1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 struct ktermios*); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static void cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 55 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 56 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 57 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 59 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 60 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 61 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 62 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 63 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 64 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 65 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 66 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 67 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 68 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 69 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 71 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 72 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 73 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 74 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 75 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 76 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 77 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 78 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 79 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 80 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 81 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 82 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 83 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 84 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 85 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 86 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 87 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 88 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 89 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 90 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 91 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 92 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 93 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 94 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 95 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 96 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 97 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 98 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 99 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 100 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 101 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 102 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 103 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 104 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 105 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 106 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 107 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 108 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 109 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 110 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 111 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 112 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 113 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 114 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 115 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 116 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 117 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 118 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 119 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 120 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 121 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 122 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 123 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 124 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 125 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 126 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 127 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 128 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 129 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 130 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 131 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 132 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 133 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 134 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 135 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 136 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 137 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 138 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 139 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 140 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 141 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 142 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 143 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 144 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 145 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 146 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 147 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 148 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 149 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 150 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 151 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 152 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 153 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 154 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 155 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 156 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 157 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 158 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 159 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 160 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 161 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 162 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 163 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 164 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 165 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 166 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 167 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 168 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 169 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 170 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 171 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 172 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 173 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 174 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 175 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 176 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 177 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 178 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 179 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 180 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 181 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 182 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 183 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 184 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 185 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 186 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 187 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 188 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 189 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 190 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 191 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 192 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 193 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 194 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 195 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 196 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 