1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 const struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 const struct ktermios *); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static int cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x0404, 0x034C) }, /* NCR Retail IO Box */ 55 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 56 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 57 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 59 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 60 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 61 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 62 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 63 { USB_DEVICE(0x0908, 0x0070) }, /* Siemens SCALANCE LPE-9000 USB Serial Console */ 64 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 65 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 66 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 67 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 68 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 69 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 71 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 72 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 73 { USB_DEVICE(0x106F, 0x0003) }, /* CPI / Money Controls Bulk Coin Recycler */ 74 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 75 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 76 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 77 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 78 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 79 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 80 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 81 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 82 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 83 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 84 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 85 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 86 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 87 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 88 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 89 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 90 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 91 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 92 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 93 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 94 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 95 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 96 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 97 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 98 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 99 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 100 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 101 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 102 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 103 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 104 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 105 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 106 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 107 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 108 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 109 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 110 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 111 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 112 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 113 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 114 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 115 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 116 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 117 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 118 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 119 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 120 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 121 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 122 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 123 { USB_DEVICE(0x10C4, 0x82AA) }, /* Silicon Labs IFS-USB-DATACABLE used with Quint UPS */ 124 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 125 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 126 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 127 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 128 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 129 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 130 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 131 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 132 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 133 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 134 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 135 { USB_DEVICE(0x10C4, 0x8414) }, /* Decagon USB Cable Adapter */ 136 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 137 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 138 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 139 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 140 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 141 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 142 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 143 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 144 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 145 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 146 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 147 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 148 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 149 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 150 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 151 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 152 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 153 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 154 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 155 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 156 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 157 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 158 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 159 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 160 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 161 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 162 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 163 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 164 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 165 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 166 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 167 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 168 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 169 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 170 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 171 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 172 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 173 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 174 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 175 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 176 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 177 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 178 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 179 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 180 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 181 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 182 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 183 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 184 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 185 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 186 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 187 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 188 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 189 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 190 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 191 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 192 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 193 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 194 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 