xref: /linux/drivers/usb/serial/cp210x.c (revision f5cfbecb0a162319464c9408420282d22ed69721)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silicon Laboratories CP210x USB to RS232 serial adaptor driver
4  *
5  * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk)
6  * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org)
7  *
8  * Support to set flow control line levels using TIOCMGET and TIOCMSET
9  * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow
10  * control thanks to Munir Nassar nassarmu@real-time.com
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/slab.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/module.h>
20 #include <linux/usb.h>
21 #include <linux/usb/serial.h>
22 #include <linux/gpio/driver.h>
23 #include <linux/bitops.h>
24 #include <linux/mutex.h>
25 
26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver"
27 
28 /*
29  * Function Prototypes
30  */
31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *);
32 static void cp210x_close(struct usb_serial_port *);
33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *,
34 							struct ktermios *);
35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *,
36 							struct ktermios*);
37 static bool cp210x_tx_empty(struct usb_serial_port *port);
38 static int cp210x_tiocmget(struct tty_struct *);
39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int);
40 static int cp210x_tiocmset_port(struct usb_serial_port *port,
41 		unsigned int, unsigned int);
42 static void cp210x_break_ctl(struct tty_struct *, int);
43 static int cp210x_attach(struct usb_serial *);
44 static void cp210x_disconnect(struct usb_serial *);
45 static void cp210x_release(struct usb_serial *);
46 static int cp210x_port_probe(struct usb_serial_port *);
47 static void cp210x_port_remove(struct usb_serial_port *);
48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on);
49 static void cp210x_process_read_urb(struct urb *urb);
50 static void cp210x_enable_event_mode(struct usb_serial_port *port);
51 static void cp210x_disable_event_mode(struct usb_serial_port *port);
52 
53 static const struct usb_device_id id_table[] = {
54 	{ USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */
55 	{ USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */
56 	{ USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */
57 	{ USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */
58 	{ USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */
59 	{ USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */
60 	{ USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */
61 	{ USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */
62 	{ USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */
63 	{ USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */
64 	{ USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */
65 	{ USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */
66 	{ USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */
67 	{ USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */
68 	{ USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */
69 	{ USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */
70 	{ USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */
71 	{ USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */
72 	{ USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */
73 	{ USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */
74 	{ USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */
75 	{ USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */
76 	{ USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */
77 	{ USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */
78 	{ USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */
79 	{ USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */
80 	{ USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */
81 	{ USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */
82 	{ USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */
83 	{ USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */
84 	{ USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */
85 	{ USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */
86 	{ USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */
87 	{ USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */
88 	{ USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */
89 	{ USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */
90 	{ USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */
91 	{ USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */
92 	{ USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */
93 	{ USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */
94 	{ USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */
95 	{ USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */
96 	{ USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */
97 	{ USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */
98 	{ USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */
99 	{ USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */
100 	{ USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */
101 	{ USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */
102 	{ USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */
103 	{ USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */
104 	{ USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */
105 	{ USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */
106 	{ USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */
107 	{ USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */
108 	{ USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */
109 	{ USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */
110 	{ USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */
111 	{ USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */
112 	{ USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */
113 	{ USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */
114 	{ USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */
115 	{ USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */
116 	{ USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */
117 	{ USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */
118 	{ USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */
119 	{ USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */
120 	{ USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */
121 	{ USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */
122 	{ USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */
123 	{ USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */
124 	{ USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */
125 	{ USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */
126 	{ USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */
127 	{ USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */
128 	{ USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */
129 	{ USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */
130 	{ USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */
131 	{ USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */
132 	{ USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */
133 	{ USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */
134 	{ USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */
135 	{ USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */
136 	{ USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */
137 	{ USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */
138 	{ USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */
139 	{ USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */
140 	{ USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */
141 	{ USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */
142 	{ USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */
143 	{ USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */
144 	{ USB_DEVICE(0x10C4, 0x8856) },	/* CEL EM357 ZigBee USB Stick - LR */
145 	{ USB_DEVICE(0x10C4, 0x8857) },	/* CEL EM357 ZigBee USB Stick */
146 	{ USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */
147 	{ USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */
148 	{ USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */
149 	{ USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */
150 	{ USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */
151 	{ USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */
152 	{ USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */
153 	{ USB_DEVICE(0x10C4, 0x8977) },	/* CEL MeshWorks DevKit Device */
154 	{ USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */
155 	{ USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */
156 	{ USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */
157 	{ USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */
158 	{ USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */
159 	{ USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */
160 	{ USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */
161 	{ USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */
162 	{ USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */
163 	{ USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */
164 	{ USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */
165 	{ USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */
166 	{ USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */
167 	{ USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */
168 	{ USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */
169 	{ USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */
170 	{ USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */
171 	{ USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */
172 	{ USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */
173 	{ USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */
174 	{ USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */
175 	{ USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */
176 	{ USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */
177 	{ USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */
178 	{ USB_DEVICE(0x155A, 0x1006) },	/* ELDAT Easywave RX09 */
179 	{ USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */
180 	{ USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */
181 	{ USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */
182 	{ USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */
183 	{ USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */
184 	{ USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */
185 	{ USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */
186 	{ USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */
187 	{ USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */
188 	{ USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */
189 	{ USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */
190 	{ USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */
191 	{ USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */
192 	{ USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */
193 	{ USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */
194 	{ USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */
195 	{ USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */
196 	{ USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */
197 	{ USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */
198 	{ USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */
199 	{ USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */
200 	{ USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */
201 	{ USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */
202 	{ USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */
203 	{ USB_DEVICE(0x1901, 0x0194) },	/* GE Healthcare Remote Alarm Box */
204 	{ USB_DEVICE(0x1901, 0x0195) },	/* GE B850/B650/B450 CP2104 DP UART interface */
205 	{ USB_DEVICE(0x1901, 0x0196) },	/* GE B850 CP2105 DP UART interface */
206 	{ USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */
207 	{ USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */
208 	{ USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */
209 	{ USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */
210 	{ USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */
211 	{ USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */
212 	{ USB_DEVICE(0x1BA4, 0x0002) },	/* Silicon Labs 358x factory default */
213 	{ USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */
214 	{ USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */
215 	{ USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */
216 	{ USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */
217 	{ USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */
218 	{ USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */
219 	{ USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */
220 	{ USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */
221 	{ USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */
222 	{ USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */
223 	{ USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */
224 	{ USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */
225 	{ USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */
226 	{ USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */
227 	{ USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */
228 	{ USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */
229 	{ USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */
230 	{ USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */
231 	{ USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */
232 	{ USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */
233 	{ USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */
234 	{ USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */
235 	{ USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */
236 	{ USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */
237 	{ USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */
238 	{ USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */
239 	{ USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */
240 	{ USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */
241 	{ USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */
242 	{ } /* Terminating Entry */
243 };
244 
245 MODULE_DEVICE_TABLE(usb, id_table);
246 
247 struct cp210x_serial_private {
248 #ifdef CONFIG_GPIOLIB
249 	struct gpio_chip	gc;
250 	bool			gpio_registered;
251 	u16			gpio_pushpull;
252 	u16			gpio_altfunc;
253 	u16			gpio_input;
254 #endif
255 	u8			partnum;
256 	u32			fw_version;
257 	speed_t			min_speed;
258 	speed_t			max_speed;
259 	bool			use_actual_rate;
260 	bool			no_flow_control;
261 };
262 
263 enum cp210x_event_state {
264 	ES_DATA,
265 	ES_ESCAPE,
266 	ES_LSR,
267 	ES_LSR_DATA_0,
268 	ES_LSR_DATA_1,
269 	ES_MSR
270 };
271 
272 struct cp210x_port_private {
273 	u8			bInterfaceNumber;
274 	bool			event_mode;
275 	enum cp210x_event_state event_state;
276 	u8			lsr;
277 
278 	struct mutex		mutex;
279 	bool			crtscts;
280 	bool			dtr;
281 	bool			rts;
282 };
283 
284 static struct usb_serial_driver cp210x_device = {
285 	.driver = {
286 		.owner =	THIS_MODULE,
287 		.name =		"cp210x",
288 	},
289 	.id_table		= id_table,
290 	.num_ports		= 1,
291 	.bulk_in_size		= 256,
292 	.bulk_out_size		= 256,
293 	.open			= cp210x_open,
294 	.close			= cp210x_close,
295 	.break_ctl		= cp210x_break_ctl,
296 	.set_termios		= cp210x_set_termios,
297 	.tx_empty		= cp210x_tx_empty,
298 	.throttle		= usb_serial_generic_throttle,
299 	.unthrottle		= usb_serial_generic_unthrottle,
300 	.tiocmget		= cp210x_tiocmget,
301 	.tiocmset		= cp210x_tiocmset,
302 	.get_icount		= usb_serial_generic_get_icount,
303 	.attach			= cp210x_attach,
304 	.disconnect		= cp210x_disconnect,
305 	.release		= cp210x_release,
306 	.port_probe		= cp210x_port_probe,
307 	.port_remove		= cp210x_port_remove,
308 	.dtr_rts		= cp210x_dtr_rts,
309 	.process_read_urb	= cp210x_process_read_urb,
310 };
311 
312 static struct usb_serial_driver * const serial_drivers[] = {
313 	&cp210x_device, NULL
314 };
315 
316 /* Config request types */
317 #define REQTYPE_HOST_TO_INTERFACE	0x41
318 #define REQTYPE_INTERFACE_TO_HOST	0xc1
319 #define REQTYPE_HOST_TO_DEVICE	0x40
320 #define REQTYPE_DEVICE_TO_HOST	0xc0
321 
322 /* Config request codes */
323 #define CP210X_IFC_ENABLE	0x00
324 #define CP210X_SET_BAUDDIV	0x01
325 #define CP210X_GET_BAUDDIV	0x02
326 #define CP210X_SET_LINE_CTL	0x03
327 #define CP210X_GET_LINE_CTL	0x04
328 #define CP210X_SET_BREAK	0x05
329 #define CP210X_IMM_CHAR		0x06
330 #define CP210X_SET_MHS		0x07
331 #define CP210X_GET_MDMSTS	0x08
332 #define CP210X_SET_XON		0x09
333 #define CP210X_SET_XOFF		0x0A
334 #define CP210X_SET_EVENTMASK	0x0B
335 #define CP210X_GET_EVENTMASK	0x0C
336 #define CP210X_SET_CHAR		0x0D
337 #define CP210X_GET_CHARS	0x0E
338 #define CP210X_GET_PROPS	0x0F
339 #define CP210X_GET_COMM_STATUS	0x10
340 #define CP210X_RESET		0x11
341 #define CP210X_PURGE		0x12
342 #define CP210X_SET_FLOW		0x13
343 #define CP210X_GET_FLOW		0x14
344 #define CP210X_EMBED_EVENTS	0x15
345 #define CP210X_GET_EVENTSTATE	0x16
346 #define CP210X_SET_CHARS	0x19
347 #define CP210X_GET_BAUDRATE	0x1D
348 #define CP210X_SET_BAUDRATE	0x1E
349 #define CP210X_VENDOR_SPECIFIC	0xFF
350 
351 /* CP210X_IFC_ENABLE */
352 #define UART_ENABLE		0x0001
353 #define UART_DISABLE		0x0000
354 
355 /* CP210X_(SET|GET)_BAUDDIV */
356 #define BAUD_RATE_GEN_FREQ	0x384000
357 
358 /* CP210X_(SET|GET)_LINE_CTL */
359 #define BITS_DATA_MASK		0X0f00
360 #define BITS_DATA_5		0X0500
361 #define BITS_DATA_6		0X0600
362 #define BITS_DATA_7		0X0700
363 #define BITS_DATA_8		0X0800
364 #define BITS_DATA_9		0X0900
365 
366 #define BITS_PARITY_MASK	0x00f0
367 #define BITS_PARITY_NONE	0x0000
368 #define BITS_PARITY_ODD		0x0010
369 #define BITS_PARITY_EVEN	0x0020
370 #define BITS_PARITY_MARK	0x0030
371 #define BITS_PARITY_SPACE	0x0040
372 
373 #define BITS_STOP_MASK		0x000f
374 #define BITS_STOP_1		0x0000
375 #define BITS_STOP_1_5		0x0001
376 #define BITS_STOP_2		0x0002
377 
378 /* CP210X_SET_BREAK */
379 #define BREAK_ON		0x0001
380 #define BREAK_OFF		0x0000
381 
382 /* CP210X_(SET_MHS|GET_MDMSTS) */
383 #define CONTROL_DTR		0x0001
384 #define CONTROL_RTS		0x0002
385 #define CONTROL_CTS		0x0010
386 #define CONTROL_DSR		0x0020
387 #define CONTROL_RING		0x0040
388 #define CONTROL_DCD		0x0080
389 #define CONTROL_WRITE_DTR	0x0100
390 #define CONTROL_WRITE_RTS	0x0200
391 
392 /* CP210X_(GET|SET)_CHARS */
393 struct cp210x_special_chars {
394 	u8	bEofChar;
395 	u8	bErrorChar;
396 	u8	bBreakChar;
397 	u8	bEventChar;
398 	u8	bXonChar;
399 	u8	bXoffChar;
400 };
401 
402 /* CP210X_VENDOR_SPECIFIC values */
403 #define CP210X_GET_FW_VER	0x000E
404 #define CP210X_READ_2NCONFIG	0x000E
405 #define CP210X_GET_FW_VER_2N	0x0010
406 #define CP210X_READ_LATCH	0x00C2
407 #define CP210X_GET_PARTNUM	0x370B
408 #define CP210X_GET_PORTCONFIG	0x370C
409 #define CP210X_GET_DEVICEMODE	0x3711
410 #define CP210X_WRITE_LATCH	0x37E1
411 
412 /* Part number definitions */
413 #define CP210X_PARTNUM_CP2101	0x01
414 #define CP210X_PARTNUM_CP2102	0x02
415 #define CP210X_PARTNUM_CP2103	0x03
416 #define CP210X_PARTNUM_CP2104	0x04
417 #define CP210X_PARTNUM_CP2105	0x05
418 #define CP210X_PARTNUM_CP2108	0x08
419 #define CP210X_PARTNUM_CP2102N_QFN28	0x20
420 #define CP210X_PARTNUM_CP2102N_QFN24	0x21
421 #define CP210X_PARTNUM_CP2102N_QFN20	0x22
422 #define CP210X_PARTNUM_UNKNOWN	0xFF
423 
424 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */
425 struct cp210x_comm_status {
426 	__le32   ulErrors;
427 	__le32   ulHoldReasons;
428 	__le32   ulAmountInInQueue;
429 	__le32   ulAmountInOutQueue;
430 	u8       bEofReceived;
431 	u8       bWaitForImmediate;
432 	u8       bReserved;
433 } __packed;
434 
435 /*
436  * CP210X_PURGE - 16 bits passed in wValue of USB request.
437  * SiLabs app note AN571 gives a strange description of the 4 bits:
438  * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive.
439  * writing 1 to all, however, purges cp2108 well enough to avoid the hang.
440  */
441 #define PURGE_ALL		0x000f
442 
443 /* CP210X_EMBED_EVENTS */
444 #define CP210X_ESCCHAR		0xec
445 
446 #define CP210X_LSR_OVERRUN	BIT(1)
447 #define CP210X_LSR_PARITY	BIT(2)
448 #define CP210X_LSR_FRAME	BIT(3)
449 #define CP210X_LSR_BREAK	BIT(4)
450 
451 
452 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */
453 struct cp210x_flow_ctl {
454 	__le32	ulControlHandshake;
455 	__le32	ulFlowReplace;
456 	__le32	ulXonLimit;
457 	__le32	ulXoffLimit;
458 };
459 
460 /* cp210x_flow_ctl::ulControlHandshake */
461 #define CP210X_SERIAL_DTR_MASK		GENMASK(1, 0)
462 #define CP210X_SERIAL_DTR_INACTIVE	(0 << 0)
463 #define CP210X_SERIAL_DTR_ACTIVE	(1 << 0)
464 #define CP210X_SERIAL_DTR_FLOW_CTL	(2 << 0)
465 #define CP210X_SERIAL_CTS_HANDSHAKE	BIT(3)
466 #define CP210X_SERIAL_DSR_HANDSHAKE	BIT(4)
467 #define CP210X_SERIAL_DCD_HANDSHAKE	BIT(5)
468 #define CP210X_SERIAL_DSR_SENSITIVITY	BIT(6)
469 
470 /* cp210x_flow_ctl::ulFlowReplace */
471 #define CP210X_SERIAL_AUTO_TRANSMIT	BIT(0)
472 #define CP210X_SERIAL_AUTO_RECEIVE	BIT(1)
473 #define CP210X_SERIAL_ERROR_CHAR	BIT(2)
474 #define CP210X_SERIAL_NULL_STRIPPING	BIT(3)
475 #define CP210X_SERIAL_BREAK_CHAR	BIT(4)
476 #define CP210X_SERIAL_RTS_MASK		GENMASK(7, 6)
477 #define CP210X_SERIAL_RTS_INACTIVE	(0 << 6)
478 #define CP210X_SERIAL_RTS_ACTIVE	(1 << 6)
479 #define CP210X_SERIAL_RTS_FLOW_CTL	(2 << 6)
480 #define CP210X_SERIAL_XOFF_CONTINUE	BIT(31)
481 
482 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */
483 struct cp210x_pin_mode {
484 	u8	eci;
485 	u8	sci;
486 };
487 
488 #define CP210X_PIN_MODE_MODEM		0
489 #define CP210X_PIN_MODE_GPIO		BIT(0)
490 
491 /*
492  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes
493  * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes.
