xref: /linux/drivers/usb/storage/alauda.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Alauda-based card readers
4  *
5  * Current development and maintenance by:
6  *   (c) 2005 Daniel Drake <dsd@gentoo.org>
7  *
8  * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9  *
10  * Alauda implements a vendor-specific command set to access two media reader
11  * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12  * which are accepted by these devices.
13  *
14  * The driver was developed through reverse-engineering, with the help of the
15  * sddr09 driver which has many similarities, and with some help from the
16  * (very old) vendor-supplied GPL sma03 driver.
17  *
18  * For protocol info, see http://alauda.sourceforge.net
19  */
20 
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27 
28 #include "usb.h"
29 #include "transport.h"
30 #include "protocol.h"
31 #include "debug.h"
32 #include "scsiglue.h"
33 
34 #define DRV_NAME "ums-alauda"
35 
36 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38 MODULE_LICENSE("GPL");
39 MODULE_IMPORT_NS(USB_STORAGE);
40 
41 /*
42  * Status bytes
43  */
44 #define ALAUDA_STATUS_ERROR		0x01
45 #define ALAUDA_STATUS_READY		0x40
46 
47 /*
48  * Control opcodes (for request field)
49  */
50 #define ALAUDA_GET_XD_MEDIA_STATUS	0x08
51 #define ALAUDA_GET_SM_MEDIA_STATUS	0x98
52 #define ALAUDA_ACK_XD_MEDIA_CHANGE	0x0a
53 #define ALAUDA_ACK_SM_MEDIA_CHANGE	0x9a
54 #define ALAUDA_GET_XD_MEDIA_SIG		0x86
55 #define ALAUDA_GET_SM_MEDIA_SIG		0x96
56 
57 /*
58  * Bulk command identity (byte 0)
59  */
60 #define ALAUDA_BULK_CMD			0x40
61 
62 /*
63  * Bulk opcodes (byte 1)
64  */
65 #define ALAUDA_BULK_GET_REDU_DATA	0x85
66 #define ALAUDA_BULK_READ_BLOCK		0x94
67 #define ALAUDA_BULK_ERASE_BLOCK		0xa3
68 #define ALAUDA_BULK_WRITE_BLOCK		0xb4
69 #define ALAUDA_BULK_GET_STATUS2		0xb7
70 #define ALAUDA_BULK_RESET_MEDIA		0xe0
71 
72 /*
73  * Port to operate on (byte 8)
74  */
75 #define ALAUDA_PORT_XD			0x00
76 #define ALAUDA_PORT_SM			0x01
77 
78 /*
79  * LBA and PBA are unsigned ints. Special values.
80  */
81 #define UNDEF    0xffff
82 #define SPARE    0xfffe
83 #define UNUSABLE 0xfffd
84 
85 struct alauda_media_info {
86 	unsigned long capacity;		/* total media size in bytes */
87 	unsigned int pagesize;		/* page size in bytes */
88 	unsigned int blocksize;		/* number of pages per block */
89 	unsigned int uzonesize;		/* number of usable blocks per zone */
90 	unsigned int zonesize;		/* number of blocks per zone */
91 	unsigned int blockmask;		/* mask to get page from address */
92 
93 	unsigned char pageshift;
94 	unsigned char blockshift;
95 	unsigned char zoneshift;
96 
97 	u16 **lba_to_pba;		/* logical to physical block map */
98 	u16 **pba_to_lba;		/* physical to logical block map */
99 };
100 
101 struct alauda_info {
102 	struct alauda_media_info port[2];
103 	int wr_ep;			/* endpoint to write data out of */
104 
105 	unsigned char sense_key;
106 	unsigned long sense_asc;	/* additional sense code */
107 	unsigned long sense_ascq;	/* additional sense code qualifier */
108 };
109 
110 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111 #define LSB_of(s) ((s)&0xFF)
112 #define MSB_of(s) ((s)>>8)
113 
114 #define MEDIA_PORT(us) us->srb->device->lun
115 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
116 
117 #define PBA_LO(pba) ((pba & 0xF) << 5)
118 #define PBA_HI(pba) (pba >> 3)
119 #define PBA_ZONE(pba) (pba >> 11)
120 
121 static int init_alauda(struct us_data *us);
122 
123 
124 /*
125  * The table of devices
126  */
127 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 		    vendorName, productName, useProtocol, useTransport, \
129 		    initFunction, flags) \
130 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131   .driver_info = (flags) }
132 
133 static struct usb_device_id alauda_usb_ids[] = {
134 #	include "unusual_alauda.h"
135 	{ }		/* Terminating entry */
136 };
137 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
138 
139 #undef UNUSUAL_DEV
140 
141 /*
142  * The flags table
143  */
144 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 		    vendor_name, product_name, use_protocol, use_transport, \
146 		    init_function, Flags) \
147 { \
148 	.vendorName = vendor_name,	\
149 	.productName = product_name,	\
150 	.useProtocol = use_protocol,	\
151 	.useTransport = use_transport,	\
152 	.initFunction = init_function,	\
153 }
154 
155 static struct us_unusual_dev alauda_unusual_dev_list[] = {