197 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 198 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 199 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 200 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 201 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 202 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 203 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 204 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 205 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 206 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 207 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 208 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 209 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 210 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 211 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 212 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 213 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 214 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 215 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 216 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 217 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 218 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 219 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 220 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 221 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 222 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 223 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 224 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 225 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 226 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 227 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 228 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 229 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 230 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 231 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 232 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 233 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 234 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 235 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 236 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 237 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 238 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 239 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 240 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 241 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 242 { } /* Terminating Entry */ 243 }; 244 245 MODULE_DEVICE_TABLE(usb, id_table); 246 247 struct cp210x_serial_private { 248 #ifdef CONFIG_GPIOLIB 249 struct gpio_chip gc; 250 bool gpio_registered; 251 u16 gpio_pushpull; 252 u16 gpio_altfunc; 253 u16 gpio_input; 254 #endif 255 u8 partnum; 256 u32 fw_version; 257 speed_t min_speed; 258 speed_t max_speed; 259 bool use_actual_rate; 260 bool no_flow_control; 261 bool no_event_mode; 262 }; 263 264 enum cp210x_event_state { 265 ES_DATA, 266 ES_ESCAPE, 267 ES_LSR, 268 ES_LSR_DATA_0, 269 ES_LSR_DATA_1, 270 ES_MSR 271 }; 272 273 struct cp210x_port_private { 274 u8 bInterfaceNumber; 275 bool event_mode; 276 enum cp210x_event_state event_state; 277 u8 lsr; 278 279 struct mutex mutex; 280 bool crtscts; 281 bool dtr; 282 bool rts; 283 }; 284 285 static struct usb_serial_driver cp210x_device = { 286 .driver = { 287 .owner = THIS_MODULE, 288 .name = "cp210x", 289 }, 290 .id_table = id_table, 291 .num_ports = 1, 292 .bulk_in_size = 256, 293 .bulk_out_size = 256, 294 .open = cp210x_open, 295 .close = cp210x_close, 296 .break_ctl = cp210x_break_ctl, 297 .set_termios = cp210x_set_termios, 298 .tx_empty = cp210x_tx_empty, 299 .throttle = usb_serial_generic_throttle, 300 .unthrottle = usb_serial_generic_unthrottle, 301 .tiocmget = cp210x_tiocmget, 302 .tiocmset = cp210x_tiocmset, 303 .get_icount = usb_serial_generic_get_icount, 304 .attach = cp210x_attach, 305 .disconnect = cp210x_disconnect, 306 .release = cp210x_release, 307 .port_probe = cp210x_port_probe, 308 .port_remove = cp210x_port_remove, 309 .dtr_rts = cp210x_dtr_rts, 310 .process_read_urb = cp210x_process_read_urb, 311 }; 312 313 static struct usb_serial_driver * const serial_drivers[] = { 314 &cp210x_device, NULL 315 }; 316 317 /* Config request types */ 318 #define REQTYPE_HOST_TO_INTERFACE 0x41 319 #define REQTYPE_INTERFACE_TO_HOST 0xc1 320 #define REQTYPE_HOST_TO_DEVICE 0x40 321 #define REQTYPE_DEVICE_TO_HOST 0xc0 322 323 /* Config request codes */ 324 #define CP210X_IFC_ENABLE 0x00 325 #define CP210X_SET_BAUDDIV 0x01 326 #define CP210X_GET_BAUDDIV 0x02 327 #define CP210X_SET_LINE_CTL 0x03 328 #define CP210X_GET_LINE_CTL 0x04 329 #define CP210X_SET_BREAK 0x05 330 #define CP210X_IMM_CHAR 0x06 331 #define CP210X_SET_MHS 0x07 332 #define CP210X_GET_MDMSTS 0x08 333 #define CP210X_SET_XON 0x09 334 #define CP210X_SET_XOFF 0x0A 335 #define CP210X_SET_EVENTMASK 0x0B 336 #define CP210X_GET_EVENTMASK 0x0C 337 #define CP210X_SET_CHAR 0x0D 338 #define CP210X_GET_CHARS 0x0E 339 #define CP210X_GET_PROPS 0x0F 340 #define CP210X_GET_COMM_STATUS 0x10 341 #define CP210X_RESET 0x11 342 #define CP210X_PURGE 0x12 343 #define CP210X_SET_FLOW 0x13 344 #define CP210X_GET_FLOW 0x14 345 #define CP210X_EMBED_EVENTS 0x15 346 #define CP210X_GET_EVENTSTATE 0x16 347 #define CP210X_SET_CHARS 0x19 348 #define CP210X_GET_BAUDRATE 0x1D 349 #define CP210X_SET_BAUDRATE 0x1E 350 #define CP210X_VENDOR_SPECIFIC 0xFF 351 352 /* CP210X_IFC_ENABLE */ 353 #define UART_ENABLE 0x0001 354 #define UART_DISABLE 0x0000 355 356 /* CP210X_(SET|GET)_BAUDDIV */ 357 #define BAUD_RATE_GEN_FREQ 0x384000 358 359 /* CP210X_(SET|GET)_LINE_CTL */ 360 #define BITS_DATA_MASK 0X0f00 361 #define BITS_DATA_5 0X0500 362 #define BITS_DATA_6 0X0600 363 #define BITS_DATA_7 0X0700 364 #define BITS_DATA_8 0X0800 365 #define BITS_DATA_9 0X0900 366 367 #define BITS_PARITY_MASK 0x00f0 368 #define BITS_PARITY_NONE 0x0000 369 #define BITS_PARITY_ODD 0x0010 370 #define BITS_PARITY_EVEN 0x0020 371 #define BITS_PARITY_MARK 0x0030 372 #define BITS_PARITY_SPACE 0x0040 373 374 #define BITS_STOP_MASK 0x000f 375 #define BITS_STOP_1 0x0000 376 #define BITS_STOP_1_5 0x0001 377 #define BITS_STOP_2 0x0002 378 379 /* CP210X_SET_BREAK */ 380 #define BREAK_ON 0x0001 381 #define BREAK_OFF 0x0000 382 383 /* CP210X_(SET_MHS|GET_MDMSTS) */ 384 #define CONTROL_DTR 0x0001 385 #define CONTROL_RTS 0x0002 386 #define CONTROL_CTS 0x0010 387 #define CONTROL_DSR 0x0020 388 #define CONTROL_RING 0x0040 389 #define CONTROL_DCD 0x0080 390 #define CONTROL_WRITE_DTR 0x0100 391 #define CONTROL_WRITE_RTS 0x0200 392 393 /* CP210X_(GET|SET)_CHARS */ 394 struct cp210x_special_chars { 395 u8 bEofChar; 396 u8 bErrorChar; 397 u8 bBreakChar; 398 u8 bEventChar; 399 u8 bXonChar; 400 u8 bXoffChar; 401 }; 402 403 /* CP210X_VENDOR_SPECIFIC values */ 404 #define CP210X_GET_FW_VER 0x000E 405 #define CP210X_READ_2NCONFIG 0x000E 406 #define CP210X_GET_FW_VER_2N 0x0010 407 #define CP210X_READ_LATCH 0x00C2 408 #define CP210X_GET_PARTNUM 0x370B 409 #define CP210X_GET_PORTCONFIG 0x370C 410 #define CP210X_GET_DEVICEMODE 0x3711 411 #define CP210X_WRITE_LATCH 0x37E1 412 413 /* Part number definitions */ 414 #define CP210X_PARTNUM_CP2101 0x01 415 #define CP210X_PARTNUM_CP2102 0x02 416 #define CP210X_PARTNUM_CP2103 0x03 417 #define CP210X_PARTNUM_CP2104 0x04 418 #define CP210X_PARTNUM_CP2105 0x05 419 #define CP210X_PARTNUM_CP2108 0x08 420 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 421 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 422 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 423 #define CP210X_PARTNUM_UNKNOWN 0xFF 424 425 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 426 struct cp210x_comm_status { 427 __le32 ulErrors; 428 __le32 ulHoldReasons; 429 __le32 ulAmountInInQueue; 430 __le32 ulAmountInOutQueue; 431 u8 bEofReceived; 432 u8 bWaitForImmediate; 433 u8 bReserved; 434 } __packed; 435 436 /* 437 * CP210X_PURGE - 16 bits passed in wValue of USB request. 