1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Alauda-based card readers 4 * 5 * Current development and maintenance by: 6 * (c) 2005 Daniel Drake <dsd@gentoo.org> 7 * 8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use. 9 * 10 * Alauda implements a vendor-specific command set to access two media reader 11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands 12 * which are accepted by these devices. 13 * 14 * The driver was developed through reverse-engineering, with the help of the 15 * sddr09 driver which has many similarities, and with some help from the 16 * (very old) vendor-supplied GPL sma03 driver. 17 * 18 * For protocol info, see http://alauda.sourceforge.net 19 */ 20 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_device.h> 27 28 #include "usb.h" 29 #include "transport.h" 30 #include "protocol.h" 31 #include "debug.h" 32 #include "scsiglue.h" 33 34 #define DRV_NAME "ums-alauda" 35 36 MODULE_DESCRIPTION("Driver for Alauda-based card readers"); 37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); 38 MODULE_LICENSE("GPL"); 39 MODULE_IMPORT_NS(USB_STORAGE); 40 41 /* 42 * Status bytes 43 */ 44 #define ALAUDA_STATUS_ERROR 0x01 45 #define ALAUDA_STATUS_READY 0x40 46 47 /* 48 * Control opcodes (for request field) 49 */ 50 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 51 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 52 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a 53 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a 54 #define ALAUDA_GET_XD_MEDIA_SIG 0x86 55 #define ALAUDA_GET_SM_MEDIA_SIG 0x96 56 57 /* 58 * Bulk command identity (byte 0) 59 */ 60 #define ALAUDA_BULK_CMD 0x40 61 62 /* 63 * Bulk opcodes (byte 1) 64 */ 65 #define ALAUDA_BULK_GET_REDU_DATA 0x85 66 #define ALAUDA_BULK_READ_BLOCK 0x94 67 #define ALAUDA_BULK_ERASE_BLOCK 0xa3 68 #define ALAUDA_BULK_WRITE_BLOCK 0xb4 69 #define ALAUDA_BULK_GET_STATUS2 0xb7 70 #define ALAUDA_BULK_RESET_MEDIA 0xe0 71 72 /* 73 * Port to operate on (byte 8) 74 */ 75 #define ALAUDA_PORT_XD 0x00 76 #define ALAUDA_PORT_SM 0x01 77 78 /* 79 * LBA and PBA are unsigned ints. Special values. 80 */ 81 #define UNDEF 0xffff 82 #define SPARE 0xfffe 83 #define UNUSABLE 0xfffd 84 85 struct alauda_media_info { 86 unsigned long capacity; /* total media size in bytes */ 87 unsigned int pagesize; /* page size in bytes */ 88 unsigned int blocksize; /* number of pages per block */ 89 unsigned int uzonesize; /* number of usable blocks per zone */ 90 unsigned int zonesize; /* number of blocks per zone */ 91 unsigned int blockmask; /* mask to get page from address */ 92 93 unsigned char pageshift; 94 unsigned char blockshift; 95 unsigned char zoneshift; 96 97 u16 **lba_to_pba; /* logical to physical block map */ 98 u16 **pba_to_lba; /* physical to logical block map */ 99 }; 100 101 struct alauda_info { 102 struct alauda_media_info port[2]; 103 int wr_ep; /* endpoint to write data out of */ 104 105 unsigned char sense_key; 106 unsigned long sense_asc; /* additional sense code */ 107 unsigned long sense_ascq; /* additional sense code qualifier */ 108 109 bool media_initialized; 110 }; 111 112 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) 113 #define LSB_of(s) ((s)&0xFF) 114 #define MSB_of(s) ((s)>>8) 115 116 #define MEDIA_PORT(us) us->srb->device->lun 117 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] 118 119 #define PBA_LO(pba) ((pba & 0xF) << 5) 120 #define PBA_HI(pba) (pba >> 3) 121 #define PBA_ZONE(pba) (pba >> 11) 122 123 static int init_alauda(struct us_data *us); 124 125 126 /* 127 * The table of devices 128 */ 129 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ 130 vendorName, productName, useProtocol, useTransport, \ 131 initFunction, flags) \ 132 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ 133 .driver_info = (flags) } 134 135 static struct usb_device_id alauda_usb_ids[] = { 136 # include "unusual_alauda.h" 137 { } /* Terminating entry */ 138 }; 139 MODULE_DEVICE_TABLE(usb, alauda_usb_ids); 140 141 #undef UNUSUAL_DEV 142 143 /* 144 * The flags table 145 */ 146 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ 147 vendor_name, product_name, use_protocol, use_transport, \ 148 init_function, Flags) \ 149 { \ 150 .vendorName = vendor_name, \ 151 .productName = product_name, \ 152 .useProtocol = use_protocol, \ 153 .useTransport = use_transport, \ 154 .initFunction = init_function, \ 155 } 156 157 static struct us_unusual_dev alauda_unusual_dev_list[] = { 158 # include "unusual_alauda.h" 159 { } /* Terminating entry */ 160 }; 161 162 #undef UNUSUAL_DEV 163 164 