1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 struct ktermios*); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static void cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 55 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 56 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 57 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 59 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 60 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 61 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 62 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 63 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 64 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 65 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 66 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 67 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 68 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 69 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 71 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 72 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 73 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 74 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 75 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 76 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 77 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 78 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 79 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 80 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 81 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 82 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 83 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 84 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 85 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 86 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 87 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 88 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 89 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 90 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 91 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 92 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 93 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 94 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 95 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 96 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 97 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 98 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 99 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 100 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 101 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 102 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 103 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 104 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 105 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 106 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 107 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 108 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 109 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 110 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 111 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 112 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 113 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 114 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 115 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 116 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 117 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 118 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 119 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 120 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 121 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 122 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 123 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 124 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 125 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 126 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 127 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 128 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 129 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 130 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 131 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 132 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 133 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 134 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 135 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 136 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 137 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 138 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 139 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 140 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 141 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 142 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 143 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 144 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 145 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 146 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 147 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 148 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 149 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 150 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 151 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 152 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 153 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 154 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 155 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 156 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 157 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 158 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 159 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 160 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 161 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 162 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 163 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 164 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 165 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 166 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 167 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 168 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 169 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 170 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 171 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 172 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 173 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 174 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 175 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 176 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 177 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 178 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 179 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 180 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 181 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 182 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 183 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 184 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 185 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 186 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 187 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 188 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 189 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 190 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 191 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 192 