156 #	include "unusual_alauda.h"
157 	{ }		/* Terminating entry */
158 };
159 
160 #undef UNUSUAL_DEV
161 
162 
163 /*
164  * Media handling
165  */
166 
167 struct alauda_card_info {
168 	unsigned char id;		/* id byte */
169 	unsigned char chipshift;	/* 1<<cs bytes total capacity */
170 	unsigned char pageshift;	/* 1<<ps bytes in a page */
171 	unsigned char blockshift;	/* 1<<bs pages per block */
172 	unsigned char zoneshift;	/* 1<<zs blocks per zone */
173 };
174 
175 static struct alauda_card_info alauda_card_ids[] = {
176 	/* NAND flash */
177 	{ 0x6e, 20, 8, 4, 8},	/* 1 MB */
178 	{ 0xe8, 20, 8, 4, 8},	/* 1 MB */
179 	{ 0xec, 20, 8, 4, 8},	/* 1 MB */
180 	{ 0x64, 21, 8, 4, 9}, 	/* 2 MB */
181 	{ 0xea, 21, 8, 4, 9},	/* 2 MB */
182 	{ 0x6b, 22, 9, 4, 9},	/* 4 MB */
183 	{ 0xe3, 22, 9, 4, 9},	/* 4 MB */
184 	{ 0xe5, 22, 9, 4, 9},	/* 4 MB */
185 	{ 0xe6, 23, 9, 4, 10},	/* 8 MB */
186 	{ 0x73, 24, 9, 5, 10},	/* 16 MB */
187 	{ 0x75, 25, 9, 5, 10},	/* 32 MB */
188 	{ 0x76, 26, 9, 5, 10},	/* 64 MB */
189 	{ 0x79, 27, 9, 5, 10},	/* 128 MB */
190 	{ 0x71, 28, 9, 5, 10},	/* 256 MB */
191 
192 	/* MASK ROM */
193 	{ 0x5d, 21, 9, 4, 8},	/* 2 MB */
194 	{ 0xd5, 22, 9, 4, 9},	/* 4 MB */
195 	{ 0xd6, 23, 9, 4, 10},	/* 8 MB */
196 	{ 0x57, 24, 9, 4, 11},	/* 16 MB */
197 	{ 0x58, 25, 9, 4, 12},	/* 32 MB */
198 	{ 0,}
199 };
200 
201 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
202 {
203 	int i;
204 
205 	for (i = 0; alauda_card_ids[i].id != 0; i++)
206 		if (alauda_card_ids[i].id == id)
207 			return &(alauda_card_ids[i]);
208 	return NULL;
209 }
210 
211 /*
212  * ECC computation.
213  */
214 
215 static unsigned char parity[256];
216 static unsigned char ecc2[256];
217 
218 static void nand_init_ecc(void)
219 {
220 	int i, j, a;
221 
222 	parity[0] = 0;
223 	for (i = 1; i < 256; i++)
224 		parity[i] = (parity[i&(i-1)] ^ 1);
225 
226 	for (i = 0; i < 256; i++) {
227 		a = 0;
228 		for (j = 0; j < 8; j++) {
229 			if (i & (1<<j)) {
230 				if ((j & 1) == 0)
231 					a ^= 0x04;
232 				if ((j & 2) == 0)
233 					a ^= 0x10;
234 				if ((j & 4) == 0)
235 					a ^= 0x40;
236 			}
237 		}
238 		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
239 	}
240 }
241 
242 /* compute 3-byte ecc on 256 bytes */
243 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
244 {
245 	int i, j, a;
246 	unsigned char par = 0, bit, bits[8] = {0};
247 
248 	/* collect 16 checksum bits */
249 	for (i = 0; i < 256; i++) {
250 		par ^= data[i];
251 		bit = parity[data[i]];
252 		for (j = 0; j < 8; j++)
253 			if ((i & (1<<j)) == 0)
254 				bits[j] ^= bit;
255 	}
256 
257 	/* put 4+4+4 = 12 bits in the ecc */
258 	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
260 
261 	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
263 
264 	ecc[2] = ecc2[par];
265 }
266 
267 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
268 {
269 	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
270 }
271 
272 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
273 {
274 	memcpy(data, ecc, 3);
275 }
276 
277 /*
278  * Alauda driver
279  */
280 
281 /*
282  * Forget our PBA <---> LBA mappings for a particular port
283  */
284 static void alauda_free_maps (struct alauda_media_info *media_info)
285 {
286 	unsigned int shift = media_info->zoneshift
287 		+ media_info->blockshift + media_info->pageshift;
288 	unsigned int num_zones = media_info->capacity >> shift;
289 	unsigned int i;
290 
291 	if (media_info->lba_to_pba != NULL)
292 		for (i = 0; i < num_zones; i++) {
293 			kfree(media_info->lba_to_pba[i]);
294 			media_info->lba_to_pba[i] = NULL;
295 		}
296 
297 	if (media_info->pba_to_lba != NULL)
298 		for (i = 0; i < num_zones; i++) {
299 			kfree(media_info->pba_to_lba[i]);
300 			media_info->pba_to_lba[i] = NULL;
301 		}
302 }
303 
304 /*
305  * Returns 2 bytes of status data
306  * The first byte describes media status, and second byte describes door status
307  */
308 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
309 {
310 	int rc;
311 	unsigned char command;
312 
313 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 		command = ALAUDA_GET_XD_MEDIA_STATUS;
315 	else
316 		command = ALAUDA_GET_SM_MEDIA_STATUS;
317 
318 	rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 		command, 0xc0, 0, 1, data, 2);
320 
321 	usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
322 
323 	return rc;
324 }
325 
326 /*
327  * Clears the "media was changed" bit so that we know when it changes again
328  * in the future.
