1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 const struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 const struct ktermios *); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static int cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x0404, 0x034C) }, /* NCR Retail IO Box */ 55 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 56 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 57 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 59 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 60 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 61 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 62 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 63 { USB_DEVICE(0x0908, 0x0070) }, /* Siemens SCALANCE LPE-9000 USB Serial Console */ 64 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 65 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 66 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 67 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 68 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 69 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 71 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 72 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 73 { USB_DEVICE(0x106F, 0x0003) }, /* CPI / Money Controls Bulk Coin Recycler */ 74 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 75 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 76 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 77 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 78 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 79 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 80 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 81 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 82 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 83 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 84 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 85 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 86 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 87 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 88 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 89 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 90 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 91 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 92 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 93 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 94 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 95 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 96 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 97 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 98 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 99 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 100 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 101 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 102 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 103 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 104 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 105 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 106 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 107 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 108 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 109 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 110 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 111 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 112 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 113 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 114 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 115 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 116 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 117 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 118 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 119 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 120 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 121 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 122 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 123 { USB_DEVICE(0x10C4, 0x82AA) }, /* Silicon Labs IFS-USB-DATACABLE used with Quint UPS */ 124 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 125 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 126 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 127 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 128 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 129 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 130 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 131 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 132 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 133 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 134 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 135 { USB_DEVICE(0x10C4, 0x8414) }, /* Decagon USB Cable Adapter */ 136 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 137 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 138 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 139 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 140 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 141 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 142 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 143 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 144 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 145 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 146 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 147 { USB_DEVICE(0x10C4, 0x863C) }, /* MGP Instruments PDS100 */ 148 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 149 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 150 { USB_DEVICE(0x10C4, 0x87ED) }, /* IMST USB-Stick for Smart Meter */ 151 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 152 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 153 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 154 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 155 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 156 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 157 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 158 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 159 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 160 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 161 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 162 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 163 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 164 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 165 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 166 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 167 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 168 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 169 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 170 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 171 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 172 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 173 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 174 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 175 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 176 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 177 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 178 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 179 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 180 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 181 { USB_DEVICE(0x11CA, 0x0212) }, /* Verifone USB to Printer (UART, CP2102) */ 182 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 183 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 184 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 185 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 186 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 187 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 188 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 189 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 190 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 191 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 192 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 193 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 194 