xref: /linux/drivers/usb/storage/alauda.c (revision d27bb0246e5356dbef4d923e72c680bf893885a8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Alauda-based card readers
4  *
5  * Current development and maintenance by:
6  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
7  *
8  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9  *
10  * Alauda implements a vendor-specific command set to access two media reader
11  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12  * which are accepted by these devices.
13  *
14  * The driver was developed through reverse-engineering, with the help of the
15  * sddr09 driver which has many similarities, and with some help from the
16  * (very old) vendor-supplied GPL sma03 driver.
17  *
18  * For protocol info, see http://alauda.sourceforge.net
19  */
20 
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 
28 #include "usb.h"
29 #include "transport.h"
30 #include "protocol.h"
31 #include "debug.h"
32 #include "scsiglue.h"
33 
34 #define DRV_NAME "ums-alauda"
35 
36 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38 MODULE_LICENSE("GPL");
39 MODULE_IMPORT_NS(USB_STORAGE);
40 
41 /*
42  * Status bytes
43  */
44 #define ALAUDA_STATUS_ERROR		0x01
45 #define ALAUDA_STATUS_READY		0x40
46 
47 /*
48  * Control opcodes (for request field)
49  */
50 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
51 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
52 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
53 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
54 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
55 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
56 
57 /*
58  * Bulk command identity (byte 0)
59  */
60 #define ALAUDA_BULK_CMD			0x40
61 
62 /*
63  * Bulk opcodes (byte 1)
64  */
65 #define ALAUDA_BULK_GET_REDU_DATA	0x85
66 #define ALAUDA_BULK_READ_BLOCK		0x94
67 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
68 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
69 #define ALAUDA_BULK_GET_STATUS2		0xb7
70 #define ALAUDA_BULK_RESET_MEDIA		0xe0
71 
72 /*
73  * Port to operate on (byte 8)
74  */
75 #define ALAUDA_PORT_XD			0x00
76 #define ALAUDA_PORT_SM			0x01
77 
78 /*
79  * LBA and PBA are unsigned ints. Special values.
80  */
81 #define UNDEF    0xffff
82 #define SPARE    0xfffe
83 #define UNUSABLE 0xfffd
84 
85 struct alauda_media_info {
86 	unsigned long capacity;		/* total media size in bytes */
87 	unsigned int pagesize;		/* page size in bytes */
88 	unsigned int blocksize;		/* number of pages per block */
89 	unsigned int uzonesize;		/* number of usable blocks per zone */
90 	unsigned int zonesize;		/* number of blocks per zone */
91 	unsigned int blockmask;		/* mask to get page from address */
92 
93 	unsigned char pageshift;
94 	unsigned char blockshift;
95 	unsigned char zoneshift;
96 
97 	u16 **lba_to_pba;		/* logical to physical block map */
98 	u16 **pba_to_lba;		/* physical to logical block map */
99 };
100 
101 struct alauda_info {
102 	struct alauda_media_info port[2];
103 	int wr_ep;			/* endpoint to write data out of */
104 
105 	unsigned char sense_key;
106 	unsigned long sense_asc;	/* additional sense code */
107 	unsigned long sense_ascq;	/* additional sense code qualifier */
108 };
109 
110 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111 #define LSB_of(s) ((s)&0xFF)
112 #define MSB_of(s) ((s)>>8)
113 
114 #define MEDIA_PORT(us) us->srb->device->lun
115 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
116 
117 #define PBA_LO(pba) ((pba & 0xF) << 5)
118 #define PBA_HI(pba) (pba >> 3)
119 #define PBA_ZONE(pba) (pba >> 11)
120 
121 static int init_alauda(struct us_data *us);
122 
123 
124 /*
125  * The table of devices
126  */
127 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 		    vendorName, productName, useProtocol, useTransport, \
129 		    initFunction, flags) \
130 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131   .driver_info = (flags) }
132 
133 static struct usb_device_id alauda_usb_ids[] = {
134 #	include "unusual_alauda.h"
135 	{ }		/* Terminating entry */
136 };
137 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
138 
139 #undef UNUSUAL_DEV
140 
141 /*
142  * The flags table
143  */
144 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 		    vendor_name, product_name, use_protocol, use_transport, \
146 		    init_function, Flags) \
147 { \
148 	.vendorName = vendor_name,	\
149 	.productName = product_name,	\
150 	.useProtocol = use_protocol,	\
151 	.useTransport = use_transport,	\
152 	.initFunction = init_function,	\
153 }
154 
155 static struct us_unusual_dev alauda_unusual_dev_list[] = {
156 #	include "unusual_alauda.h"
157 	{ }		/* Terminating entry */
158 };
159 
160 #undef UNUSUAL_DEV
161 
162 
163 /*
164  * Media handling
165  */
166 
167 struct alauda_card_info {
168 	unsigned char id;		/* id byte */
169 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
170 	unsigned char pageshift;	/* 1<<ps bytes in a page */
171 	unsigned char blockshift;	/* 1<<bs pages per block */
172 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
173 };
174 
175 static struct alauda_card_info alauda_card_ids[] = {
176 	/* NAND flash */
177 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
178 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
179 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
180 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
181 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
182 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
183 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
184 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
185 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
186 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
187 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
188 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
189 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
190 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
191 
192 	/* MASK ROM */
193 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
194 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
195 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
196 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
197 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
198 	{ 0,}
199 };
200 
201 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
202 {
203 	int i;
204 
205 	for (i = 0; alauda_card_ids[i].id != 0; i++)
206 		if (alauda_card_ids[i].id == id)
207 			return &(alauda_card_ids[i]);
208 	return NULL;
209 }
210 
211 /*
212  * ECC computation.
