xref: /linux/drivers/usb/storage/alauda.c (revision bf36793fa260cb68cc817f311f1f683788261796)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Alauda-based card readers
4  *
5  * Current development and maintenance by:
6  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
7  *
8  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9  *
10  * Alauda implements a vendor-specific command set to access two media reader
11  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12  * which are accepted by these devices.
13  *
14  * The driver was developed through reverse-engineering, with the help of the
15  * sddr09 driver which has many similarities, and with some help from the
16  * (very old) vendor-supplied GPL sma03 driver.
17  *
18  * For protocol info, see http://alauda.sourceforge.net
19  */
20 
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 
28 #include "usb.h"
29 #include "transport.h"
30 #include "protocol.h"
31 #include "debug.h"
32 #include "scsiglue.h"
33 
34 #define DRV_NAME "ums-alauda"
35 
36 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38 MODULE_LICENSE("GPL");
39 MODULE_IMPORT_NS(USB_STORAGE);
40 
41 /*
42  * Status bytes
43  */
44 #define ALAUDA_STATUS_ERROR		0x01
45 #define ALAUDA_STATUS_READY		0x40
46 
47 /*
48  * Control opcodes (for request field)
49  */
50 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
51 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
52 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
53 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
54 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
55 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
56 
57 /*
58  * Bulk command identity (byte 0)
59  */
60 #define ALAUDA_BULK_CMD			0x40
61 
62 /*
63  * Bulk opcodes (byte 1)
64  */
65 #define ALAUDA_BULK_GET_REDU_DATA	0x85
66 #define ALAUDA_BULK_READ_BLOCK		0x94
67 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
68 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
69 #define ALAUDA_BULK_GET_STATUS2		0xb7
70 #define ALAUDA_BULK_RESET_MEDIA		0xe0
71 
72 /*
73  * Port to operate on (byte 8)
74  */
75 #define ALAUDA_PORT_XD			0x00
76 #define ALAUDA_PORT_SM			0x01
77 
78 /*
79  * LBA and PBA are unsigned ints. Special values.
80  */
81 #define UNDEF    0xffff
82 #define SPARE    0xfffe
83 #define UNUSABLE 0xfffd
84 
85 struct alauda_media_info {
86 	unsigned long capacity;		/* total media size in bytes */
87 	unsigned int pagesize;		/* page size in bytes */
88 	unsigned int blocksize;		/* number of pages per block */
89 	unsigned int uzonesize;		/* number of usable blocks per zone */
90 	unsigned int zonesize;		/* number of blocks per zone */
91 	unsigned int blockmask;		/* mask to get page from address */
92 
93 	unsigned char pageshift;
94 	unsigned char blockshift;
95 	unsigned char zoneshift;
96 
97 	u16 **lba_to_pba;		/* logical to physical block map */
98 	u16 **pba_to_lba;		/* physical to logical block map */
99 };
100 
101 struct alauda_info {
102 	struct alauda_media_info port[2];
103 	int wr_ep;			/* endpoint to write data out of */
104 
105 	unsigned char sense_key;
106 	unsigned long sense_asc;	/* additional sense code */
107 	unsigned long sense_ascq;	/* additional sense code qualifier */
108 
109 	bool media_initialized;
110 };
111 
112 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
113 #define LSB_of(s) ((s)&0xFF)
114 #define MSB_of(s) ((s)>>8)
115 
116 #define MEDIA_PORT(us) us->srb->device->lun
117 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
118 
119 #define PBA_LO(pba) ((pba & 0xF) << 5)
120 #define PBA_HI(pba) (pba >> 3)
121 #define PBA_ZONE(pba) (pba >> 11)
122 
123 static int init_alauda(struct us_data *us);
124 
125 
126 /*
127  * The table of devices
128  */
129 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
130 		    vendorName, productName, useProtocol, useTransport, \
131 		    initFunction, flags) \
132 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
133   .driver_info = (flags) }
134 
135 static struct usb_device_id alauda_usb_ids[] = {
136 #	include "unusual_alauda.h"
137 	{ }		/* Terminating entry */
138 };
139 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
140 
141 #undef UNUSUAL_DEV
142 
143 /*
144  * The flags table
145  */
146 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
147 		    vendor_name, product_name, use_protocol, use_transport, \
148 		    init_function, Flags) \
149 { \
150 	.vendorName = vendor_name,	\
151 	.productName = product_name,	\
152 	.useProtocol = use_protocol,	\
153 	.useTransport = use_transport,	\
154 	.initFunction = init_function,	\
155 }
156 
157 static struct us_unusual_dev alauda_unusual_dev_list[] = {
158 #	include "unusual_alauda.h"
159 	{ }		/* Terminating entry */
160 };
161 
162 #undef UNUSUAL_DEV
163 
164 
165 /*
166  * Media handling
167  */
168 
169 struct alauda_card_info {
170 	unsigned char id;		/* id byte */
171 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
172 	unsigned char pageshift;	/* 1<<ps bytes in a page */
173 	unsigned char blockshift;	/* 1<<bs pages per block */
174 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
175 };
176 
177 static struct alauda_card_info alauda_card_ids[] = {
178 	/* NAND flash */
179 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
180 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
181 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
182 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
183 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
184 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
185 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
186 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
187 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
188 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
189 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
190 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
191 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
192 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
193 
194 	/* MASK ROM */
195 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
196 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
197 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
198 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
199 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
200 	{ 0,}
201 };
202 
203 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
204 {
205 	int i;
206 
207 	for (i = 0; alauda_card_ids[i].id != 0; i++)
208 		if (alauda_card_ids[i].id == id)
209 			return &(alauda_card_ids[i]);
210 	return NULL;
211 }
212 
213 /*
214  * ECC computation.
