xref: /linux/drivers/usb/serial/cp210x.c (revision c32dfec6c1c36bbbcd5d33e949d99aeb215877ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silicon Laboratories CP210x USB to RS232 serial adaptor driver
4  *
5  * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk)
6  * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org)
7  *
8  * Support to set flow control line levels using TIOCMGET and TIOCMSET
9  * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow
10  * control thanks to Munir Nassar nassarmu@real-time.com
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/slab.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/module.h>
20 #include <linux/usb.h>
21 #include <linux/usb/serial.h>
22 #include <linux/gpio/driver.h>
23 #include <linux/bitops.h>
24 #include <linux/mutex.h>
25 
26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver"
27 
28 /*
29  * Function Prototypes
30  */
31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *);
32 static void cp210x_close(struct usb_serial_port *);
33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *,
34 							struct ktermios *);
35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *,
36 							struct ktermios*);
37 static bool cp210x_tx_empty(struct usb_serial_port *port);
38 static int cp210x_tiocmget(struct tty_struct *);
39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int);
40 static int cp210x_tiocmset_port(struct usb_serial_port *port,
41 		unsigned int, unsigned int);
42 static void cp210x_break_ctl(struct tty_struct *, int);
43 static int cp210x_attach(struct usb_serial *);
44 static void cp210x_disconnect(struct usb_serial *);
45 static void cp210x_release(struct usb_serial *);
46 static int cp210x_port_probe(struct usb_serial_port *);
47 static void cp210x_port_remove(struct usb_serial_port *);
48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on);
49 static void cp210x_process_read_urb(struct urb *urb);
50 static void cp210x_enable_event_mode(struct usb_serial_port *port);
51 static void cp210x_disable_event_mode(struct usb_serial_port *port);
52 
53 static const struct usb_device_id id_table[] = {
54 	{ USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */
55 	{ USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */
56 	{ USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */
57 	{ USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */
58 	{ USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */
59 	{ USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */
60 	{ USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */
61 	{ USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */
62 	{ USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */
63 	{ USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */
64 	{ USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */
65 	{ USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */
66 	{ USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */
67 	{ USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */
68 	{ USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */
69 	{ USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */
70 	{ USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */
71 	{ USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */
72 	{ USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */
73 	{ USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */
74 	{ USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */
75 	{ USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */
76 	{ USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */
77 	{ USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */
78 	{ USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */
79 	{ USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */
80 	{ USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */
81 	{ USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */
82 	{ USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */
83 	{ USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */
84 	{ USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */
85 	{ USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */
86 	{ USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */
87 	{ USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */
88 	{ USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */
89 	{ USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */
90 	{ USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */
91 	{ USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */
92 	{ USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */
93 	{ USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */
94 	{ USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */
95 	{ USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */
96 	{ USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */
97 	{ USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */
98 	{ USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */
99 	{ USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */
100 	{ USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */
101 	{ USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */
102 	{ USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */
103 	{ USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */
104 	{ USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */
105 	{ USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */
106 	{ USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */
107 	{ USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */
108 	{ USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */
109 	{ USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */
110 	{ USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */
111 	{ USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */
112 	{ USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */
113 	{ USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */
114 	{ USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */
115 	{ USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */
116 	{ USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */
117 	{ USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */
118 	{ USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */
119 	{ USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */
120 	{ USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */
121 	{ USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */
122 	{ USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */
123 	{ USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */
124 	{ USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */
125 	{ USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */
126 	{ USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */
127 	{ USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */
128 	{ USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */
129 	{ USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */
130 	{ USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */
131 	{ USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */
132 	{ USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */
133 	{ USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */
134 	{ USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */
135 	{ USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */
136 	{ USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */
137 	{ USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */
138 	{ USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */
139 	{ USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */
140 	{ USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */
141 	{ USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */
142 	{ USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */
143 	{ USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */
144 	{ USB_DEVICE(0x10C4, 0x8856) },	/* CEL EM357 ZigBee USB Stick - LR */
145 	{ USB_DEVICE(0x10C4, 0x8857) },	/* CEL EM357 ZigBee USB Stick */
146 	{ USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */
147 	{ USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */
148 	{ USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */
149 	{ USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */
150 	{ USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */
151 	{ USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */
152 	{ USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */
153 	{ USB_DEVICE(0x10C4, 0x8977) },	/* CEL MeshWorks DevKit Device */
154 	{ USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */
155 	{ USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */
156 	{ USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */
157 	{ USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */
158 	{ USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */
159 	{ USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */
160 	{ USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */
161 	{ USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */
162 	{ USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */
163 	{ USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */
164 	{ USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */
165 	{ USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */
166 	{ USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */
167 	{ USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */
168 	{ USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */
169 	{ USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */
170 	{ USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */
171 	{ USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */
172 	{ USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */
173 	{ USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */
174 	{ USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */
175 	{ USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */
176 	{ USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */
177 	{ USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */
178 	{ USB_DEVICE(0x155A, 0x1006) },	/* ELDAT Easywave RX09 */
179 	{ USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */
180 	{ USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */
181 	{ USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */
182 	{ USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */
183 	{ USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */
184 	{ USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */
185 	{ USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */
186 	{ USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */
187 	{ USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */
188 	{ USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */
189 	{ USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */
190 	{ USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */
191 	{ USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */
192 	{ USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */
193 	{ USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */
194 	{ USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */
195 	{ USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */
196 	{ USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */
197 	{ USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */
198 	{ USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */
199 	{ USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */
200 	{ USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */
201 	{ USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */
202 	{ USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */
203 	{ USB_DEVICE(0x1901, 0x0194) },	/* GE Healthcare Remote Alarm Box */
204 	{ USB_DEVICE(0x1901, 0x0195) },	/* GE B850/B650/B450 CP2104 DP UART interface */
205 	{ USB_DEVICE(0x1901, 0x0196) },	/* GE B850 CP2105 DP UART interface */
206 	{ USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */
207 	{ USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */
208 	{ USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */
209 	{ USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */
210 	{ USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */
211 	{ USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */
212 	{ USB_DEVICE(0x1BA4, 0x0002) },	/* Silicon Labs 358x factory default */
213 	{ USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */
214 	{ USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */
215 	{ USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */
216 	{ USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */
217 	{ USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */
218 	{ USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */
219 	{ USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */
220 	{ USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */
221 	{ USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */
222 	{ USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */
223 	{ USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */
224 	{ USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */
225 	{ USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */
226 	{ USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */
227 	{ USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */
228 	{ USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */
229 	{ USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */
230 	{ USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */
231 	{ USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */
232 	{ USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */
233 	{ USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */
234 	{ USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */
235 	{ USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */
236 	{ USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */
237 	{ USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */
238 	{ USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */
239 	{ USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */
240 	{ USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */
241 	{ USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */
242 	{ } /* Terminating Entry */
243 };
244 
245 MODULE_DEVICE_TABLE(usb, id_table);
246 
247 struct cp210x_serial_private {
248 #ifdef CONFIG_GPIOLIB
249 	struct gpio_chip	gc;
250 	bool			gpio_registered;
251 	u16			gpio_pushpull;
252 	u16			gpio_altfunc;
253 	u16			gpio_input;
254 #endif
255 	u8			partnum;
256 	u32			fw_version;
257 	speed_t			min_speed;
258 	speed_t			max_speed;
259 	bool			use_actual_rate;
260 	bool			no_flow_control;
261 	bool			no_event_mode;
262 };
263 
264 enum cp210x_event_state {
265 	ES_DATA,
266 	ES_ESCAPE,
267 	ES_LSR,
268 	ES_LSR_DATA_0,
269 	ES_LSR_DATA_1,
270 	ES_MSR
271 };
272 
273 struct cp210x_port_private {
274 	u8			bInterfaceNumber;
275 	bool			event_mode;
276 	enum cp210x_event_state event_state;
277 	u8			lsr;
278 
279 	struct mutex		mutex;
280 	bool			crtscts;
281 	bool			dtr;
282 	bool			rts;
283 };
284 
285 static struct usb_serial_driver cp210x_device = {
286 	.driver = {
287 		.owner =	THIS_MODULE,
288 		.name =		"cp210x",
289 	},
290 	.id_table		= id_table,
291 	.num_ports		= 1,
292 	.bulk_in_size		= 256,
293 	.bulk_out_size		= 256,
294 	.open			= cp210x_open,
295 	.close			= cp210x_close,
296 	.break_ctl		= cp210x_break_ctl,
297 	.set_termios		= cp210x_set_termios,
298 	.tx_empty		= cp210x_tx_empty,
299 	.throttle		= usb_serial_generic_throttle,
300 	.unthrottle		= usb_serial_generic_unthrottle,
301 	.tiocmget		= cp210x_tiocmget,
302 	.tiocmset		= cp210x_tiocmset,
303 	.get_icount		= usb_serial_generic_get_icount,
304 	.attach			= cp210x_attach,
305 	.disconnect		= cp210x_disconnect,
306 	.release		= cp210x_release,
307 	.port_probe		= cp210x_port_probe,
308 	.port_remove		= cp210x_port_remove,
309 	.dtr_rts		= cp210x_dtr_rts,
310 	.process_read_urb	= cp210x_process_read_urb,
311 };
312 
313 static struct usb_serial_driver * const serial_drivers[] = {
314 	&cp210x_device, NULL
315 };
316 
317 /* Config request types */
318 #define REQTYPE_HOST_TO_INTERFACE	0x41
319 #define REQTYPE_INTERFACE_TO_HOST	0xc1
320 #define REQTYPE_HOST_TO_DEVICE	0x40
321 #define REQTYPE_DEVICE_TO_HOST	0xc0
322 
323 /* Config request codes */
324 #define CP210X_IFC_ENABLE	0x00
325 #define CP210X_SET_BAUDDIV	0x01
326 #define CP210X_GET_BAUDDIV	0x02
327 #define CP210X_SET_LINE_CTL	0x03
328 #define CP210X_GET_LINE_CTL	0x04
329 #define CP210X_SET_BREAK	0x05
330 #define CP210X_IMM_CHAR		0x06
331 #define CP210X_SET_MHS		0x07
332 #define CP210X_GET_MDMSTS	0x08
333 #define CP210X_SET_XON		0x09
334 #define CP210X_SET_XOFF		0x0A
335 #define CP210X_SET_EVENTMASK	0x0B
336 #define CP210X_GET_EVENTMASK	0x0C
337 #define CP210X_SET_CHAR		0x0D
338 #define CP210X_GET_CHARS	0x0E
339 #define CP210X_GET_PROPS	0x0F
340 #define CP210X_GET_COMM_STATUS	0x10
341 #define CP210X_RESET		0x11
342 #define CP210X_PURGE		0x12
343 #define CP210X_SET_FLOW		0x13
344 #define CP210X_GET_FLOW		0x14
345 #define CP210X_EMBED_EVENTS	0x15
346 #define CP210X_GET_EVENTSTATE	0x16
347 #define CP210X_SET_CHARS	0x19
348 #define CP210X_GET_BAUDRATE	0x1D
349 #define CP210X_SET_BAUDRATE	0x1E
350 #define CP210X_VENDOR_SPECIFIC	0xFF
351 
352 /* CP210X_IFC_ENABLE */
353 #define UART_ENABLE		0x0001
354 #define UART_DISABLE		0x0000
355 
356 /* CP210X_(SET|GET)_BAUDDIV */
357 #define BAUD_RATE_GEN_FREQ	0x384000
358 
359 /* CP210X_(SET|GET)_LINE_CTL */
360 #define BITS_DATA_MASK		0X0f00
361 #define BITS_DATA_5		0X0500
362 #define BITS_DATA_6		0X0600
363 #define BITS_DATA_7		0X0700
364 #define BITS_DATA_8		0X0800
365 #define BITS_DATA_9		0X0900
366 
367 #define BITS_PARITY_MASK	0x00f0
368 #define BITS_PARITY_NONE	0x0000
369 #define BITS_PARITY_ODD		0x0010
370 #define BITS_PARITY_EVEN	0x0020
371 #define BITS_PARITY_MARK	0x0030
372 #define BITS_PARITY_SPACE	0x0040
373 
374 #define BITS_STOP_MASK		0x000f
375 #define BITS_STOP_1		0x0000
376 #define BITS_STOP_1_5		0x0001
377 #define BITS_STOP_2		0x0002
378 
379 /* CP210X_SET_BREAK */
380 #define BREAK_ON		0x0001
381 #define BREAK_OFF		0x0000
382 
383 /* CP210X_(SET_MHS|GET_MDMSTS) */
384 #define CONTROL_DTR		0x0001
385 #define CONTROL_RTS		0x0002
386 #define CONTROL_CTS		0x0010
387 #define CONTROL_DSR		0x0020
388 #define CONTROL_RING		0x0040
389 #define CONTROL_DCD		0x0080
390 #define CONTROL_WRITE_DTR	0x0100
391 #define CONTROL_WRITE_RTS	0x0200
392 
393 /* CP210X_(GET|SET)_CHARS */
394 struct cp210x_special_chars {
395 	u8	bEofChar;
396 	u8	bErrorChar;
397 	u8	bBreakChar;
398 	u8	bEventChar;
399 	u8	bXonChar;
400 	u8	bXoffChar;
401 };
402 
403 /* CP210X_VENDOR_SPECIFIC values */
404 #define CP210X_GET_FW_VER	0x000E
405 #define CP210X_READ_2NCONFIG	0x000E
406 #define CP210X_GET_FW_VER_2N	0x0010
407 #define CP210X_READ_LATCH	0x00C2
408 #define CP210X_GET_PARTNUM	0x370B
409 #define CP210X_GET_PORTCONFIG	0x370C
410 #define CP210X_GET_DEVICEMODE	0x3711
411 #define CP210X_WRITE_LATCH	0x37E1
412 
413 /* Part number definitions */
414 #define CP210X_PARTNUM_CP2101	0x01
415 #define CP210X_PARTNUM_CP2102	0x02
416 #define CP210X_PARTNUM_CP2103	0x03
417 #define CP210X_PARTNUM_CP2104	0x04
418 #define CP210X_PARTNUM_CP2105	0x05
419 #define CP210X_PARTNUM_CP2108	0x08
420 #define CP210X_PARTNUM_CP2102N_QFN28	0x20
421 #define CP210X_PARTNUM_CP2102N_QFN24	0x21
422 #define CP210X_PARTNUM_CP2102N_QFN20	0x22
423 #define CP210X_PARTNUM_UNKNOWN	0xFF
424 
425 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */
426 struct cp210x_comm_status {
427 	__le32   ulErrors;
428 	__le32   ulHoldReasons;
429 	__le32   ulAmountInInQueue;
430 	__le32   ulAmountInOutQueue;
431 	u8       bEofReceived;
432 	u8       bWaitForImmediate;
433 	u8       bReserved;
434 } __packed;
435 
436 /*
437  * CP210X_PURGE - 16 bits passed in wValue of USB request.
438  * SiLabs app note AN571 gives a strange description of the 4 bits:
439  * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive.
440  * writing 1 to all, however, purges cp2108 well enough to avoid the hang.
441  */
442 #define PURGE_ALL		0x000f
443 
444 /* CP210X_EMBED_EVENTS */
445 #define CP210X_ESCCHAR		0xec
446 
447 #define CP210X_LSR_OVERRUN	BIT(1)
448 #define CP210X_LSR_PARITY	BIT(2)
449 #define CP210X_LSR_FRAME	BIT(3)
450 #define CP210X_LSR_BREAK	BIT(4)
451 
452 
453 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */
454 struct cp210x_flow_ctl {
455 	__le32	ulControlHandshake;
456 	__le32	ulFlowReplace;
457 	__le32	ulXonLimit;
458 	__le32	ulXoffLimit;
459 };
460 
461 /* cp210x_flow_ctl::ulControlHandshake */
462 #define CP210X_SERIAL_DTR_MASK		GENMASK(1, 0)
463 #define CP210X_SERIAL_DTR_INACTIVE	(0 << 0)
464 #define CP210X_SERIAL_DTR_ACTIVE	(1 << 0)
465 #define CP210X_SERIAL_DTR_FLOW_CTL	(2 << 0)
466 #define CP210X_SERIAL_CTS_HANDSHAKE	BIT(3)
467 #define CP210X_SERIAL_DSR_HANDSHAKE	BIT(4)
468 #define CP210X_SERIAL_DCD_HANDSHAKE	BIT(5)
469 #define CP210X_SERIAL_DSR_SENSITIVITY	BIT(6)
470 
471 /* cp210x_flow_ctl::ulFlowReplace */
472 #define CP210X_SERIAL_AUTO_TRANSMIT	BIT(0)
473 #define CP210X_SERIAL_AUTO_RECEIVE	BIT(1)
474 #define CP210X_SERIAL_ERROR_CHAR	BIT(2)
475 #define CP210X_SERIAL_NULL_STRIPPING	BIT(3)
476 #define CP210X_SERIAL_BREAK_CHAR	BIT(4)
477 #define CP210X_SERIAL_RTS_MASK		GENMASK(7, 6)
478 #define CP210X_SERIAL_RTS_INACTIVE	(0 << 6)
479 #define CP210X_SERIAL_RTS_ACTIVE	(1 << 6)
480 #define CP210X_SERIAL_RTS_FLOW_CTL	(2 << 6)
481 #define CP210X_SERIAL_XOFF_CONTINUE	BIT(31)
482 
483 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */
484 struct cp210x_pin_mode {
485 	u8	eci;
486 	u8	sci;
487 };
488 
489 #define CP210X_PIN_MODE_MODEM		0
490 #define CP210X_PIN_MODE_GPIO		BIT(0)
491 
492 /*
493  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes
494  * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes.
495  */
496 struct cp210x_dual_port_config {
497 	__le16	gpio_mode;
498 	u8	__pad0[2];
499 	__le16	reset_state;
500 	u8	__pad1[4];
501 	__le16	suspend_state;
502 	u8	sci_cfg;
503 	u8	eci_cfg;
504 	u8	device_cfg;
505 } __packed;
506 
507 /*
508  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes
509  * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes.