213  */
214 
215 static unsigned char parity[256];
216 static unsigned char ecc2[256];
217 
218 static void nand_init_ecc(void)
219 {
220 	int i, j, a;
221 
222 	parity[0] = 0;
223 	for (i = 1; i < 256; i++)
224 		parity[i] = (parity[i&(i-1)] ^ 1);
225 
226 	for (i = 0; i < 256; i++) {
227 		a = 0;
228 		for (j = 0; j < 8; j++) {
229 			if (i & (1<<j)) {
230 				if ((j & 1) == 0)
231 					a ^= 0x04;
232 				if ((j & 2) == 0)
233 					a ^= 0x10;
234 				if ((j & 4) == 0)
235 					a ^= 0x40;
236 			}
237 		}
238 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
239 	}
240 }
241 
242 /* compute 3-byte ecc on 256 bytes */
243 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
244 {
245 	int i, j, a;
246 	unsigned char par = 0, bit, bits[8] = {0};
247 
248 	/* collect 16 checksum bits */
249 	for (i = 0; i < 256; i++) {
250 		par ^= data[i];
251 		bit = parity[data[i]];
252 		for (j = 0; j < 8; j++)
253 			if ((i & (1<<j)) == 0)
254 				bits[j] ^= bit;
255 	}
256 
257 	/* put 4+4+4 = 12 bits in the ecc */
258 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
260 
261 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
263 
264 	ecc[2] = ecc2[par];
265 }
266 
267 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
268 {
269 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
270 }
271 
272 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
273 {
274 	memcpy(data, ecc, 3);
275 }
276 
277 /*
278  * Alauda driver
279  */
280 
281 /*
282  * Forget our PBA <---> LBA mappings for a particular port
283  */
284 static void alauda_free_maps (struct alauda_media_info *media_info)
285 {
286 	unsigned int shift = media_info->zoneshift
287 		+ media_info->blockshift + media_info->pageshift;
288 	unsigned int num_zones = media_info->capacity >> shift;
289 	unsigned int i;
290 
291 	if (media_info->lba_to_pba != NULL)
292 		for (i = 0; i < num_zones; i++) {
293 			kfree(media_info->lba_to_pba[i]);
294 			media_info->lba_to_pba[i] = NULL;
295 		}
296 
297 	if (media_info->pba_to_lba != NULL)
298 		for (i = 0; i < num_zones; i++) {
299 			kfree(media_info->pba_to_lba[i]);
300 			media_info->pba_to_lba[i] = NULL;
301 		}
302 }
303 
304 /*
305  * Returns 2 bytes of status data
306  * The first byte describes media status, and second byte describes door status
307  */
308 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
309 {
310 	int rc;
311 	unsigned char command;
312 
313 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 		command = ALAUDA_GET_XD_MEDIA_STATUS;
315 	else
316 		command = ALAUDA_GET_SM_MEDIA_STATUS;
317 
318 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 		command, 0xc0, 0, 1, data, 2);
320 
321 	if (rc == USB_STOR_XFER_GOOD)
322 		usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
323 
324 	return rc;
325 }
326 
327 /*
328  * Clears the "media was changed" bit so that we know when it changes again
329  * in the future.
330  */
331 static int alauda_ack_media(struct us_data *us)
332 {
333 	unsigned char command;
334 
335 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
336 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
337 	else
338 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
339 
340 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
341 		command, 0x40, 0, 1, NULL, 0);
342 }
343 
344 /*
345  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
346  * and some other details.