494  */
495 struct cp210x_dual_port_config {
496 	__le16	gpio_mode;
497 	u8	__pad0[2];
498 	__le16	reset_state;
499 	u8	__pad1[4];
500 	__le16	suspend_state;
501 	u8	sci_cfg;
502 	u8	eci_cfg;
503 	u8	device_cfg;
504 } __packed;
505 
506 /*
507  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes
508  * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes.
509  */
510 struct cp210x_single_port_config {
511 	__le16	gpio_mode;
512 	u8	__pad0[2];
513 	__le16	reset_state;
514 	u8	__pad1[4];
515 	__le16	suspend_state;
516 	u8	device_cfg;
517 } __packed;
518 
519 /* GPIO modes */
520 #define CP210X_SCI_GPIO_MODE_OFFSET	9
521 #define CP210X_SCI_GPIO_MODE_MASK	GENMASK(11, 9)
522 
523 #define CP210X_ECI_GPIO_MODE_OFFSET	2
524 #define CP210X_ECI_GPIO_MODE_MASK	GENMASK(3, 2)
525 
526 #define CP210X_GPIO_MODE_OFFSET		8
527 #define CP210X_GPIO_MODE_MASK		GENMASK(11, 8)
528 
529 /* CP2105 port configuration values */
530 #define CP2105_GPIO0_TXLED_MODE		BIT(0)
531 #define CP2105_GPIO1_RXLED_MODE		BIT(1)
532 #define CP2105_GPIO1_RS485_MODE		BIT(2)
533 
534 /* CP2104 port configuration values */
535 #define CP2104_GPIO0_TXLED_MODE		BIT(0)
536 #define CP2104_GPIO1_RXLED_MODE		BIT(1)
537 #define CP2104_GPIO2_RS485_MODE		BIT(2)
538 
539 struct cp210x_quad_port_state {
540 	__le16 gpio_mode_pb0;
541 	__le16 gpio_mode_pb1;
542 	__le16 gpio_mode_pb2;
543 	__le16 gpio_mode_pb3;
544 	__le16 gpio_mode_pb4;
545 
546 	__le16 gpio_lowpower_pb0;
547 	__le16 gpio_lowpower_pb1;
548 	__le16 gpio_lowpower_pb2;
549 	__le16 gpio_lowpower_pb3;
550 	__le16 gpio_lowpower_pb4;
551 
552 	__le16 gpio_latch_pb0;
553 	__le16 gpio_latch_pb1;
554 	__le16 gpio_latch_pb2;
555 	__le16 gpio_latch_pb3;
556 	__le16 gpio_latch_pb4;
557 };
558 
559 /*
560  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes
561  * on a CP2108 chip.
562  *
563  * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf
564  */
565 struct cp210x_quad_port_config {
566 	struct cp210x_quad_port_state reset_state;
567 	struct cp210x_quad_port_state suspend_state;
568 	u8 ipdelay_ifc[4];
569 	u8 enhancedfxn_ifc[4];
570 	u8 enhancedfxn_device;
571 	u8 extclkfreq[4];
572 } __packed;
573 
574 #define CP2108_EF_IFC_GPIO_TXLED		0x01
575 #define CP2108_EF_IFC_GPIO_RXLED		0x02
576 #define CP2108_EF_IFC_GPIO_RS485		0x04
577 #define CP2108_EF_IFC_GPIO_RS485_LOGIC		0x08
578 #define CP2108_EF_IFC_GPIO_CLOCK		0x10
579 #define CP2108_EF_IFC_DYNAMIC_SUSPEND		0x40
580 
581 /* CP2102N configuration array indices */
582 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX	2
583 #define CP210X_2NCONFIG_GPIO_MODE_IDX		581
584 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX	587
585 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX	600
586 
587 /* CP2102N QFN20 port configuration values */
588 #define CP2102N_QFN20_GPIO2_TXLED_MODE		BIT(2)
589 #define CP2102N_QFN20_GPIO3_RXLED_MODE		BIT(3)
590 #define CP2102N_QFN20_GPIO1_RS485_MODE		BIT(4)
591 #define CP2102N_QFN20_GPIO0_CLK_MODE		BIT(6)
592 
593 /*
594  * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes
595  * for CP2102N, CP2103, CP2104 and CP2105.
596  */
597 struct cp210x_gpio_write {
598 	u8	mask;
599 	u8	state;
600 };
601 
602 /*
603  * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes
604  * for CP2108.
605  */
606 struct cp210x_gpio_write16 {
607 	__le16	mask;
608 	__le16	state;
609 };
610 
611 /*
612  * Helper to get interface number when we only have struct usb_serial.
613  */
614 static u8 cp210x_interface_num(struct usb_serial *serial)
615 {
616 	struct usb_host_interface *cur_altsetting;
617 
618 	cur_altsetting = serial->interface->cur_altsetting;
619 
620 	return cur_altsetting->desc.bInterfaceNumber;
621 }
622 
623 /*
624  * Reads a variable-sized block of CP210X_ registers, identified by req.
625  * Returns data into buf in native USB byte order.
626  */
627 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req,
628 		void *buf, int bufsize)
629 {
630 	struct usb_serial *serial = port->serial;
631 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
632 	int result;
633 
634 
635 	result = usb_control_msg_recv(serial->dev, 0, req,
636 			REQTYPE_INTERFACE_TO_HOST, 0,
637 			port_priv->bInterfaceNumber, buf, bufsize,
638 			USB_CTRL_SET_TIMEOUT, GFP_KERNEL);
639 	if (result) {
640 		dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n",
641 				req, bufsize, result);
642 		return result;
643 	}
644 
645 	return 0;
646 }
647 
648 /*
649  * Reads any 8-bit CP210X_ register identified by req.
650  */
651 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val)
652 {
653 	return cp210x_read_reg_block(port, req, val, sizeof(*val));
654 }
655 
656 /*
657  * Reads a variable-sized vendor block of CP210X_ registers, identified by val.
658  * Returns data into buf in native USB byte order.
659  */
660 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val,
661 				    void *buf, int bufsize)
662 {
663 	int result;
664 
665 	result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC,
666 			type, val, cp210x_interface_num(serial), buf, bufsize,
667 			USB_CTRL_GET_TIMEOUT, GFP_KERNEL);
668 	if (result) {
669 		dev_err(&serial->interface->dev,
670 			"failed to get vendor val 0x%04x size %d: %d\n", val,
671 			bufsize, result);
672 		return result;
673 	}
674 
675 	return 0;
676 }
677 
678 /*
679  * Writes any 16-bit CP210X_ register (req) whose value is passed
680  * entirely in the wValue field of the USB request.
681  */
682 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val)
683 {
684 	struct usb_serial *serial = port->serial;
685 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
686 	int result;
687 
688 	result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
689 			req, REQTYPE_HOST_TO_INTERFACE, val,
690 			port_priv->bInterfaceNumber, NULL, 0,
691 			USB_CTRL_SET_TIMEOUT);
692 	if (result < 0) {
693 		dev_err(&port->dev, "failed set request 0x%x status: %d\n",
694 				req, result);
695 	}
696 
697 	return result;
698 }
699 
700 /*
701  * Writes a variable-sized block of CP210X_ registers, identified by req.
702  * Data in buf must be in native USB byte order.
703  */
704 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req,
705 		void *buf, int bufsize)
706 {
707 	struct usb_serial *serial = port->serial;
708 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
709 	int result;
710 
711 	result = usb_control_msg_send(serial->dev, 0, req,
712 			REQTYPE_HOST_TO_INTERFACE, 0,
713 			port_priv->bInterfaceNumber, buf, bufsize,
714 			USB_CTRL_SET_TIMEOUT, GFP_KERNEL);
715 	if (result) {
716 		dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n",
717 				req, bufsize, result);
718 		return result;
719 	}
720 
721 	return 0;
722 }
723 
724 /*
725  * Writes any 32-bit CP210X_ register identified by req.
726  */
727 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val)
728 {
729 	__le32 le32_val;
730 
731 	le32_val = cpu_to_le32(val);
732 
733 	return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val));
734 }
735 
736 #ifdef CONFIG_GPIOLIB
737 /*
738  * Writes a variable-sized vendor block of CP210X_ registers, identified by val.
739  * Data in buf must be in native USB byte order.
