1 /* Driver for USB Mass Storage compliant devices 2 * 3 * Current development and maintenance by: 4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) 5 * 6 * Developed with the assistance of: 7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) 8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) 9 * (c) 2002 Alan Stern <stern@rowland.org> 10 * 11 * Initial work by: 12 * (c) 1999 Michael Gee (michael@linuxspecific.com) 13 * 14 * This driver is based on the 'USB Mass Storage Class' document. This 15 * describes in detail the protocol used to communicate with such 16 * devices. Clearly, the designers had SCSI and ATAPI commands in 17 * mind when they created this document. The commands are all very 18 * similar to commands in the SCSI-II and ATAPI specifications. 19 * 20 * It is important to note that in a number of cases this class 21 * exhibits class-specific exemptions from the USB specification. 22 * Notably the usage of NAK, STALL and ACK differs from the norm, in 23 * that they are used to communicate wait, failed and OK on commands. 24 * 25 * Also, for certain devices, the interrupt endpoint is used to convey 26 * status of a command. 27 * 28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more 29 * information about this driver. 30 * 31 * This program is free software; you can redistribute it and/or modify it 32 * under the terms of the GNU General Public License as published by the 33 * Free Software Foundation; either version 2, or (at your option) any 34 * later version. 35 * 36 * This program is distributed in the hope that it will be useful, but 37 * WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 39 * General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, write to the Free Software Foundation, Inc., 43 * 675 Mass Ave, Cambridge, MA 02139, USA. 44 */ 45 46 #include <linux/sched.h> 47 #include <linux/errno.h> 48 #include <linux/slab.h> 49 50 #include <scsi/scsi.h> 51 #include <scsi/scsi_eh.h> 52 #include <scsi/scsi_device.h> 53 54 #include "usb.h" 55 #include "transport.h" 56 #include "protocol.h" 57 #include "scsiglue.h" 58 #include "debug.h" 59 60 #include <linux/blkdev.h> 61 #include "../../scsi/sd.h" 62 63 64 /*********************************************************************** 65 * Data transfer routines 66 ***********************************************************************/ 67 68 /* 69 * This is subtle, so pay attention: 70 * --------------------------------- 71 * We're very concerned about races with a command abort. Hanging this code 72 * is a sure fire way to hang the kernel. (Note that this discussion applies 73 * only to transactions resulting from a scsi queued-command, since only 74 * these transactions are subject to a scsi abort. Other transactions, such 75 * as those occurring during device-specific initialization, must be handled 76 * by a separate code path.) 77 * 78 * The abort function (usb_storage_command_abort() in scsiglue.c) first 79 * sets the machine state and the ABORTING bit in us->dflags to prevent 80 * new URBs from being submitted. It then calls usb_stor_stop_transport() 81 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags 82 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE 83 * bit is tested to see if the current_sg scatter-gather request needs to be 84 * stopped. The timeout callback routine does much the same thing. 85 * 86 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to 87 * prevent new URBs from being submitted, and usb_stor_stop_transport() is 88 * called to stop any ongoing requests. 89 * 90 * The submit function first verifies that the submitting is allowed 91 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit 92 * completes without errors, and only then sets the URB_ACTIVE bit. This 93 * prevents the stop_transport() function from trying to cancel the URB 94 * while the submit call is underway. Next, the submit function must test 95 * the flags to see if an abort or disconnect occurred during the submission 96 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel 97 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit 98 * is still set). Either way, the function must then wait for the URB to 99 * finish. Note that the URB can still be in progress even after a call to 100 * usb_unlink_urb() returns. 101 * 102 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set, 103 * either the stop_transport() function or the submitting function 104 * is guaranteed to call usb_unlink_urb() for an active URB, 105 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being 106 * called more than once or from being called during usb_submit_urb(). 107 */ 108 109 /* This is the completion handler which will wake us up when an URB 110 * completes. 111 */ 112 static void usb_stor_blocking_completion(struct urb *urb) 113 { 114 struct completion *urb_done_ptr = urb->context; 115 116 complete(urb_done_ptr); 117 } 118 119 /* This is the common part of the URB message submission code 120 * 121 * All URBs from the usb-storage driver involved in handling a queued scsi 122 * command _must_ pass through this function (or something like it) for the 123 * abort mechanisms to work properly. 