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 195 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 196 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 197 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 198 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 199 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 200 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 201 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 202 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 203 { USB_DEVICE(0x17A8, 0x0011) }, /* Kamstrup 444 MHz RF sniffer */ 204 { USB_DEVICE(0x17A8, 0x0013) }, /* Kamstrup 870 MHz RF sniffer */ 205 { USB_DEVICE(0x17A8, 0x0101) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Int Ant) */ 206 { USB_DEVICE(0x17A8, 0x0102) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Ext Ant) */ 207 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 208 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 209 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 210 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 211 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 212 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 213 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 214 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 215 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 216 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 217 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 218 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 219 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 220 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 221 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 222 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 223 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 224 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 225 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 226 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 227 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 228 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 229 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 230 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 231 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 232 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 233 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 234 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 235 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 236 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 237 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 238 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 239 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 240 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 241 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 242 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 243 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 244 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 245 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 246 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 247 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 248 { USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */ 249 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 250 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 251 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 252 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 253 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 254 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 255 { } /* Terminating Entry */ 256 }; 257 258 MODULE_DEVICE_TABLE(usb, id_table); 259 260 struct cp210x_serial_private { 261 #ifdef CONFIG_GPIOLIB 262 struct gpio_chip gc; 263 bool gpio_registered; 264 u16 gpio_pushpull; 265 u16 gpio_altfunc; 266 u16 gpio_input; 267 #endif 268 u8 partnum; 269 u32 fw_version; 270 speed_t min_speed; 271 speed_t max_speed; 272 bool use_actual_rate; 273 bool no_flow_control; 274 bool no_event_mode; 275 }; 276 277 enum cp210x_event_state { 278 ES_DATA, 279 ES_ESCAPE, 280 ES_LSR, 281 ES_LSR_DATA_0, 282 ES_LSR_DATA_1, 283 ES_MSR 284 }; 285 286 struct cp210x_port_private { 287 u8 bInterfaceNumber; 288 bool event_mode; 289 enum cp210x_event_state event_state; 290 u8 lsr; 291 292 struct mutex mutex; 293 bool crtscts; 294 bool dtr; 295 bool rts; 296 }; 297 298 static struct usb_serial_driver cp210x_device = { 299 .driver = { 300 .owner = THIS_MODULE, 301 .name = "cp210x", 302 }, 303 .id_table = id_table, 304 .num_ports = 1, 305 .bulk_in_size = 256, 306 .bulk_out_size = 256, 307 .open = cp210x_open, 308 .close = cp210x_close, 309 .break_ctl = cp210x_break_ctl, 310 .set_termios = cp210x_set_termios, 311 .tx_empty = cp210x_tx_empty, 312 .throttle = usb_serial_generic_throttle, 313 .unthrottle = usb_serial_generic_unthrottle, 314 .tiocmget = cp210x_tiocmget, 315 .tiocmset = cp210x_tiocmset, 316 .get_icount = usb_serial_generic_get_icount, 317 .attach = cp210x_attach, 318 .disconnect = cp210x_disconnect, 319 .release = cp210x_release, 320 .port_probe = cp210x_port_probe, 321 .port_remove = cp210x_port_remove, 322 .dtr_rts = cp210x_dtr_rts, 323 .process_read_urb = cp210x_process_read_urb, 324 }; 325 326 static struct usb_serial_driver * const serial_drivers[] = { 327 &cp210x_device, NULL 328 }; 329 330 /* Config request types */ 331 #define REQTYPE_HOST_TO_INTERFACE 0x41 332 #define REQTYPE_INTERFACE_TO_HOST 0xc1 333 #define REQTYPE_HOST_TO_DEVICE 0x40 334 #define REQTYPE_DEVICE_TO_HOST 0xc0 335 336 /* Config request codes */ 337 #define CP210X_IFC_ENABLE 0x00 338 #define CP210X_SET_BAUDDIV 0x01 339 #define CP210X_GET_BAUDDIV 0x02 340 #define CP210X_SET_LINE_CTL 0x03 341 #define CP210X_GET_LINE_CTL 0x04 342 #define CP210X_SET_BREAK 0x05 343 #define CP210X_IMM_CHAR 0x06 344 #define CP210X_SET_MHS 0x07 345 #define CP210X_GET_MDMSTS 0x08 346 #define CP210X_SET_XON 0x09 347 #define CP210X_SET_XOFF 0x0A 348 #define CP210X_SET_EVENTMASK 0x0B 349 #define CP210X_GET_EVENTMASK 0x0C 350 #define CP210X_SET_CHAR 0x0D 351 #define CP210X_GET_CHARS 0x0E 352 #define CP210X_GET_PROPS 0x0F 353 #define CP210X_GET_COMM_STATUS 0x10 354 #define CP210X_RESET 0x11 355 #define CP210X_PURGE 0x12 356 #define CP210X_SET_FLOW 0x13 357 #define CP210X_GET_FLOW 0x14 358 #define CP210X_EMBED_EVENTS 0x15 359 #define CP210X_GET_EVENTSTATE 0x16 360 #define CP210X_SET_CHARS 0x19 361 #define CP210X_GET_BAUDRATE 0x1D 362 #define CP210X_SET_BAUDRATE 0x1E 363 #define CP210X_VENDOR_SPECIFIC 0xFF 364 365 /* CP210X_IFC_ENABLE */ 366 #define UART_ENABLE 0x0001 367 #define UART_DISABLE 0x0000 368 369 /* CP210X_(SET|GET)_BAUDDIV */ 370 #define BAUD_RATE_GEN_FREQ 0x384000 371 372 /* CP210X_(SET|GET)_LINE_CTL */ 373 #define BITS_DATA_MASK 0X0f00 374 #define BITS_DATA_5 0X0500 375 #define BITS_DATA_6 0X0600 376 #define BITS_DATA_7 0X0700 377 #define BITS_DATA_8 0X0800 378 #define BITS_DATA_9 0X0900 379 380 #define BITS_PARITY_MASK 0x00f0 381 #define BITS_PARITY_NONE 0x0000 382 #define BITS_PARITY_ODD 0x0010 383 #define BITS_PARITY_EVEN 0x0020 384 #define BITS_PARITY_MARK 0x0030 385 #define BITS_PARITY_SPACE 0x0040 386 387 #define BITS_STOP_MASK 0x000f 388 #define BITS_STOP_1 0x0000 389 #define BITS_STOP_1_5 0x0001 390 #define BITS_STOP_2 0x0002 391 392 /* CP210X_SET_BREAK */ 393 #define BREAK_ON 0x0001 394 #define BREAK_OFF 0x0000 395 396 /* CP210X_(SET_MHS|GET_MDMSTS) */ 397 #define CONTROL_DTR 0x0001 398 #define CONTROL_RTS 0x0002 399 #define CONTROL_CTS 0x0010 400 #define CONTROL_DSR 0x0020 401 #define CONTROL_RING 0x0040 402 #define CONTROL_DCD 0x0080 403 #define CONTROL_WRITE_DTR 0x0100 404 #define CONTROL_WRITE_RTS 0x0200 405 406 /* CP210X_(GET|SET)_CHARS */ 407 struct cp210x_special_chars { 408 u8 bEofChar; 409 u8 bErrorChar; 410 u8 bBreakChar; 411 u8 bEventChar; 412 u8 bXonChar; 413 u8 bXoffChar; 414 }; 415 416 /* CP210X_VENDOR_SPECIFIC values */ 417 #define CP210X_GET_FW_VER 0x000E 418 #define CP210X_READ_2NCONFIG 0x000E 419 #define CP210X_GET_FW_VER_2N 0x0010 420 #define CP210X_READ_LATCH 0x00C2 421 #define CP210X_GET_PARTNUM 0x370B 422 #define CP210X_GET_PORTCONFIG 0x370C 423 #define CP210X_GET_DEVICEMODE 0x3711 424 #define CP210X_WRITE_LATCH 0x37E1 425 426 /* Part number definitions */ 427 #define CP210X_PARTNUM_CP2101 0x01 428 #define CP210X_PARTNUM_CP2102 0x02 429 #define CP210X_PARTNUM_CP2103 0x03 430 #define CP210X_PARTNUM_CP2104 0x04 431 #define CP210X_PARTNUM_CP2105 0x05 432 #define CP210X_PARTNUM_CP2108 0x08 433 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 434 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 435 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 436 #define CP210X_PARTNUM_UNKNOWN 0xFF 437 438 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 439 struct cp210x_comm_status { 440 __le32 ulErrors; 441 __le32 ulHoldReasons; 442 __le32 ulAmountInInQueue; 443 __le32 ulAmountInOutQueue; 444 u8 bEofReceived; 445 u8 bWaitForImmediate; 446 u8 bReserved; 447 } __packed; 448 449 /* 450 * CP210X_PURGE - 16 bits passed in wValue of USB request. 