215  */
216 
217 static unsigned char parity[256];
218 static unsigned char ecc2[256];
219 
220 static void nand_init_ecc(void)
221 {
222 	int i, j, a;
223 
224 	parity[0] = 0;
225 	for (i = 1; i < 256; i++)
226 		parity[i] = (parity[i&(i-1)] ^ 1);
227 
228 	for (i = 0; i < 256; i++) {
229 		a = 0;
230 		for (j = 0; j < 8; j++) {
231 			if (i & (1<<j)) {
232 				if ((j & 1) == 0)
233 					a ^= 0x04;
234 				if ((j & 2) == 0)
235 					a ^= 0x10;
236 				if ((j & 4) == 0)
237 					a ^= 0x40;
238 			}
239 		}
240 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
241 	}
242 }
243 
244 /* compute 3-byte ecc on 256 bytes */
245 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
246 {
247 	int i, j, a;
248 	unsigned char par = 0, bit, bits[8] = {0};
249 
250 	/* collect 16 checksum bits */
251 	for (i = 0; i < 256; i++) {
252 		par ^= data[i];
253 		bit = parity[data[i]];
254 		for (j = 0; j < 8; j++)
255 			if ((i & (1<<j)) == 0)
256 				bits[j] ^= bit;
257 	}
258 
259 	/* put 4+4+4 = 12 bits in the ecc */
260 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
261 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
262 
263 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
264 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
265 
266 	ecc[2] = ecc2[par];
267 }
268 
269 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
270 {
271 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
272 }
273 
274 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
275 {
276 	memcpy(data, ecc, 3);
277 }
278 
279 /*
280  * Alauda driver
281  */
282 
283 /*
284  * Forget our PBA <---> LBA mappings for a particular port
285  */
286 static void alauda_free_maps (struct alauda_media_info *media_info)
287 {
288 	unsigned int shift = media_info->zoneshift
289 		+ media_info->blockshift + media_info->pageshift;
290 	unsigned int num_zones = media_info->capacity >> shift;
291 	unsigned int i;
292 
293 	if (media_info->lba_to_pba != NULL)
294 		for (i = 0; i < num_zones; i++) {
295 			kfree(media_info->lba_to_pba[i]);
296 			media_info->lba_to_pba[i] = NULL;
297 		}
298 
299 	if (media_info->pba_to_lba != NULL)
300 		for (i = 0; i < num_zones; i++) {
301 			kfree(media_info->pba_to_lba[i]);
302 			media_info->pba_to_lba[i] = NULL;
303 		}
304 }
305 
306 /*
307  * Returns 2 bytes of status data
308  * The first byte describes media status, and second byte describes door status
309  */
310 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
311 {
312 	int rc;
313 	unsigned char command;
314 
315 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
316 		command = ALAUDA_GET_XD_MEDIA_STATUS;
317 	else
318 		command = ALAUDA_GET_SM_MEDIA_STATUS;
319 
320 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
321 		command, 0xc0, 0, 1, data, 2);
322 
323 	if (rc == USB_STOR_XFER_GOOD)
324 		usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
325 
326 	return rc;
327 }
328 
329 /*
330  * Clears the "media was changed" bit so that we know when it changes again
331  * in the future.
332  */
333 static int alauda_ack_media(struct us_data *us)
334 {
335 	unsigned char command;
336 
337 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
338 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
339 	else
340 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
341 
342 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
343 		command, 0x40, 0, 1, NULL, 0);
344 }
345 
346 /*
347  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
348  * and some other details.