510  */
511 struct cp210x_single_port_config {
512 	__le16	gpio_mode;
513 	u8	__pad0[2];
514 	__le16	reset_state;
515 	u8	__pad1[4];
516 	__le16	suspend_state;
517 	u8	device_cfg;
518 } __packed;
519 
520 /* GPIO modes */
521 #define CP210X_SCI_GPIO_MODE_OFFSET	9
522 #define CP210X_SCI_GPIO_MODE_MASK	GENMASK(11, 9)
523 
524 #define CP210X_ECI_GPIO_MODE_OFFSET	2
525 #define CP210X_ECI_GPIO_MODE_MASK	GENMASK(3, 2)
526 
527 #define CP210X_GPIO_MODE_OFFSET		8
528 #define CP210X_GPIO_MODE_MASK		GENMASK(11, 8)
529 
530 /* CP2105 port configuration values */
531 #define CP2105_GPIO0_TXLED_MODE		BIT(0)
532 #define CP2105_GPIO1_RXLED_MODE		BIT(1)
533 #define CP2105_GPIO1_RS485_MODE		BIT(2)
534 
535 /* CP2104 port configuration values */
536 #define CP2104_GPIO0_TXLED_MODE		BIT(0)
537 #define CP2104_GPIO1_RXLED_MODE		BIT(1)
538 #define CP2104_GPIO2_RS485_MODE		BIT(2)
539 
540 struct cp210x_quad_port_state {
541 	__le16 gpio_mode_pb0;
542 	__le16 gpio_mode_pb1;
543 	__le16 gpio_mode_pb2;
544 	__le16 gpio_mode_pb3;
545 	__le16 gpio_mode_pb4;
546 
547 	__le16 gpio_lowpower_pb0;
548 	__le16 gpio_lowpower_pb1;
549 	__le16 gpio_lowpower_pb2;
550 	__le16 gpio_lowpower_pb3;
551 	__le16 gpio_lowpower_pb4;
552 
553 	__le16 gpio_latch_pb0;
554 	__le16 gpio_latch_pb1;
555 	__le16 gpio_latch_pb2;
556 	__le16 gpio_latch_pb3;
557 	__le16 gpio_latch_pb4;
558 };
559 
560 /*
561  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes
562  * on a CP2108 chip.
563  *
564  * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf
565  */
566 struct cp210x_quad_port_config {
567 	struct cp210x_quad_port_state reset_state;
568 	struct cp210x_quad_port_state suspend_state;
569 	u8 ipdelay_ifc[4];
570 	u8 enhancedfxn_ifc[4];
571 	u8 enhancedfxn_device;
572 	u8 extclkfreq[4];
573 } __packed;
574 
575 #define CP2108_EF_IFC_GPIO_TXLED		0x01
576 #define CP2108_EF_IFC_GPIO_RXLED		0x02
577 #define CP2108_EF_IFC_GPIO_RS485		0x04
578 #define CP2108_EF_IFC_GPIO_RS485_LOGIC		0x08
579 #define CP2108_EF_IFC_GPIO_CLOCK		0x10
580 #define CP2108_EF_IFC_DYNAMIC_SUSPEND		0x40
581 
582 /* CP2102N configuration array indices */
583 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX	2
584 #define CP210X_2NCONFIG_GPIO_MODE_IDX		581
585 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX	587
586 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX	600
587 
588 /* CP2102N QFN20 port configuration values */
589 #define CP2102N_QFN20_GPIO2_TXLED_MODE		BIT(2)
590 #define CP2102N_QFN20_GPIO3_RXLED_MODE		BIT(3)
591 #define CP2102N_QFN20_GPIO1_RS485_MODE		BIT(4)
592 #define CP2102N_QFN20_GPIO0_CLK_MODE		BIT(6)
593 
594 /*
595  * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes
596  * for CP2102N, CP2103, CP2104 and CP2105.
597  */
598 struct cp210x_gpio_write {
599 	u8	mask;
600 	u8	state;
601 };
602 
603 /*
604  * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes
605  * for CP2108.
606  */
607 struct cp210x_gpio_write16 {
608 	__le16	mask;
609 	__le16	state;
610 };
611 
612 /*
613  * Helper to get interface number when we only have struct usb_serial.
614  */
615 static u8 cp210x_interface_num(struct usb_serial *serial)
616 {
617 	struct usb_host_interface *cur_altsetting;
618 
619 	cur_altsetting = serial->interface->cur_altsetting;
620 
621 	return cur_altsetting->desc.bInterfaceNumber;
622 }
623 
624 /*
625  * Reads a variable-sized block of CP210X_ registers, identified by req.
626  * Returns data into buf in native USB byte order.
627  */
628 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req,
629 		void *buf, int bufsize)
630 {
631 	struct usb_serial *serial = port->serial;
632 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
633 	void *dmabuf;
634 	int result;
635 
636 	dmabuf = kmalloc(bufsize, GFP_KERNEL);
637 	if (!dmabuf)
638 		return -ENOMEM;
639 
640 	result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
641 			req, REQTYPE_INTERFACE_TO_HOST, 0,
642 			port_priv->bInterfaceNumber, dmabuf, bufsize,
643 			USB_CTRL_GET_TIMEOUT);
644 	if (result == bufsize) {
645 		memcpy(buf, dmabuf, bufsize);
646 		result = 0;
647 	} else {
648 		dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n",
649 				req, bufsize, result);
650 		if (result >= 0)
651 			result = -EIO;
652 	}
653 
654 	kfree(dmabuf);
655 
656 	return result;
657 }
658 
659 /*
660  * Reads any 8-bit CP210X_ register identified by req.
661  */
662 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val)
663 {
664 	return cp210x_read_reg_block(port, req, val, sizeof(*val));
665 }
666 
667 /*
668  * Reads a variable-sized vendor block of CP210X_ registers, identified by val.
669  * Returns data into buf in native USB byte order.
670  */
671 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val,
672 				    void *buf, int bufsize)
673 {
674 	void *dmabuf;
675 	int result;
676 
677 	dmabuf = kmalloc(bufsize, GFP_KERNEL);
678 	if (!dmabuf)
679 		return -ENOMEM;
680 
681 	result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
682 				 CP210X_VENDOR_SPECIFIC, type, val,
683 				 cp210x_interface_num(serial), dmabuf, bufsize,
684 				 USB_CTRL_GET_TIMEOUT);
685 	if (result == bufsize) {
686 		memcpy(buf, dmabuf, bufsize);
687 		result = 0;
688 	} else {
689 		dev_err(&serial->interface->dev,
690 			"failed to get vendor val 0x%04x size %d: %d\n", val,
691 			bufsize, result);
692 		if (result >= 0)
693 			result = -EIO;
694 	}
695 
696 	kfree(dmabuf);
697 
698 	return result;
699 }
700 
701 /*
702  * Writes any 16-bit CP210X_ register (req) whose value is passed
703  * entirely in the wValue field of the USB request.
704  */
705 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val)
706 {
707 	struct usb_serial *serial = port->serial;
708 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
709 	int result;
710 
711 	result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
712 			req, REQTYPE_HOST_TO_INTERFACE, val,
713 			port_priv->bInterfaceNumber, NULL, 0,
714 			USB_CTRL_SET_TIMEOUT);
715 	if (result < 0) {
716 		dev_err(&port->dev, "failed set request 0x%x status: %d\n",
717 				req, result);
718 	}
719 
720 	return result;
721 }
722 
723 /*
724  * Writes a variable-sized block of CP210X_ registers, identified by req.
725  * Data in buf must be in native USB byte order.
726  */
727 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req,
728 		void *buf, int bufsize)
729 {
730 	struct usb_serial *serial = port->serial;
731 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
732 	void *dmabuf;
733 	int result;
734 
735 	dmabuf = kmemdup(buf, bufsize, GFP_KERNEL);
736 	if (!dmabuf)
737 		return -ENOMEM;
738 
739 	result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
740 			req, REQTYPE_HOST_TO_INTERFACE, 0,
741 			port_priv->bInterfaceNumber, dmabuf, bufsize,
742 			USB_CTRL_SET_TIMEOUT);
743 
744 	kfree(dmabuf);
745 
746 	if (result < 0) {
747 		dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n",
748 				req, bufsize, result);
749 		return result;
750 	}
751 
752 	return 0;
753 }
754 
755 /*
756  * Writes any 32-bit CP210X_ register identified by req.
757  */
758 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val)
759 {
760 	__le32 le32_val;
761 
762 	le32_val = cpu_to_le32(val);
763 
764 	return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val));
765 }
766 
767 #ifdef CONFIG_GPIOLIB
768 /*
769  * Writes a variable-sized vendor block of CP210X_ registers, identified by val.
770  * Data in buf must be in native USB byte order.
