_synchronize_irq(hw); 424 ifcvf_reset_vring(hw); 425 ifcvf_reset_config_handler(hw); 426 } 427 428 void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid) 429 { 430 vp_iowrite16(qid, hw->vring[qid].notify_addr); 431 } 432