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 193 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 194 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 195 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 196 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 197 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 198 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 199 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 200 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 201 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 202 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 203 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 204 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 205 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 206 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 207 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 208 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 209 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 210 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 211 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 212 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 213 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 214 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 215 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 216 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 217 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 218 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 219 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 220 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 221 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 222 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 223 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 224 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 225 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 226 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 227 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 228 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 229 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 230 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 231 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 232 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 233 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 234 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 235 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 236 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 237 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 238 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 239 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 240 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 241 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 242 { } /* Terminating Entry */ 243 }; 244 245 MODULE_DEVICE_TABLE(usb, id_table); 246 247 struct cp210x_serial_private { 248 #ifdef CONFIG_GPIOLIB 249 struct gpio_chip gc; 250 bool gpio_registered; 251 u16 gpio_pushpull; 252 u16 gpio_altfunc; 253 u16 gpio_input; 254 #endif 255 u8 partnum; 256 u32 fw_version; 257 speed_t min_speed; 258 speed_t max_speed; 259 bool use_actual_rate; 260 bool no_flow_control; 261 }; 262 263 enum cp210x_event_state { 264 ES_DATA, 265 ES_ESCAPE, 266 ES_LSR, 267 ES_LSR_DATA_0, 268 ES_LSR_DATA_1, 269 ES_MSR 270 }; 271 272 struct cp210x_port_private { 273 u8 bInterfaceNumber; 274 bool event_mode; 275 enum cp210x_event_state event_state; 276 u8 lsr; 277 278 struct mutex mutex; 279 bool crtscts; 280 bool dtr; 281 bool rts; 282 }; 283 284 static struct usb_serial_driver cp210x_device = { 285 .driver = { 286 .owner = THIS_MODULE, 287 .name = "cp210x", 288 }, 289 .id_table = id_table, 290 .num_ports = 1, 291 .bulk_in_size = 256, 292 .bulk_out_size = 256, 293 .open = cp210x_open, 294 .close = cp210x_close, 295 .break_ctl = cp210x_break_ctl, 296 .set_termios = cp210x_set_termios, 297 .tx_empty = cp210x_tx_empty, 298 .throttle = usb_serial_generic_throttle, 299 .unthrottle = usb_serial_generic_unthrottle, 300 .tiocmget = cp210x_tiocmget, 301 .tiocmset = cp210x_tiocmset, 302 .get_icount = usb_serial_generic_get_icount, 303 .attach = cp210x_attach, 304 .disconnect = cp210x_disconnect, 305 .release = cp210x_release, 306 .port_probe = cp210x_port_probe, 307 .port_remove = cp210x_port_remove, 308 .dtr_rts = cp210x_dtr_rts, 309 .process_read_urb = cp210x_process_read_urb, 310 }; 311 312 static struct usb_serial_driver * const serial_drivers[] = { 313 &cp210x_device, NULL 314 }; 315 316 /* Config request types */ 317 #define REQTYPE_HOST_TO_INTERFACE 0x41 318 #define REQTYPE_INTERFACE_TO_HOST 0xc1 319 #define REQTYPE_HOST_TO_DEVICE 0x40 320 #define REQTYPE_DEVICE_TO_HOST 0xc0 321 322 /* Config request codes */ 323 #define CP210X_IFC_ENABLE 0x00 324 #define CP210X_SET_BAUDDIV 0x01 325 #define CP210X_GET_BAUDDIV 0x02 326 #define CP210X_SET_LINE_CTL 0x03 327 #define CP210X_GET_LINE_CTL 0x04 328 #define CP210X_SET_BREAK 0x05 329 #define CP210X_IMM_CHAR 0x06 330 #define CP210X_SET_MHS 0x07 331 #define CP210X_GET_MDMSTS 0x08 332 #define CP210X_SET_XON 0x09 333 #define CP210X_SET_XOFF 0x0A 334 #define CP210X_SET_EVENTMASK 0x0B 335 #define CP210X_GET_EVENTMASK 0x0C 336 #define CP210X_SET_CHAR 0x0D 337 #define CP210X_GET_CHARS 0x0E 338 #define CP210X_GET_PROPS 0x0F 339 #define CP210X_GET_COMM_STATUS 0x10 340 #define CP210X_RESET 0x11 341 #define CP210X_PURGE 0x12 342 #define CP210X_SET_FLOW 0x13 343 #define CP210X_GET_FLOW 0x14 344 #define CP210X_EMBED_EVENTS 0x15 345 #define CP210X_GET_EVENTSTATE 0x16 346 #define CP210X_SET_CHARS 0x19 347 #define CP210X_GET_BAUDRATE 0x1D 348 #define CP210X_SET_BAUDRATE 0x1E 349 #define CP210X_VENDOR_SPECIFIC 0xFF 350 351 /* CP210X_IFC_ENABLE */ 352 #define UART_ENABLE 0x0001 353 #define UART_DISABLE 0x0000 354 355 /* CP210X_(SET|GET)_BAUDDIV */ 356 #define BAUD_RATE_GEN_FREQ 0x384000 357 358 /* CP210X_(SET|GET)_LINE_CTL */ 359 #define BITS_DATA_MASK 0X0f00 360 #define BITS_DATA_5 0X0500 361 #define BITS_DATA_6 0X0600 362 #define BITS_DATA_7 0X0700 363 #define BITS_DATA_8 0X0800 364 #define BITS_DATA_9 0X0900 365 366 #define BITS_PARITY_MASK 0x00f0 367 #define BITS_PARITY_NONE 0x0000 368 #define BITS_PARITY_ODD 0x0010 369 #define BITS_PARITY_EVEN 0x0020 370 #define BITS_PARITY_MARK 0x0030 371 #define BITS_PARITY_SPACE 0x0040 372 373 #define BITS_STOP_MASK 0x000f 374 #define BITS_STOP_1 0x0000 375 #define BITS_STOP_1_5 0x0001 376 #define BITS_STOP_2 0x0002 377 378 /* CP210X_SET_BREAK */ 379 #define BREAK_ON 0x0001 380 #define BREAK_OFF 0x0000 381 382 /* CP210X_(SET_MHS|GET_MDMSTS) */ 383 #define CONTROL_DTR 0x0001 384 #define CONTROL_RTS 0x0002 385 #define CONTROL_CTS 0x0010 386 #define CONTROL_DSR 0x0020 387 #define CONTROL_RING 0x0040 388 #define CONTROL_DCD 0x0080 389 #define CONTROL_WRITE_DTR 0x0100 390 #define CONTROL_WRITE_RTS 0x0200 391 392 /* CP210X_(GET|SET)_CHARS */ 393 struct cp210x_special_chars { 394 u8 bEofChar; 395 u8 bErrorChar; 396 u8 bBreakChar; 397 u8 bEventChar; 398 u8 bXonChar; 399 u8 bXoffChar; 400 }; 401 402 /* CP210X_VENDOR_SPECIFIC values */ 403 #define CP210X_GET_FW_VER 0x000E 404 #define CP210X_READ_2NCONFIG 0x000E 405 #define CP210X_GET_FW_VER_2N 0x0010 406 #define CP210X_READ_LATCH 0x00C2 407 #define CP210X_GET_PARTNUM 0x370B 408 #define CP210X_GET_PORTCONFIG 0x370C 409 #define CP210X_GET_DEVICEMODE 0x3711 410 #define CP210X_WRITE_LATCH 0x37E1 411 412 /* Part number definitions */ 413 #define CP210X_PARTNUM_CP2101 0x01 414 #define CP210X_PARTNUM_CP2102 0x02 415 #define CP210X_PARTNUM_CP2103 0x03 416 #define CP210X_PARTNUM_CP2104 0x04 417 #define CP210X_PARTNUM_CP2105 0x05 418 #define CP210X_PARTNUM_CP2108 0x08 419 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 420 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 421 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 422 #define CP210X_PARTNUM_UNKNOWN 0xFF 423 424 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 425 struct cp210x_comm_status { 426 __le32 ulErrors; 427 __le32 ulHoldReasons; 428 __le32 ulAmountInInQueue; 429 __le32 ulAmountInOutQueue; 430 u8 bEofReceived; 431 u8 bWaitForImmediate; 432 u8 bReserved; 433 } __packed; 434 435 /* 436 * CP210X_PURGE - 16 bits passed in wValue of USB request. 