195 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 196 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 197 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 198 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 199 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 200 { USB_DEVICE(0x17A8, 0x0011) }, /* Kamstrup 444 MHz RF sniffer */ 201 { USB_DEVICE(0x17A8, 0x0013) }, /* Kamstrup 870 MHz RF sniffer */ 202 { USB_DEVICE(0x17A8, 0x0101) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Int Ant) */ 203 { USB_DEVICE(0x17A8, 0x0102) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Ext Ant) */ 204 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 205 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 206 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 207 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 208 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 209 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 210 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 211 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 212 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 213 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 214 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 215 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 216 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 217 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 218 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 219 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 220 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 221 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 222 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 223 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 224 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 225 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 226 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 227 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 228 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 229 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 230 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 231 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 232 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 233 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 234 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 235 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 236 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 237 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 238 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 239 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 240 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 241 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 242 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 243 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 244 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 245 { USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */ 246 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 247 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 248 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 249 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 250 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 251 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 252 { } /* Terminating Entry */ 253 }; 254 255 MODULE_DEVICE_TABLE(usb, id_table); 256 257 struct cp210x_serial_private { 258 #ifdef CONFIG_GPIOLIB 259 struct gpio_chip gc; 260 bool gpio_registered; 261 u16 gpio_pushpull; 262 u16 gpio_altfunc; 263 u16 gpio_input; 264 #endif 265 u8 partnum; 266 u32 fw_version; 267 speed_t min_speed; 268 speed_t max_speed; 269 bool use_actual_rate; 270 bool no_flow_control; 271 bool no_event_mode; 272 }; 273 274 enum cp210x_event_state { 275 ES_DATA, 276 ES_ESCAPE, 277 ES_LSR, 278 ES_LSR_DATA_0, 279 ES_LSR_DATA_1, 280 ES_MSR 281 }; 282 283 struct cp210x_port_private { 284 u8 bInterfaceNumber; 285 bool event_mode; 286 enum cp210x_event_state event_state; 287 u8 lsr; 288 289 struct mutex mutex; 290 bool crtscts; 291 bool dtr; 292 bool rts; 293 }; 294 295 static struct usb_serial_driver cp210x_device = { 296 .driver = { 297 .owner = THIS_MODULE, 298 .name = "cp210x", 299 }, 300 .id_table = id_table, 301 .num_ports = 1, 302 .bulk_in_size = 256, 303 .bulk_out_size = 256, 304 .open = cp210x_open, 305 .close = cp210x_close, 306 .break_ctl = cp210x_break_ctl, 307 .set_termios = cp210x_set_termios, 308 .tx_empty = cp210x_tx_empty, 309 .throttle = usb_serial_generic_throttle, 310 .unthrottle = usb_serial_generic_unthrottle, 311 .tiocmget = cp210x_tiocmget, 312 .tiocmset = cp210x_tiocmset, 313 .get_icount = usb_serial_generic_get_icount, 314 .attach = cp210x_attach, 315 .disconnect = cp210x_disconnect, 316 .release = cp210x_release, 317 .port_probe = cp210x_port_probe, 318 .port_remove = cp210x_port_remove, 319 .dtr_rts = cp210x_dtr_rts, 320 .process_read_urb = cp210x_process_read_urb, 321 }; 322 323 static struct usb_serial_driver * const serial_drivers[] = { 324 &cp210x_device, NULL 325 }; 326 327 /* Config request types */ 328 #define REQTYPE_HOST_TO_INTERFACE 0x41 329 #define REQTYPE_INTERFACE_TO_HOST 0xc1 330 #define REQTYPE_HOST_TO_DEVICE 0x40 331 #define REQTYPE_DEVICE_TO_HOST 0xc0 332 333 /* Config request codes */ 334 #define CP210X_IFC_ENABLE 0x00 335 #define CP210X_SET_BAUDDIV 0x01 336 #define CP210X_GET_BAUDDIV 0x02 337 #define CP210X_SET_LINE_CTL 0x03 338 #define CP210X_GET_LINE_CTL 0x04 339 #define CP210X_SET_BREAK 0x05 340 #define CP210X_IMM_CHAR 0x06 341 #define CP210X_SET_MHS 0x07 342 #define CP210X_GET_MDMSTS 0x08 343 #define CP210X_SET_XON 0x09 344 #define CP210X_SET_XOFF 0x0A 345 #define CP210X_SET_EVENTMASK 0x0B 346 #define CP210X_GET_EVENTMASK 0x0C 347 #define CP210X_SET_CHAR 0x0D 348 #define CP210X_GET_CHARS 0x0E 349 #define CP210X_GET_PROPS 0x0F 350 #define CP210X_GET_COMM_STATUS 0x10 351 #define CP210X_RESET 0x11 352 #define CP210X_PURGE 0x12 353 #define CP210X_SET_FLOW 0x13 354 #define CP210X_GET_FLOW 0x14 355 #define CP210X_EMBED_EVENTS 0x15 356 #define CP210X_GET_EVENTSTATE 0x16 357 #define CP210X_SET_CHARS 0x19 358 #define CP210X_GET_BAUDRATE 0x1D 359 #define CP210X_SET_BAUDRATE 0x1E 360 #define CP210X_VENDOR_SPECIFIC 0xFF 361 362 /* CP210X_IFC_ENABLE */ 363 #define UART_ENABLE 0x0001 364 #define UART_DISABLE 0x0000 365 366 /* CP210X_(SET|GET)_BAUDDIV */ 367 #define BAUD_RATE_GEN_FREQ 0x384000 368 369 /* CP210X_(SET|GET)_LINE_CTL */ 370 #define BITS_DATA_MASK 0X0f00 371 #define BITS_DATA_5 0X0500 372 #define BITS_DATA_6 0X0600 373 #define BITS_DATA_7 0X0700 374 #define BITS_DATA_8 0X0800 375 #define BITS_DATA_9 0X0900 376 377 #define BITS_PARITY_MASK 0x00f0 378 #define BITS_PARITY_NONE 0x0000 379 #define BITS_PARITY_ODD 0x0010 380 #define BITS_PARITY_EVEN 0x0020 381 #define BITS_PARITY_MARK 0x0030 382 #define BITS_PARITY_SPACE 0x0040 383 384 #define BITS_STOP_MASK 0x000f 385 #define BITS_STOP_1 0x0000 386 #define BITS_STOP_1_5 0x0001 387 #define BITS_STOP_2 0x0002 388 389 /* CP210X_SET_BREAK */ 390 #define BREAK_ON 0x0001 391 #define BREAK_OFF 0x0000 392 393 /* CP210X_(SET_MHS|GET_MDMSTS) */ 394 #define CONTROL_DTR 0x0001 395 #define CONTROL_RTS 0x0002 396 #define CONTROL_CTS 0x0010 397 #define CONTROL_DSR 0x0020 398 #define CONTROL_RING 0x0040 399 #define CONTROL_DCD 0x0080 400 #define CONTROL_WRITE_DTR 0x0100 401 #define CONTROL_WRITE_RTS 0x0200 402 403 /* CP210X_(GET|SET)_CHARS */ 404 struct cp210x_special_chars { 405 u8 bEofChar; 406 u8 bErrorChar; 407 u8 bBreakChar; 408 u8 bEventChar; 409 u8 bXonChar; 410 u8 bXoffChar; 411 }; 412 413 /* CP210X_VENDOR_SPECIFIC values */ 414 #define CP210X_GET_FW_VER 0x000E 415 #define CP210X_READ_2NCONFIG 0x000E 416 #define CP210X_GET_FW_VER_2N 0x0010 417 #define CP210X_READ_LATCH 0x00C2 418 #define CP210X_GET_PARTNUM 0x370B 419 #define CP210X_GET_PORTCONFIG 0x370C 420 #define CP210X_GET_DEVICEMODE 0x3711 421 #define CP210X_WRITE_LATCH 0x37E1 422 423 /* Part number definitions */ 424 #define CP210X_PARTNUM_CP2101 0x01 425 #define CP210X_PARTNUM_CP2102 0x02 426 #define CP210X_PARTNUM_CP2103 0x03 427 #define CP210X_PARTNUM_CP2104 0x04 428 #define CP210X_PARTNUM_CP2105 0x05 429 #define CP210X_PARTNUM_CP2108 0x08 430 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 431 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 432 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 433 #define CP210X_PARTNUM_UNKNOWN 0xFF 434 435 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 436 struct cp210x_comm_status { 437 __le32 ulErrors; 438 __le32 ulHoldReasons; 439 __le32 ulAmountInInQueue; 440 __le32 ulAmountInOutQueue; 441 u8 bEofReceived; 442 u8 bWaitForImmediate; 443 u8 bReserved; 444 } __packed; 445 446 /* 447 * CP210X_PURGE - 16 bits passed in wValue of USB request. 