438 * SiLabs app note AN571 gives a strange description of the 4 bits: 439 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 440 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 441 */ 442 #define PURGE_ALL 0x000f 443 444 /* CP210X_EMBED_EVENTS */ 445 #define CP210X_ESCCHAR 0xec 446 447 #define CP210X_LSR_OVERRUN BIT(1) 448 #define CP210X_LSR_PARITY BIT(2) 449 #define CP210X_LSR_FRAME BIT(3) 450 #define CP210X_LSR_BREAK BIT(4) 451 452 453 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 454 struct cp210x_flow_ctl { 455 __le32 ulControlHandshake; 456 __le32 ulFlowReplace; 457 __le32 ulXonLimit; 458 __le32 ulXoffLimit; 459 }; 460 461 /* cp210x_flow_ctl::ulControlHandshake */ 462 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 463 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 464 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 465 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 466 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 467 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 468 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 469 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 470 471 /* cp210x_flow_ctl::ulFlowReplace */ 472 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 473 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 474 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 475 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 476 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 477 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 478 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 479 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 480 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 481 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 482 483 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 484 struct cp210x_pin_mode { 485 u8 eci; 486 u8 sci; 487 }; 488 489 #define CP210X_PIN_MODE_MODEM 0 490 #define CP210X_PIN_MODE_GPIO BIT(0) 491 492 /* 493 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 494 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 495 */ 496 struct cp210x_dual_port_config { 497 __le16 gpio_mode; 498 u8 __pad0[2]; 499 __le16 reset_state; 500 u8 __pad1[4]; 501 __le16 suspend_state; 502 u8 sci_cfg; 503 u8 eci_cfg; 504 u8 device_cfg; 505 } __packed; 506 507 /* 508 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 509 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 510 */ 511 struct cp210x_single_port_config { 512 __le16 gpio_mode; 513 u8 __pad0[2]; 514 __le16 reset_state; 515 u8 __pad1[4]; 516 __le16 suspend_state; 517 u8 device_cfg; 518 } __packed; 519 520 /* GPIO modes */ 521 #define CP210X_SCI_GPIO_MODE_OFFSET 9 522 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 523 524 #define CP210X_ECI_GPIO_MODE_OFFSET 2 525 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 526 527 #define CP210X_GPIO_MODE_OFFSET 8 528 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 529 530 /* CP2105 port configuration values */ 531 #define CP2105_GPIO0_TXLED_MODE BIT(0) 532 #define CP2105_GPIO1_RXLED_MODE BIT(1) 533 #define CP2105_GPIO1_RS485_MODE BIT(2) 534 535 /* CP2104 port configuration values */ 536 #define CP2104_GPIO0_TXLED_MODE BIT(0) 537 #define CP2104_GPIO1_RXLED_MODE BIT(1) 538 #define CP2104_GPIO2_RS485_MODE BIT(2) 539 540 struct cp210x_quad_port_state { 541 __le16 gpio_mode_pb0; 542 __le16 gpio_mode_pb1; 543 __le16 gpio_mode_pb2; 544 __le16 gpio_mode_pb3; 545 __le16 gpio_mode_pb4; 546 547 __le16 gpio_lowpower_pb0; 548 __le16 gpio_lowpower_pb1; 549 __le16 gpio_lowpower_pb2; 550 __le16 gpio_lowpower_pb3; 551 __le16 gpio_lowpower_pb4; 552 553 __le16 gpio_latch_pb0; 554 __le16 gpio_latch_pb1; 555 __le16 gpio_latch_pb2; 556 __le16 gpio_latch_pb3; 557 __le16 gpio_latch_pb4; 558 }; 559 560 /* 561 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 562 * on a CP2108 chip. 563 * 564 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 565 */ 566 struct cp210x_quad_port_config { 567 struct cp210x_quad_port_state reset_state; 568 struct cp210x_quad_port_state suspend_state; 569 u8 ipdelay_ifc[4]; 570 u8 enhancedfxn_ifc[4]; 571 u8 enhancedfxn_device; 572 u8 extclkfreq[4]; 573 } __packed; 574 575 #define CP2108_EF_IFC_GPIO_TXLED 0x01 576 #define CP2108_EF_IFC_GPIO_RXLED 0x02 577 #define CP2108_EF_IFC_GPIO_RS485 0x04 578 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 579 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 580 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 581 582 /* CP2102N configuration array indices */ 583 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 584 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 585 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 586 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 587 588 /* CP2102N QFN20 port configuration values */ 589 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 590 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 591 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 592 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 593 594 /* 595 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 596 * for CP2102N, CP2103, CP2104 and CP2105. 597 */ 598 struct cp210x_gpio_write { 599 u8 mask; 600 u8 state; 601 }; 602 603 /* 604 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 605 * for CP2108. 606 */ 607 struct cp210x_gpio_write16 { 608 __le16 mask; 609 __le16 state; 610 }; 611 612 /* 613 * Helper to get interface number when we only have struct usb_serial. 614 */ 615 static u8 cp210x_interface_num(struct usb_serial *serial) 616 { 617 struct usb_host_interface *cur_altsetting; 618 619 cur_altsetting = serial->interface->cur_altsetting; 620 621 return cur_altsetting->desc.bInterfaceNumber; 622 } 623 624 /* 625 * Reads a variable-sized block of CP210X_ registers, identified by req. 626 * Returns data into buf in native USB byte order. 627 */ 628 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 629 void *buf, int bufsize) 630 { 631 struct usb_serial *serial = port->serial; 632 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 633 void *dmabuf; 634 int result; 635 636 dmabuf = kmalloc(bufsize, GFP_KERNEL); 637 if (!dmabuf) 638 return -ENOMEM; 639 640 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 641 req, REQTYPE_INTERFACE_TO_HOST, 0, 642 port_priv->bInterfaceNumber, dmabuf, bufsize, 643 USB_CTRL_GET_TIMEOUT); 644 if (result == bufsize) { 645 memcpy(buf, dmabuf, bufsize); 646 result = 0; 647 } else { 648 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 649 req, bufsize, result); 650 if (result >= 0) 651 result = -EIO; 652 } 653 654 kfree(dmabuf); 655 656 return result; 657 } 658 659 /* 660 * Reads any 8-bit CP210X_ register identified by req. 661 */ 662 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 663 { 664 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 665 } 666 667 /* 668 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 669 * Returns data into buf in native USB byte order. 670 */ 671 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 672 void *buf, int bufsize) 673 { 674 void *dmabuf; 675 int result; 676 677 dmabuf = kmalloc(bufsize, GFP_KERNEL); 678 if (!dmabuf) 679 return -ENOMEM; 680 681 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 682 CP210X_VENDOR_SPECIFIC, type, val, 683 cp210x_interface_num(serial), dmabuf, bufsize, 684 USB_CTRL_GET_TIMEOUT); 685 if (result == bufsize) { 686 memcpy(buf, dmabuf, bufsize); 687 result = 0; 688 } else { 689 dev_err(&serial->interface->dev, 690 "failed to get vendor val 0x%04x size %d: %d\n", val, 691 bufsize, result); 692 if (result >= 0) 693 result = -EIO; 694 } 695 696 kfree(dmabuf); 697 698 return result; 699 } 700 701 /* 702 * Writes any 16-bit CP210X_ register (req) whose value is passed 703 * entirely in the wValue field of the USB request. 704 */ 705 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 706 { 707 struct usb_serial *serial = port->serial; 708 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 709 int result; 710 711 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 712 req, REQTYPE_HOST_TO_INTERFACE, val, 713 port_priv->bInterfaceNumber, NULL, 0, 714 USB_CTRL_SET_TIMEOUT); 715 if (result < 0) { 716 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 717 req, result); 718 } 719 720 return result; 721 } 722 723 /* 724 * Writes a variable-sized block of CP210X_ registers, identified by req. 725 * Data in buf must be in native USB byte order. 