740  */
741 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type,
742 				     u16 val, void *buf, int bufsize)
743 {
744 	int result;
745 
746 	result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC,
747 			type, val, cp210x_interface_num(serial), buf, bufsize,
748 			USB_CTRL_SET_TIMEOUT, GFP_KERNEL);
749 	if (result) {
750 		dev_err(&serial->interface->dev,
751 			"failed to set vendor val 0x%04x size %d: %d\n", val,
752 			bufsize, result);
753 		return result;
754 	}
755 
756 	return 0;
757 }
758 #endif
759 
760 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port)
761 {
762 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
763 	int result;
764 
765 	result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE);
766 	if (result) {
767 		dev_err(&port->dev, "%s - Unable to enable UART\n", __func__);
768 		return result;
769 	}
770 
771 	if (tty)
772 		cp210x_set_termios(tty, port, NULL);
773 
774 	result = usb_serial_generic_open(tty, port);
775 	if (result)
776 		goto err_disable;
777 
778 	return 0;
779 
780 err_disable:
781 	cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE);
782 	port_priv->event_mode = false;
783 
784 	return result;
785 }
786 
787 static void cp210x_close(struct usb_serial_port *port)
788 {
789 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
790 
791 	usb_serial_generic_close(port);
792 
793 	/* Clear both queues; cp2108 needs this to avoid an occasional hang */
794 	cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL);
795 
796 	cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE);
797 
798 	/* Disabling the interface disables event-insertion mode. */
799 	port_priv->event_mode = false;
800 }
801 
802 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag)
803 {
804 	if (lsr & CP210X_LSR_BREAK) {
805 		port->icount.brk++;
806 		*flag = TTY_BREAK;
807 	} else if (lsr & CP210X_LSR_PARITY) {
808 		port->icount.parity++;
809 		*flag = TTY_PARITY;
810 	} else if (lsr & CP210X_LSR_FRAME) {
811 		port->icount.frame++;
812 		*flag = TTY_FRAME;
813 	}
814 
815 	if (lsr & CP210X_LSR_OVERRUN) {
816 		port->icount.overrun++;
817 		tty_insert_flip_char(&port->port, 0, TTY_OVERRUN);
818 	}
819 }
820 
821 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag)
822 {
823 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
824 
825 	switch (port_priv->event_state) {
826 	case ES_DATA:
827 		if (*ch == CP210X_ESCCHAR) {
828 			port_priv->event_state = ES_ESCAPE;
829 			break;
830 		}
831 		return false;
832 	case ES_ESCAPE:
833 		switch (*ch) {
834 		case 0:
835 			dev_dbg(&port->dev, "%s - escape char\n", __func__);
836 			*ch = CP210X_ESCCHAR;
837 			port_priv->event_state = ES_DATA;
838 			return false;
839 		case 1:
840 			port_priv->event_state = ES_LSR_DATA_0;
841 			break;
842 		case 2:
843 			port_priv->event_state = ES_LSR;
844 			break;
845 		case 3:
846 			port_priv->event_state = ES_MSR;
847 			break;
848 		default:
849 			dev_err(&port->dev, "malformed event 0x%02x\n", *ch);
850 			port_priv->event_state = ES_DATA;
851 			break;
852 		}
853 		break;
854 	case ES_LSR_DATA_0:
855 		port_priv->lsr = *ch;
856 		port_priv->event_state = ES_LSR_DATA_1;
857 		break;
858 	case ES_LSR_DATA_1:
859 		dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n",
860 				__func__, port_priv->lsr, *ch);
861 		cp210x_process_lsr(port, port_priv->lsr, flag);
862 		port_priv->event_state = ES_DATA;
863 		return false;
864 	case ES_LSR:
865 		dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch);
866 		port_priv->lsr = *ch;
867 		cp210x_process_lsr(port, port_priv->lsr, flag);
868 		port_priv->event_state = ES_DATA;
869 		break;
870 	case ES_MSR:
871 		dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch);
872 		/* unimplemented */
873 		port_priv->event_state = ES_DATA;
874 		break;
875 	}
876 
877 	return true;
878 }
879 
880 static void cp210x_process_read_urb(struct urb *urb)
881 {
882 	struct usb_serial_port *port = urb->context;
883 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
884 	unsigned char *ch = urb->transfer_buffer;
885 	char flag;
886 	int i;
887 
888 	if (!urb->actual_length)
889 		return;
890 
891 	if (port_priv->event_mode) {
892 		for (i = 0; i < urb->actual_length; i++, ch++) {
893 			flag = TTY_NORMAL;
894 
895 			if (cp210x_process_char(port, ch, &flag))
896 				continue;
897 
898 			tty_insert_flip_char(&port->port, *ch, flag);
899 		}
900 	} else {
901 		tty_insert_flip_string(&port->port, ch, urb->actual_length);
902 	}
903 	tty_flip_buffer_push(&port->port);
904 }
905 
906 /*
907  * Read how many bytes are waiting in the TX queue.
908  */
909 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port,
910 		u32 *count)
911 {
912 	struct usb_serial *serial = port->serial;
913 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
914 	struct cp210x_comm_status sts;
915 	int result;
916 
917 	result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS,
918 			REQTYPE_INTERFACE_TO_HOST, 0,
919 			port_priv->bInterfaceNumber, &sts, sizeof(sts),
920 			USB_CTRL_GET_TIMEOUT, GFP_KERNEL);
921 	if (result) {
922 		dev_err(&port->dev, "failed to get comm status: %d\n", result);
923 		return result;
924 	}
925 
926 	*count = le32_to_cpu(sts.ulAmountInOutQueue);
927 
928 	return 0;
929 }
930 
931 static bool cp210x_tx_empty(struct usb_serial_port *port)
932 {
933 	int err;
934 	u32 count;
935 
936 	err = cp210x_get_tx_queue_byte_count(port, &count);
937 	if (err)
938 		return true;
939 
940 	return !count;
941 }
942 
943 struct cp210x_rate {
944 	speed_t rate;
945 	speed_t high;
946 };
947 
948 static const struct cp210x_rate cp210x_an205_table1[] = {
949 	{ 300, 300 },
950 	{ 600, 600 },
951 	{ 1200, 1200 },
952 	{ 1800, 1800 },
953 	{ 2400, 2400 },
954 	{ 4000, 4000 },
955 	{ 4800, 4803 },
956 	{ 7200, 7207 },
957 	{ 9600, 9612 },
958 	{ 14400, 14428 },
959 	{ 16000, 16062 },
960 	{ 19200, 19250 },
961 	{ 28800, 28912 },
962 	{ 38400, 38601 },
963 	{ 51200, 51558 },
964 	{ 56000, 56280 },
965 	{ 57600, 58053 },
966 	{ 64000, 64111 },
967 	{ 76800, 77608 },
968 	{ 115200, 117028 },
969 	{ 128000, 129347 },
970 	{ 153600, 156868 },
971 	{ 230400, 237832 },
972 	{ 250000, 254234 },
973 	{ 256000, 273066 },
974 	{ 460800, 491520 },
975 	{ 500000, 567138 },
976 	{ 576000, 670254 },
977 	{ 921600, UINT_MAX }
978 };
979 
980 /*
981  * Quantises the baud rate as per AN205 Table 1
982  */
983 static speed_t cp210x_get_an205_rate(speed_t baud)
984 {
985 	int i;
986 
987 	for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) {
988 		if (baud <= cp210x_an205_table1[i].high)
989 			break;
990 	}
991 
992 	return cp210x_an205_table1[i].rate;
993 }
994 
995 static speed_t cp210x_get_actual_rate(speed_t baud)
996 {
997 	unsigned int prescale = 1;
998 	unsigned int div;
999 
1000 	if (baud <= 365)
1001 		prescale = 4;
1002 
1003 	div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud);
1004 	baud = 48000000 / (2 * prescale * div);
1005 
1006 	return baud;
1007 }
1008 
1009 /*
1010  * CP2101 supports the following baud rates:
1011  *
1012  *	300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800,
1013  *	38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600
1014  *
1015  * CP2102 and CP2103 support the following additional rates:
1016  *
1017  *	4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000,
1018  *	576000
1019  *
1020  * The device will map a requested rate to a supported one, but the result
1021  * of requests for rates greater than 1053257 is undefined (see AN205).
1022  *
1023  * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud,
1024  * respectively, with an error less than 1%. The actual rates are determined
1025  * by
1026  *
1027  *	div = round(freq / (2 x prescale x request))
1028  *	actual = freq / (2 x prescale x div)
1029  *
1030  * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps
1031  * or 1 otherwise.
1032  * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1
1033  * otherwise.
1034  */
1035 static void cp210x_change_speed(struct tty_struct *tty,
1036 		struct usb_serial_port *port, struct ktermios *old_termios)
1037 {
1038 	struct usb_serial *serial = port->serial;
1039 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1040 	u32 baud;
1041 
1042 	/*
1043 	 * This maps the requested rate to the actual rate, a valid rate on
1044 	 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed].
1045 	 *
1046 	 * NOTE: B0 is not implemented.