124 */ 125 static int usb_stor_msg_common(struct us_data *us, int timeout) 126 { 127 struct completion urb_done; 128 long timeleft; 129 int status; 130 131 /* don't submit URBs during abort processing */ 132 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 133 return -EIO; 134 135 /* set up data structures for the wakeup system */ 136 init_completion(&urb_done); 137 138 /* fill the common fields in the URB */ 139 us->current_urb->context = &urb_done; 140 us->current_urb->actual_length = 0; 141 us->current_urb->error_count = 0; 142 us->current_urb->status = 0; 143 144 /* we assume that if transfer_buffer isn't us->iobuf then it 145 * hasn't been mapped for DMA. Yes, this is clunky, but it's 146 * easier than always having the caller tell us whether the 147 * transfer buffer has already been mapped. */ 148 us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP; 149 if (us->current_urb->transfer_buffer == us->iobuf) 150 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 151 us->current_urb->transfer_dma = us->iobuf_dma; 152 us->current_urb->setup_dma = us->cr_dma; 153 154 /* submit the URB */ 155 status = usb_submit_urb(us->current_urb, GFP_NOIO); 156 if (status) { 157 /* something went wrong */ 158 return status; 159 } 160 161 /* since the URB has been submitted successfully, it's now okay 162 * to cancel it */ 163 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 164 165 /* did an abort occur during the submission? */ 166 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 167 168 /* cancel the URB, if it hasn't been cancelled already */ 169 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 170 US_DEBUGP("-- cancelling URB\n"); 171 usb_unlink_urb(us->current_urb); 172 } 173 } 174 175 /* wait for the completion of the URB */ 176 timeleft = wait_for_completion_interruptible_timeout( 177 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT); 178 179 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags); 180 181 if (timeleft <= 0) { 182 US_DEBUGP("%s -- cancelling URB\n", 183 timeleft == 0 ? "Timeout" : "Signal"); 184 usb_kill_urb(us->current_urb); 185 } 186 187 /* return the URB status */ 188 return us->current_urb->status; 189 } 190 191 /* 192 * Transfer one control message, with timeouts, and allowing early 193 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx. 194 */ 195 int usb_stor_control_msg(struct us_data *us, unsigned int pipe, 196 u8 request, u8 requesttype, u16 value, u16 index, 197 void *data, u16 size, int timeout) 198 { 199 int status; 200 201 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 202 __func__, request, requesttype, 203 value, index, size); 204 205 /* fill in the devrequest structure */ 206 us->cr->bRequestType = requesttype; 207 us->cr->bRequest = request; 208 us->cr->wValue = cpu_to_le16(value); 209 us->cr->wIndex = cpu_to_le16(index); 210 us->cr->wLength = cpu_to_le16(size); 211 212 /* fill and submit the URB */ 213 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 214 (unsigned char*) us->cr, data, size, 215 usb_stor_blocking_completion, NULL); 216 status = usb_stor_msg_common(us, timeout); 217 218 /* return the actual length of the data transferred if no error */ 219 if (status == 0) 220 status = us->current_urb->actual_length; 221 return status; 222 } 223 224 /* This is a version of usb_clear_halt() that allows early termination and 225 * doesn't read the status from the device -- this is because some devices 226 * crash their internal firmware when the status is requested after a halt. 227 * 228 * A definitive list of these 'bad' devices is too difficult to maintain or 229 * make complete enough to be useful. This problem was first observed on the 230 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither 231 * MacOS nor Windows checks the status after clearing a halt. 232 * 233 * Since many vendors in this space limit their testing to interoperability 234 * with these two OSes, specification violations like this one are common. 235 */ 236 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe) 237 { 238 int result; 239 int endp = usb_pipeendpoint(pipe); 240 241 if (usb_pipein (pipe)) 242 endp |= USB_DIR_IN; 243 244 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 245 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 246 USB_ENDPOINT_HALT, endp, 247 NULL, 0, 3*HZ); 248 249 /* reset the endpoint toggle */ 250 if (result >= 0) 251 usb_settoggle(us->pusb_dev, usb_pipeendpoint(pipe), 252 usb_pipeout(pipe), 0); 253 254 US_DEBUGP("%s: result = %d\n", __func__, result); 255 return result; 256 } 257 258 259 /* 260 * Interpret the results of a URB transfer 261 * 262 * This function prints appropriate debugging messages, clears halts on 263 * non-control endpoints, and translates the status to the corresponding 264 * USB_STOR_XFER_xxx return code. 265 */ 266 static int interpret_urb_result(struct us_data *us, unsigned int pipe, 267 unsigned int length, int result, unsigned int partial) 268 { 269 US_DEBUGP("Status code %d; transferred %u/%u\n", 270 result, partial, length); 271 switch (result) { 272 273 /* no error code; did we send all the data? */ 274 case 0: 275 if (partial != length) { 276 US_DEBUGP("-- short transfer\n"); 277 return USB_STOR_XFER_SHORT; 278 } 279 280 US_DEBUGP("-- transfer complete\n"); 281 return USB_STOR_XFER_GOOD; 282 283 /* stalled */ 284 case -EPIPE: 285 /* for control endpoints, (used by CB[I]) a stall indicates 286 * a failed command */ 287 if (usb_pipecontrol(pipe)) { 288 US_DEBUGP("-- stall on control pipe\n"); 289 return USB_STOR_XFER_STALLED; 290 } 291 292 /* for