451 * SiLabs app note AN571 gives a strange description of the 4 bits: 452 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 453 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 454 */ 455 #define PURGE_ALL 0x000f 456 457 /* CP210X_EMBED_EVENTS */ 458 #define CP210X_ESCCHAR 0xec 459 460 #define CP210X_LSR_OVERRUN BIT(1) 461 #define CP210X_LSR_PARITY BIT(2) 462 #define CP210X_LSR_FRAME BIT(3) 463 #define CP210X_LSR_BREAK BIT(4) 464 465 466 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 467 struct cp210x_flow_ctl { 468 __le32 ulControlHandshake; 469 __le32 ulFlowReplace; 470 __le32 ulXonLimit; 471 __le32 ulXoffLimit; 472 }; 473 474 /* cp210x_flow_ctl::ulControlHandshake */ 475 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 476 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 477 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 478 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 479 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 480 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 481 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 482 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 483 484 /* cp210x_flow_ctl::ulFlowReplace */ 485 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 486 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 487 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 488 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 489 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 490 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 491 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 492 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 493 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 494 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 495 496 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 497 struct cp210x_pin_mode { 498 u8 eci; 499 u8 sci; 500 }; 501 502 #define CP210X_PIN_MODE_MODEM 0 503 #define CP210X_PIN_MODE_GPIO BIT(0) 504 505 /* 506 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 507 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 508 */ 509 struct cp210x_dual_port_config { 510 __le16 gpio_mode; 511 u8 __pad0[2]; 512 __le16 reset_state; 513 u8 __pad1[4]; 514 __le16 suspend_state; 515 u8 sci_cfg; 516 u8 eci_cfg; 517 u8 device_cfg; 518 } __packed; 519 520 /* 521 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 522 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 523 */ 524 struct cp210x_single_port_config { 525 __le16 gpio_mode; 526 u8 __pad0[2]; 527 __le16 reset_state; 528 u8 __pad1[4]; 529 __le16 suspend_state; 530 u8 device_cfg; 531 } __packed; 532 533 /* GPIO modes */ 534 #define CP210X_SCI_GPIO_MODE_OFFSET 9 535 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 536 537 #define CP210X_ECI_GPIO_MODE_OFFSET 2 538 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 539 540 #define CP210X_GPIO_MODE_OFFSET 8 541 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 542 543 /* CP2105 port configuration values */ 544 #define CP2105_GPIO0_TXLED_MODE BIT(0) 545 #define CP2105_GPIO1_RXLED_MODE BIT(1) 546 #define CP2105_GPIO1_RS485_MODE BIT(2) 547 548 /* CP2104 port configuration values */ 549 #define CP2104_GPIO0_TXLED_MODE BIT(0) 550 #define CP2104_GPIO1_RXLED_MODE BIT(1) 551 #define CP2104_GPIO2_RS485_MODE BIT(2) 552 553 struct cp210x_quad_port_state { 554 __le16 gpio_mode_pb0; 555 __le16 gpio_mode_pb1; 556 __le16 gpio_mode_pb2; 557 __le16 gpio_mode_pb3; 558 __le16 gpio_mode_pb4; 559 560 __le16 gpio_lowpower_pb0; 561 __le16 gpio_lowpower_pb1; 562 __le16 gpio_lowpower_pb2; 563 __le16 gpio_lowpower_pb3; 564 __le16 gpio_lowpower_pb4; 565 566 __le16 gpio_latch_pb0; 567 __le16 gpio_latch_pb1; 568 __le16 gpio_latch_pb2; 569 __le16 gpio_latch_pb3; 570 __le16 gpio_latch_pb4; 571 }; 572 573 /* 574 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 575 * on a CP2108 chip. 576 * 577 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 578 */ 579 struct cp210x_quad_port_config { 580 struct cp210x_quad_port_state reset_state; 581 struct cp210x_quad_port_state suspend_state; 582 u8 ipdelay_ifc[4]; 583 u8 enhancedfxn_ifc[4]; 584 u8 enhancedfxn_device; 585 u8 extclkfreq[4]; 586 } __packed; 587 588 #define CP2108_EF_IFC_GPIO_TXLED 0x01 589 #define CP2108_EF_IFC_GPIO_RXLED 0x02 590 #define CP2108_EF_IFC_GPIO_RS485 0x04 591 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 592 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 593 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 594 595 /* CP2102N configuration array indices */ 596 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 597 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 598 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 599 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 600 601 /* CP2102N QFN20 port configuration values */ 602 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 603 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 604 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 605 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 606 607 /* 608 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 609 * for CP2102N, CP2103, CP2104 and CP2105. 610 */ 611 struct cp210x_gpio_write { 612 u8 mask; 613 u8 state; 614 }; 615 616 /* 617 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 618 * for CP2108. 619 */ 620 struct cp210x_gpio_write16 { 621 __le16 mask; 622 __le16 state; 623 }; 624 625 /* 626 * Helper to get interface number when we only have struct usb_serial. 627 */ 628 static u8 cp210x_interface_num(struct usb_serial *serial) 629 { 630 struct usb_host_interface *cur_altsetting; 631 632 cur_altsetting = serial->interface->cur_altsetting; 633 634 return cur_altsetting->desc.bInterfaceNumber; 635 } 636 637 /* 638 * Reads a variable-sized block of CP210X_ registers, identified by req. 639 * Returns data into buf in native USB byte order. 640 */ 641 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 642 void *buf, int bufsize) 643 { 644 struct usb_serial *serial = port->serial; 645 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 646 int result; 647 648 649 result = usb_control_msg_recv(serial->dev, 0, req, 650 REQTYPE_INTERFACE_TO_HOST, 0, 651 port_priv->bInterfaceNumber, buf, bufsize, 652 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 653 if (result) { 654 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 655 req, bufsize, result); 656 return result; 657 } 658 659 return 0; 660 } 661 662 /* 663 * Reads any 8-bit CP210X_ register identified by req. 664 */ 665 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 666 { 667 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 668 } 669 670 /* 671 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 672 * Returns data into buf in native USB byte order. 673 */ 674 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 675 void *buf, int bufsize) 676 { 677 int result; 678 679 result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 680 type, val, cp210x_interface_num(serial), buf, bufsize, 681 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 682 if (result) { 683 dev_err(&serial->interface->dev, 684 "failed to get vendor val 0x%04x size %d: %d\n", val, 685 bufsize, result); 686 return result; 687 } 688 689 return 0; 690 } 691 692 /* 693 * Writes any 16-bit CP210X_ register (req) whose value is passed 694 * entirely in the wValue field of the USB request. 