1 /* Driver for USB Mass Storage compliant devices 2 * 3 * Current development and maintenance by: 4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * 6 * Developed with the assistance of: 7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) 8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) 9 * (c) 2002 Alan Stern <stern@rowland.org> 10 * 11 * Initial work by: 12 * (c) 1999 Michael Gee (michael@linuxspecific.com) 13 * 14 * This driver is based on the 'USB Mass Storage Class' document. This 15 * describes in detail the protocol used to communicate with such 16 * devices. Clearly, the designers had SCSI and ATAPI commands in 17 * mind when they created this document. The commands are all very 18 * similar to commands in the SCSI-II and ATAPI specifications. 19 * 20 * It is important to note that in a number of cases this class 21 * exhibits class-specific exemptions from the USB specification. 22 * Notably the usage of NAK, STALL and ACK differs from the norm, in 23 * that they are used to communicate wait, failed and OK on commands. 24 * 25 * Also, for certain devices, the interrupt endpoint is used to convey 26 * status of a command. 27 * 28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more 29 * information about this driver. 30 * 31 * This program is free software; you can redistribute it and/or modify it 32 * under the terms of the GNU General Public License as published by the 33 * Free Software Foundation; either version 2, or (at your option) any 34 * later version. 35 * 36 * This program is distributed in the hope that it will be useful, but 37 * WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 39 * General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, write to the Free Software Foundation, Inc., 43 * 675 Mass Ave, Cambridge, MA 02139, USA. 44 */ 45 46 #include <linux/sched.h> 47 #include <linux/gfp.h> 48 #include <linux/errno.h> 49 50 #include <linux/usb/quirks.h> 51 52 #include <scsi/scsi.h> 53 #include <scsi/scsi_eh.h> 54 #include <scsi/scsi_device.h> 55 56 #include "usb.h" 57 #include "transport.h" 58 #include "protocol.h" 59 #include "scsiglue.h" 60 #include "debug.h" 61 62 #include <linux/blkdev.h> 63 #include "../../scsi/sd.h" 64 65 66 /*********************************************************************** 67 * Data transfer routines 68 ***********************************************************************/ 69 70 /* 71 * This is subtle, so pay attention: 72 * --------------------------------- 73 * We're very concerned about races with a command abort. Hanging this code 74 * is a sure fire way to hang the kernel. (Note that this discussion applies 75 * only to transactions resulting from a scsi queued-command, since only 76 * these transactions are subject to a scsi abort. Other transactions, such 77 * as those occurring during device-specific initialization, must be handled 78 * by a separate code path.) 79 * 80 * The abort function (usb_storage_command_abort() in scsiglue.c) first 81 * sets the machine state and the ABORTING bit in us->dflags to prevent 82 * new URBs from being submitted. It then calls usb_stor_stop_transport() 83 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags 84 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE 85 * bit is tested to see if the current_sg scatter-gather request needs to be 86 * stopped. The timeout callback routine does much the same thing. 87 * 88 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to 89 * prevent new URBs from being submitted, and usb_stor_stop_transport() is 90 * called to stop any ongoing requests. 91 * 92 * The submit function first verifies that the submitting is allowed 93 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit 94 * completes without errors, and only then sets the URB_ACTIVE bit. This 95 * prevents the stop_transport() function from trying to cancel the URB 96 * while the submit call is underway. Next, the submit function must test 97 * the flags to see if an abort or disconnect occurred during the submission 98 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel 99 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit 100 * is still set). Either way, the function must then wait for the URB to 101 * finish. Note that the URB can still be in progress even after a call to 102 * usb_unlink_urb() returns. 103 * 104 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, 105 * either the stop_transport() function or the submitting function 106 * is guaranteed to call usb_unlink_urb() for an active URB, 107 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being 108 * called more than once or from being called during usb_submit_urb(). 109 */ 110 111 /* This is the completion handler which will wake us up when an URB 112 * completes. 113 */ 114 static void usb_stor_blocking_completion(struct urb *urb) 115 { 116 struct completion *urb_done_ptr = urb->context; 117 118 complete(urb_done_ptr); 119 } 120 121 /* This is the common part of the URB message submission code 122 * 123 * All URBs from the usb-storage driver involved in handling a queued scsi 124 * command _must_ pass through this function (or something like it) for the 125 * abort mechanisms to work properly. 