other sorts of endpoint, clear the stall */ 293 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe); 294 if (usb_stor_clear_halt(us, pipe) < 0) 295 return USB_STOR_XFER_ERROR; 296 return USB_STOR_XFER_STALLED; 297 298 /* babble - the device tried to send more than we wanted to read */ 299 case -EOVERFLOW: 300 US_DEBUGP("-- babble\n"); 301 return USB_STOR_XFER_LONG; 302 303 /* the transfer was cancelled by abort, disconnect, or timeout */ 304 case -ECONNRESET: 305 US_DEBUGP("-- transfer cancelled\n"); 306 return USB_STOR_XFER_ERROR; 307 308 /* short scatter-gather read transfer */ 309 case -EREMOTEIO: 310 US_DEBUGP("-- short read transfer\n"); 311 return USB_STOR_XFER_SHORT; 312 313 /* abort or disconnect in progress */ 314 case -EIO: 315 US_DEBUGP("-- abort or disconnect in progress\n"); 316 return USB_STOR_XFER_ERROR; 317 318 /* the catch-all error case */ 319 default: 320 US_DEBUGP("-- unknown error\n"); 321 return USB_STOR_XFER_ERROR; 322 } 323 } 324 325 /* 326 * Transfer one control message, without timeouts, but allowing early 327 * termination. Return codes are USB_STOR_XFER_xxx. 328 */ 329 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe, 330 u8 request, u8 requesttype, u16 value, u16 index, 331 void *data, u16 size) 332 { 333 int result; 334 335 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n", 336 __func__, request, requesttype, 337 value, index, size); 338 339 /* fill in the devrequest structure */ 340 us->cr->bRequestType = requesttype; 341 us->cr->bRequest = request; 342 us->cr->wValue = cpu_to_le16(value); 343 us->cr->wIndex = cpu_to_le16(index); 344 us->cr->wLength = cpu_to_le16(size); 345 346 /* fill and submit the URB */ 347 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe, 348 (unsigned char*) us->cr, data, size, 349 usb_stor_blocking_completion, NULL); 350 result = usb_stor_msg_common(us, 0); 351 352 return interpret_urb_result(us, pipe, size, result, 353 us->current_urb->actual_length); 354 } 355 356 /* 357 * Receive one interrupt buffer, without timeouts, but allowing early 358 * termination. Return codes are USB_STOR_XFER_xxx. 359 * 360 * This routine always uses us->recv_intr_pipe as the pipe and 361 * us->ep_bInterval as the interrupt interval. 362 */ 363 static int usb_stor_intr_transfer(struct us_data *us, void *buf, 364 unsigned int length) 365 { 366 int result; 367 unsigned int pipe = us->recv_intr_pipe; 368 unsigned int maxp; 369 370 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 371 372 /* calculate the max packet size */ 373 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe)); 374 if (maxp > length) 375 maxp = length; 376 377 /* fill and submit the URB */ 378 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf, 379 maxp, usb_stor_blocking_completion, NULL, 380 us->ep_bInterval); 381 result = usb_stor_msg_common(us, 0); 382 383 return interpret_urb_result(us, pipe, length, result, 384 us->current_urb->actual_length); 385 } 386 387 /* 388 * Transfer one buffer via bulk pipe, without timeouts, but allowing early 389 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe 390 * stalls during the transfer, the halt is automatically cleared. 391 */ 392 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe, 393 void *buf, unsigned int length, unsigned int *act_len) 394 { 395 int result; 396 397 US_DEBUGP("%s: xfer %u bytes\n", __func__, length); 398 399 /* fill and submit the URB */ 400 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length, 401 usb_stor_blocking_completion, NULL); 402 result = usb_stor_msg_common(us, 0); 403 404 /* store the actual length of the data transferred */ 405 if (act_len) 406 *act_len = us->current_urb->actual_length; 407 return interpret_urb_result(us, pipe, length, result, 408 us->current_urb->actual_length); 409 } 410 411 /* 412 * Transfer a scatter-gather list via bulk transfer 413 * 414 * This function does basically the same thing as usb_stor_bulk_transfer_buf() 415 * above, but it uses the usbcore scatter-gather library. 416 */ 417 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe, 418 struct scatterlist *sg, int num_sg, unsigned int length, 419 unsigned int *act_len) 420 { 421 int result; 422 423 /* don't submit s-g requests during abort processing */ 424 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) 425 return USB_STOR_XFER_ERROR; 426 427 /* initialize the scatter-gather request block */ 428 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__, 429 length, num_sg); 430 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0, 431 sg, num_sg, length, GFP_NOIO); 432 if (result) { 433 US_DEBUGP("usb_sg_init returned %d\n", result); 434 return USB_STOR_XFER_ERROR; 435 } 436 437 /* since the block has been initialized successfully, it's now 438 * okay to cancel it */ 439 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 440 441 /* did an abort occur during the submission? */ 442 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) { 443 444 /* cancel the request, if it hasn't been cancelled already */ 445 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 446 US_DEBUGP("-- cancelling sg request\n"); 447 usb_sg_cancel(&us->current_sg); 448 } 449 } 450 451 /* wait for the completion of the transfer */ 452 usb_sg_wait(&us->current_sg); 453 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags); 454 455 result = us->current_sg.status; 456 if (act_len) 