437 * SiLabs app note AN571 gives a strange description of the 4 bits: 438 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 439 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 440 */ 441 #define PURGE_ALL 0x000f 442 443 /* CP210X_EMBED_EVENTS */ 444 #define CP210X_ESCCHAR 0xec 445 446 #define CP210X_LSR_OVERRUN BIT(1) 447 #define CP210X_LSR_PARITY BIT(2) 448 #define CP210X_LSR_FRAME BIT(3) 449 #define CP210X_LSR_BREAK BIT(4) 450 451 452 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 453 struct cp210x_flow_ctl { 454 __le32 ulControlHandshake; 455 __le32 ulFlowReplace; 456 __le32 ulXonLimit; 457 __le32 ulXoffLimit; 458 }; 459 460 /* cp210x_flow_ctl::ulControlHandshake */ 461 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 462 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 463 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 464 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 465 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 466 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 467 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 468 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 469 470 /* cp210x_flow_ctl::ulFlowReplace */ 471 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 472 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 473 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 474 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 475 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 476 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 477 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 478 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 479 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 480 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 481 482 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 483 struct cp210x_pin_mode { 484 u8 eci; 485 u8 sci; 486 }; 487 488 #define CP210X_PIN_MODE_MODEM 0 489 #define CP210X_PIN_MODE_GPIO BIT(0) 490 491 /* 492 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 493 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 494 */ 495 struct cp210x_dual_port_config { 496 __le16 gpio_mode; 497 u8 __pad0[2]; 498 __le16 reset_state; 499 u8 __pad1[4]; 500 __le16 suspend_state; 501 u8 sci_cfg; 502 u8 eci_cfg; 503 u8 device_cfg; 504 } __packed; 505 506 /* 507 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 508 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 509 */ 510 struct cp210x_single_port_config { 511 __le16 gpio_mode; 512 u8 __pad0[2]; 513 __le16 reset_state; 514 u8 __pad1[4]; 515 __le16 suspend_state; 516 u8 device_cfg; 517 } __packed; 518 519 /* GPIO modes */ 520 #define CP210X_SCI_GPIO_MODE_OFFSET 9 521 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 522 523 #define CP210X_ECI_GPIO_MODE_OFFSET 2 524 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 525 526 #define CP210X_GPIO_MODE_OFFSET 8 527 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 528 529 /* CP2105 port configuration values */ 530 #define CP2105_GPIO0_TXLED_MODE BIT(0) 531 #define CP2105_GPIO1_RXLED_MODE BIT(1) 532 #define CP2105_GPIO1_RS485_MODE BIT(2) 533 534 /* CP2104 port configuration values */ 535 #define CP2104_GPIO0_TXLED_MODE BIT(0) 536 #define CP2104_GPIO1_RXLED_MODE BIT(1) 537 #define CP2104_GPIO2_RS485_MODE BIT(2) 538 539 struct cp210x_quad_port_state { 540 __le16 gpio_mode_pb0; 541 __le16 gpio_mode_pb1; 542 __le16 gpio_mode_pb2; 543 __le16 gpio_mode_pb3; 544 __le16 gpio_mode_pb4; 545 546 __le16 gpio_lowpower_pb0; 547 __le16 gpio_lowpower_pb1; 548 __le16 gpio_lowpower_pb2; 549 __le16 gpio_lowpower_pb3; 550 __le16 gpio_lowpower_pb4; 551 552 __le16 gpio_latch_pb0; 553 __le16 gpio_latch_pb1; 554 __le16 gpio_latch_pb2; 555 __le16 gpio_latch_pb3; 556 __le16 gpio_latch_pb4; 557 }; 558 559 /* 560 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 561 * on a CP2108 chip. 562 * 563 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 564 */ 565 struct cp210x_quad_port_config { 566 struct cp210x_quad_port_state reset_state; 567 struct cp210x_quad_port_state suspend_state; 568 u8 ipdelay_ifc[4]; 569 u8 enhancedfxn_ifc[4]; 570 u8 enhancedfxn_device; 571 u8 extclkfreq[4]; 572 } __packed; 573 574 #define CP2108_EF_IFC_GPIO_TXLED 0x01 575 #define CP2108_EF_IFC_GPIO_RXLED 0x02 576 #define CP2108_EF_IFC_GPIO_RS485 0x04 577 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 578 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 579 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 580 581 /* CP2102N configuration array indices */ 582 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 583 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 584 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 585 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 586 587 /* CP2102N QFN20 port configuration values */ 588 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 589 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 590 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 591 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 592 593 /* 594 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 595 * for CP2102N, CP2103, CP2104 and CP2105. 596 */ 597 struct cp210x_gpio_write { 598 u8 mask; 599 u8 state; 600 }; 601 602 /* 603 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 604 * for CP2108. 605 */ 606 struct cp210x_gpio_write16 { 607 __le16 mask; 608 __le16 state; 609 }; 610 611 /* 612 * Helper to get interface number when we only have struct usb_serial. 613 */ 614 static u8 cp210x_interface_num(struct usb_serial *serial) 615 { 616 struct usb_host_interface *cur_altsetting; 617 618 cur_altsetting = serial->interface->cur_altsetting; 619 620 return cur_altsetting->desc.bInterfaceNumber; 621 } 622 623 /* 624 * Reads a variable-sized block of CP210X_ registers, identified by req. 625 * Returns data into buf in native USB byte order. 626 */ 627 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 628 void *buf, int bufsize) 629 { 630 struct usb_serial *serial = port->serial; 631 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 632 int result; 633 634 635 result = usb_control_msg_recv(serial->dev, 0, req, 636 REQTYPE_INTERFACE_TO_HOST, 0, 637 port_priv->bInterfaceNumber, buf, bufsize, 638 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 639 if (result) { 640 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 641 req, bufsize, result); 642 return result; 643 } 644 645 return 0; 646 } 647 648 /* 649 * Reads any 8-bit CP210X_ register identified by req. 650 */ 651 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 652 { 653 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 654 } 655 656 /* 657 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 658 * Returns data into buf in native USB byte order. 659 */ 660 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 661 void *buf, int bufsize) 662 { 663 int result; 664 665 result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 666 type, val, cp210x_interface_num(serial), buf, bufsize, 667 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 668 if (result) { 669 dev_err(&serial->interface->dev, 670 "failed to get vendor val 0x%04x size %d: %d\n", val, 671 bufsize, result); 672 return result; 673 } 674 675 return 0; 676 } 677 678 /* 679 * Writes any 16-bit CP210X_ register (req) whose value is passed 680 * entirely in the wValue field of the USB request. 