329  */
330 static int alauda_ack_media(struct us_data *us)
331 {
332 	unsigned char command;
333 
334 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
335 		command = ALAUDA_ACK_XD_MEDIA_CHANGE;
336 	else
337 		command = ALAUDA_ACK_SM_MEDIA_CHANGE;
338 
339 	return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
340 		command, 0x40, 0, 1, NULL, 0);
341 }
342 
343 /*
344  * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
345  * and some other details.
346  */
347 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
348 {
349 	unsigned char command;
350 
351 	if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
352 		command = ALAUDA_GET_XD_MEDIA_SIG;
353 	else
354 		command = ALAUDA_GET_SM_MEDIA_SIG;
355 
356 	return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
357 		command, 0xc0, 0, 0, data, 4);
358 }
359 
360 /*
361  * Resets the media status (but not the whole device?)
362  */
363 static int alauda_reset_media(struct us_data *us)
364 {
365 	unsigned char *command = us->iobuf;
366 
367 	memset(command, 0, 9);
368 	command[0] = ALAUDA_BULK_CMD;
369 	command[1] = ALAUDA_BULK_RESET_MEDIA;
370 	command[8] = MEDIA_PORT(us);
371 
372 	return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
373 		command, 9, NULL);
374 }
375 
376 /*
377  * Examines the media and deduces capacity, etc.
378  */
379 static int alauda_init_media(struct us_data *us)
380 {
381 	unsigned char *data = us->iobuf;
382 	int ready = 0;
383 	struct alauda_card_info *media_info;
384 	unsigned int num_zones;
385 
386 	while (ready == 0) {
387 		msleep(20);
388 
389 		if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
390 			return USB_STOR_TRANSPORT_ERROR;
391 
392 		if (data[0] & 0x10)
393 			ready = 1;
394 	}
395 
396 	usb_stor_dbg(us, "We are ready for action!\n");
397 
398 	if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
399 		return USB_STOR_TRANSPORT_ERROR;
400 
401 	msleep(10);
402 
403 	if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
404 		return USB_STOR_TRANSPORT_ERROR;
405 
406 	if (data[0] != 0x14) {
407 		usb_stor_dbg(us, "Media not ready after ack\n");
408 		return USB_STOR_TRANSPORT_ERROR;
409 	}
410 
411 	if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
412 		return USB_STOR_TRANSPORT_ERROR;
413 
414 	usb_stor_dbg(us, "Media signature: %4ph\n", data);
415 	media_info = alauda_card_find_id(data[1]);
416 	if (media_info == NULL) {
417 		pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
418 			data);
419 		return USB_STOR_TRANSPORT_ERROR;
420 	}
421 
422 	MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
423 	usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
424 		     MEDIA_INFO(us).capacity >> 20);
425 
426 	MEDIA_INFO(us).pageshift = media_info->pageshift;
427 	MEDIA_INFO(us).blockshift = media_info->blockshift;
428 	MEDIA_INFO(us).zoneshift = media_info->zoneshift;
429 
430 	MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
431 	MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
432 	MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
433 
434 	MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
435 	MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
436 
437 	num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
438 		+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
439 	MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
440 	MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
441 
442 	if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
443 		return USB_STOR_TRANSPORT_ERROR;
444 
445 	return USB_STOR_TRANSPORT_GOOD;
446 }
447 
448 /*
449  * Examines the media status and does the right thing when the media has gone,
450  * appeared, or changed.