457 *act_len = us->current_sg.bytes; 458 return interpret_urb_result(us, pipe, length, result, 459 us->current_sg.bytes); 460 } 461 462 /* 463 * Common used function. Transfer a complete command 464 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid 465 */ 466 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe, 467 struct scsi_cmnd* srb) 468 { 469 unsigned int partial; 470 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb), 471 scsi_sg_count(srb), scsi_bufflen(srb), 472 &partial); 473 474 scsi_set_resid(srb, scsi_bufflen(srb) - partial); 475 return result; 476 } 477 478 /* 479 * Transfer an entire SCSI command's worth of data payload over the bulk 480 * pipe. 481 * 482 * Note that this uses usb_stor_bulk_transfer_buf() and 483 * usb_stor_bulk_transfer_sglist() to achieve its goals -- 484 * this function simply determines whether we're going to use 485 * scatter-gather or not, and acts appropriately. 486 */ 487 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe, 488 void *buf, unsigned int length_left, int use_sg, int *residual) 489 { 490 int result; 491 unsigned int partial; 492 493 /* are we scatter-gathering? */ 494 if (use_sg) { 495 /* use the usb core scatter-gather primitives */ 496 result = usb_stor_bulk_transfer_sglist(us, pipe, 497 (struct scatterlist *) buf, use_sg, 498 length_left, &partial); 499 length_left -= partial; 500 } else { 501 /* no scatter-gather, just make the request */ 502 result = usb_stor_bulk_transfer_buf(us, pipe, buf, 503 length_left, &partial); 504 length_left -= partial; 505 } 506 507 /* store the residual and return the error code */ 508 if (residual) 509 *residual = length_left; 510 return result; 511 } 512 513 /*********************************************************************** 514 * Transport routines 515 ***********************************************************************/ 516 517 /* There are so many devices that report the capacity incorrectly, 518 * this routine was written to counteract some of the resulting 519 * problems. 520 */ 521 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb) 522 { 523 struct gendisk *disk; 524 struct scsi_disk *sdkp; 525 u32 sector; 526 527 /* To Report "Medium Error: Record Not Found */ 528 static unsigned char record_not_found[18] = { 529 [0] = 0x70, /* current error */ 530 [2] = MEDIUM_ERROR, /* = 0x03 */ 531 [7] = 0x0a, /* additional length */ 532 [12] = 0x14 /* Record Not Found */ 533 }; 534 535 /* If last-sector problems can't occur, whether because the 536 * capacity was already decremented or because the device is 537 * known to report the correct capacity, then we don't need 538 * to do anything. 539 */ 540 if (!us->use_last_sector_hacks) 541 return; 542 543 /* Was this command a READ(10) or a WRITE(10)? */ 544 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10) 545 goto done; 546 547 /* Did this command access the last sector? */ 548 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) | 549 (srb->cmnd[4] << 8) | (srb->cmnd[5]); 550 disk = srb->request->rq_disk; 551 if (!disk) 552 goto done; 553 sdkp = scsi_disk(disk); 554 if (!sdkp) 555 goto done; 556 if (sector + 1 != sdkp->capacity) 557 goto done; 558 559 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) { 560 561 /* The command succeeded. We know this device doesn't 562 * have the last-sector bug, so stop checking it. 563 */ 564 us->use_last_sector_hacks = 0; 565 566 } else { 567 /* The command failed. Allow up to 3 retries in case this 568 * is some normal sort of failure. After that, assume the 569 * capacity is wrong and we're trying to access the sector 570 * beyond the end. Replace the result code and sense data 571 * with values that will cause the SCSI core to fail the 572 * command immediately, instead of going into an infinite 573 * (or even just a very long) retry loop. 574 */ 575 if (++us->last_sector_retries < 3) 576 return; 577 srb->result = SAM_STAT_CHECK_CONDITION; 578 memcpy(srb->sense_buffer, record_not_found, 579 sizeof(record_not_found)); 580 } 581 582 done: 583 /* Don't reset the retry counter for TEST UNIT READY commands, 584 * because they get issued after device resets which might be 585 * caused by a failed last-sector access. 586 */ 587 if (srb->cmnd[0] != TEST_UNIT_READY) 588 us->last_sector_retries = 0; 589 } 590 591 /* Invoke the transport and basic error-handling/recovery methods 592 * 593 * This is used by the protocol layers to actually send the message to 594 * the device and receive the response. 595 */ 596 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us) 597 { 598 int need_auto_sense; 599 int result; 600 601 /* send the command to the transport layer */ 602 scsi_set_resid(srb, 0); 603 result = us->transport(srb, us); 604 605 /* if the command gets aborted by the higher layers, we need to 606 * short-circuit all other processing 607 */ 608 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 609 US_DEBUGP("-- command was aborted\n"); 610 srb->result = DID_ABORT << 16; 611 goto Handle_Errors; 612 } 613 614 /* if there is a transport error, reset and don't auto-sense */ 615 if (result == USB_STOR_TRANSPORT_ERROR) { 616 US_DEBUGP("-- transport indicates error, resetting\n"); 617 srb->result = DID_ERROR << 16; 618 goto Handle_Errors; 619 } 620 621 /* if the transport provided its own sense data, don't auto-sense */ 622 if (result == USB_STOR_TRANSPORT_NO_SENSE) { 