1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 const struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 const struct ktermios *); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static void cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x0404, 0x034C) }, /* NCR Retail IO Box */ 55 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 56 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 57 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 59 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 60 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 61 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 62 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 63 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 64 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 65 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 66 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 67 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 68 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 69 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 70 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 71 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 72 { USB_DEVICE(0x106F, 0x0003) }, /* CPI / Money Controls Bulk Coin Recycler */ 73 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 74 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 75 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 76 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 77 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 78 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 79 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 80 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 81 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 82 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 83 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 84 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 85 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 86 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 87 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 88 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 89 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 90 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 91 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 92 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 93 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 94 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 95 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 96 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 97 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 98 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 99 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 100 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 101 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 102 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 103 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 104 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 105 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 106 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 107 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 108 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 109 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 110 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 111 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 112 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 113 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 114 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 115 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 116 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 117 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 118 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 119 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 120 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 121 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 122 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 123 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 124 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 125 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 126 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 127 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 128 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 129 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 130 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 131 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 132 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 133 { USB_DEVICE(0x10C4, 0x8414) }, /* Decagon USB Cable Adapter */ 134 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 135 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 136 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 137 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 138 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 139 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 140 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 141 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 142 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 143 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 144 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 145 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 146 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 147 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 148 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 149 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 150 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 151 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 152 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 153 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 154 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 155 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 156 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 157 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 158 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 159 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 160 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 161 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 162 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 163 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 164 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 165 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 166 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 167 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 168 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 169 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 170 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 171 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 172 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 173 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 174 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 175 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 176 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 177 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 178 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 179 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 180 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 181 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 182 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 183 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 184 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 185 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 186 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 187 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 188 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 189 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 190 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 191 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 192 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 193 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 194 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 195 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 196 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 197 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 198 { USB_DEVICE(0x17A8, 0x0101) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Int Ant) */ 199 { USB_DEVICE(0x17A8, 0x0102) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Ext Ant) */ 200 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 201 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 202 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 203 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 204 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 205 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 206 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 207 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 208 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 209 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 210 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 211 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 212 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 213 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 214 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 215 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 216 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 217 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 218 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 219 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 220 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 221 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 222 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 223 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 224 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 225 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 226 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 227 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 228 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 229 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 230 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 231 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 232 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 233 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 234 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 235 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 236 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 237 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 238 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 239 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 240 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 241 { USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */ 242 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 243 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 