1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Alauda-based card readers 4 * 5 * Current development and maintenance by: 6 * (c) 2005 Daniel Drake <dsd@gentoo.org> 7 * 8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 9 * 10 * Alauda implements a vendor-specific command set to access two media reader 11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 12 * which are accepted by these devices. 13 * 14 * The driver was developed through reverse-engineering, with the help of the 15 * sddr09 driver which has many similarities, and with some help from the 16 * (very old) vendor-supplied GPL sma03 driver. 17 * 18 * For protocol info, see http://alauda.sourceforge.net 19 */ 20 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_device.h> 27 28 #include "usb.h" 29 #include "transport.h" 30 #include "protocol.h" 31 #include "debug.h" 32 #include "scsiglue.h" 33 34 #define DRV_NAME "ums-alauda" 35 36 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 38 MODULE_LICENSE("GPL"); 39 MODULE_IMPORT_NS(USB_STORAGE); 40 41 /* 42 * Status bytes 43 */ 44 #define ALAUDA_STATUS_ERROR 0x01 45 #define ALAUDA_STATUS_READY 0x40 46 47 /* 48 * Control opcodes (for request field) 49 */ 50 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 51 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 52 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 53 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 54 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 55 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 56 57 /* 58 * Bulk command identity (byte 0) 59 */ 60 #define ALAUDA_BULK_CMD 0x40 61 62 /* 63 * Bulk opcodes (byte 1) 64 */ 65 #define ALAUDA_BULK_GET_REDU_DATA 0x85 66 #define ALAUDA_BULK_READ_BLOCK 0x94 67 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 68 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 69 #define ALAUDA_BULK_GET_STATUS2 0xb7 70 #define ALAUDA_BULK_RESET_MEDIA 0xe0 71 72 /* 73 * Port to operate on (byte 8) 74 */ 75 #define ALAUDA_PORT_XD 0x00 76 #define ALAUDA_PORT_SM 0x01 77 78 /* 79 * LBA and PBA are unsigned ints. Special values. 80 */ 81 #define UNDEF 0xffff 82 #define SPARE 0xfffe 83 #define UNUSABLE 0xfffd 84 85 struct alauda_media_info { 86 unsigned long capacity; /* total media size in bytes */ 87 unsigned int pagesize; /* page size in bytes */ 88 unsigned int blocksize; /* number of pages per block */ 89 unsigned int uzonesize; /* number of usable blocks per zone */ 90 unsigned int zonesize; /* number of blocks per zone */ 91 unsigned int blockmask; /* mask to get page from address */ 92 93 unsigned char pageshift; 94 unsigned char blockshift; 95 unsigned char zoneshift; 96 97 u16 **lba_to_pba; /* logical to physical block map */ 98 u16 **pba_to_lba; /* physical to logical block map */ 99 }; 100 101 struct alauda_info { 102 struct alauda_media_info port[2]; 103 int wr_ep; /* endpoint to write data out of */ 104 105 unsigned char sense_key; 106 unsigned long sense_asc; /* additional sense code */ 107 unsigned long sense_ascq; /* additional sense code qualifier */ 108 }; 109 110 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 111 #define LSB_of(s) ((s)&0xFF) 112 #define MSB_of(s) ((s)>>8) 113 114 #define MEDIA_PORT(us) us->srb->device->lun 115 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 116 117 #define PBA_LO(pba) ((pba & 0xF) << 5) 118 #define PBA_HI(pba) (pba >> 3) 119 #define PBA_ZONE(pba) (pba >> 11) 120 121 static int init_alauda(struct us_data *us); 122 123 124 /* 125 * The table of devices 126 */ 127 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 128 vendorName, productName, useProtocol, useTransport, \ 129 initFunction, flags) \ 130 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 131 .driver_info = (flags) } 132 133 static struct usb_device_id alauda_usb_ids[] = { 134 # include "unusual_alauda.h" 135 { } /* Terminating entry */ 136 }; 137 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 138 139 #undef UNUSUAL_DEV 140 141 /* 142 * The flags table 143 */ 144 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 145 vendor_name, product_name, use_protocol, use_transport, \ 146 init_function, Flags) \ 147 { \ 148 .vendorName = vendor_name, \ 149 .productName = product_name, \ 150 .useProtocol = use_protocol, \ 151 .useTransport = use_transport, \ 152 .initFunction = init_function, \ 153 } 154 155 static struct us_unusual_dev alauda_unusual_dev_list[] = { 156 # include "unusual_alauda.h" 157 { } /* Terminating entry */ 158 }; 159 160 #undef UNUSUAL_DEV 161 162 163 /* 164 * Media handling 165 */ 166 167 struct