623 srb->result = SAM_STAT_CHECK_CONDITION; 624 last_sector_hacks(us, srb); 625 return; 626 } 627 628 srb->result = SAM_STAT_GOOD; 629 630 /* Determine if we need to auto-sense 631 * 632 * I normally don't use a flag like this, but it's almost impossible 633 * to understand what's going on here if I don't. 634 */ 635 need_auto_sense = 0; 636 637 /* 638 * If we're running the CB transport, which is incapable 639 * of determining status on its own, we will auto-sense 640 * unless the operation involved a data-in transfer. Devices 641 * can signal most data-in errors by stalling the bulk-in pipe. 642 */ 643 if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) && 644 srb->sc_data_direction != DMA_FROM_DEVICE) { 645 US_DEBUGP("-- CB transport device requiring auto-sense\n"); 646 need_auto_sense = 1; 647 } 648 649 /* 650 * If we have a failure, we're going to do a REQUEST_SENSE 651 * automatically. Note that we differentiate between a command 652 * "failure" and an "error" in the transport mechanism. 653 */ 654 if (result == USB_STOR_TRANSPORT_FAILED) { 655 US_DEBUGP("-- transport indicates command failure\n"); 656 need_auto_sense = 1; 657 } 658 659 /* 660 * Determine if this device is SAT by seeing if the 661 * command executed successfully. Otherwise we'll have 662 * to wait for at least one CHECK_CONDITION to determine 663 * SANE_SENSE support 664 */ 665 if ((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) && 666 result == USB_STOR_TRANSPORT_GOOD && 667 !(us->fflags & US_FL_SANE_SENSE) && 668 !(srb->cmnd[2] & 0x20)) { 669 US_DEBUGP("-- SAT supported, increasing auto-sense\n"); 670 us->fflags |= US_FL_SANE_SENSE; 671 } 672 673 /* 674 * A short transfer on a command where we don't expect it 675 * is unusual, but it doesn't mean we need to auto-sense. 676 */ 677 if ((scsi_get_resid(srb) > 0) && 678 !((srb->cmnd[0] == REQUEST_SENSE) || 679 (srb->cmnd[0] == INQUIRY) || 680 (srb->cmnd[0] == MODE_SENSE) || 681 (srb->cmnd[0] == LOG_SENSE) || 682 (srb->cmnd[0] == MODE_SENSE_10))) { 683 US_DEBUGP("-- unexpectedly short transfer\n"); 684 } 685 686 /* Now, if we need to do the auto-sense, let's do it */ 687 if (need_auto_sense) { 688 int temp_result; 689 struct scsi_eh_save ses; 690 int sense_size = US_SENSE_SIZE; 691 692 /* device supports and needs bigger sense buffer */ 693 if (us->fflags & US_FL_SANE_SENSE) 694 sense_size = ~0; 695 696 US_DEBUGP("Issuing auto-REQUEST_SENSE\n"); 697 698 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size); 699 700 /* FIXME: we must do the protocol translation here */ 701 if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI || 702 us->subclass == US_SC_CYP_ATACB) 703 srb->cmd_len = 6; 704 else 705 srb->cmd_len = 12; 706 707 /* issue the auto-sense command */ 708 scsi_set_resid(srb, 0); 709 temp_result = us->transport(us->srb, us); 710 711 /* let's clean up right away */ 712 scsi_eh_restore_cmnd(srb, &ses); 713 714 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { 715 US_DEBUGP("-- auto-sense aborted\n"); 716 srb->result = DID_ABORT << 16; 717 goto Handle_Errors; 718 } 719 if (temp_result != USB_STOR_TRANSPORT_GOOD) { 720 US_DEBUGP("-- auto-sense failure\n"); 721 722 /* we skip the reset if this happens to be a 723 * multi-target device, since failure of an 724 * auto-sense is perfectly valid 725 */ 726 srb->result = DID_ERROR << 16; 727 if (!(us->fflags & US_FL_SCM_MULT_TARG)) 728 goto Handle_Errors; 729 return; 730 } 731 732 /* If the sense data returned is larger than 18-bytes then we 733 * assume this device supports requesting more in the future. 734 * The response code must be 70h through 73h inclusive. 735 */ 736 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) && 737 !(us->fflags & US_FL_SANE_SENSE) && 738 (srb->sense_buffer[0] & 0x7C) == 0x70) { 739 US_DEBUGP("-- SANE_SENSE support enabled\n"); 740 us->fflags |= US_FL_SANE_SENSE; 741 742 /* Indicate to the user that we truncated their sense 743 * because we didn't know it supported larger sense. 744 */ 745 US_DEBUGP("-- Sense data truncated to %i from %i\n", 746 US_SENSE_SIZE, 747 srb->sense_buffer[7] + 8); 748 srb->sense_buffer[7] = (US_SENSE_SIZE - 8); 749 } 750 751 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result); 752 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n", 753 srb->sense_buffer[0], 754 srb->sense_buffer[2] & 0xf, 755 srb->sense_buffer[12], 756 srb->sense_buffer[13]); 757 #ifdef CONFIG_USB_STORAGE_DEBUG 758 usb_stor_show_sense( 759 srb->sense_buffer[2] & 0xf, 760 srb->sense_buffer[12], 761 srb->sense_buffer[13]); 762 #endif 763 764 /* set the result so the higher layers expect this data */ 765 srb->result = SAM_STAT_CHECK_CONDITION; 766 767 /* If things are really okay, then let's show that. Zero 768 * out the sense buffer so the higher layers won't realize 769 * we did an unsolicited auto-sense. */ 770 if (result == USB_STOR_TRANSPORT_GOOD && 771 /* Filemark 0, ignore EOM, ILI 0, no sense */ 772 (srb->sense_buffer[2] & 0xaf) == 0 && 773 /* No ASC or ASCQ */ 774 srb->sense_buffer[12] == 0 && 775 srb->sense_buffer[13] == 0) { 776 srb->result = SAM_STAT_GOOD; 777 srb->sense_buffer[0] = 0x0; 778 } 779 } 780 781 /* Did we transfer less than the minimum amount required? */ 782 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) && 783 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow) 784 srb->result = (DID_ERROR << 