244 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 245 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 246 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 247 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 248 { } /* Terminating Entry */ 249 }; 250 251 MODULE_DEVICE_TABLE(usb, id_table); 252 253 struct cp210x_serial_private { 254 #ifdef CONFIG_GPIOLIB 255 struct gpio_chip gc; 256 bool gpio_registered; 257 u16 gpio_pushpull; 258 u16 gpio_altfunc; 259 u16 gpio_input; 260 #endif 261 u8 partnum; 262 u32 fw_version; 263 speed_t min_speed; 264 speed_t max_speed; 265 bool use_actual_rate; 266 bool no_flow_control; 267 bool no_event_mode; 268 }; 269 270 enum cp210x_event_state { 271 ES_DATA, 272 ES_ESCAPE, 273 ES_LSR, 274 ES_LSR_DATA_0, 275 ES_LSR_DATA_1, 276 ES_MSR 277 }; 278 279 struct cp210x_port_private { 280 u8 bInterfaceNumber; 281 bool event_mode; 282 enum cp210x_event_state event_state; 283 u8 lsr; 284 285 struct mutex mutex; 286 bool crtscts; 287 bool dtr; 288 bool rts; 289 }; 290 291 static struct usb_serial_driver cp210x_device = { 292 .driver = { 293 .owner = THIS_MODULE, 294 .name = "cp210x", 295 }, 296 .id_table = id_table, 297 .num_ports = 1, 298 .bulk_in_size = 256, 299 .bulk_out_size = 256, 300 .open = cp210x_open, 301 .close = cp210x_close, 302 .break_ctl = cp210x_break_ctl, 303 .set_termios = cp210x_set_termios, 304 .tx_empty = cp210x_tx_empty, 305 .throttle = usb_serial_generic_throttle, 306 .unthrottle = usb_serial_generic_unthrottle, 307 .tiocmget = cp210x_tiocmget, 308 .tiocmset = cp210x_tiocmset, 309 .get_icount = usb_serial_generic_get_icount, 310 .attach = cp210x_attach, 311 .disconnect = cp210x_disconnect, 312 .release = cp210x_release, 313 .port_probe = cp210x_port_probe, 314 .port_remove = cp210x_port_remove, 315 .dtr_rts = cp210x_dtr_rts, 316 .process_read_urb = cp210x_process_read_urb, 317 }; 318 319 static struct usb_serial_driver * const serial_drivers[] = { 320 &cp210x_device, NULL 321 }; 322 323 /* Config request types */ 324 #define REQTYPE_HOST_TO_INTERFACE 0x41 325 #define REQTYPE_INTERFACE_TO_HOST 0xc1 326 #define REQTYPE_HOST_TO_DEVICE 0x40 327 #define REQTYPE_DEVICE_TO_HOST 0xc0 328 329 /* Config request codes */ 330 #define CP210X_IFC_ENABLE 0x00 331 #define CP210X_SET_BAUDDIV 0x01 332 #define CP210X_GET_BAUDDIV 0x02 333 #define CP210X_SET_LINE_CTL 0x03 334 #define CP210X_GET_LINE_CTL 0x04 335 #define CP210X_SET_BREAK 0x05 336 #define CP210X_IMM_CHAR 0x06 337 #define CP210X_SET_MHS 0x07 338 #define CP210X_GET_MDMSTS 0x08 339 #define CP210X_SET_XON 0x09 340 #define CP210X_SET_XOFF 0x0A 341 #define CP210X_SET_EVENTMASK 0x0B 342 #define CP210X_GET_EVENTMASK 0x0C 343 #define CP210X_SET_CHAR 0x0D 344 #define CP210X_GET_CHARS 0x0E 345 #define CP210X_GET_PROPS 0x0F 346 #define CP210X_GET_COMM_STATUS 0x10 347 #define CP210X_RESET 0x11 348 #define CP210X_PURGE 0x12 349 #define CP210X_SET_FLOW 0x13 350 #define CP210X_GET_FLOW 0x14 351 #define CP210X_EMBED_EVENTS 0x15 352 #define CP210X_GET_EVENTSTATE 0x16 353 #define CP210X_SET_CHARS 0x19 354 #define CP210X_GET_BAUDRATE 0x1D 355 #define CP210X_SET_BAUDRATE 0x1E 356 #define CP210X_VENDOR_SPECIFIC 0xFF 357 358 /* CP210X_IFC_ENABLE */ 359 #define UART_ENABLE 0x0001 360 #define UART_DISABLE 0x0000 361 362 /* CP210X_(SET|GET)_BAUDDIV */ 363 #define BAUD_RATE_GEN_FREQ 0x384000 364 365 /* CP210X_(SET|GET)_LINE_CTL */ 366 #define BITS_DATA_MASK 0X0f00 367 #define BITS_DATA_5 0X0500 368 #define BITS_DATA_6 0X0600 369 #define BITS_DATA_7 0X0700 370 #define BITS_DATA_8 0X0800 371 #define BITS_DATA_9 0X0900 372 373 #define BITS_PARITY_MASK 0x00f0 374 #define BITS_PARITY_NONE 0x0000 375 #define BITS_PARITY_ODD 0x0010 376 #define BITS_PARITY_EVEN 0x0020 377 #define BITS_PARITY_MARK 0x0030 378 #define BITS_PARITY_SPACE 0x0040 379 380 #define BITS_STOP_MASK 0x000f 381 #define BITS_STOP_1 0x0000 382 #define BITS_STOP_1_5 0x0001 383 #define BITS_STOP_2 0x0002 384 385 /* CP210X_SET_BREAK */ 386 #define BREAK_ON 0x0001 387 #define BREAK_OFF 0x0000 388 389 /* CP210X_(SET_MHS|GET_MDMSTS) */ 390 #define CONTROL_DTR 0x0001 391 #define CONTROL_RTS 0x0002 392 #define CONTROL_CTS 0x0010 393 #define CONTROL_DSR 0x0020 394 #define CONTROL_RING 0x0040 395 #define CONTROL_DCD 0x0080 396 #define CONTROL_WRITE_DTR 0x0100 397 #define CONTROL_WRITE_RTS 0x0200 398 399 /* CP210X_(GET|SET)_CHARS */ 400 struct cp210x_special_chars { 401 u8 bEofChar; 402 u8 bErrorChar; 403 u8 bBreakChar; 404 u8 bEventChar; 405 u8 bXonChar; 406 u8 bXoffChar; 407 }; 408 409 /* CP210X_VENDOR_SPECIFIC values */ 410 #define CP210X_GET_FW_VER 0x000E 411 #define CP210X_READ_2NCONFIG 0x000E 412 #define CP210X_GET_FW_VER_2N 0x0010 413 #define CP210X_READ_LATCH 0x00C2 414 #define CP210X_GET_PARTNUM 0x370B 415 #define CP210X_GET_PORTCONFIG 0x370C 416 #define CP210X_GET_DEVICEMODE 0x3711 417 #define CP210X_WRITE_LATCH 0x37E1 418 419 /* Part number definitions */ 420 #define CP210X_PARTNUM_CP2101 0x01 421 #define CP210X_PARTNUM_CP2102 0x02 422 #define CP210X_PARTNUM_CP2103 0x03 423 #define CP210X_PARTNUM_CP2104 0x04 424 #define CP210X_PARTNUM_CP2105 0x05 425 #define CP210X_PARTNUM_CP2108 0x08 426 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 427 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 428 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 429 #define CP210X_PARTNUM_UNKNOWN 0xFF 430 431 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 432 struct cp210x_comm_status { 433 __le32 ulErrors; 434 __le32 ulHoldReasons; 435 __le32 ulAmountInInQueue; 436 __le32 ulAmountInOutQueue; 437 u8 bEofReceived; 438 u8 bWaitForImmediate; 439 u8 bReserved; 440 } __packed; 441 442 /* 443 * CP210X_PURGE - 16 bits passed in wValue of USB request. 