726 */ 727 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 728 void *buf, int bufsize) 729 { 730 struct usb_serial *serial = port->serial; 731 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 732 void *dmabuf; 733 int result; 734 735 dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); 736 if (!dmabuf) 737 return -ENOMEM; 738 739 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 740 req, REQTYPE_HOST_TO_INTERFACE, 0, 741 port_priv->bInterfaceNumber, dmabuf, bufsize, 742 USB_CTRL_SET_TIMEOUT); 743 744 kfree(dmabuf); 745 746 if (result < 0) { 747 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 748 req, bufsize, result); 749 return result; 750 } 751 752 return 0; 753 } 754 755 /* 756 * Writes any 32-bit CP210X_ register identified by req. 757 */ 758 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 759 { 760 __le32 le32_val; 761 762 le32_val = cpu_to_le32(val); 763 764 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 765 } 766 767 #ifdef CONFIG_GPIOLIB 768 /* 769 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 770 * Data in buf must be in native USB byte order. 771 */ 772 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 773 u16 val, void *buf, int bufsize) 774 { 775 void *dmabuf; 776 int result; 777 778 dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); 779 if (!dmabuf) 780 return -ENOMEM; 781 782 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 783 CP210X_VENDOR_SPECIFIC, type, val, 784 cp210x_interface_num(serial), dmabuf, bufsize, 785 USB_CTRL_SET_TIMEOUT); 786 787 kfree(dmabuf); 788 789 if (result < 0) { 790 dev_err(&serial->interface->dev, 791 "failed to set vendor val 0x%04x size %d: %d\n", val, 792 bufsize, result); 793 return result; 794 } 795 796 return 0; 797 } 798 #endif 799 800 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 801 { 802 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 803 int result; 804 805 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 806 if (result) { 807 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 808 return result; 809 } 810 811 if (tty) 812 cp210x_set_termios(tty, port, NULL); 813 814 result = usb_serial_generic_open(tty, port); 815 if (result) 816 goto err_disable; 817 818 return 0; 819 820 err_disable: 821 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 822 port_priv->event_mode = false; 823 824 return result; 825 } 826 827 static void cp210x_close(struct usb_serial_port *port) 828 { 829 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 830 831 usb_serial_generic_close(port); 832 833 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 834 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 835 836 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 837 838 /* Disabling the interface disables event-insertion mode. */ 839 port_priv->event_mode = false; 840 } 841 842 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 843 { 844 if (lsr & CP210X_LSR_BREAK) { 845 port->icount.brk++; 846 *flag = TTY_BREAK; 847 } else if (lsr & CP210X_LSR_PARITY) { 848 port->icount.parity++; 849 *flag = TTY_PARITY; 850 } else if (lsr & CP210X_LSR_FRAME) { 851 port->icount.frame++; 852 *flag = TTY_FRAME; 853 } 854 855 if (lsr & CP210X_LSR_OVERRUN) { 856 port->icount.overrun++; 857 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 858 } 859 } 860 861 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 862 { 863 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 864 865 switch (port_priv->event_state) { 866 case ES_DATA: 867 if (*ch == CP210X_ESCCHAR) { 868 port_priv->event_state = ES_ESCAPE; 869 break; 870 } 871 return false; 872 case ES_ESCAPE: 873 switch (*ch) { 874 case 0: 875 dev_dbg(&port->dev, "%s - escape char\n", __func__); 876 *ch = CP210X_ESCCHAR; 877 port_priv->event_state = ES_DATA; 878 return false; 879 case 1: 880 port_priv->event_state = ES_LSR_DATA_0; 881 break; 882 case 2: 883 port_priv->event_state = ES_LSR; 884 break; 885 case 3: 886 port_priv->event_state = ES_MSR; 887 break; 888 default: 889 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 890 port_priv->event_state = ES_DATA; 891 break; 892 } 893 break; 894 case ES_LSR_DATA_0: 895 port_priv->lsr = *ch; 896 port_priv->event_state = ES_LSR_DATA_1; 897 break; 898 case ES_LSR_DATA_1: 899 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 900 __func__, port_priv->lsr, *ch); 901 cp210x_process_lsr(port, port_priv->lsr, flag); 902 port_priv->event_state = ES_DATA; 903 return false; 904 case ES_LSR: 905 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 906 port_priv->lsr = *ch; 907 cp210x_process_lsr(port, port_priv->lsr, flag); 908 port_priv->event_state = ES_DATA; 909 break; 910 case ES_MSR: 911 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 912 /* unimplemented */ 913 port_priv->event_state = ES_DATA; 914 break; 915 } 916 917 return true; 918 } 919 920 static void cp210x_process_read_urb(struct urb *urb) 921 { 922 struct usb_serial_port *port = urb->context; 923 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 924 unsigned char *ch = urb->transfer_buffer; 925 char flag; 926 int i; 927 928 if (!urb->actual_length) 929 return; 930 931 if (port_priv->event_mode) { 932 for (i = 0; i < urb->actual_length; i++, ch++) { 933 flag = TTY_NORMAL; 934 935 if (cp210x_process_char(port, ch, &flag)) 936 continue; 937 938 tty_insert_flip_char(&port->port, *ch, flag); 939 } 940 } else { 941 tty_insert_flip_string(&port->port, ch, urb->actual_length); 942 } 943 tty_flip_buffer_push(&port->port); 944 } 945 946 /* 947 * Read how many bytes are waiting in the TX queue. 948 */ 949 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 950 u32 *count) 951 { 952 struct usb_serial *serial = port->serial; 953 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 954 struct cp210x_comm_status *sts; 955 int result; 956 957 sts = kmalloc(sizeof(*sts), GFP_KERNEL); 958 if (!sts) 959 return -ENOMEM; 960 961 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 962 CP210X_GET_COMM_STATUS, REQTYPE_INTERFACE_TO_HOST, 963 0, port_priv->bInterfaceNumber, sts, sizeof(*sts), 964 USB_CTRL_GET_TIMEOUT); 965 if (result == sizeof(*sts)) { 966 *count = le32_to_cpu(sts->ulAmountInOutQueue); 967 result = 0; 968 } else { 969 dev_err(&port->dev, "failed to get comm status: %d\n", result); 970 if (result >= 0) 971 result = -EIO; 972 } 973 974 kfree(sts); 975 976 return result; 977 } 978 979 static bool cp210x_tx_empty(struct usb_serial_port *port) 980 { 981 int err; 982 u32 count; 983 984 err = cp210x_get_tx_queue_byte_count(port, &count); 985 if (err) 986 return true; 987 988 return !count; 989 } 990 991 struct cp210x_rate { 992 speed_t rate; 993 speed_t high; 994 }; 995 996 static const struct cp210x_rate cp210x_an205_table1[] = { 997 { 300, 300 }, 998 { 600, 600 }, 999 { 1200, 1200 }, 1000 { 1800, 1800 }, 1001 { 2400, 2400 }, 1002 { 4000, 4000 }, 1003 { 4800, 4803 }, 1004 { 7200, 7207 }, 1005 { 9600, 9612 }, 1006 { 14400, 14428 }, 1007 { 16000, 16062 }, 1008 { 19200, 19250 }, 1009 { 28800, 28912 }, 1010 { 38400, 38601 }, 1011 { 51200, 51558 }, 1012 { 56000, 56280 }, 1013 { 57600, 58053 }, 1014 { 64000, 64111 }, 1015 { 76800, 77608 }, 1016 { 115200, 117028 }, 1017 { 128000, 129347 }, 1018 { 153600, 156868 }, 1019 { 230400, 237832 }, 1020 { 250000, 254234 }, 1021 { 256000, 273066 }, 1022 { 460800, 491520 }, 1023 { 500000, 567138 }, 1024 { 576000, 670254 }, 1025 { 921600, UINT_MAX } 1026 }; 1027 1028 /* 1029 * Quantises the baud rate as per AN205 Table 1 1030 */ 1031 static speed_t cp210x_get_an205_rate(speed_t baud) 1032 { 1033 int i; 1034 1035 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 1036 if (baud <= cp210x_an205_table1[i].high) 1037 break; 1038 } 1039 1040 return cp210x_an205_table1[i].rate; 1041 } 1042 1043 static speed_t cp210x_get_actual_rate(speed_t baud) 1044 { 1045 unsigned int prescale = 1; 1046 unsigned int div; 1047 1048 if (baud <= 365) 1049 prescale = 4; 1050 1051 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1052 baud = 48000000 / (2 * prescale * div); 1053 1054 return baud; 1055 } 1056 1057 /* 1058 * CP2101 supports the following baud rates: 1059 * 1060 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1061 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1062 * 1063 * CP2102 and CP2103 support the following additional rates: 1064 * 1065 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1066 * 576000 1067 * 1068 * The device will map a requested rate to a supported one, but the result 1069 * of requests for rates greater than 1053257 is undefined (see AN205). 