771  */
772 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type,
773 				     u16 val, void *buf, int bufsize)
774 {
775 	void *dmabuf;
776 	int result;
777 
778 	dmabuf = kmemdup(buf, bufsize, GFP_KERNEL);
779 	if (!dmabuf)
780 		return -ENOMEM;
781 
782 	result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
783 				 CP210X_VENDOR_SPECIFIC, type, val,
784 				 cp210x_interface_num(serial), dmabuf, bufsize,
785 				 USB_CTRL_SET_TIMEOUT);
786 
787 	kfree(dmabuf);
788 
789 	if (result < 0) {
790 		dev_err(&serial->interface->dev,
791 			"failed to set vendor val 0x%04x size %d: %d\n", val,
792 			bufsize, result);
793 		return result;
794 	}
795 
796 	return 0;
797 }
798 #endif
799 
800 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port)
801 {
802 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
803 	int result;
804 
805 	result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE);
806 	if (result) {
807 		dev_err(&port->dev, "%s - Unable to enable UART\n", __func__);
808 		return result;
809 	}
810 
811 	if (tty)
812 		cp210x_set_termios(tty, port, NULL);
813 
814 	result = usb_serial_generic_open(tty, port);
815 	if (result)
816 		goto err_disable;
817 
818 	return 0;
819 
820 err_disable:
821 	cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE);
822 	port_priv->event_mode = false;
823 
824 	return result;
825 }
826 
827 static void cp210x_close(struct usb_serial_port *port)
828 {
829 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
830 
831 	usb_serial_generic_close(port);
832 
833 	/* Clear both queues; cp2108 needs this to avoid an occasional hang */
834 	cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL);
835 
836 	cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE);
837 
838 	/* Disabling the interface disables event-insertion mode. */
839 	port_priv->event_mode = false;
840 }
841 
842 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag)
843 {
844 	if (lsr & CP210X_LSR_BREAK) {
845 		port->icount.brk++;
846 		*flag = TTY_BREAK;
847 	} else if (lsr & CP210X_LSR_PARITY) {
848 		port->icount.parity++;
849 		*flag = TTY_PARITY;
850 	} else if (lsr & CP210X_LSR_FRAME) {
851 		port->icount.frame++;
852 		*flag = TTY_FRAME;
853 	}
854 
855 	if (lsr & CP210X_LSR_OVERRUN) {
856 		port->icount.overrun++;
857 		tty_insert_flip_char(&port->port, 0, TTY_OVERRUN);
858 	}
859 }
860 
861 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag)
862 {
863 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
864 
865 	switch (port_priv->event_state) {
866 	case ES_DATA:
867 		if (*ch == CP210X_ESCCHAR) {
868 			port_priv->event_state = ES_ESCAPE;
869 			break;
870 		}
871 		return false;
872 	case ES_ESCAPE:
873 		switch (*ch) {
874 		case 0:
875 			dev_dbg(&port->dev, "%s - escape char\n", __func__);
876 			*ch = CP210X_ESCCHAR;
877 			port_priv->event_state = ES_DATA;
878 			return false;
879 		case 1:
880 			port_priv->event_state = ES_LSR_DATA_0;
881 			break;
882 		case 2:
883 			port_priv->event_state = ES_LSR;
884 			break;
885 		case 3:
886 			port_priv->event_state = ES_MSR;
887 			break;
888 		default:
889 			dev_err(&port->dev, "malformed event 0x%02x\n", *ch);
890 			port_priv->event_state = ES_DATA;
891 			break;
892 		}
893 		break;
894 	case ES_LSR_DATA_0:
895 		port_priv->lsr = *ch;
896 		port_priv->event_state = ES_LSR_DATA_1;
897 		break;
898 	case ES_LSR_DATA_1:
899 		dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n",
900 				__func__, port_priv->lsr, *ch);
901 		cp210x_process_lsr(port, port_priv->lsr, flag);
902 		port_priv->event_state = ES_DATA;
903 		return false;
904 	case ES_LSR:
905 		dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch);
906 		port_priv->lsr = *ch;
907 		cp210x_process_lsr(port, port_priv->lsr, flag);
908 		port_priv->event_state = ES_DATA;
909 		break;
910 	case ES_MSR:
911 		dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch);
912 		/* unimplemented */
913 		port_priv->event_state = ES_DATA;
914 		break;
915 	}
916 
917 	return true;
918 }
919 
920 static void cp210x_process_read_urb(struct urb *urb)
921 {
922 	struct usb_serial_port *port = urb->context;
923 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
924 	unsigned char *ch = urb->transfer_buffer;
925 	char flag;
926 	int i;
927 
928 	if (!urb->actual_length)
929 		return;
930 
931 	if (port_priv->event_mode) {
932 		for (i = 0; i < urb->actual_length; i++, ch++) {
933 			flag = TTY_NORMAL;
934 
935 			if (cp210x_process_char(port, ch, &flag))
936 				continue;
937 
938 			tty_insert_flip_char(&port->port, *ch, flag);
939 		}
940 	} else {
941 		tty_insert_flip_string(&port->port, ch, urb->actual_length);
942 	}
943 	tty_flip_buffer_push(&port->port);
944 }
945 
946 /*
947  * Read how many bytes are waiting in the TX queue.
948  */
949 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port,
950 		u32 *count)
951 {
952 	struct usb_serial *serial = port->serial;
953 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
954 	struct cp210x_comm_status *sts;
955 	int result;
956 
957 	sts = kmalloc(sizeof(*sts), GFP_KERNEL);
958 	if (!sts)
959 		return -ENOMEM;
960 
961 	result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
962 			CP210X_GET_COMM_STATUS, REQTYPE_INTERFACE_TO_HOST,
963 			0, port_priv->bInterfaceNumber, sts, sizeof(*sts),
964 			USB_CTRL_GET_TIMEOUT);
965 	if (result == sizeof(*sts)) {
966 		*count = le32_to_cpu(sts->ulAmountInOutQueue);
967 		result = 0;
968 	} else {
969 		dev_err(&port->dev, "failed to get comm status: %d\n", result);
970 		if (result >= 0)
971 			result = -EIO;
972 	}
973 
974 	kfree(sts);
975 
976 	return result;
977 }
978 
979 static bool cp210x_tx_empty(struct usb_serial_port *port)
980 {
981 	int err;
982 	u32 count;
983 
984 	err = cp210x_get_tx_queue_byte_count(port, &count);
985 	if (err)
986 		return true;
987 
988 	return !count;
989 }
990 
991 struct cp210x_rate {
992 	speed_t rate;
993 	speed_t high;
994 };
995 
996 static const struct cp210x_rate cp210x_an205_table1[] = {
997 	{ 300, 300 },
998 	{ 600, 600 },
999 	{ 1200, 1200 },
1000 	{ 1800, 1800 },
1001 	{ 2400, 2400 },
1002 	{ 4000, 4000 },
1003 	{ 4800, 4803 },
1004 	{ 7200, 7207 },
1005 	{ 9600, 9612 },
1006 	{ 14400, 14428 },
1007 	{ 16000, 16062 },
1008 	{ 19200, 19250 },
1009 	{ 28800, 28912 },
1010 	{ 38400, 38601 },
1011 	{ 51200, 51558 },
1012 	{ 56000, 56280 },
1013 	{ 57600, 58053 },
1014 	{ 64000, 64111 },
1015 	{ 76800, 77608 },
1016 	{ 115200, 117028 },
1017 	{ 128000, 129347 },
1018 	{ 153600, 156868 },
1019 	{ 230400, 237832 },
1020 	{ 250000, 254234 },
1021 	{ 256000, 273066 },
1022 	{ 460800, 491520 },
1023 	{ 500000, 567138 },
1024 	{ 576000, 670254 },
1025 	{ 921600, UINT_MAX }
1026 };
1027 
1028 /*
1029  * Quantises the baud rate as per AN205 Table 1
1030  */
1031 static speed_t cp210x_get_an205_rate(speed_t baud)
1032 {
1033 	int i;
1034 
1035 	for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) {
1036 		if (baud <= cp210x_an205_table1[i].high)
1037 			break;
1038 	}
1039 
1040 	return cp210x_an205_table1[i].rate;
1041 }
1042 
1043 static speed_t cp210x_get_actual_rate(speed_t baud)
1044 {
1045 	unsigned int prescale = 1;
1046 	unsigned int div;
1047 
1048 	if (baud <= 365)
1049 		prescale = 4;
1050 
1051 	div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud);
1052 	baud = 48000000 / (2 * prescale * div);
1053 
1054 	return baud;
1055 }
1056 
1057 /*
1058  * CP2101 supports the following baud rates:
1059  *
1060  *	300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800,
1061  *	38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600
1062  *
1063  * CP2102 and CP2103 support the following additional rates:
1064  *
1065  *	4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000,
1066  *	576000
1067  *
1068  * The device will map a requested rate to a supported one, but the result
1069  * of requests for rates greater than 1053257 is undefined (see AN205).
1070  *
1071  * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud,
1072  * respectively, with an error less than 1%. The actual rates are determined
1073  * by
1074  *
1075  *	div = round(freq / (2 x prescale x request))
1076  *	actual = freq / (2 x prescale x div)
1077  *
1078  * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps
1079  * or 1 otherwise.
1080  * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1
1081  * otherwise.
1082  */
1083 static void cp210x_change_speed(struct tty_struct *tty,
1084 		struct usb_serial_port *port, struct ktermios *old_termios)
1085 {
1086 	struct usb_serial *serial = port->serial;
1087 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1088 	u32 baud;
1089 
1090 	/*
1091 	 * This maps the requested rate to the actual rate, a valid rate on
1092 	 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed].