165 /* 166 * Media handling 167 */ 168 169 struct alauda_card_info { 170 unsigned char id; /* id byte */ 171 unsigned char chipshift; /* 1<<cs bytes total capacity */ 172 unsigned char pageshift; /* 1<<ps bytes in a page */ 173 unsigned char blockshift; /* 1<<bs pages per block */ 174 unsigned char zoneshift; /* 1<<zs blocks per zone */ 175 }; 176 177 static struct alauda_card_info alauda_card_ids[] = { 178 /* NAND flash */ 179 { 0x6e, 20, 8, 4, 8}, /* 1 MB */ 180 { 0xe8, 20, 8, 4, 8}, /* 1 MB */ 181 { 0xec, 20, 8, 4, 8}, /* 1 MB */ 182 { 0x64, 21, 8, 4, 9}, /* 2 MB */ 183 { 0xea, 21, 8, 4, 9}, /* 2 MB */ 184 { 0x6b, 22, 9, 4, 9}, /* 4 MB */ 185 { 0xe3, 22, 9, 4, 9}, /* 4 MB */ 186 { 0xe5, 22, 9, 4, 9}, /* 4 MB */ 187 { 0xe6, 23, 9, 4, 10}, /* 8 MB */ 188 { 0x73, 24, 9, 5, 10}, /* 16 MB */ 189 { 0x75, 25, 9, 5, 10}, /* 32 MB */ 190 { 0x76, 26, 9, 5, 10}, /* 64 MB */ 191 { 0x79, 27, 9, 5, 10}, /* 128 MB */ 192 { 0x71, 28, 9, 5, 10}, /* 256 MB */ 193 194 /* MASK ROM */ 195 { 0x5d, 21, 9, 4, 8}, /* 2 MB */ 196 { 0xd5, 22, 9, 4, 9}, /* 4 MB */ 197 { 0xd6, 23, 9, 4, 10}, /* 8 MB */ 198 { 0x57, 24, 9, 4, 11}, /* 16 MB */ 199 { 0x58, 25, 9, 4, 12}, /* 32 MB */ 200 { 0,} 201 }; 202 203 static struct alauda_card_info *alauda_card_find_id(unsigned char id) 204 { 205 int i; 206 207 for (i = 0; alauda_card_ids[i].id != 0; i++) 208 if (alauda_card_ids[i].id == id) 209 return &(alauda_card_ids[i]); 210 return NULL; 211 } 212 213 /* 214 * ECC computation. 215 */ 216 217 static unsigned char parity[256]; 218 static unsigned char ecc2[256]; 219 220 static void nand_init_ecc(void) 221 { 222 int i, j, a; 223 224 parity[0] = 0; 225 for (i = 1; i < 256; i++) 226 parity[i] = (parity[i&(i-1)] ^ 1); 227 228 for (i = 0; i < 256; i++) { 229 a = 0; 230 for (j = 0; j < 8; j++) { 231 if (i & (1<<j)) { 232 if ((j & 1) == 0) 233 a ^= 0x04; 234 if ((j & 2) == 0) 235 a ^= 0x10; 236 if ((j & 4) == 0) 237 a ^= 0x40; 238 } 239 } 240 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); 241 } 242 } 243 244 /* compute 3-byte ecc on 256 bytes */ 245 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) 246 { 247 int i, j, a; 248 unsigned char par = 0, bit, bits[8] = {0}; 249 250 /* collect 16 checksum bits */ 251 for (i = 0; i < 256; i++) { 252 par ^= data[i]; 253 bit = parity[data[i]]; 254 for (j = 0; j < 8; j++) 255 if ((i & (1<<j)) == 0) 256 bits[j] ^= bit; 257 } 258 259 /* put 4+4+4 = 12 bits in the ecc */ 260 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; 261 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 262 263 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; 264 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); 265 266 ecc[2] = ecc2[par]; 267 } 268 269 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) 270 { 271 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); 272 } 273 274 static void nand_store_ecc(unsigned char *data, unsigned char *ecc) 275 { 276 memcpy(data, ecc, 3); 277 } 278 279 /* 280 * Alauda driver 281 */ 282 283 /* 284 * Forget our PBA <---> LBA mappings for a particular port 285 */ 286 static void alauda_free_maps (struct alauda_media_info *media_info) 287 { 288 unsigned int shift = media_info->zoneshift 289 + media_info->blockshift + media_info->pageshift; 290 unsigned int num_zones = media_info->capacity >> shift; 291 unsigned int i; 292 293 if (media_info->lba_to_pba != NULL) 294 for (i = 0; i < num_zones; i++) { 295 kfree(media_info->lba_to_pba[i]); 296 media_info->lba_to_pba[i] = NULL; 297 } 298 299 if (media_info->pba_to_lba != NULL) 300 for (i = 0; i < num_zones; i++) { 301 kfree(media_info->pba_to_lba[i]); 302 media_info->pba_to_lba[i] = NULL; 303 } 304 } 305 306 /* 307 * Returns 2 bytes of status data 308 * The first byte describes media status, and second byte describes door status 309 */ 310 static int alauda_get_media_status(struct us_data *us, unsigned char *data) 311 { 312 int rc; 313 unsigned char command; 314 315 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 316 command = ALAUDA_GET_XD_MEDIA_STATUS; 317 else 318 command = ALAUDA_GET_SM_MEDIA_STATUS; 319 320 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 321 command, 0xc0, 0, 1, data, 2); 322 323 if (rc == USB_STOR_XFER_GOOD) 324 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); 325 326 return rc; 327 } 328 329 /* 330 * Clears the "media was changed" bit so that we know when it changes again 331 * in the future. 