1070 * 1071 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1072 * respectively, with an error less than 1%. The actual rates are determined 1073 * by 1074 * 1075 * div = round(freq / (2 x prescale x request)) 1076 * actual = freq / (2 x prescale x div) 1077 * 1078 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1079 * or 1 otherwise. 1080 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1081 * otherwise. 1082 */ 1083 static void cp210x_change_speed(struct tty_struct *tty, 1084 struct usb_serial_port *port, struct ktermios *old_termios) 1085 { 1086 struct usb_serial *serial = port->serial; 1087 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1088 u32 baud; 1089 1090 /* 1091 * This maps the requested rate to the actual rate, a valid rate on 1092 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1093 * 1094 * NOTE: B0 is not implemented. 1095 */ 1096 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1097 1098 if (priv->use_actual_rate) 1099 baud = cp210x_get_actual_rate(baud); 1100 else if (baud < 1000000) 1101 baud = cp210x_get_an205_rate(baud); 1102 1103 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1104 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1105 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1106 if (old_termios) 1107 baud = old_termios->c_ospeed; 1108 else 1109 baud = 9600; 1110 } 1111 1112 tty_encode_baud_rate(tty, baud, baud); 1113 } 1114 1115 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1116 { 1117 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1118 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1119 int ret; 1120 1121 if (port_priv->event_mode) 1122 return; 1123 1124 if (priv->no_event_mode) 1125 return; 1126 1127 port_priv->event_state = ES_DATA; 1128 port_priv->event_mode = true; 1129 1130 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1131 if (ret) { 1132 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1133 port_priv->event_mode = false; 1134 } 1135 } 1136 1137 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1138 { 1139 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1140 int ret; 1141 1142 if (!port_priv->event_mode) 1143 return; 1144 1145 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1146 if (ret) { 1147 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1148 return; 1149 } 1150 1151 port_priv->event_mode = false; 1152 } 1153 1154 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1155 { 1156 bool iflag_change, cc_change; 1157 1158 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1159 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1160 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1161 1162 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1163 } 1164 1165 static void cp210x_set_flow_control(struct tty_struct *tty, 1166 struct usb_serial_port *port, struct ktermios *old_termios) 1167 { 1168 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1169 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1170 struct cp210x_special_chars chars; 1171 struct cp210x_flow_ctl flow_ctl; 1172 u32 flow_repl; 1173 u32 ctl_hs; 1174 bool crtscts; 1175 int ret; 1176 1177 /* 1178 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1179 * CP2102N_E104). Report back that flow control is not supported. 1180 */ 1181 if (priv->no_flow_control) { 1182 tty->termios.c_cflag &= ~CRTSCTS; 1183 tty->termios.c_iflag &= ~(IXON | IXOFF); 1184 } 1185 1186 if (old_termios && 1187 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1188 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1189 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1190 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1191 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1192 return; 1193 } 1194 1195 if (I_IXON(tty) || I_IXOFF(tty)) { 1196 memset(&chars, 0, sizeof(chars)); 1197 1198 chars.bXonChar = START_CHAR(tty); 1199 chars.bXoffChar = STOP_CHAR(tty); 1200 1201 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1202 sizeof(chars)); 1203 if (ret) { 1204 dev_err(&port->dev, "failed to set special chars: %d\n", 1205 ret); 1206 } 1207 } 1208 1209 mutex_lock(&port_priv->mutex); 1210 1211 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1212 sizeof(flow_ctl)); 1213 if (ret) 1214 goto out_unlock; 1215 1216 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1217 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1218 1219 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1220 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1221 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1222 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1223 if (port_priv->dtr) 1224 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1225 else 1226 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1227 1228 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1229 if (C_CRTSCTS(tty)) { 1230 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1231 if (port_priv->rts) 1232 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1233 else 1234 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1235 crtscts = true; 1236 } else { 1237 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1238 if (port_priv->rts) 1239 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1240 else 1241 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1242 crtscts = false; 1243 } 1244 1245 if (I_IXOFF(tty)) { 1246 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1247 1248 flow_ctl.ulXonLimit = cpu_to_le32(128); 1249 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1250 } else { 1251 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1252 } 1253 1254 if (I_IXON(tty)) 1255 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1256 else 1257 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1258 1259 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1260 ctl_hs, flow_repl); 1261 1262 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1263 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1264 1265 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1266 sizeof(flow_ctl)); 1267 if (ret) 1268 goto out_unlock; 1269 1270 port_priv->crtscts = crtscts; 1271 out_unlock: 1272 mutex_unlock(&port_priv->mutex); 1273 } 1274 1275 static void cp210x_set_termios(struct tty_struct *tty, 1276 struct usb_serial_port *port, struct ktermios *old_termios) 1277 { 1278 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1279 u16 bits; 1280 int ret; 1281 1282 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) 1283 return; 1284 1285 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1286 cp210x_change_speed(tty, port, old_termios); 1287 1288 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1289 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1290 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1291 tty->termios.c_cflag |= CS8; 1292 } 1293 1294 bits = 0; 1295 1296 switch (C_CSIZE(tty)) { 1297 case CS5: 1298 bits |= BITS_DATA_5; 1299 break; 1300 case CS6: 1301 bits |= BITS_DATA_6; 1302 break; 1303 case CS7: 1304 bits |= BITS_DATA_7; 1305 break; 1306 case CS8: 1307 default: 1308 bits |= BITS_DATA_8; 1309 break; 1310 } 1311 1312 if (C_PARENB(tty)) { 1313 if (C_CMSPAR(tty)) { 1314 if (C_PARODD(tty)) 1315 bits |= BITS_PARITY_MARK; 1316 else 1317 bits |= BITS_PARITY_SPACE; 1318 } else { 1319 if (C_PARODD(tty)) 1320 bits |= BITS_PARITY_ODD; 1321 else 1322 bits |= BITS_PARITY_EVEN; 1323 } 1324 } 1325 1326 if (C_CSTOPB(tty)) 1327 bits |= BITS_STOP_2; 1328 else 1329 bits |= BITS_STOP_1; 1330 1331 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1332 if (ret) 1333 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1334 1335 cp210x_set_flow_control(tty, port, old_termios); 1336 1337 /* 1338 * Enable event-insertion mode only if input parity checking is 1339 * enabled for now. 1340 */ 1341 if (I_INPCK(tty)) 1342 cp210x_enable_event_mode(port); 1343 else 1344 cp210x_disable_event_mode(port); 1345 } 1346 1347 static int cp210x_tiocmset(struct tty_struct *tty, 1348 unsigned int set, unsigned int clear) 1349 { 1350 struct usb_serial_port *port = tty->driver_data; 1351 return cp210x_tiocmset_port(port, set, clear); 1352 } 1353 1354 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1355 unsigned int set, unsigned int clear) 1356 { 1357 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1358 struct cp210x_flow_ctl flow_ctl; 1359 u32 ctl_hs, flow_repl; 1360 u16 control = 0; 1361 int ret; 1362 1363 mutex_lock(&port_priv->mutex); 1364 1365 if (set & TIOCM_RTS) { 1366 port_priv->rts = true; 1367 control |= CONTROL_RTS; 1368 control |= CONTROL_WRITE_RTS; 1369 } 1370 if (set & TIOCM_DTR) { 1371 port_priv->dtr = true; 1372 control |= CONTROL_DTR; 1373 control |= CONTROL_WRITE_DTR; 1374 } 1375 if (clear & TIOCM_RTS) { 1376 port_priv->rts = false; 1377 control &= ~CONTROL_RTS; 1378 control |= CONTROL_WRITE_RTS; 1379 } 1380 if (clear & TIOCM_DTR) { 1381 port_priv->dtr = false; 1382 control &= ~CONTROL_DTR; 1383 control |= CONTROL_WRITE_DTR; 1384 } 1385 1386 /* 1387 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1388 * flow control is enabled. 