126 */ 127 static int usb_stor_msg_common(struct us_data *us, int timeout) 128 { 129 struct completion urb_done; 130 long timeleft; 131 int status; 132 133 /* don't submit URBs during abort processing */ 134 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 135 return -EIO; 136 137 /* set up data structures for the wakeup system */ 138 init_completion(&urb_done); 139 140 /* fill the common fields in the URB */ 141 us->current_urb->context = &urb_done; 142 us->current_urb->transfer_flags = 0; 143 144 /* we assume that if transfer_buffer isn't us->iobuf then it 145 * hasn't been mapped for DMA. Yes, this is clunky, but it's 146 * easier than always having the caller tell us whether the 147 * transfer buffer has already been mapped. */ 148 if (us->current_urb->transfer_buffer == us->iobuf) 149 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 150 us->current_urb->transfer_dma = us->iobuf_dma; 151 152 /* submit the URB */ 153 status = usb_submit_urb(us->current_urb, GFP_NOIO); 154 if (status) { 155 /* something went wrong */ 156 return status; 157 } 158 159 /* since the URB has been submitted successfully, it's now okay 160 * to cancel it */ 161 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 162 163 /* did an abort occur during the submission? */ 164 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 165 166 /* cancel the URB, if it hasn't been cancelled already */ 167 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 168 US_DEBUGP("-- cancelling URB\n"); 169 usb_unlink_urb(us->current_urb); 170 } 171 } 172 173 /* wait for the completion of the URB */ 174 timeleft = wait_for_completion_interruptible_timeout( 175 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); 176 177 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 178 179 if (timeleft <= 0) { 180 US_DEBUGP("%s -- cancelling URB\n", 181 timeleft == 0 ? "Timeout" : "Signal"); 182 usb_kill_urb(us->current_urb); 183 } 184 185 /* return the URB status */ 186 return us->current_urb->status; 187 } 188 189 /* 190 * Transfer one control message, with timeouts, and allowing early 191 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. 192 */ 193 int usb_stor_control_msg(struct us_data *us, unsigned int pipe, 194 u8 request, u8 requesttype, u16 value, u16 index, 195 void *data, u16 size, int timeout) 196 { 197 int status; 198 199 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 200 __func__, request, requesttype, 201 value, index, size); 202 203 /* fill in the devrequest structure */ 204 us->cr->bRequestType = requesttype; 205 us->cr->bRequest = request; 206 us->cr->wValue = cpu_to_le16(value); 207 us->cr->wIndex = cpu_to_le16(index); 208 us->cr->wLength = cpu_to_le16(size); 209 210 /* fill and submit the URB */ 211 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 212 (unsigned char*) us->cr, data, size, 213 usb_stor_blocking_completion, NULL); 214 status = usb_stor_msg_common(us, timeout); 215 216 /* return the actual length of the data transferred if no error */ 217 if (status == 0) 218 status = us->current_urb->actual_length; 219 return status; 220 } 221 EXPORT_SYMBOL_GPL(usb_stor_control_msg); 222 223 /* This is a version of usb_clear_halt() that allows early termination and 224 * doesn't read the status from the device -- this is because some devices 225 * crash their internal firmware when the status is requested after a halt. 226 * 227 * A definitive list of these 'bad' devices is too difficult to maintain or 228 * make complete enough to be useful. This problem was first observed on the 229 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither 230 * MacOS nor Windows checks the status after clearing a halt. 231 * 232 * Since many vendors in this space limit their testing to interoperability 233 * with these two OSes, specification violations like this one are common. 234 */ 235 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) 236 { 237 int result; 238 int endp = usb_pipeendpoint(pipe); 239 240 if (usb_pipein (pipe)) 241 endp |= USB_DIR_IN; 242 243 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 244 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 245 USB_ENDPOINT_HALT, endp, 246 NULL, 0, 3*HZ); 247 248 if (result >= 0) 249 usb_reset_endpoint(us->pusb_dev, endp); 250 251 US_DEBUGP("%s: result = %d\n", __func__, result); 252 return result; 253 } 254 EXPORT_SYMBOL_GPL(usb_stor_clear_halt); 255 256 257 /* 258 * Interpret the results of a URB transfer 259 * 260 * This function prints appropriate debugging messages, clears halts on 261 * non-control endpoints, and translates the status to the corresponding 262 * USB_STOR_XFER_xxx return code. 263 */ 264 static int interpret_urb_result(struct us_data *us, unsigned int pipe, 265 unsigned int length, int result, unsigned int partial) 266 { 267 US_DEBUGP("Status code %d; transferred %u/%u\n", 268 result, partial, length); 269 switch (result) { 270 271 /* no error code; did we send all the data? */ 272 case 0: 273 if (partial != length) { 274 US_DEBUGP("-- short transfer\n"); 275 return USB_STOR_XFER_SHORT; 276 } 277 278 US_DEBUGP("-- transfer complete\n"); 279 return USB_STOR_XFER_GOOD; 280 281 /* stalled */ 282 case -EPIPE: 283 /* for control endpoints, (used by CB[I]) a stall indicates 284 * a failed command */ 285 if (usb_pipecontrol(pipe)) { 286 US_DEBUGP("-- stall on control pipe\n"); 287 return USB_STOR_XFER_STALLED; 288 } 289 290 /* for other sorts of endpoint, clear the stall */ 291 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe); 292 if (usb_stor_clear_halt(us, pipe) < 0) 293 return USB_STOR_XFER_ERROR; 294 return USB_STOR_XFER_STALLED; 295 296 /* babble - the device tried to send more than we wanted to read */ 297 case -EOVERFLOW: 298 US_DEBUGP("-- babble\n"); 299 return USB_STOR_XFER_LONG; 300 301 /* the transfer was cancelled by abort, disconnect, or timeout */ 302 case -ECONNRESET: 303 US_DEBUGP("-- transfer cancelled\n"); 304 return USB_STOR_XFER_ERROR; 305 306 /* short scatter-gather read transfer */ 307 case -EREMOTEIO: 308 US_DEBUGP("-- short read transfer\n"); 309 return USB_STOR_XFER_SHORT; 310 311 /* abort or disconnect in progress */ 312 case -EIO: 313 US_DEBUGP("-- abort or disconnect in progress\n"); 314 return USB_STOR_XFER_ERROR; 315 316 /* the catch-all error case */ 317 default: 