1093 	 *
1094 	 * NOTE: B0 is not implemented.
1095 	 */
1096 	baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed);
1097 
1098 	if (priv->use_actual_rate)
1099 		baud = cp210x_get_actual_rate(baud);
1100 	else if (baud < 1000000)
1101 		baud = cp210x_get_an205_rate(baud);
1102 
1103 	dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud);
1104 	if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) {
1105 		dev_warn(&port->dev, "failed to set baud rate to %u\n", baud);
1106 		if (old_termios)
1107 			baud = old_termios->c_ospeed;
1108 		else
1109 			baud = 9600;
1110 	}
1111 
1112 	tty_encode_baud_rate(tty, baud, baud);
1113 }
1114 
1115 static void cp210x_enable_event_mode(struct usb_serial_port *port)
1116 {
1117 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1118 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1119 	int ret;
1120 
1121 	if (port_priv->event_mode)
1122 		return;
1123 
1124 	if (priv->no_event_mode)
1125 		return;
1126 
1127 	port_priv->event_state = ES_DATA;
1128 	port_priv->event_mode = true;
1129 
1130 	ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR);
1131 	if (ret) {
1132 		dev_err(&port->dev, "failed to enable events: %d\n", ret);
1133 		port_priv->event_mode = false;
1134 	}
1135 }
1136 
1137 static void cp210x_disable_event_mode(struct usb_serial_port *port)
1138 {
1139 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1140 	int ret;
1141 
1142 	if (!port_priv->event_mode)
1143 		return;
1144 
1145 	ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0);
1146 	if (ret) {
1147 		dev_err(&port->dev, "failed to disable events: %d\n", ret);
1148 		return;
1149 	}
1150 
1151 	port_priv->event_mode = false;
1152 }
1153 
1154 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b)
1155 {
1156 	bool iflag_change, cc_change;
1157 
1158 	iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF));
1159 	cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] ||
1160 			a->c_cc[VSTOP] != b->c_cc[VSTOP];
1161 
1162 	return tty_termios_hw_change(a, b) || iflag_change || cc_change;
1163 }
1164 
1165 static void cp210x_set_flow_control(struct tty_struct *tty,
1166 		struct usb_serial_port *port, struct ktermios *old_termios)
1167 {
1168 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1169 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1170 	struct cp210x_special_chars chars;
1171 	struct cp210x_flow_ctl flow_ctl;
1172 	u32 flow_repl;
1173 	u32 ctl_hs;
1174 	bool crtscts;
1175 	int ret;
1176 
1177 	/*
1178 	 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum
1179 	 * CP2102N_E104). Report back that flow control is not supported.
1180 	 */
1181 	if (priv->no_flow_control) {
1182 		tty->termios.c_cflag &= ~CRTSCTS;
1183 		tty->termios.c_iflag &= ~(IXON | IXOFF);
1184 	}
1185 
1186 	if (old_termios &&
1187 			C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) &&
1188 			I_IXON(tty) == (old_termios->c_iflag & IXON) &&
1189 			I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) &&
1190 			START_CHAR(tty) == old_termios->c_cc[VSTART] &&
1191 			STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) {
1192 		return;
1193 	}
1194 
1195 	if (I_IXON(tty) || I_IXOFF(tty)) {
1196 		memset(&chars, 0, sizeof(chars));
1197 
1198 		chars.bXonChar = START_CHAR(tty);
1199 		chars.bXoffChar = STOP_CHAR(tty);
1200 
1201 		ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars,
1202 				sizeof(chars));
1203 		if (ret) {
1204 			dev_err(&port->dev, "failed to set special chars: %d\n",
1205 					ret);
1206 		}
1207 	}
1208 
1209 	mutex_lock(&port_priv->mutex);
1210 
1211 	ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl,
1212 			sizeof(flow_ctl));
1213 	if (ret)
1214 		goto out_unlock;
1215 
1216 	ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake);
1217 	flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace);
1218 
1219 	ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE;
1220 	ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE;
1221 	ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY;
1222 	ctl_hs &= ~CP210X_SERIAL_DTR_MASK;
1223 	if (port_priv->dtr)
1224 		ctl_hs |= CP210X_SERIAL_DTR_ACTIVE;
1225 	else
1226 		ctl_hs |= CP210X_SERIAL_DTR_INACTIVE;
1227 
1228 	flow_repl &= ~CP210X_SERIAL_RTS_MASK;
1229 	if (C_CRTSCTS(tty)) {
1230 		ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE;
1231 		if (port_priv->rts)
1232 			flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL;
1233 		else
1234 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1235 		crtscts = true;
1236 	} else {
1237 		ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE;
1238 		if (port_priv->rts)
1239 			flow_repl |= CP210X_SERIAL_RTS_ACTIVE;
1240 		else
1241 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1242 		crtscts = false;
1243 	}
1244 
1245 	if (I_IXOFF(tty)) {
1246 		flow_repl |= CP210X_SERIAL_AUTO_RECEIVE;
1247 
1248 		flow_ctl.ulXonLimit = cpu_to_le32(128);
1249 		flow_ctl.ulXoffLimit = cpu_to_le32(128);
1250 	} else {
1251 		flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE;
1252 	}
1253 
1254 	if (I_IXON(tty))
1255 		flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT;
1256 	else
1257 		flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT;
1258 
1259 	dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__,
1260 			ctl_hs, flow_repl);
1261 
1262 	flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs);
1263 	flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl);
1264 
1265 	ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl,
1266 			sizeof(flow_ctl));
1267 	if (ret)
1268 		goto out_unlock;
1269 
1270 	port_priv->crtscts = crtscts;
1271 out_unlock:
1272 	mutex_unlock(&port_priv->mutex);
1273 }
1274 
1275 static void cp210x_set_termios(struct tty_struct *tty,
1276 		struct usb_serial_port *port, struct ktermios *old_termios)
1277 {
1278 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1279 	u16 bits;
1280 	int ret;
1281 
1282 	if (old_termios && !cp210x_termios_change(&tty->termios, old_termios))
1283 		return;
1284 
1285 	if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed)
1286 		cp210x_change_speed(tty, port, old_termios);
1287 
1288 	/* CP2101 only supports CS8, 1 stop bit and non-stick parity. */
1289 	if (priv->partnum == CP210X_PARTNUM_CP2101) {
1290 		tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR);
1291 		tty->termios.c_cflag |= CS8;
1292 	}
1293 
1294 	bits = 0;
1295 
1296 	switch (C_CSIZE(tty)) {
1297 	case CS5:
1298 		bits |= BITS_DATA_5;
1299 		break;
1300 	case CS6:
1301 		bits |= BITS_DATA_6;
1302 		break;
1303 	case CS7:
1304 		bits |= BITS_DATA_7;
1305 		break;
1306 	case CS8:
1307 	default:
1308 		bits |= BITS_DATA_8;
1309 		break;
1310 	}
1311 
1312 	if (C_PARENB(tty)) {
1313 		if (C_CMSPAR(tty)) {
1314 			if (C_PARODD(tty))
1315 				bits |= BITS_PARITY_MARK;
1316 			else
1317 				bits |= BITS_PARITY_SPACE;
1318 		} else {
1319 			if (C_PARODD(tty))
1320 				bits |= BITS_PARITY_ODD;
1321 			else
1322 				bits |= BITS_PARITY_EVEN;
1323 		}
1324 	}
1325 
1326 	if (C_CSTOPB(tty))
1327 		bits |= BITS_STOP_2;
1328 	else
1329 		bits |= BITS_STOP_1;
1330 
1331 	ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits);
1332 	if (ret)
1333 		dev_err(&port->dev, "failed to set line control: %d\n", ret);
1334 
1335 	cp210x_set_flow_control(tty, port, old_termios);
1336 
1337 	/*
1338 	 * Enable event-insertion mode only if input parity checking is
1339 	 * enabled for now.
1340 	 */
1341 	if (I_INPCK(tty))
1342 		cp210x_enable_event_mode(port);
1343 	else
1344 		cp210x_disable_event_mode(port);
1345 }
1346 
1347 static int cp210x_tiocmset(struct tty_struct *tty,
1348 		unsigned int set, unsigned int clear)
1349 {
1350 	struct usb_serial_port *port = tty->driver_data;
1351 	return cp210x_tiocmset_port(port, set, clear);
1352 }
1353 
1354 static int cp210x_tiocmset_port(struct usb_serial_port *port,
1355 		unsigned int set, unsigned int clear)
1356 {
1357 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1358 	struct cp210x_flow_ctl flow_ctl;
1359 	u32 ctl_hs, flow_repl;
1360 	u16 control = 0;
1361 	int ret;
1362 
1363 	mutex_lock(&port_priv->mutex);
1364 
1365 	if (set & TIOCM_RTS) {
1366 		port_priv->rts = true;
1367 		control |= CONTROL_RTS;
1368 		control |= CONTROL_WRITE_RTS;
1369 	}
1370 	if (set & TIOCM_DTR) {
1371 		port_priv->dtr = true;
1372 		control |= CONTROL_DTR;
1373 		control |= CONTROL_WRITE_DTR;
1374 	}
1375 	if (clear & TIOCM_RTS) {
1376 		port_priv->rts = false;
1377 		control &= ~CONTROL_RTS;
1378 		control |= CONTROL_WRITE_RTS;
1379 	}
1380 	if (clear & TIOCM_DTR) {
1381 		port_priv->dtr = false;
1382 		control &= ~CONTROL_DTR;
1383 		control |= CONTROL_WRITE_DTR;
1384 	}
1385 
1386 	/*
1387 	 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware
1388 	 * flow control is enabled.