1389 */ 1390 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1391 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1392 sizeof(flow_ctl)); 1393 if (ret) 1394 goto out_unlock; 1395 1396 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1397 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1398 1399 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1400 if (port_priv->dtr) 1401 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1402 else 1403 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1404 1405 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1406 if (port_priv->rts) 1407 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1408 else 1409 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1410 1411 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1412 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1413 1414 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1415 __func__, ctl_hs, flow_repl); 1416 1417 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1418 sizeof(flow_ctl)); 1419 } else { 1420 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1421 1422 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1423 } 1424 out_unlock: 1425 mutex_unlock(&port_priv->mutex); 1426 1427 return ret; 1428 } 1429 1430 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1431 { 1432 if (on) 1433 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1434 else 1435 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1436 } 1437 1438 static int cp210x_tiocmget(struct tty_struct *tty) 1439 { 1440 struct usb_serial_port *port = tty->driver_data; 1441 u8 control; 1442 int result; 1443 1444 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1445 if (result) 1446 return result; 1447 1448 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1449 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1450 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1451 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1452 |((control & CONTROL_RING)? TIOCM_RI : 0) 1453 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1454 1455 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1456 1457 return result; 1458 } 1459 1460 static void cp210x_break_ctl(struct tty_struct *tty, int break_state) 1461 { 1462 struct usb_serial_port *port = tty->driver_data; 1463 u16 state; 1464 1465 if (break_state == 0) 1466 state = BREAK_OFF; 1467 else 1468 state = BREAK_ON; 1469 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1470 state == BREAK_OFF ? "off" : "on"); 1471 cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1472 } 1473 1474 #ifdef CONFIG_GPIOLIB 1475 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1476 { 1477 struct usb_serial *serial = gpiochip_get_data(gc); 1478 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1479 u8 req_type; 1480 u16 mask; 1481 int result; 1482 int len; 1483 1484 result = usb_autopm_get_interface(serial->interface); 1485 if (result) 1486 return result; 1487 1488 switch (priv->partnum) { 1489 case CP210X_PARTNUM_CP2105: 1490 req_type = REQTYPE_INTERFACE_TO_HOST; 1491 len = 1; 1492 break; 1493 case CP210X_PARTNUM_CP2108: 1494 req_type = REQTYPE_INTERFACE_TO_HOST; 1495 len = 2; 1496 break; 1497 default: 1498 req_type = REQTYPE_DEVICE_TO_HOST; 1499 len = 1; 1500 break; 1501 } 1502 1503 mask = 0; 1504 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1505 &mask, len); 1506 1507 usb_autopm_put_interface(serial->interface); 1508 1509 if (result < 0) 1510 return result; 1511 1512 le16_to_cpus(&mask); 1513 1514 return !!(mask & BIT(gpio)); 1515 } 1516 1517 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1518 { 1519 struct usb_serial *serial = gpiochip_get_data(gc); 1520 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1521 struct cp210x_gpio_write16 buf16; 1522 struct cp210x_gpio_write buf; 1523 u16 mask, state; 1524 u16 wIndex; 1525 int result; 1526 1527 if (value == 1) 1528 state = BIT(gpio); 1529 else 1530 state = 0; 1531 1532 mask = BIT(gpio); 1533 1534 result = usb_autopm_get_interface(serial->interface); 1535 if (result) 1536 goto out; 1537 1538 switch (priv->partnum) { 1539 case CP210X_PARTNUM_CP2105: 1540 buf.mask = (u8)mask; 1541 buf.state = (u8)state; 1542 result = cp210x_write_vendor_block(serial, 1543 REQTYPE_HOST_TO_INTERFACE, 1544 CP210X_WRITE_LATCH, &buf, 1545 sizeof(buf)); 1546 break; 1547 case CP210X_PARTNUM_CP2108: 1548 buf16.mask = cpu_to_le16(mask); 1549 buf16.state = cpu_to_le16(state); 1550 result = cp210x_write_vendor_block(serial, 1551 REQTYPE_HOST_TO_INTERFACE, 1552 CP210X_WRITE_LATCH, &buf16, 1553 sizeof(buf16)); 1554 break; 1555 default: 1556 wIndex = state << 8 | mask; 1557 result = usb_control_msg(serial->dev, 1558 usb_sndctrlpipe(serial->dev, 0), 1559 CP210X_VENDOR_SPECIFIC, 1560 REQTYPE_HOST_TO_DEVICE, 1561 CP210X_WRITE_LATCH, 1562 wIndex, 1563 NULL, 0, USB_CTRL_SET_TIMEOUT); 1564 break; 1565 } 1566 1567 usb_autopm_put_interface(serial->interface); 1568 out: 1569 if (result < 0) { 1570 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1571 result); 1572 } 1573 } 1574 1575 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1576 { 1577 struct usb_serial *serial = gpiochip_get_data(gc); 1578 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1579 1580 return priv->gpio_input & BIT(gpio); 1581 } 1582 1583 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1584 { 1585 struct usb_serial *serial = gpiochip_get_data(gc); 1586 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1587 1588 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1589 /* hardware does not support an input mode */ 1590 return -ENOTSUPP; 1591 } 1592 1593 /* push-pull pins cannot be changed to be inputs */ 1594 if (priv->gpio_pushpull & BIT(gpio)) 1595 return -EINVAL; 1596 1597 /* make sure to release pin if it is being driven low */ 1598 cp210x_gpio_set(gc, gpio, 1); 1599 1600 priv->gpio_input |= BIT(gpio); 1601 1602 return 0; 1603 } 1604 1605 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1606 int value) 1607 { 1608 struct usb_serial *serial = gpiochip_get_data(gc); 1609 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1610 1611 priv->gpio_input &= ~BIT(gpio); 1612 cp210x_gpio_set(gc, gpio, value); 1613 1614 return 0; 1615 } 1616 1617 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1618 unsigned long config) 1619 { 1620 struct usb_serial *serial = gpiochip_get_data(gc); 1621 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1622 enum pin_config_param param = pinconf_to_config_param(config); 1623 1624 /* Succeed only if in correct mode (this can't be set at runtime) */ 1625 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1626 (priv->gpio_pushpull & BIT(gpio))) 1627 return 0; 1628 1629 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1630 !