349  */
350 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
351 {
352 	unsigned char command;
353 
354 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
355 		command = ALAUDA_GET_XD_MEDIA_SIG;
356 	else
357 		command = ALAUDA_GET_SM_MEDIA_SIG;
358 
359 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
360 		command, 0xc0, 0, 0, data, 4);
361 }
362 
363 /*
364  * Resets the media status (but not the whole device?)
365  */
366 static int alauda_reset_media(struct us_data *us)
367 {
368 	unsigned char *command = us->iobuf;
369 
370 	memset(command, 0, 9);
371 	command[0] = ALAUDA_BULK_CMD;
372 	command[1] = ALAUDA_BULK_RESET_MEDIA;
373 	command[8] = MEDIA_PORT(us);
374 
375 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
376 		command, 9, NULL);
377 }
378 
379 /*
380  * Examines the media and deduces capacity, etc.
381  */
382 static int alauda_init_media(struct us_data *us)
383 {
384 	unsigned char *data = us->iobuf;
385 	int ready = 0;
386 	struct alauda_card_info *media_info;
387 	unsigned int num_zones;
388 
389 	while (ready == 0) {
390 		msleep(20);
391 
392 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
393 			return USB_STOR_TRANSPORT_ERROR;
394 
395 		if (data[0] & 0x10)
396 			ready = 1;
397 	}
398 
399 	usb_stor_dbg(us, "We are ready for action!\n");
400 
401 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
402 		return USB_STOR_TRANSPORT_ERROR;
403 
404 	msleep(10);
405 
406 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
407 		return USB_STOR_TRANSPORT_ERROR;
408 
409 	if (data[0] != 0x14) {
410 		usb_stor_dbg(us, "Media not ready after ack\n");
411 		return USB_STOR_TRANSPORT_ERROR;
412 	}
413 
414 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
415 		return USB_STOR_TRANSPORT_ERROR;
416 
417 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
418 	media_info = alauda_card_find_id(data[1]);
419 	if (media_info == NULL) {
420 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
421 			data);
422 		return USB_STOR_TRANSPORT_ERROR;
423 	}
424 
425 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
426 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
427 		     MEDIA_INFO(us).capacity >> 20);
428 
429 	MEDIA_INFO(us).pageshift = media_info->pageshift;
430 	MEDIA_INFO(us).blockshift = media_info->blockshift;
431 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
432 
433 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
434 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
435 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
436 
437 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
438 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
439 
440 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
441 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
442 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
443 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
444 	if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
445 		return USB_STOR_TRANSPORT_ERROR;
446 
447 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
448 		return USB_STOR_TRANSPORT_ERROR;
449 
450 	return USB_STOR_TRANSPORT_GOOD;
451 }
452 
453 /*
454  * Examines the media status and does the right thing when the media has gone,
455  * appeared, or changed.
456  */
457 static int alauda_check_media(struct us_data *us)
458 {
459 	struct alauda_info *info = (struct alauda_info *) us->extra;
460 	unsigned char *status = us->iobuf;
461 	int rc;
462 
463 	rc = alauda_get_media_status(us, status);
464 	if (rc != USB_STOR_XFER_GOOD) {
465 		status[0] = 0xF0;	/* Pretend there's no media */
466 		status[1] = 0;
467 	}
468 
469 	/* Check for no media or door open */
470 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
471 		|| ((status[1] & 0x01) == 0)) {
472 		usb_stor_dbg(us, "No media, or door open\n");
473 		alauda_free_maps(&MEDIA_INFO(us));
474 		info->sense_key = 0x02;
475 		info->sense_asc = 0x3A;
476 		info->sense_ascq = 0x00;
477 		return USB_STOR_TRANSPORT_FAILED;
478 	}
479 
480 	/* Check for media change */
481 	if (status[0] & 0x08 || !info->media_initialized) {
482 		usb_stor_dbg(us, "Media change detected\n");
483 		alauda_free_maps(&MEDIA_INFO(us));
484 		rc = alauda_init_media(us);
485 		if (rc == USB_STOR_TRANSPORT_GOOD)
486 			info->media_initialized = true;
487 		info->sense_key = UNIT_ATTENTION;
488 		info->sense_asc = 0x28;
489 		info->sense_ascq = 0x00;
490 		return USB_STOR_TRANSPORT_FAILED;
491 	}
492 
493 	return USB_STOR_TRANSPORT_GOOD;
494 }
495 
496 /*
497  * Checks the status from the 2nd status register
498  * Returns 3 bytes of status data, only the first is known
499  */
500 static int alauda_check_status2(struct us_data *us)
501 {
502 	int rc;
503 	unsigned char command[] = {
504 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
505 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
506 	};
507 	unsigned char data[3];
508 
509 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
510 		command, 9, NULL);
511 	if (rc != USB_STOR_XFER_GOOD)
512 		return rc;
513 
514 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
515 		data, 3, NULL);
516 	if (rc != USB_STOR_XFER_GOOD)
517 		return rc;
518 
519 	usb_stor_dbg(us, "%3ph\n", data);
520 	if (data[0] & ALAUDA_STATUS_ERROR)
521 		return USB_STOR_XFER_ERROR;
522 
523 	return USB_STOR_XFER_GOOD;
524 }
525 
526 /*
527  * Gets the redundancy data for the first page of a PBA
528  * Returns 16 bytes.