448 * SiLabs app note AN571 gives a strange description of the 4 bits: 449 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 450 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 451 */ 452 #define PURGE_ALL 0x000f 453 454 /* CP210X_EMBED_EVENTS */ 455 #define CP210X_ESCCHAR 0xec 456 457 #define CP210X_LSR_OVERRUN BIT(1) 458 #define CP210X_LSR_PARITY BIT(2) 459 #define CP210X_LSR_FRAME BIT(3) 460 #define CP210X_LSR_BREAK BIT(4) 461 462 463 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 464 struct cp210x_flow_ctl { 465 __le32 ulControlHandshake; 466 __le32 ulFlowReplace; 467 __le32 ulXonLimit; 468 __le32 ulXoffLimit; 469 }; 470 471 /* cp210x_flow_ctl::ulControlHandshake */ 472 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 473 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 474 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 475 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 476 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 477 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 478 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 479 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 480 481 /* cp210x_flow_ctl::ulFlowReplace */ 482 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 483 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 484 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 485 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 486 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 487 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 488 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 489 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 490 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 491 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 492 493 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 494 struct cp210x_pin_mode { 495 u8 eci; 496 u8 sci; 497 }; 498 499 #define CP210X_PIN_MODE_MODEM 0 500 #define CP210X_PIN_MODE_GPIO BIT(0) 501 502 /* 503 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 504 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 505 */ 506 struct cp210x_dual_port_config { 507 __le16 gpio_mode; 508 u8 __pad0[2]; 509 __le16 reset_state; 510 u8 __pad1[4]; 511 __le16 suspend_state; 512 u8 sci_cfg; 513 u8 eci_cfg; 514 u8 device_cfg; 515 } __packed; 516 517 /* 518 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 519 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 520 */ 521 struct cp210x_single_port_config { 522 __le16 gpio_mode; 523 u8 __pad0[2]; 524 __le16 reset_state; 525 u8 __pad1[4]; 526 __le16 suspend_state; 527 u8 device_cfg; 528 } __packed; 529 530 /* GPIO modes */ 531 #define CP210X_SCI_GPIO_MODE_OFFSET 9 532 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 533 534 #define CP210X_ECI_GPIO_MODE_OFFSET 2 535 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 536 537 #define CP210X_GPIO_MODE_OFFSET 8 538 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 539 540 /* CP2105 port configuration values */ 541 #define CP2105_GPIO0_TXLED_MODE BIT(0) 542 #define CP2105_GPIO1_RXLED_MODE BIT(1) 543 #define CP2105_GPIO1_RS485_MODE BIT(2) 544 545 /* CP2104 port configuration values */ 546 #define CP2104_GPIO0_TXLED_MODE BIT(0) 547 #define CP2104_GPIO1_RXLED_MODE BIT(1) 548 #define CP2104_GPIO2_RS485_MODE BIT(2) 549 550 struct cp210x_quad_port_state { 551 __le16 gpio_mode_pb0; 552 __le16 gpio_mode_pb1; 553 __le16 gpio_mode_pb2; 554 __le16 gpio_mode_pb3; 555 __le16 gpio_mode_pb4; 556 557 __le16 gpio_lowpower_pb0; 558 __le16 gpio_lowpower_pb1; 559 __le16 gpio_lowpower_pb2; 560 __le16 gpio_lowpower_pb3; 561 __le16 gpio_lowpower_pb4; 562 563 __le16 gpio_latch_pb0; 564 __le16 gpio_latch_pb1; 565 __le16 gpio_latch_pb2; 566 __le16 gpio_latch_pb3; 567 __le16 gpio_latch_pb4; 568 }; 569 570 /* 571 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 572 * on a CP2108 chip. 573 * 574 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 575 */ 576 struct cp210x_quad_port_config { 577 struct cp210x_quad_port_state reset_state; 578 struct cp210x_quad_port_state suspend_state; 579 u8 ipdelay_ifc[4]; 580 u8 enhancedfxn_ifc[4]; 581 u8 enhancedfxn_device; 582 u8 extclkfreq[4]; 583 } __packed; 584 585 #define CP2108_EF_IFC_GPIO_TXLED 0x01 586 #define CP2108_EF_IFC_GPIO_RXLED 0x02 587 #define CP2108_EF_IFC_GPIO_RS485 0x04 588 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 589 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 590 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 591 592 /* CP2102N configuration array indices */ 593 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 594 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 595 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 596 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 597 598 /* CP2102N QFN20 port configuration values */ 599 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 600 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 601 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 602 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 603 604 /* 605 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 606 * for CP2102N, CP2103, CP2104 and CP2105. 607 */ 608 struct cp210x_gpio_write { 609 u8 mask; 610 u8 state; 611 }; 612 613 /* 614 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 615 * for CP2108. 616 */ 617 struct cp210x_gpio_write16 { 618 __le16 mask; 619 __le16 state; 620 }; 621 622 /* 623 * Helper to get interface number when we only have struct usb_serial. 624 */ 625 static u8 cp210x_interface_num(struct usb_serial *serial) 626 { 627 struct usb_host_interface *cur_altsetting; 628 629 cur_altsetting = serial->interface->cur_altsetting; 630 631 return cur_altsetting->desc.bInterfaceNumber; 632 } 633 634 /* 635 * Reads a variable-sized block of CP210X_ registers, identified by req. 636 * Returns data into buf in native USB byte order. 637 */ 638 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 639 void *buf, int bufsize) 640 { 641 struct usb_serial *serial = port->serial; 642 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 643 int result; 644 645 646 result = usb_control_msg_recv(serial->dev, 0, req, 647 REQTYPE_INTERFACE_TO_HOST, 0, 648 port_priv->bInterfaceNumber, buf, bufsize, 649 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 650 if (result) { 651 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 652 req, bufsize, result); 653 return result; 654 } 655 656 return 0; 657 } 658 659 /* 660 * Reads any 8-bit CP210X_ register identified by req. 661 */ 662 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 663 { 664 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 665 } 666 667 /* 668 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 669 * Returns data into buf in native USB byte order. 670 */ 671 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 672 void *buf, int bufsize) 673 { 674 int result; 675 676 result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 677 type, val, cp210x_interface_num(serial), buf, bufsize, 678 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 679 if (result) { 680 dev_err(&serial->interface->dev, 681 "failed to get vendor val 0x%04x size %d: %d\n", val, 682 bufsize, result); 683 return result; 684 } 685 686 return 0; 687 } 688 689 /* 690 * Writes any 16-bit CP210X_ register (req) whose value is passed 691 * entirely in the wValue field of the USB request. 692 */ 693 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 694 { 695 struct usb_serial *serial = port->serial; 696 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 697 int result; 698 699 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 700 req, REQTYPE_HOST_TO_INTERFACE, val, 701 port_priv->bInterfaceNumber, NULL, 0, 702 USB_CTRL_SET_TIMEOUT); 703 if (result < 0) { 704 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 705 req, result); 706 } 707 708 return result; 709 } 710 711 /* 712 * Writes a variable-sized block of CP210X_ registers, identified by req. 713 * Data in buf must be in native USB byte order. 