16) | (SUGGEST_RETRY << 24); 785 786 last_sector_hacks(us, srb); 787 return; 788 789 /* Error and abort processing: try to resynchronize with the device 790 * by issuing a port reset. If that fails, try a class-specific 791 * device reset. */ 792 Handle_Errors: 793 794 /* Set the RESETTING bit, and clear the ABORTING bit so that 795 * the reset may proceed. */ 796 scsi_lock(us_to_host(us)); 797 set_bit(US_FLIDX_RESETTING, &us->dflags); 798 clear_bit(US_FLIDX_ABORTING, &us->dflags); 799 scsi_unlock(us_to_host(us)); 800 801 /* We must release the device lock because the pre_reset routine 802 * will want to acquire it. */ 803 mutex_unlock(&us->dev_mutex); 804 result = usb_stor_port_reset(us); 805 mutex_lock(&us->dev_mutex); 806 807 if (result < 0) { 808 scsi_lock(us_to_host(us)); 809 usb_stor_report_device_reset(us); 810 scsi_unlock(us_to_host(us)); 811 us->transport_reset(us); 812 } 813 clear_bit(US_FLIDX_RESETTING, &us->dflags); 814 last_sector_hacks(us, srb); 815 } 816 817 /* Stop the current URB transfer */ 818 void usb_stor_stop_transport(struct us_data *us) 819 { 820 US_DEBUGP("%s called\n", __func__); 821 822 /* If the state machine is blocked waiting for an URB, 823 * let's wake it up. The test_and_clear_bit() call 824 * guarantees that if a URB has just been submitted, 825 * it won't be cancelled more than once. */ 826 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) { 827 US_DEBUGP("-- cancelling URB\n"); 828 usb_unlink_urb(us->current_urb); 829 } 830 831 /* If we are waiting for a scatter-gather operation, cancel it. */ 832 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) { 833 US_DEBUGP("-- cancelling sg request\n"); 834 usb_sg_cancel(&us->current_sg); 835 } 836 } 837 838 /* 839 * Control/Bulk and Control/Bulk/Interrupt transport 840 */ 841 842 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us) 843 { 844 unsigned int transfer_length = scsi_bufflen(srb); 845 unsigned int pipe = 0; 846 int result; 847 848 /* COMMAND STAGE */ 849 /* let's send the command via the control pipe */ 850 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 851 US_CBI_ADSC, 852 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, 853 us->ifnum, srb->cmnd, srb->cmd_len); 854 855 /* check the return code for the command */ 856 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result); 857 858 /* if we stalled the command, it means command failed */ 859 if (result == USB_STOR_XFER_STALLED) { 860 return USB_STOR_TRANSPORT_FAILED; 861 } 862 863 /* Uh oh... serious problem here */ 864 if (result != USB_STOR_XFER_GOOD) { 865 return USB_STOR_TRANSPORT_ERROR; 866 } 867 868 /* DATA STAGE */ 869 /* transfer the data payload for this command, if one exists*/ 870 if (transfer_length) { 871 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 872 us->recv_bulk_pipe : us->send_bulk_pipe; 873 result = usb_stor_bulk_srb(us, pipe, srb); 874 US_DEBUGP("CBI data stage result is 0x%x\n", result); 875 876 /* if we stalled the data transfer it means command failed */ 877 if (result == USB_STOR_XFER_STALLED) 878 return USB_STOR_TRANSPORT_FAILED; 879 if (result > USB_STOR_XFER_STALLED) 880 return USB_STOR_TRANSPORT_ERROR; 881 } 882 883 /* STATUS STAGE */ 884 885 /* NOTE: CB does not have a status stage. Silly, I know. So 886 * we have to catch this at a higher level. 887 */ 888 if (us->protocol != US_PR_CBI) 889 return USB_STOR_TRANSPORT_GOOD; 890 891 result = usb_stor_intr_transfer(us, us->iobuf, 2); 892 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n", 893 us->iobuf[0], us->iobuf[1]); 894 if (result != USB_STOR_XFER_GOOD) 895 return USB_STOR_TRANSPORT_ERROR; 896 897 /* UFI gives us ASC and ASCQ, like a request sense 898 * 899 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI 900 * devices, so we ignore the information for those commands. Note 901 * that this means we could be ignoring a real error on these 902 * commands, but that can't be helped. 903 */ 904 if (us->subclass == US_SC_UFI) { 905 if (srb->cmnd[0] == REQUEST_SENSE || 906 srb->cmnd[0] == INQUIRY) 907 return USB_STOR_TRANSPORT_GOOD; 908 if (us->iobuf[0]) 909 goto Failed; 910 return USB_STOR_TRANSPORT_GOOD; 911 } 912 913 /* If not UFI, we interpret the data as a result code 914 * The first byte should always be a 0x0. 915 * 916 * Some bogus devices don't follow that rule. They stuff the ASC 917 * into the first byte -- so if it's non-zero, call it a failure. 918 */ 919 if (us->iobuf[0]) { 920 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n", 921 us->iobuf[0]); 922 goto Failed; 923 924 } 925 926 /* The second byte & 0x0F should be 0x0 for good, otherwise error */ 927 switch (us->iobuf[1] & 0x0F) { 928 case 0x00: 929 return USB_STOR_TRANSPORT_GOOD; 930 case 0x01: 931 goto Failed; 932 } 933 return USB_STOR_TRANSPORT_ERROR; 934 935 /* the CBI spec requires that the bulk pipe must be cleared 936 * following any data-in/out command failure (section 2.4.3.1.3) 937 */ 938 Failed: 939 if (pipe) 940 usb_stor_clear_halt(us, pipe); 941 return USB_STOR_TRANSPORT_FAILED; 942 } 943 944 /* 945 * Bulk only transport 946 */ 947 948 /* Determine what the maximum LUN supported is */ 949 int usb_stor_Bulk_max_lun(struct us_data *us) 950 { 951 int result; 952 953 /* issue the command */ 954 us->iobuf[0] = 0; 955 result = usb_stor_control_msg(us, us->recv_ctrl_pipe, 956 US_BULK_GET_MAX_LUN, 957 USB_DIR_IN | USB_TYPE_CLASS | 958 