332 */ 333 static int alauda_ack_media(struct us_data *us) 334 { 335 unsigned char command; 336 337 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 338 command = ALAUDA_ACK_XD_MEDIA_CHANGE; 339 else 340 command = ALAUDA_ACK_SM_MEDIA_CHANGE; 341 342 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, 343 command, 0x40, 0, 1, NULL, 0); 344 } 345 346 /* 347 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, 348 * and some other details. 349 */ 350 static int alauda_get_media_signature(struct us_data *us, unsigned char *data) 351 { 352 unsigned char command; 353 354 if (MEDIA_PORT(us) == ALAUDA_PORT_XD) 355 command = ALAUDA_GET_XD_MEDIA_SIG; 356 else 357 command = ALAUDA_GET_SM_MEDIA_SIG; 358 359 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, 360 command, 0xc0, 0, 0, data, 4); 361 } 362 363 /* 364 * Resets the media status (but not the whole device?) 365 */ 366 static int alauda_reset_media(struct us_data *us) 367 { 368 unsigned char *command = us->iobuf; 369 370 memset(command, 0, 9); 371 command[0] = ALAUDA_BULK_CMD; 372 command[1] = ALAUDA_BULK_RESET_MEDIA; 373 command[8] = MEDIA_PORT(us); 374 375 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 376 command, 9, NULL); 377 } 378 379 /* 380 * Examines the media and deduces capacity, etc. 381 */ 382 static int alauda_init_media(struct us_data *us) 383 { 384 unsigned char *data = us->iobuf; 385 int ready = 0; 386 struct alauda_card_info *media_info; 387 unsigned int num_zones; 388 389 while (ready == 0) { 390 msleep(20); 391 392 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 393 return USB_STOR_TRANSPORT_ERROR; 394 395 if (data[0] & 0x10) 396 ready = 1; 397 } 398 399 usb_stor_dbg(us, "We are ready for action!\n"); 400 401 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) 402 return USB_STOR_TRANSPORT_ERROR; 403 404 msleep(10); 405 406 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) 407 return USB_STOR_TRANSPORT_ERROR; 408 409 if (data[0] != 0x14) { 410 usb_stor_dbg(us, "Media not ready after ack\n"); 411 return USB_STOR_TRANSPORT_ERROR; 412 } 413 414 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) 415 return USB_STOR_TRANSPORT_ERROR; 416 417 usb_stor_dbg(us, "Media signature: %4ph\n", data); 418 media_info = alauda_card_find_id(data[1]); 419 if (media_info == NULL) { 420 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", 421 data); 422 return USB_STOR_TRANSPORT_ERROR; 423 } 424 425 MEDIA_INFO(us).capacity = 1 << media_info->chipshift; 426 usb_stor_dbg(us, "Found media with capacity: %ldMB\n", 427 MEDIA_INFO(us).capacity >> 20); 428 429 MEDIA_INFO(us).pageshift = media_info->pageshift; 430 MEDIA_INFO(us).blockshift = media_info->blockshift; 431 MEDIA_INFO(us).zoneshift = media_info->zoneshift; 432 433 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; 434 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; 435 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; 436 437 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; 438 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; 439 440 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 441 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 442 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 443 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); 444 if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL) 445 return USB_STOR_TRANSPORT_ERROR; 446 447 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) 448 return USB_STOR_TRANSPORT_ERROR; 449 450 return USB_STOR_TRANSPORT_GOOD; 451 } 452 453 /* 454 * Examines the media status and does the right thing when the media has gone, 455 * appeared, or changed. 456 */ 457 static int alauda_check_media(struct us_data *us) 458 { 459 struct alauda_info *info = (struct alauda_info *) us->extra; 460 unsigned char *status = us->iobuf; 461 int rc; 462 463 rc = alauda_get_media_status(us, status); 464 if (rc != USB_STOR_XFER_GOOD) { 465 status[0] = 0xF0; /* Pretend there's no media */ 466 status[1] = 0; 467 } 468 469 /* Check for no media or door open */ 470 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) 471 || ((status[1] & 0x01) == 0)) { 472 usb_stor_dbg(us, "No media, or door open\n"); 473 alauda_free_maps(&MEDIA_INFO(us)); 474 info->sense_key = 0x02; 475 info->sense_asc = 0x3A; 476 info->sense_ascq = 0x00; 477 return USB_STOR_TRANSPORT_FAILED; 478 } 479 480 /* Check for media change */ 481 if (status[0] & 0x08 || !info->media_initialized) { 482 usb_stor_dbg(us, "Media change detected\n"); 483 alauda_free_maps(&MEDIA_INFO(us)); 484 rc = alauda_init_media(us); 485 if (rc == USB_STOR_TRANSPORT_GOOD) 486 info->media_initialized = true; 487 info->sense_key = UNIT_ATTENTION; 488 info->sense_asc = 0x28; 489 