347  */
348 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
349 {
350 	unsigned char command;
351 
352 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
353 		command = ALAUDA_GET_XD_MEDIA_SIG;
354 	else
355 		command = ALAUDA_GET_SM_MEDIA_SIG;
356 
357 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
358 		command, 0xc0, 0, 0, data, 4);
359 }
360 
361 /*
362  * Resets the media status (but not the whole device?)
363  */
364 static int alauda_reset_media(struct us_data *us)
365 {
366 	unsigned char *command = us->iobuf;
367 
368 	memset(command, 0, 9);
369 	command[0] = ALAUDA_BULK_CMD;
370 	command[1] = ALAUDA_BULK_RESET_MEDIA;
371 	command[8] = MEDIA_PORT(us);
372 
373 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
374 		command, 9, NULL);
375 }
376 
377 /*
378  * Examines the media and deduces capacity, etc.
379  */
380 static int alauda_init_media(struct us_data *us)
381 {
382 	unsigned char *data = us->iobuf;
383 	int ready = 0;
384 	struct alauda_card_info *media_info;
385 	unsigned int num_zones;
386 
387 	while (ready == 0) {
388 		msleep(20);
389 
390 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
391 			return USB_STOR_TRANSPORT_ERROR;
392 
393 		if (data[0] & 0x10)
394 			ready = 1;
395 	}
396 
397 	usb_stor_dbg(us, "We are ready for action!\n");
398 
399 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
400 		return USB_STOR_TRANSPORT_ERROR;
401 
402 	msleep(10);
403 
404 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
405 		return USB_STOR_TRANSPORT_ERROR;
406 
407 	if (data[0] != 0x14) {
408 		usb_stor_dbg(us, "Media not ready after ack\n");
409 		return USB_STOR_TRANSPORT_ERROR;
410 	}
411 
412 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
413 		return USB_STOR_TRANSPORT_ERROR;
414 
415 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
416 	media_info = alauda_card_find_id(data[1]);
417 	if (media_info == NULL) {
418 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
419 			data);
420 		return USB_STOR_TRANSPORT_ERROR;
421 	}
422 
423 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
424 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
425 		     MEDIA_INFO(us).capacity >> 20);
426 
427 	MEDIA_INFO(us).pageshift = media_info->pageshift;
428 	MEDIA_INFO(us).blockshift = media_info->blockshift;
429 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
430 
431 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
432 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
433 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
434 
435 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
436 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
437 
438 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
439 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
440 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
441 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
442 	if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
443 		return USB_STOR_TRANSPORT_ERROR;
444 
445 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
446 		return USB_STOR_TRANSPORT_ERROR;
447 
448 	return USB_STOR_TRANSPORT_GOOD;
449 }
450 
451 /*
452  * Examines the media status and does the right thing when the media has gone,
453  * appeared, or changed.
454  */
455 static int alauda_check_media(struct us_data *us)
456 {
457 	struct alauda_info *info = (struct alauda_info *) us->extra;
458 	unsigned char *status = us->iobuf;
459 	int rc;
460 
461 	rc = alauda_get_media_status(us, status);
462 	if (rc != USB_STOR_XFER_GOOD) {
463 		status[0] = 0xF0;	/* Pretend there's no media */
464 		status[1] = 0;
465 	}
466 
467 	/* Check for no media or door open */
468 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
469 		|| ((status[1] & 0x01) == 0)) {
470 		usb_stor_dbg(us, "No media, or door open\n");
471 		alauda_free_maps(&MEDIA_INFO(us));
472 		info->sense_key = 0x02;
473 		info->sense_asc = 0x3A;
474 		info->sense_ascq = 0x00;
475 		return USB_STOR_TRANSPORT_FAILED;
476 	}
477 
478 	/* Check for media change */
479 	if (status[0] & 0x08) {
480 		usb_stor_dbg(us, "Media change detected\n");
481 		alauda_free_maps(&MEDIA_INFO(us));
482 		alauda_init_media(us);
483 
484 		info->sense_key = UNIT_ATTENTION;
485 		info->sense_asc = 0x28;
486 		info->sense_ascq = 0x00;
487 		return USB_STOR_TRANSPORT_FAILED;
488 	}
489 
490 	return USB_STOR_TRANSPORT_GOOD;
491 }
492 
493 /*
494  * Checks the status from the 2nd status register
495  * Returns 3 bytes of status data, only the first is known
496  */
497 static int alauda_check_status2(struct us_data *us)
498 {
499 	int rc;
500 	unsigned char command[] = {
501 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
502 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
503 	};
504 	unsigned char data[3];
505 
506 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
507 		command, 9, NULL);
508 	if (rc != USB_STOR_XFER_GOOD)
509 		return rc;
510 
511 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
512 		data, 3, NULL);
513 	if (rc != USB_STOR_XFER_GOOD)
514 		return rc;
515 
516 	usb_stor_dbg(us, "%3ph\n", data);
517 	if (data[0] & ALAUDA_STATUS_ERROR)
518 		return USB_STOR_XFER_ERROR;
519 
520 	return USB_STOR_XFER_GOOD;
521 }
522 
523 /*
524  * Gets the redundancy data for the first page of a PBA
525  * Returns 16 bytes.