529  */
530 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
531 {
532 	int rc;
533 	unsigned char command[] = {
534 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
535 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
536 	};
537 
538 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
539 		command, 9, NULL);
540 	if (rc != USB_STOR_XFER_GOOD)
541 		return rc;
542 
543 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
544 		data, 16, NULL);
545 }
546 
547 /*
548  * Finds the first unused PBA in a zone
549  * Returns the absolute PBA of an unused PBA, or 0 if none found.
550  */
551 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
552 	unsigned int zone)
553 {
554 	u16 *pba_to_lba = info->pba_to_lba[zone];
555 	unsigned int i;
556 
557 	for (i = 0; i < info->zonesize; i++)
558 		if (pba_to_lba[i] == UNDEF)
559 			return (zone << info->zoneshift) + i;
560 
561 	return 0;
562 }
563 
564 /*
565  * Reads the redundancy data for all PBA's in a zone
566  * Produces lba <--> pba mappings
567  */
568 static int alauda_read_map(struct us_data *us, unsigned int zone)
569 {
570 	unsigned char *data = us->iobuf;
571 	int result;
572 	int i, j;
573 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
574 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
575 	unsigned int lba_offset, lba_real, blocknum;
576 	unsigned int zone_base_lba = zone * uzonesize;
577 	unsigned int zone_base_pba = zone * zonesize;
578 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
579 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
580 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
581 		result = USB_STOR_TRANSPORT_ERROR;
582 		goto error;
583 	}
584 
585 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
586 
587 	/* 1024 PBA's per zone */
588 	for (i = 0; i < zonesize; i++)
589 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
590 
591 	for (i = 0; i < zonesize; i++) {
592 		blocknum = zone_base_pba + i;
593 
594 		result = alauda_get_redu_data(us, blocknum, data);
595 		if (result != USB_STOR_XFER_GOOD) {
596 			result = USB_STOR_TRANSPORT_ERROR;
597 			goto error;
598 		}
599 
600 		/* special PBAs have control field 0^16 */
601 		for (j = 0; j < 16; j++)
602 			if (data[j] != 0)
603 				goto nonz;
604 		pba_to_lba[i] = UNUSABLE;
605 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
606 		continue;
607 
608 	nonz:
609 		/* unwritten PBAs have control field FF^16 */
610 		for (j = 0; j < 16; j++)
611 			if (data[j] != 0xff)
612 				goto nonff;
613 		continue;
614 
615 	nonff:
616 		/* normal PBAs start with six FFs */
617 		if (j < 6) {
618 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
619 				     blocknum,
620 				     data[0], data[1], data[2], data[3],
621 				     data[4], data[5]);
622 			pba_to_lba[i] = UNUSABLE;
623 			continue;
624 		}
625 
626 		if ((data[6] >> 4) != 0x01) {
627 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
628 				     blocknum, data[6], data[7],
629 				     data[11], data[12]);
630 			pba_to_lba[i] = UNUSABLE;
631 			continue;
632 		}
633 
634 		/* check even parity */
635 		if (parity[data[6] ^ data[7]]) {
636 			printk(KERN_WARNING
637 			       "alauda_read_map: Bad parity in LBA for block %d"
638 			       " (%02X %02X)\n", i, data[6], data[7]);
639 			pba_to_lba[i] = UNUSABLE;
640 			continue;
641 		}
642 
643 		lba_offset = short_pack(data[7], data[6]);
644 		lba_offset = (lba_offset & 0x07FF) >> 1;
645 		lba_real = lba_offset + zone_base_lba;
646 
647 		/*
648 		 * Every 1024 physical blocks ("zone"), the LBA numbers
649 		 * go back to zero, but are within a higher block of LBA's.
650 		 * Also, there is a maximum of 1000 LBA's per zone.
651 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
652 		 * which are really LBA 1000-1999. This allows for 24 bad
653 		 * or special physical blocks per zone.