USB_RECIP_INTERFACE, 959 0, us->ifnum, us->iobuf, 1, HZ); 960 961 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n", 962 result, us->iobuf[0]); 963 964 /* if we have a successful request, return the result */ 965 if (result > 0) 966 return us->iobuf[0]; 967 968 /* 969 * Some devices don't like GetMaxLUN. They may STALL the control 970 * pipe, they may return a zero-length result, they may do nothing at 971 * all and timeout, or they may fail in even more bizarrely creative 972 * ways. In these cases the best approach is to use the default 973 * value: only one LUN. 974 */ 975 return 0; 976 } 977 978 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us) 979 { 980 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf; 981 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf; 982 unsigned int transfer_length = scsi_bufflen(srb); 983 unsigned int residue; 984 int result; 985 int fake_sense = 0; 986 unsigned int cswlen; 987 unsigned int cbwlen = US_BULK_CB_WRAP_LEN; 988 989 /* Take care of BULK32 devices; set extra byte to 0 */ 990 if (unlikely(us->fflags & US_FL_BULK32)) { 991 cbwlen = 32; 992 us->iobuf[31] = 0; 993 } 994 995 /* set up the command wrapper */ 996 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN); 997 bcb->DataTransferLength = cpu_to_le32(transfer_length); 998 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0; 999 bcb->Tag = ++us->tag; 1000 bcb->Lun = srb->device->lun; 1001 if (us->fflags & US_FL_SCM_MULT_TARG) 1002 bcb->Lun |= srb->device->id << 4; 1003 bcb->Length = srb->cmd_len; 1004 1005 /* copy the command payload */ 1006 memset(bcb->CDB, 0, sizeof(bcb->CDB)); 1007 memcpy(bcb->CDB, srb->cmnd, bcb->Length); 1008 1009 /* send it to out endpoint */ 1010 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n", 1011 le32_to_cpu(bcb->Signature), bcb->Tag, 1012 le32_to_cpu(bcb->DataTransferLength), bcb->Flags, 1013 (bcb->Lun >> 4), (bcb->Lun & 0x0F), 1014 bcb->Length); 1015 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 1016 bcb, cbwlen, NULL); 1017 US_DEBUGP("Bulk command transfer result=%d\n", result); 1018 if (result != USB_STOR_XFER_GOOD) 1019 return USB_STOR_TRANSPORT_ERROR; 1020 1021 /* DATA STAGE */ 1022 /* send/receive data payload, if there is any */ 1023 1024 /* Some USB-IDE converter chips need a 100us delay between the 1025 * command phase and the data phase. Some devices need a little 1026 * more than that, probably because of clock rate inaccuracies. */ 1027 if (unlikely(us->fflags & US_FL_GO_SLOW)) 1028 udelay(125); 1029 1030 if (transfer_length) { 1031 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ? 1032 us->recv_bulk_pipe : us->send_bulk_pipe; 1033 result = usb_stor_bulk_srb(us, pipe, srb); 1034 US_DEBUGP("Bulk data transfer result 0x%x\n", result); 1035 if (result == USB_STOR_XFER_ERROR) 1036 return USB_STOR_TRANSPORT_ERROR; 1037 1038 /* If the device tried to send back more data than the 1039 * amount requested, the spec requires us to transfer 1040 * the CSW anyway. Since there's no point retrying the 1041 * the command, we'll return fake sense data indicating 1042 * Illegal Request, Invalid Field in CDB. 1043 */ 1044 if (result == USB_STOR_XFER_LONG) 1045 fake_sense = 1; 1046 } 1047 1048 /* See flow chart on pg 15 of the Bulk Only Transport spec for 1049 * an explanation of how this code works. 1050 */ 1051 1052 /* get CSW for device status */ 1053 US_DEBUGP("Attempting to get CSW...\n"); 1054 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1055 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1056 1057 /* Some broken devices add unnecessary zero-length packets to the 1058 * end of their data transfers. Such packets show up as 0-length 1059 * CSWs. If we encounter such a thing, try to read the CSW again. 1060 */ 1061 if (result == USB_STOR_XFER_SHORT && cswlen == 0) { 1062 US_DEBUGP("Received 0-length CSW; retrying...\n"); 1063 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1064 bcs, US_BULK_CS_WRAP_LEN, &cswlen); 1065 } 1066 1067 /* did the attempt to read the CSW fail? */ 1068 if (result == USB_STOR_XFER_STALLED) { 1069 1070 /* get the status again */ 1071 US_DEBUGP("Attempting to get CSW (2nd try)...\n"); 1072 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 1073 bcs, US_BULK_CS_WRAP_LEN, NULL); 1074 } 1075 1076 /* if we still have a failure at this point, we're in trouble */ 1077 US_DEBUGP("Bulk status result = %d\n", result); 1078 if (result != USB_STOR_XFER_GOOD) 1079 return USB_STOR_TRANSPORT_ERROR; 1080 1081 /* check bulk status */ 1082 residue = le32_to_cpu(bcs->Residue); 1083 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n", 1084 le32_to_cpu(bcs->Signature), bcs->Tag, 1085 residue, bcs->Status); 1086 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) || 1087 bcs->Status > US_BULK_STAT_PHASE) { 1088 US_DEBUGP("Bulk logical error\n"); 1089 return USB_STOR_TRANSPORT_ERROR; 1090 } 1091 1092 /* Some broken devices report odd signatures, so we do not check them 1093 * for validity against the spec. We store the first one we see, 1094 * and check subsequent transfers for validity against this signature. 