444 * SiLabs app note AN571 gives a strange description of the 4 bits: 445 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 446 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 447 */ 448 #define PURGE_ALL 0x000f 449 450 /* CP210X_EMBED_EVENTS */ 451 #define CP210X_ESCCHAR 0xec 452 453 #define CP210X_LSR_OVERRUN BIT(1) 454 #define CP210X_LSR_PARITY BIT(2) 455 #define CP210X_LSR_FRAME BIT(3) 456 #define CP210X_LSR_BREAK BIT(4) 457 458 459 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 460 struct cp210x_flow_ctl { 461 __le32 ulControlHandshake; 462 __le32 ulFlowReplace; 463 __le32 ulXonLimit; 464 __le32 ulXoffLimit; 465 }; 466 467 /* cp210x_flow_ctl::ulControlHandshake */ 468 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 469 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 470 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 471 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 472 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 473 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 474 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 475 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 476 477 /* cp210x_flow_ctl::ulFlowReplace */ 478 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 479 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 480 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 481 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 482 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 483 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 484 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 485 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 486 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 487 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 488 489 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 490 struct cp210x_pin_mode { 491 u8 eci; 492 u8 sci; 493 }; 494 495 #define CP210X_PIN_MODE_MODEM 0 496 #define CP210X_PIN_MODE_GPIO BIT(0) 497 498 /* 499 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 500 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 501 */ 502 struct cp210x_dual_port_config { 503 __le16 gpio_mode; 504 u8 __pad0[2]; 505 __le16 reset_state; 506 u8 __pad1[4]; 507 __le16 suspend_state; 508 u8 sci_cfg; 509 u8 eci_cfg; 510 u8 device_cfg; 511 } __packed; 512 513 /* 514 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 515 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 516 */ 517 struct cp210x_single_port_config { 518 __le16 gpio_mode; 519 u8 __pad0[2]; 520 __le16 reset_state; 521 u8 __pad1[4]; 522 __le16 suspend_state; 523 u8 device_cfg; 524 } __packed; 525 526 /* GPIO modes */ 527 #define CP210X_SCI_GPIO_MODE_OFFSET 9 528 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 529 530 #define CP210X_ECI_GPIO_MODE_OFFSET 2 531 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 532 533 #define CP210X_GPIO_MODE_OFFSET 8 534 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 535 536 /* CP2105 port configuration values */ 537 #define CP2105_GPIO0_TXLED_MODE BIT(0) 538 #define CP2105_GPIO1_RXLED_MODE BIT(1) 539 #define CP2105_GPIO1_RS485_MODE BIT(2) 540 541 /* CP2104 port configuration values */ 542 #define CP2104_GPIO0_TXLED_MODE BIT(0) 543 #define CP2104_GPIO1_RXLED_MODE BIT(1) 544 #define CP2104_GPIO2_RS485_MODE BIT(2) 545 546 struct cp210x_quad_port_state { 547 __le16 gpio_mode_pb0; 548 __le16 gpio_mode_pb1; 549 __le16 gpio_mode_pb2; 550 __le16 gpio_mode_pb3; 551 __le16 gpio_mode_pb4; 552 553 __le16 gpio_lowpower_pb0; 554 __le16 gpio_lowpower_pb1; 555 __le16 gpio_lowpower_pb2; 556 __le16 gpio_lowpower_pb3; 557 __le16 gpio_lowpower_pb4; 558 559 __le16 gpio_latch_pb0; 560 __le16 gpio_latch_pb1; 561 __le16 gpio_latch_pb2; 562 __le16 gpio_latch_pb3; 563 __le16 gpio_latch_pb4; 564 }; 565 566 /* 567 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 568 * on a CP2108 chip. 569 * 570 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 571 */ 572 struct cp210x_quad_port_config { 573 struct cp210x_quad_port_state reset_state; 574 struct cp210x_quad_port_state suspend_state; 575 u8 ipdelay_ifc[4]; 576 u8 enhancedfxn_ifc[4]; 577 u8 enhancedfxn_device; 578 u8 extclkfreq[4]; 579 } __packed; 580 581 #define CP2108_EF_IFC_GPIO_TXLED 0x01 582 #define CP2108_EF_IFC_GPIO_RXLED 0x02 583 #define CP2108_EF_IFC_GPIO_RS485 0x04 584 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 585 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 586 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 587 588 /* CP2102N configuration array indices */ 589 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 590 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 591 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 592 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 593 594 /* CP2102N QFN20 port configuration values */ 595 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 596 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 597 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 598 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 599 600 /* 601 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 602 * for CP2102N, CP2103, CP2104 and CP2105. 603 */ 604 struct cp210x_gpio_write { 605 u8 mask; 606 u8 state; 607 }; 608 609 /* 610 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 611 * for CP2108. 612 */ 613 struct cp210x_gpio_write16 { 614 __le16 mask; 615 __le16 state; 616 }; 617 618 /* 619 * Helper to get interface number when we only have struct usb_serial. 