654 		 */
655 
656 		if (lba_offset >= uzonesize) {
657 			printk(KERN_WARNING
658 			       "alauda_read_map: Bad low LBA %d for block %d\n",
659 			       lba_real, blocknum);
660 			continue;
661 		}
662 
663 		if (lba_to_pba[lba_offset] != UNDEF) {
664 			printk(KERN_WARNING
665 			       "alauda_read_map: "
666 			       "LBA %d seen for PBA %d and %d\n",
667 			       lba_real, lba_to_pba[lba_offset], blocknum);
668 			continue;
669 		}
670 
671 		pba_to_lba[i] = lba_real;
672 		lba_to_pba[lba_offset] = blocknum;
673 		continue;
674 	}
675 
676 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
677 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
678 	result = 0;
679 	goto out;
680 
681 error:
682 	kfree(lba_to_pba);
683 	kfree(pba_to_lba);
684 out:
685 	return result;
686 }
687 
688 /*
689  * Checks to see whether we have already mapped a certain zone
690  * If we haven't, the map is generated
691  */
692 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
693 {
694 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
695 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
696 		alauda_read_map(us, zone);
697 }
698 
699 /*
700  * Erases an entire block
701  */
702 static int alauda_erase_block(struct us_data *us, u16 pba)
703 {
704 	int rc;
705 	unsigned char command[] = {
706 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
707 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
708 	};
709 	unsigned char buf[2];
710 
711 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
712 
713 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
714 		command, 9, NULL);
715 	if (rc != USB_STOR_XFER_GOOD)
716 		return rc;
717 
718 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
719 		buf, 2, NULL);
720 	if (rc != USB_STOR_XFER_GOOD)
721 		return rc;
722 
723 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
724 	return rc;
725 }
726 
727 /*
728  * Reads data from a certain offset page inside a PBA, including interleaved
729  * redundancy data. Returns (pagesize+64)*pages bytes in data.
730  */
731 static int alauda_read_block_raw(struct us_data *us, u16 pba,
732 		unsigned int page, unsigned int pages, unsigned char *data)
733 {
734 	int rc;
735 	unsigned char command[] = {
736 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
737 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
738 	};
739 
740 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
741 
742 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
743 		command, 9, NULL);
744 	if (rc != USB_STOR_XFER_GOOD)
745 		return rc;
746 
747 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
748 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
749 }
750 
751 /*
752  * Reads data from a certain offset page inside a PBA, excluding redundancy
753  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
754  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
755  * trailing bytes outside this function.
756  */
757 static int alauda_read_block(struct us_data *us, u16 pba,
758 		unsigned int page, unsigned int pages, unsigned char *data)
759 {
760 	int i, rc;
761 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
762 
763 	rc = alauda_read_block_raw(us, pba, page, pages, data);
764 	if (rc != USB_STOR_XFER_GOOD)
765 		return rc;
766 
767 	/* Cut out the redundancy data */
768 	for (i = 0; i < pages; i++) {
769 		int dest_offset = i * pagesize;
770 		int src_offset = i * (pagesize + 64);
771 		memmove(data + dest_offset, data + src_offset, pagesize);
772 	}
773 
774 	return rc;
775 }
776 
777 /*
778  * Writes an entire block of data and checks status after write.
779  * Redundancy data must be already included in data. Data should be
780  * (pagesize+64)*blocksize bytes in length.
781  */
782 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
783 {
784 	int rc;
785 	struct alauda_info *info = (struct alauda_info *) us->extra;
786 	unsigned char command[] = {
787 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
788 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
789 	};
790 
791 	usb_stor_dbg(us, "pba %d\n", pba);
792 
793 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
794 		command, 9, NULL);
795 	if (rc != USB_STOR_XFER_GOOD)
796 		return rc;
797 
798 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
799 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
800 		NULL);
801 	if (rc != USB_STOR_XFER_GOOD)
802 		return rc;
803 
804 	return alauda_check_status2(us);
805 }
806 
807 /*
808  * Write some data to a specific LBA.
809  */
810 static int alauda_write_lba(struct us_data *us, u16 lba,
811 		 unsigned int page, unsigned int pages,
812 		 unsigned char *ptr, unsigned char *blockbuffer)
813 {
814 	u16 pba, lbap, new_pba;
815 	unsigned char *bptr, *cptr, *xptr;
816 	unsigned char ecc[3];
817 	int i, result;
818 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
819 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
820 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
821 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
822 	unsigned int lba_offset = lba % uzonesize;
823 	unsigned int new_pba_offset;
824 	unsigned int zone = lba / uzonesize;
825 
826 	alauda_ensure_map_for_zone(us, zone);
827 
828 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
829 	if (pba == 1) {
830 		/*
831 		 * Maybe it is impossible to write to PBA 1.
832 		 * Fake success, but don't do anything.