695 */ 696 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 697 { 698 struct usb_serial *serial = port->serial; 699 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 700 int result; 701 702 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 703 req, REQTYPE_HOST_TO_INTERFACE, val, 704 port_priv->bInterfaceNumber, NULL, 0, 705 USB_CTRL_SET_TIMEOUT); 706 if (result < 0) { 707 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 708 req, result); 709 } 710 711 return result; 712 } 713 714 /* 715 * Writes a variable-sized block of CP210X_ registers, identified by req. 716 * Data in buf must be in native USB byte order. 717 */ 718 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 719 void *buf, int bufsize) 720 { 721 struct usb_serial *serial = port->serial; 722 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 723 int result; 724 725 result = usb_control_msg_send(serial->dev, 0, req, 726 REQTYPE_HOST_TO_INTERFACE, 0, 727 port_priv->bInterfaceNumber, buf, bufsize, 728 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 729 if (result) { 730 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 731 req, bufsize, result); 732 return result; 733 } 734 735 return 0; 736 } 737 738 /* 739 * Writes any 32-bit CP210X_ register identified by req. 740 */ 741 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 742 { 743 __le32 le32_val; 744 745 le32_val = cpu_to_le32(val); 746 747 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 748 } 749 750 #ifdef CONFIG_GPIOLIB 751 /* 752 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 753 * Data in buf must be in native USB byte order. 754 */ 755 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 756 u16 val, void *buf, int bufsize) 757 { 758 int result; 759 760 result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 761 type, val, cp210x_interface_num(serial), buf, bufsize, 762 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 763 if (result) { 764 dev_err(&serial->interface->dev, 765 "failed to set vendor val 0x%04x size %d: %d\n", val, 766 bufsize, result); 767 return result; 768 } 769 770 return 0; 771 } 772 #endif 773 774 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 775 { 776 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 777 int result; 778 779 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 780 if (result) { 781 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 782 return result; 783 } 784 785 if (tty) 786 cp210x_set_termios(tty, port, NULL); 787 788 result = usb_serial_generic_open(tty, port); 789 if (result) 790 goto err_disable; 791 792 return 0; 793 794 err_disable: 795 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 796 port_priv->event_mode = false; 797 798 return result; 799 } 800 801 static void cp210x_close(struct usb_serial_port *port) 802 { 803 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 804 805 usb_serial_generic_close(port); 806 807 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 808 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 809 810 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 811 812 /* Disabling the interface disables event-insertion mode. */ 813 port_priv->event_mode = false; 814 } 815 816 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 817 { 818 if (lsr & CP210X_LSR_BREAK) { 819 port->icount.brk++; 820 *flag = TTY_BREAK; 821 } else if (lsr & CP210X_LSR_PARITY) { 822 port->icount.parity++; 823 *flag = TTY_PARITY; 824 } else if (lsr & CP210X_LSR_FRAME) { 825 port->icount.frame++; 826 *flag = TTY_FRAME; 827 } 828 829 if (lsr & CP210X_LSR_OVERRUN) { 830 port->icount.overrun++; 831 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 832 } 833 } 834 835 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 836 { 837 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 838 839 switch (port_priv->event_state) { 840 case ES_DATA: 841 if (*ch == CP210X_ESCCHAR) { 842 port_priv->event_state = ES_ESCAPE; 843 break; 844 } 845 return false; 846 case ES_ESCAPE: 847 switch (*ch) { 848 case 0: 849 dev_dbg(&port->dev, "%s - escape char\n", __func__); 850 *ch = CP210X_ESCCHAR; 851 port_priv->event_state = ES_DATA; 852 return false; 853 case 1: 854 port_priv->event_state = ES_LSR_DATA_0; 855 break; 856 case 2: 857 port_priv->event_state = ES_LSR; 858 break; 859 case 3: 860 port_priv->event_state = ES_MSR; 861 break; 862 default: 863 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 864 port_priv->event_state = ES_DATA; 865 break; 866 } 867 break; 868 case ES_LSR_DATA_0: 869 port_priv->lsr = *ch; 870 port_priv->event_state = ES_LSR_DATA_1; 871 break; 872 case ES_LSR_DATA_1: 873 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 874 __func__, port_priv->lsr, *ch); 875 cp210x_process_lsr(port, port_priv->lsr, flag); 876 port_priv->event_state = ES_DATA; 877 return false; 878 case ES_LSR: 879 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 880 port_priv->lsr = *ch; 881 cp210x_process_lsr(port, port_priv->lsr, flag); 882 port_priv->event_state = ES_DATA; 883 break; 884 case ES_MSR: 885 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 886 /* unimplemented */ 887 port_priv->event_state = ES_DATA; 888 break; 889 } 890 891 return true; 892 } 893 894 static void cp210x_process_read_urb(struct urb *urb) 895 { 896 struct usb_serial_port *port = urb->context; 897 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 898 unsigned char *ch = urb->transfer_buffer; 899 char flag; 900 int i; 901 902 if (!urb->actual_length) 903 return; 904 905 if (port_priv->event_mode) { 906 for (i = 0; i < urb->actual_length; i++, ch++) { 907 flag = TTY_NORMAL; 908 909 if (cp210x_process_char(port, ch, &flag)) 910 continue; 911 912 tty_insert_flip_char(&port->port, *ch, flag); 913 } 914 } else { 915 tty_insert_flip_string(&port->port, ch, urb->actual_length); 916 } 917 tty_flip_buffer_push(&port->port); 918 } 919 920 /* 921 * Read how many bytes are waiting in the TX queue. 922 */ 923 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 924 u32 *count) 925 { 926 struct usb_serial *serial = port->serial; 927 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 928 struct cp210x_comm_status sts; 929 int result; 930 931 result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS, 932 REQTYPE_INTERFACE_TO_HOST, 0, 933 port_priv->bInterfaceNumber, &sts, sizeof(sts), 934 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 935 if (result) { 936 dev_err(&port->dev, "failed to get comm status: %d\n", result); 937 return result; 938 } 939 940 *count = le32_to_cpu(sts.ulAmountInOutQueue); 941 942 return 0; 943 } 944 945 static bool cp210x_tx_empty(struct usb_serial_port *port) 946 { 947 int err; 948 u32 count; 949 950 err = cp210x_get_tx_queue_byte_count(port, &count); 951 if (err) 952 return true; 953 954 return !count; 955 } 956 957 struct cp210x_rate { 958 speed_t rate; 959 speed_t high; 960 }; 961 962 static const struct cp210x_rate cp210x_an205_table1[] = { 963 { 300, 300 }, 964 { 600, 600 }, 965 { 1200, 1200 }, 966 { 1800, 1800 }, 967 { 2400, 2400 }, 968 { 4000, 4000 }, 969 { 4800, 4803 }, 970 { 7200, 7207 }, 971 { 9600, 9612 }, 972 { 14400, 14428 }, 973 { 16000, 16062 }, 974 { 19200, 19250 }, 975 { 28800, 28912 }, 976 { 38400, 38601 }, 977 { 51200, 51558 }, 978 { 56000, 56280 }, 979 { 57600, 58053 }, 980 { 64000, 64111 }, 981 { 76800, 77608 }, 982 { 115200, 117028 }, 983 { 128000, 129347 }, 984 { 153600, 156868 }, 985 { 230400, 237832 }, 986 { 250000, 254234 }, 987 { 256000, 273066 }, 988 { 460800, 491520 }, 989 { 500000, 567138 }, 990 { 576000, 670254 }, 991 { 921600, UINT_MAX } 992 }; 993 994 /* 995 * Quantises the baud rate as per AN205 Table 1 996 */ 997 static speed_t cp210x_get_an205_rate(speed_t baud) 998 { 999 int i; 1000 1001 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 1002 if (baud <= cp210x_an205_table1[i].high) 1003 break; 1004 } 1005 1006 return cp210x_an205_table1[i].rate; 1007 } 1008 1009 static speed_t cp210x_get_actual_rate(speed_t baud) 1010 { 1011 unsigned int prescale = 1; 1012 unsigned int div; 1013 1014 if (baud <= 365) 1015 prescale = 4; 1016 1017 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1018 baud = 48000000 / (2 * prescale * div); 1019 1020 return baud; 1021 } 1022 1023 /* 1024 * CP2101 supports the following baud rates: 1025 * 1026 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1027 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1028 * 1029 * CP2102 and CP2103 support the following additional rates: 1030 * 1031 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1032 * 576000 1033 * 1034 * The device will map a requested rate to a supported one, but the result 1035 * of requests for rates greater than 1053257 is undefined (see AN205). 