526  */
527 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
528 {
529 	int rc;
530 	unsigned char command[] = {
531 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
532 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
533 	};
534 
535 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
536 		command, 9, NULL);
537 	if (rc != USB_STOR_XFER_GOOD)
538 		return rc;
539 
540 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
541 		data, 16, NULL);
542 }
543 
544 /*
545  * Finds the first unused PBA in a zone
546  * Returns the absolute PBA of an unused PBA, or 0 if none found.
547  */
548 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
549 	unsigned int zone)
550 {
551 	u16 *pba_to_lba = info->pba_to_lba[zone];
552 	unsigned int i;
553 
554 	for (i = 0; i < info->zonesize; i++)
555 		if (pba_to_lba[i] == UNDEF)
556 			return (zone << info->zoneshift) + i;
557 
558 	return 0;
559 }
560 
561 /*
562  * Reads the redundancy data for all PBA's in a zone
563  * Produces lba <--> pba mappings
564  */
565 static int alauda_read_map(struct us_data *us, unsigned int zone)
566 {
567 	unsigned char *data = us->iobuf;
568 	int result;
569 	int i, j;
570 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
571 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
572 	unsigned int lba_offset, lba_real, blocknum;
573 	unsigned int zone_base_lba = zone * uzonesize;
574 	unsigned int zone_base_pba = zone * zonesize;
575 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
576 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
577 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
578 		result = USB_STOR_TRANSPORT_ERROR;
579 		goto error;
580 	}
581 
582 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
583 
584 	/* 1024 PBA's per zone */
585 	for (i = 0; i < zonesize; i++)
586 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
587 
588 	for (i = 0; i < zonesize; i++) {
589 		blocknum = zone_base_pba + i;
590 
591 		result = alauda_get_redu_data(us, blocknum, data);
592 		if (result != USB_STOR_XFER_GOOD) {
593 			result = USB_STOR_TRANSPORT_ERROR;
594 			goto error;
595 		}
596 
597 		/* special PBAs have control field 0^16 */
598 		for (j = 0; j < 16; j++)
599 			if (data[j] != 0)
600 				goto nonz;
601 		pba_to_lba[i] = UNUSABLE;
602 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
603 		continue;
604 
605 	nonz:
606 		/* unwritten PBAs have control field FF^16 */
607 		for (j = 0; j < 16; j++)
608 			if (data[j] != 0xff)
609 				goto nonff;
610 		continue;
611 
612 	nonff:
613 		/* normal PBAs start with six FFs */
614 		if (j < 6) {
615 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
616 				     blocknum,
617 				     data[0], data[1], data[2], data[3],
618 				     data[4], data[5]);
619 			pba_to_lba[i] = UNUSABLE;
620 			continue;
621 		}
622 
623 		if ((data[6] >> 4) != 0x01) {
624 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
625 				     blocknum, data[6], data[7],
626 				     data[11], data[12]);
627 			pba_to_lba[i] = UNUSABLE;
628 			continue;
629 		}
630 
631 		/* check even parity */
632 		if (parity[data[6] ^ data[7]]) {
633 			printk(KERN_WARNING
634 			       "alauda_read_map: Bad parity in LBA for block %d"
635 			       " (%02X %02X)\n", i, data[6], data[7]);
636 			pba_to_lba[i] = UNUSABLE;
637 			continue;
638 		}
639 
640 		lba_offset = short_pack(data[7], data[6]);
641 		lba_offset = (lba_offset & 0x07FF) >> 1;
642 		lba_real = lba_offset + zone_base_lba;
643 
644 		/*
645 		 * Every 1024 physical blocks ("zone"), the LBA numbers
646 		 * go back to zero, but are within a higher block of LBA's.
647 		 * Also, there is a maximum of 1000 LBA's per zone.
648 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
649 		 * which are really LBA 1000-1999. This allows for 24 bad
650 		 * or special physical blocks per zone.