1047 	 */
1048 	baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed);
1049 
1050 	if (priv->use_actual_rate)
1051 		baud = cp210x_get_actual_rate(baud);
1052 	else if (baud < 1000000)
1053 		baud = cp210x_get_an205_rate(baud);
1054 
1055 	dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud);
1056 	if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) {
1057 		dev_warn(&port->dev, "failed to set baud rate to %u\n", baud);
1058 		if (old_termios)
1059 			baud = old_termios->c_ospeed;
1060 		else
1061 			baud = 9600;
1062 	}
1063 
1064 	tty_encode_baud_rate(tty, baud, baud);
1065 }
1066 
1067 static void cp210x_enable_event_mode(struct usb_serial_port *port)
1068 {
1069 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1070 	int ret;
1071 
1072 	if (port_priv->event_mode)
1073 		return;
1074 
1075 	port_priv->event_state = ES_DATA;
1076 	port_priv->event_mode = true;
1077 
1078 	ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR);
1079 	if (ret) {
1080 		dev_err(&port->dev, "failed to enable events: %d\n", ret);
1081 		port_priv->event_mode = false;
1082 	}
1083 }
1084 
1085 static void cp210x_disable_event_mode(struct usb_serial_port *port)
1086 {
1087 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1088 	int ret;
1089 
1090 	if (!port_priv->event_mode)
1091 		return;
1092 
1093 	ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0);
1094 	if (ret) {
1095 		dev_err(&port->dev, "failed to disable events: %d\n", ret);
1096 		return;
1097 	}
1098 
1099 	port_priv->event_mode = false;
1100 }
1101 
1102 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b)
1103 {
1104 	bool iflag_change, cc_change;
1105 
1106 	iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF));
1107 	cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] ||
1108 			a->c_cc[VSTOP] != b->c_cc[VSTOP];
1109 
1110 	return tty_termios_hw_change(a, b) || iflag_change || cc_change;
1111 }
1112 
1113 static void cp210x_set_flow_control(struct tty_struct *tty,
1114 		struct usb_serial_port *port, struct ktermios *old_termios)
1115 {
1116 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1117 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1118 	struct cp210x_special_chars chars;
1119 	struct cp210x_flow_ctl flow_ctl;
1120 	u32 flow_repl;
1121 	u32 ctl_hs;
1122 	bool crtscts;
1123 	int ret;
1124 
1125 	/*
1126 	 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum
1127 	 * CP2102N_E104). Report back that flow control is not supported.
1128 	 */
1129 	if (priv->no_flow_control) {
1130 		tty->termios.c_cflag &= ~CRTSCTS;
1131 		tty->termios.c_iflag &= ~(IXON | IXOFF);
1132 	}
1133 
1134 	if (old_termios &&
1135 			C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) &&
1136 			I_IXON(tty) == (old_termios->c_iflag & IXON) &&
1137 			I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) &&
1138 			START_CHAR(tty) == old_termios->c_cc[VSTART] &&
1139 			STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) {
1140 		return;
1141 	}
1142 
1143 	if (I_IXON(tty) || I_IXOFF(tty)) {
1144 		memset(&chars, 0, sizeof(chars));
1145 
1146 		chars.bXonChar = START_CHAR(tty);
1147 		chars.bXoffChar = STOP_CHAR(tty);
1148 
1149 		ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars,
1150 				sizeof(chars));
1151 		if (ret) {
1152 			dev_err(&port->dev, "failed to set special chars: %d\n",
1153 					ret);
1154 		}
1155 	}
1156 
1157 	mutex_lock(&port_priv->mutex);
1158 
1159 	ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl,
1160 			sizeof(flow_ctl));
1161 	if (ret)
1162 		goto out_unlock;
1163 
1164 	ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake);
1165 	flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace);
1166 
1167 	ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE;
1168 	ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE;
1169 	ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY;
1170 	ctl_hs &= ~CP210X_SERIAL_DTR_MASK;
1171 	if (port_priv->dtr)
1172 		ctl_hs |= CP210X_SERIAL_DTR_ACTIVE;
1173 	else
1174 		ctl_hs |= CP210X_SERIAL_DTR_INACTIVE;
1175 
1176 	flow_repl &= ~CP210X_SERIAL_RTS_MASK;
1177 	if (C_CRTSCTS(tty)) {
1178 		ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE;
1179 		if (port_priv->rts)
1180 			flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL;
1181 		else
1182 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1183 		crtscts = true;
1184 	} else {
1185 		ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE;
1186 		if (port_priv->rts)
1187 			flow_repl |= CP210X_SERIAL_RTS_ACTIVE;
1188 		else
1189 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1190 		crtscts = false;
1191 	}
1192 
1193 	if (I_IXOFF(tty)) {
1194 		flow_repl |= CP210X_SERIAL_AUTO_RECEIVE;
1195 
1196 		flow_ctl.ulXonLimit = cpu_to_le32(128);
1197 		flow_ctl.ulXoffLimit = cpu_to_le32(128);
1198 	} else {
1199 		flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE;
1200 	}
1201 
1202 	if (I_IXON(tty))
1203 		flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT;
1204 	else
1205 		flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT;
1206 
1207 	dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__,
1208 			ctl_hs, flow_repl);
1209 
1210 	flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs);
1211 	flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl);
1212 
1213 	ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl,
1214 			sizeof(flow_ctl));
1215 	if (ret)
1216 		goto out_unlock;
1217 
1218 	port_priv->crtscts = crtscts;
1219 out_unlock:
1220 	mutex_unlock(&port_priv->mutex);
1221 }
1222 
1223 static void cp210x_set_termios(struct tty_struct *tty,
1224 		struct usb_serial_port *port, struct ktermios *old_termios)
1225 {
1226 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1227 	u16 bits;
1228 	int ret;
1229 
1230 	if (old_termios && !cp210x_termios_change(&tty->termios, old_termios))
1231 		return;
1232 
1233 	if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed)
1234 		cp210x_change_speed(tty, port, old_termios);
1235 
1236 	/* CP2101 only supports CS8, 1 stop bit and non-stick parity. */
1237 	if (priv->partnum == CP210X_PARTNUM_CP2101) {
1238 		tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR);
1239 		tty->termios.c_cflag |= CS8;
1240 	}
1241 
1242 	bits = 0;
1243 
1244 	switch (C_CSIZE(tty)) {
1245 	case CS5:
1246 		bits |= BITS_DATA_5;
1247 		break;
1248 	case CS6:
1249 		bits |= BITS_DATA_6;
1250 		break;
1251 	case CS7:
1252 		bits |= BITS_DATA_7;
1253 		break;
1254 	case CS8:
1255 	default:
1256 		bits |= BITS_DATA_8;
1257 		break;
1258 	}
1259 
1260 	if (C_PARENB(tty)) {
1261 		if (C_CMSPAR(tty)) {
1262 			if (C_PARODD(tty))
1263 				bits |= BITS_PARITY_MARK;
1264 			else
1265 				bits |= BITS_PARITY_SPACE;
1266 		} else {
1267 			if (C_PARODD(tty))
1268 				bits |= BITS_PARITY_ODD;
1269 			else
1270 				bits |= BITS_PARITY_EVEN;
1271 		}
1272 	}
1273 
1274 	if (C_CSTOPB(tty))
1275 		bits |= BITS_STOP_2;
1276 	else
1277 		bits |= BITS_STOP_1;
1278 
1279 	ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits);
1280 	if (ret)
1281 		dev_err(&port->dev, "failed to set line control: %d\n", ret);
1282 
1283 	cp210x_set_flow_control(tty, port, old_termios);
1284 
1285 	/*
1286 	 * Enable event-insertion mode only if input parity checking is
1287 	 * enabled for now.
1288 	 */
1289 	if (I_INPCK(tty))
1290 		cp210x_enable_event_mode(port);
1291 	else
1292 		cp210x_disable_event_mode(port);
1293 }
1294 
1295 static int cp210x_tiocmset(struct tty_struct *tty,
1296 		unsigned int set, unsigned int clear)
1297 {
1298 	struct usb_serial_port *port = tty->driver_data;
1299 	return cp210x_tiocmset_port(port, set, clear);
1300 }
1301 
1302 static int cp210x_tiocmset_port(struct usb_serial_port *port,
1303 		unsigned int set, unsigned int clear)
1304 {
1305 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1306 	struct cp210x_flow_ctl flow_ctl;
1307 	u32 ctl_hs, flow_repl;
1308 	u16 control = 0;
1309 	int ret;
1310 
1311 	mutex_lock(&port_priv->mutex);
1312 
1313 	if (set & TIOCM_RTS) {
1314 		port_priv->rts = true;
1315 		control |= CONTROL_RTS;
1316 		control |= CONTROL_WRITE_RTS;
1317 	}
1318 	if (set & TIOCM_DTR) {
1319 		port_priv->dtr = true;
1320 		control |= CONTROL_DTR;
1321 		control |= CONTROL_WRITE_DTR;
1322 	}
1323 	if (clear & TIOCM_RTS) {
1324 		port_priv->rts = false;
1325 		control &= ~CONTROL_RTS;
1326 		control |= CONTROL_WRITE_RTS;
1327 	}
1328 	if (clear & TIOCM_DTR) {
1329 		port_priv->dtr = false;
1330 		control &= ~CONTROL_DTR;
1331 		control |= CONTROL_WRITE_DTR;
1332 	}
1333 
1334 	/*
1335 	 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware
1336 	 * flow control is enabled.