1389 	 */
1390 	if (port_priv->crtscts && control & CONTROL_WRITE_RTS) {
1391 		ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl,
1392 				sizeof(flow_ctl));
1393 		if (ret)
1394 			goto out_unlock;
1395 
1396 		ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake);
1397 		flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace);
1398 
1399 		ctl_hs &= ~CP210X_SERIAL_DTR_MASK;
1400 		if (port_priv->dtr)
1401 			ctl_hs |= CP210X_SERIAL_DTR_ACTIVE;
1402 		else
1403 			ctl_hs |= CP210X_SERIAL_DTR_INACTIVE;
1404 
1405 		flow_repl &= ~CP210X_SERIAL_RTS_MASK;
1406 		if (port_priv->rts)
1407 			flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL;
1408 		else
1409 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1410 
1411 		flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs);
1412 		flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl);
1413 
1414 		dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n",
1415 				__func__, ctl_hs, flow_repl);
1416 
1417 		ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl,
1418 				sizeof(flow_ctl));
1419 	} else {
1420 		dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control);
1421 
1422 		ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control);
1423 	}
1424 out_unlock:
1425 	mutex_unlock(&port_priv->mutex);
1426 
1427 	return ret;
1428 }
1429 
1430 static void cp210x_dtr_rts(struct usb_serial_port *port, int on)
1431 {
1432 	if (on)
1433 		cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0);
1434 	else
1435 		cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS);
1436 }
1437 
1438 static int cp210x_tiocmget(struct tty_struct *tty)
1439 {
1440 	struct usb_serial_port *port = tty->driver_data;
1441 	u8 control;
1442 	int result;
1443 
1444 	result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control);
1445 	if (result)
1446 		return result;
1447 
1448 	result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0)
1449 		|((control & CONTROL_RTS) ? TIOCM_RTS : 0)
1450 		|((control & CONTROL_CTS) ? TIOCM_CTS : 0)
1451 		|((control & CONTROL_DSR) ? TIOCM_DSR : 0)
1452 		|((control & CONTROL_RING)? TIOCM_RI  : 0)
1453 		|((control & CONTROL_DCD) ? TIOCM_CD  : 0);
1454 
1455 	dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control);
1456 
1457 	return result;
1458 }
1459 
1460 static void cp210x_break_ctl(struct tty_struct *tty, int break_state)
1461 {
1462 	struct usb_serial_port *port = tty->driver_data;
1463 	u16 state;
1464 
1465 	if (break_state == 0)
1466 		state = BREAK_OFF;
1467 	else
1468 		state = BREAK_ON;
1469 	dev_dbg(&port->dev, "%s - turning break %s\n", __func__,
1470 		state == BREAK_OFF ? "off" : "on");
1471 	cp210x_write_u16_reg(port, CP210X_SET_BREAK, state);
1472 }
1473 
1474 #ifdef CONFIG_GPIOLIB
1475 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio)
1476 {
1477 	struct usb_serial *serial = gpiochip_get_data(gc);
1478 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1479 	u8 req_type;
1480 	u16 mask;
1481 	int result;
1482 	int len;
1483 
1484 	result = usb_autopm_get_interface(serial->interface);
1485 	if (result)
1486 		return result;
1487 
1488 	switch (priv->partnum) {
1489 	case CP210X_PARTNUM_CP2105:
1490 		req_type = REQTYPE_INTERFACE_TO_HOST;
1491 		len = 1;
1492 		break;
1493 	case CP210X_PARTNUM_CP2108:
1494 		req_type = REQTYPE_INTERFACE_TO_HOST;
1495 		len = 2;
1496 		break;
1497 	default:
1498 		req_type = REQTYPE_DEVICE_TO_HOST;
1499 		len = 1;
1500 		break;
1501 	}
1502 
1503 	mask = 0;
1504 	result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH,
1505 					  &mask, len);
1506 
1507 	usb_autopm_put_interface(serial->interface);
1508 
1509 	if (result < 0)
1510 		return result;
1511 
1512 	le16_to_cpus(&mask);
1513 
1514 	return !!(mask & BIT(gpio));
1515 }
1516 
1517 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value)
1518 {
1519 	struct usb_serial *serial = gpiochip_get_data(gc);
1520 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1521 	struct cp210x_gpio_write16 buf16;
1522 	struct cp210x_gpio_write buf;
1523 	u16 mask, state;
1524 	u16 wIndex;
1525 	int result;
1526 
1527 	if (value == 1)
1528 		state = BIT(gpio);
1529 	else
1530 		state = 0;
1531 
1532 	mask = BIT(gpio);
1533 
1534 	result = usb_autopm_get_interface(serial->interface);
1535 	if (result)
1536 		goto out;
1537 
1538 	switch (priv->partnum) {
1539 	case CP210X_PARTNUM_CP2105:
1540 		buf.mask = (u8)mask;
1541 		buf.state = (u8)state;
1542 		result = cp210x_write_vendor_block(serial,
1543 						   REQTYPE_HOST_TO_INTERFACE,
1544 						   CP210X_WRITE_LATCH, &buf,
1545 						   sizeof(buf));
1546 		break;
1547 	case CP210X_PARTNUM_CP2108:
1548 		buf16.mask = cpu_to_le16(mask);
1549 		buf16.state = cpu_to_le16(state);
1550 		result = cp210x_write_vendor_block(serial,
1551 						   REQTYPE_HOST_TO_INTERFACE,
1552 						   CP210X_WRITE_LATCH, &buf16,
1553 						   sizeof(buf16));
1554 		break;
1555 	default:
1556 		wIndex = state << 8 | mask;
1557 		result = usb_control_msg(serial->dev,
1558 					 usb_sndctrlpipe(serial->dev, 0),
1559 					 CP210X_VENDOR_SPECIFIC,
1560 					 REQTYPE_HOST_TO_DEVICE,
1561 					 CP210X_WRITE_LATCH,
1562 					 wIndex,
1563 					 NULL, 0, USB_CTRL_SET_TIMEOUT);
1564 		break;
1565 	}
1566 
1567 	usb_autopm_put_interface(serial->interface);
1568 out:
1569 	if (result < 0) {
1570 		dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n",
1571 				result);
1572 	}
1573 }
1574 
1575 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio)
1576 {
1577 	struct usb_serial *serial = gpiochip_get_data(gc);
1578 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1579 
1580 	return priv->gpio_input & BIT(gpio);
1581 }
1582 
1583 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio)
1584 {
1585 	struct usb_serial *serial = gpiochip_get_data(gc);
1586 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1587 
1588 	if (priv->partnum == CP210X_PARTNUM_CP2105) {
1589 		/* hardware does not support an input mode */
1590 		return -ENOTSUPP;
1591 	}
1592 
1593 	/* push-pull pins cannot be changed to be inputs */
1594 	if (priv->gpio_pushpull & BIT(gpio))
1595 		return -EINVAL;
1596 
1597 	/* make sure to release pin if it is being driven low */
1598 	cp210x_gpio_set(gc, gpio, 1);
1599 
1600 	priv->gpio_input |= BIT(gpio);
1601 
1602 	return 0;
1603 }
1604 
1605 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio,
1606 					int value)
1607 {
1608 	struct usb_serial *serial = gpiochip_get_data(gc);
1609 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1610 
1611 	priv->gpio_input &= ~BIT(gpio);
1612 	cp210x_gpio_set(gc, gpio, value);
1613 
1614 	return 0;
1615 }
1616 
1617 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio,
1618 				  unsigned long config)
1619 {
1620 	struct usb_serial *serial = gpiochip_get_data(gc);
1621 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1622 	enum pin_config_param param = pinconf_to_config_param(config);
1623 
1624 	/* Succeed only if in correct mode (this can't be set at runtime) */
1625 	if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) &&
1626 	    (priv->gpio_pushpull & BIT(gpio)))
1627 		return 0;
1628 
1629 	if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) &&
1630 	    !(priv->gpio_pushpull & BIT(gpio)))
1631 		return 0;
1632 
1633 	return -ENOTSUPP;
1634 }
1635 
1636 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc,
1637 		unsigned long *valid_mask, unsigned int ngpios)
1638 {
1639 	struct usb_serial *serial = gpiochip_get_data(gc);
1640 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1641 	struct device *dev = &serial->interface->dev;
1642 	unsigned long altfunc_mask = priv->gpio_altfunc;
1643 
1644 	bitmap_complement(valid_mask, &altfunc_mask, ngpios);
1645 
1646 	if (bitmap_empty(valid_mask, ngpios))
1647 		dev_dbg(dev, "no pin configured for GPIO\n");
1648 	else
1649 		dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios,
1650 				valid_mask);
1651 	return 0;
1652 }
1653 
1654 /*
1655  * This function is for configuring GPIO using shared pins, where other signals
1656  * are made unavailable by configuring the use of GPIO. This is believed to be
1657  * only applicable to the cp2105 at this point, the other devices supported by
1658  * this driver that provide GPIO do so in a way that does not impact other
1659  * signals and are thus expected to have very different initialisation.