681 */ 682 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 683 { 684 struct usb_serial *serial = port->serial; 685 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 686 int result; 687 688 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 689 req, REQTYPE_HOST_TO_INTERFACE, val, 690 port_priv->bInterfaceNumber, NULL, 0, 691 USB_CTRL_SET_TIMEOUT); 692 if (result < 0) { 693 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 694 req, result); 695 } 696 697 return result; 698 } 699 700 /* 701 * Writes a variable-sized block of CP210X_ registers, identified by req. 702 * Data in buf must be in native USB byte order. 703 */ 704 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 705 void *buf, int bufsize) 706 { 707 struct usb_serial *serial = port->serial; 708 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 709 int result; 710 711 result = usb_control_msg_send(serial->dev, 0, req, 712 REQTYPE_HOST_TO_INTERFACE, 0, 713 port_priv->bInterfaceNumber, buf, bufsize, 714 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 715 if (result) { 716 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 717 req, bufsize, result); 718 return result; 719 } 720 721 return 0; 722 } 723 724 /* 725 * Writes any 32-bit CP210X_ register identified by req. 726 */ 727 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 728 { 729 __le32 le32_val; 730 731 le32_val = cpu_to_le32(val); 732 733 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 734 } 735 736 #ifdef CONFIG_GPIOLIB 737 /* 738 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 739 * Data in buf must be in native USB byte order. 740 */ 741 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 742 u16 val, void *buf, int bufsize) 743 { 744 int result; 745 746 result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 747 type, val, cp210x_interface_num(serial), buf, bufsize, 748 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 749 if (result) { 750 dev_err(&serial->interface->dev, 751 "failed to set vendor val 0x%04x size %d: %d\n", val, 752 bufsize, result); 753 return result; 754 } 755 756 return 0; 757 } 758 #endif 759 760 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 761 { 762 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 763 int result; 764 765 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 766 if (result) { 767 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 768 return result; 769 } 770 771 if (tty) 772 cp210x_set_termios(tty, port, NULL); 773 774 result = usb_serial_generic_open(tty, port); 775 if (result) 776 goto err_disable; 777 778 return 0; 779 780 err_disable: 781 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 782 port_priv->event_mode = false; 783 784 return result; 785 } 786 787 static void cp210x_close(struct usb_serial_port *port) 788 { 789 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 790 791 usb_serial_generic_close(port); 792 793 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 794 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 795 796 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 797 798 /* Disabling the interface disables event-insertion mode. */ 799 port_priv->event_mode = false; 800 } 801 802 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 803 { 804 if (lsr & CP210X_LSR_BREAK) { 805 port->icount.brk++; 806 *flag = TTY_BREAK; 807 } else if (lsr & CP210X_LSR_PARITY) { 808 port->icount.parity++; 809 *flag = TTY_PARITY; 810 } else if (lsr & CP210X_LSR_FRAME) { 811 port->icount.frame++; 812 *flag = TTY_FRAME; 813 } 814 815 if (lsr & CP210X_LSR_OVERRUN) { 816 port->icount.overrun++; 817 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 818 } 819 } 820 821 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 822 { 823 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 824 825 switch (port_priv->event_state) { 826 case ES_DATA: 827 if (*ch == CP210X_ESCCHAR) { 828 port_priv->event_state = ES_ESCAPE; 829 break; 830 } 831 return false; 832 case ES_ESCAPE: 833 switch (*ch) { 834 case 0: 835 dev_dbg(&port->dev, "%s - escape char\n", __func__); 836 *ch = CP210X_ESCCHAR; 837 port_priv->event_state = ES_DATA; 838 return false; 839 case 1: 840 port_priv->event_state = ES_LSR_DATA_0; 841 break; 842 case 2: 843 port_priv->event_state = ES_LSR; 844 break; 845 case 3: 846 port_priv->event_state = ES_MSR; 847 break; 848 default: 849 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 850 port_priv->event_state = ES_DATA; 851 break; 852 } 853 break; 854 case ES_LSR_DATA_0: 855 port_priv->lsr = *ch; 856 port_priv->event_state = ES_LSR_DATA_1; 857 break; 858 case ES_LSR_DATA_1: 859 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 860 __func__, port_priv->lsr, *ch); 861 cp210x_process_lsr(port, port_priv->lsr, flag); 862 port_priv->event_state = ES_DATA; 863 return false; 864 case ES_LSR: 865 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 866 port_priv->lsr = *ch; 867 cp210x_process_lsr(port, port_priv->lsr, flag); 868 port_priv->event_state = ES_DATA; 869 break; 870 case ES_MSR: 871 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 872 /* unimplemented */ 873 port_priv->event_state = ES_DATA; 874 break; 875 } 876 877 return true; 878 } 879 880 static void cp210x_process_read_urb(struct urb *urb) 881 { 882 struct usb_serial_port *port = urb->context; 883 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 884 unsigned char *ch = urb->transfer_buffer; 885 char flag; 886 int i; 887 888 if (!urb->actual_length) 889 return; 890 891 if (port_priv->event_mode) { 892 for (i = 0; i < urb->actual_length; i++, ch++) { 893 flag = TTY_NORMAL; 894 895 if (cp210x_process_char(port, ch, &flag)) 896 continue; 897 898 tty_insert_flip_char(&port->port, *ch, flag); 899 } 900 } else { 901 tty_insert_flip_string(&port->port, ch, urb->actual_length); 902 } 903 tty_flip_buffer_push(&port->port); 904 } 905 906 /* 907 * Read how many bytes are waiting in the TX queue. 908 */ 909 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 910 u32 *count) 911 { 912 struct usb_serial *serial = port->serial; 913 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 914 struct cp210x_comm_status sts; 915 int result; 916 917 result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS, 918 REQTYPE_INTERFACE_TO_HOST, 0, 919 port_priv->bInterfaceNumber, &sts, sizeof(sts), 920 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 921 if (result) { 922 dev_err(&port->dev, "failed to get comm status: %d\n", result); 923 return result; 924 } 925 926 *count = le32_to_cpu(sts.ulAmountInOutQueue); 927 928 return 0; 929 } 930 931 static bool cp210x_tx_empty(struct usb_serial_port *port) 932 { 933 int err; 934 u32 count; 935 936 err = cp210x_get_tx_queue_byte_count(port, &count); 937 if (err) 938 return true; 939 940 return !count; 941 } 942 943 struct cp210x_rate { 944 speed_t rate; 945 speed_t high; 946 }; 947 948 static const struct cp210x_rate cp210x_an205_table1[] = { 949 { 300, 300 }, 950 { 600, 600 }, 951 { 1200, 1200 }, 952 { 1800, 1800 }, 953 { 2400, 2400 }, 954 { 4000, 4000 }, 955 { 4800, 4803 }, 956 { 7200, 7207 }, 957 { 9600, 9612 }, 958 { 14400, 14428 }, 959 { 16000, 16062 }, 960 { 19200, 19250 }, 961 { 28800, 28912 }, 962 { 38400, 38601 }, 963 { 51200, 51558 }, 964 { 56000, 56280 }, 965 { 57600, 58053 }, 966 { 64000, 64111 }, 967 { 76800, 77608 }, 968 { 115200, 117028 }, 969 { 128000, 129347 }, 970 { 153600, 156868 }, 971 { 230400, 237832 }, 972 { 250000, 254234 }, 973 { 256000, 273066 }, 974 { 460800, 491520 }, 975 { 500000, 567138 }, 976 { 576000, 670254 }, 977 { 921600, UINT_MAX } 978 }; 979 980 /* 981 * Quantises the baud rate as per AN205 Table 1 982 */ 983 static speed_t cp210x_get_an205_rate(speed_t baud) 984 { 985 int i; 986 987 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 988 if (baud <= cp210x_an205_table1[i].high) 989 break; 990 } 991 992 return cp210x_an205_table1[i].rate; 993 } 994 995 static speed_t cp210x_get_actual_rate(speed_t baud) 996 { 997 unsigned int prescale = 1; 998 unsigned int div; 999 1000 if (baud <= 365) 1001 prescale = 4; 1002 1003 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1004 baud = 48000000 / (2 * prescale * div); 1005 1006 return baud; 1007 } 1008 1009 /* 1010 * CP2101 supports the following baud rates: 1011 * 1012 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1013 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1014 * 1015 * CP2102 and CP2103 support the following additional rates: 1016 * 1017 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1018 * 576000 1019 * 1020 * The device will map a requested rate to a supported one, but the result 1021 * of requests for rates greater than 1053257 is undefined (see AN205). 