(priv->gpio_pushpull & BIT(gpio))) 1631 return 0; 1632 1633 return -ENOTSUPP; 1634 } 1635 1636 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1637 unsigned long *valid_mask, unsigned int ngpios) 1638 { 1639 struct usb_serial *serial = gpiochip_get_data(gc); 1640 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1641 struct device *dev = &serial->interface->dev; 1642 unsigned long altfunc_mask = priv->gpio_altfunc; 1643 1644 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1645 1646 if (bitmap_empty(valid_mask, ngpios)) 1647 dev_dbg(dev, "no pin configured for GPIO\n"); 1648 else 1649 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1650 valid_mask); 1651 return 0; 1652 } 1653 1654 /* 1655 * This function is for configuring GPIO using shared pins, where other signals 1656 * are made unavailable by configuring the use of GPIO. This is believed to be 1657 * only applicable to the cp2105 at this point, the other devices supported by 1658 * this driver that provide GPIO do so in a way that does not impact other 1659 * signals and are thus expected to have very different initialisation. 1660 */ 1661 static int cp2105_gpioconf_init(struct usb_serial *serial) 1662 { 1663 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1664 struct cp210x_pin_mode mode; 1665 struct cp210x_dual_port_config config; 1666 u8 intf_num = cp210x_interface_num(serial); 1667 u8 iface_config; 1668 int result; 1669 1670 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1671 CP210X_GET_DEVICEMODE, &mode, 1672 sizeof(mode)); 1673 if (result < 0) 1674 return result; 1675 1676 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1677 CP210X_GET_PORTCONFIG, &config, 1678 sizeof(config)); 1679 if (result < 0) 1680 return result; 1681 1682 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1683 if (intf_num == 0) { 1684 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1685 /* mark all GPIOs of this interface as reserved */ 1686 priv->gpio_altfunc = 0xff; 1687 return 0; 1688 } 1689 1690 iface_config = config.eci_cfg; 1691 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1692 CP210X_ECI_GPIO_MODE_MASK) >> 1693 CP210X_ECI_GPIO_MODE_OFFSET); 1694 priv->gc.ngpio = 2; 1695 } else if (intf_num == 1) { 1696 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1697 /* mark all GPIOs of this interface as reserved */ 1698 priv->gpio_altfunc = 0xff; 1699 return 0; 1700 } 1701 1702 iface_config = config.sci_cfg; 1703 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1704 CP210X_SCI_GPIO_MODE_MASK) >> 1705 CP210X_SCI_GPIO_MODE_OFFSET); 1706 priv->gc.ngpio = 3; 1707 } else { 1708 return -ENODEV; 1709 } 1710 1711 /* mark all pins which are not in GPIO mode */ 1712 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1713 priv->gpio_altfunc |= BIT(0); 1714 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1715 CP2105_GPIO1_RS485_MODE)) 1716 priv->gpio_altfunc |= BIT(1); 1717 1718 /* driver implementation for CP2105 only supports outputs */ 1719 priv->gpio_input = 0; 1720 1721 return 0; 1722 } 1723 1724 static int cp2104_gpioconf_init(struct usb_serial *serial) 1725 { 1726 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1727 struct cp210x_single_port_config config; 1728 u8 iface_config; 1729 u8 gpio_latch; 1730 int result; 1731 u8 i; 1732 1733 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1734 CP210X_GET_PORTCONFIG, &config, 1735 sizeof(config)); 1736 if (result < 0) 1737 return result; 1738 1739 priv->gc.ngpio = 4; 1740 1741 iface_config = config.device_cfg; 1742 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1743 CP210X_GPIO_MODE_MASK) >> 1744 CP210X_GPIO_MODE_OFFSET); 1745 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1746 CP210X_GPIO_MODE_MASK) >> 1747 CP210X_GPIO_MODE_OFFSET); 1748 1749 /* mark all pins which are not in GPIO mode */ 1750 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1751 priv->gpio_altfunc |= BIT(0); 1752 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1753 priv->gpio_altfunc |= BIT(1); 1754 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1755 priv->gpio_altfunc |= BIT(2); 1756 1757 /* 1758 * Like CP2102N, CP2104 has also no strict input and output pin 1759 * modes. 1760 * Do the same input mode emulation as CP2102N. 1761 */ 1762 for (i = 0; i < priv->gc.ngpio; ++i) { 1763 /* 1764 * Set direction to "input" iff pin is open-drain and reset 1765 * value is 1. 1766 */ 1767 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1768 priv->gpio_input |= BIT(i); 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int cp2108_gpio_init(struct usb_serial *serial) 1775 { 1776 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1777 struct cp210x_quad_port_config config; 1778 u16 gpio_latch; 1779 int result; 1780 u8 i; 1781 1782 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1783 CP210X_GET_PORTCONFIG, &config, 1784 sizeof(config)); 1785 if (result < 0) 1786 return result; 1787 1788 priv->gc.ngpio = 16; 1789 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1790 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1791 1792 /* 1793 * Mark all pins which are not in GPIO mode. 1794 * 1795 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1796 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1797 * 1798 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1799 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1800 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1801 */ 1802 for (i = 0; i < 4; i++) { 1803 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1804 priv->gpio_altfunc |= BIT(i * 4); 1805 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1806 priv->gpio_altfunc |= BIT((i * 4) + 1); 1807 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1808 priv->gpio_altfunc |= BIT((i * 4) + 2); 1809 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1810 priv->gpio_altfunc |= BIT((i * 4) + 3); 1811 } 1812 1813 /* 1814 * Like CP2102N, CP2108 has also no strict input and output pin 1815 * modes. Do the same input mode emulation as CP2102N. 1816 */ 1817 for (i = 0; i < priv->gc.ngpio; ++i) { 1818 /* 1819 * Set direction to "input" iff pin is open-drain and reset 1820 * value is 1. 1821 */ 1822 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1823 priv->gpio_input |= BIT(i); 1824 } 1825 1826 return 0; 1827 } 1828 1829 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1830 { 1831 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1832 const u16 config_size = 0x02a6; 1833 u8 gpio_rst_latch; 1834 u8 config_version; 1835 u8 gpio_pushpull; 1836 u8 *config_buf; 1837 u8 gpio_latch; 1838 u8 gpio_ctrl; 1839 int result; 1840 u8 i; 1841 1842 /* 1843 * Retrieve device configuration from the device. 1844 * The array received contains all customization settings done at the 1845 * factory/manufacturer. Format of the array is documented at the 1846 * time of writing at: 1847 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1848 */ 1849 config_buf = kmalloc(config_size, GFP_KERNEL); 1850 if (!config_buf) 1851 return -ENOMEM; 1852 1853 result = cp210x_read_vendor_block(serial, 1854 REQTYPE_DEVICE_TO_HOST, 1855 CP210X_READ_2NCONFIG, 1856 config_buf, 1857 config_size); 1858 if (result < 0) { 1859 kfree(config_buf); 1860 return result; 1861 } 1862 1863 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1864 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1865 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1866 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1867 1868 kfree(config_buf); 1869 1870 /* Make sure this is a config format we understand. */ 1871 if (config_version != 0x01) 1872 return -ENOTSUPP; 1873 1874 priv->gc.ngpio = 4; 1875 1876 /* 1877 * Get default pin states after reset. Needed so we can determine 1878 * the direction of an open-drain pin. 1879 */ 1880 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1881 1882 /* 0 indicates open-drain mode, 1 is push-pull */ 1883 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1884 1885 /* 0 indicates GPIO mode, 1 is alternate function */ 1886 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1887 /* QFN20 is special... */ 1888 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1889 priv->gpio_altfunc |= BIT(0); 1890 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1891 priv->gpio_altfunc |= BIT(1); 1892 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1893 priv->gpio_altfunc |= BIT(2); 1894 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1895 priv->gpio_altfunc |= BIT(3); 1896 } else { 1897 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1898 } 1899 1900 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1901 /* 1902 * For the QFN28 package, GPIO4-6 are controlled by 1903 * the low three bits of the mode/latch fields. 