info->sense_ascq = 0x00; 490 return USB_STOR_TRANSPORT_FAILED; 491 } 492 493 return USB_STOR_TRANSPORT_GOOD; 494 } 495 496 /* 497 * Checks the status from the 2nd status register 498 * Returns 3 bytes of status data, only the first is known 499 */ 500 static int alauda_check_status2(struct us_data *us) 501 { 502 int rc; 503 unsigned char command[] = { 504 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, 505 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) 506 }; 507 unsigned char data[3]; 508 509 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 510 command, 9, NULL); 511 if (rc != USB_STOR_XFER_GOOD) 512 return rc; 513 514 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 515 data, 3, NULL); 516 if (rc != USB_STOR_XFER_GOOD) 517 return rc; 518 519 usb_stor_dbg(us, "%3ph\n", data); 520 if (data[0] & ALAUDA_STATUS_ERROR) 521 return USB_STOR_XFER_ERROR; 522 523 return USB_STOR_XFER_GOOD; 524 } 525 526 /* 527 * Gets the redundancy data for the first page of a PBA 528 * Returns 16 bytes. 529 */ 530 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) 531 { 532 int rc; 533 unsigned char command[] = { 534 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, 535 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) 536 }; 537 538 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 539 command, 9, NULL); 540 if (rc != USB_STOR_XFER_GOOD) 541 return rc; 542 543 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 544 data, 16, NULL); 545 } 546 547 /* 548 * Finds the first unused PBA in a zone 549 * Returns the absolute PBA of an unused PBA, or 0 if none found. 550 */ 551 static u16 alauda_find_unused_pba(struct alauda_media_info *info, 552 unsigned int zone) 553 { 554 u16 *pba_to_lba = info->pba_to_lba[zone]; 555 unsigned int i; 556 557 for (i = 0; i < info->zonesize; i++) 558 if (pba_to_lba[i] == UNDEF) 559 return (zone << info->zoneshift) + i; 560 561 return 0; 562 } 563 564 /* 565 * Reads the redundancy data for all PBA's in a zone 566 * Produces lba <--> pba mappings 567 */ 568 static int alauda_read_map(struct us_data *us, unsigned int zone) 569 { 570 unsigned char *data = us->iobuf; 571 int result; 572 int i, j; 573 unsigned int zonesize = MEDIA_INFO(us).zonesize; 574 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 575 unsigned int lba_offset, lba_real, blocknum; 576 unsigned int zone_base_lba = zone * uzonesize; 577 unsigned int zone_base_pba = zone * zonesize; 578 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 579 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); 580 if (lba_to_pba == NULL || pba_to_lba == NULL) { 581 result = USB_STOR_TRANSPORT_ERROR; 582 goto error; 583 } 584 585 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); 586 587 /* 1024 PBA's per zone */ 588 for (i = 0; i < zonesize; i++) 589 lba_to_pba[i] = pba_to_lba[i] = UNDEF; 590 591 for (i = 0; i < zonesize; i++) { 592 blocknum = zone_base_pba + i; 593 594 result = alauda_get_redu_data(us, blocknum, data); 595 if (result != USB_STOR_XFER_GOOD) { 596 result = USB_STOR_TRANSPORT_ERROR; 597 goto error; 598 } 599 600 /* special PBAs have control field 0^16 */ 601 for (j = 0; j < 16; j++) 602 if (data[j] != 0) 603 goto nonz; 604 pba_to_lba[i] = UNUSABLE; 605 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); 606 continue; 607 608 nonz: 609 /* unwritten PBAs have control field FF^16 */ 610 for (j = 0; j < 16; j++) 611 if (data[j] != 0xff) 612 goto nonff; 613 continue; 614 615 nonff: 616 /* normal PBAs start with six FFs */ 617 if (j < 6) { 618 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", 619 blocknum, 620 data[0], data[1], data[2], data[3], 621 data[4], data[5]); 622 pba_to_lba[i] = UNUSABLE; 623 continue; 624 } 625 626 if ((data[6] >> 4) != 0x01) { 627 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", 628 blocknum, data[6], data[7], 629 data[11], data[12]); 630 pba_to_lba[i] = UNUSABLE; 631 continue; 632 } 633 634 /* check even parity */ 635 if (parity[data[6] ^ data[7]]) { 636 printk(KERN_WARNING 637 "alauda_read_map: Bad parity in LBA for block %d" 638 " (%02X %02X)\n", i, data[6], data[7]); 639 pba_to_lba[i] = UNUSABLE; 640 continue; 641 } 642 643 lba_offset = short_pack(data[7], data[6]); 644 lba_offset = (lba_offset & 0x07FF) >> 1; 645 lba_real = lba_offset + zone_base_lba; 646 647 /* 648 * Every 1024 physical blocks ("zone"), the LBA numbers 649 * go back to zero, but are within a higher block of LBA's. 650 * Also, there is a maximum of 1000 LBA's per zone. 651 * In other words, in PBA 1024-2047 you will find LBA 0-999 652 * which are