1337 	 */
1338 	if (port_priv->crtscts && control & CONTROL_WRITE_RTS) {
1339 		ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl,
1340 				sizeof(flow_ctl));
1341 		if (ret)
1342 			goto out_unlock;
1343 
1344 		ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake);
1345 		flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace);
1346 
1347 		ctl_hs &= ~CP210X_SERIAL_DTR_MASK;
1348 		if (port_priv->dtr)
1349 			ctl_hs |= CP210X_SERIAL_DTR_ACTIVE;
1350 		else
1351 			ctl_hs |= CP210X_SERIAL_DTR_INACTIVE;
1352 
1353 		flow_repl &= ~CP210X_SERIAL_RTS_MASK;
1354 		if (port_priv->rts)
1355 			flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL;
1356 		else
1357 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1358 
1359 		flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs);
1360 		flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl);
1361 
1362 		dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n",
1363 				__func__, ctl_hs, flow_repl);
1364 
1365 		ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl,
1366 				sizeof(flow_ctl));
1367 	} else {
1368 		dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control);
1369 
1370 		ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control);
1371 	}
1372 out_unlock:
1373 	mutex_unlock(&port_priv->mutex);
1374 
1375 	return ret;
1376 }
1377 
1378 static void cp210x_dtr_rts(struct usb_serial_port *port, int on)
1379 {
1380 	if (on)
1381 		cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0);
1382 	else
1383 		cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS);
1384 }
1385 
1386 static int cp210x_tiocmget(struct tty_struct *tty)
1387 {
1388 	struct usb_serial_port *port = tty->driver_data;
1389 	u8 control;
1390 	int result;
1391 
1392 	result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control);
1393 	if (result)
1394 		return result;
1395 
1396 	result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0)
1397 		|((control & CONTROL_RTS) ? TIOCM_RTS : 0)
1398 		|((control & CONTROL_CTS) ? TIOCM_CTS : 0)
1399 		|((control & CONTROL_DSR) ? TIOCM_DSR : 0)
1400 		|((control & CONTROL_RING)? TIOCM_RI  : 0)
1401 		|((control & CONTROL_DCD) ? TIOCM_CD  : 0);
1402 
1403 	dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control);
1404 
1405 	return result;
1406 }
1407 
1408 static void cp210x_break_ctl(struct tty_struct *tty, int break_state)
1409 {
1410 	struct usb_serial_port *port = tty->driver_data;
1411 	u16 state;
1412 
1413 	if (break_state == 0)
1414 		state = BREAK_OFF;
1415 	else
1416 		state = BREAK_ON;
1417 	dev_dbg(&port->dev, "%s - turning break %s\n", __func__,
1418 		state == BREAK_OFF ? "off" : "on");
1419 	cp210x_write_u16_reg(port, CP210X_SET_BREAK, state);
1420 }
1421 
1422 #ifdef CONFIG_GPIOLIB
1423 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio)
1424 {
1425 	struct usb_serial *serial = gpiochip_get_data(gc);
1426 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1427 	u8 req_type;
1428 	u16 mask;
1429 	int result;
1430 	int len;
1431 
1432 	result = usb_autopm_get_interface(serial->interface);
1433 	if (result)
1434 		return result;
1435 
1436 	switch (priv->partnum) {
1437 	case CP210X_PARTNUM_CP2105:
1438 		req_type = REQTYPE_INTERFACE_TO_HOST;
1439 		len = 1;
1440 		break;
1441 	case CP210X_PARTNUM_CP2108:
1442 		req_type = REQTYPE_INTERFACE_TO_HOST;
1443 		len = 2;
1444 		break;
1445 	default:
1446 		req_type = REQTYPE_DEVICE_TO_HOST;
1447 		len = 1;
1448 		break;
1449 	}
1450 
1451 	mask = 0;
1452 	result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH,
1453 					  &mask, len);
1454 
1455 	usb_autopm_put_interface(serial->interface);
1456 
1457 	if (result < 0)
1458 		return result;
1459 
1460 	le16_to_cpus(&mask);
1461 
1462 	return !!(mask & BIT(gpio));
1463 }
1464 
1465 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value)
1466 {
1467 	struct usb_serial *serial = gpiochip_get_data(gc);
1468 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1469 	struct cp210x_gpio_write16 buf16;
1470 	struct cp210x_gpio_write buf;
1471 	u16 mask, state;
1472 	u16 wIndex;
1473 	int result;
1474 
1475 	if (value == 1)
1476 		state = BIT(gpio);
1477 	else
1478 		state = 0;
1479 
1480 	mask = BIT(gpio);
1481 
1482 	result = usb_autopm_get_interface(serial->interface);
1483 	if (result)
1484 		goto out;
1485 
1486 	switch (priv->partnum) {
1487 	case CP210X_PARTNUM_CP2105:
1488 		buf.mask = (u8)mask;
1489 		buf.state = (u8)state;
1490 		result = cp210x_write_vendor_block(serial,
1491 						   REQTYPE_HOST_TO_INTERFACE,
1492 						   CP210X_WRITE_LATCH, &buf,
1493 						   sizeof(buf));
1494 		break;
1495 	case CP210X_PARTNUM_CP2108:
1496 		buf16.mask = cpu_to_le16(mask);
1497 		buf16.state = cpu_to_le16(state);
1498 		result = cp210x_write_vendor_block(serial,
1499 						   REQTYPE_HOST_TO_INTERFACE,
1500 						   CP210X_WRITE_LATCH, &buf16,
1501 						   sizeof(buf16));
1502 		break;
1503 	default:
1504 		wIndex = state << 8 | mask;
1505 		result = usb_control_msg(serial->dev,
1506 					 usb_sndctrlpipe(serial->dev, 0),
1507 					 CP210X_VENDOR_SPECIFIC,
1508 					 REQTYPE_HOST_TO_DEVICE,
1509 					 CP210X_WRITE_LATCH,
1510 					 wIndex,
1511 					 NULL, 0, USB_CTRL_SET_TIMEOUT);
1512 		break;
1513 	}
1514 
1515 	usb_autopm_put_interface(serial->interface);
1516 out:
1517 	if (result < 0) {
1518 		dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n",
1519 				result);
1520 	}
1521 }
1522 
1523 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio)
1524 {
1525 	struct usb_serial *serial = gpiochip_get_data(gc);
1526 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1527 
1528 	return priv->gpio_input & BIT(gpio);
1529 }
1530 
1531 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio)
1532 {
1533 	struct usb_serial *serial = gpiochip_get_data(gc);
1534 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1535 
1536 	if (priv->partnum == CP210X_PARTNUM_CP2105) {
1537 		/* hardware does not support an input mode */
1538 		return -ENOTSUPP;
1539 	}
1540 
1541 	/* push-pull pins cannot be changed to be inputs */
1542 	if (priv->gpio_pushpull & BIT(gpio))
1543 		return -EINVAL;
1544 
1545 	/* make sure to release pin if it is being driven low */
1546 	cp210x_gpio_set(gc, gpio, 1);
1547 
1548 	priv->gpio_input |= BIT(gpio);
1549 
1550 	return 0;
1551 }
1552 
1553 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio,
1554 					int value)
1555 {
1556 	struct usb_serial *serial = gpiochip_get_data(gc);
1557 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1558 
1559 	priv->gpio_input &= ~BIT(gpio);
1560 	cp210x_gpio_set(gc, gpio, value);
1561 
1562 	return 0;
1563 }
1564 
1565 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio,
1566 				  unsigned long config)
1567 {
1568 	struct usb_serial *serial = gpiochip_get_data(gc);
1569 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1570 	enum pin_config_param param = pinconf_to_config_param(config);
1571 
1572 	/* Succeed only if in correct mode (this can't be set at runtime) */
1573 	if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) &&
1574 	    (priv->gpio_pushpull & BIT(gpio)))
1575 		return 0;
1576 
1577 	if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) &&
1578 	    !(priv->gpio_pushpull & BIT(gpio)))
1579 		return 0;
1580 
1581 	return -ENOTSUPP;
1582 }
1583 
1584 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc,
1585 		unsigned long *valid_mask, unsigned int ngpios)
1586 {
1587 	struct usb_serial *serial = gpiochip_get_data(gc);
1588 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1589 	struct device *dev = &serial->interface->dev;
1590 	unsigned long altfunc_mask = priv->gpio_altfunc;
1591 
1592 	bitmap_complement(valid_mask, &altfunc_mask, ngpios);
1593 
1594 	if (bitmap_empty(valid_mask, ngpios))
1595 		dev_dbg(dev, "no pin configured for GPIO\n");
1596 	else
1597 		dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios,
1598 				valid_mask);
1599 	return 0;
1600 }
1601 
1602 /*
1603  * This function is for configuring GPIO using shared pins, where other signals
1604  * are made unavailable by configuring the use of GPIO. This is believed to be
1605  * only applicable to the cp2105 at this point, the other devices supported by
1606  * this driver that provide GPIO do so in a way that does not impact other
1607  * signals and are thus expected to have very different initialisation.