833 		 */
834 		printk(KERN_WARNING
835 		       "alauda_write_lba: avoid writing to pba 1\n");
836 		return USB_STOR_TRANSPORT_GOOD;
837 	}
838 
839 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
840 	if (!new_pba) {
841 		printk(KERN_WARNING
842 		       "alauda_write_lba: Out of unused blocks\n");
843 		return USB_STOR_TRANSPORT_ERROR;
844 	}
845 
846 	/* read old contents */
847 	if (pba != UNDEF) {
848 		result = alauda_read_block_raw(us, pba, 0,
849 			blocksize, blockbuffer);
850 		if (result != USB_STOR_XFER_GOOD)
851 			return result;
852 	} else {
853 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
854 	}
855 
856 	lbap = (lba_offset << 1) | 0x1000;
857 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
858 		lbap ^= 1;
859 
860 	/* check old contents and fill lba */
861 	for (i = 0; i < blocksize; i++) {
862 		bptr = blockbuffer + (i * (pagesize + 64));
863 		cptr = bptr + pagesize;
864 		nand_compute_ecc(bptr, ecc);
865 		if (!nand_compare_ecc(cptr+13, ecc)) {
866 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
867 				     i, pba);
868 			nand_store_ecc(cptr+13, ecc);
869 		}
870 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
871 		if (!nand_compare_ecc(cptr+8, ecc)) {
872 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
873 				     i, pba);
874 			nand_store_ecc(cptr+8, ecc);
875 		}
876 		cptr[6] = cptr[11] = MSB_of(lbap);
877 		cptr[7] = cptr[12] = LSB_of(lbap);
878 	}
879 
880 	/* copy in new stuff and compute ECC */
881 	xptr = ptr;
882 	for (i = page; i < page+pages; i++) {
883 		bptr = blockbuffer + (i * (pagesize + 64));
884 		cptr = bptr + pagesize;
885 		memcpy(bptr, xptr, pagesize);
886 		xptr += pagesize;
887 		nand_compute_ecc(bptr, ecc);
888 		nand_store_ecc(cptr+13, ecc);
889 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
890 		nand_store_ecc(cptr+8, ecc);
891 	}
892 
893 	result = alauda_write_block(us, new_pba, blockbuffer);
894 	if (result != USB_STOR_XFER_GOOD)
895 		return result;
896 
897 	new_pba_offset = new_pba - (zone * zonesize);
898 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
899 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
900 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
901 
902 	if (pba != UNDEF) {
903 		unsigned int pba_offset = pba - (zone * zonesize);
904 		result = alauda_erase_block(us, pba);
905 		if (result != USB_STOR_XFER_GOOD)
906 			return result;
907 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
908 	}
909 
910 	return USB_STOR_TRANSPORT_GOOD;
911 }
912 
913 /*
914  * Read data from a specific sector address
915  */
916 static int alauda_read_data(struct us_data *us, unsigned long address,
917 		unsigned int sectors)
918 {
919 	unsigned char *buffer;
920 	u16 lba, max_lba;
921 	unsigned int page, len, offset;
922 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
923 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
924 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
925 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
926 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
927 	struct scatterlist *sg;
928 	int result;
929 
930 	/*
931 	 * Since we only read in one block at a time, we have to create
932 	 * a bounce buffer and move the data a piece at a time between the
933 	 * bounce buffer and the actual transfer buffer.
934 	 * We make this buffer big enough to hold temporary redundancy data,
935 	 * which we use when reading the data blocks.
936 	 */
937 
938 	len = min(sectors, blocksize) * (pagesize + 64);
939 	buffer = kmalloc(len, GFP_NOIO);
940 	if (!buffer)
941 		return USB_STOR_TRANSPORT_ERROR;
942 
943 	/* Figure out the initial LBA and page */
944 	lba = address >> blockshift;
945 	page = (address & MEDIA_INFO(us).blockmask);
946 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
947 
948 	result = USB_STOR_TRANSPORT_GOOD;
949 	offset = 0;
950 	sg = NULL;
951 
952 	while (sectors > 0) {
953 		unsigned int zone = lba / uzonesize; /* integer division */
954 		unsigned int lba_offset = lba - (zone * uzonesize);
955 		unsigned int pages;
956 		u16 pba;
957 		alauda_ensure_map_for_zone(us, zone);
958 
959 		/* Not overflowing capacity? */
960 		if (lba >= max_lba) {
961 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
962 				     lba, max_lba);
963 			result = USB_STOR_TRANSPORT_ERROR;
964 			break;
965 		}
966 
967 		/* Find number of pages we can read in this block */
968 		pages = min(sectors, blocksize - page);
969 		len = pages << pageshift;
970 
971 		/* Find where this lba lives on disk */
972 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
973 
974 		if (pba == UNDEF) {	/* this lba was never written */
975 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
976 				     pages, lba, page);
977 
978 			/*
979 			 * This is not really an error. It just means
980 			 * that the block has never been written.