714 */ 715 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 716 void *buf, int bufsize) 717 { 718 struct usb_serial *serial = port->serial; 719 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 720 int result; 721 722 result = usb_control_msg_send(serial->dev, 0, req, 723 REQTYPE_HOST_TO_INTERFACE, 0, 724 port_priv->bInterfaceNumber, buf, bufsize, 725 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 726 if (result) { 727 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 728 req, bufsize, result); 729 return result; 730 } 731 732 return 0; 733 } 734 735 /* 736 * Writes any 32-bit CP210X_ register identified by req. 737 */ 738 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 739 { 740 __le32 le32_val; 741 742 le32_val = cpu_to_le32(val); 743 744 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 745 } 746 747 #ifdef CONFIG_GPIOLIB 748 /* 749 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 750 * Data in buf must be in native USB byte order. 751 */ 752 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 753 u16 val, void *buf, int bufsize) 754 { 755 int result; 756 757 result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 758 type, val, cp210x_interface_num(serial), buf, bufsize, 759 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 760 if (result) { 761 dev_err(&serial->interface->dev, 762 "failed to set vendor val 0x%04x size %d: %d\n", val, 763 bufsize, result); 764 return result; 765 } 766 767 return 0; 768 } 769 #endif 770 771 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 772 { 773 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 774 int result; 775 776 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 777 if (result) { 778 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 779 return result; 780 } 781 782 if (tty) 783 cp210x_set_termios(tty, port, NULL); 784 785 result = usb_serial_generic_open(tty, port); 786 if (result) 787 goto err_disable; 788 789 return 0; 790 791 err_disable: 792 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 793 port_priv->event_mode = false; 794 795 return result; 796 } 797 798 static void cp210x_close(struct usb_serial_port *port) 799 { 800 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 801 802 usb_serial_generic_close(port); 803 804 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 805 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 806 807 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 808 809 /* Disabling the interface disables event-insertion mode. */ 810 port_priv->event_mode = false; 811 } 812 813 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 814 { 815 if (lsr & CP210X_LSR_BREAK) { 816 port->icount.brk++; 817 *flag = TTY_BREAK; 818 } else if (lsr & CP210X_LSR_PARITY) { 819 port->icount.parity++; 820 *flag = TTY_PARITY; 821 } else if (lsr & CP210X_LSR_FRAME) { 822 port->icount.frame++; 823 *flag = TTY_FRAME; 824 } 825 826 if (lsr & CP210X_LSR_OVERRUN) { 827 port->icount.overrun++; 828 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 829 } 830 } 831 832 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 833 { 834 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 835 836 switch (port_priv->event_state) { 837 case ES_DATA: 838 if (*ch == CP210X_ESCCHAR) { 839 port_priv->event_state = ES_ESCAPE; 840 break; 841 } 842 return false; 843 case ES_ESCAPE: 844 switch (*ch) { 845 case 0: 846 dev_dbg(&port->dev, "%s - escape char\n", __func__); 847 *ch = CP210X_ESCCHAR; 848 port_priv->event_state = ES_DATA; 849 return false; 850 case 1: 851 port_priv->event_state = ES_LSR_DATA_0; 852 break; 853 case 2: 854 port_priv->event_state = ES_LSR; 855 break; 856 case 3: 857 port_priv->event_state = ES_MSR; 858 break; 859 default: 860 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 861 port_priv->event_state = ES_DATA; 862 break; 863 } 864 break; 865 case ES_LSR_DATA_0: 866 port_priv->lsr = *ch; 867 port_priv->event_state = ES_LSR_DATA_1; 868 break; 869 case ES_LSR_DATA_1: 870 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 871 __func__, port_priv->lsr, *ch); 872 cp210x_process_lsr(port, port_priv->lsr, flag); 873 port_priv->event_state = ES_DATA; 874 return false; 875 case ES_LSR: 876 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 877 port_priv->lsr = *ch; 878 cp210x_process_lsr(port, port_priv->lsr, flag); 879 port_priv->event_state = ES_DATA; 880 break; 881 case ES_MSR: 882 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 883 /* unimplemented */ 884 port_priv->event_state = ES_DATA; 885 break; 886 } 887 888 return true; 889 } 890 891 static void cp210x_process_read_urb(struct urb *urb) 892 { 893 struct usb_serial_port *port = urb->context; 894 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 895 unsigned char *ch = urb->transfer_buffer; 896 char flag; 897 int i; 898 899 if (!urb->actual_length) 900 return; 901 902 if (port_priv->event_mode) { 903 for (i = 0; i < urb->actual_length; i++, ch++) { 904 flag = TTY_NORMAL; 905 906 if (cp210x_process_char(port, ch, &flag)) 907 continue; 908 909 tty_insert_flip_char(&port->port, *ch, flag); 910 } 911 } else { 912 tty_insert_flip_string(&port->port, ch, urb->actual_length); 913 } 914 tty_flip_buffer_push(&port->port); 915 } 916 917 /* 918 * Read how many bytes are waiting in the TX queue. 919 */ 920 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 921 u32 *count) 922 { 923 struct usb_serial *serial = port->serial; 924 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 925 struct cp210x_comm_status sts; 926 int result; 927 928 result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS, 929 REQTYPE_INTERFACE_TO_HOST, 0, 930 port_priv->bInterfaceNumber, &sts, sizeof(sts), 931 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 932 if (result) { 933 dev_err(&port->dev, "failed to get comm status: %d\n", result); 934 return result; 935 } 936 937 *count = le32_to_cpu(sts.ulAmountInOutQueue); 938 939 return 0; 940 } 941 942 static bool cp210x_tx_empty(struct usb_serial_port *port) 943 { 944 int err; 945 u32 count; 946 947 err = cp210x_get_tx_queue_byte_count(port, &count); 948 if (err) 949 return true; 950 951 return !count; 952 } 953 954 struct cp210x_rate { 955 speed_t rate; 956 speed_t high; 957 }; 958 959 static const struct cp210x_rate cp210x_an205_table1[] = { 960 { 300, 300 }, 961 { 600, 600 }, 962 { 1200, 1200 }, 963 { 1800, 1800 }, 964 { 2400, 2400 }, 965 { 4000, 4000 }, 966 { 4800, 4803 }, 967 { 7200, 7207 }, 968 { 9600, 9612 }, 969 { 14400, 14428 }, 970 { 16000, 16062 }, 971 { 19200, 19250 }, 972 { 28800, 28912 }, 973 { 38400, 38601 }, 974 { 51200, 51558 }, 975 { 56000, 56280 }, 976 { 57600, 58053 }, 977 { 64000, 64111 }, 978 { 76800, 77608 }, 979 { 115200, 117028 }, 980 { 128000, 129347 }, 981 { 153600, 156868 }, 982 { 230400, 237832 }, 983 { 250000, 254234 }, 984 { 256000, 273066 }, 985 { 460800, 491520 }, 986 { 500000, 567138 }, 987 { 576000, 670254 }, 988 { 921600, UINT_MAX } 989 }; 990 991 /* 992 * Quantises the baud rate as per AN205 Table 1 993 */ 994 static speed_t cp210x_get_an205_rate(speed_t baud) 995 { 996 int i; 997 998 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 999 if (baud <= cp210x_an205_table1[i].high) 1000 break; 1001 } 1002 1003 return cp210x_an205_table1[i].rate; 1004 } 1005 1006 static speed_t cp210x_get_actual_rate(speed_t baud) 1007 { 1008 unsigned int prescale = 1; 1009 unsigned int div; 1010 1011 if (baud <= 365) 1012 prescale = 4; 1013 1014 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1015 baud = 48000000 / (2 * prescale * div); 1016 1017 return baud; 1018 } 1019 1020 /* 1021 * CP2101 supports the following baud rates: 1022 * 1023 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1024 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1025 * 1026 * CP2102 and CP2103 support the following additional rates: 1027 * 1028 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1029 * 576000 1030 * 1031 * The device will map a requested rate to a supported one, but the result 1032 * of requests for rates greater than 1053257 is undefined (see AN205). 