1022 * 1023 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1024 * respectively, with an error less than 1%. The actual rates are determined 1025 * by 1026 * 1027 * div = round(freq / (2 x prescale x request)) 1028 * actual = freq / (2 x prescale x div) 1029 * 1030 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1031 * or 1 otherwise. 1032 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1033 * otherwise. 1034 */ 1035 static void cp210x_change_speed(struct tty_struct *tty, 1036 struct usb_serial_port *port, struct ktermios *old_termios) 1037 { 1038 struct usb_serial *serial = port->serial; 1039 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1040 u32 baud; 1041 1042 /* 1043 * This maps the requested rate to the actual rate, a valid rate on 1044 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1045 * 1046 * NOTE: B0 is not implemented. 1047 */ 1048 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1049 1050 if (priv->use_actual_rate) 1051 baud = cp210x_get_actual_rate(baud); 1052 else if (baud < 1000000) 1053 baud = cp210x_get_an205_rate(baud); 1054 1055 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1056 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1057 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1058 if (old_termios) 1059 baud = old_termios->c_ospeed; 1060 else 1061 baud = 9600; 1062 } 1063 1064 tty_encode_baud_rate(tty, baud, baud); 1065 } 1066 1067 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1068 { 1069 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1070 int ret; 1071 1072 if (port_priv->event_mode) 1073 return; 1074 1075 port_priv->event_state = ES_DATA; 1076 port_priv->event_mode = true; 1077 1078 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1079 if (ret) { 1080 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1081 port_priv->event_mode = false; 1082 } 1083 } 1084 1085 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1086 { 1087 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1088 int ret; 1089 1090 if (!port_priv->event_mode) 1091 return; 1092 1093 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1094 if (ret) { 1095 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1096 return; 1097 } 1098 1099 port_priv->event_mode = false; 1100 } 1101 1102 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1103 { 1104 bool iflag_change, cc_change; 1105 1106 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1107 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1108 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1109 1110 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1111 } 1112 1113 static void cp210x_set_flow_control(struct tty_struct *tty, 1114 struct usb_serial_port *port, struct ktermios *old_termios) 1115 { 1116 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1117 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1118 struct cp210x_special_chars chars; 1119 struct cp210x_flow_ctl flow_ctl; 1120 u32 flow_repl; 1121 u32 ctl_hs; 1122 bool crtscts; 1123 int ret; 1124 1125 /* 1126 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1127 * CP2102N_E104). Report back that flow control is not supported. 1128 */ 1129 if (priv->no_flow_control) { 1130 tty->termios.c_cflag &= ~CRTSCTS; 1131 tty->termios.c_iflag &= ~(IXON | IXOFF); 1132 } 1133 1134 if (old_termios && 1135 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1136 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1137 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1138 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1139 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1140 return; 1141 } 1142 1143 if (I_IXON(tty) || I_IXOFF(tty)) { 1144 memset(&chars, 0, sizeof(chars)); 1145 1146 chars.bXonChar = START_CHAR(tty); 1147 chars.bXoffChar = STOP_CHAR(tty); 1148 1149 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1150 sizeof(chars)); 1151 if (ret) { 1152 dev_err(&port->dev, "failed to set special chars: %d\n", 1153 ret); 1154 } 1155 } 1156 1157 mutex_lock(&port_priv->mutex); 1158 1159 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1160 sizeof(flow_ctl)); 1161 if (ret) 1162 goto out_unlock; 1163 1164 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1165 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1166 1167 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1168 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1169 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1170 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1171 if (port_priv->dtr) 1172 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1173 else 1174 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1175 1176 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1177 if (C_CRTSCTS(tty)) { 1178 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1179 if (port_priv->rts) 1180 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1181 else 1182 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1183 crtscts = true; 1184 } else { 1185 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1186 if (port_priv->rts) 1187 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1188 else 1189 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1190 crtscts = false; 1191 } 1192 1193 if (I_IXOFF(tty)) { 1194 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1195 1196 flow_ctl.ulXonLimit = cpu_to_le32(128); 1197 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1198 } else { 1199 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1200 } 1201 1202 if (I_IXON(tty)) 1203 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1204 else 1205 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1206 1207 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1208 ctl_hs, flow_repl); 1209 1210 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1211 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1212 1213 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1214 sizeof(flow_ctl)); 1215 if (ret) 1216 goto out_unlock; 1217 1218 port_priv->crtscts = crtscts; 1219 out_unlock: 1220 mutex_unlock(&port_priv->mutex); 1221 } 1222 1223 static void cp210x_set_termios(struct tty_struct *tty, 1224 struct usb_serial_port *port, struct ktermios *old_termios) 1225 { 1226 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1227 u16 bits; 1228 int ret; 1229 1230 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) 1231 return; 1232 1233 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1234 cp210x_change_speed(tty, port, old_termios); 1235 1236 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1237 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1238 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1239 tty->termios.c_cflag |= CS8; 1240 } 1241 1242 bits = 0; 1243 1244 switch (C_CSIZE(tty)) { 1245 case CS5: 1246 bits |= BITS_DATA_5; 1247 break; 1248 case CS6: 1249 bits |= BITS_DATA_6; 1250 break; 1251 case CS7: 1252 bits |= BITS_DATA_7; 1253 break; 1254 case CS8: 1255 default: 1256 bits |= BITS_DATA_8; 1257 break; 1258 } 1259 1260 if (C_PARENB(tty)) { 1261 if (C_CMSPAR(tty)) { 1262 if (C_PARODD(tty)) 1263 bits |= BITS_PARITY_MARK; 1264 else 1265 bits |= BITS_PARITY_SPACE; 1266 } else { 1267 if (C_PARODD(tty)) 1268 bits |= BITS_PARITY_ODD; 1269 else 1270 bits |= BITS_PARITY_EVEN; 1271 } 1272 } 1273 1274 if (C_CSTOPB(tty)) 1275 bits |= BITS_STOP_2; 1276 else 1277 bits |= BITS_STOP_1; 1278 1279 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1280 if (ret) 1281 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1282 1283 cp210x_set_flow_control(tty, port, old_termios); 1284 1285 /* 1286 * Enable event-insertion