651 		 */
652 
653 		if (lba_offset >= uzonesize) {
654 			printk(KERN_WARNING
655 			       "alauda_read_map: Bad low LBA %d for block %d\n",
656 			       lba_real, blocknum);
657 			continue;
658 		}
659 
660 		if (lba_to_pba[lba_offset] != UNDEF) {
661 			printk(KERN_WARNING
662 			       "alauda_read_map: "
663 			       "LBA %d seen for PBA %d and %d\n",
664 			       lba_real, lba_to_pba[lba_offset], blocknum);
665 			continue;
666 		}
667 
668 		pba_to_lba[i] = lba_real;
669 		lba_to_pba[lba_offset] = blocknum;
670 		continue;
671 	}
672 
673 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
674 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
675 	result = 0;
676 	goto out;
677 
678 error:
679 	kfree(lba_to_pba);
680 	kfree(pba_to_lba);
681 out:
682 	return result;
683 }
684 
685 /*
686  * Checks to see whether we have already mapped a certain zone
687  * If we haven't, the map is generated
688  */
689 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
690 {
691 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
692 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
693 		alauda_read_map(us, zone);
694 }
695 
696 /*
697  * Erases an entire block
698  */
699 static int alauda_erase_block(struct us_data *us, u16 pba)
700 {
701 	int rc;
702 	unsigned char command[] = {
703 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
704 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
705 	};
706 	unsigned char buf[2];
707 
708 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
709 
710 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
711 		command, 9, NULL);
712 	if (rc != USB_STOR_XFER_GOOD)
713 		return rc;
714 
715 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
716 		buf, 2, NULL);
717 	if (rc != USB_STOR_XFER_GOOD)
718 		return rc;
719 
720 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
721 	return rc;
722 }
723 
724 /*
725  * Reads data from a certain offset page inside a PBA, including interleaved
726  * redundancy data. Returns (pagesize+64)*pages bytes in data.
727  */
728 static int alauda_read_block_raw(struct us_data *us, u16 pba,
729 		unsigned int page, unsigned int pages, unsigned char *data)
730 {
731 	int rc;
732 	unsigned char command[] = {
733 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
734 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
735 	};
736 
737 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
738 
739 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
740 		command, 9, NULL);
741 	if (rc != USB_STOR_XFER_GOOD)
742 		return rc;
743 
744 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
745 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
746 }
747 
748 /*
749  * Reads data from a certain offset page inside a PBA, excluding redundancy
750  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
751  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
752  * trailing bytes outside this function.
753  */
754 static int alauda_read_block(struct us_data *us, u16 pba,
755 		unsigned int page, unsigned int pages, unsigned char *data)
756 {
757 	int i, rc;
758 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
759 
760 	rc = alauda_read_block_raw(us, pba, page, pages, data);
761 	if (rc != USB_STOR_XFER_GOOD)
762 		return rc;
763 
764 	/* Cut out the redundancy data */
765 	for (i = 0; i < pages; i++) {
766 		int dest_offset = i * pagesize;
767 		int src_offset = i * (pagesize + 64);
768 		memmove(data + dest_offset, data + src_offset, pagesize);
769 	}
770 
771 	return rc;
772 }
773 
774 /*
775  * Writes an entire block of data and checks status after write.
776  * Redundancy data must be already included in data. Data should be
777  * (pagesize+64)*blocksize bytes in length.
778  */
779 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
780 {
781 	int rc;
782 	struct alauda_info *info = (struct alauda_info *) us->extra;
783 	unsigned char command[] = {
784 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
785 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
786 	};
787 
788 	usb_stor_dbg(us, "pba %d\n", pba);
789 
790 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
791 		command, 9, NULL);
792 	if (rc != USB_STOR_XFER_GOOD)
793 		return rc;
794 
795 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
796 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
797 		NULL);
798 	if (rc != USB_STOR_XFER_GOOD)
799 		return rc;
800 
801 	return alauda_check_status2(us);
802 }
803 
804 /*
805  * Write some data to a specific LBA.
806  */
807 static int alauda_write_lba(struct us_data *us, u16 lba,
808 		 unsigned int page, unsigned int pages,
809 		 unsigned char *ptr, unsigned char *blockbuffer)
810 {
811 	u16 pba, lbap, new_pba;
812 	unsigned char *bptr, *cptr, *xptr;
813 	unsigned char ecc[3];
814 	int i, result;
815 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
816 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
817 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
818 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
819 	unsigned int lba_offset = lba % uzonesize;
820 	unsigned int new_pba_offset;
821 	unsigned int zone = lba / uzonesize;
822 
823 	alauda_ensure_map_for_zone(us, zone);
824 
825 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
826 	if (pba == 1) {
827 		/*
828 		 * Maybe it is impossible to write to PBA 1.
829 		 * Fake success, but don't do anything.