alauda_card_info { 168 unsigned char id; /* id byte */ 169 unsigned char chipshift; /* 1<<cs bytes total capacity */ 170 unsigned char pageshift; /* 1<<ps bytes in a page */ 171 unsigned char blockshift; /* 1<<bs pages per block */ 172 unsigned char zoneshift; /* 1<<zs blocks per zone */ 173 }; 174 175 static struct alauda_card_info alauda_card_ids[] = { 176 /* NAND flash */ 177 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 178 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 179 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 180 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 181 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 182 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 183 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 184 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 185 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 186 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 187 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 188 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 189 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 190 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 191 192 /* MASK ROM */ 193 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 194 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 195 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 196 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 197 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 198 { 0,} 199 }; 200 201 static struct alauda_card_info *alauda_card_find_id(unsigned char id) 202 { 203 int i; 204 205 for (i = 0; alauda_card_ids[i].id != 0; i++) 206 if (alauda_card_ids[i].id == id) 207 return &(alauda_card_ids[i]); 208 return NULL; 209 } 210 211 /* 212 * ECC computation. 213 */ 214 215 static unsigned char parity[256]; 216 static unsigned char ecc2[256]; 217 218 static void nand_init_ecc(void) 219 { 220 int i, j, a; 221 222 parity[0] = 0; 223 for (i = 1; i < 256; i++) 224 parity[i] = (parity[i&(i-1)] ^ 1); 225 226 for (i = 0; i < 256; i++) { 227 a = 0; 228 for (j = 0; j < 8; j++) { 229 if (i & (1<<j)) { 230 if ((j & 1) == 0) 231 a ^= 0x04; 232 if ((j & 2) == 0) 233 a ^= 0x10; 234 if ((j & 4) == 0) 235 a ^= 0x40; 236 } 237 } 238 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 239 } 240 } 241 242 /* compute 3-byte ecc on 256 bytes */ 243 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) 244 { 245 int i, j, a; 246 unsigned char par = 0, bit, bits[8] = {0}; 247 248 /* collect 16 checksum bits */ 249 for (i = 0; i < 256; i++) { 250 par ^= data[i]; 251 bit = parity[data[i]]; 252 for (j = 0; j < 8; j++) 253 if ((i & (1<<j)) == 0) 254 bits[j] ^= bit; 255 } 256 257 /* put 4+4+4 = 12 bits in the ecc */ 258 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 259 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 260 261 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 262 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 263 264 ecc[2] = ecc2[par]; 265 } 266 267 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) 268 { 269 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 270 } 271 272 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) 273 { 274 memcpy(data, ecc, 3); 275 } 276 277 /* 278 * Alauda driver 279 */ 280 281 /* 282 * Forget our PBA <---> LBA mappings for a particular port 283 */ 284 static void alauda_free_maps (struct alauda_media_info *media_info) 285 { 286 unsigned int shift = media_info->zoneshift 287 + media_info->blockshift + media_info->pageshift; 288 unsigned int num_zones = media_info->capacity >> shift; 289 unsigned int i; 290 291 if (media_info->lba_to_pba != NULL) 292 for (i = 0; i < num_zones; i++) { 293 kfree(media_info->lba_to_pba[i]); 294 media_info->lba_to_pba[i] = NULL; 295 } 296 297 if (media_info->pba_to_lba != NULL) 298 for (i = 0; i < num_zones; i++) { 299 kfree(media_info->pba_to_lba[i]); 300 media_info->pba_to_lba[i] = NULL; 301 } 302 } 303 304 /* 305 * Returns 2 bytes of status data 306 * The first byte describes media status, and second byte describes door status 307 */ 308 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 309 { 310 int rc; 311 unsigned char command; 312 313 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 314 command = ALAUDA_GET_XD_MEDIA_STATUS; 315 else 316 command = ALAUDA_GET_SM_MEDIA_STATUS; 317 318 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 319 command, 0xc0, 0, 1, data, 2); 320 321 if (rc == USB_STOR_XFER_GOOD) 322 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); 323 324 return rc; 325 } 326 327 /* 328 * Clears the "media was changed" bit so that we know when it changes again 329 * in the future. 