mode only if input parity checking is 1287 * enabled for now. 1288 */ 1289 if (I_INPCK(tty)) 1290 cp210x_enable_event_mode(port); 1291 else 1292 cp210x_disable_event_mode(port); 1293 } 1294 1295 static int cp210x_tiocmset(struct tty_struct *tty, 1296 unsigned int set, unsigned int clear) 1297 { 1298 struct usb_serial_port *port = tty->driver_data; 1299 return cp210x_tiocmset_port(port, set, clear); 1300 } 1301 1302 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1303 unsigned int set, unsigned int clear) 1304 { 1305 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1306 struct cp210x_flow_ctl flow_ctl; 1307 u32 ctl_hs, flow_repl; 1308 u16 control = 0; 1309 int ret; 1310 1311 mutex_lock(&port_priv->mutex); 1312 1313 if (set & TIOCM_RTS) { 1314 port_priv->rts = true; 1315 control |= CONTROL_RTS; 1316 control |= CONTROL_WRITE_RTS; 1317 } 1318 if (set & TIOCM_DTR) { 1319 port_priv->dtr = true; 1320 control |= CONTROL_DTR; 1321 control |= CONTROL_WRITE_DTR; 1322 } 1323 if (clear & TIOCM_RTS) { 1324 port_priv->rts = false; 1325 control &= ~CONTROL_RTS; 1326 control |= CONTROL_WRITE_RTS; 1327 } 1328 if (clear & TIOCM_DTR) { 1329 port_priv->dtr = false; 1330 control &= ~CONTROL_DTR; 1331 control |= CONTROL_WRITE_DTR; 1332 } 1333 1334 /* 1335 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1336 * flow control is enabled. 1337 */ 1338 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1339 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1340 sizeof(flow_ctl)); 1341 if (ret) 1342 goto out_unlock; 1343 1344 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1345 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1346 1347 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1348 if (port_priv->dtr) 1349 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1350 else 1351 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1352 1353 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1354 if (port_priv->rts) 1355 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1356 else 1357 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1358 1359 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1360 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1361 1362 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1363 __func__, ctl_hs, flow_repl); 1364 1365 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1366 sizeof(flow_ctl)); 1367 } else { 1368 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1369 1370 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1371 } 1372 out_unlock: 1373 mutex_unlock(&port_priv->mutex); 1374 1375 return ret; 1376 } 1377 1378 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1379 { 1380 if (on) 1381 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1382 else 1383 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1384 } 1385 1386 static int cp210x_tiocmget(struct tty_struct *tty) 1387 { 1388 struct usb_serial_port *port = tty->driver_data; 1389 u8 control; 1390 int result; 1391 1392 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1393 if (result) 1394 return result; 1395 1396 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1397 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1398 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1399 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1400 |((control & CONTROL_RING)? TIOCM_RI : 0) 1401 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1402 1403 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1404 1405 return result; 1406 } 1407 1408 static void cp210x_break_ctl(struct tty_struct *tty, int break_state) 1409 { 1410 struct usb_serial_port *port = tty->driver_data; 1411 u16 state; 1412 1413 if (break_state == 0) 1414 state = BREAK_OFF; 1415 else 1416 state = BREAK_ON; 1417 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1418 state == BREAK_OFF ? "off" : "on"); 1419 cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1420 } 1421 1422 #ifdef CONFIG_GPIOLIB 1423 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1424 { 1425 struct usb_serial *serial = gpiochip_get_data(gc); 1426 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1427 u8 req_type; 1428 u16 mask; 1429 int result; 1430 int len; 1431 1432 result = usb_autopm_get_interface(serial->interface); 1433 if (result) 1434 return result; 1435 1436 switch (priv->partnum) { 1437 case CP210X_PARTNUM_CP2105: 1438 req_type = REQTYPE_INTERFACE_TO_HOST; 1439 len = 1; 1440 break; 1441 case CP210X_PARTNUM_CP2108: 1442 req_type = REQTYPE_INTERFACE_TO_HOST; 1443 len = 2; 1444 break; 1445 default: 1446 req_type = REQTYPE_DEVICE_TO_HOST; 1447 len = 1; 1448 break; 1449 } 1450 1451 mask = 0; 1452 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1453 &mask, len); 1454 1455 usb_autopm_put_interface(serial->interface); 1456 1457 if (result < 0) 1458 return result; 1459 1460 le16_to_cpus(&mask); 1461 1462 return !!(mask & BIT(gpio)); 1463 } 1464 1465 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1466 { 1467 struct usb_serial *serial = gpiochip_get_data(gc); 1468 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1469 struct cp210x_gpio_write16 buf16; 1470 struct cp210x_gpio_write buf; 1471 u16 mask, state; 1472 u16 wIndex; 1473 int result; 1474 1475 if (value == 1) 1476 state = BIT(gpio); 1477 else 1478 state = 0; 1479 1480 mask = BIT(gpio); 1481 1482 result = usb_autopm_get_interface(serial->interface); 1483 if (result) 1484 goto out; 1485 1486 switch (priv->partnum) { 1487 case CP210X_PARTNUM_CP2105: 1488 buf.mask = (u8)mask; 1489 buf.state = (u8)state; 1490 result = cp210x_write_vendor_block(serial, 1491 REQTYPE_HOST_TO_INTERFACE, 1492 CP210X_WRITE_LATCH, &buf, 1493 sizeof(buf)); 1494 break; 1495 case CP210X_PARTNUM_CP2108: 1496 buf16.mask = cpu_to_le16(mask); 1497 buf16.state = cpu_to_le16(state); 1498 result = cp210x_write_vendor_block(serial, 1499 REQTYPE_HOST_TO_INTERFACE, 1500 CP210X_WRITE_LATCH, &buf16, 1501 sizeof(buf16)); 1502 break; 1503 default: 1504 wIndex = state << 8 | mask; 1505 result = usb_control_msg(serial->dev, 1506 usb_sndctrlpipe(serial->dev, 0), 1507 CP210X_VENDOR_SPECIFIC, 1508 REQTYPE_HOST_TO_DEVICE, 1509 CP210X_WRITE_LATCH, 1510 wIndex, 1511 NULL, 0, USB_CTRL_SET_TIMEOUT); 1512 break; 1513 } 1514 1515 usb_autopm_put_interface(serial->interface); 1516 out: 1517 if (result < 0) { 1518 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1519 result); 1520 } 1521 } 1522 1523 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1524 { 1525 struct usb_serial *serial = gpiochip_get_data(gc); 1526 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1527 1528 return priv->gpio_input & BIT(gpio); 1529 } 1530 1531 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1532 { 1533 struct usb_serial *serial = gpiochip_get_data(gc); 1534 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1535 1536 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1537 /* hardware does not support an input mode */ 1538 return -ENOTSUPP; 1539 } 1540 1541 /* push-pull pins cannot be changed to be inputs */ 1542 if (priv->gpio_pushpull & BIT(gpio)) 1543 return -EINVAL; 1544 1545 /* make sure to release pin if it is being driven low */ 1546 cp210x_gpio_set(gc, gpio, 1); 1547 1548 priv->gpio_input |= BIT(gpio); 1549 1550 return 0; 1551 } 1552 1553 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1554 int value) 1555 { 1556 struct usb_serial *serial = gpiochip_get_data(gc); 1557 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1558 1559 priv->gpio_input &= ~BIT(gpio); 1560 cp210x_gpio_set(gc, gpio, value); 1561 1562 return 0; 1563 } 1564 1565 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1566 unsigned long config) 1567 { 1568 struct usb_serial *serial = gpiochip_get_data(gc); 1569 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1570 enum pin_config_param param = pinconf_to_config_param(config); 1571 1572 /* Succeed only if in correct mode (this can't be set at runtime) */ 1573 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1574 (priv->gpio_pushpull & BIT(gpio))) 1575 return 0; 1576 1577 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1578 !