451  */
452 static int alauda_check_media(struct us_data *us)
453 {
454 	struct alauda_info *info = (struct alauda_info *) us->extra;
455 	unsigned char status[2];
456 	int rc;
457 
458 	rc = alauda_get_media_status(us, status);
459 
460 	/* Check for no media or door open */
461 	if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
462 		|| ((status[1] & 0x01) == 0)) {
463 		usb_stor_dbg(us, "No media, or door open\n");
464 		alauda_free_maps(&MEDIA_INFO(us));
465 		info->sense_key = 0x02;
466 		info->sense_asc = 0x3A;
467 		info->sense_ascq = 0x00;
468 		return USB_STOR_TRANSPORT_FAILED;
469 	}
470 
471 	/* Check for media change */
472 	if (status[0] & 0x08) {
473 		usb_stor_dbg(us, "Media change detected\n");
474 		alauda_free_maps(&MEDIA_INFO(us));
475 		alauda_init_media(us);
476 
477 		info->sense_key = UNIT_ATTENTION;
478 		info->sense_asc = 0x28;
479 		info->sense_ascq = 0x00;
480 		return USB_STOR_TRANSPORT_FAILED;
481 	}
482 
483 	return USB_STOR_TRANSPORT_GOOD;
484 }
485 
486 /*
487  * Checks the status from the 2nd status register
488  * Returns 3 bytes of status data, only the first is known
489  */
490 static int alauda_check_status2(struct us_data *us)
491 {
492 	int rc;
493 	unsigned char command[] = {
494 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
495 		0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
496 	};
497 	unsigned char data[3];
498 
499 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
500 		command, 9, NULL);
501 	if (rc != USB_STOR_XFER_GOOD)
502 		return rc;
503 
504 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
505 		data, 3, NULL);
506 	if (rc != USB_STOR_XFER_GOOD)
507 		return rc;
508 
509 	usb_stor_dbg(us, "%3ph\n", data);
510 	if (data[0] & ALAUDA_STATUS_ERROR)
511 		return USB_STOR_XFER_ERROR;
512 
513 	return USB_STOR_XFER_GOOD;
514 }
515 
516 /*
517  * Gets the redundancy data for the first page of a PBA
518  * Returns 16 bytes.
519  */
520 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
521 {
522 	int rc;
523 	unsigned char command[] = {
524 		ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
525 		PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
526 	};
527 
528 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
529 		command, 9, NULL);
530 	if (rc != USB_STOR_XFER_GOOD)
531 		return rc;
532 
533 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
534 		data, 16, NULL);
535 }
536 
537 /*
538  * Finds the first unused PBA in a zone
539  * Returns the absolute PBA of an unused PBA, or 0 if none found.
540  */
541 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
542 	unsigned int zone)
543 {
544 	u16 *pba_to_lba = info->pba_to_lba[zone];
545 	unsigned int i;
546 
547 	for (i = 0; i < info->zonesize; i++)
548 		if (pba_to_lba[i] == UNDEF)
549 			return (zone << info->zoneshift) + i;
550 
551 	return 0;
552 }
553 
554 /*
555  * Reads the redundancy data for all PBA's in a zone
556  * Produces lba <--> pba mappings
557  */
558 static int alauda_read_map(struct us_data *us, unsigned int zone)
559 {
560 	unsigned char *data = us->iobuf;
561 	int result;
562 	int i, j;
563 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
564 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
565 	unsigned int lba_offset, lba_real, blocknum;
566 	unsigned int zone_base_lba = zone * uzonesize;
567 	unsigned int zone_base_pba = zone * zonesize;
568 	u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
569 	u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
570 	if (lba_to_pba == NULL || pba_to_lba == NULL) {
571 		result = USB_STOR_TRANSPORT_ERROR;
572 		goto error;
573 	}
574 
575 	usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
576 
577 	/* 1024 PBA's per zone */
578 	for (i = 0; i < zonesize; i++)
579 		lba_to_pba[i] = pba_to_lba[i] = UNDEF;
580 
581 	for (i = 0; i < zonesize; i++) {
582 		blocknum = zone_base_pba + i;
583 
584 		result = alauda_get_redu_data(us, blocknum, data);
585 		if (result != USB_STOR_XFER_GOOD) {
586 			result = USB_STOR_TRANSPORT_ERROR;
587 			goto error;
588 		}
589 
590 		/* special PBAs have control field 0^16 */
591 		for (j = 0; j < 16; j++)
592 			if (data[j] != 0)
593 				goto nonz;
594 		pba_to_lba[i] = UNUSABLE;
595 		usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
596 		continue;
597 
598 	nonz:
599 		/* unwritten PBAs have control field FF^16 */
600 		for (j = 0; j < 16; j++)
601 			if (data[j] != 0xff)
602 				goto nonff;
603 		continue;
604 
605 	nonff:
606 		/* normal PBAs start with six FFs */
607 		if (j < 6) {
608 			usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
609 				     blocknum,
610 				     data[0], data[1], data[2], data[3],
611 				     data[4], data[5]);
612 			pba_to_lba[i] = UNUSABLE;
613 			continue;
614 		}
615 
616 		if ((data[6] >> 4) != 0x01) {
617 			usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
618 				     blocknum, data[6], data[7],
619 				     data[11], data[12]);
620 			pba_to_lba[i] = UNUSABLE;
621 			continue;
622 		}
623 
624 		/* check even parity */
625 		if (parity[data[6] ^ data[7]]) {
626 			printk(KERN_WARNING
627 			       "alauda_read_map: Bad parity in LBA for block %d"
628 			       " (%02X %02X)\n", i, data[6], data[7]);
629 			pba_to_lba[i] = UNUSABLE;
630 			continue;
631 		}
632 
633 		lba_offset = short_pack(data[7], data[6]);
634 		lba_offset = (lba_offset & 0x07FF) >> 1;
635 		lba_real = lba_offset + zone_base_lba;
636 
637 		/*
638 		 * Every 1024 physical blocks ("zone"), the LBA numbers
639 		 * go back to zero, but are within a higher block of LBA's.
640 		 * Also, there is a maximum of 1000 LBA's per zone.