1036 * 1037 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1038 * respectively, with an error less than 1%. The actual rates are determined 1039 * by 1040 * 1041 * div = round(freq / (2 x prescale x request)) 1042 * actual = freq / (2 x prescale x div) 1043 * 1044 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1045 * or 1 otherwise. 1046 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1047 * otherwise. 1048 */ 1049 static void cp210x_change_speed(struct tty_struct *tty, 1050 struct usb_serial_port *port, 1051 const struct ktermios *old_termios) 1052 { 1053 struct usb_serial *serial = port->serial; 1054 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1055 u32 baud; 1056 1057 if (tty->termios.c_ospeed == 0) 1058 return; 1059 1060 /* 1061 * This maps the requested rate to the actual rate, a valid rate on 1062 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1063 */ 1064 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1065 1066 if (priv->use_actual_rate) 1067 baud = cp210x_get_actual_rate(baud); 1068 else if (baud < 1000000) 1069 baud = cp210x_get_an205_rate(baud); 1070 1071 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1072 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1073 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1074 if (old_termios) 1075 baud = old_termios->c_ospeed; 1076 else 1077 baud = 9600; 1078 } 1079 1080 tty_encode_baud_rate(tty, baud, baud); 1081 } 1082 1083 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1084 { 1085 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1086 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1087 int ret; 1088 1089 if (port_priv->event_mode) 1090 return; 1091 1092 if (priv->no_event_mode) 1093 return; 1094 1095 port_priv->event_state = ES_DATA; 1096 port_priv->event_mode = true; 1097 1098 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1099 if (ret) { 1100 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1101 port_priv->event_mode = false; 1102 } 1103 } 1104 1105 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1106 { 1107 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1108 int ret; 1109 1110 if (!port_priv->event_mode) 1111 return; 1112 1113 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1114 if (ret) { 1115 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1116 return; 1117 } 1118 1119 port_priv->event_mode = false; 1120 } 1121 1122 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1123 { 1124 bool iflag_change, cc_change; 1125 1126 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1127 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1128 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1129 1130 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1131 } 1132 1133 static void cp210x_set_flow_control(struct tty_struct *tty, 1134 struct usb_serial_port *port, 1135 const struct ktermios *old_termios) 1136 { 1137 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1138 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1139 struct cp210x_special_chars chars; 1140 struct cp210x_flow_ctl flow_ctl; 1141 u32 flow_repl; 1142 u32 ctl_hs; 1143 bool crtscts; 1144 int ret; 1145 1146 /* 1147 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1148 * CP2102N_E104). Report back that flow control is not supported. 1149 */ 1150 if (priv->no_flow_control) { 1151 tty->termios.c_cflag &= ~CRTSCTS; 1152 tty->termios.c_iflag &= ~(IXON | IXOFF); 1153 } 1154 1155 if (tty->termios.c_ospeed != 0 && 1156 old_termios && old_termios->c_ospeed != 0 && 1157 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1158 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1159 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1160 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1161 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1162 return; 1163 } 1164 1165 if (I_IXON(tty) || I_IXOFF(tty)) { 1166 memset(&chars, 0, sizeof(chars)); 1167 1168 chars.bXonChar = START_CHAR(tty); 1169 chars.bXoffChar = STOP_CHAR(tty); 1170 1171 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1172 sizeof(chars)); 1173 if (ret) { 1174 dev_err(&port->dev, "failed to set special chars: %d\n", 1175 ret); 1176 } 1177 } 1178 1179 mutex_lock(&port_priv->mutex); 1180 1181 if (tty->termios.c_ospeed == 0) { 1182 port_priv->dtr = false; 1183 port_priv->rts = false; 1184 } else if (old_termios && old_termios->c_ospeed == 0) { 1185 port_priv->dtr = true; 1186 port_priv->rts = true; 1187 } 1188 1189 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1190 sizeof(flow_ctl)); 1191 if (ret) 1192 goto out_unlock; 1193 1194 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1195 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1196 1197 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1198 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1199 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1200 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1201 if (port_priv->dtr) 1202 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1203 else 1204 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1205 1206 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1207 if (C_CRTSCTS(tty)) { 1208 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1209 if (port_priv->rts) 1210 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1211 else 1212 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1213 crtscts = true; 1214 } else { 1215 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1216 if (port_priv->rts) 1217 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1218 else 1219 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1220 crtscts = false; 1221 } 1222 1223 if (I_IXOFF(tty)) { 1224 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1225 1226 flow_ctl.ulXonLimit = cpu_to_le32(128); 1227 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1228 } else { 1229 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1230 } 1231 1232 if (I_IXON(tty)) 1233 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1234 else 1235 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1236 1237 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1238 ctl_hs, flow_repl); 1239 1240 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1241 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1242 1243 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1244 sizeof(flow_ctl)); 1245 if (ret) 1246 goto out_unlock; 1247 1248 port_priv->crtscts = crtscts; 1249 out_unlock: 1250 mutex_unlock(&port_priv->mutex); 1251 } 1252 1253 static void cp210x_set_termios(struct tty_struct *tty, 1254 struct usb_serial_port *port, 1255 const struct ktermios *old_termios) 1256 { 1257 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1258 u16 bits; 1259 int ret; 1260 1261 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios) && 1262 tty->termios.c_ospeed != 0) 1263 return; 1264 1265 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1266 cp210x_change_speed(tty, port, old_termios); 1267 1268 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1269 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1270 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1271 tty->termios.c_cflag |= CS8; 1272 } 1273 1274 bits = 0; 1275 1276 switch (C_CSIZE(tty)) { 1277 case CS5: 1278 bits |= BITS_DATA_5; 1279 break; 1280 case CS6: 1281 bits |= BITS_DATA_6; 1282 break; 1283 case CS7: 1284 bits |= BITS_DATA_7; 1285 break; 1286 case CS8: 1287 default: 1288 bits |= BITS_DATA_8; 1289 break; 1290 } 1291 1292 if (C_PARENB(tty)) { 1293 if (C_CMSPAR(tty)) { 1294 if (C_PARODD(tty)) 1295 bits |= BITS_PARITY_MARK; 1296 else 1297 bits |= BITS_PARITY_SPACE; 1298 } else { 1299 if (C_PARODD(tty)) 1300 bits |= BITS_PARITY_ODD; 1301 else 1302 bits |= BITS_PARITY_EVEN; 1303 } 1304 } 1305 1306 if (C_CSTOPB(tty)) 1307 bits |= BITS_STOP_2; 1308 else 1309 bits |= BITS_STOP_1; 1310 1311 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1312 if (ret) 1313 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1314 1315 cp210x_set_flow_control(tty, port, old_termios); 1316 1317 /* 1318 * Enable event-insertion mode only if input parity checking is 1319 * enabled for now. 1320 */ 1321 if (I_INPCK(tty)) 1322 cp210x_enable_event_mode(port); 1323 else 1324 cp210x_disable_event_mode(port); 1325 } 1326 1327 static int cp210x_tiocmset(struct tty_struct *tty, 1328 unsigned int set, unsigned int clear) 1329 { 1330 struct usb_serial_port *port = tty->driver_data; 1331 return cp210x_tiocmset_port(port, set, clear); 1332 } 1333 1334 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1335 unsigned int set, unsigned int clear) 1336 { 1337 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1338 struct cp210x_flow_ctl flow_ctl; 1339 u32 ctl_hs, flow_repl; 1340 u16 control = 0; 1341 int ret; 1342 1343 mutex_lock(&port_priv->mutex); 1344 1345 if (set & TIOCM_RTS) { 1346 port_priv->rts = true; 1347 control |= CONTROL_RTS; 1348 control |= CONTROL_WRITE_RTS; 1349 } 1350 if (set & TIOCM_DTR) { 1351 port_priv->dtr = true; 1352 control |= CONTROL_DTR; 1353 control |= CONTROL_WRITE_DTR; 1354 } 1355 if (clear & TIOCM_RTS) { 1356 port_priv->rts = false; 1357 control &= ~CONTROL_RTS; 1358 control |= CONTROL_WRITE_RTS; 1359 } 1360 if (clear & TIOCM_DTR) { 1361 port_priv->dtr = false; 1362 control &= ~CONTROL_DTR; 1363 control |= CONTROL_WRITE_DTR; 1364 } 1365 1366 /* 1367 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1368 * flow control is enabled. 