1660  */
1661 static int cp2105_gpioconf_init(struct usb_serial *serial)
1662 {
1663 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1664 	struct cp210x_pin_mode mode;
1665 	struct cp210x_dual_port_config config;
1666 	u8 intf_num = cp210x_interface_num(serial);
1667 	u8 iface_config;
1668 	int result;
1669 
1670 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1671 					  CP210X_GET_DEVICEMODE, &mode,
1672 					  sizeof(mode));
1673 	if (result < 0)
1674 		return result;
1675 
1676 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1677 					  CP210X_GET_PORTCONFIG, &config,
1678 					  sizeof(config));
1679 	if (result < 0)
1680 		return result;
1681 
1682 	/*  2 banks of GPIO - One for the pins taken from each serial port */
1683 	if (intf_num == 0) {
1684 		if (mode.eci == CP210X_PIN_MODE_MODEM) {
1685 			/* mark all GPIOs of this interface as reserved */
1686 			priv->gpio_altfunc = 0xff;
1687 			return 0;
1688 		}
1689 
1690 		iface_config = config.eci_cfg;
1691 		priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1692 						CP210X_ECI_GPIO_MODE_MASK) >>
1693 						CP210X_ECI_GPIO_MODE_OFFSET);
1694 		priv->gc.ngpio = 2;
1695 	} else if (intf_num == 1) {
1696 		if (mode.sci == CP210X_PIN_MODE_MODEM) {
1697 			/* mark all GPIOs of this interface as reserved */
1698 			priv->gpio_altfunc = 0xff;
1699 			return 0;
1700 		}
1701 
1702 		iface_config = config.sci_cfg;
1703 		priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1704 						CP210X_SCI_GPIO_MODE_MASK) >>
1705 						CP210X_SCI_GPIO_MODE_OFFSET);
1706 		priv->gc.ngpio = 3;
1707 	} else {
1708 		return -ENODEV;
1709 	}
1710 
1711 	/* mark all pins which are not in GPIO mode */
1712 	if (iface_config & CP2105_GPIO0_TXLED_MODE)	/* GPIO 0 */
1713 		priv->gpio_altfunc |= BIT(0);
1714 	if (iface_config & (CP2105_GPIO1_RXLED_MODE |	/* GPIO 1 */
1715 			CP2105_GPIO1_RS485_MODE))
1716 		priv->gpio_altfunc |= BIT(1);
1717 
1718 	/* driver implementation for CP2105 only supports outputs */
1719 	priv->gpio_input = 0;
1720 
1721 	return 0;
1722 }
1723 
1724 static int cp2104_gpioconf_init(struct usb_serial *serial)
1725 {
1726 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1727 	struct cp210x_single_port_config config;
1728 	u8 iface_config;
1729 	u8 gpio_latch;
1730 	int result;
1731 	u8 i;
1732 
1733 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1734 					  CP210X_GET_PORTCONFIG, &config,
1735 					  sizeof(config));
1736 	if (result < 0)
1737 		return result;
1738 
1739 	priv->gc.ngpio = 4;
1740 
1741 	iface_config = config.device_cfg;
1742 	priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1743 					CP210X_GPIO_MODE_MASK) >>
1744 					CP210X_GPIO_MODE_OFFSET);
1745 	gpio_latch = (u8)((le16_to_cpu(config.reset_state) &
1746 					CP210X_GPIO_MODE_MASK) >>
1747 					CP210X_GPIO_MODE_OFFSET);
1748 
1749 	/* mark all pins which are not in GPIO mode */
1750 	if (iface_config & CP2104_GPIO0_TXLED_MODE)	/* GPIO 0 */
1751 		priv->gpio_altfunc |= BIT(0);
1752 	if (iface_config & CP2104_GPIO1_RXLED_MODE)	/* GPIO 1 */
1753 		priv->gpio_altfunc |= BIT(1);
1754 	if (iface_config & CP2104_GPIO2_RS485_MODE)	/* GPIO 2 */
1755 		priv->gpio_altfunc |= BIT(2);
1756 
1757 	/*
1758 	 * Like CP2102N, CP2104 has also no strict input and output pin
1759 	 * modes.
1760 	 * Do the same input mode emulation as CP2102N.
1761 	 */
1762 	for (i = 0; i < priv->gc.ngpio; ++i) {
1763 		/*
1764 		 * Set direction to "input" iff pin is open-drain and reset
1765 		 * value is 1.
1766 		 */
1767 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1768 			priv->gpio_input |= BIT(i);
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static int cp2108_gpio_init(struct usb_serial *serial)
1775 {
1776 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1777 	struct cp210x_quad_port_config config;
1778 	u16 gpio_latch;
1779 	int result;
1780 	u8 i;
1781 
1782 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1783 					  CP210X_GET_PORTCONFIG, &config,
1784 					  sizeof(config));
1785 	if (result < 0)
1786 		return result;
1787 
1788 	priv->gc.ngpio = 16;
1789 	priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1);
1790 	gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1);
1791 
1792 	/*
1793 	 * Mark all pins which are not in GPIO mode.
1794 	 *
1795 	 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet:
1796 	 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf
1797 	 *
1798 	 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0]
1799 	 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7,
1800 	 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15.
1801 	 */
1802 	for (i = 0; i < 4; i++) {
1803 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED)
1804 			priv->gpio_altfunc |= BIT(i * 4);
1805 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED)
1806 			priv->gpio_altfunc |= BIT((i * 4) + 1);
1807 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485)
1808 			priv->gpio_altfunc |= BIT((i * 4) + 2);
1809 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK)
1810 			priv->gpio_altfunc |= BIT((i * 4) + 3);
1811 	}
1812 
1813 	/*
1814 	 * Like CP2102N, CP2108 has also no strict input and output pin
1815 	 * modes. Do the same input mode emulation as CP2102N.
1816 	 */
1817 	for (i = 0; i < priv->gc.ngpio; ++i) {
1818 		/*
1819 		 * Set direction to "input" iff pin is open-drain and reset
1820 		 * value is 1.
1821 		 */
1822 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1823 			priv->gpio_input |= BIT(i);
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static int cp2102n_gpioconf_init(struct usb_serial *serial)
1830 {
1831 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1832 	const u16 config_size = 0x02a6;
1833 	u8 gpio_rst_latch;
1834 	u8 config_version;
1835 	u8 gpio_pushpull;
1836 	u8 *config_buf;
1837 	u8 gpio_latch;
1838 	u8 gpio_ctrl;
1839 	int result;
1840 	u8 i;
1841 
1842 	/*
1843 	 * Retrieve device configuration from the device.
1844 	 * The array received contains all customization settings done at the
1845 	 * factory/manufacturer. Format of the array is documented at the
1846 	 * time of writing at:
1847 	 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa
1848 	 */
1849 	config_buf = kmalloc(config_size, GFP_KERNEL);
1850 	if (!config_buf)
1851 		return -ENOMEM;
1852 
1853 	result = cp210x_read_vendor_block(serial,
1854 					  REQTYPE_DEVICE_TO_HOST,
1855 					  CP210X_READ_2NCONFIG,
1856 					  config_buf,
1857 					  config_size);
1858 	if (result < 0) {
1859 		kfree(config_buf);
1860 		return result;
1861 	}
1862 
1863 	config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX];
1864 	gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX];
1865 	gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX];
1866 	gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX];
1867 
1868 	kfree(config_buf);
1869 
1870 	/* Make sure this is a config format we understand. */
1871 	if (config_version != 0x01)
1872 		return -ENOTSUPP;
1873 
1874 	priv->gc.ngpio = 4;
1875 
1876 	/*
1877 	 * Get default pin states after reset. Needed so we can determine
1878 	 * the direction of an open-drain pin.
1879 	 */
1880 	gpio_latch = (gpio_rst_latch >> 3) & 0x0f;
1881 
1882 	/* 0 indicates open-drain mode, 1 is push-pull */
1883 	priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f;
1884 
1885 	/* 0 indicates GPIO mode, 1 is alternate function */
1886 	if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) {
1887 		/* QFN20 is special... */
1888 		if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE)   /* GPIO 0 */
1889 			priv->gpio_altfunc |= BIT(0);
1890 		if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */
1891 			priv->gpio_altfunc |= BIT(1);
1892 		if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */
1893 			priv->gpio_altfunc |= BIT(2);
1894 		if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */
1895 			priv->gpio_altfunc |= BIT(3);
1896 	} else {
1897 		priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f;
1898 	}
1899 
1900 	if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) {
1901 		/*
1902 		 * For the QFN28 package, GPIO4-6 are controlled by
1903 		 * the low three bits of the mode/latch fields.
1904 		 * Contrary to the document linked above, the bits for
1905 		 * the SUSPEND pins are elsewhere.  No alternate
1906 		 * function is available for these pins.
1907 		 */
1908 		priv->gc.ngpio = 7;
1909 		gpio_latch |= (gpio_rst_latch & 7) << 4;
1910 		priv->gpio_pushpull |= (gpio_pushpull & 7) << 4;
1911 	}
1912 
1913 	/*
1914 	 * The CP2102N does not strictly has input and output pin modes,
1915 	 * it only knows open-drain and push-pull modes which is set at
1916 	 * factory. An open-drain pin can function both as an
1917 	 * input or an output. We emulate input mode for open-drain pins
1918 	 * by making sure they are not driven low, and we do not allow
1919 	 * push-pull pins to be set as an input.