1608  */
1609 static int cp2105_gpioconf_init(struct usb_serial *serial)
1610 {
1611 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1612 	struct cp210x_pin_mode mode;
1613 	struct cp210x_dual_port_config config;
1614 	u8 intf_num = cp210x_interface_num(serial);
1615 	u8 iface_config;
1616 	int result;
1617 
1618 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1619 					  CP210X_GET_DEVICEMODE, &mode,
1620 					  sizeof(mode));
1621 	if (result < 0)
1622 		return result;
1623 
1624 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1625 					  CP210X_GET_PORTCONFIG, &config,
1626 					  sizeof(config));
1627 	if (result < 0)
1628 		return result;
1629 
1630 	/*  2 banks of GPIO - One for the pins taken from each serial port */
1631 	if (intf_num == 0) {
1632 		if (mode.eci == CP210X_PIN_MODE_MODEM) {
1633 			/* mark all GPIOs of this interface as reserved */
1634 			priv->gpio_altfunc = 0xff;
1635 			return 0;
1636 		}
1637 
1638 		iface_config = config.eci_cfg;
1639 		priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1640 						CP210X_ECI_GPIO_MODE_MASK) >>
1641 						CP210X_ECI_GPIO_MODE_OFFSET);
1642 		priv->gc.ngpio = 2;
1643 	} else if (intf_num == 1) {
1644 		if (mode.sci == CP210X_PIN_MODE_MODEM) {
1645 			/* mark all GPIOs of this interface as reserved */
1646 			priv->gpio_altfunc = 0xff;
1647 			return 0;
1648 		}
1649 
1650 		iface_config = config.sci_cfg;
1651 		priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1652 						CP210X_SCI_GPIO_MODE_MASK) >>
1653 						CP210X_SCI_GPIO_MODE_OFFSET);
1654 		priv->gc.ngpio = 3;
1655 	} else {
1656 		return -ENODEV;
1657 	}
1658 
1659 	/* mark all pins which are not in GPIO mode */
1660 	if (iface_config & CP2105_GPIO0_TXLED_MODE)	/* GPIO 0 */
1661 		priv->gpio_altfunc |= BIT(0);
1662 	if (iface_config & (CP2105_GPIO1_RXLED_MODE |	/* GPIO 1 */
1663 			CP2105_GPIO1_RS485_MODE))
1664 		priv->gpio_altfunc |= BIT(1);
1665 
1666 	/* driver implementation for CP2105 only supports outputs */
1667 	priv->gpio_input = 0;
1668 
1669 	return 0;
1670 }
1671 
1672 static int cp2104_gpioconf_init(struct usb_serial *serial)
1673 {
1674 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1675 	struct cp210x_single_port_config config;
1676 	u8 iface_config;
1677 	u8 gpio_latch;
1678 	int result;
1679 	u8 i;
1680 
1681 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1682 					  CP210X_GET_PORTCONFIG, &config,
1683 					  sizeof(config));
1684 	if (result < 0)
1685 		return result;
1686 
1687 	priv->gc.ngpio = 4;
1688 
1689 	iface_config = config.device_cfg;
1690 	priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1691 					CP210X_GPIO_MODE_MASK) >>
1692 					CP210X_GPIO_MODE_OFFSET);
1693 	gpio_latch = (u8)((le16_to_cpu(config.reset_state) &
1694 					CP210X_GPIO_MODE_MASK) >>
1695 					CP210X_GPIO_MODE_OFFSET);
1696 
1697 	/* mark all pins which are not in GPIO mode */
1698 	if (iface_config & CP2104_GPIO0_TXLED_MODE)	/* GPIO 0 */
1699 		priv->gpio_altfunc |= BIT(0);
1700 	if (iface_config & CP2104_GPIO1_RXLED_MODE)	/* GPIO 1 */
1701 		priv->gpio_altfunc |= BIT(1);
1702 	if (iface_config & CP2104_GPIO2_RS485_MODE)	/* GPIO 2 */
1703 		priv->gpio_altfunc |= BIT(2);
1704 
1705 	/*
1706 	 * Like CP2102N, CP2104 has also no strict input and output pin
1707 	 * modes.
1708 	 * Do the same input mode emulation as CP2102N.
1709 	 */
1710 	for (i = 0; i < priv->gc.ngpio; ++i) {
1711 		/*
1712 		 * Set direction to "input" iff pin is open-drain and reset
1713 		 * value is 1.
1714 		 */
1715 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1716 			priv->gpio_input |= BIT(i);
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int cp2108_gpio_init(struct usb_serial *serial)
1723 {
1724 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1725 	struct cp210x_quad_port_config config;
1726 	u16 gpio_latch;
1727 	int result;
1728 	u8 i;
1729 
1730 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1731 					  CP210X_GET_PORTCONFIG, &config,
1732 					  sizeof(config));
1733 	if (result < 0)
1734 		return result;
1735 
1736 	priv->gc.ngpio = 16;
1737 	priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1);
1738 	gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1);
1739 
1740 	/*
1741 	 * Mark all pins which are not in GPIO mode.
1742 	 *
1743 	 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet:
1744 	 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf
1745 	 *
1746 	 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0]
1747 	 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7,
1748 	 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15.
1749 	 */
1750 	for (i = 0; i < 4; i++) {
1751 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED)
1752 			priv->gpio_altfunc |= BIT(i * 4);
1753 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED)
1754 			priv->gpio_altfunc |= BIT((i * 4) + 1);
1755 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485)
1756 			priv->gpio_altfunc |= BIT((i * 4) + 2);
1757 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK)
1758 			priv->gpio_altfunc |= BIT((i * 4) + 3);
1759 	}
1760 
1761 	/*
1762 	 * Like CP2102N, CP2108 has also no strict input and output pin
1763 	 * modes. Do the same input mode emulation as CP2102N.
1764 	 */
1765 	for (i = 0; i < priv->gc.ngpio; ++i) {
1766 		/*
1767 		 * Set direction to "input" iff pin is open-drain and reset
1768 		 * value is 1.
1769 		 */
1770 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1771 			priv->gpio_input |= BIT(i);
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static int cp2102n_gpioconf_init(struct usb_serial *serial)
1778 {
1779 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1780 	const u16 config_size = 0x02a6;
1781 	u8 gpio_rst_latch;
1782 	u8 config_version;
1783 	u8 gpio_pushpull;
1784 	u8 *config_buf;
1785 	u8 gpio_latch;
1786 	u8 gpio_ctrl;
1787 	int result;
1788 	u8 i;
1789 
1790 	/*
1791 	 * Retrieve device configuration from the device.
1792 	 * The array received contains all customization settings done at the
1793 	 * factory/manufacturer. Format of the array is documented at the
1794 	 * time of writing at:
1795 	 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa
1796 	 */
1797 	config_buf = kmalloc(config_size, GFP_KERNEL);
1798 	if (!config_buf)
1799 		return -ENOMEM;
1800 
1801 	result = cp210x_read_vendor_block(serial,
1802 					  REQTYPE_DEVICE_TO_HOST,
1803 					  CP210X_READ_2NCONFIG,
1804 					  config_buf,
1805 					  config_size);
1806 	if (result < 0) {
1807 		kfree(config_buf);
1808 		return result;
1809 	}
1810 
1811 	config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX];
1812 	gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX];
1813 	gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX];
1814 	gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX];
1815 
1816 	kfree(config_buf);
1817 
1818 	/* Make sure this is a config format we understand. */
1819 	if (config_version != 0x01)
1820 		return -ENOTSUPP;
1821 
1822 	priv->gc.ngpio = 4;
1823 
1824 	/*
1825 	 * Get default pin states after reset. Needed so we can determine
1826 	 * the direction of an open-drain pin.
1827 	 */
1828 	gpio_latch = (gpio_rst_latch >> 3) & 0x0f;
1829 
1830 	/* 0 indicates open-drain mode, 1 is push-pull */
1831 	priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f;
1832 
1833 	/* 0 indicates GPIO mode, 1 is alternate function */
1834 	if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) {
1835 		/* QFN20 is special... */
1836 		if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE)   /* GPIO 0 */
1837 			priv->gpio_altfunc |= BIT(0);
1838 		if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */
1839 			priv->gpio_altfunc |= BIT(1);
1840 		if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */
1841 			priv->gpio_altfunc |= BIT(2);
1842 		if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */
1843 			priv->gpio_altfunc |= BIT(3);
1844 	} else {
1845 		priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f;
1846 	}
1847 
1848 	if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) {
1849 		/*
1850 		 * For the QFN28 package, GPIO4-6 are controlled by
1851 		 * the low three bits of the mode/latch fields.