1369 */ 1370 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1371 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1372 sizeof(flow_ctl)); 1373 if (ret) 1374 goto out_unlock; 1375 1376 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1377 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1378 1379 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1380 if (port_priv->dtr) 1381 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1382 else 1383 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1384 1385 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1386 if (port_priv->rts) 1387 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1388 else 1389 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1390 1391 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1392 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1393 1394 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1395 __func__, ctl_hs, flow_repl); 1396 1397 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1398 sizeof(flow_ctl)); 1399 } else { 1400 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1401 1402 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1403 } 1404 out_unlock: 1405 mutex_unlock(&port_priv->mutex); 1406 1407 return ret; 1408 } 1409 1410 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1411 { 1412 if (on) 1413 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1414 else 1415 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1416 } 1417 1418 static int cp210x_tiocmget(struct tty_struct *tty) 1419 { 1420 struct usb_serial_port *port = tty->driver_data; 1421 u8 control; 1422 int result; 1423 1424 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1425 if (result) 1426 return result; 1427 1428 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1429 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1430 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1431 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1432 |((control & CONTROL_RING)? TIOCM_RI : 0) 1433 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1434 1435 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1436 1437 return result; 1438 } 1439 1440 static int cp210x_break_ctl(struct tty_struct *tty, int break_state) 1441 { 1442 struct usb_serial_port *port = tty->driver_data; 1443 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1444 u16 state; 1445 1446 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1447 if (cp210x_interface_num(port->serial) == 1) 1448 return -ENOTTY; 1449 } 1450 1451 if (break_state == 0) 1452 state = BREAK_OFF; 1453 else 1454 state = BREAK_ON; 1455 1456 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1457 state == BREAK_OFF ? "off" : "on"); 1458 1459 return cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1460 } 1461 1462 #ifdef CONFIG_GPIOLIB 1463 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1464 { 1465 struct usb_serial *serial = gpiochip_get_data(gc); 1466 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1467 u8 req_type; 1468 u16 mask; 1469 int result; 1470 int len; 1471 1472 result = usb_autopm_get_interface(serial->interface); 1473 if (result) 1474 return result; 1475 1476 switch (priv->partnum) { 1477 case CP210X_PARTNUM_CP2105: 1478 req_type = REQTYPE_INTERFACE_TO_HOST; 1479 len = 1; 1480 break; 1481 case CP210X_PARTNUM_CP2108: 1482 req_type = REQTYPE_INTERFACE_TO_HOST; 1483 len = 2; 1484 break; 1485 default: 1486 req_type = REQTYPE_DEVICE_TO_HOST; 1487 len = 1; 1488 break; 1489 } 1490 1491 mask = 0; 1492 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1493 &mask, len); 1494 1495 usb_autopm_put_interface(serial->interface); 1496 1497 if (result < 0) 1498 return result; 1499 1500 le16_to_cpus(&mask); 1501 1502 return !!(mask & BIT(gpio)); 1503 } 1504 1505 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1506 { 1507 struct usb_serial *serial = gpiochip_get_data(gc); 1508 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1509 struct cp210x_gpio_write16 buf16; 1510 struct cp210x_gpio_write buf; 1511 u16 mask, state; 1512 u16 wIndex; 1513 int result; 1514 1515 if (value == 1) 1516 state = BIT(gpio); 1517 else 1518 state = 0; 1519 1520 mask = BIT(gpio); 1521 1522 result = usb_autopm_get_interface(serial->interface); 1523 if (result) 1524 goto out; 1525 1526 switch (priv->partnum) { 1527 case CP210X_PARTNUM_CP2105: 1528 buf.mask = (u8)mask; 1529 buf.state = (u8)state; 1530 result = cp210x_write_vendor_block(serial, 1531 REQTYPE_HOST_TO_INTERFACE, 1532 CP210X_WRITE_LATCH, &buf, 1533 sizeof(buf)); 1534 break; 1535 case CP210X_PARTNUM_CP2108: 1536 buf16.mask = cpu_to_le16(mask); 1537 buf16.state = cpu_to_le16(state); 1538 result = cp210x_write_vendor_block(serial, 1539 REQTYPE_HOST_TO_INTERFACE, 1540 CP210X_WRITE_LATCH, &buf16, 1541 sizeof(buf16)); 1542 break; 1543 default: 1544 wIndex = state << 8 | mask; 1545 result = usb_control_msg(serial->dev, 1546 usb_sndctrlpipe(serial->dev, 0), 1547 CP210X_VENDOR_SPECIFIC, 1548 REQTYPE_HOST_TO_DEVICE, 1549 CP210X_WRITE_LATCH, 1550 wIndex, 1551 NULL, 0, USB_CTRL_SET_TIMEOUT); 1552 break; 1553 } 1554 1555 usb_autopm_put_interface(serial->interface); 1556 out: 1557 if (result < 0) { 1558 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1559 result); 1560 } 1561 } 1562 1563 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1564 { 1565 struct usb_serial *serial = gpiochip_get_data(gc); 1566 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1567 1568 return priv->gpio_input & BIT(gpio); 1569 } 1570 1571 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1572 { 1573 struct usb_serial *serial = gpiochip_get_data(gc); 1574 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1575 1576 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1577 /* hardware does not support an input mode */ 1578 return -ENOTSUPP; 1579 } 1580 1581 /* push-pull pins cannot be changed to be inputs */ 1582 if (priv->gpio_pushpull & BIT(gpio)) 1583 return -EINVAL; 1584 1585 /* make sure to release pin if it is being driven low */ 1586 cp210x_gpio_set(gc, gpio, 1); 1587 1588 priv->gpio_input |= BIT(gpio); 1589 1590 return 0; 1591 } 1592 1593 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1594 int value) 1595 { 1596 struct usb_serial *serial = gpiochip_get_data(gc); 1597 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1598 1599 priv->gpio_input &= ~BIT(gpio); 1600 cp210x_gpio_set(gc, gpio, value); 1601 1602 return 0; 1603 } 1604 1605 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1606 unsigned long config) 1607 { 1608 struct usb_serial *serial = gpiochip_get_data(gc); 1609 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1610 enum pin_config_param param = pinconf_to_config_param(config); 1611 1612 /* Succeed only if in correct mode (this can't be set at runtime) */ 1613 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1614 (priv->gpio_pushpull & BIT(gpio))) 1615 return 0; 1616 1617 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1618 !