620 */ 621 static u8 cp210x_interface_num(struct usb_serial *serial) 622 { 623 struct usb_host_interface *cur_altsetting; 624 625 cur_altsetting = serial->interface->cur_altsetting; 626 627 return cur_altsetting->desc.bInterfaceNumber; 628 } 629 630 /* 631 * Reads a variable-sized block of CP210X_ registers, identified by req. 632 * Returns data into buf in native USB byte order. 633 */ 634 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 635 void *buf, int bufsize) 636 { 637 struct usb_serial *serial = port->serial; 638 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 639 int result; 640 641 642 result = usb_control_msg_recv(serial->dev, 0, req, 643 REQTYPE_INTERFACE_TO_HOST, 0, 644 port_priv->bInterfaceNumber, buf, bufsize, 645 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 646 if (result) { 647 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 648 req, bufsize, result); 649 return result; 650 } 651 652 return 0; 653 } 654 655 /* 656 * Reads any 8-bit CP210X_ register identified by req. 657 */ 658 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 659 { 660 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 661 } 662 663 /* 664 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 665 * Returns data into buf in native USB byte order. 666 */ 667 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 668 void *buf, int bufsize) 669 { 670 int result; 671 672 result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 673 type, val, cp210x_interface_num(serial), buf, bufsize, 674 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 675 if (result) { 676 dev_err(&serial->interface->dev, 677 "failed to get vendor val 0x%04x size %d: %d\n", val, 678 bufsize, result); 679 return result; 680 } 681 682 return 0; 683 } 684 685 /* 686 * Writes any 16-bit CP210X_ register (req) whose value is passed 687 * entirely in the wValue field of the USB request. 688 */ 689 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 690 { 691 struct usb_serial *serial = port->serial; 692 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 693 int result; 694 695 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 696 req, REQTYPE_HOST_TO_INTERFACE, val, 697 port_priv->bInterfaceNumber, NULL, 0, 698 USB_CTRL_SET_TIMEOUT); 699 if (result < 0) { 700 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 701 req, result); 702 } 703 704 return result; 705 } 706 707 /* 708 * Writes a variable-sized block of CP210X_ registers, identified by req. 709 * Data in buf must be in native USB byte order. 710 */ 711 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 712 void *buf, int bufsize) 713 { 714 struct usb_serial *serial = port->serial; 715 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 716 int result; 717 718 result = usb_control_msg_send(serial->dev, 0, req, 719 REQTYPE_HOST_TO_INTERFACE, 0, 720 port_priv->bInterfaceNumber, buf, bufsize, 721 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 722 if (result) { 723 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 724 req, bufsize, result); 725 return result; 726 } 727 728 return 0; 729 } 730 731 /* 732 * Writes any 32-bit CP210X_ register identified by req. 733 */ 734 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 735 { 736 __le32 le32_val; 737 738 le32_val = cpu_to_le32(val); 739 740 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 741 } 742 743 #ifdef CONFIG_GPIOLIB 744 /* 745 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 746 * Data in buf must be in native USB byte order. 747 */ 748 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 749 u16 val, void *buf, int bufsize) 750 { 751 int result; 752 753 result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 754 type, val, cp210x_interface_num(serial), buf, bufsize, 755 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 756 if (result) { 757 dev_err(&serial->interface->dev, 758 "failed to set vendor val 0x%04x size %d: %d\n", val, 759 bufsize, result); 760 return result; 761 } 762 763 return 0; 764 } 765 #endif 766 767 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 768 { 769 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 770 int result; 771 772 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 773 if (result) { 774 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 775 return result; 776 } 777 778 if (tty) 779 cp210x_set_termios(tty, port, NULL); 780 781 result = usb_serial_generic_open(tty, port); 782 if (result) 783 goto err_disable; 784 785 return 0; 786 787 err_disable: 788 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 789 port_priv->event_mode = false; 790 791 return result; 792 } 793 794 static void cp210x_close(struct usb_serial_port *port) 795 { 796 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 797 798 usb_serial_generic_close(port); 799 800 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 801 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 802 803 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 804 805 /* Disabling the interface disables event-insertion mode. */ 806 port_priv->event_mode = false; 807 } 808 809 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 810 { 811 if (lsr & CP210X_LSR_BREAK) { 812 port->icount.brk++; 813 *flag = TTY_BREAK; 814 } else if (lsr & CP210X_LSR_PARITY) { 815 port->icount.parity++; 816 *flag = TTY_PARITY; 817 } else if (lsr & CP210X_LSR_FRAME) { 818 port->icount.frame++; 819 *flag = TTY_FRAME; 820 } 821 822 if (lsr & CP210X_LSR_OVERRUN) { 823 port->icount.overrun++; 824 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 825 } 826 } 827 828 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 829 { 