641 		 * In other words, in PBA 1024-2047 you will find LBA 0-999
642 		 * which are really LBA 1000-1999. This allows for 24 bad
643 		 * or special physical blocks per zone.
644 		 */
645 
646 		if (lba_offset >= uzonesize) {
647 			printk(KERN_WARNING
648 			       "alauda_read_map: Bad low LBA %d for block %d\n",
649 			       lba_real, blocknum);
650 			continue;
651 		}
652 
653 		if (lba_to_pba[lba_offset] != UNDEF) {
654 			printk(KERN_WARNING
655 			       "alauda_read_map: "
656 			       "LBA %d seen for PBA %d and %d\n",
657 			       lba_real, lba_to_pba[lba_offset], blocknum);
658 			continue;
659 		}
660 
661 		pba_to_lba[i] = lba_real;
662 		lba_to_pba[lba_offset] = blocknum;
663 		continue;
664 	}
665 
666 	MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
667 	MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
668 	result = 0;
669 	goto out;
670 
671 error:
672 	kfree(lba_to_pba);
673 	kfree(pba_to_lba);
674 out:
675 	return result;
676 }
677 
678 /*
679  * Checks to see whether we have already mapped a certain zone
680  * If we haven't, the map is generated
681  */
682 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
683 {
684 	if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
685 		|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
686 		alauda_read_map(us, zone);
687 }
688 
689 /*
690  * Erases an entire block
691  */
692 static int alauda_erase_block(struct us_data *us, u16 pba)
693 {
694 	int rc;
695 	unsigned char command[] = {
696 		ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
697 		PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
698 	};
699 	unsigned char buf[2];
700 
701 	usb_stor_dbg(us, "Erasing PBA %d\n", pba);
702 
703 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
704 		command, 9, NULL);
705 	if (rc != USB_STOR_XFER_GOOD)
706 		return rc;
707 
708 	rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
709 		buf, 2, NULL);
710 	if (rc != USB_STOR_XFER_GOOD)
711 		return rc;
712 
713 	usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
714 	return rc;
715 }
716 
717 /*
718  * Reads data from a certain offset page inside a PBA, including interleaved
719  * redundancy data. Returns (pagesize+64)*pages bytes in data.
720  */
721 static int alauda_read_block_raw(struct us_data *us, u16 pba,
722 		unsigned int page, unsigned int pages, unsigned char *data)
723 {
724 	int rc;
725 	unsigned char command[] = {
726 		ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
727 		PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
728 	};
729 
730 	usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
731 
732 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
733 		command, 9, NULL);
734 	if (rc != USB_STOR_XFER_GOOD)
735 		return rc;
736 
737 	return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
738 		data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
739 }
740 
741 /*
742  * Reads data from a certain offset page inside a PBA, excluding redundancy
743  * data. Returns pagesize*pages bytes in data. Note that data must be big enough
744  * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
745  * trailing bytes outside this function.
746  */
747 static int alauda_read_block(struct us_data *us, u16 pba,
748 		unsigned int page, unsigned int pages, unsigned char *data)
749 {
750 	int i, rc;
751 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
752 
753 	rc = alauda_read_block_raw(us, pba, page, pages, data);
754 	if (rc != USB_STOR_XFER_GOOD)
755 		return rc;
756 
757 	/* Cut out the redundancy data */
758 	for (i = 0; i < pages; i++) {
759 		int dest_offset = i * pagesize;
760 		int src_offset = i * (pagesize + 64);
761 		memmove(data + dest_offset, data + src_offset, pagesize);
762 	}
763 
764 	return rc;
765 }
766 
767 /*
768  * Writes an entire block of data and checks status after write.
769  * Redundancy data must be already included in data. Data should be
770  * (pagesize+64)*blocksize bytes in length.
771  */
772 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
773 {
774 	int rc;
775 	struct alauda_info *info = (struct alauda_info *) us->extra;
776 	unsigned char command[] = {
777 		ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
778 		PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
779 	};
780 
781 	usb_stor_dbg(us, "pba %d\n", pba);
782 
783 	rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
784 		command, 9, NULL);
785 	if (rc != USB_STOR_XFER_GOOD)
786 		return rc;
787 
788 	rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
789 		(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
790 		NULL);
791 	if (rc != USB_STOR_XFER_GOOD)
792 		return rc;
793 
794 	return alauda_check_status2(us);
795 }
796 
797 /*
798  * Write some data to a specific LBA.
799  */
800 static int alauda_write_lba(struct us_data *us, u16 lba,
801 		 unsigned int page, unsigned int pages,
802 		 unsigned char *ptr, unsigned char *blockbuffer)
803 {
804 	u16 pba, lbap, new_pba;
805 	unsigned char *bptr, *cptr, *xptr;
806 	unsigned char ecc[3];
807 	int i, result;
808 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
809 	unsigned int zonesize = MEDIA_INFO(us).zonesize;
810 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
811 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
812 	unsigned int lba_offset = lba % uzonesize;
813 	unsigned int new_pba_offset;
814 	unsigned int zone = lba / uzonesize;
815 
816 	alauda_ensure_map_for_zone(us, zone);
817 
818 	pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
819 	if (pba == 1) {
820 		/*
821 		 * Maybe it is impossible to write to PBA 1.