(priv->gpio_pushpull & BIT(gpio))) 1619 return 0; 1620 1621 return -ENOTSUPP; 1622 } 1623 1624 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1625 unsigned long *valid_mask, unsigned int ngpios) 1626 { 1627 struct usb_serial *serial = gpiochip_get_data(gc); 1628 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1629 struct device *dev = &serial->interface->dev; 1630 unsigned long altfunc_mask = priv->gpio_altfunc; 1631 1632 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1633 1634 if (bitmap_empty(valid_mask, ngpios)) 1635 dev_dbg(dev, "no pin configured for GPIO\n"); 1636 else 1637 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1638 valid_mask); 1639 return 0; 1640 } 1641 1642 /* 1643 * This function is for configuring GPIO using shared pins, where other signals 1644 * are made unavailable by configuring the use of GPIO. This is believed to be 1645 * only applicable to the cp2105 at this point, the other devices supported by 1646 * this driver that provide GPIO do so in a way that does not impact other 1647 * signals and are thus expected to have very different initialisation. 1648 */ 1649 static int cp2105_gpioconf_init(struct usb_serial *serial) 1650 { 1651 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1652 struct cp210x_pin_mode mode; 1653 struct cp210x_dual_port_config config; 1654 u8 intf_num = cp210x_interface_num(serial); 1655 u8 iface_config; 1656 int result; 1657 1658 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1659 CP210X_GET_DEVICEMODE, &mode, 1660 sizeof(mode)); 1661 if (result < 0) 1662 return result; 1663 1664 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1665 CP210X_GET_PORTCONFIG, &config, 1666 sizeof(config)); 1667 if (result < 0) 1668 return result; 1669 1670 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1671 if (intf_num == 0) { 1672 priv->gc.ngpio = 2; 1673 1674 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1675 /* mark all GPIOs of this interface as reserved */ 1676 priv->gpio_altfunc = 0xff; 1677 return 0; 1678 } 1679 1680 iface_config = config.eci_cfg; 1681 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1682 CP210X_ECI_GPIO_MODE_MASK) >> 1683 CP210X_ECI_GPIO_MODE_OFFSET); 1684 } else if (intf_num == 1) { 1685 priv->gc.ngpio = 3; 1686 1687 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1688 /* mark all GPIOs of this interface as reserved */ 1689 priv->gpio_altfunc = 0xff; 1690 return 0; 1691 } 1692 1693 iface_config = config.sci_cfg; 1694 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1695 CP210X_SCI_GPIO_MODE_MASK) >> 1696 CP210X_SCI_GPIO_MODE_OFFSET); 1697 } else { 1698 return -ENODEV; 1699 } 1700 1701 /* mark all pins which are not in GPIO mode */ 1702 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1703 priv->gpio_altfunc |= BIT(0); 1704 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1705 CP2105_GPIO1_RS485_MODE)) 1706 priv->gpio_altfunc |= BIT(1); 1707 1708 /* driver implementation for CP2105 only supports outputs */ 1709 priv->gpio_input = 0; 1710 1711 return 0; 1712 } 1713 1714 static int cp2104_gpioconf_init(struct usb_serial *serial) 1715 { 1716 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1717 struct cp210x_single_port_config config; 1718 u8 iface_config; 1719 u8 gpio_latch; 1720 int result; 1721 u8 i; 1722 1723 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1724 CP210X_GET_PORTCONFIG, &config, 1725 sizeof(config)); 1726 if (result < 0) 1727 return result; 1728 1729 priv->gc.ngpio = 4; 1730 1731 iface_config = config.device_cfg; 1732 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1733 CP210X_GPIO_MODE_MASK) >> 1734 CP210X_GPIO_MODE_OFFSET); 1735 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1736 CP210X_GPIO_MODE_MASK) >> 1737 CP210X_GPIO_MODE_OFFSET); 1738 1739 /* mark all pins which are not in GPIO mode */ 1740 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1741 priv->gpio_altfunc |= BIT(0); 1742 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1743 priv->gpio_altfunc |= BIT(1); 1744 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1745 priv->gpio_altfunc |= BIT(2); 1746 1747 /* 1748 * Like CP2102N, CP2104 has also no strict input and output pin 1749 * modes. 1750 * Do the same input mode emulation as CP2102N. 1751 */ 1752 for (i = 0; i < priv->gc.ngpio; ++i) { 1753 /* 1754 * Set direction to "input" iff pin is open-drain and reset 1755 * value is 1. 1756 */ 1757 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1758 priv->gpio_input |= BIT(i); 1759 } 1760 1761 return 0; 1762 } 1763 1764 static int cp2108_gpio_init(struct usb_serial *serial) 1765 { 1766 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1767 struct cp210x_quad_port_config config; 1768 u16 gpio_latch; 1769 int result; 1770 u8 i; 1771 1772 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1773 CP210X_GET_PORTCONFIG, &config, 1774 sizeof(config)); 1775 if (result < 0) 1776 return result; 1777 1778 priv->gc.ngpio = 16; 1779 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1780 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1781 1782 /* 1783 * Mark all pins which are not in GPIO mode. 1784 * 1785 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1786 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1787 * 1788 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1789 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1790 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1791 */ 1792 for (i = 0; i < 4; i++) { 1793 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1794 priv->gpio_altfunc |= BIT(i * 4); 1795 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1796 priv->gpio_altfunc |= BIT((i * 4) + 1); 1797 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1798 priv->gpio_altfunc |= BIT((i * 4) + 2); 1799 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1800 priv->gpio_altfunc |= BIT((i * 4) + 3); 1801 } 1802 1803 /* 1804 * Like CP2102N, CP2108 has also no strict input and output pin 1805 * modes. Do the same input mode emulation as CP2102N. 1806 */ 1807 for (i = 0; i < priv->gc.ngpio; ++i) { 1808 /* 1809 * Set direction to "input" iff pin is open-drain and reset 1810 * value is 1. 1811 */ 1812 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1813 priv->gpio_input |= BIT(i); 1814 } 1815 1816 return 0; 1817 } 1818 1819 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1820 { 1821 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1822 const u16 config_size = 0x02a6; 1823 u8 gpio_rst_latch; 1824 u8 config_version; 1825 u8 gpio_pushpull; 1826 u8 *config_buf; 1827 u8 gpio_latch; 1828 u8 gpio_ctrl; 1829 int result; 1830 u8 i; 1831 1832 /* 1833 * Retrieve device configuration from the device. 1834 * The array received contains all customization settings done at the 1835 * factory/manufacturer. Format of the array is documented at the 1836 * time of writing at: 1837 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1838 */ 1839 config_buf = kmalloc(config_size, GFP_KERNEL); 1840 if (!config_buf) 1841 return -ENOMEM; 1842 1843 result = cp210x_read_vendor_block(serial, 1844 REQTYPE_DEVICE_TO_HOST, 1845 CP210X_READ_2NCONFIG, 1846 config_buf, 1847 config_size); 1848 if (result < 0) { 1849 kfree(config_buf); 1850 return result; 1851 } 1852 1853 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1854 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1855 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1856 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1857 1858 kfree(config_buf); 1859 1860 /* Make sure this is a config format we understand. */ 1861 if (config_version != 0x01) 1862 return -ENOTSUPP; 1863 1864 priv->gc.ngpio = 4; 1865 1866 /* 1867 * Get default pin states after reset. Needed so we can determine 1868 * the direction of an open-drain pin. 1869 */ 1870 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1871 1872 /* 0 indicates open-drain mode, 1 is push-pull */ 1873 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1874 1875 /* 0 indicates GPIO mode, 1 is alternate function */ 1876 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1877 /* QFN20 is special... */ 1878 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1879 priv->gpio_altfunc |= BIT(0); 1880 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1881 priv->gpio_altfunc |= BIT(1); 1882 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1883 priv->gpio_altfunc |= BIT(2); 1884 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1885 priv->gpio_altfunc |= BIT(3); 1886 } else { 1887 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1888 } 1889 1890 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1891 /* 1892 * For the QFN28 package, GPIO4-6 are controlled by 1893 * the low three bits of the mode/latch fields. 