330 */ 331 static int alauda_ack_media(struct us_data *us) 332 { 333 unsigned char command; 334 335 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 336 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 337 else 338 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 339 340 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 341 command, 0x40, 0, 1, NULL, 0); 342 } 343 344 /* 345 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 346 * and some other details. 347 */ 348 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 349 { 350 unsigned char command; 351 352 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 353 command = ALAUDA_GET_XD_MEDIA_SIG; 354 else 355 command = ALAUDA_GET_SM_MEDIA_SIG; 356 357 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 358 command, 0xc0, 0, 0, data, 4); 359 } 360 361 /* 362 * Resets the media status (but not the whole device?) 363 */ 364 static int alauda_reset_media(struct us_data *us) 365 { 366 unsigned char *command = us->iobuf; 367 368 memset(command, 0, 9); 369 command[0] = ALAUDA_BULK_CMD; 370 command[1] = ALAUDA_BULK_RESET_MEDIA; 371 command[8] = MEDIA_PORT(us); 372 373 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 374 command, 9, NULL); 375 } 376 377 /* 378 * Examines the media and deduces capacity, etc. 379 */ 380 static int alauda_init_media(struct us_data *us) 381 { 382 unsigned char *data = us->iobuf; 383 int ready = 0; 384 struct alauda_card_info *media_info; 385 unsigned int num_zones; 386 387 while (ready == 0) { 388 msleep(20); 389 390 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 391 return USB_STOR_TRANSPORT_ERROR; 392 393 if (data[0] & 0x10) 394 ready = 1; 395 } 396 397 usb_stor_dbg(us, "We are ready for action!\n"); 398 399 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 400 return USB_STOR_TRANSPORT_ERROR; 401 402 msleep(10); 403 404 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 405 return USB_STOR_TRANSPORT_ERROR; 406 407 if (data[0] != 0x14) { 408 usb_stor_dbg(us, "Media not ready after ack\n"); 409 return USB_STOR_TRANSPORT_ERROR; 410 } 411 412 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 413 return USB_STOR_TRANSPORT_ERROR; 414 415 usb_stor_dbg(us, "Media signature: %4ph\n", data); 416 media_info = alauda_card_find_id(data[1]); 417 if (media_info == NULL) { 418 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", 419 data); 420 return USB_STOR_TRANSPORT_ERROR; 421 } 422 423 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 424 usb_stor_dbg(us, "Found media with capacity: %ldMB\n", 425 MEDIA_INFO(us).capacity >> 20); 426 427 MEDIA_INFO(us).pageshift = media_info->pageshift; 428 MEDIA_INFO(us).blockshift = media_info->blockshift; 429 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 430 431 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 432 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 433 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 434 435 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 436 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 437 438 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 439 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 440 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 441 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 442 if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL) 443 return USB_STOR_TRANSPORT_ERROR; 444 445 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 446 return USB_STOR_TRANSPORT_ERROR; 447 448 return USB_STOR_TRANSPORT_GOOD; 449 } 450 451 /* 452 * Examines the media status and does the right thing when the media has gone, 453 * appeared, or changed. 454 */ 455 static int alauda_check_media(struct us_data *us) 456 { 457 struct alauda_info *info = (struct alauda_info *) us->extra; 458 unsigned char *status = us->iobuf; 459 int rc; 460 461 rc = alauda_get_media_status(us, status); 462 if (rc != USB_STOR_XFER_GOOD) { 463 status[0] = 0xF0; /* Pretend there's no media */ 464 status[1] = 0; 465 } 466 467 /* Check for no media or door open */ 468 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 469 || ((status[1] & 0x01) == 0)) { 470 usb_stor_dbg(us, "No media, or door open\n"); 471 alauda_free_maps(&MEDIA_INFO(us)); 472 info->sense_key = 0x02; 473 info->sense_asc = 0x3A; 474 info->sense_ascq = 0x00; 475 return USB_STOR_TRANSPORT_FAILED; 476 } 477 478 /* Check for media change */ 479 if (status[0] & 0x08) { 480 usb_stor_dbg(us, "Media change