1033 * 1034 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1035 * respectively, with an error less than 1%. The actual rates are determined 1036 * by 1037 * 1038 * div = round(freq / (2 x prescale x request)) 1039 * actual = freq / (2 x prescale x div) 1040 * 1041 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1042 * or 1 otherwise. 1043 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1044 * otherwise. 1045 */ 1046 static void cp210x_change_speed(struct tty_struct *tty, 1047 struct usb_serial_port *port, 1048 const struct ktermios *old_termios) 1049 { 1050 struct usb_serial *serial = port->serial; 1051 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1052 u32 baud; 1053 1054 if (tty->termios.c_ospeed == 0) 1055 return; 1056 1057 /* 1058 * This maps the requested rate to the actual rate, a valid rate on 1059 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1060 */ 1061 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1062 1063 if (priv->use_actual_rate) 1064 baud = cp210x_get_actual_rate(baud); 1065 else if (baud < 1000000) 1066 baud = cp210x_get_an205_rate(baud); 1067 1068 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1069 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1070 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1071 if (old_termios) 1072 baud = old_termios->c_ospeed; 1073 else 1074 baud = 9600; 1075 } 1076 1077 tty_encode_baud_rate(tty, baud, baud); 1078 } 1079 1080 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1081 { 1082 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1083 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1084 int ret; 1085 1086 if (port_priv->event_mode) 1087 return; 1088 1089 if (priv->no_event_mode) 1090 return; 1091 1092 port_priv->event_state = ES_DATA; 1093 port_priv->event_mode = true; 1094 1095 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1096 if (ret) { 1097 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1098 port_priv->event_mode = false; 1099 } 1100 } 1101 1102 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1103 { 1104 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1105 int ret; 1106 1107 if (!port_priv->event_mode) 1108 return; 1109 1110 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1111 if (ret) { 1112 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1113 return; 1114 } 1115 1116 port_priv->event_mode = false; 1117 } 1118 1119 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1120 { 1121 bool iflag_change, cc_change; 1122 1123 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1124 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1125 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1126 1127 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1128 } 1129 1130 static void cp210x_set_flow_control(struct tty_struct *tty, 1131 struct usb_serial_port *port, 1132 const struct ktermios *old_termios) 1133 { 1134 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1135 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1136 struct cp210x_special_chars chars; 1137 struct cp210x_flow_ctl flow_ctl; 1138 u32 flow_repl; 1139 u32 ctl_hs; 1140 bool crtscts; 1141 int ret; 1142 1143 /* 1144 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1145 * CP2102N_E104). Report back that flow control is not supported. 1146 */ 1147 if (priv->no_flow_control) { 1148 tty->termios.c_cflag &= ~CRTSCTS; 1149 tty->termios.c_iflag &= ~(IXON | IXOFF); 1150 } 1151 1152 if (tty->termios.c_ospeed != 0 && 1153 old_termios && old_termios->c_ospeed != 0 && 1154 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1155 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1156 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1157 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1158 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1159 return; 1160 } 1161 1162 if (I_IXON(tty) || I_IXOFF(tty)) { 1163 memset(&chars, 0, sizeof(chars)); 1164 1165 chars.bXonChar = START_CHAR(tty); 1166 chars.bXoffChar = STOP_CHAR(tty); 1167 1168 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1169 sizeof(chars)); 1170 if (ret) { 1171 dev_err(&port->dev, "failed to set special chars: %d\n", 1172 ret); 1173 } 1174 } 1175 1176 mutex_lock(&port_priv->mutex); 1177 1178 if (tty->termios.c_ospeed == 0) { 1179 port_priv->dtr = false; 1180 port_priv->rts = false; 1181 } else if (old_termios && old_termios->c_ospeed == 0) { 1182 port_priv->dtr = true; 1183 port_priv->rts = true; 1184 } 1185 1186 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1187 sizeof(flow_ctl)); 1188 if (ret) 1189 goto out_unlock; 1190 1191 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1192 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1193 1194 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1195 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1196 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1197 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1198 if (port_priv->dtr) 1199 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1200 else 1201 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1202 1203 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1204 if (C_CRTSCTS(tty)) { 1205 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1206 if (port_priv->rts) 1207 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1208 else 1209 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1210 crtscts = true; 1211 } else { 1212 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1213 if (port_priv->rts) 1214 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1215 else 1216 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1217 crtscts = false; 1218 } 1219 1220 if (I_IXOFF(tty)) { 1221 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1222 1223 flow_ctl.ulXonLimit = cpu_to_le32(128); 1224 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1225 } else { 1226 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1227 } 1228 1229 if (I_IXON(tty)) 1230 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1231 else 1232 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1233 1234 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1235 ctl_hs, flow_repl); 1236 1237 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1238 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1239 1240 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1241 sizeof(flow_ctl)); 1242 if (ret) 1243 goto out_unlock; 1244 1245 port_priv->crtscts = crtscts; 1246 out_unlock: 1247 mutex_unlock(&port_priv->mutex); 1248 } 1249 1250 static void cp210x_set_termios(struct tty_struct *tty, 1251 struct usb_serial_port *port, 1252 const struct ktermios *old_termios) 1253 { 1254 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1255 u16 bits; 1256 int ret; 1257 1258 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios) && 1259 tty->termios.c_ospeed != 0) 1260 return; 1261 1262 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1263 cp210x_change_speed(tty, port, old_termios); 1264 1265 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1266 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1267 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1268 tty->termios.c_cflag |= CS8; 1269 } 1270 1271 bits = 0; 1272 1273 switch (C_CSIZE(tty)) { 1274 case CS5: 1275 bits |= BITS_DATA_5; 1276 break; 1277 case CS6: 1278 bits |= BITS_DATA_6; 1279 break; 1280 case CS7: 1281 bits |= BITS_DATA_7; 1282 break; 1283 case CS8: 1284 default: 1285 bits |= BITS_DATA_8; 1286 break; 1287 } 1288 1289 if (C_PARENB(tty)) { 1290 if (C_CMSPAR(tty)) { 1291 if (C_PARODD(tty)) 1292 bits |= BITS_PARITY_MARK; 1293 else 1294 bits |= BITS_PARITY_SPACE; 1295 } else { 1296 if (C_PARODD(tty)) 1297 bits |= BITS_PARITY_ODD; 1298 else 1299 bits |= BITS_PARITY_EVEN; 1300 } 1301 } 1302 1303 if (C_CSTOPB(tty)) 1304 bits |= BITS_STOP_2; 1305 else 1306 bits |= BITS_STOP_1; 1307 1308 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1309 if (ret) 1310 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1311 1312 cp210x_set_flow_control(tty, port, old_termios); 1313 1314 /* 1315 * Enable event-insertion mode only if input parity checking is 1316 * enabled for now. 1317 */ 1318 if (I_INPCK(tty)) 1319 cp210x_enable_event_mode(port); 1320 else 1321 cp210x_disable_event_mode(port); 1322 } 1323 1324 static int cp210x_tiocmset(struct tty_struct *tty, 1325 unsigned int set, unsigned int clear) 1326 { 1327 struct usb_serial_port *port = tty->driver_data; 1328 return cp210x_tiocmset_port(port, set, clear); 1329 } 1330 1331 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1332 unsigned int set, unsigned int clear) 1333 { 1334 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1335 struct cp210x_flow_ctl flow_ctl; 1336 u32 ctl_hs, flow_repl; 1337 u16 control = 0; 1338 int ret; 1339 1340 mutex_lock(&port_priv->mutex); 1341 1342 if (set & TIOCM_RTS) { 1343 port_priv->rts = true; 1344 control |= CONTROL_RTS; 1345 control |= CONTROL_WRITE_RTS; 1346 } 1347 if (set & TIOCM_DTR) { 1348 port_priv->dtr = true; 1349 control |= CONTROL_DTR; 1350 control |= CONTROL_WRITE_DTR; 1351 } 1352 if (clear & TIOCM_RTS) { 1353 port_priv->rts = false; 1354 control &= ~CONTROL_RTS; 1355 control |= CONTROL_WRITE_RTS; 1356 } 1357 if (clear & TIOCM_DTR) { 1358 port_priv->dtr = false; 1359 control &= ~CONTROL_DTR; 1360 control |= CONTROL_WRITE_DTR; 1361 } 1362 1363 /* 1364 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1365 * flow control is enabled. 