318 US_DEBUGP("-- unknown error\n"); 319 return USB_STOR_XFER_ERROR; 320 } 321 } 322 323 /* 324 * Transfer one control message, without timeouts, but allowing early 325 * termination. Return codes are USB_STOR_XFER_xxx. 326 */ 327 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, 328 u8 request, u8 requesttype, u16 value, u16 index, 329 void *data, u16 size) 330 { 331 int result; 332 333 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 334 __func__, request, requesttype, 335 value, index, size); 336 337 /* fill in the devrequest structure */ 338 us->cr->bRequestType = requesttype; 339 us->cr->bRequest = request; 340 us->cr->wValue = cpu_to_le16(value); 341 us->cr->wIndex = cpu_to_le16(index); 342 us->cr->wLength = cpu_to_le16(size); 343 344 /* fill and submit the URB */ 345 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 346 (unsigned char*) us->cr, data, size, 347 usb_stor_blocking_completion, NULL); 348 result = usb_stor_msg_common(us, 0); 349 350 return interpret_urb_result(us, pipe, size, result, 351 us->current_urb->actual_length); 352 } 353 EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer); 354 355 /* 356 * Receive one interrupt buffer, without timeouts, but allowing early 357 * termination. Return codes are USB_STOR_XFER_xxx. 358 * 359 * This routine always uses us->recv_intr_pipe as the pipe and 360 * us->ep_bInterval as the interrupt interval. 361 */ 362 static int usb_stor_intr_transfer(struct us_data *us, void *buf, 363 unsigned int length) 364 { 365 int result; 366 unsigned int pipe = us->recv_intr_pipe; 367 unsigned int maxp; 368 369 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 370 371 /* calculate the max packet size */ 372 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); 373 if (maxp > length) 374 maxp = length; 375 376 /* fill and submit the URB */ 377 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, 378 maxp, usb_stor_blocking_completion, NULL, 379 us->ep_bInterval); 380 result = usb_stor_msg_common(us, 0); 381 382 return interpret_urb_result(us, pipe, length, result, 383 us->current_urb->actual_length); 384 } 385 386 /* 387 * Transfer one buffer via bulk pipe, without timeouts, but allowing early 388 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe 389 * stalls during the transfer, the halt is automatically cleared. 390 */ 391 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, 392 void *buf, unsigned int length, unsigned int *act_len) 393 { 394 int result; 395 396 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 397 398 /* fill and submit the URB */ 399 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, 400 usb_stor_blocking_completion, NULL); 401 result = usb_stor_msg_common(us, 0); 402 403 /* store the actual length of the data transferred */ 404 if (act_len) 405 *act_len = us->current_urb->actual_length; 406 return interpret_urb_result(us, pipe, length, result, 407 us->current_urb->actual_length); 408 } 409 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf); 410 411 /* 412 * Transfer a scatter-gather list via bulk transfer 413 * 414 * This function does basically the same thing as usb_stor_bulk_transfer_buf() 415 * above, but it uses the usbcore scatter-gather library. 416 */ 417 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, 418 struct scatterlist *sg, int num_sg, unsigned int length, 419 unsigned int *act_len) 420 { 421 int result; 422 423 /* don't submit s-g requests during abort processing */ 424 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 425 return USB_STOR_XFER_ERROR; 426 427 /* initialize the scatter-gather request block */ 428 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__, 429 length, num_sg); 430 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, 431 sg, num_sg, length, GFP_NOIO); 432 if (result) { 433 US_DEBUGP("usb_sg_init returned %d\n", result); 434 return USB_STOR_XFER_ERROR; 435 } 436 437 /* since the block has been initialized successfully, it's now 438 * okay to cancel it */ 439 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 440 441 /* did an abort occur during the submission? */ 442 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 443 444 /* cancel the request, if it hasn't been cancelled already */ 445 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 446 US_DEBUGP("-- cancelling sg request\n"); 447 usb_sg_cancel(&us->current_sg); 448 } 449 } 450 451 /* wait for the completion of the transfer */ 452 usb_sg_wait(&us->current_sg); 453 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 454 455 result = us->current_sg.status; 456 if (act_len) 457 *act_len = us->current_sg.bytes; 458 return interpret_urb_result(us, pipe, length, result, 459 us->current_sg.bytes); 460 } 461 462 /* 463 * Common used function. Transfer a complete command 464 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid 465 */ 466 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, 467 struct scsi_cmnd* srb) 468 { 469 unsigned int partial; 470 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), 471 scsi_sg_count(srb), scsi_bufflen(srb), 472 &partial); 473 474 scsi_set_resid(srb, scsi_bufflen(srb) - partial); 475 return result; 476 } 477 EXPORT_SYMBOL_GPL(usb_stor_bulk_srb); 478 479 /* 480 * Transfer an entire SCSI command's worth of data payload over the bulk 481 * pipe. 482 * 483 * Note that this uses usb_stor_bulk_transfer_buf() and 484 * usb_stor_bulk_transfer_sglist() to achieve its goals -- 485 * this function simply determines whether we're going to use 486 * scatter-gather or not, and acts appropriately. 