detected\n"); 481 alauda_free_maps(&MEDIA_INFO(us)); 482 alauda_init_media(us); 483 484 info->sense_key = UNIT_ATTENTION; 485 info->sense_asc = 0x28; 486 info->sense_ascq = 0x00; 487 return USB_STOR_TRANSPORT_FAILED; 488 } 489 490 return USB_STOR_TRANSPORT_GOOD; 491 } 492 493 /* 494 * Checks the status from the 2nd status register 495 * Returns 3 bytes of status data, only the first is known 496 */ 497 static int alauda_check_status2(struct us_data *us) 498 { 499 int rc; 500 unsigned char command[] = { 501 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 502 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 503 }; 504 unsigned char data[3]; 505 506 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 507 command, 9, NULL); 508 if (rc != USB_STOR_XFER_GOOD) 509 return rc; 510 511 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 512 data, 3, NULL); 513 if (rc != USB_STOR_XFER_GOOD) 514 return rc; 515 516 usb_stor_dbg(us, "%3ph\n", data); 517 if (data[0] & ALAUDA_STATUS_ERROR) 518 return USB_STOR_XFER_ERROR; 519 520 return USB_STOR_XFER_GOOD; 521 } 522 523 /* 524 * Gets the redundancy data for the first page of a PBA 525 * Returns 16 bytes. 526 */ 527 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 528 { 529 int rc; 530 unsigned char command[] = { 531 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 532 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 533 }; 534 535 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 536 command, 9, NULL); 537 if (rc != USB_STOR_XFER_GOOD) 538 return rc; 539 540 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 541 data, 16, NULL); 542 } 543 544 /* 545 * Finds the first unused PBA in a zone 546 * Returns the absolute PBA of an unused PBA, or 0 if none found. 547 */ 548 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 549 unsigned int zone) 550 { 551 u16 *pba_to_lba = info->pba_to_lba[zone]; 552 unsigned int i; 553 554 for (i = 0; i < info->zonesize; i++) 555 if (pba_to_lba[i] == UNDEF) 556 return (zone << info->zoneshift) + i; 557 558 return 0; 559 } 560 561 /* 562 * Reads the redundancy data for all PBA's in a zone 563 * Produces lba <--> pba mappings 564 */ 565 static int alauda_read_map(struct us_data *us, unsigned int zone) 566 { 567 unsigned char *data = us->iobuf; 568 int result; 569 int i, j; 570 unsigned int zonesize = MEDIA_INFO(us).zonesize; 571 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 572 unsigned int lba_offset, lba_real, blocknum; 573 unsigned int zone_base_lba = zone * uzonesize; 574 unsigned int zone_base_pba = zone * zonesize; 575 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 576 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 577 if (lba_to_pba == NULL || pba_to_lba == NULL) { 578 result = USB_STOR_TRANSPORT_ERROR; 579 goto error; 580 } 581 582 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); 583 584 /* 1024 PBA's per zone */ 585 for (i = 0; i < zonesize; i++) 586 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 587 588 for (i = 0; i < zonesize; i++) { 589 blocknum = zone_base_pba + i; 590 591 result = alauda_get_redu_data(us, blocknum, data); 592 if (result != USB_STOR_XFER_GOOD) { 593 result = USB_STOR_TRANSPORT_ERROR; 594 goto error; 595 } 596 597 /* special PBAs have control field 0^16 */ 598 for (j = 0; j < 16; j++) 599 if (data[j] != 0) 600 goto nonz; 601 pba_to_lba[i] = UNUSABLE; 602 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); 603 continue; 604 605 nonz: 606 /* unwritten PBAs have control field FF^16 */ 607 for (j = 0; j < 16; j++) 608 if (data[j] != 0xff) 609 goto nonff; 610 continue; 611 612 nonff: 613 /* normal PBAs start with six FFs */ 614 if (j < 6) { 615 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", 616 blocknum, 617 data[0], data[1], data[2], data[3], 618 data[4], data[5]); 619 pba_to_lba[i] = UNUSABLE; 620 continue; 621 } 622 623 if ((data[6] >> 4) != 0x01) { 624 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", 625 blocknum, data[6], data[7], 626 data[11], data[12]); 627 pba_to_lba[i] = UNUSABLE; 628 continue; 629 } 630 631 /* check even parity */ 632 if (parity[data[6] ^ data[7]]) { 633 printk(KERN_WARNING 634 "alauda_read_map: Bad parity in LBA for block %d" 635 " (%02X %02X)\n", i, data[6], data[7]); 636 pba_to_lba[i] = UNUSABLE; 637 continue; 638 } 639 640 lba_offset = short_pack(data[7], data[6]); 641 lba_offset = (lba_offset & 0x07FF) >> 1; 642 lba_real = lba_offset + zone_base_lba; 643 644 /* 645 * Every 1024 physical blocks ("zone"), the LBA numbers 646 * go back to zero, but are within a higher block of LBA's. 647 * Also, there is a maximum of 1000 LBA's per zone. 648 * In other words, in PBA 1024-2047 you will find LBA 0-999 649 * which are really LBA 1000-1999. This allows for 24 bad 650 * or special physical blocks per zone. 651 */ 652 653 if (lba_offset >= uzonesize) { 654 printk(KERN_WARNING 655 "alauda_read_map: Bad low LBA %d for block %d\n", 656 lba_real, blocknum); 657 continue; 658 } 659 660 if (lba_to_pba[lba_offset] != UNDEF) { 661 printk(KERN_WARNING 662 "alauda_read_map: " 663 "LBA %d seen for PBA %d and %d\n", 664 lba_real, lba_to_pba[lba_offset], blocknum); 665 continue; 666 } 667 668 pba_to_lba[i] = lba_real; 669 lba_to_pba[lba_offset] = blocknum; 670 continue; 671 } 672 673 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 674 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 675 result = 0; 676 goto out; 677 678 error: 679 kfree(lba_to_pba); 680 kfree(pba_to_lba); 681 out: 682 return result; 683 } 684 685 /* 686 * Checks to see whether we have already mapped a certain zone 687 * If we haven't, the map is generated 688 */ 689 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 690 { 691 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 692 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 693 alauda_read_map(us, zone); 694 } 695 696 /* 697 * Erases an entire block 698 */ 699 static int alauda_erase_block(struct us_data *us, u16 pba) 700 { 701 int rc; 702 unsigned char command[] = { 703 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 704 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 705 }; 706 unsigned char buf[2]; 707 708 usb_stor_dbg(us, "Erasing PBA %d\n", pba); 709 710 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 711 command, 9, NULL); 712 if (rc != USB_STOR_XFER_GOOD) 713 return rc; 714 715 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 716 buf, 2, NULL); 717 if (rc != USB_STOR_XFER_GOOD) 718 return rc; 719 720 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); 721 return rc; 722 } 723 724 /* 725 * Reads data from a certain offset page inside a PBA, including interleaved 726 * redundancy data. Returns (pagesize+64)*pages bytes in data. 727 */ 728 static int alauda_read_block_raw(struct us_data *us, u16 pba, 729 unsigned int page, unsigned int pages, unsigned char *data) 730 { 731 int rc; 732 unsigned char command[] = { 733 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 734 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 735 }; 736 737 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); 738 739 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 740 command, 9, NULL); 741 if (rc != USB_STOR_XFER_GOOD) 742 return rc; 743 744 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 745 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 746 } 747 748 /* 749 * Reads data from a certain offset page inside a PBA, excluding redundancy 750 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 751 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 752 * trailing bytes outside this function. 753 */ 754 static int alauda_read_block(struct us_data *us, u16 pba, 755 unsigned int page, unsigned int pages, unsigned char *data) 756 { 757 int i, rc; 758 unsigned int pagesize = MEDIA_INFO(us).pagesize; 759 760 rc = alauda_read_block_raw(us, pba, page, pages, data); 761 if (rc != USB_STOR_XFER_GOOD) 762 return rc; 763 764 /* Cut out the redundancy data */ 765 for (i = 0; i < pages; i++) { 766 int dest_offset = i * pagesize; 767 int src_offset = i * (pagesize + 64); 768 memmove(data + dest_offset, data + src_offset, pagesize); 769 } 770 771 return rc; 772 } 773 774 /* 775 * Writes an entire block of data and checks status after write. 776 * Redundancy data must be already included in data. Data should be 777 * (pagesize+64)*blocksize bytes in length. 778 */ 779 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 780 { 781 int rc; 782 struct alauda_info *info = (struct alauda_info *) us->extra; 783 unsigned char command[] = { 784 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 785 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 786 }; 787 788 usb_stor_dbg(us, "pba %d\n", pba); 789 790 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 791 command, 9, NULL); 792 if (rc != USB_STOR_XFER_GOOD) 793 return rc; 794 795 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 796 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 797 NULL); 798 if (rc != USB_STOR_XFER_GOOD) 799 return rc; 800 801 return alauda_check_status2(us); 802 } 803 804 /* 805 * Write some data to a specific LBA. 806 */ 807 static int alauda_write_lba(struct