822 		 * Fake success, but don't do anything.
823 		 */
824 		printk(KERN_WARNING
825 		       "alauda_write_lba: avoid writing to pba 1\n");
826 		return USB_STOR_TRANSPORT_GOOD;
827 	}
828 
829 	new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
830 	if (!new_pba) {
831 		printk(KERN_WARNING
832 		       "alauda_write_lba: Out of unused blocks\n");
833 		return USB_STOR_TRANSPORT_ERROR;
834 	}
835 
836 	/* read old contents */
837 	if (pba != UNDEF) {
838 		result = alauda_read_block_raw(us, pba, 0,
839 			blocksize, blockbuffer);
840 		if (result != USB_STOR_XFER_GOOD)
841 			return result;
842 	} else {
843 		memset(blockbuffer, 0, blocksize * (pagesize + 64));
844 	}
845 
846 	lbap = (lba_offset << 1) | 0x1000;
847 	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
848 		lbap ^= 1;
849 
850 	/* check old contents and fill lba */
851 	for (i = 0; i < blocksize; i++) {
852 		bptr = blockbuffer + (i * (pagesize + 64));
853 		cptr = bptr + pagesize;
854 		nand_compute_ecc(bptr, ecc);
855 		if (!nand_compare_ecc(cptr+13, ecc)) {
856 			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
857 				     i, pba);
858 			nand_store_ecc(cptr+13, ecc);
859 		}
860 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
861 		if (!nand_compare_ecc(cptr+8, ecc)) {
862 			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
863 				     i, pba);
864 			nand_store_ecc(cptr+8, ecc);
865 		}
866 		cptr[6] = cptr[11] = MSB_of(lbap);
867 		cptr[7] = cptr[12] = LSB_of(lbap);
868 	}
869 
870 	/* copy in new stuff and compute ECC */
871 	xptr = ptr;
872 	for (i = page; i < page+pages; i++) {
873 		bptr = blockbuffer + (i * (pagesize + 64));
874 		cptr = bptr + pagesize;
875 		memcpy(bptr, xptr, pagesize);
876 		xptr += pagesize;
877 		nand_compute_ecc(bptr, ecc);
878 		nand_store_ecc(cptr+13, ecc);
879 		nand_compute_ecc(bptr + (pagesize / 2), ecc);
880 		nand_store_ecc(cptr+8, ecc);
881 	}
882 
883 	result = alauda_write_block(us, new_pba, blockbuffer);
884 	if (result != USB_STOR_XFER_GOOD)
885 		return result;
886 
887 	new_pba_offset = new_pba - (zone * zonesize);
888 	MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
889 	MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
890 	usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
891 
892 	if (pba != UNDEF) {
893 		unsigned int pba_offset = pba - (zone * zonesize);
894 		result = alauda_erase_block(us, pba);
895 		if (result != USB_STOR_XFER_GOOD)
896 			return result;
897 		MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
898 	}
899 
900 	return USB_STOR_TRANSPORT_GOOD;
901 }
902 
903 /*
904  * Read data from a specific sector address
905  */
906 static int alauda_read_data(struct us_data *us, unsigned long address,
907 		unsigned int sectors)
908 {
909 	unsigned char *buffer;
910 	u16 lba, max_lba;
911 	unsigned int page, len, offset;
912 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
913 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
914 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
915 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
916 	unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
917 	struct scatterlist *sg;
918 	int result;
919 
920 	/*
921 	 * Since we only read in one block at a time, we have to create
922 	 * a bounce buffer and move the data a piece at a time between the
923 	 * bounce buffer and the actual transfer buffer.
924 	 * We make this buffer big enough to hold temporary redundancy data,
925 	 * which we use when reading the data blocks.
926 	 */
927 
928 	len = min(sectors, blocksize) * (pagesize + 64);
929 	buffer = kmalloc(len, GFP_NOIO);
930 	if (!buffer)
931 		return USB_STOR_TRANSPORT_ERROR;
932 
933 	/* Figure out the initial LBA and page */
934 	lba = address >> blockshift;
935 	page = (address & MEDIA_INFO(us).blockmask);
936 	max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
937 
938 	result = USB_STOR_TRANSPORT_GOOD;
939 	offset = 0;
940 	sg = NULL;
941 
942 	while (sectors > 0) {
943 		unsigned int zone = lba / uzonesize; /* integer division */
944 		unsigned int lba_offset = lba - (zone * uzonesize);
945 		unsigned int pages;
946 		u16 pba;
947 		alauda_ensure_map_for_zone(us, zone);
948 
949 		/* Not overflowing capacity? */
950 		if (lba >= max_lba) {
951 			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
952 				     lba, max_lba);
953 			result = USB_STOR_TRANSPORT_ERROR;
954 			break;
955 		}
956 
957 		/* Find number of pages we can read in this block */
958 		pages = min(sectors, blocksize - page);
959 		len = pages << pageshift;
960 
961 		/* Find where this lba lives on disk */
962 		pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
963 
964 		if (pba == UNDEF) {	/* this lba was never written */
965 			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
966 				     pages, lba, page);
967 
968 			/*
969 			 * This is not really an error. It just means
970 			 * that the block has never been written.