830 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 831 832 switch (port_priv->event_state) { 833 case ES_DATA: 834 if (*ch == CP210X_ESCCHAR) { 835 port_priv->event_state = ES_ESCAPE; 836 break; 837 } 838 return false; 839 case ES_ESCAPE: 840 switch (*ch) { 841 case 0: 842 dev_dbg(&port->dev, "%s - escape char\n", __func__); 843 *ch = CP210X_ESCCHAR; 844 port_priv->event_state = ES_DATA; 845 return false; 846 case 1: 847 port_priv->event_state = ES_LSR_DATA_0; 848 break; 849 case 2: 850 port_priv->event_state = ES_LSR; 851 break; 852 case 3: 853 port_priv->event_state = ES_MSR; 854 break; 855 default: 856 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 857 port_priv->event_state = ES_DATA; 858 break; 859 } 860 break; 861 case ES_LSR_DATA_0: 862 port_priv->lsr = *ch; 863 port_priv->event_state = ES_LSR_DATA_1; 864 break; 865 case ES_LSR_DATA_1: 866 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 867 __func__, port_priv->lsr, *ch); 868 cp210x_process_lsr(port, port_priv->lsr, flag); 869 port_priv->event_state = ES_DATA; 870 return false; 871 case ES_LSR: 872 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 873 port_priv->lsr = *ch; 874 cp210x_process_lsr(port, port_priv->lsr, flag); 875 port_priv->event_state = ES_DATA; 876 break; 877 case ES_MSR: 878 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 879 /* unimplemented */ 880 port_priv->event_state = ES_DATA; 881 break; 882 } 883 884 return true; 885 } 886 887 static void cp210x_process_read_urb(struct urb *urb) 888 { 889 struct usb_serial_port *port = urb->context; 890 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 891 unsigned char *ch = urb->transfer_buffer; 892 char flag; 893 int i; 894 895 if (!urb->actual_length) 896 return; 897 898 if (port_priv->event_mode) { 899 for (i = 0; i < urb->actual_length; i++, ch++) { 900 flag = TTY_NORMAL; 901 902 if (cp210x_process_char(port, ch, &flag)) 903 continue; 904 905 tty_insert_flip_char(&port->port, *ch, flag); 906 } 907 } else { 908 tty_insert_flip_string(&port->port, ch, urb->actual_length); 909 } 910 tty_flip_buffer_push(&port->port); 911 } 912 913 /* 914 * Read how many bytes are waiting in the TX queue. 915 */ 916 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 917 u32 *count) 918 { 919 struct usb_serial *serial = port->serial; 920 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 921 struct cp210x_comm_status sts; 922 int result; 923 924 result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS, 925 REQTYPE_INTERFACE_TO_HOST, 0, 926 port_priv->bInterfaceNumber, &sts, sizeof(sts), 927 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 928 if (result) { 929 dev_err(&port->dev, "failed to get comm status: %d\n", result); 930 return result; 931 } 932 933 *count = le32_to_cpu(sts.ulAmountInOutQueue); 934 935 return 0; 936 } 937 938 static bool cp210x_tx_empty(struct usb_serial_port *port) 939 { 940 int err; 941 u32 count; 942 943 err = cp210x_get_tx_queue_byte_count(port, &count); 944 if (err) 945 return true; 946 947 return !count; 948 } 949 950 struct cp210x_rate { 951 speed_t rate; 952 speed_t high; 953 }; 954 955 static const struct cp210x_rate cp210x_an205_table1[] = { 956 { 300, 300 }, 957 { 600, 600 }, 958 { 1200, 1200 }, 959 { 1800, 1800 }, 960 { 2400, 2400 }, 961 { 4000, 4000 }, 962 { 4800, 4803 }, 963 { 7200, 7207 }, 964 { 9600, 9612 }, 965 { 14400, 14428 }, 966 { 16000, 16062 }, 967 { 19200, 19250 }, 968 { 28800, 28912 }, 969 { 38400, 38601 }, 970 { 51200, 51558 }, 971 { 56000, 56280 }, 972 { 57600, 58053 }, 973 { 64000, 64111 }, 974 { 76800, 77608 }, 975 { 115200, 117028 }, 976 { 128000, 129347 }, 977 { 153600, 156868 }, 978 { 230400, 237832 }, 979 { 250000, 254234 }, 980 { 256000, 273066 }, 981 { 460800, 491520 }, 982 { 500000, 567138 }, 983 { 576000, 670254 }, 984 { 921600, UINT_MAX } 985 }; 986 987 /* 988 * Quantises the baud rate as per AN205 Table 1 989 */ 990 static speed_t cp210x_get_an205_rate(speed_t baud) 991 { 992 int i; 993 994 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 995 if (baud <= cp210x_an205_table1[i].high) 996 break; 997 } 998 999 return cp210x_an205_table1[i].rate; 1000 } 1001 1002 static speed_t cp210x_get_actual_rate(speed_t baud) 1003 { 1004 unsigned int prescale = 1; 1005 unsigned int div; 1006 1007 if (baud <= 365) 1008 prescale = 4; 1009 1010 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1011 baud = 48000000 / (2 * prescale * div); 1012 1013 return baud; 1014 } 1015 1016 /* 1017 * CP2101 supports the following baud rates: 1018 * 1019 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1020 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1021 * 1022 * CP2102 and CP2103 support the following additional rates: 1023 * 1024 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1025 * 576000 1026 * 1027 * The device will map a requested rate to a supported one, but the result 1028 * of requests for rates greater than 1053257 is undefined (see AN205). 1029 * 1030 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1031 * respectively, with an error less than 1%. The actual rates are determined 1032 * by 1033 * 1034 * div = round(freq / (2 x prescale x request)) 1035 * actual = freq / (2 x prescale x div) 1036 * 1037 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1038 * or 1 otherwise. 1039 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1040 * otherwise. 1041 */ 1042 static void cp210x_change_speed(struct tty_struct *tty, 1043 struct usb_serial_port *port, 1044 const struct ktermios *old_termios) 1045 { 1046 struct usb_serial *serial = port->serial; 1047 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1048 u32 baud; 1049 1050 /* 1051 * This maps the requested rate to the actual rate, a valid rate on 1052 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1053 * 1054 * NOTE: B0 is not implemented. 