1894 * Contrary to the document linked above, the bits for 1895 * the SUSPEND pins are elsewhere. No alternate 1896 * function is available for these pins. 1897 */ 1898 priv->gc.ngpio = 7; 1899 gpio_latch |= (gpio_rst_latch & 7) << 4; 1900 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1901 } 1902 1903 /* 1904 * The CP2102N does not strictly has input and output pin modes, 1905 * it only knows open-drain and push-pull modes which is set at 1906 * factory. An open-drain pin can function both as an 1907 * input or an output. We emulate input mode for open-drain pins 1908 * by making sure they are not driven low, and we do not allow 1909 * push-pull pins to be set as an input. 1910 */ 1911 for (i = 0; i < priv->gc.ngpio; ++i) { 1912 /* 1913 * Set direction to "input" iff pin is open-drain and reset 1914 * value is 1. 1915 */ 1916 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1917 priv->gpio_input |= BIT(i); 1918 } 1919 1920 return 0; 1921 } 1922 1923 static int cp210x_gpio_init(struct usb_serial *serial) 1924 { 1925 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1926 int result; 1927 1928 switch (priv->partnum) { 1929 case CP210X_PARTNUM_CP2104: 1930 result = cp2104_gpioconf_init(serial); 1931 break; 1932 case CP210X_PARTNUM_CP2105: 1933 result = cp2105_gpioconf_init(serial); 1934 break; 1935 case CP210X_PARTNUM_CP2108: 1936 /* 1937 * The GPIOs are not tied to any specific port so only register 1938 * once for interface 0. 1939 */ 1940 if (cp210x_interface_num(serial) != 0) 1941 return 0; 1942 result = cp2108_gpio_init(serial); 1943 break; 1944 case CP210X_PARTNUM_CP2102N_QFN28: 1945 case CP210X_PARTNUM_CP2102N_QFN24: 1946 case CP210X_PARTNUM_CP2102N_QFN20: 1947 result = cp2102n_gpioconf_init(serial); 1948 break; 1949 default: 1950 return 0; 1951 } 1952 1953 if (result < 0) 1954 return result; 1955 1956 priv->gc.label = "cp210x"; 1957 priv->gc.get_direction = cp210x_gpio_direction_get; 1958 priv->gc.direction_input = cp210x_gpio_direction_input; 1959 priv->gc.direction_output = cp210x_gpio_direction_output; 1960 priv->gc.get = cp210x_gpio_get; 1961 priv->gc.set = cp210x_gpio_set; 1962 priv->gc.set_config = cp210x_gpio_set_config; 1963 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1964 priv->gc.owner = THIS_MODULE; 1965 priv->gc.parent = &serial->interface->dev; 1966 priv->gc.base = -1; 1967 priv->gc.can_sleep = true; 1968 1969 result = gpiochip_add_data(&priv->gc, serial); 1970 if (!result) 1971 priv->gpio_registered = true; 1972 1973 return result; 1974 } 1975 1976 static void cp210x_gpio_remove(struct usb_serial *serial) 1977 { 1978 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1979 1980 if (priv->gpio_registered) { 1981 gpiochip_remove(&priv->gc); 1982 priv->gpio_registered = false; 1983 } 1984 } 1985 1986 #else 1987 1988 static int cp210x_gpio_init(struct usb_serial *serial) 1989 { 1990 return 0; 1991 } 1992 1993 static void cp210x_gpio_remove(struct usb_serial *serial) 1994 { 1995 /* Nothing to do */ 1996 } 1997 1998 #endif 1999 2000 static int cp210x_port_probe(struct usb_serial_port *port) 2001 { 2002 struct usb_serial *serial = port->serial; 2003 struct cp210x_port_private *port_priv; 2004 2005 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 2006 if (!port_priv) 2007 return -ENOMEM; 2008 2009 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 2010 mutex_init(&port_priv->mutex); 2011 2012 usb_set_serial_port_data(port, port_priv); 2013 2014 return 0; 2015 } 2016 2017 static void cp210x_port_remove(struct usb_serial_port *port) 2018 { 2019 struct cp210x_port_private *port_priv; 2020 2021 port_priv = usb_get_serial_port_data(port); 2022 kfree(port_priv); 2023 } 2024 2025 static void cp210x_init_max_speed(struct usb_serial *serial) 2026 { 2027 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2028 bool use_actual_rate = false; 2029 speed_t min = 300; 2030 speed_t max; 2031 2032 switch (priv->partnum) { 2033 case CP210X_PARTNUM_CP2101: 2034 max = 921600; 2035 break; 2036 case CP210X_PARTNUM_CP2102: 2037 case CP210X_PARTNUM_CP2103: 2038 max = 1000000; 2039 break; 2040 case CP210X_PARTNUM_CP2104: 2041 use_actual_rate = true; 2042 max = 2000000; 2043 break; 2044 case CP210X_PARTNUM_CP2108: 2045 max = 2000000; 2046 break; 2047 case CP210X_PARTNUM_CP2105: 2048 if (cp210x_interface_num(serial) == 0) { 2049 use_actual_rate = true; 2050 max = 2000000; /* ECI */ 2051 } else { 2052 min = 2400; 2053 max = 921600; /* SCI */ 2054 } 2055 break; 2056 case CP210X_PARTNUM_CP2102N_QFN28: 2057 case CP210X_PARTNUM_CP2102N_QFN24: 2058 case CP210X_PARTNUM_CP2102N_QFN20: 2059 use_actual_rate = true; 2060 max = 3000000; 2061 break; 2062 default: 2063 max = 2000000; 2064 break; 2065 } 2066 2067 priv->min_speed = min; 2068 priv->max_speed = max; 2069 priv->use_actual_rate = use_actual_rate; 2070 } 2071 2072 static void cp2102_determine_quirks(struct usb_serial *serial) 2073 { 2074 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2075 u8 *buf; 2076 int ret; 2077 2078 buf = kmalloc(2, GFP_KERNEL); 2079 if (!buf) 2080 return; 2081 /* 2082 * Some (possibly counterfeit) CP2102 do not support event-insertion 2083 * mode and respond differently to malformed vendor requests. 2084 * Specifically, they return one instead of two bytes when sent a 2085 * two-byte part-number request. 2086 */ 2087 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2088 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2089 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2090 if (ret == 1) { 2091 dev_dbg(&serial->interface->dev, 2092 "device does not support event-insertion mode\n"); 2093 priv->no_event_mode = true; 2094 } 2095 2096 kfree(buf); 2097 } 2098 2099 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2100 { 2101 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2102 u8 ver[3]; 2103 int ret; 2104 2105 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2106 ver, sizeof(ver)); 2107 if (ret) 2108 return ret; 2109 2110 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2111 ver[0], ver[1], ver[2]); 2112 2113 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2114 2115 return 0; 2116 } 2117 2118 static void cp210x_determine_type(struct usb_serial *serial) 2119 { 2120 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2121 int ret; 2122 2123 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2124 CP210X_GET_PARTNUM, &priv->partnum, 2125 sizeof(priv->partnum)); 2126 if (ret < 0) { 2127 dev_warn(&serial->interface->dev, 2128 "querying part number failed\n"); 2129 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2130 return; 2131 } 2132 2133 dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum); 2134 2135 switch (priv->partnum) { 2136 case CP210X_PARTNUM_CP2102: 2137 cp2102_determine_quirks(serial); 2138 break; 2139 case CP210X_PARTNUM_CP2105: 2140 case CP210X_PARTNUM_CP2108: 2141 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2142 break; 2143 case CP210X_PARTNUM_CP2102N_QFN28: 2144 case CP210X_PARTNUM_CP2102N_QFN24: 2145 case CP210X_PARTNUM_CP2102N_QFN20: 2146 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2147 if (ret) 2148 break; 2149 if (priv->fw_version <= 0x10004) 2150 priv->no_flow_control = true; 2151 break; 2152 default: 2153 break; 2154 } 2155 } 2156 2157 static int cp210x_attach(struct usb_serial *serial) 2158 { 2159 int result; 2160 struct cp210x_serial_private *priv; 2161 2162 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2163 if (!priv) 2164 return -ENOMEM; 2165 2166 usb_set_serial_data(serial, priv); 2167 2168 cp210x_determine_type(serial); 2169 cp210x_init_max_speed(serial); 2170 2171 result = cp210x_gpio_init(serial); 2172 if (result < 0) { 2173 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2174 result); 2175 } 2176 2177 return 0; 2178 } 2179 2180 static void cp210x_disconnect(struct usb_serial *serial) 2181 { 2182 cp210x_gpio_remove(serial); 2183 } 2184 2185 static void cp210x_release(struct usb_serial *serial) 2186 { 2187 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2188 2189 cp210x_gpio_remove(serial); 2190 2191 kfree(priv); 2192 } 2193 2194 module_usb_serial_driver(serial_drivers, id_table); 2195 2196 MODULE_DESCRIPTION(DRIVER_DESC); 2197 MODULE_LICENSE("GPL v2"); 2198