971 			 * Instead of returning USB_STOR_TRANSPORT_ERROR
972 			 * it is better to return all zero data.
973 			 */
974 
975 			memset(buffer, 0, len);
976 		} else {
977 			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
978 				     pages, pba, lba, page);
979 
980 			result = alauda_read_block(us, pba, page, pages, buffer);
981 			if (result != USB_STOR_TRANSPORT_GOOD)
982 				break;
983 		}
984 
985 		/* Store the data in the transfer buffer */
986 		usb_stor_access_xfer_buf(buffer, len, us->srb,
987 				&sg, &offset, TO_XFER_BUF);
988 
989 		page = 0;
990 		lba++;
991 		sectors -= pages;
992 	}
993 
994 	kfree(buffer);
995 	return result;
996 }
997 
998 /*
999  * Write data to a specific sector address
1000  */
1001 static int alauda_write_data(struct us_data *us, unsigned long address,
1002 		unsigned int sectors)
1003 {
1004 	unsigned char *buffer, *blockbuffer;
1005 	unsigned int page, len, offset;
1006 	unsigned int blockshift = MEDIA_INFO(us).blockshift;
1007 	unsigned int pageshift = MEDIA_INFO(us).pageshift;
1008 	unsigned int blocksize = MEDIA_INFO(us).blocksize;
1009 	unsigned int pagesize = MEDIA_INFO(us).pagesize;
1010 	struct scatterlist *sg;
1011 	u16 lba, max_lba;
1012 	int result;
1013 
1014 	/*
1015 	 * Since we don't write the user data directly to the device,
1016 	 * we have to create a bounce buffer and move the data a piece
1017 	 * at a time between the bounce buffer and the actual transfer buffer.
1018 	 */
1019 
1020 	len = min(sectors, blocksize) * pagesize;
1021 	buffer = kmalloc(len, GFP_NOIO);
1022 	if (!buffer)
1023 		return USB_STOR_TRANSPORT_ERROR;
1024 
1025 	/*
1026 	 * We also need a temporary block buffer, where we read in the old data,
1027 	 * overwrite parts with the new data, and manipulate the redundancy data
1028 	 */
1029 	blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1030 	if (!blockbuffer) {
1031 		kfree(buffer);
1032 		return USB_STOR_TRANSPORT_ERROR;
1033 	}
1034 
1035 	/* Figure out the initial LBA and page */
1036 	lba = address >> blockshift;
1037 	page = (address & MEDIA_INFO(us).blockmask);
1038 	max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1039 
1040 	result = USB_STOR_TRANSPORT_GOOD;
1041 	offset = 0;
1042 	sg = NULL;
1043 
1044 	while (sectors > 0) {
1045 		/* Write as many sectors as possible in this block */
1046 		unsigned int pages = min(sectors, blocksize - page);
1047 		len = pages << pageshift;
1048 
1049 		/* Not overflowing capacity? */
1050 		if (lba >= max_lba) {
1051 			usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1052 				     lba, max_lba);
1053 			result = USB_STOR_TRANSPORT_ERROR;
1054 			break;
1055 		}
1056 
1057 		/* Get the data from the transfer buffer */
1058 		usb_stor_access_xfer_buf(buffer, len, us->srb,
1059 				&sg, &offset, FROM_XFER_BUF);
1060 
1061 		result = alauda_write_lba(us, lba, page, pages, buffer,
1062 			blockbuffer);
1063 		if (result != USB_STOR_TRANSPORT_GOOD)
1064 			break;
1065 
1066 		page = 0;
1067 		lba++;
1068 		sectors -= pages;
1069 	}
1070 
1071 	kfree(buffer);
1072 	kfree(blockbuffer);
1073 	return result;
1074 }
1075 
1076 /*
1077  * Our interface with the rest of the world
1078  */
1079 
1080 static void alauda_info_destructor(void *extra)
1081 {
1082 	struct alauda_info *info = (struct alauda_info *) extra;
1083 	int port;
1084 
1085 	if (!info)
1086 		return;
1087 
1088 	for (port = 0; port < 2; port++) {
1089 		struct alauda_media_info *media_info = &info->port[port];
1090 
1091 		alauda_free_maps(media_info);
1092 		kfree(media_info->lba_to_pba);
1093 		kfree(media_info->pba_to_lba);
1094 	}
1095 }
1096 
1097 /*
1098  * Initialize alauda_info struct and find the data-write endpoint
1099  */
1100 static int init_alauda(struct us_data *us)
1101 {
1102 	struct alauda_info *info;
1103 	struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1104 	nand_init_ecc();
1105 
1106 	us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1107 	if (!us->extra)
1108 		return USB_STOR_TRANSPORT_ERROR;
1109 
1110 	info = (struct alauda_info *) us->extra;
1111 	us->extra_destructor = alauda_info_destructor;
1112 
1113 	info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1114 		altsetting->endpoint[0].desc.bEndpointAddress
1115 		& USB_ENDPOINT_NUMBER_MASK);
1116 
1117 	return USB_STOR_TRANSPORT_GOOD;
1118 }
1119 
1120 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1121 {