487 */ 488 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, 489 void *buf, unsigned int length_left, int use_sg, int *residual) 490 { 491 int result; 492 unsigned int partial; 493 494 /* are we scatter-gathering? */ 495 if (use_sg) { 496 /* use the usb core scatter-gather primitives */ 497 result = usb_stor_bulk_transfer_sglist(us, pipe, 498 (struct scatterlist *) buf, use_sg, 499 length_left, &partial); 500 length_left -= partial; 501 } else { 502 /* no scatter-gather, just make the request */ 503 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 504 length_left, &partial); 505 length_left -= partial; 506 } 507 508 /* store the residual and return the error code */ 509 if (residual) 510 *residual = length_left; 511 return result; 512 } 513 EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg); 514 515 /*********************************************************************** 516 * Transport routines 517 ***********************************************************************/ 518 519 /* There are so many devices that report the capacity incorrectly, 520 * this routine was written to counteract some of the resulting 521 * problems. 522 */ 523 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) 524 { 525 struct gendisk *disk; 526 struct scsi_disk *sdkp; 527 u32 sector; 528 529 /* To Report "Medium Error: Record Not Found */ 530 static unsigned char record_not_found[18] = { 531 [0] = 0x70, /* current error */ 532 [2] = MEDIUM_ERROR, /* = 0x03 */ 533 [7] = 0x0a, /* additional length */ 534 [12] = 0x14 /* Record Not Found */ 535 }; 536 537 /* If last-sector problems can't occur, whether because the 538 * capacity was already decremented or because the device is 539 * known to report the correct capacity, then we don't need 540 * to do anything. 541 */ 542 if (!us->use_last_sector_hacks) 543 return; 544 545 /* Was this command a READ(10) or a WRITE(10)? */ 546 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) 547 goto done; 548 549 /* Did this command access the last sector? */ 550 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | 551 (srb->cmnd[4] << 8) | (srb->cmnd[5]); 552 disk = srb->request->rq_disk; 553 if (!disk) 554 goto done; 555 sdkp = scsi_disk(disk); 556 if (!sdkp) 557 goto done; 558 if (sector + 1 != sdkp->capacity) 559 goto done; 560 561 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { 562 563 /* The command succeeded. We know this device doesn't 564 * have the last-sector bug, so stop checking it. 565 */ 566 us->use_last_sector_hacks = 0; 567 568 } else { 569 /* The command failed. Allow up to 3 retries in case this 570 * is some normal sort of failure. After that, assume the 571 * capacity is wrong and we're trying to access the sector 572 * beyond the end. Replace the result code and sense data 573 * with values that will cause the SCSI core to fail the 574 * command immediately, instead of going into an infinite 575 * (or even just a very long) retry loop. 576 */ 577 if (++us->last_sector_retries < 3) 578 return; 579 srb->result = SAM_STAT_CHECK_CONDITION; 580 memcpy(srb->sense_buffer, record_not_found, 581 sizeof(record_not_found)); 582 } 583 584 done: 585 /* Don't reset the retry counter for TEST UNIT READY commands, 586 * because they get issued after device resets which might be 587 * caused by a failed last-sector access. 588 */ 589 if (srb->cmnd[0] != TEST_UNIT_READY) 590 us->last_sector_retries = 0; 591 } 592 593 /* Invoke the transport and basic error-handling/recovery methods 594 * 595 * This is used by the protocol layers to actually send the message to 596 * the device and receive the response. 597 */ 598 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) 599 { 600 int need_auto_sense; 601 int result; 602 603 /* send the command to the transport layer */ 604 scsi_set_resid(srb, 0); 605 result = us->transport(srb, us); 606 607 /* if the command gets aborted by the higher layers, we need to 608 * short-circuit all other processing 609 */ 610 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 611 US_DEBUGP("-- command was aborted\n"); 612 srb->result = DID_ABORT << 16; 613 goto Handle_Errors; 614 } 615 616 /* if there is a transport error, reset and don't auto-sense */ 617 if (result == USB_STOR_TRANSPORT_ERROR) { 618 US_DEBUGP("-- transport indicates error, resetting\n"); 619 srb->result = DID_ERROR << 16; 620 goto Handle_Errors; 621 } 622 623 /* if the transport provided its own sense data, don't auto-sense */ 624 if (result == USB_STOR_TRANSPORT_NO_SENSE) { 625 srb->result = SAM_STAT_CHECK_CONDITION; 626 last_sector_hacks(us, srb); 627 return; 628 } 629 630 srb->result = SAM_STAT_GOOD; 631 632 /* Determine if we need to auto-sense 633 * 634 * I normally don't use a flag like this, but it's almost impossible 635 * to understand what's going on here if I don't. 636 */ 637 need_auto_sense = 0; 638 639 /* 640 * If we're running the CB transport, which is incapable 641 * of determining status on its own, we will auto-sense 642 * unless the operation involved a data-in transfer. Devices 643 * can signal most data-in errors by stalling the bulk-in pipe. 644 */ 645 if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) && 646 srb->sc_data_direction != DMA_FROM_DEVICE) { 647 US_DEBUGP("-- CB transport device requiring auto-sense\n"); 648 need_auto_sense = 1; 649 } 650 651 /* 652 * If we have a failure, we're going to do a REQUEST_SENSE 653 * automatically. Note that we differentiate between a command 654 * "failure" and an "error" in the transport mechanism. 655 */ 656 if (result == USB_STOR_TRANSPORT_FAILED) { 657 US_DEBUGP("-- transport indicates command failure\n"); 658 need_auto_sense = 1; 659 } 660 661 /* 662 * Determine if this device is SAT by seeing if the 663 * command executed successfully. Otherwise we'll have 664 * to wait for at least one CHECK_CONDITION to determine 665 * SANE_SENSE support 666 */ 667 if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && 668 result == USB_STOR_TRANSPORT_GOOD && 669 !