really LBA 1000-1999. This allows for 24 bad 653 * or special physical blocks per zone. 654 */ 655 656 if (lba_offset >= uzonesize) { 657 printk(KERN_WARNING 658 "alauda_read_map: Bad low LBA %d for block %d\n", 659 lba_real, blocknum); 660 continue; 661 } 662 663 if (lba_to_pba[lba_offset] != UNDEF) { 664 printk(KERN_WARNING 665 "alauda_read_map: " 666 "LBA %d seen for PBA %d and %d\n", 667 lba_real, lba_to_pba[lba_offset], blocknum); 668 continue; 669 } 670 671 pba_to_lba[i] = lba_real; 672 lba_to_pba[lba_offset] = blocknum; 673 continue; 674 } 675 676 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; 677 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; 678 result = 0; 679 goto out; 680 681 error: 682 kfree(lba_to_pba); 683 kfree(pba_to_lba); 684 out: 685 return result; 686 } 687 688 /* 689 * Checks to see whether we have already mapped a certain zone 690 * If we haven't, the map is generated 691 */ 692 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) 693 { 694 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL 695 || MEDIA_INFO(us).pba_to_lba[zone] == NULL) 696 alauda_read_map(us, zone); 697 } 698 699 /* 700 * Erases an entire block 701 */ 702 static int alauda_erase_block(struct us_data *us, u16 pba) 703 { 704 int rc; 705 unsigned char command[] = { 706 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), 707 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) 708 }; 709 unsigned char buf[2]; 710 711 usb_stor_dbg(us, "Erasing PBA %d\n", pba); 712 713 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 714 command, 9, NULL); 715 if (rc != USB_STOR_XFER_GOOD) 716 return rc; 717 718 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 719 buf, 2, NULL); 720 if (rc != USB_STOR_XFER_GOOD) 721 return rc; 722 723 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); 724 return rc; 725 } 726 727 /* 728 * Reads data from a certain offset page inside a PBA, including interleaved 729 * redundancy data. Returns (pagesize+64)*pages bytes in data. 730 */ 731 static int alauda_read_block_raw(struct us_data *us, u16 pba, 732 unsigned int page, unsigned int pages, unsigned char *data) 733 { 734 int rc; 735 unsigned char command[] = { 736 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), 737 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) 738 }; 739 740 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); 741 742 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 743 command, 9, NULL); 744 if (rc != USB_STOR_XFER_GOOD) 745 return rc; 746 747 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, 748 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); 749 } 750 751 /* 752 * Reads data from a certain offset page inside a PBA, excluding redundancy 753 * data. Returns pagesize*pages bytes in data. Note that data must be big enough 754 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' 755 * trailing bytes outside this function. 756 */ 757 static int alauda_read_block(struct us_data *us, u16 pba, 758 unsigned int page, unsigned int pages, unsigned char *data) 759 { 760 int i, rc; 761 unsigned int pagesize = MEDIA_INFO(us).pagesize; 762 763 rc = alauda_read_block_raw(us, pba, page, pages, data); 764 if (rc != USB_STOR_XFER_GOOD) 765 return rc; 766 767 /* Cut out the redundancy data */ 768 for (i = 0; i < pages; i++) { 769 int dest_offset = i * pagesize; 770 int src_offset = i * (pagesize + 64); 771 memmove(data + dest_offset, data + src_offset, pagesize); 772 } 773 774 return rc; 775 } 776 777 /* 778 * Writes an entire block of data and checks status after write. 779 * Redundancy data must be already included in data. Data should be 780 * (pagesize+64)*blocksize bytes in length. 781 */ 782 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) 783 { 784 int rc; 785 struct alauda_info *info = (struct alauda_info *) us->extra; 786 unsigned char command[] = { 787 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), 788 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) 789 }; 790 791 usb_stor_dbg(us, "pba %d\n", pba); 792 793 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, 794 command, 9, NULL); 795 if (rc != USB_STOR_XFER_GOOD) 796 return rc; 797 798 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, 799 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, 800 NULL); 801 if (rc != USB_STOR_XFER_GOOD) 802 return rc; 803 804 return alauda_check_status2(us); 805 } 806 807 /* 808 * Write some data to a specific LBA. 809 */ 810 static int alauda_write_lba(struct us_data *us, u16 lba, 811 unsigned int page, unsigned int