1055 */ 1056 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1057 1058 if (priv->use_actual_rate) 1059 baud = cp210x_get_actual_rate(baud); 1060 else if (baud < 1000000) 1061 baud = cp210x_get_an205_rate(baud); 1062 1063 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1064 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1065 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1066 if (old_termios) 1067 baud = old_termios->c_ospeed; 1068 else 1069 baud = 9600; 1070 } 1071 1072 tty_encode_baud_rate(tty, baud, baud); 1073 } 1074 1075 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1076 { 1077 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1078 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1079 int ret; 1080 1081 if (port_priv->event_mode) 1082 return; 1083 1084 if (priv->no_event_mode) 1085 return; 1086 1087 port_priv->event_state = ES_DATA; 1088 port_priv->event_mode = true; 1089 1090 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1091 if (ret) { 1092 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1093 port_priv->event_mode = false; 1094 } 1095 } 1096 1097 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1098 { 1099 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1100 int ret; 1101 1102 if (!port_priv->event_mode) 1103 return; 1104 1105 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1106 if (ret) { 1107 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1108 return; 1109 } 1110 1111 port_priv->event_mode = false; 1112 } 1113 1114 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1115 { 1116 bool iflag_change, cc_change; 1117 1118 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1119 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1120 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1121 1122 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1123 } 1124 1125 static void cp210x_set_flow_control(struct tty_struct *tty, 1126 struct usb_serial_port *port, 1127 const struct ktermios *old_termios) 1128 { 1129 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1130 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1131 struct cp210x_special_chars chars; 1132 struct cp210x_flow_ctl flow_ctl; 1133 u32 flow_repl; 1134 u32 ctl_hs; 1135 bool crtscts; 1136 int ret; 1137 1138 /* 1139 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1140 * CP2102N_E104). Report back that flow control is not supported. 1141 */ 1142 if (priv->no_flow_control) { 1143 tty->termios.c_cflag &= ~CRTSCTS; 1144 tty->termios.c_iflag &= ~(IXON | IXOFF); 1145 } 1146 1147 if (old_termios && 1148 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1149 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1150 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1151 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1152 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1153 return; 1154 } 1155 1156 if (I_IXON(tty) || I_IXOFF(tty)) { 1157 memset(&chars, 0, sizeof(chars)); 1158 1159 chars.bXonChar = START_CHAR(tty); 1160 chars.bXoffChar = STOP_CHAR(tty); 1161 1162 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1163 sizeof(chars)); 1164 if (ret) { 1165 dev_err(&port->dev, "failed to set special chars: %d\n", 1166 ret); 1167 } 1168 } 1169 1170 mutex_lock(&port_priv->mutex); 1171 1172 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1173 sizeof(flow_ctl)); 1174 if (ret) 1175 goto out_unlock; 1176 1177 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1178 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1179 1180 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1181 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1182 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1183 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1184 if (port_priv->dtr) 1185 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1186 else 1187 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1188 1189 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1190 if (C_CRTSCTS(tty)) { 1191 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1192 if (port_priv->rts) 1193 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1194 else 1195 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1196 crtscts = true; 1197 } else { 1198 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1199 if (port_priv->rts) 1200 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1201 else 1202 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1203 crtscts = false; 1204 } 1205 1206 if (I_IXOFF(tty)) { 1207 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1208 1209 flow_ctl.ulXonLimit = cpu_to_le32(128); 1210 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1211 } else { 1212 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1213 } 1214 1215 if (I_IXON(tty)) 1216 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1217 else 1218 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1219 1220 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1221 ctl_hs, flow_repl); 1222 1223 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1224 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1225 1226 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1227 sizeof(flow_ctl)); 1228 if (ret) 1229 goto out_unlock; 1230 1231 port_priv->crtscts = crtscts; 1232 out_unlock: 1233 mutex_unlock(&port_priv->mutex); 1234 } 1235 1236 static void cp210x_set_termios(struct tty_struct *tty, 1237 struct