1366 */ 1367 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1368 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1369 sizeof(flow_ctl)); 1370 if (ret) 1371 goto out_unlock; 1372 1373 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1374 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1375 1376 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1377 if (port_priv->dtr) 1378 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1379 else 1380 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1381 1382 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1383 if (port_priv->rts) 1384 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1385 else 1386 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1387 1388 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1389 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1390 1391 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1392 __func__, ctl_hs, flow_repl); 1393 1394 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1395 sizeof(flow_ctl)); 1396 } else { 1397 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1398 1399 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1400 } 1401 out_unlock: 1402 mutex_unlock(&port_priv->mutex); 1403 1404 return ret; 1405 } 1406 1407 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1408 { 1409 if (on) 1410 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1411 else 1412 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1413 } 1414 1415 static int cp210x_tiocmget(struct tty_struct *tty) 1416 { 1417 struct usb_serial_port *port = tty->driver_data; 1418 u8 control; 1419 int result; 1420 1421 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1422 if (result) 1423 return result; 1424 1425 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1426 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1427 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1428 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1429 |((control & CONTROL_RING)? TIOCM_RI : 0) 1430 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1431 1432 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1433 1434 return result; 1435 } 1436 1437 static int cp210x_break_ctl(struct tty_struct *tty, int break_state) 1438 { 1439 struct usb_serial_port *port = tty->driver_data; 1440 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1441 u16 state; 1442 1443 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1444 if (cp210x_interface_num(port->serial) == 1) 1445 return -ENOTTY; 1446 } 1447 1448 if (break_state == 0) 1449 state = BREAK_OFF; 1450 else 1451 state = BREAK_ON; 1452 1453 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1454 state == BREAK_OFF ? "off" : "on"); 1455 1456 return cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1457 } 1458 1459 #ifdef CONFIG_GPIOLIB 1460 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1461 { 1462 struct usb_serial *serial = gpiochip_get_data(gc); 1463 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1464 u8 req_type; 1465 u16 mask; 1466 int result; 1467 int len; 1468 1469 result = usb_autopm_get_interface(serial->interface); 1470 if (result) 1471 return result; 1472 1473 switch (priv->partnum) { 1474 case CP210X_PARTNUM_CP2105: 1475 req_type = REQTYPE_INTERFACE_TO_HOST; 1476 len = 1; 1477 break; 1478 case CP210X_PARTNUM_CP2108: 1479 req_type = REQTYPE_INTERFACE_TO_HOST; 1480 len = 2; 1481 break; 1482 default: 1483 req_type = REQTYPE_DEVICE_TO_HOST; 1484 len = 1; 1485 break; 1486 } 1487 1488 mask = 0; 1489 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1490 &mask, len); 1491 1492 usb_autopm_put_interface(serial->interface); 1493 1494 if (result < 0) 1495 return result; 1496 1497 le16_to_cpus(&mask); 1498 1499 return !!(mask & BIT(gpio)); 1500 } 1501 1502 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1503 { 1504 struct usb_serial *serial = gpiochip_get_data(gc); 1505 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1506 struct cp210x_gpio_write16 buf16; 1507 struct cp210x_gpio_write buf; 1508 u16 mask, state; 1509 u16 wIndex; 1510 int result; 1511 1512 if (value == 1) 1513 state = BIT(gpio); 1514 else 1515 state = 0; 1516 1517 mask = BIT(gpio); 1518 1519 result = usb_autopm_get_interface(serial->interface); 1520 if (result) 1521 goto out; 1522 1523 switch (priv->partnum) { 1524 case CP210X_PARTNUM_CP2105: 1525 buf.mask = (u8)mask; 1526 buf.state = (u8)state; 1527 result = cp210x_write_vendor_block(serial, 1528 REQTYPE_HOST_TO_INTERFACE, 1529 CP210X_WRITE_LATCH, &buf, 1530 sizeof(buf)); 1531 break; 1532 case CP210X_PARTNUM_CP2108: 1533 buf16.mask = cpu_to_le16(mask); 1534 buf16.state = cpu_to_le16(state); 1535 result = cp210x_write_vendor_block(serial, 1536 REQTYPE_HOST_TO_INTERFACE, 1537 CP210X_WRITE_LATCH, &buf16, 1538 sizeof(buf16)); 1539 break; 1540 default: 1541 wIndex = state << 8 | mask; 1542 result = usb_control_msg(serial->dev, 1543 usb_sndctrlpipe(serial->dev, 0), 1544 CP210X_VENDOR_SPECIFIC, 1545 REQTYPE_HOST_TO_DEVICE, 1546 CP210X_WRITE_LATCH, 1547 wIndex, 1548 NULL, 0, USB_CTRL_SET_TIMEOUT); 1549 break; 1550 } 1551 1552 usb_autopm_put_interface(serial->interface); 1553 out: 1554 if (result < 0) { 1555 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1556 result); 1557 } 1558 } 1559 1560 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1561 { 1562 struct usb_serial *serial = gpiochip_get_data(gc); 1563 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1564 1565 return priv->gpio_input & BIT(gpio); 1566 } 1567 1568 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1569 { 1570 struct usb_serial *serial = gpiochip_get_data(gc); 1571 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1572 1573 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1574 /* hardware does not support an input mode */ 1575 return -ENOTSUPP; 1576 } 1577 1578 /* push-pull pins cannot be changed to be inputs */ 1579 if (priv->gpio_pushpull & BIT(gpio)) 1580 return -EINVAL; 1581 1582 /* make sure to release pin if it is being driven low */ 1583 cp210x_gpio_set(gc, gpio, 1); 1584 1585 priv->gpio_input |= BIT(gpio); 1586 1587 return 0; 1588 } 1589 1590 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1591 int value) 1592 { 1593 struct usb_serial *serial = gpiochip_get_data(gc); 1594 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1595 1596 priv->gpio_input &= ~BIT(gpio); 1597 cp210x_gpio_set(gc, gpio, value); 1598 1599 return 0; 1600 } 1601 1602 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1603 unsigned long config) 1604 { 1605 struct usb_serial *serial = gpiochip_get_data(gc); 1606 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1607 enum pin_config_param param = pinconf_to_config_param(config); 1608 1609 /* Succeed only if in correct mode (this can't be set at runtime) */ 1610 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1611 (priv->gpio_pushpull & BIT(gpio))) 1612 return 0; 1613 1614 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1615 !