pages, 812 unsigned char *ptr, unsigned char *blockbuffer) 813 { 814 u16 pba, lbap, new_pba; 815 unsigned char *bptr, *cptr, *xptr; 816 unsigned char ecc[3]; 817 int i, result; 818 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 819 unsigned int zonesize = MEDIA_INFO(us).zonesize; 820 unsigned int pagesize = MEDIA_INFO(us).pagesize; 821 unsigned int blocksize = MEDIA_INFO(us).blocksize; 822 unsigned int lba_offset = lba % uzonesize; 823 unsigned int new_pba_offset; 824 unsigned int zone = lba / uzonesize; 825 826 alauda_ensure_map_for_zone(us, zone); 827 828 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 829 if (pba == 1) { 830 /* 831 * Maybe it is impossible to write to PBA 1. 832 * Fake success, but don't do anything. 833 */ 834 printk(KERN_WARNING 835 "alauda_write_lba: avoid writing to pba 1\n"); 836 return USB_STOR_TRANSPORT_GOOD; 837 } 838 839 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); 840 if (!new_pba) { 841 printk(KERN_WARNING 842 "alauda_write_lba: Out of unused blocks\n"); 843 return USB_STOR_TRANSPORT_ERROR; 844 } 845 846 /* read old contents */ 847 if (pba != UNDEF) { 848 result = alauda_read_block_raw(us, pba, 0, 849 blocksize, blockbuffer); 850 if (result != USB_STOR_XFER_GOOD) 851 return result; 852 } else { 853 memset(blockbuffer, 0, blocksize * (pagesize + 64)); 854 } 855 856 lbap = (lba_offset << 1) | 0x1000; 857 if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) 858 lbap ^= 1; 859 860 /* check old contents and fill lba */ 861 for (i = 0; i < blocksize; i++) { 862 bptr = blockbuffer + (i * (pagesize + 64)); 863 cptr = bptr + pagesize; 864 nand_compute_ecc(bptr, ecc); 865 if (!nand_compare_ecc(cptr+13, ecc)) { 866 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", 867 i, pba); 868 nand_store_ecc(cptr+13, ecc); 869 } 870 nand_compute_ecc(bptr + (pagesize / 2), ecc); 871 if (!nand_compare_ecc(cptr+8, ecc)) { 872 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", 873 i, pba); 874 nand_store_ecc(cptr+8, ecc); 875 } 876 cptr[6] = cptr[11] = MSB_of(lbap); 877 cptr[7] = cptr[12] = LSB_of(lbap); 878 } 879 880 /* copy in new stuff and compute ECC */ 881 xptr = ptr; 882 for (i = page; i < page+pages; i++) { 883 bptr = blockbuffer + (i * (pagesize + 64)); 884 cptr = bptr + pagesize; 885 memcpy(bptr, xptr, pagesize); 886 xptr += pagesize; 887 nand_compute_ecc(bptr, ecc); 888 nand_store_ecc(cptr+13, ecc); 889 nand_compute_ecc(bptr + (pagesize / 2), ecc); 890 nand_store_ecc(cptr+8, ecc); 891 } 892 893 result = alauda_write_block(us, new_pba, blockbuffer); 894 if (result != USB_STOR_XFER_GOOD) 895 return result; 896 897 new_pba_offset = new_pba - (zone * zonesize); 898 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; 899 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; 900 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); 901 902 if (pba != UNDEF) { 903 unsigned int pba_offset = pba - (zone * zonesize); 904 result = alauda_erase_block(us, pba); 905 if (result != USB_STOR_XFER_GOOD) 906 return result; 907 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; 908 } 909 910 return USB_STOR_TRANSPORT_GOOD; 911 } 912 913 /* 914 * Read data from a specific sector address 915 */ 916 static int alauda_read_data(struct us_data *us, unsigned long address, 917 unsigned int sectors) 918 { 919 unsigned char *buffer; 920 u16 lba, max_lba; 921 unsigned int page, len, offset; 922 unsigned int blockshift = MEDIA_INFO(us).blockshift; 923 unsigned int pageshift = MEDIA_INFO(us).pageshift; 924 unsigned int blocksize = MEDIA_INFO(us).blocksize; 925 unsigned int pagesize = MEDIA_INFO(us).pagesize; 926 unsigned int uzonesize = MEDIA_INFO(us).uzonesize; 927 struct scatterlist *sg; 928 int result; 929 930 /* 931 * Since we only read in one block at a time, we have to create 932 * a bounce buffer and move the data a piece at a time between the 933 * bounce buffer and the actual transfer buffer. 934 * We make this buffer big enough to hold temporary redundancy data, 935 * which we use when reading the data blocks. 