830 		 */
831 		printk(KERN_WARNING
832 		       "alauda_write_lba: avoid writing to pba 1\n");
833 		return USB_STOR_TRANSPORT_GOOD;
834 	}
835 
836 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
837 	if (!new_pba) {
838 		printk(KERN_WARNING
839 		       "alauda_write_lba: Out of unused blocks\n");
840 		return USB_STOR_TRANSPORT_ERROR;
841 	}
842 
843 	/* read old contents */
844 	if (pba != UNDEF) {
845 		result = alauda_read_block_raw(us, pba, 0,
846 			blocksize, blockbuffer);
847 		if (result != USB_STOR_XFER_GOOD)
848 			return result;
849 	} else {
850 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
851 	}
852 
853 	lbap = (lba_offset << 1) | 0x1000;
854 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
855 		lbap ^= 1;
856 
857 	/* check old contents and fill lba */
858 	for (i = 0; i < blocksize; i++) {
859 		bptr = blockbuffer + (i * (pagesize + 64));
860 		cptr = bptr + pagesize;
861 		nand_compute_ecc(bptr, ecc);
862 		if (!nand_compare_ecc(cptr+13, ecc)) {
863 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
864 				     i, pba);
865 			nand_store_ecc(cptr+13, ecc);
866 		}
867 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
868 		if (!nand_compare_ecc(cptr+8, ecc)) {
869 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
870 				     i, pba);
871 			nand_store_ecc(cptr+8, ecc);
872 		}
873 		cptr[6] = cptr[11] = MSB_of(lbap);
874 		cptr[7] = cptr[12] = LSB_of(lbap);
875 	}
876 
877 	/* copy in new stuff and compute ECC */
878 	xptr = ptr;
879 	for (i = page; i < page+pages; i++) {
880 		bptr = blockbuffer + (i * (pagesize + 64));
881 		cptr = bptr + pagesize;
882 		memcpy(bptr, xptr, pagesize);
883 		xptr += pagesize;
884 		nand_compute_ecc(bptr, ecc);
885 		nand_store_ecc(cptr+13, ecc);
886 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
887 		nand_store_ecc(cptr+8, ecc);
888 	}
889 
890 	result = alauda_write_block(us, new_pba, blockbuffer);
891 	if (result != USB_STOR_XFER_GOOD)
892 		return result;
893 
894 	new_pba_offset = new_pba - (zone * zonesize);
895 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
896 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
897 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
898 
899 	if (pba != UNDEF) {
900 		unsigned int pba_offset = pba - (zone * zonesize);
901 		result = alauda_erase_block(us, pba);
902 		if (result != USB_STOR_XFER_GOOD)
903 			return result;
904 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
905 	}
906 
907 	return USB_STOR_TRANSPORT_GOOD;
908 }
909 
910 /*
911  * Read data from a specific sector address
912  */
913 static int alauda_read_data(struct us_data *us, unsigned long address,
914 		unsigned int sectors)
915 {
916 	unsigned char *buffer;
917 	u16 lba, max_lba;
918 	unsigned int page, len, offset;
919 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
920 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
921 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
922 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
923 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
924 	struct scatterlist *sg;
925 	int result;
926 
927 	/*
928 	 * Since we only read in one block at a time, we have to create
929 	 * a bounce buffer and move the data a piece at a time between the
930 	 * bounce buffer and the actual transfer buffer.
931 	 * We make this buffer big enough to hold temporary redundancy data,
932 	 * which we use when reading the data blocks.
933 	 */
934 
935 	len = min(sectors, blocksize) * (pagesize + 64);
936 	buffer = kmalloc(len, GFP_NOIO);
937 	if (!buffer)
938 		return USB_STOR_TRANSPORT_ERROR;
939 
940 	/* Figure out the initial LBA and page */
941 	lba = address >> blockshift;
942 	page = (address & MEDIA_INFO(us).blockmask);
943 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
944 
945 	result = USB_STOR_TRANSPORT_GOOD;
946 	offset = 0;
947 	sg = NULL;
948 
949 	while (sectors > 0) {
950 		unsigned int zone = lba / uzonesize; /* integer division */
951 		unsigned int lba_offset = lba - (zone * uzonesize);
952 		unsigned int pages;
953 		u16 pba;
954 		alauda_ensure_map_for_zone(us, zone);
955 
956 		/* Not overflowing capacity? */
957 		if (lba >= max_lba) {
958 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
959 				     lba, max_lba);
960 			result = USB_STOR_TRANSPORT_ERROR;
961 			break;
962 		}
963 
964 		/* Find number of pages we can read in this block */
965 		pages = min(sectors, blocksize - page);
966 		len = pages << pageshift;
967 
968 		/* Find where this lba lives on disk */
969 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
970 
971 		if (pba == UNDEF) {	/* this lba was never written */
972 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
973 				     pages, lba, page);
974 
975 			/*
976 			 * This is not really an error. It just means
977 			 * that the block has never been written.