1852 		 * Contrary to the document linked above, the bits for
1853 		 * the SUSPEND pins are elsewhere.  No alternate
1854 		 * function is available for these pins.
1855 		 */
1856 		priv->gc.ngpio = 7;
1857 		gpio_latch |= (gpio_rst_latch & 7) << 4;
1858 		priv->gpio_pushpull |= (gpio_pushpull & 7) << 4;
1859 	}
1860 
1861 	/*
1862 	 * The CP2102N does not strictly has input and output pin modes,
1863 	 * it only knows open-drain and push-pull modes which is set at
1864 	 * factory. An open-drain pin can function both as an
1865 	 * input or an output. We emulate input mode for open-drain pins
1866 	 * by making sure they are not driven low, and we do not allow
1867 	 * push-pull pins to be set as an input.
1868 	 */
1869 	for (i = 0; i < priv->gc.ngpio; ++i) {
1870 		/*
1871 		 * Set direction to "input" iff pin is open-drain and reset
1872 		 * value is 1.
1873 		 */
1874 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1875 			priv->gpio_input |= BIT(i);
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 static int cp210x_gpio_init(struct usb_serial *serial)
1882 {
1883 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1884 	int result;
1885 
1886 	switch (priv->partnum) {
1887 	case CP210X_PARTNUM_CP2104:
1888 		result = cp2104_gpioconf_init(serial);
1889 		break;
1890 	case CP210X_PARTNUM_CP2105:
1891 		result = cp2105_gpioconf_init(serial);
1892 		break;
1893 	case CP210X_PARTNUM_CP2108:
1894 		/*
1895 		 * The GPIOs are not tied to any specific port so only register
1896 		 * once for interface 0.
1897 		 */
1898 		if (cp210x_interface_num(serial) != 0)
1899 			return 0;
1900 		result = cp2108_gpio_init(serial);
1901 		break;
1902 	case CP210X_PARTNUM_CP2102N_QFN28:
1903 	case CP210X_PARTNUM_CP2102N_QFN24:
1904 	case CP210X_PARTNUM_CP2102N_QFN20:
1905 		result = cp2102n_gpioconf_init(serial);
1906 		break;
1907 	default:
1908 		return 0;
1909 	}
1910 
1911 	if (result < 0)
1912 		return result;
1913 
1914 	priv->gc.label = "cp210x";
1915 	priv->gc.get_direction = cp210x_gpio_direction_get;
1916 	priv->gc.direction_input = cp210x_gpio_direction_input;
1917 	priv->gc.direction_output = cp210x_gpio_direction_output;
1918 	priv->gc.get = cp210x_gpio_get;
1919 	priv->gc.set = cp210x_gpio_set;
1920 	priv->gc.set_config = cp210x_gpio_set_config;
1921 	priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask;
1922 	priv->gc.owner = THIS_MODULE;
1923 	priv->gc.parent = &serial->interface->dev;
1924 	priv->gc.base = -1;
1925 	priv->gc.can_sleep = true;
1926 
1927 	result = gpiochip_add_data(&priv->gc, serial);
1928 	if (!result)
1929 		priv->gpio_registered = true;
1930 
1931 	return result;
1932 }
1933 
1934 static void cp210x_gpio_remove(struct usb_serial *serial)
1935 {
1936 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1937 
1938 	if (priv->gpio_registered) {
1939 		gpiochip_remove(&priv->gc);
1940 		priv->gpio_registered = false;
1941 	}
1942 }
1943 
1944 #else
1945 
1946 static int cp210x_gpio_init(struct usb_serial *serial)
1947 {
1948 	return 0;
1949 }
1950 
1951 static void cp210x_gpio_remove(struct usb_serial *serial)
1952 {
1953 	/* Nothing to do */
1954 }
1955 
1956 #endif
1957 
1958 static int cp210x_port_probe(struct usb_serial_port *port)
1959 {
1960 	struct usb_serial *serial = port->serial;
1961 	struct cp210x_port_private *port_priv;
1962 
1963 	port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL);
1964 	if (!port_priv)
1965 		return -ENOMEM;
1966 
1967 	port_priv->bInterfaceNumber = cp210x_interface_num(serial);
1968 	mutex_init(&port_priv->mutex);
1969 
1970 	usb_set_serial_port_data(port, port_priv);
1971 
1972 	return 0;
1973 }
1974 
1975 static void cp210x_port_remove(struct usb_serial_port *port)
1976 {
1977 	struct cp210x_port_private *port_priv;
1978 
1979 	port_priv = usb_get_serial_port_data(port);
1980 	kfree(port_priv);
1981 }
1982 
1983 static void cp210x_init_max_speed(struct usb_serial *serial)
1984 {
1985 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1986 	bool use_actual_rate = false;
1987 	speed_t min = 300;
1988 	speed_t max;
1989 
1990 	switch (priv->partnum) {
1991 	case CP210X_PARTNUM_CP2101:
1992 		max = 921600;
1993 		break;
1994 	case CP210X_PARTNUM_CP2102:
1995 	case CP210X_PARTNUM_CP2103:
1996 		max = 1000000;
1997 		break;
1998 	case CP210X_PARTNUM_CP2104:
1999 		use_actual_rate = true;
2000 		max = 2000000;
2001 		break;
2002 	case CP210X_PARTNUM_CP2108:
2003 		max = 2000000;
2004 		break;
2005 	case CP210X_PARTNUM_CP2105:
2006 		if (cp210x_interface_num(serial) == 0) {
2007 			use_actual_rate = true;
2008 			max = 2000000;	/* ECI */
2009 		} else {
2010 			min = 2400;
2011 			max = 921600;	/* SCI */
2012 		}
2013 		break;
2014 	case CP210X_PARTNUM_CP2102N_QFN28:
2015 	case CP210X_PARTNUM_CP2102N_QFN24:
2016 	case CP210X_PARTNUM_CP2102N_QFN20:
2017 		use_actual_rate = true;
2018 		max = 3000000;
2019 		break;
2020 	default:
2021 		max = 2000000;
2022 		break;
2023 	}
2024 
2025 	priv->min_speed = min;
2026 	priv->max_speed = max;
2027 	priv->use_actual_rate = use_actual_rate;
2028 }
2029 
2030 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value)
2031 {
2032 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2033 	u8 ver[3];
2034 	int ret;
2035 
2036 	ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value,
2037 			ver, sizeof(ver));
2038 	if (ret)
2039 		return ret;
2040 
2041 	dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__,
2042 			ver[0], ver[1], ver[2]);
2043 
2044 	priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2];
2045 
2046 	return 0;
2047 }
2048 
2049 static void cp210x_determine_type(struct usb_serial *serial)
2050 {
2051 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2052 	int ret;
2053 
2054 	ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
2055 			CP210X_GET_PARTNUM, &priv->partnum,
2056 			sizeof(priv->partnum));
2057 	if (ret < 0) {
2058 		dev_warn(&serial->interface->dev,
2059 				"querying part number failed\n");
2060 		priv->partnum = CP210X_PARTNUM_UNKNOWN;
2061 		return;
2062 	}
2063 
2064 	switch (priv->partnum) {
2065 	case CP210X_PARTNUM_CP2105:
2066 	case CP210X_PARTNUM_CP2108:
2067 		cp210x_get_fw_version(serial, CP210X_GET_FW_VER);
2068 		break;
2069 	case CP210X_PARTNUM_CP2102N_QFN28:
2070 	case CP210X_PARTNUM_CP2102N_QFN24:
2071 	case CP210X_PARTNUM_CP2102N_QFN20:
2072 		ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N);
2073 		if (ret)
2074 			break;
2075 		if (priv->fw_version <= 0x10004)
2076 			priv->no_flow_control = true;
2077 		break;
2078 	default:
2079 		break;
2080 	}
2081 }
2082 
2083 static int cp210x_attach(struct usb_serial *serial)
2084 {
2085 	int result;
2086 	struct cp210x_serial_private *priv;
2087 
2088 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
2089 	if (!priv)
2090 		return -ENOMEM;
2091 
2092 	usb_set_serial_data(serial, priv);
2093 
2094 	cp210x_determine_type(serial);
2095 	cp210x_init_max_speed(serial);
2096 
2097 	result = cp210x_gpio_init(serial);
2098 	if (result < 0) {
2099 		dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n",
2100 				result);
2101 	}
2102 
2103 	return 0;
2104 }
2105 
2106 static void cp210x_disconnect(struct usb_serial *serial)
2107 {
2108 	cp210x_gpio_remove(serial);
2109 }
2110 
2111 static void cp210x_release(struct usb_serial *serial)
2112 {
2113 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2114 
2115 	cp210x_gpio_remove(serial);
2116 
2117 	kfree(priv);
2118 }
2119 
2120 module_usb_serial_driver(serial_drivers, id_table);
2121 
2122 MODULE_DESCRIPTION(DRIVER_DESC);
2123 MODULE_LICENSE("GPL v2");
2124