(us->fflags & US_FL_SANE_SENSE) && 670 !(us->fflags & US_FL_BAD_SENSE) && 671 !(srb->cmnd[2] & 0x20))) { 672 US_DEBUGP("-- SAT supported, increasing auto-sense\n"); 673 us->fflags |= US_FL_SANE_SENSE; 674 } 675 676 /* 677 * A short transfer on a command where we don't expect it 678 * is unusual, but it doesn't mean we need to auto-sense. 679 */ 680 if ((scsi_get_resid(srb) > 0) && 681 !((srb->cmnd[0] == REQUEST_SENSE) || 682 (srb->cmnd[0] == INQUIRY) || 683 (srb->cmnd[0] == MODE_SENSE) || 684 (srb->cmnd[0] == LOG_SENSE) || 685 (srb->cmnd[0] == MODE_SENSE_10))) { 686 US_DEBUGP("-- unexpectedly short transfer\n"); 687 } 688 689 /* Now, if we need to do the auto-sense, let's do it */ 690 if (need_auto_sense) { 691 int temp_result; 692 struct scsi_eh_save ses; 693 int sense_size = US_SENSE_SIZE; 694 struct scsi_sense_hdr sshdr; 695 const u8 *scdd; 696 u8 fm_ili; 697 698 /* device supports and needs bigger sense buffer */ 699 if (us->fflags & US_FL_SANE_SENSE) 700 sense_size = ~0; 701 Retry_Sense: 702 US_DEBUGP("Issuing auto-REQUEST_SENSE\n"); 703 704 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); 705 706 /* FIXME: we must do the protocol translation here */ 707 if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI || 708 us->subclass == USB_SC_CYP_ATACB) 709 srb->cmd_len = 6; 710 else 711 srb->cmd_len = 12; 712 713 /* issue the auto-sense command */ 714 scsi_set_resid(srb, 0); 715 temp_result = us->transport(us->srb, us); 716 717 /* let's clean up right away */ 718 scsi_eh_restore_cmnd(srb, &ses); 719 720 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 721 US_DEBUGP("-- auto-sense aborted\n"); 722 srb->result = DID_ABORT << 16; 723 724 /* If SANE_SENSE caused this problem, disable it */ 725 if (sense_size != US_SENSE_SIZE) { 726 us->fflags &= ~US_FL_SANE_SENSE; 727 us->fflags |= US_FL_BAD_SENSE; 728 } 729 goto Handle_Errors; 730 } 731 732 /* Some devices claim to support larger sense but fail when 733 * trying to request it. When a transport failure happens 734 * using US_FS_SANE_SENSE, we always retry with a standard 735 * (small) sense request. This fixes some USB GSM modems 736 */ 737 if (temp_result == USB_STOR_TRANSPORT_FAILED && 738 sense_size != US_SENSE_SIZE) { 739 US_DEBUGP("-- auto-sense failure, retry small sense\n"); 740 sense_size = US_SENSE_SIZE; 741 us->fflags &= ~US_FL_SANE_SENSE; 742 us->fflags |= US_FL_BAD_SENSE; 743 goto Retry_Sense; 744 } 745 746 /* Other failures */ 747 if (temp_result != USB_STOR_TRANSPORT_GOOD) { 748 US_DEBUGP("-- auto-sense failure\n"); 749 750 /* we skip the reset if this happens to be a 751 * multi-target device, since failure of an 752 * auto-sense is perfectly valid 753 */ 754 srb->result = DID_ERROR << 16; 755 if (!(us->fflags & US_FL_SCM_MULT_TARG)) 756 goto Handle_Errors; 757 return; 758 } 759 760 /* If the sense data returned is larger than 18-bytes then we 761 * assume this device supports requesting more in the future. 762 * The response code must be 70h through 73h inclusive. 763 */ 764 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && 765 !(us->fflags & US_FL_SANE_SENSE) && 766 !(us->fflags & US_FL_BAD_SENSE) && 767 (srb->sense_buffer[0] & 0x7C) == 0x70) { 768 US_DEBUGP("-- SANE_SENSE support enabled\n"); 769 us->fflags |= US_FL_SANE_SENSE; 770 771 /* Indicate to the user that we truncated their sense 772 * because we didn't know it supported larger sense. 773 */ 774 US_DEBUGP("-- Sense data truncated to %i from %i\n", 775 US_SENSE_SIZE, 776 srb->sense_buffer[7] + 8); 777 srb->sense_buffer[7] = (US_SENSE_SIZE - 8); 778 } 779 780 scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE, 781 &sshdr); 782 783 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result); 784 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", 785 sshdr.response_code, sshdr.sense_key, 786 sshdr.asc, sshdr.ascq); 787 #ifdef CONFIG_USB_STORAGE_DEBUG 788 usb_stor_show_sense(sshdr.sense_key, sshdr.asc, sshdr.ascq); 789 #endif 790 791 /* set the result so the higher layers expect this data */ 792 srb->result = SAM_STAT_CHECK_CONDITION; 793 794 scdd = scsi_sense_desc_find(srb->sense_buffer, 795 SCSI_SENSE_BUFFERSIZE, 4); 796 fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0; 797 798 /* We often get empty sense data. This could indicate that 799 * everything worked or that there was an unspecified 800 * problem. We have to decide which. 801 */ 802 if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 && 803 fm_ili == 0) { 804 /* If things are really okay, then let's show that. 805 * Zero out the sense buffer so the higher layers 806 * won't realize we did an unsolicited auto-sense. 807 */ 808 if (result == USB_STOR_TRANSPORT_GOOD) { 809 srb->result = SAM_STAT_GOOD; 810 srb->sense_buffer[0] = 0x0; 811 812 /* If there was a problem, report an unspecified 813 * hardware error to prevent the higher layers from 814 * entering an infinite retry loop. 815 */ 816 } else { 817 srb->result = DID_ERROR << 16; 818 if ((sshdr.response_code & 0x72) == 0x72) 819 srb->sense_buffer[1] = HARDWARE_ERROR; 820 else 821 srb->sense_buffer[2] = HARDWARE_ERROR; 822 } 823 } 824 } 825 826 /* 827 * Some devices don't work or return incorrect data the first 828 * time they get a READ(10) command, or for the first READ(10) 829 * after a media change. If the INITIAL_READ10 flag is set, 830 * keep track of whether READ(10) commands succeed. If the 831 * previous one succeeded and this one failed, set the REDO_READ10 832 * flag to force a retry. 