1920 	 */
1921 	for (i = 0; i < priv->gc.ngpio; ++i) {
1922 		/*
1923 		 * Set direction to "input" iff pin is open-drain and reset
1924 		 * value is 1.
1925 		 */
1926 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1927 			priv->gpio_input |= BIT(i);
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 static int cp210x_gpio_init(struct usb_serial *serial)
1934 {
1935 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1936 	int result;
1937 
1938 	switch (priv->partnum) {
1939 	case CP210X_PARTNUM_CP2104:
1940 		result = cp2104_gpioconf_init(serial);
1941 		break;
1942 	case CP210X_PARTNUM_CP2105:
1943 		result = cp2105_gpioconf_init(serial);
1944 		break;
1945 	case CP210X_PARTNUM_CP2108:
1946 		/*
1947 		 * The GPIOs are not tied to any specific port so only register
1948 		 * once for interface 0.
1949 		 */
1950 		if (cp210x_interface_num(serial) != 0)
1951 			return 0;
1952 		result = cp2108_gpio_init(serial);
1953 		break;
1954 	case CP210X_PARTNUM_CP2102N_QFN28:
1955 	case CP210X_PARTNUM_CP2102N_QFN24:
1956 	case CP210X_PARTNUM_CP2102N_QFN20:
1957 		result = cp2102n_gpioconf_init(serial);
1958 		break;
1959 	default:
1960 		return 0;
1961 	}
1962 
1963 	if (result < 0)
1964 		return result;
1965 
1966 	priv->gc.label = "cp210x";
1967 	priv->gc.get_direction = cp210x_gpio_direction_get;
1968 	priv->gc.direction_input = cp210x_gpio_direction_input;
1969 	priv->gc.direction_output = cp210x_gpio_direction_output;
1970 	priv->gc.get = cp210x_gpio_get;
1971 	priv->gc.set = cp210x_gpio_set;
1972 	priv->gc.set_config = cp210x_gpio_set_config;
1973 	priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask;
1974 	priv->gc.owner = THIS_MODULE;
1975 	priv->gc.parent = &serial->interface->dev;
1976 	priv->gc.base = -1;
1977 	priv->gc.can_sleep = true;
1978 
1979 	result = gpiochip_add_data(&priv->gc, serial);
1980 	if (!result)
1981 		priv->gpio_registered = true;
1982 
1983 	return result;
1984 }
1985 
1986 static void cp210x_gpio_remove(struct usb_serial *serial)
1987 {
1988 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1989 
1990 	if (priv->gpio_registered) {
1991 		gpiochip_remove(&priv->gc);
1992 		priv->gpio_registered = false;
1993 	}
1994 }
1995 
1996 #else
1997 
1998 static int cp210x_gpio_init(struct usb_serial *serial)
1999 {
2000 	return 0;
2001 }
2002 
2003 static void cp210x_gpio_remove(struct usb_serial *serial)
2004 {
2005 	/* Nothing to do */
2006 }
2007 
2008 #endif
2009 
2010 static int cp210x_port_probe(struct usb_serial_port *port)
2011 {
2012 	struct usb_serial *serial = port->serial;
2013 	struct cp210x_port_private *port_priv;
2014 
2015 	port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL);
2016 	if (!port_priv)
2017 		return -ENOMEM;
2018 
2019 	port_priv->bInterfaceNumber = cp210x_interface_num(serial);
2020 	mutex_init(&port_priv->mutex);
2021 
2022 	usb_set_serial_port_data(port, port_priv);
2023 
2024 	return 0;
2025 }
2026 
2027 static void cp210x_port_remove(struct usb_serial_port *port)
2028 {
2029 	struct cp210x_port_private *port_priv;
2030 
2031 	port_priv = usb_get_serial_port_data(port);
2032 	kfree(port_priv);
2033 }
2034 
2035 static void cp210x_init_max_speed(struct usb_serial *serial)
2036 {
2037 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2038 	bool use_actual_rate = false;
2039 	speed_t min = 300;
2040 	speed_t max;
2041 
2042 	switch (priv->partnum) {
2043 	case CP210X_PARTNUM_CP2101:
2044 		max = 921600;
2045 		break;
2046 	case CP210X_PARTNUM_CP2102:
2047 	case CP210X_PARTNUM_CP2103:
2048 		max = 1000000;
2049 		break;
2050 	case CP210X_PARTNUM_CP2104:
2051 		use_actual_rate = true;
2052 		max = 2000000;
2053 		break;
2054 	case CP210X_PARTNUM_CP2108:
2055 		max = 2000000;
2056 		break;
2057 	case CP210X_PARTNUM_CP2105:
2058 		if (cp210x_interface_num(serial) == 0) {
2059 			use_actual_rate = true;
2060 			max = 2000000;	/* ECI */
2061 		} else {
2062 			min = 2400;
2063 			max = 921600;	/* SCI */
2064 		}
2065 		break;
2066 	case CP210X_PARTNUM_CP2102N_QFN28:
2067 	case CP210X_PARTNUM_CP2102N_QFN24:
2068 	case CP210X_PARTNUM_CP2102N_QFN20:
2069 		use_actual_rate = true;
2070 		max = 3000000;
2071 		break;
2072 	default:
2073 		max = 2000000;
2074 		break;
2075 	}
2076 
2077 	priv->min_speed = min;
2078 	priv->max_speed = max;
2079 	priv->use_actual_rate = use_actual_rate;
2080 }
2081 
2082 static void cp2102_determine_quirks(struct usb_serial *serial)
2083 {
2084 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2085 	u8 *buf;
2086 	int ret;
2087 
2088 	buf = kmalloc(2, GFP_KERNEL);
2089 	if (!buf)
2090 		return;
2091 	/*
2092 	 * Some (possibly counterfeit) CP2102 do not support event-insertion
2093 	 * mode and respond differently to malformed vendor requests.
2094 	 * Specifically, they return one instead of two bytes when sent a
2095 	 * two-byte part-number request.
2096 	 */
2097 	ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
2098 			CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST,
2099 			CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT);
2100 	if (ret == 1) {
2101 		dev_dbg(&serial->interface->dev,
2102 				"device does not support event-insertion mode\n");
2103 		priv->no_event_mode = true;
2104 	}
2105 
2106 	kfree(buf);
2107 }
2108 
2109 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value)
2110 {
2111 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2112 	u8 ver[3];
2113 	int ret;
2114 
2115 	ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value,
2116 			ver, sizeof(ver));
2117 	if (ret)
2118 		return ret;
2119 
2120 	dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__,
2121 			ver[0], ver[1], ver[2]);
2122 
2123 	priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2];
2124 
2125 	return 0;
2126 }
2127 
2128 static void cp210x_determine_type(struct usb_serial *serial)
2129 {
2130 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2131 	int ret;
2132 
2133 	ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
2134 			CP210X_GET_PARTNUM, &priv->partnum,
2135 			sizeof(priv->partnum));
2136 	if (ret < 0) {
2137 		dev_warn(&serial->interface->dev,
2138 				"querying part number failed\n");
2139 		priv->partnum = CP210X_PARTNUM_UNKNOWN;
2140 		return;
2141 	}
2142 
2143 	switch (priv->partnum) {
2144 	case CP210X_PARTNUM_CP2102:
2145 		cp2102_determine_quirks(serial);
2146 		break;
2147 	case CP210X_PARTNUM_CP2105:
2148 	case CP210X_PARTNUM_CP2108:
2149 		cp210x_get_fw_version(serial, CP210X_GET_FW_VER);
2150 		break;
2151 	case CP210X_PARTNUM_CP2102N_QFN28:
2152 	case CP210X_PARTNUM_CP2102N_QFN24:
2153 	case CP210X_PARTNUM_CP2102N_QFN20:
2154 		ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N);
2155 		if (ret)
2156 			break;
2157 		if (priv->fw_version <= 0x10004)
2158 			priv->no_flow_control = true;
2159 		break;
2160 	default:
2161 		break;
2162 	}
2163 }
2164 
2165 static int cp210x_attach(struct usb_serial *serial)
2166 {
2167 	int result;
2168 	struct cp210x_serial_private *priv;
2169 
2170 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
2171 	if (!priv)
2172 		return -ENOMEM;
2173 
2174 	usb_set_serial_data(serial, priv);
2175 
2176 	cp210x_determine_type(serial);
2177 	cp210x_init_max_speed(serial);
2178 
2179 	result = cp210x_gpio_init(serial);
2180 	if (result < 0) {
2181 		dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n",
2182 				result);
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static void cp210x_disconnect(struct usb_serial *serial)
2189 {
2190 	cp210x_gpio_remove(serial);
2191 }
2192 
2193 static void cp210x_release(struct usb_serial *serial)
2194 {
2195 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2196 
2197 	cp210x_gpio_remove(serial);
2198 
2199 	kfree(priv);
2200 }
2201 
2202 module_usb_serial_driver(serial_drivers, id_table);
2203 
2204 MODULE_DESCRIPTION(DRIVER_DESC);
2205 MODULE_LICENSE("GPL v2");
2206