us_data *us, u16 lba, 808 unsigned int page, unsigned int pages, 809 unsigned char *ptr, unsigned char *blockbuffer) 810 { 811 u16 pba, lbap, new_pba; 812 unsigned char *bptr, *cptr, *xptr; 813 unsigned char ecc[3]; 814 int i, result; 815 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 816 unsigned int zonesize = MEDIA_INFO(us).zonesize; 817 unsigned int pagesize = MEDIA_INFO(us).pagesize; 818 unsigned int blocksize = MEDIA_INFO(us).blocksize; 819 unsigned int lba_offset = lba % uzonesize; 820 unsigned int new_pba_offset; 821 unsigned int zone = lba / uzonesize; 822 823 alauda_ensure_map_for_zone(us, zone); 824 825 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 826 if (pba == 1) { 827 /* 828 * Maybe it is impossible to write to PBA 1. 829 * Fake success, but don't do anything. 830 */ 831 printk(KERN_WARNING 832 "alauda_write_lba: avoid writing to pba 1\n"); 833 return USB_STOR_TRANSPORT_GOOD; 834 } 835 836 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 837 if (!new_pba) { 838 printk(KERN_WARNING 839 "alauda_write_lba: Out of unused blocks\n"); 840 return USB_STOR_TRANSPORT_ERROR; 841 } 842 843 /* read old contents */ 844 if (pba != UNDEF) { 845 result = alauda_read_block_raw(us, pba, 0, 846 blocksize, blockbuffer); 847 if (result != USB_STOR_XFER_GOOD) 848 return result; 849 } else { 850 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 851 } 852 853 lbap = (lba_offset << 1) | 0x1000; 854 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 855 lbap ^= 1; 856 857 /* check old contents and fill lba */ 858 for (i = 0; i < blocksize; i++) { 859 bptr = blockbuffer + (i * (pagesize + 64)); 860 cptr = bptr + pagesize; 861 nand_compute_ecc(bptr, ecc); 862 if (!nand_compare_ecc(cptr+13, ecc)) { 863 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 864 i, pba); 865 nand_store_ecc(cptr+13, ecc); 866 } 867 nand_compute_ecc(bptr + (pagesize / 2), ecc); 868 if (!nand_compare_ecc(cptr+8, ecc)) { 869 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 870 i, pba); 871 nand_store_ecc(cptr+8, ecc); 872 } 873 cptr[6] = cptr[11] = MSB_of(lbap); 874 cptr[7] = cptr[12] = LSB_of(lbap); 875 } 876 877 /* copy in new stuff and compute ECC */ 878 xptr = ptr; 879 for (i = page; i < page+pages; i++) { 880 bptr = blockbuffer + (i * (pagesize + 64)); 881 cptr = bptr + pagesize; 882 memcpy(bptr, xptr, pagesize); 883 xptr += pagesize; 884 nand_compute_ecc(bptr, ecc); 885 nand_store_ecc(cptr+13, ecc); 886 nand_compute_ecc(bptr + (pagesize / 2), ecc); 887 nand_store_ecc(cptr+8, ecc); 888 } 889 890 result = alauda_write_block(us, new_pba, blockbuffer); 891 if (result != USB_STOR_XFER_GOOD) 892 return result; 893 894 new_pba_offset = new_pba - (zone * zonesize); 895 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 896 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 897 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); 898 899 if (pba != UNDEF) { 900 unsigned int pba_offset = pba - (zone * zonesize); 901 result = alauda_erase_block(us, pba); 902 if (result != USB_STOR_XFER_GOOD) 903 return result; 904 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 905 } 906 907 return USB_STOR_TRANSPORT_GOOD; 908 } 909 910 /* 911 * Read data from a specific sector address 912 */ 913 static int alauda_read_data(struct us_data *us, unsigned long address, 914 unsigned int sectors) 915 { 916 unsigned char *buffer; 917 u16 lba, max_lba; 918 unsigned int page, len, offset; 919 unsigned int blockshift = MEDIA_INFO(us).blockshift; 920 unsigned int pageshift = MEDIA_INFO(us).pageshift; 921 unsigned int blocksize = MEDIA_INFO(us).blocksize; 922 unsigned int pagesize = MEDIA_INFO(us).pagesize; 923 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 924 struct scatterlist *sg; 925 int result; 926 927 /* 928 * Since we only read in one block at a time, we have to create 929 * a bounce buffer and move the data a piece at a time between the 930 * bounce buffer and the actual transfer buffer. 931 * We make this buffer big enough to hold temporary redundancy data, 932 * which we use when reading the data blocks. 