833 */ 834 if (unlikely((us->fflags & US_FL_INITIAL_READ10) && 835 srb->cmnd[0] == READ_10)) { 836 if (srb->result == SAM_STAT_GOOD) { 837 set_bit(US_FLIDX_READ10_WORKED, &us->dflags); 838 } else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) { 839 clear_bit(US_FLIDX_READ10_WORKED, &us->dflags); 840 set_bit(US_FLIDX_REDO_READ10, &us->dflags); 841 } 842 843 /* 844 * Next, if the REDO_READ10 flag is set, return a result 845 * code that will cause the SCSI core to retry the READ(10) 846 * command immediately. 847 */ 848 if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) { 849 clear_bit(US_FLIDX_REDO_READ10, &us->dflags); 850 srb->result = DID_IMM_RETRY << 16; 851 srb->sense_buffer[0] = 0; 852 } 853 } 854 855 /* Did we transfer less than the minimum amount required? */ 856 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && 857 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) 858 srb->result = DID_ERROR << 16; 859 860 last_sector_hacks(us, srb); 861 return; 862 863 /* Error and abort processing: try to resynchronize with the device 864 * by issuing a port reset. If that fails, try a class-specific 865 * device reset. */ 866 Handle_Errors: 867 868 /* Set the RESETTING bit, and clear the ABORTING bit so that 869 * the reset may proceed. */ 870 scsi_lock(us_to_host(us)); 871 set_bit(US_FLIDX_RESETTING, &us->dflags); 872 clear_bit(US_FLIDX_ABORTING, &us->dflags); 873 scsi_unlock(us_to_host(us)); 874 875 /* We must release the device lock because the pre_reset routine 876 * will want to acquire it. */ 877 mutex_unlock(&us->dev_mutex); 878 result = usb_stor_port_reset(us); 879 mutex_lock(&us->dev_mutex); 880 881 if (result < 0) { 882 scsi_lock(us_to_host(us)); 883 usb_stor_report_device_reset(us); 884 scsi_unlock(us_to_host(us)); 885 us->transport_reset(us); 886 } 887 clear_bit(US_FLIDX_RESETTING, &us->dflags); 888 last_sector_hacks(us, srb); 889 } 890 891 /* Stop the current URB transfer */ 892 void usb_stor_stop_transport(struct us_data *us) 893 { 894 US_DEBUGP("%s called\n", __func__); 895 896 /* If the state machine is blocked waiting for an URB, 897 * let's wake it up. The test_and_clear_bit() call 898 * guarantees that if a URB has just been submitted, 899 * it won't be cancelled more than once. */ 900 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 901 US_DEBUGP("-- cancelling URB\n"); 902 usb_unlink_urb(us->current_urb); 903 } 904 905 /* If we are waiting for a scatter-gather operation, cancel it. */ 906 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 907 US_DEBUGP("-- cancelling sg request\n"); 908 usb_sg_cancel(&us->current_sg); 909 } 910 } 911 912 /* 913 * Control/Bulk and Control/Bulk/Interrupt transport 914 */ 915 916 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) 917 { 918 unsigned int transfer_length = scsi_bufflen(srb); 919 unsigned int pipe = 0; 920 int result; 921 922 /* COMMAND STAGE */ 923 /* let's send the command via the control pipe */ 924 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 925 US_CBI_ADSC, 926 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 927 us->ifnum, srb->cmnd, srb->cmd_len); 928 929 /* check the return code for the command */ 930 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result); 931 932 /* if we stalled the command, it means command failed */ 933 if (result == USB_STOR_XFER_STALLED) { 934 return USB_STOR_TRANSPORT_FAILED; 935 } 936 937 /* Uh oh... serious problem here */ 938 if (result != USB_STOR_XFER_GOOD) { 939 return USB_STOR_TRANSPORT_ERROR; 940 } 941 942 /* DATA STAGE */ 943 /* transfer the data payload for this command, if one exists*/ 944 if (transfer_length) { 945 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 946 us->recv_bulk_pipe : us->send_bulk_pipe; 947 result = usb_stor_bulk_srb(us, pipe, srb); 948 US_DEBUGP("CBI data stage result is 0x%x\n", result); 949 950 /* if we stalled the data transfer it means command failed */ 951 if (result == USB_STOR_XFER_STALLED) 952 return USB_STOR_TRANSPORT_FAILED; 953 if (result > USB_STOR_XFER_STALLED) 954 return USB_STOR_TRANSPORT_ERROR; 955 } 956 957 /* STATUS STAGE */ 958 959 /* NOTE: CB does not have a status stage. Silly, I know. So 960 * we have to catch this at a higher level. 961 */ 962 if (us->protocol != USB_PR_CBI) 963 return USB_STOR_TRANSPORT_GOOD; 964 965 result = usb_stor_intr_transfer(us, us->iobuf, 2); 966 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n", 967 us->iobuf[0], us->iobuf[1]); 968 if (result != USB_STOR_XFER_GOOD) 969 return USB_STOR_TRANSPORT_ERROR; 970 971 /* UFI gives us ASC and ASCQ, like a request sense 972 * 973 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI 974 * devices, so we ignore the information for those commands. Note 975 * that this means we could be ignoring a real error on these 976 * commands, but that can't be helped. 977 */ 978 if (us->subclass == USB_SC_UFI) { 979 if (srb->cmnd[0] == REQUEST_SENSE || 980 srb->cmnd[0] == INQUIRY) 981 return USB_STOR_TRANSPORT_GOOD; 982 if (us->iobuf[0]) 983 goto Failed; 984 return USB_STOR_TRANSPORT_GOOD; 985 } 986 987 /* If not UFI, we interpret the data as a result code 988 * The first byte should always be a 0x0. 989 * 990 * Some bogus devices don't follow that rule. They stuff the ASC 991 * into the first byte -- so if it's non-zero, call it a failure. 