978 			 * Instead of returning USB_STOR_TRANSPORT_ERROR
979 			 * it is better to return all zero data.
980 			 */
981 
982 			memset(buffer, 0, len);
983 		} else {
984 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
985 				     pages, pba, lba, page);
986 
987 			result = alauda_read_block(us, pba, page, pages, buffer);
988 			if (result != USB_STOR_TRANSPORT_GOOD)
989 				break;
990 		}
991 
992 		/* Store the data in the transfer buffer */
993 		usb_stor_access_xfer_buf(buffer, len, us->srb,
994 				&sg, &offset, TO_XFER_BUF);
995 
996 		page = 0;
997 		lba++;
998 		sectors -= pages;
999 	}
1000 
1001 	kfree(buffer);
1002 	return result;
1003 }
1004 
1005 /*
1006  * Write data to a specific sector address
1007  */
1008 static int alauda_write_data(struct us_data *us, unsigned long address,
1009 		unsigned int sectors)
1010 {
1011 	unsigned char *buffer, *blockbuffer;
1012 	unsigned int page, len, offset;
1013 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1014 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1015 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1016 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1017 	struct scatterlist *sg;
1018 	u16 lba, max_lba;
1019 	int result;
1020 
1021 	/*
1022 	 * Since we don't write the user data directly to the device,
1023 	 * we have to create a bounce buffer and move the data a piece
1024 	 * at a time between the bounce buffer and the actual transfer buffer.
1025 	 */
1026 
1027 	len = min(sectors, blocksize) * pagesize;
1028 	buffer = kmalloc(len, GFP_NOIO);
1029 	if (!buffer)
1030 		return USB_STOR_TRANSPORT_ERROR;
1031 
1032 	/*
1033 	 * We also need a temporary block buffer, where we read in the old data,
1034 	 * overwrite parts with the new data, and manipulate the redundancy data
1035 	 */
1036 	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1037 	if (!blockbuffer) {
1038 		kfree(buffer);
1039 		return USB_STOR_TRANSPORT_ERROR;
1040 	}
1041 
1042 	/* Figure out the initial LBA and page */
1043 	lba = address >> blockshift;
1044 	page = (address & MEDIA_INFO(us).blockmask);
1045 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1046 
1047 	result = USB_STOR_TRANSPORT_GOOD;
1048 	offset = 0;
1049 	sg = NULL;
1050 
1051 	while (sectors > 0) {
1052 		/* Write as many sectors as possible in this block */
1053 		unsigned int pages = min(sectors, blocksize - page);
1054 		len = pages << pageshift;
1055 
1056 		/* Not overflowing capacity? */
1057 		if (lba >= max_lba) {
1058 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1059 				     lba, max_lba);
1060 			result = USB_STOR_TRANSPORT_ERROR;
1061 			break;
1062 		}
1063 
1064 		/* Get the data from the transfer buffer */
1065 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1066 				&sg, &offset, FROM_XFER_BUF);
1067 
1068 		result = alauda_write_lba(us, lba, page, pages, buffer,
1069 			blockbuffer);
1070 		if (result != USB_STOR_TRANSPORT_GOOD)
1071 			break;
1072 
1073 		page = 0;
1074 		lba++;
1075 		sectors -= pages;
1076 	}
1077 
1078 	kfree(buffer);
1079 	kfree(blockbuffer);
1080 	return result;
1081 }
1082 
1083 /*
1084  * Our interface with the rest of the world
1085  */
1086 
1087 static void alauda_info_destructor(void *extra)
1088 {
1089 	struct alauda_info *info = (struct alauda_info *) extra;
1090 	int port;
1091 
1092 	if (!info)
1093 		return;
1094 
1095 	for (port = 0; port < 2; port++) {
1096 		struct alauda_media_info *media_info = &info->port[port];
1097 
1098 		alauda_free_maps(media_info);
1099 		kfree(media_info->lba_to_pba);
1100 		kfree(media_info->pba_to_lba);
1101 	}
1102 }
1103 
1104 /*
1105  * Initialize alauda_info struct and find the data-write endpoint
1106  */
1107 static int init_alauda(struct us_data *us)
1108 {
1109 	struct alauda_info *info;
1110 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1111 	nand_init_ecc();
1112 
1113 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1114 	if (!us->extra)
1115 		return -ENOMEM;
1116 
1117 	info = (struct alauda_info *) us->extra;
1118 	us->extra_destructor = alauda_info_destructor;
1119 
1120 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1121 		altsetting->endpoint[0].desc.bEndpointAddress
1122 		& USB_ENDPOINT_NUMBER_MASK);
1123 
1124 	return 0;
1125 }
1126 
1127 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1128 {
1129 	int rc;