(priv->gpio_pushpull & BIT(gpio))) 1616 return 0; 1617 1618 return -ENOTSUPP; 1619 } 1620 1621 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1622 unsigned long *valid_mask, unsigned int ngpios) 1623 { 1624 struct usb_serial *serial = gpiochip_get_data(gc); 1625 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1626 struct device *dev = &serial->interface->dev; 1627 unsigned long altfunc_mask = priv->gpio_altfunc; 1628 1629 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1630 1631 if (bitmap_empty(valid_mask, ngpios)) 1632 dev_dbg(dev, "no pin configured for GPIO\n"); 1633 else 1634 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1635 valid_mask); 1636 return 0; 1637 } 1638 1639 /* 1640 * This function is for configuring GPIO using shared pins, where other signals 1641 * are made unavailable by configuring the use of GPIO. This is believed to be 1642 * only applicable to the cp2105 at this point, the other devices supported by 1643 * this driver that provide GPIO do so in a way that does not impact other 1644 * signals and are thus expected to have very different initialisation. 1645 */ 1646 static int cp2105_gpioconf_init(struct usb_serial *serial) 1647 { 1648 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1649 struct cp210x_pin_mode mode; 1650 struct cp210x_dual_port_config config; 1651 u8 intf_num = cp210x_interface_num(serial); 1652 u8 iface_config; 1653 int result; 1654 1655 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1656 CP210X_GET_DEVICEMODE, &mode, 1657 sizeof(mode)); 1658 if (result < 0) 1659 return result; 1660 1661 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1662 CP210X_GET_PORTCONFIG, &config, 1663 sizeof(config)); 1664 if (result < 0) 1665 return result; 1666 1667 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1668 if (intf_num == 0) { 1669 priv->gc.ngpio = 2; 1670 1671 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1672 /* mark all GPIOs of this interface as reserved */ 1673 priv->gpio_altfunc = 0xff; 1674 return 0; 1675 } 1676 1677 iface_config = config.eci_cfg; 1678 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1679 CP210X_ECI_GPIO_MODE_MASK) >> 1680 CP210X_ECI_GPIO_MODE_OFFSET); 1681 } else if (intf_num == 1) { 1682 priv->gc.ngpio = 3; 1683 1684 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1685 /* mark all GPIOs of this interface as reserved */ 1686 priv->gpio_altfunc = 0xff; 1687 return 0; 1688 } 1689 1690 iface_config = config.sci_cfg; 1691 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1692 CP210X_SCI_GPIO_MODE_MASK) >> 1693 CP210X_SCI_GPIO_MODE_OFFSET); 1694 } else { 1695 return -ENODEV; 1696 } 1697 1698 /* mark all pins which are not in GPIO mode */ 1699 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1700 priv->gpio_altfunc |= BIT(0); 1701 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1702 CP2105_GPIO1_RS485_MODE)) 1703 priv->gpio_altfunc |= BIT(1); 1704 1705 /* driver implementation for CP2105 only supports outputs */ 1706 priv->gpio_input = 0; 1707 1708 return 0; 1709 } 1710 1711 static int cp2104_gpioconf_init(struct usb_serial *serial) 1712 { 1713 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1714 struct cp210x_single_port_config config; 1715 u8 iface_config; 1716 u8 gpio_latch; 1717 int result; 1718 u8 i; 1719 1720 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1721 CP210X_GET_PORTCONFIG, &config, 1722 sizeof(config)); 1723 if (result < 0) 1724 return result; 1725 1726 priv->gc.ngpio = 4; 1727 1728 iface_config = config.device_cfg; 1729 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1730 CP210X_GPIO_MODE_MASK) >> 1731 CP210X_GPIO_MODE_OFFSET); 1732 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1733 CP210X_GPIO_MODE_MASK) >> 1734 CP210X_GPIO_MODE_OFFSET); 1735 1736 /* mark all pins which are not in GPIO mode */ 1737 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1738 priv->gpio_altfunc |= BIT(0); 1739 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1740 priv->gpio_altfunc |= BIT(1); 1741 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1742 priv->gpio_altfunc |= BIT(2); 1743 1744 /* 1745 * Like CP2102N, CP2104 has also no strict input and output pin 1746 * modes. 1747 * Do the same input mode emulation as CP2102N. 1748 */ 1749 for (i = 0; i < priv->gc.ngpio; ++i) { 1750 /* 1751 * Set direction to "input" iff pin is open-drain and reset 1752 * value is 1. 1753 */ 1754 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1755 priv->gpio_input |= BIT(i); 1756 } 1757 1758 return 0; 1759 } 1760 1761 static int cp2108_gpio_init(struct usb_serial *serial) 1762 { 1763 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1764 struct cp210x_quad_port_config config; 1765 u16 gpio_latch; 1766 int result; 1767 u8 i; 1768 1769 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1770 CP210X_GET_PORTCONFIG, &config, 1771 sizeof(config)); 1772 if (result < 0) 1773 return result; 1774 1775 priv->gc.ngpio = 16; 1776 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1777 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1778 1779 /* 1780 * Mark all pins which are not in GPIO mode. 1781 * 1782 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1783 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1784 * 1785 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1786 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1787 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1788 */ 1789 for (i = 0; i < 4; i++) { 1790 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1791 priv->gpio_altfunc |= BIT(i * 4); 1792 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1793 priv->gpio_altfunc |= BIT((i * 4) + 1); 1794 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1795 priv->gpio_altfunc |= BIT((i * 4) + 2); 1796 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1797 priv->gpio_altfunc |= BIT((i * 4) + 3); 1798 } 1799 1800 /* 1801 * Like CP2102N, CP2108 has also no strict input and output pin 1802 * modes. Do the same input mode emulation as CP2102N. 1803 */ 1804 for (i = 0; i < priv->gc.ngpio; ++i) { 1805 /* 1806 * Set direction to "input" iff pin is open-drain and reset 1807 * value is 1. 1808 */ 1809 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1810 priv->gpio_input |= BIT(i); 1811 } 1812 1813 return 0; 1814 } 1815 1816 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1817 { 1818 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1819 const u16 config_size = 0x02a6; 1820 u8 gpio_rst_latch; 1821 u8 config_version; 1822 u8 gpio_pushpull; 1823 u8 *config_buf; 1824 u8 gpio_latch; 1825 u8 gpio_ctrl; 1826 int result; 1827 u8 i; 1828 1829 /* 1830 * Retrieve device configuration from the device. 1831 * The array received contains all customization settings done at the 1832 * factory/manufacturer. Format of the array is documented at the 1833 * time of writing at: 1834 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1835 */ 1836 config_buf = kmalloc(config_size, GFP_KERNEL); 1837 if (!config_buf) 1838 return -ENOMEM; 1839 1840 result = cp210x_read_vendor_block(serial, 1841 REQTYPE_DEVICE_TO_HOST, 1842 CP210X_READ_2NCONFIG, 1843 config_buf, 1844 config_size); 1845 if (result < 0) { 1846 kfree(config_buf); 1847 return result; 1848 } 1849 1850 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1851 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1852 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1853 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1854 1855 kfree(config_buf); 1856 1857 /* Make sure this is a config format we understand. */ 1858 if (config_version != 0x01) 1859 return -ENOTSUPP; 1860 1861 priv->gc.ngpio = 4; 1862 1863 /* 1864 * Get default pin states after reset. Needed so we can determine 1865 * the direction of an open-drain pin. 1866 */ 1867 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1868 1869 /* 0 indicates open-drain mode, 1 is push-pull */ 1870 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1871 1872 /* 0 indicates GPIO mode, 1 is alternate function */ 1873 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1874 /* QFN20 is special... */ 1875 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1876 priv->gpio_altfunc |= BIT(0); 1877 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1878 priv->gpio_altfunc |= BIT(1); 1879 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1880 priv->gpio_altfunc |= BIT(2); 1881 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1882 priv->gpio_altfunc |= BIT(3); 1883 } else { 1884 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1885 } 1886 1887 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1888 /* 1889 * For the QFN28 package, GPIO4-6 are controlled by 1890 * the low three bits of the mode/latch fields. 