992 */ 993 if (us->iobuf[0]) { 994 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n", 995 us->iobuf[0]); 996 goto Failed; 997 998 } 999 1000 /* The second byte & 0x0F should be 0x0 for good, otherwise error */ 1001 switch (us->iobuf[1] & 0x0F) { 1002 case 0x00: 1003 return USB_STOR_TRANSPORT_GOOD; 1004 case 0x01: 1005 goto Failed; 1006 } 1007 return USB_STOR_TRANSPORT_ERROR; 1008 1009 /* the CBI spec requires that the bulk pipe must be cleared 1010 * following any data-in/out command failure (section 2.4.3.1.3) 1011 */ 1012 Failed: 1013 if (pipe) 1014 usb_stor_clear_halt(us, pipe); 1015 return USB_STOR_TRANSPORT_FAILED; 1016 } 1017 EXPORT_SYMBOL_GPL(usb_stor_CB_transport); 1018 1019 /* 1020 * Bulk only transport 1021 */ 1022 1023 /* Determine what the maximum LUN supported is */ 1024 int usb_stor_Bulk_max_lun(struct us_data *us) 1025 { 1026 int result; 1027 1028 /* issue the command */ 1029 us->iobuf[0] = 0; 1030 result = usb_stor_control_msg(us, us->recv_ctrl_pipe, 1031 US_BULK_GET_MAX_LUN, 1032 USB_DIR_IN | USB_TYPE_CLASS | 1033 USB_RECIP_INTERFACE, 1034 0, us->ifnum, us->iobuf, 1, 10*HZ); 1035 1036 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n", 1037 result, us->iobuf[0]); 1038 1039 /* if we have a successful request, return the result */ 1040 if (result > 0) 1041 return us->iobuf[0]; 1042 1043 /* 1044 * Some devices don't like GetMaxLUN. They may STALL the control 1045 * pipe, they may return a zero-length result, they may do nothing at 1046 * all and timeout, or they may fail in even more bizarrely creative 1047 * ways. In these cases the best approach is to use the default 1048 * value: only one LUN. 1049 */ 1050 return 0; 1051 } 1052 1053 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) 1054 { 1055 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; 1056 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; 1057 unsigned int transfer_length = scsi_bufflen(srb); 1058 unsigned int residue; 1059 int result; 1060 int fake_sense = 0; 1061 unsigned int cswlen; 1062 unsigned int cbwlen = US_BULK_CB_WRAP_LEN; 1063 1064 /* Take care of BULK32 devices; set extra byte to 0 */ 1065 if (unlikely(us->fflags & US_FL_BULK32)) { 1066 cbwlen = 32; 1067 us->iobuf[31] = 0; 1068 } 1069 1070 /* set up the command wrapper */ 1071 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 1072 bcb->DataTransferLength = cpu_to_le32(transfer_length); 1073 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0; 1074 bcb->Tag = ++us->tag; 1075 bcb->Lun = srb->device->lun; 1076 if (us->fflags & US_FL_SCM_MULT_TARG) 1077 bcb->Lun |= srb->device->id << 4; 1078 bcb->Length = srb->cmd_len; 1079 1080 /* copy the command payload */ 1081 memset(bcb->CDB, 0, sizeof(bcb->CDB)); 1082 memcpy(bcb->CDB, srb->cmnd, bcb->Length); 1083 1084 /* send it to out endpoint */ 1085 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", 1086 le32_to_cpu(bcb->Signature), bcb->Tag, 1087 le32_to_cpu(bcb->DataTransferLength), bcb->Flags, 1088 (bcb->Lun >> 4), (bcb->Lun & 0x0F), 1089 bcb->Length); 1090 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 1091 bcb, cbwlen, NULL); 1092 US_DEBUGP("Bulk command transfer result=%d\n", result); 1093 if (result != USB_STOR_XFER_GOOD) 1094 return USB_STOR_TRANSPORT_ERROR; 1095 1096 /* DATA STAGE */ 1097 /* send/receive data payload, if there is any */ 1098 1099 /* Some USB-IDE converter chips need a 100us delay between the 1100 * command phase and the data phase. Some devices need a little 1101 * more than that, probably because of clock rate inaccuracies. */ 1102 if (unlikely(us->fflags & US_FL_GO_SLOW)) 1103 udelay(125); 1104 1105 if (transfer_length) { 1106 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 1107 us->recv_bulk_pipe : us->send_bulk_pipe; 1108 result = usb_stor_bulk_srb(us, pipe, srb); 1109 US_DEBUGP("Bulk data transfer result 0x%x\n", result); 1110 if (result == USB_STOR_XFER_ERROR) 1111 return USB_STOR_TRANSPORT_ERROR; 1112 1113 /* If the device tried to send back more data than the 1114 * amount requested, the spec requires us to transfer 1115 * the CSW anyway. Since there's no point retrying the 1116 * the command, we'll return fake sense data indicating 1117 * Illegal Request, Invalid Field in CDB. 1118 */ 1119 if (result == USB_STOR_XFER_LONG) 1120 fake_sense = 1; 1121 } 1122 1123 /* See flow chart on pg 15 of the Bulk Only Transport spec for 1124 * an explanation of how this code works. 1125 */ 1126 1127 /* get CSW for device status */ 1128 US_DEBUGP("Attempting to get CSW...\n"); 1129 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1130 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1131 1132 /* Some broken devices add unnecessary zero-length packets to the 1133 * end of their data transfers. Such packets show up as 0-length 1134 * CSWs. If we encounter such a thing, try to read the CSW again. 1135 */ 1136 if (result == USB_STOR_XFER_SHORT && cswlen == 0) { 1137 US_DEBUGP("Received 0-length CSW; retrying...\n"); 1138 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1139 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1140 } 1141 1142 /* did the attempt to read the CSW fail? */ 1143 if (result == USB_STOR_XFER_STALLED) { 1144 1145 /* get the status again */ 1146 US_DEBUGP("Attempting to get CSW (2nd try)...\n"); 1147 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1148 bcs, US_BULK_CS_WRAP_LEN, NULL); 1149 } 1150 1151 /* if we still have a failure at this point, we're in trouble */ 1152 US_DEBUGP("Bulk status result = %d\n", result); 1153 if (result != USB_STOR_XFER_GOOD) 1154 return USB_STOR_TRANSPORT_ERROR; 1155 1156 /* check bulk status */ 1157 residue = le32_to_cpu(bcs->Residue); 1158 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", 1159 le32_to_cpu(bcs->Signature), bcs->Tag, 1160 residue, bcs->Status); 1161 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || 1162 bcs->Status > US_BULK_STAT_PHASE) { 1163 US_DEBUGP("Bulk logical error\n"); 1164 return USB_STOR_TRANSPORT_ERROR; 1165 } 1166 1167 /* Some broken devices report odd signatures, so we do not check them 1168 * for validity against the spec. We store the first one we see, 1169 * and check subsequent transfers for validity against this signature. 