1130 	struct alauda_info *info = (struct alauda_info *) us->extra;
1131 	unsigned char *ptr = us->iobuf;
1132 	static unsigned char inquiry_response[36] = {
1133 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1134 	};
1135 
1136 	if (srb->cmnd[0] == INQUIRY) {
1137 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1138 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1139 		fill_inquiry_response(us, ptr, 36);
1140 		return USB_STOR_TRANSPORT_GOOD;
1141 	}
1142 
1143 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1144 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1145 		return alauda_check_media(us);
1146 	}
1147 
1148 	if (srb->cmnd[0] == READ_CAPACITY) {
1149 		unsigned int num_zones;
1150 		unsigned long capacity;
1151 
1152 		rc = alauda_check_media(us);
1153 		if (rc != USB_STOR_TRANSPORT_GOOD)
1154 			return rc;
1155 
1156 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1157 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1158 
1159 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1160 			* MEDIA_INFO(us).blocksize;
1161 
1162 		/* Report capacity and page size */
1163 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1164 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1165 
1166 		usb_stor_set_xfer_buf(ptr, 8, srb);
1167 		return USB_STOR_TRANSPORT_GOOD;
1168 	}
1169 
1170 	if (srb->cmnd[0] == READ_10) {
1171 		unsigned int page, pages;
1172 
1173 		rc = alauda_check_media(us);
1174 		if (rc != USB_STOR_TRANSPORT_GOOD)
1175 			return rc;
1176 
1177 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1178 		page <<= 16;
1179 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1180 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1181 
1182 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1183 
1184 		return alauda_read_data(us, page, pages);
1185 	}
1186 
1187 	if (srb->cmnd[0] == WRITE_10) {
1188 		unsigned int page, pages;
1189 
1190 		rc = alauda_check_media(us);
1191 		if (rc != USB_STOR_TRANSPORT_GOOD)
1192 			return rc;
1193 
1194 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1195 		page <<= 16;
1196 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1197 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1198 
1199 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1200 
1201 		return alauda_write_data(us, page, pages);
1202 	}
1203 
1204 	if (srb->cmnd[0] == REQUEST_SENSE) {
1205 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1206 
1207 		memset(ptr, 0, 18);
1208 		ptr[0] = 0xF0;
1209 		ptr[2] = info->sense_key;
1210 		ptr[7] = 11;
1211 		ptr[12] = info->sense_asc;
1212 		ptr[13] = info->sense_ascq;
1213 		usb_stor_set_xfer_buf(ptr, 18, srb);
1214 
1215 		return USB_STOR_TRANSPORT_GOOD;
1216 	}
1217 
1218 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1219 		/*
1220 		 * sure.  whatever.  not like we can stop the user from popping
1221 		 * the media out of the device (no locking doors, etc)
1222 		 */
1223 		return USB_STOR_TRANSPORT_GOOD;
1224 	}
1225 
1226 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1227 		     srb->cmnd[0], srb->cmnd[0]);
1228 	info->sense_key = 0x05;
1229 	info->sense_asc = 0x20;
1230 	info->sense_ascq = 0x00;
1231 	return USB_STOR_TRANSPORT_FAILED;
1232 }
1233 
1234 static struct scsi_host_template alauda_host_template;
1235 
1236 static int alauda_probe(struct usb_interface *intf,
1237 			 const struct usb_device_id *id)
1238 {
1239 	struct us_data *us;
1240 	int result;
1241 
1242 	result = usb_stor_probe1(&us, intf, id,
1243 			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1244 			&alauda_host_template);
1245 	if (result)
1246 		return result;
1247 
1248 	us->transport_name  = "Alauda Control/Bulk";
1249 	us->transport = alauda_transport;
1250 	us->transport_reset = usb_stor_Bulk_reset;
1251 	us->max_lun = 1;
1252 
1253 	result = usb_stor_probe2(us);
1254 	return result;
1255 }
1256 
1257 static struct usb_driver alauda_driver = {
1258 	.name =		DRV_NAME,
1259 	.probe =	alauda_probe,
1260 	.disconnect =	usb_stor_disconnect,
1261 	.suspend =	usb_stor_suspend,
1262 	.resume =	usb_stor_resume,
1263 	.reset_resume =	usb_stor_reset_resume,
1264 	.pre_reset =	usb_stor_pre_reset,
1265 	.post_reset =	usb_stor_post_reset,
1266 	.id_table =	alauda_usb_ids,
1267 	.soft_unbind =	1,
1268 	.no_dynamic_id = 1,
1269 };
1270 
1271 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1272