936 */ 937 938 len = min(sectors, blocksize) * (pagesize + 64); 939 buffer = kmalloc(len, GFP_NOIO); 940 if (!buffer) 941 return USB_STOR_TRANSPORT_ERROR; 942 943 /* Figure out the initial LBA and page */ 944 lba = address >> blockshift; 945 page = (address & MEDIA_INFO(us).blockmask); 946 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); 947 948 result = USB_STOR_TRANSPORT_GOOD; 949 offset = 0; 950 sg = NULL; 951 952 while (sectors > 0) { 953 unsigned int zone = lba / uzonesize; /* integer division */ 954 unsigned int lba_offset = lba - (zone * uzonesize); 955 unsigned int pages; 956 u16 pba; 957 alauda_ensure_map_for_zone(us, zone); 958 959 /* Not overflowing capacity? */ 960 if (lba >= max_lba) { 961 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", 962 lba, max_lba); 963 result = USB_STOR_TRANSPORT_ERROR; 964 break; 965 } 966 967 /* Find number of pages we can read in this block */ 968 pages = min(sectors, blocksize - page); 969 len = pages << pageshift; 970 971 /* Find where this lba lives on disk */ 972 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; 973 974 if (pba == UNDEF) { /* this lba was never written */ 975 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", 976 pages, lba, page); 977 978 /* 979 * This is not really an error. It just means 980 * that the block has never been written. 981 * Instead of returning USB_STOR_TRANSPORT_ERROR 982 * it is better to return all zero data. 983 */ 984 985 memset(buffer, 0, len); 986 } else { 987 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", 988 pages, pba, lba, page); 989 990 result = alauda_read_block(us, pba, page, pages, buffer); 991 if (result != USB_STOR_TRANSPORT_GOOD) 992 break; 993 } 994 995 /* Store the data in the transfer buffer */ 996 usb_stor_access_xfer_buf(buffer, len, us->srb, 997 &sg, &offset, TO_XFER_BUF); 998 999 page = 0; 1000 lba++; 1001 sectors -= pages; 1002 } 1003 1004 kfree(buffer); 1005 return result; 1006 } 1007 1008 /* 1009 * Write data to a specific sector address 1010 */ 1011 static int alauda_write_data(struct us_data *us, unsigned long address, 1012 unsigned int sectors) 1013 { 1014 unsigned char *buffer, *blockbuffer; 1015 unsigned int page, len, offset; 1016 unsigned int blockshift = MEDIA_INFO(us).blockshift; 1017 unsigned int pageshift = MEDIA_INFO(us).pageshift; 1018 unsigned int blocksize = MEDIA_INFO(us).blocksize; 1019 unsigned int pagesize = MEDIA_INFO(us).pagesize; 1020 struct scatterlist *sg; 1021 u16 lba, max_lba; 1022 int result; 1023 1024 /* 1025 * Since we don't write the user data directly to the device, 1026 * we have to create a bounce buffer and move the data a piece 1027 * at a time between the bounce buffer and the actual transfer buffer. 1028 */ 1029 1030 len = min(sectors, blocksize) * pagesize; 1031 buffer = kmalloc(len, GFP_NOIO); 1032 if (!buffer) 1033 return USB_STOR_TRANSPORT_ERROR; 1034 1035 /* 1036 * We also need a temporary block buffer, where we read in the old data, 1037 * overwrite parts with the new data, and manipulate the redundancy data 1038 */ 1039 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO); 1040 if (!blockbuffer) { 1041 kfree(buffer); 1042 return USB_STOR_TRANSPORT_ERROR; 1043 } 1044 1045 /* Figure out the initial LBA and page */ 1046 lba = address >> blockshift; 1047 page = (address & MEDIA_INFO(us).blockmask); 1048 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); 1049 1050 result = USB_STOR_TRANSPORT_GOOD; 1051 offset = 0; 1052 sg = NULL; 1053 1054 while (sectors > 0) { 1055 /* Write as many sectors as possible in this block */ 1056 unsigned int pages = min(sectors, blocksize - page); 1057 len = pages << pageshift; 1058 1059 /* Not overflowing capacity? */ 1060 if (lba >= max_lba) { 1061 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", 1062 lba, max_lba); 1063 result = USB_STOR_TRANSPORT_ERROR; 1064 break; 1065 } 1066 1067 /* Get the data from the transfer buffer */ 1068 usb_stor_access_xfer_buf(buffer, len, us->srb, 1069 &sg, &offset, FROM_XFER_BUF); 1070 1071 result = alauda_write_lba(us, lba, page, pages, buffer, 1072 blockbuffer); 1073 if (result != USB_STOR_TRANSPORT_GOOD) 1074 break; 1075 1076 page = 0; 1077 lba++; 1078 sectors -= pages; 1079 } 1080 1081 kfree(buffer); 1082 kfree(blockbuffer); 1083 return result; 1084 } 1085 1086 /* 1087 * Our interface with the rest of the world 1088 */ 1089 1090 static void alauda_info_destructor(void *extra) 1091 { 1092 struct alauda_info *info = (struct alauda_info *) extra; 1093 int port; 1094 1095 if (!info) 1096 return; 1097 1098 for (port = 0; port < 2; port++) { 1099 struct alauda_media_info *media_info = &info->port[port]; 1100 1101 alauda_free_maps(media_info); 1102 kfree(media_info->lba_to_pba); 1103 kfree(media_info->pba_to_lba); 1104 } 1105 } 1106 1107 /* 1108 * Initialize alauda_info struct and find the data-write endpoint 1109 */ 1110 static int init_alauda(struct us_data *us) 1111 { 1112 struct alauda_info *info; 1113 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; 1114 nand_init_ecc(); 1115 1116 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); 1117 