1122 	int rc;
1123 	struct alauda_info *info = (struct alauda_info *) us->extra;
1124 	unsigned char *ptr = us->iobuf;
1125 	static unsigned char inquiry_response[36] = {
1126 		0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1127 	};
1128 
1129 	if (srb->cmnd[0] == INQUIRY) {
1130 		usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1131 		memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1132 		fill_inquiry_response(us, ptr, 36);
1133 		return USB_STOR_TRANSPORT_GOOD;
1134 	}
1135 
1136 	if (srb->cmnd[0] == TEST_UNIT_READY) {
1137 		usb_stor_dbg(us, "TEST_UNIT_READY\n");
1138 		return alauda_check_media(us);
1139 	}
1140 
1141 	if (srb->cmnd[0] == READ_CAPACITY) {
1142 		unsigned int num_zones;
1143 		unsigned long capacity;
1144 
1145 		rc = alauda_check_media(us);
1146 		if (rc != USB_STOR_TRANSPORT_GOOD)
1147 			return rc;
1148 
1149 		num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1150 			+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1151 
1152 		capacity = num_zones * MEDIA_INFO(us).uzonesize
1153 			* MEDIA_INFO(us).blocksize;
1154 
1155 		/* Report capacity and page size */
1156 		((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1157 		((__be32 *) ptr)[1] = cpu_to_be32(512);
1158 
1159 		usb_stor_set_xfer_buf(ptr, 8, srb);
1160 		return USB_STOR_TRANSPORT_GOOD;
1161 	}
1162 
1163 	if (srb->cmnd[0] == READ_10) {
1164 		unsigned int page, pages;
1165 
1166 		rc = alauda_check_media(us);
1167 		if (rc != USB_STOR_TRANSPORT_GOOD)
1168 			return rc;
1169 
1170 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1171 		page <<= 16;
1172 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1173 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1174 
1175 		usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1176 
1177 		return alauda_read_data(us, page, pages);
1178 	}
1179 
1180 	if (srb->cmnd[0] == WRITE_10) {
1181 		unsigned int page, pages;
1182 
1183 		rc = alauda_check_media(us);
1184 		if (rc != USB_STOR_TRANSPORT_GOOD)
1185 			return rc;
1186 
1187 		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188 		page <<= 16;
1189 		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190 		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1191 
1192 		usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1193 
1194 		return alauda_write_data(us, page, pages);
1195 	}
1196 
1197 	if (srb->cmnd[0] == REQUEST_SENSE) {
1198 		usb_stor_dbg(us, "REQUEST_SENSE\n");
1199 
1200 		memset(ptr, 0, 18);
1201 		ptr[0] = 0xF0;
1202 		ptr[2] = info->sense_key;
1203 		ptr[7] = 11;
1204 		ptr[12] = info->sense_asc;
1205 		ptr[13] = info->sense_ascq;
1206 		usb_stor_set_xfer_buf(ptr, 18, srb);
1207 
1208 		return USB_STOR_TRANSPORT_GOOD;
1209 	}
1210 
1211 	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1212 		/*
1213 		 * sure.  whatever.  not like we can stop the user from popping
1214 		 * the media out of the device (no locking doors, etc)
1215 		 */
1216 		return USB_STOR_TRANSPORT_GOOD;
1217 	}
1218 
1219 	usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1220 		     srb->cmnd[0], srb->cmnd[0]);
1221 	info->sense_key = 0x05;
1222 	info->sense_asc = 0x20;
1223 	info->sense_ascq = 0x00;
1224 	return USB_STOR_TRANSPORT_FAILED;
1225 }
1226 
1227 static struct scsi_host_template alauda_host_template;
1228 
1229 static int alauda_probe(struct usb_interface *intf,
1230 			 const struct usb_device_id *id)
1231 {
1232 	struct us_data *us;
1233 	int result;
1234 
1235 	result = usb_stor_probe1(&us, intf, id,
1236 			(id - alauda_usb_ids) + alauda_unusual_dev_list,
1237 			&alauda_host_template);
1238 	if (result)
1239 		return result;
1240 
1241 	us->transport_name  = "Alauda Control/Bulk";
1242 	us->transport = alauda_transport;
1243 	us->transport_reset = usb_stor_Bulk_reset;
1244 	us->max_lun = 1;
1245 
1246 	result = usb_stor_probe2(us);
1247 	return result;
1248 }
1249 
1250 static struct usb_driver alauda_driver = {
1251 	.name =		DRV_NAME,
1252 	.probe =	alauda_probe,
1253 	.disconnect =	usb_stor_disconnect,
1254 	.suspend =	usb_stor_suspend,
1255 	.resume =	usb_stor_resume,
1256 	.reset_resume =	usb_stor_reset_resume,
1257 	.pre_reset =	usb_stor_pre_reset,
1258 	.post_reset =	usb_stor_post_reset,
1259 	.id_table =	alauda_usb_ids,
1260 	.soft_unbind =	1,
1261 	.no_dynamic_id = 1,
1262 };
1263 
1264 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1265