933 */ 934 935 len = min(sectors, blocksize) * (pagesize + 64); 936 buffer = kmalloc(len, GFP_NOIO); 937 if (!buffer) 938 return USB_STOR_TRANSPORT_ERROR; 939 940 /* Figure out the initial LBA and page */ 941 lba = address >> blockshift; 942 page = (address & MEDIA_INFO(us).blockmask); 943 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 944 945 result = USB_STOR_TRANSPORT_GOOD; 946 offset = 0; 947 sg = NULL; 948 949 while (sectors > 0) { 950 unsigned int zone = lba / uzonesize; /* integer division */ 951 unsigned int lba_offset = lba - (zone * uzonesize); 952 unsigned int pages; 953 u16 pba; 954 alauda_ensure_map_for_zone(us, zone); 955 956 /* Not overflowing capacity? */ 957 if (lba >= max_lba) { 958 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 959 lba, max_lba); 960 result = USB_STOR_TRANSPORT_ERROR; 961 break; 962 } 963 964 /* Find number of pages we can read in this block */ 965 pages = min(sectors, blocksize - page); 966 len = pages << pageshift; 967 968 /* Find where this lba lives on disk */ 969 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 970 971 if (pba == UNDEF) { /* this lba was never written */ 972 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 973 pages, lba, page); 974 975 /* 976 * This is not really an error. It just means 977 * that the block has never been written. 978 * Instead of returning USB_STOR_TRANSPORT_ERROR 979 * it is better to return all zero data. 980 */ 981 982 memset(buffer, 0, len); 983 } else { 984 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 985 pages, pba, lba, page); 986 987 result = alauda_read_block(us, pba, page, pages, buffer); 988 if (result != USB_STOR_TRANSPORT_GOOD) 989 break; 990 } 991 992 /* Store the data in the transfer buffer */ 993 usb_stor_access_xfer_buf(buffer, len, us->srb, 994 &sg, &offset, TO_XFER_BUF); 995 996 page = 0; 997 lba++; 998 sectors -= pages; 999 } 1000 1001 kfree(buffer); 1002 return result; 1003 } 1004 1005 /* 1006 * Write data to a specific sector address 1007 */ 1008 static int alauda_write_data(struct us_data *us, unsigned long address, 1009 unsigned int sectors) 1010 { 1011 unsigned char *buffer, *blockbuffer; 1012 unsigned int page, len, offset; 1013 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1014 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1015 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1016 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1017 struct scatterlist *sg; 1018 u16 lba, max_lba; 1019 int result; 1020 1021 /* 1022 * Since we don't write the user data directly to the device, 1023 * we have to create a bounce buffer and move the data a piece 1024 * at a time between the bounce buffer and the actual transfer buffer. 1025 */ 1026 1027 len = min(sectors, blocksize) * pagesize; 1028 buffer = kmalloc(len, GFP_NOIO); 1029 if (!buffer) 1030 return USB_STOR_TRANSPORT_ERROR; 1031 1032 /* 1033 * We also need a temporary block buffer, where we read in the old data, 1034 * overwrite parts with the new data, and manipulate the redundancy data 1035 */ 1036 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO); 1037 if (!blockbuffer) { 1038 kfree(buffer); 1039 return USB_STOR_TRANSPORT_ERROR; 1040 } 1041 1042 /* Figure out the initial LBA and page */ 1043 lba = address >> blockshift; 1044 page = (address & MEDIA_INFO(us).blockmask); 1045 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1046 1047 result = USB_STOR_TRANSPORT_GOOD; 1048 offset = 0; 1049 sg = NULL; 1050 1051 while (sectors > 0) { 1052 /* Write as many sectors as possible in this block */ 1053 unsigned int pages = min(sectors, blocksize - page); 1054 len = pages << pageshift; 1055 1056 /* Not overflowing capacity? */ 1057 if (lba >= max_lba) { 1058 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", 1059 lba, max_lba); 1060 result = USB_STOR_TRANSPORT_ERROR; 1061 break; 1062 } 1063 1064 /* Get the data from the transfer buffer */ 1065 usb_stor_access_xfer_buf(buffer, len, us->srb, 1066 &sg, &offset, FROM_XFER_BUF); 1067 1068 result = alauda_write_lba(us, lba, page, pages, buffer, 1069 blockbuffer); 1070 if (result != USB_STOR_TRANSPORT_GOOD) 1071 break; 1072 1073 page = 0; 1074 lba++; 1075 sectors -= pages; 1076 } 1077 1078 kfree(buffer); 1079 kfree(blockbuffer); 1080 return result; 1081 } 1082 1083 /* 1084 * Our interface with the rest of the world 1085 */ 1086 1087 static void alauda_info_destructor(void *extra) 1088 { 1089 struct alauda_info *info = (struct alauda_info *) extra; 1090 int port; 1091 1092 if (!info) 1093 return; 1094 1095 for (port = 0; port < 2; port++) { 1096 struct alauda_media_info *media_info = &info->port[port]; 1097 1098 alauda_free_maps(media_info); 1099 kfree(media_info->lba_to_pba); 1100 kfree(media_info->pba_to_lba); 1101 } 1102 } 1103 1104 /* 1105 * Initialize alauda_info struct and find the data-write endpoint 1106 */ 1107 static int init_alauda(struct us_data *us) 1108 { 1109 struct alauda_info *info; 1110 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1111 nand_init_ecc(); 1112 1113 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1114 