981 			 * Instead of returning USB_STOR_TRANSPORT_ERROR
982 			 * it is better to return all zero data.
983 			 */
984 
985 			memset(buffer, 0, len);
986 		} else {
987 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
988 				     pages, pba, lba, page);
989 
990 			result = alauda_read_block(us, pba, page, pages, buffer);
991 			if (result != USB_STOR_TRANSPORT_GOOD)
992 				break;
993 		}
994 
995 		/* Store the data in the transfer buffer */
996 		usb_stor_access_xfer_buf(buffer, len, us->srb,
997 				&sg, &offset, TO_XFER_BUF);
998 
999 		page = 0;
1000 		lba++;
1001 		sectors -= pages;
1002 	}
1003 
1004 	kfree(buffer);
1005 	return result;
1006 }
1007 
1008 /*
1009  * Write data to a specific sector address
1010  */
1011 static int alauda_write_data(struct us_data *us, unsigned long address,
1012 		unsigned int sectors)
1013 {
1014 	unsigned char *buffer, *blockbuffer;
1015 	unsigned int page, len, offset;
1016 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1017 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1018 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1019 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1020 	struct scatterlist *sg;
1021 	u16 lba, max_lba;
1022 	int result;
1023 
1024 	/*
1025 	 * Since we don't write the user data directly to the device,
1026 	 * we have to create a bounce buffer and move the data a piece
1027 	 * at a time between the bounce buffer and the actual transfer buffer.
1028 	 */
1029 
1030 	len = min(sectors, blocksize) * pagesize;
1031 	buffer = kmalloc(len, GFP_NOIO);
1032 	if (!buffer)
1033 		return USB_STOR_TRANSPORT_ERROR;
1034 
1035 	/*
1036 	 * We also need a temporary block buffer, where we read in the old data,
1037 	 * overwrite parts with the new data, and manipulate the redundancy data
1038 	 */
1039 	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1040 	if (!blockbuffer) {
1041 		kfree(buffer);
1042 		return USB_STOR_TRANSPORT_ERROR;
1043 	}
1044 
1045 	/* Figure out the initial LBA and page */
1046 	lba = address >> blockshift;
1047 	page = (address & MEDIA_INFO(us).blockmask);
1048 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1049 
1050 	result = USB_STOR_TRANSPORT_GOOD;
1051 	offset = 0;
1052 	sg = NULL;
1053 
1054 	while (sectors > 0) {
1055 		/* Write as many sectors as possible in this block */
1056 		unsigned int pages = min(sectors, blocksize - page);
1057 		len = pages << pageshift;
1058 
1059 		/* Not overflowing capacity? */
1060 		if (lba >= max_lba) {
1061 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1062 				     lba, max_lba);
1063 			result = USB_STOR_TRANSPORT_ERROR;
1064 			break;
1065 		}
1066 
1067 		/* Get the data from the transfer buffer */
1068 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1069 				&sg, &offset, FROM_XFER_BUF);
1070 
1071 		result = alauda_write_lba(us, lba, page, pages, buffer,
1072 			blockbuffer);
1073 		if (result != USB_STOR_TRANSPORT_GOOD)
1074 			break;
1075 
1076 		page = 0;
1077 		lba++;
1078 		sectors -= pages;
1079 	}
1080 
1081 	kfree(buffer);
1082 	kfree(blockbuffer);
1083 	return result;
1084 }
1085 
1086 /*
1087  * Our interface with the rest of the world
1088  */
1089 
1090 static void alauda_info_destructor(void *extra)
1091 {
1092 	struct alauda_info *info = (struct alauda_info *) extra;
1093 	int port;
1094 
1095 	if (!info)
1096 		return;
1097 
1098 	for (port = 0; port < 2; port++) {
1099 		struct alauda_media_info *media_info = &info->port[port];
1100 
1101 		alauda_free_maps(media_info);
1102 		kfree(media_info->lba_to_pba);
1103 		kfree(media_info->pba_to_lba);
1104 	}
1105 }
1106 
1107 /*
1108  * Initialize alauda_info struct and find the data-write endpoint
1109  */
1110 static int init_alauda(struct us_data *us)
1111 {
1112 	struct alauda_info *info;
1113 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1114 	nand_init_ecc();
1115 
1116 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1117 	if (!us->extra)
1118 		return -ENOMEM;
1119 
1120 	info = (struct alauda_info *) us->extra;
1121 	us->extra_destructor = alauda_info_destructor;
1122 
1123 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1124 		altsetting->endpoint[0].desc.bEndpointAddress
1125 		& USB_ENDPOINT_NUMBER_MASK);
1126 
1127 	return 0;
1128 }
1129 
1130 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1131 {
1132 	int rc;