if (!us->extra) 1118 return -ENOMEM; 1119 1120 info = (struct alauda_info *) us->extra; 1121 us->extra_destructor = alauda_info_destructor; 1122 1123 info->wr_ep = usb_sndbulkpipe(us->pusb_dev, 1124 altsetting->endpoint[0].desc.bEndpointAddress 1125 & USB_ENDPOINT_NUMBER_MASK); 1126 1127 return 0; 1128 } 1129 1130 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) 1131 { 1132 int rc; 1133 struct alauda_info *info = (struct alauda_info *) us->extra; 1134 unsigned char *ptr = us->iobuf; 1135 static unsigned char inquiry_response[36] = { 1136 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 1137 }; 1138 1139 if (srb->cmnd[0] == INQUIRY) { 1140 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); 1141 memcpy(ptr, inquiry_response, sizeof(inquiry_response)); 1142 fill_inquiry_response(us, ptr, 36); 1143 return USB_STOR_TRANSPORT_GOOD; 1144 } 1145 1146 if (srb->cmnd[0] == TEST_UNIT_READY) { 1147 usb_stor_dbg(us, "TEST_UNIT_READY\n"); 1148 return alauda_check_media(us); 1149 } 1150 1151 if (srb->cmnd[0] == READ_CAPACITY) { 1152 unsigned int num_zones; 1153 unsigned long capacity; 1154 1155 rc = alauda_check_media(us); 1156 if (rc != USB_STOR_TRANSPORT_GOOD) 1157 return rc; 1158 1159 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift 1160 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); 1161 1162 capacity = num_zones * MEDIA_INFO(us).uzonesize 1163 * MEDIA_INFO(us).blocksize; 1164 1165 /* Report capacity and page size */ 1166 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); 1167 ((__be32 *) ptr)[1] = cpu_to_be32(512); 1168 1169 usb_stor_set_xfer_buf(ptr, 8, srb); 1170 return USB_STOR_TRANSPORT_GOOD; 1171 } 1172 1173 if (srb->cmnd[0] == READ_10) { 1174 unsigned int page, pages; 1175 1176 rc = alauda_check_media(us); 1177 if (rc != USB_STOR_TRANSPORT_GOOD) 1178 return rc; 1179 1180 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1181 page <<= 16; 1182 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1183 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1184 1185 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); 1186 1187 return alauda_read_data(us, page, pages); 1188 } 1189 1190 if (srb->cmnd[0] == WRITE_10) { 1191 unsigned int page, pages; 1192 1193 rc = alauda_check_media(us); 1194 if (rc != USB_STOR_TRANSPORT_GOOD) 1195 return rc; 1196 1197 page = short_pack(srb->cmnd[3], srb->cmnd[2]); 1198 page <<= 16; 1199 page |= short_pack(srb->cmnd[5], srb->cmnd[4]); 1200 pages = short_pack(srb->cmnd[8], srb->cmnd[7]); 1201 1202 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); 1203 1204 return alauda_write_data(us, page, pages); 1205 } 1206 1207 if (srb->cmnd[0] == REQUEST_SENSE) { 1208 usb_stor_dbg(us, "REQUEST_SENSE\n"); 1209 1210 memset(ptr, 0, 18); 1211 ptr[0] = 0xF0; 1212 ptr[2] = info->sense_key; 1213 ptr[7] = 11; 1214 ptr[12] = info->sense_asc; 1215 ptr[13] = info->sense_ascq; 1216 usb_stor_set_xfer_buf(ptr, 18, srb); 1217 1218 return USB_STOR_TRANSPORT_GOOD; 1219 } 1220 1221 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { 1222 /* 1223 * sure. whatever. not like we can stop the user from popping 1224 * the media out of the device (no locking doors, etc) 1225 */ 1226 return USB_STOR_TRANSPORT_GOOD; 1227 } 1228 1229 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", 1230 srb->cmnd[0], srb->cmnd[0]); 1231 info->sense_key = 0x05; 1232 info->sense_asc = 0x20; 1233 info->sense_ascq = 0x00; 1234 return USB_STOR_TRANSPORT_FAILED; 1235 } 1236 1237 static struct scsi_host_template alauda_host_template; 1238 1239 static int alauda_probe(struct usb_interface *intf, 1240 const struct usb_device_id *id) 1241 { 1242 struct us_data *us; 1243 int result; 1244 1245 result = usb_stor_probe1(&us, intf, id, 1246 (id - alauda_usb_ids) + alauda_unusual_dev_list, 1247 &alauda_host_template); 1248 if (result) 1249 return result; 1250 1251 us->transport_name = "Alauda Control/Bulk"; 1252 us->transport = alauda_transport; 1253 us->transport_reset = usb_stor_Bulk_reset; 1254 us->max_lun = 1; 1255 1256 result = usb_stor_probe2(us); 1257 return result; 1258 } 1259 1260 static struct usb_driver alauda_driver = { 1261 .name = DRV_NAME, 1262 .probe = alauda_probe, 1263 .disconnect = usb_stor_disconnect, 1264 .suspend = usb_stor_suspend, 1265 .resume = usb_stor_resume, 1266 .reset_resume = usb_stor_reset_resume, 1267 .pre_reset = usb_stor_pre_reset, 1268 .post_reset = usb_stor_post_reset, 1269 .id_table = alauda_usb_ids, 1270 .soft_unbind = 1, 1271 .no_dynamic_id = 1, 1272 }; 1273 1274 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME); 1275