if (!us->extra) 1115 return -ENOMEM; 1116 1117 info = (struct alauda_info *) us->extra; 1118 us->extra_destructor = alauda_info_destructor; 1119 1120 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1121 altsetting->endpoint[0].desc.bEndpointAddress 1122 & USB_ENDPOINT_NUMBER_MASK); 1123 1124 return 0; 1125 } 1126 1127 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1128 { 1129 int rc; 1130 struct alauda_info *info = (struct alauda_info *) us->extra; 1131 unsigned char *ptr = us->iobuf; 1132 static unsigned char inquiry_response[36] = { 1133 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1134 }; 1135 1136 if (srb->cmnd[0] == INQUIRY) { 1137 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); 1138 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1139 fill_inquiry_response(us, ptr, 36); 1140 return USB_STOR_TRANSPORT_GOOD; 1141 } 1142 1143 if (srb->cmnd[0] == TEST_UNIT_READY) { 1144 usb_stor_dbg(us, "TEST_UNIT_READY\n"); 1145 return alauda_check_media(us); 1146 } 1147 1148 if (srb->cmnd[0] == READ_CAPACITY) { 1149 unsigned int num_zones; 1150 unsigned long capacity; 1151 1152 rc = alauda_check_media(us); 1153 if (rc != USB_STOR_TRANSPORT_GOOD) 1154 return rc; 1155 1156 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1157 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1158 1159 capacity = num_zones * MEDIA_INFO(us).uzonesize 1160 * MEDIA_INFO(us).blocksize; 1161 1162 /* Report capacity and page size */ 1163 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1164 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1165 1166 usb_stor_set_xfer_buf(ptr, 8, srb); 1167 return USB_STOR_TRANSPORT_GOOD; 1168 } 1169 1170 if (srb->cmnd[0] == READ_10) { 1171 unsigned int page, pages; 1172 1173 rc = alauda_check_media(us); 1174 if (rc != USB_STOR_TRANSPORT_GOOD) 1175 return rc; 1176 1177 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1178 page <<= 16; 1179 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1180 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1181 1182 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); 1183 1184 return alauda_read_data(us, page, pages); 1185 } 1186 1187 if (srb->cmnd[0] == WRITE_10) { 1188 unsigned int page, pages; 1189 1190 rc = alauda_check_media(us); 1191 if (rc != USB_STOR_TRANSPORT_GOOD) 1192 return rc; 1193 1194 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1195 page <<= 16; 1196 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1197 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1198 1199 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); 1200 1201 return alauda_write_data(us, page, pages); 1202 } 1203 1204 if (srb->cmnd[0] == REQUEST_SENSE) { 1205 usb_stor_dbg(us, "REQUEST_SENSE\n"); 1206 1207 memset(ptr, 0, 18); 1208 ptr[0] = 0xF0; 1209 ptr[2] = info->sense_key; 1210 ptr[7] = 11; 1211 ptr[12] = info->sense_asc; 1212 ptr[13] = info->sense_ascq; 1213 usb_stor_set_xfer_buf(ptr, 18, srb); 1214 1215 return USB_STOR_TRANSPORT_GOOD; 1216 } 1217 1218 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1219 /* 1220 * sure. whatever. not like we can stop the user from popping 1221 * the media out of the device (no locking doors, etc) 1222 */ 1223 return USB_STOR_TRANSPORT_GOOD; 1224 } 1225 1226 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", 1227 srb->cmnd[0], srb->cmnd[0]); 1228 info->sense_key = 0x05; 1229 info->sense_asc = 0x20; 1230 info->sense_ascq = 0x00; 1231 return USB_STOR_TRANSPORT_FAILED; 1232 } 1233 1234 static struct scsi_host_template alauda_host_template; 1235 1236 static int alauda_probe(struct usb_interface *intf, 1237 const struct usb_device_id *id) 1238 { 1239 struct us_data *us; 1240 int result; 1241 1242 result = usb_stor_probe1(&us, intf, id, 1243 (id - alauda_usb_ids) + alauda_unusual_dev_list, 1244 &alauda_host_template); 1245 if (result) 1246 return result; 1247 1248 us->transport_name = "Alauda Control/Bulk"; 1249 us->transport = alauda_transport; 1250 us->transport_reset = usb_stor_Bulk_reset; 1251 us->max_lun = 1; 1252 1253 result = usb_stor_probe2(us); 1254 return result; 1255 } 1256 1257 static struct usb_driver alauda_driver = { 1258 .name = DRV_NAME, 1259 .probe = alauda_probe, 1260 .disconnect = usb_stor_disconnect, 1261 .suspend = usb_stor_suspend, 1262 .resume = usb_stor_resume, 1263 .reset_resume = usb_stor_reset_resume, 1264 .pre_reset = usb_stor_pre_reset, 1265 .post_reset = usb_stor_post_reset, 1266 .id_table = alauda_usb_ids, 1267 .soft_unbind = 1, 1268 .no_dynamic_id = 1, 1269 }; 1270 1271 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME); 1272