1904 * Contrary to the document linked above, the bits for 1905 * the SUSPEND pins are elsewhere. No alternate 1906 * function is available for these pins. 1907 */ 1908 priv->gc.ngpio = 7; 1909 gpio_latch |= (gpio_rst_latch & 7) << 4; 1910 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1911 } 1912 1913 /* 1914 * The CP2102N does not strictly has input and output pin modes, 1915 * it only knows open-drain and push-pull modes which is set at 1916 * factory. An open-drain pin can function both as an 1917 * input or an output. We emulate input mode for open-drain pins 1918 * by making sure they are not driven low, and we do not allow 1919 * push-pull pins to be set as an input. 1920 */ 1921 for (i = 0; i < priv->gc.ngpio; ++i) { 1922 /* 1923 * Set direction to "input" iff pin is open-drain and reset 1924 * value is 1. 1925 */ 1926 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1927 priv->gpio_input |= BIT(i); 1928 } 1929 1930 return 0; 1931 } 1932 1933 static int cp210x_gpio_init(struct usb_serial *serial) 1934 { 1935 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1936 int result; 1937 1938 switch (priv->partnum) { 1939 case CP210X_PARTNUM_CP2104: 1940 result = cp2104_gpioconf_init(serial); 1941 break; 1942 case CP210X_PARTNUM_CP2105: 1943 result = cp2105_gpioconf_init(serial); 1944 break; 1945 case CP210X_PARTNUM_CP2108: 1946 /* 1947 * The GPIOs are not tied to any specific port so only register 1948 * once for interface 0. 1949 */ 1950 if (cp210x_interface_num(serial) != 0) 1951 return 0; 1952 result = cp2108_gpio_init(serial); 1953 break; 1954 case CP210X_PARTNUM_CP2102N_QFN28: 1955 case CP210X_PARTNUM_CP2102N_QFN24: 1956 case CP210X_PARTNUM_CP2102N_QFN20: 1957 result = cp2102n_gpioconf_init(serial); 1958 break; 1959 default: 1960 return 0; 1961 } 1962 1963 if (result < 0) 1964 return result; 1965 1966 priv->gc.label = "cp210x"; 1967 priv->gc.get_direction = cp210x_gpio_direction_get; 1968 priv->gc.direction_input = cp210x_gpio_direction_input; 1969 priv->gc.direction_output = cp210x_gpio_direction_output; 1970 priv->gc.get = cp210x_gpio_get; 1971 priv->gc.set = cp210x_gpio_set; 1972 priv->gc.set_config = cp210x_gpio_set_config; 1973 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1974 priv->gc.owner = THIS_MODULE; 1975 priv->gc.parent = &serial->interface->dev; 1976 priv->gc.base = -1; 1977 priv->gc.can_sleep = true; 1978 1979 result = gpiochip_add_data(&priv->gc, serial); 1980 if (!result) 1981 priv->gpio_registered = true; 1982 1983 return result; 1984 } 1985 1986 static void cp210x_gpio_remove(struct usb_serial *serial) 1987 { 1988 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1989 1990 if (priv->gpio_registered) { 1991 gpiochip_remove(&priv->gc); 1992 priv->gpio_registered = false; 1993 } 1994 } 1995 1996 #else 1997 1998 static int cp210x_gpio_init(struct usb_serial *serial) 1999 { 2000 return 0; 2001 } 2002 2003 static void cp210x_gpio_remove(struct usb_serial *serial) 2004 { 2005 /* Nothing to do */ 2006 } 2007 2008 #endif 2009 2010 static int cp210x_port_probe(struct usb_serial_port *port) 2011 { 2012 struct usb_serial *serial = port->serial; 2013 struct cp210x_port_private *port_priv; 2014 2015 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 2016 if (!port_priv) 2017 return -ENOMEM; 2018 2019 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 2020 mutex_init(&port_priv->mutex); 2021 2022 usb_set_serial_port_data(port, port_priv); 2023 2024 return 0; 2025 } 2026 2027 static void cp210x_port_remove(struct usb_serial_port *port) 2028 { 2029 struct cp210x_port_private *port_priv; 2030 2031 port_priv = usb_get_serial_port_data(port); 2032 kfree(port_priv); 2033 } 2034 2035 static void cp210x_init_max_speed(struct usb_serial *serial) 2036 { 2037 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2038 bool use_actual_rate = false; 2039 speed_t min = 300; 2040 speed_t max; 2041 2042 switch (priv->partnum) { 2043 case CP210X_PARTNUM_CP2101: 2044 max = 921600; 2045 break; 2046 case CP210X_PARTNUM_CP2102: 2047 case CP210X_PARTNUM_CP2103: 2048 max = 1000000; 2049 break; 2050 case CP210X_PARTNUM_CP2104: 2051 use_actual_rate = true; 2052 max = 2000000; 2053 break; 2054 case CP210X_PARTNUM_CP2108: 2055 max = 2000000; 2056 break; 2057 case CP210X_PARTNUM_CP2105: 2058 if (cp210x_interface_num(serial) == 0) { 2059 use_actual_rate = true; 2060 max = 2000000; /* ECI */ 2061 } else { 2062 min = 2400; 2063 max = 921600; /* SCI */ 2064 } 2065 break; 2066 case CP210X_PARTNUM_CP2102N_QFN28: 2067 case CP210X_PARTNUM_CP2102N_QFN24: 2068 case CP210X_PARTNUM_CP2102N_QFN20: 2069 use_actual_rate = true; 2070 max = 3000000; 2071 break; 2072 default: 2073 max = 2000000; 2074 break; 2075 } 2076 2077 priv->min_speed = min; 2078 priv->max_speed = max; 2079 priv->use_actual_rate = use_actual_rate; 2080 } 2081 2082 static void cp2102_determine_quirks(struct usb_serial *serial) 2083 { 2084 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2085 u8 *buf; 2086 int ret; 2087 2088 buf = kmalloc(2, GFP_KERNEL); 2089 if (!buf) 2090 return; 2091 /* 2092 * Some (possibly counterfeit) CP2102 do not support event-insertion 2093 * mode and respond differently to malformed vendor requests. 2094 * Specifically, they return one instead of two bytes when sent a 2095 * two-byte part-number request. 2096 */ 2097 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2098 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2099 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2100 if (ret == 1) { 2101 dev_dbg(&serial->interface->dev, 2102 "device does not support event-insertion mode\n"); 2103 priv->no_event_mode = true; 2104 } 2105 2106 kfree(buf); 2107 } 2108 2109 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2110 { 2111 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2112 u8 ver[3]; 2113 int ret; 2114 2115 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2116 ver, sizeof(ver)); 2117 if (ret) 2118 return ret; 2119 2120 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2121 ver[0], ver[1], ver[2]); 2122 2123 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2124 2125 return 0; 2126 } 2127 2128 static void cp210x_determine_type(struct usb_serial *serial) 2129 { 2130 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2131 int ret; 2132 2133 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2134 CP210X_GET_PARTNUM, &priv->partnum, 2135 sizeof(priv->partnum)); 2136 if (ret < 0) { 2137 dev_warn(&serial->interface->dev, 2138 "querying part number failed\n"); 2139 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2140 return; 2141 } 2142 2143 switch (priv->partnum) { 2144 case CP210X_PARTNUM_CP2102: 2145 cp2102_determine_quirks(serial); 2146 break; 2147 case CP210X_PARTNUM_CP2105: 2148 case CP210X_PARTNUM_CP2108: 2149 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2150 break; 2151 case CP210X_PARTNUM_CP2102N_QFN28: 2152 case CP210X_PARTNUM_CP2102N_QFN24: 2153 case CP210X_PARTNUM_CP2102N_QFN20: 2154 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2155 if (ret) 2156 break; 2157 if (priv->fw_version <= 0x10004) 2158 priv->no_flow_control = true; 2159 break; 2160 default: 2161 break; 2162 } 2163 } 2164 2165 static int cp210x_attach(struct usb_serial *serial) 2166 { 2167 int result; 2168 struct cp210x_serial_private *priv; 2169 2170 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2171 if (!priv) 2172 return -ENOMEM; 2173 2174 usb_set_serial_data(serial, priv); 2175 2176 cp210x_determine_type(serial); 2177 cp210x_init_max_speed(serial); 2178 2179 result = cp210x_gpio_init(serial); 2180 if (result < 0) { 2181 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2182 result); 2183 } 2184 2185 return 0; 2186 } 2187 2188 static void cp210x_disconnect(struct usb_serial *serial) 2189 { 2190 cp210x_gpio_remove(serial); 2191 } 2192 2193 static void cp210x_release(struct usb_serial *serial) 2194 { 2195 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2196 2197 cp210x_gpio_remove(serial); 2198 2199 kfree(priv); 2200 } 2201 2202 module_usb_serial_driver(serial_drivers, id_table); 2203 2204 MODULE_DESCRIPTION(DRIVER_DESC); 2205 MODULE_LICENSE("GPL v2"); 2206