1133 	struct alauda_info *info = (struct alauda_info *) us->extra;
1134 	unsigned char *ptr = us->iobuf;
1135 	static unsigned char inquiry_response[36] = {
1136 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1137 	};
1138 
1139 	if (srb->cmnd[0] == INQUIRY) {
1140 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1141 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1142 		fill_inquiry_response(us, ptr, 36);
1143 		return USB_STOR_TRANSPORT_GOOD;
1144 	}
1145 
1146 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1147 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1148 		return alauda_check_media(us);
1149 	}
1150 
1151 	if (srb->cmnd[0] == READ_CAPACITY) {
1152 		unsigned int num_zones;
1153 		unsigned long capacity;
1154 
1155 		rc = alauda_check_media(us);
1156 		if (rc != USB_STOR_TRANSPORT_GOOD)
1157 			return rc;
1158 
1159 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1160 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1161 
1162 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1163 			* MEDIA_INFO(us).blocksize;
1164 
1165 		/* Report capacity and page size */
1166 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1167 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1168 
1169 		usb_stor_set_xfer_buf(ptr, 8, srb);
1170 		return USB_STOR_TRANSPORT_GOOD;
1171 	}
1172 
1173 	if (srb->cmnd[0] == READ_10) {
1174 		unsigned int page, pages;
1175 
1176 		rc = alauda_check_media(us);
1177 		if (rc != USB_STOR_TRANSPORT_GOOD)
1178 			return rc;
1179 
1180 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1181 		page <<= 16;
1182 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1183 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1184 
1185 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1186 
1187 		return alauda_read_data(us, page, pages);
1188 	}
1189 
1190 	if (srb->cmnd[0] == WRITE_10) {
1191 		unsigned int page, pages;
1192 
1193 		rc = alauda_check_media(us);
1194 		if (rc != USB_STOR_TRANSPORT_GOOD)
1195 			return rc;
1196 
1197 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1198 		page <<= 16;
1199 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1200 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1201 
1202 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1203 
1204 		return alauda_write_data(us, page, pages);
1205 	}
1206 
1207 	if (srb->cmnd[0] == REQUEST_SENSE) {
1208 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1209 
1210 		memset(ptr, 0, 18);
1211 		ptr[0] = 0xF0;
1212 		ptr[2] = info->sense_key;
1213 		ptr[7] = 11;
1214 		ptr[12] = info->sense_asc;
1215 		ptr[13] = info->sense_ascq;
1216 		usb_stor_set_xfer_buf(ptr, 18, srb);
1217 
1218 		return USB_STOR_TRANSPORT_GOOD;
1219 	}
1220 
1221 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1222 		/*
1223 		 * sure.  whatever.  not like we can stop the user from popping
1224 		 * the media out of the device (no locking doors, etc)
1225 		 */
1226 		return USB_STOR_TRANSPORT_GOOD;
1227 	}
1228 
1229 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1230 		     srb->cmnd[0], srb->cmnd[0]);
1231 	info->sense_key = 0x05;
1232 	info->sense_asc = 0x20;
1233 	info->sense_ascq = 0x00;
1234 	return USB_STOR_TRANSPORT_FAILED;
1235 }
1236 
1237 static struct scsi_host_template alauda_host_template;
1238 
1239 static int alauda_probe(struct usb_interface *intf,
1240 			 const struct usb_device_id *id)
1241 {
1242 	struct us_data *us;
1243 	int result;
1244 
1245 	result = usb_stor_probe1(&us, intf, id,
1246 			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1247 			&alauda_host_template);
1248 	if (result)
1249 		return result;
1250 
1251 	us->transport_name  = "Alauda Control/Bulk";
1252 	us->transport = alauda_transport;
1253 	us->transport_reset = usb_stor_Bulk_reset;
1254 	us->max_lun = 1;
1255 
1256 	result = usb_stor_probe2(us);
1257 	return result;
1258 }
1259 
1260 static struct usb_driver alauda_driver = {
1261 	.name =		DRV_NAME,
1262 	.probe =	alauda_probe,
1263 	.disconnect =	usb_stor_disconnect,
1264 	.suspend =	usb_stor_suspend,
1265 	.resume =	usb_stor_resume,
1266 	.reset_resume =	usb_stor_reset_resume,
1267 	.pre_reset =	usb_stor_pre_reset,
1268 	.post_reset =	usb_stor_post_reset,
1269 	.id_table =	alauda_usb_ids,
1270 	.soft_unbind =	1,
1271 	.no_dynamic_id = 1,
1272 };
1273 
1274 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1275