(priv->gpio_pushpull & BIT(gpio))) 1579 return 0; 1580 1581 return -ENOTSUPP; 1582 } 1583 1584 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1585 unsigned long *valid_mask, unsigned int ngpios) 1586 { 1587 struct usb_serial *serial = gpiochip_get_data(gc); 1588 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1589 struct device *dev = &serial->interface->dev; 1590 unsigned long altfunc_mask = priv->gpio_altfunc; 1591 1592 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1593 1594 if (bitmap_empty(valid_mask, ngpios)) 1595 dev_dbg(dev, "no pin configured for GPIO\n"); 1596 else 1597 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1598 valid_mask); 1599 return 0; 1600 } 1601 1602 /* 1603 * This function is for configuring GPIO using shared pins, where other signals 1604 * are made unavailable by configuring the use of GPIO. This is believed to be 1605 * only applicable to the cp2105 at this point, the other devices supported by 1606 * this driver that provide GPIO do so in a way that does not impact other 1607 * signals and are thus expected to have very different initialisation. 1608 */ 1609 static int cp2105_gpioconf_init(struct usb_serial *serial) 1610 { 1611 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1612 struct cp210x_pin_mode mode; 1613 struct cp210x_dual_port_config config; 1614 u8 intf_num = cp210x_interface_num(serial); 1615 u8 iface_config; 1616 int result; 1617 1618 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1619 CP210X_GET_DEVICEMODE, &mode, 1620 sizeof(mode)); 1621 if (result < 0) 1622 return result; 1623 1624 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1625 CP210X_GET_PORTCONFIG, &config, 1626 sizeof(config)); 1627 if (result < 0) 1628 return result; 1629 1630 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1631 if (intf_num == 0) { 1632 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1633 /* mark all GPIOs of this interface as reserved */ 1634 priv->gpio_altfunc = 0xff; 1635 return 0; 1636 } 1637 1638 iface_config = config.eci_cfg; 1639 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1640 CP210X_ECI_GPIO_MODE_MASK) >> 1641 CP210X_ECI_GPIO_MODE_OFFSET); 1642 priv->gc.ngpio = 2; 1643 } else if (intf_num == 1) { 1644 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1645 /* mark all GPIOs of this interface as reserved */ 1646 priv->gpio_altfunc = 0xff; 1647 return 0; 1648 } 1649 1650 iface_config = config.sci_cfg; 1651 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1652 CP210X_SCI_GPIO_MODE_MASK) >> 1653 CP210X_SCI_GPIO_MODE_OFFSET); 1654 priv->gc.ngpio = 3; 1655 } else { 1656 return -ENODEV; 1657 } 1658 1659 /* mark all pins which are not in GPIO mode */ 1660 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1661 priv->gpio_altfunc |= BIT(0); 1662 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1663 CP2105_GPIO1_RS485_MODE)) 1664 priv->gpio_altfunc |= BIT(1); 1665 1666 /* driver implementation for CP2105 only supports outputs */ 1667 priv->gpio_input = 0; 1668 1669 return 0; 1670 } 1671 1672 static int cp2104_gpioconf_init(struct usb_serial *serial) 1673 { 1674 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1675 struct cp210x_single_port_config config; 1676 u8 iface_config; 1677 u8 gpio_latch; 1678 int result; 1679 u8 i; 1680 1681 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1682 CP210X_GET_PORTCONFIG, &config, 1683 sizeof(config)); 1684 if (result < 0) 1685 return result; 1686 1687 priv->gc.ngpio = 4; 1688 1689 iface_config = config.device_cfg; 1690 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1691 CP210X_GPIO_MODE_MASK) >> 1692 CP210X_GPIO_MODE_OFFSET); 1693 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1694 CP210X_GPIO_MODE_MASK) >> 1695 CP210X_GPIO_MODE_OFFSET); 1696 1697 /* mark all pins which are not in GPIO mode */ 1698 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1699 priv->gpio_altfunc |= BIT(0); 1700 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1701 priv->gpio_altfunc |= BIT(1); 1702 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1703 priv->gpio_altfunc |= BIT(2); 1704 1705 /* 1706 * Like CP2102N, CP2104 has also no strict input and output pin 1707 * modes. 1708 * Do the same input mode emulation as CP2102N. 1709 */ 1710 for (i = 0; i < priv->gc.ngpio; ++i) { 1711 /* 1712 * Set direction to "input" iff pin is open-drain and reset 1713 * value is 1. 1714 */ 1715 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1716 priv->gpio_input |= BIT(i); 1717 } 1718 1719 return 0; 1720 } 1721 1722 static int cp2108_gpio_init(struct usb_serial *serial) 1723 { 1724 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1725 struct cp210x_quad_port_config config; 1726 u16 gpio_latch; 1727 int result; 1728 u8 i; 1729 1730 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1731 CP210X_GET_PORTCONFIG, &config, 1732 sizeof(config)); 1733 if (result < 0) 1734 return result; 1735 1736 priv->gc.ngpio = 16; 1737 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1738 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1739 1740 /* 1741 * Mark all pins which are not in GPIO mode. 1742 * 1743 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1744 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1745 * 1746 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1747 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1748 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1749 */ 1750 for (i = 0; i < 4; i++) { 1751 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1752 priv->gpio_altfunc |= BIT(i * 4); 1753 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1754 priv->gpio_altfunc |= BIT((i * 4) + 1); 1755 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1756 priv->gpio_altfunc |= BIT((i * 4) + 2); 1757 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1758 priv->gpio_altfunc |= BIT((i * 4) + 3); 1759 } 1760 1761 /* 1762 * Like CP2102N, CP2108 has also no strict input and output pin 1763 * modes. Do the same input mode emulation as CP2102N. 1764 */ 1765 for (i = 0; i < priv->gc.ngpio; ++i) { 1766 /* 1767 * Set direction to "input" iff pin is open-drain and reset 1768 * value is 1. 1769 */ 1770 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1771 priv->gpio_input |= BIT(i); 1772 } 1773 1774 return 0; 1775 } 1776 1777 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1778 { 1779 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1780 const u16 config_size = 0x02a6; 1781 u8 gpio_rst_latch; 1782 u8 config_version; 1783 u8 gpio_pushpull; 1784 u8 *config_buf; 1785 u8 gpio_latch; 1786 u8 gpio_ctrl; 1787 int result; 1788 u8 i; 1789 1790 /* 1791 * Retrieve device configuration from the device. 1792 * The array received contains all customization settings done at the 1793 * factory/manufacturer. Format of the array is documented at the 1794 * time of writing at: 1795 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1796 */ 1797 config_buf = kmalloc(config_size, GFP_KERNEL); 1798 if (!config_buf) 1799 return -ENOMEM; 1800 1801 result = cp210x_read_vendor_block(serial, 1802 REQTYPE_DEVICE_TO_HOST, 1803 CP210X_READ_2NCONFIG, 1804 config_buf, 1805 config_size); 1806 if (result < 0) { 1807 kfree(config_buf); 1808 return result; 1809 } 1810 1811 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1812 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1813 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1814 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1815 1816 kfree(config_buf); 1817 1818 /* Make sure this is a config format we understand. */ 1819 if (config_version != 0x01) 1820 return -ENOTSUPP; 1821 1822 priv->gc.ngpio = 4; 1823 1824 /* 1825 * Get default pin states after reset. Needed so we can determine 1826 * the direction of an open-drain pin. 1827 */ 1828 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1829 1830 /* 0 indicates open-drain mode, 1 is push-pull */ 1831 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1832 1833 /* 0 indicates GPIO mode, 1 is alternate function */ 1834 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1835 /* QFN20 is special... */ 1836 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1837 priv->gpio_altfunc |= BIT(0); 1838 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1839 priv->gpio_altfunc |= BIT(1); 1840 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1841 priv->gpio_altfunc |= BIT(2); 1842 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1843 priv->gpio_altfunc |= BIT(3); 1844 } else { 1845 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1846 } 1847 1848 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1849 /* 1850 * For the QFN28 package, GPIO4-6 are controlled by 1851 * the low three bits of the mode/latch fields. 