1095 */ 1096 if (!us->bcs_signature) { 1097 us->bcs_signature = bcs->Signature; 1098 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN)) 1099 US_DEBUGP("Learnt BCS signature 0x%08X\n", 1100 le32_to_cpu(us->bcs_signature)); 1101 } else if (bcs->Signature != us->bcs_signature) { 1102 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n", 1103 le32_to_cpu(bcs->Signature), 1104 le32_to_cpu(us->bcs_signature)); 1105 return USB_STOR_TRANSPORT_ERROR; 1106 } 1107 1108 /* try to compute the actual residue, based on how much data 1109 * was really transferred and what the device tells us */ 1110 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) { 1111 1112 /* Heuristically detect devices that generate bogus residues 1113 * by seeing what happens with INQUIRY and READ CAPACITY 1114 * commands. 1115 */ 1116 if (bcs->Status == US_BULK_STAT_OK && 1117 scsi_get_resid(srb) == 0 && 1118 ((srb->cmnd[0] == INQUIRY && 1119 transfer_length == 36) || 1120 (srb->cmnd[0] == READ_CAPACITY && 1121 transfer_length == 8))) { 1122 us->fflags |= US_FL_IGNORE_RESIDUE; 1123 1124 } else { 1125 residue = min(residue, transfer_length); 1126 scsi_set_resid(srb, max(scsi_get_resid(srb), 1127 (int) residue)); 1128 } 1129 } 1130 1131 /* based on the status code, we report good or bad */ 1132 switch (bcs->Status) { 1133 case US_BULK_STAT_OK: 1134 /* device babbled -- return fake sense data */ 1135 if (fake_sense) { 1136 memcpy(srb->sense_buffer, 1137 usb_stor_sense_invalidCDB, 1138 sizeof(usb_stor_sense_invalidCDB)); 1139 return USB_STOR_TRANSPORT_NO_SENSE; 1140 } 1141 1142 /* command good -- note that data could be short */ 1143 return USB_STOR_TRANSPORT_GOOD; 1144 1145 case US_BULK_STAT_FAIL: 1146 /* command failed */ 1147 return USB_STOR_TRANSPORT_FAILED; 1148 1149 case US_BULK_STAT_PHASE: 1150 /* phase error -- note that a transport reset will be 1151 * invoked by the invoke_transport() function 1152 */ 1153 return USB_STOR_TRANSPORT_ERROR; 1154 } 1155 1156 /* we should never get here, but if we do, we're in trouble */ 1157 return USB_STOR_TRANSPORT_ERROR; 1158 } 1159 1160 /*********************************************************************** 1161 * Reset routines 1162 ***********************************************************************/ 1163 1164 /* This is the common part of the device reset code. 1165 * 1166 * It's handy that every transport mechanism uses the control endpoint for 1167 * resets. 1168 * 1169 * Basically, we send a reset with a 5-second timeout, so we don't get 1170 * jammed attempting to do the reset. 1171 */ 1172 static int usb_stor_reset_common(struct us_data *us, 1173 u8 request, u8 requesttype, 1174 u16 value, u16 index, void *data, u16 size) 1175 { 1176 int result; 1177 int result2; 1178 1179 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1180 US_DEBUGP("No reset during disconnect\n"); 1181 return -EIO; 1182 } 1183 1184 result = usb_stor_control_msg(us, us->send_ctrl_pipe, 1185 request, requesttype, value, index, data, size, 1186 5*HZ); 1187 if (result < 0) { 1188 US_DEBUGP("Soft reset failed: %d\n", result); 1189 return result; 1190 } 1191 1192 /* Give the device some time to recover from the reset, 1193 * but don't delay disconnect processing. */ 1194 wait_event_interruptible_timeout(us->delay_wait, 1195 test_bit(US_FLIDX_DISCONNECTING, &us->dflags), 1196 HZ*6); 1197 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1198 US_DEBUGP("Reset interrupted by disconnect\n"); 1199 return -EIO; 1200 } 1201 1202 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n"); 1203 result = usb_stor_clear_halt(us, us->recv_bulk_pipe); 1204 1205 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n"); 1206 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe); 1207 1208 /* return a result code based on the result of the clear-halts */ 1209 if (result >= 0) 1210 result = result2; 1211 if (result < 0) 1212 US_DEBUGP("Soft reset failed\n"); 1213 else 1214 US_DEBUGP("Soft reset done\n"); 1215 return result; 1216 } 1217 1218 /* This issues a CB[I] Reset to the device in question 1219 */ 1220 #define CB_RESET_CMD_SIZE 12 1221 1222 int usb_stor_CB_reset(struct us_data *us) 1223 { 1224 US_DEBUGP("%s called\n", __func__); 1225 1226 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE); 1227 us->iobuf[0] = SEND_DIAGNOSTIC; 1228 us->iobuf[1] = 4; 1229 return usb_stor_reset_common(us, US_CBI_ADSC, 1230 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1231 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE); 1232 } 1233 1234 /* This issues a Bulk-only Reset to the device in question, including 1235 * clearing the subsequent endpoint halts that may occur. 1236 */ 1237 int usb_stor_Bulk_reset(struct us_data *us) 1238 { 1239 US_DEBUGP("%s called\n", __func__); 1240 1241 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST, 1242 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 1243 0, us->ifnum, NULL, 0); 1244 } 1245 1246 /* Issue a USB port reset to the device. The caller must not hold 1247 * us->dev_mutex. 1248 */ 1249 int usb_stor_port_reset(struct us_data *us) 1250 { 1251 int result; 1252 1253 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf); 1254 if (result < 0) 1255 US_DEBUGP("unable to lock device for reset: %d\n", result); 1256 else { 1257 /* Were we disconnected while waiting for the lock? */ 1258 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { 1259 result = -EIO; 1260 US_DEBUGP("No reset during disconnect\n"); 1261 } else { 1262 result = usb_reset_device(us->pusb_dev); 1263 US_DEBUGP("usb_reset_device returns %d\n", 1264 result); 1265 } 1266 usb_unlock_device(us->pusb_dev); 1267 } 1268 return result; 1269 } 1270