1891 * Contrary to the document linked above, the bits for 1892 * the SUSPEND pins are elsewhere. No alternate 1893 * function is available for these pins. 1894 */ 1895 priv->gc.ngpio = 7; 1896 gpio_latch |= (gpio_rst_latch & 7) << 4; 1897 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1898 } 1899 1900 /* 1901 * The CP2102N does not strictly has input and output pin modes, 1902 * it only knows open-drain and push-pull modes which is set at 1903 * factory. An open-drain pin can function both as an 1904 * input or an output. We emulate input mode for open-drain pins 1905 * by making sure they are not driven low, and we do not allow 1906 * push-pull pins to be set as an input. 1907 */ 1908 for (i = 0; i < priv->gc.ngpio; ++i) { 1909 /* 1910 * Set direction to "input" iff pin is open-drain and reset 1911 * value is 1. 1912 */ 1913 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1914 priv->gpio_input |= BIT(i); 1915 } 1916 1917 return 0; 1918 } 1919 1920 static int cp210x_gpio_init(struct usb_serial *serial) 1921 { 1922 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1923 int result; 1924 1925 switch (priv->partnum) { 1926 case CP210X_PARTNUM_CP2104: 1927 result = cp2104_gpioconf_init(serial); 1928 break; 1929 case CP210X_PARTNUM_CP2105: 1930 result = cp2105_gpioconf_init(serial); 1931 break; 1932 case CP210X_PARTNUM_CP2108: 1933 /* 1934 * The GPIOs are not tied to any specific port so only register 1935 * once for interface 0. 1936 */ 1937 if (cp210x_interface_num(serial) != 0) 1938 return 0; 1939 result = cp2108_gpio_init(serial); 1940 break; 1941 case CP210X_PARTNUM_CP2102N_QFN28: 1942 case CP210X_PARTNUM_CP2102N_QFN24: 1943 case CP210X_PARTNUM_CP2102N_QFN20: 1944 result = cp2102n_gpioconf_init(serial); 1945 break; 1946 default: 1947 return 0; 1948 } 1949 1950 if (result < 0) 1951 return result; 1952 1953 priv->gc.label = "cp210x"; 1954 priv->gc.get_direction = cp210x_gpio_direction_get; 1955 priv->gc.direction_input = cp210x_gpio_direction_input; 1956 priv->gc.direction_output = cp210x_gpio_direction_output; 1957 priv->gc.get = cp210x_gpio_get; 1958 priv->gc.set = cp210x_gpio_set; 1959 priv->gc.set_config = cp210x_gpio_set_config; 1960 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1961 priv->gc.owner = THIS_MODULE; 1962 priv->gc.parent = &serial->interface->dev; 1963 priv->gc.base = -1; 1964 priv->gc.can_sleep = true; 1965 1966 result = gpiochip_add_data(&priv->gc, serial); 1967 if (!result) 1968 priv->gpio_registered = true; 1969 1970 return result; 1971 } 1972 1973 static void cp210x_gpio_remove(struct usb_serial *serial) 1974 { 1975 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1976 1977 if (priv->gpio_registered) { 1978 gpiochip_remove(&priv->gc); 1979 priv->gpio_registered = false; 1980 } 1981 } 1982 1983 #else 1984 1985 static int cp210x_gpio_init(struct usb_serial *serial) 1986 { 1987 return 0; 1988 } 1989 1990 static void cp210x_gpio_remove(struct usb_serial *serial) 1991 { 1992 /* Nothing to do */ 1993 } 1994 1995 #endif 1996 1997 static int cp210x_port_probe(struct usb_serial_port *port) 1998 { 1999 struct usb_serial *serial = port->serial; 2000 struct cp210x_port_private *port_priv; 2001 2002 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 2003 if (!port_priv) 2004 return -ENOMEM; 2005 2006 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 2007 mutex_init(&port_priv->mutex); 2008 2009 usb_set_serial_port_data(port, port_priv); 2010 2011 return 0; 2012 } 2013 2014 static void cp210x_port_remove(struct usb_serial_port *port) 2015 { 2016 struct cp210x_port_private *port_priv; 2017 2018 port_priv = usb_get_serial_port_data(port); 2019 kfree(port_priv); 2020 } 2021 2022 static void cp210x_init_max_speed(struct usb_serial *serial) 2023 { 2024 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2025 bool use_actual_rate = false; 2026 speed_t min = 300; 2027 speed_t max; 2028 2029 switch (priv->partnum) { 2030 case CP210X_PARTNUM_CP2101: 2031 max = 921600; 2032 break; 2033 case CP210X_PARTNUM_CP2102: 2034 case CP210X_PARTNUM_CP2103: 2035 max = 1000000; 2036 break; 2037 case CP210X_PARTNUM_CP2104: 2038 use_actual_rate = true; 2039 max = 2000000; 2040 break; 2041 case CP210X_PARTNUM_CP2108: 2042 max = 2000000; 2043 break; 2044 case CP210X_PARTNUM_CP2105: 2045 if (cp210x_interface_num(serial) == 0) { 2046 use_actual_rate = true; 2047 max = 2000000; /* ECI */ 2048 } else { 2049 min = 2400; 2050 max = 921600; /* SCI */ 2051 } 2052 break; 2053 case CP210X_PARTNUM_CP2102N_QFN28: 2054 case CP210X_PARTNUM_CP2102N_QFN24: 2055 case CP210X_PARTNUM_CP2102N_QFN20: 2056 use_actual_rate = true; 2057 max = 3000000; 2058 break; 2059 default: 2060 max = 2000000; 2061 break; 2062 } 2063 2064 priv->min_speed = min; 2065 priv->max_speed = max; 2066 priv->use_actual_rate = use_actual_rate; 2067 } 2068 2069 static void cp2102_determine_quirks(struct usb_serial *serial) 2070 { 2071 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2072 u8 *buf; 2073 int ret; 2074 2075 buf = kmalloc(2, GFP_KERNEL); 2076 if (!buf) 2077 return; 2078 /* 2079 * Some (possibly counterfeit) CP2102 do not support event-insertion 2080 * mode and respond differently to malformed vendor requests. 2081 * Specifically, they return one instead of two bytes when sent a 2082 * two-byte part-number request. 2083 */ 2084 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2085 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2086 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2087 if (ret == 1) { 2088 dev_dbg(&serial->interface->dev, 2089 "device does not support event-insertion mode\n"); 2090 priv->no_event_mode = true; 2091 } 2092 2093 kfree(buf); 2094 } 2095 2096 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2097 { 2098 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2099 u8 ver[3]; 2100 int ret; 2101 2102 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2103 ver, sizeof(ver)); 2104 if (ret) 2105 return ret; 2106 2107 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2108 ver[0], ver[1], ver[2]); 2109 2110 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2111 2112 return 0; 2113 } 2114 2115 static void cp210x_determine_type(struct usb_serial *serial) 2116 { 2117 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2118 int ret; 2119 2120 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2121 CP210X_GET_PARTNUM, &priv->partnum, 2122 sizeof(priv->partnum)); 2123 if (ret < 0) { 2124 dev_warn(&serial->interface->dev, 2125 "querying part number failed\n"); 2126 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2127 return; 2128 } 2129 2130 dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum); 2131 2132 switch (priv->partnum) { 2133 case CP210X_PARTNUM_CP2102: 2134 cp2102_determine_quirks(serial); 2135 break; 2136 case CP210X_PARTNUM_CP2105: 2137 case CP210X_PARTNUM_CP2108: 2138 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2139 break; 2140 case CP210X_PARTNUM_CP2102N_QFN28: 2141 case CP210X_PARTNUM_CP2102N_QFN24: 2142 case CP210X_PARTNUM_CP2102N_QFN20: 2143 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2144 if (ret) 2145 break; 2146 if (priv->fw_version <= 0x10004) 2147 priv->no_flow_control = true; 2148 break; 2149 default: 2150 break; 2151 } 2152 } 2153 2154 static int cp210x_attach(struct usb_serial *serial) 2155 { 2156 int result; 2157 struct cp210x_serial_private *priv; 2158 2159 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2160 if (!priv) 2161 return -ENOMEM; 2162 2163 usb_set_serial_data(serial, priv); 2164 2165 cp210x_determine_type(serial); 2166 cp210x_init_max_speed(serial); 2167 2168 result = cp210x_gpio_init(serial); 2169 if (result < 0) { 2170 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2171 result); 2172 } 2173 2174 return 0; 2175 } 2176 2177 static void cp210x_disconnect(struct usb_serial *serial) 2178 { 2179 cp210x_gpio_remove(serial); 2180 } 2181 2182 static void cp210x_release(struct usb_serial *serial) 2183 { 2184 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2185 2186 cp210x_gpio_remove(serial); 2187 2188 kfree(priv); 2189 } 2190 2191 module_usb_serial_driver(serial_drivers, id_table); 2192 2193 MODULE_DESCRIPTION(DRIVER_DESC); 2194 MODULE_LICENSE("GPL v2"); 2195