1852 * Contrary to the document linked above, the bits for 1853 * the SUSPEND pins are elsewhere. No alternate 1854 * function is available for these pins. 1855 */ 1856 priv->gc.ngpio = 7; 1857 gpio_latch |= (gpio_rst_latch & 7) << 4; 1858 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1859 } 1860 1861 /* 1862 * The CP2102N does not strictly has input and output pin modes, 1863 * it only knows open-drain and push-pull modes which is set at 1864 * factory. An open-drain pin can function both as an 1865 * input or an output. We emulate input mode for open-drain pins 1866 * by making sure they are not driven low, and we do not allow 1867 * push-pull pins to be set as an input. 1868 */ 1869 for (i = 0; i < priv->gc.ngpio; ++i) { 1870 /* 1871 * Set direction to "input" iff pin is open-drain and reset 1872 * value is 1. 1873 */ 1874 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1875 priv->gpio_input |= BIT(i); 1876 } 1877 1878 return 0; 1879 } 1880 1881 static int cp210x_gpio_init(struct usb_serial *serial) 1882 { 1883 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1884 int result; 1885 1886 switch (priv->partnum) { 1887 case CP210X_PARTNUM_CP2104: 1888 result = cp2104_gpioconf_init(serial); 1889 break; 1890 case CP210X_PARTNUM_CP2105: 1891 result = cp2105_gpioconf_init(serial); 1892 break; 1893 case CP210X_PARTNUM_CP2108: 1894 /* 1895 * The GPIOs are not tied to any specific port so only register 1896 * once for interface 0. 1897 */ 1898 if (cp210x_interface_num(serial) != 0) 1899 return 0; 1900 result = cp2108_gpio_init(serial); 1901 break; 1902 case CP210X_PARTNUM_CP2102N_QFN28: 1903 case CP210X_PARTNUM_CP2102N_QFN24: 1904 case CP210X_PARTNUM_CP2102N_QFN20: 1905 result = cp2102n_gpioconf_init(serial); 1906 break; 1907 default: 1908 return 0; 1909 } 1910 1911 if (result < 0) 1912 return result; 1913 1914 priv->gc.label = "cp210x"; 1915 priv->gc.get_direction = cp210x_gpio_direction_get; 1916 priv->gc.direction_input = cp210x_gpio_direction_input; 1917 priv->gc.direction_output = cp210x_gpio_direction_output; 1918 priv->gc.get = cp210x_gpio_get; 1919 priv->gc.set = cp210x_gpio_set; 1920 priv->gc.set_config = cp210x_gpio_set_config; 1921 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1922 priv->gc.owner = THIS_MODULE; 1923 priv->gc.parent = &serial->interface->dev; 1924 priv->gc.base = -1; 1925 priv->gc.can_sleep = true; 1926 1927 result = gpiochip_add_data(&priv->gc, serial); 1928 if (!result) 1929 priv->gpio_registered = true; 1930 1931 return result; 1932 } 1933 1934 static void cp210x_gpio_remove(struct usb_serial *serial) 1935 { 1936 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1937 1938 if (priv->gpio_registered) { 1939 gpiochip_remove(&priv->gc); 1940 priv->gpio_registered = false; 1941 } 1942 } 1943 1944 #else 1945 1946 static int cp210x_gpio_init(struct usb_serial *serial) 1947 { 1948 return 0; 1949 } 1950 1951 static void cp210x_gpio_remove(struct usb_serial *serial) 1952 { 1953 /* Nothing to do */ 1954 } 1955 1956 #endif 1957 1958 static int cp210x_port_probe(struct usb_serial_port *port) 1959 { 1960 struct usb_serial *serial = port->serial; 1961 struct cp210x_port_private *port_priv; 1962 1963 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 1964 if (!port_priv) 1965 return -ENOMEM; 1966 1967 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 1968 mutex_init(&port_priv->mutex); 1969 1970 usb_set_serial_port_data(port, port_priv); 1971 1972 return 0; 1973 } 1974 1975 static void cp210x_port_remove(struct usb_serial_port *port) 1976 { 1977 struct cp210x_port_private *port_priv; 1978 1979 port_priv = usb_get_serial_port_data(port); 1980 kfree(port_priv); 1981 } 1982 1983 static void cp210x_init_max_speed(struct usb_serial *serial) 1984 { 1985 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1986 bool use_actual_rate = false; 1987 speed_t min = 300; 1988 speed_t max; 1989 1990 switch (priv->partnum) { 1991 case CP210X_PARTNUM_CP2101: 1992 max = 921600; 1993 break; 1994 case CP210X_PARTNUM_CP2102: 1995 case CP210X_PARTNUM_CP2103: 1996 max = 1000000; 1997 break; 1998 case CP210X_PARTNUM_CP2104: 1999 use_actual_rate = true; 2000 max = 2000000; 2001 break; 2002 case CP210X_PARTNUM_CP2108: 2003 max = 2000000; 2004 break; 2005 case CP210X_PARTNUM_CP2105: 2006 if (cp210x_interface_num(serial) == 0) { 2007 use_actual_rate = true; 2008 max = 2000000; /* ECI */ 2009 } else { 2010 min = 2400; 2011 max = 921600; /* SCI */ 2012 } 2013 break; 2014 case CP210X_PARTNUM_CP2102N_QFN28: 2015 case CP210X_PARTNUM_CP2102N_QFN24: 2016 case CP210X_PARTNUM_CP2102N_QFN20: 2017 use_actual_rate = true; 2018 max = 3000000; 2019 break; 2020 default: 2021 max = 2000000; 2022 break; 2023 } 2024 2025 priv->min_speed = min; 2026 priv->max_speed = max; 2027 priv->use_actual_rate = use_actual_rate; 2028 } 2029 2030 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2031 { 2032 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2033 u8 ver[3]; 2034 int ret; 2035 2036 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2037 ver, sizeof(ver)); 2038 if (ret) 2039 return ret; 2040 2041 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2042 ver[0], ver[1], ver[2]); 2043 2044 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2045 2046 return 0; 2047 } 2048 2049 static void cp210x_determine_type(struct usb_serial *serial) 2050 { 2051 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2052 int ret; 2053 2054 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2055 CP210X_GET_PARTNUM, &priv->partnum, 2056 sizeof(priv->partnum)); 2057 if (ret < 0) { 2058 dev_warn(&serial->interface->dev, 2059 "querying part number failed\n"); 2060 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2061 return; 2062 } 2063 2064 switch (priv->partnum) { 2065 case CP210X_PARTNUM_CP2105: 2066 case CP210X_PARTNUM_CP2108: 2067 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2068 break; 2069 case CP210X_PARTNUM_CP2102N_QFN28: 2070 case CP210X_PARTNUM_CP2102N_QFN24: 2071 case CP210X_PARTNUM_CP2102N_QFN20: 2072 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2073 if (ret) 2074 break; 2075 if (priv->fw_version <= 0x10004) 2076 priv->no_flow_control = true; 2077 break; 2078 default: 2079 break; 2080 } 2081 } 2082 2083 static int cp210x_attach(struct usb_serial *serial) 2084 { 2085 int result; 2086 struct cp210x_serial_private *priv; 2087 2088 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2089 if (!priv) 2090 return -ENOMEM; 2091 2092 usb_set_serial_data(serial, priv); 2093 2094 cp210x_determine_type(serial); 2095 cp210x_init_max_speed(serial); 2096 2097 result = cp210x_gpio_init(serial); 2098 if (result < 0) { 2099 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2100 result); 2101 } 2102 2103 return 0; 2104 } 2105 2106 static void cp210x_disconnect(struct usb_serial *serial) 2107 { 2108 cp210x_gpio_remove(serial); 2109 } 2110 2111 static void cp210x_release(struct usb_serial *serial) 2112 { 2113 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2114 2115 cp210x_gpio_remove(serial); 2116 2117 kfree(priv); 2118 } 2119 2120 module_usb_serial_driver(serial_drivers, id_table); 2121 2122 MODULE_DESCRIPTION(DRIVER_DESC); 2123 MODULE_LICENSE("GPL v2"); 2124