1170 */ 1171 if (!us->bcs_signature) { 1172 us->bcs_signature = bcs->Signature; 1173 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) 1174 US_DEBUGP("Learnt BCS signature 0x%08X\n", 1175 le32_to_cpu(us->bcs_signature)); 1176 } else if (bcs->Signature != us->bcs_signature) { 1177 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n", 1178 le32_to_cpu(bcs->Signature), 1179 le32_to_cpu(us->bcs_signature)); 1180 return USB_STOR_TRANSPORT_ERROR; 1181 } 1182 1183 /* try to compute the actual residue, based on how much data 1184 * was really transferred and what the device tells us */ 1185 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { 1186 1187 /* Heuristically detect devices that generate bogus residues 1188 * by seeing what happens with INQUIRY and READ CAPACITY 1189 * commands. 1190 */ 1191 if (bcs->Status == US_BULK_STAT_OK && 1192 scsi_get_resid(srb) == 0 && 1193 ((srb->cmnd[0] == INQUIRY && 1194 transfer_length == 36) || 1195 (srb->cmnd[0] == READ_CAPACITY && 1196 transfer_length == 8))) { 1197 us->fflags |= US_FL_IGNORE_RESIDUE; 1198 1199 } else { 1200 residue = min(residue, transfer_length); 1201 scsi_set_resid(srb, max(scsi_get_resid(srb), 1202 (int) residue)); 1203 } 1204 } 1205 1206 /* based on the status code, we report good or bad */ 1207 switch (bcs->Status) { 1208 case US_BULK_STAT_OK: 1209 /* device babbled -- return fake sense data */ 1210 if (fake_sense) { 1211 memcpy(srb->sense_buffer, 1212 usb_stor_sense_invalidCDB, 1213 sizeof(usb_stor_sense_invalidCDB)); 1214 return USB_STOR_TRANSPORT_NO_SENSE; 1215 } 1216 1217 /* command good -- note that data could be short */ 1218 return USB_STOR_TRANSPORT_GOOD; 1219 1220 case US_BULK_STAT_FAIL: 1221 /* command failed */ 1222 return USB_STOR_TRANSPORT_FAILED; 1223 1224 case US_BULK_STAT_PHASE: 1225 /* phase error -- note that a transport reset will be 1226 * invoked by the invoke_transport() function 1227 */ 1228 return USB_STOR_TRANSPORT_ERROR; 1229 } 1230 1231 /* we should never get here, but if we do, we're in trouble */ 1232 return USB_STOR_TRANSPORT_ERROR; 1233 } 1234 EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport); 1235 1236 /*********************************************************************** 1237 * Reset routines 1238 ***********************************************************************/ 1239 1240 /* This is the common part of the device reset code. 1241 * 1242 * It's handy that every transport mechanism uses the control endpoint for 1243 * resets. 1244 * 1245 * Basically, we send a reset with a 5-second timeout, so we don't get 1246 * jammed attempting to do the reset. 1247 */ 1248 static int usb_stor_reset_common(struct us_data *us, 1249 u8 request, u8 requesttype, 1250 u16 value, u16 index, void *data, u16 size) 1251 { 1252 int result; 1253 int result2; 1254 1255 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1256 US_DEBUGP("No reset during disconnect\n"); 1257 return -EIO; 1258 } 1259 1260 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 1261 request, requesttype, value, index, data, size, 1262 5*HZ); 1263 if (result < 0) { 1264 US_DEBUGP("Soft reset failed: %d\n", result); 1265 return result; 1266 } 1267 1268 /* Give the device some time to recover from the reset, 1269 * but don't delay disconnect processing. */ 1270 wait_event_interruptible_timeout(us->delay_wait, 1271 test_bit(US_FLIDX_DISCONNECTING, &us->dflags), 1272 HZ*6); 1273 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1274 US_DEBUGP("Reset interrupted by disconnect\n"); 1275 return -EIO; 1276 } 1277 1278 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n"); 1279 result = usb_stor_clear_halt(us, us->recv_bulk_pipe); 1280 1281 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n"); 1282 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); 1283 1284 /* return a result code based on the result of the clear-halts */ 1285 if (result >= 0) 1286 result = result2; 1287 if (result < 0) 1288 US_DEBUGP("Soft reset failed\n"); 1289 else 1290 US_DEBUGP("Soft reset done\n"); 1291 return result; 1292 } 1293 1294 /* This issues a CB[I] Reset to the device in question 1295 */ 1296 #define CB_RESET_CMD_SIZE 12 1297 1298 int usb_stor_CB_reset(struct us_data *us) 1299 { 1300 US_DEBUGP("%s called\n", __func__); 1301 1302 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); 1303 us->iobuf[0] = SEND_DIAGNOSTIC; 1304 us->iobuf[1] = 4; 1305 return usb_stor_reset_common(us, US_CBI_ADSC, 1306 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1307 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); 1308 } 1309 EXPORT_SYMBOL_GPL(usb_stor_CB_reset); 1310 1311 /* This issues a Bulk-only Reset to the device in question, including 1312 * clearing the subsequent endpoint halts that may occur. 1313 */ 1314 int usb_stor_Bulk_reset(struct us_data *us) 1315 { 1316 US_DEBUGP("%s called\n", __func__); 1317 1318 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 1319 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1320 0, us->ifnum, NULL, 0); 1321 } 1322 EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset); 1323 1324 /* Issue a USB port reset to the device. The caller must not hold 1325 * us->dev_mutex. 1326 */ 1327 int usb_stor_port_reset(struct us_data *us) 1328 { 1329 int result; 1330 1331 /*for these devices we must use the class specific method */ 1332 if (us->pusb_dev->quirks & USB_QUIRK_RESET_MORPHS) 1333 return -EPERM; 1334 1335 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); 1336 if (result < 0) 1337 US_DEBUGP("unable to lock device for reset: %d\n", result); 1338 else { 1339 /* Were we disconnected while waiting for the lock? */ 1340 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1341 result = -EIO; 1342 US_DEBUGP("No reset during disconnect\n"); 1343 } else { 1344 result = usb_reset_device(us->pusb_dev); 1345 US_DEBUGP("usb_reset_device returns %d\n", 1346 result); 1347 } 1348 usb_unlock_device(us->pusb_dev); 1349 } 1350 return result; 1351 } 1352