usb_serial_port *port, 1238 const struct ktermios *old_termios) 1239 { 1240 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1241 u16 bits; 1242 int ret; 1243 1244 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) 1245 return; 1246 1247 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1248 cp210x_change_speed(tty, port, old_termios); 1249 1250 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1251 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1252 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1253 tty->termios.c_cflag |= CS8; 1254 } 1255 1256 bits = 0; 1257 1258 switch (C_CSIZE(tty)) { 1259 case CS5: 1260 bits |= BITS_DATA_5; 1261 break; 1262 case CS6: 1263 bits |= BITS_DATA_6; 1264 break; 1265 case CS7: 1266 bits |= BITS_DATA_7; 1267 break; 1268 case CS8: 1269 default: 1270 bits |= BITS_DATA_8; 1271 break; 1272 } 1273 1274 if (C_PARENB(tty)) { 1275 if (C_CMSPAR(tty)) { 1276 if (C_PARODD(tty)) 1277 bits |= BITS_PARITY_MARK; 1278 else 1279 bits |= BITS_PARITY_SPACE; 1280 } else { 1281 if (C_PARODD(tty)) 1282 bits |= BITS_PARITY_ODD; 1283 else 1284 bits |= BITS_PARITY_EVEN; 1285 } 1286 } 1287 1288 if (C_CSTOPB(tty)) 1289 bits |= BITS_STOP_2; 1290 else 1291 bits |= BITS_STOP_1; 1292 1293 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1294 if (ret) 1295 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1296 1297 cp210x_set_flow_control(tty, port, old_termios); 1298 1299 /* 1300 * Enable event-insertion mode only if input parity checking is 1301 * enabled for now. 1302 */ 1303 if (I_INPCK(tty)) 1304 cp210x_enable_event_mode(port); 1305 else 1306 cp210x_disable_event_mode(port); 1307 } 1308 1309 static int cp210x_tiocmset(struct tty_struct *tty, 1310 unsigned int set, unsigned int clear) 1311 { 1312 struct usb_serial_port *port = tty->driver_data; 1313 return cp210x_tiocmset_port(port, set, clear); 1314 } 1315 1316 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1317 unsigned int set, unsigned int clear) 1318 { 1319 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1320 struct cp210x_flow_ctl flow_ctl; 1321 u32 ctl_hs, flow_repl; 1322 u16 control = 0; 1323 int ret; 1324 1325 mutex_lock(&port_priv->mutex); 1326 1327 if (set & TIOCM_RTS) { 1328 port_priv->rts = true; 1329 control |= CONTROL_RTS; 1330 control |= CONTROL_WRITE_RTS; 1331 } 1332 if (set & TIOCM_DTR) { 1333 port_priv->dtr = true; 1334 control |= CONTROL_DTR; 1335 control |= CONTROL_WRITE_DTR; 1336 } 1337 if (clear & TIOCM_RTS) { 1338 port_priv->rts = false; 1339 control &= ~CONTROL_RTS; 1340 control |= CONTROL_WRITE_RTS; 1341 } 1342 if (clear & TIOCM_DTR) { 1343 port_priv->dtr = false; 1344 control &= ~CONTROL_DTR; 1345 control |= CONTROL_WRITE_DTR; 1346 } 1347 1348 /* 1349 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1350 * flow control is enabled. 1351 */ 1352 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1353 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1354 sizeof(flow_ctl)); 1355 if (ret) 1356 goto out_unlock; 1357 1358 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1359 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1360 1361 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1362 if (port_priv->dtr) 1363 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1364 else 1365 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1366 1367 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1368 if (port_priv->rts) 1369 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1370 else 1371 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1372 1373 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1374 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1375 1376 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1377 __func__, ctl_hs, flow_repl); 1378 1379 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1380 sizeof(flow_ctl)); 1381 } else { 1382 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1383 1384 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1385 } 1386 out_unlock: 1387 mutex_unlock(&port_priv->mutex); 1388 1389 return ret; 1390 } 1391 1392 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1393 { 1394 if (on) 1395 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1396 else 1397 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1398 } 1399 1400 static int cp210x_tiocmget(struct tty_struct *tty) 1401 { 1402 struct usb_serial_port *port = tty->driver_data; 1403 u8 control; 1404 int result; 1405 1406 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1407 if (result) 1408 return result; 1409 1410 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1411 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1412 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1413 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1414 |((control & CONTROL_RING)? TIOCM_RI : 0) 1415 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1416 1417 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1418 1419 return result; 1420 } 1421 1422 static void cp210x_break_ctl(struct tty_struct *tty, int break_state) 1423 { 1424 struct usb_serial_port *port = tty->driver_data; 1425 u16 state; 1426 1427 if (break_state == 0) 1428 state = BREAK_OFF; 1429 else 1430 state = BREAK_ON; 1431 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1432 state == BREAK_OFF ? "off" : "on"); 1433 cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1434 } 1435 1436 #ifdef CONFIG_GPIOLIB 1437 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1438 { 1439 struct usb_serial *serial = gpiochip_get_data(gc); 1440 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1441 u8 req_type; 1442 u16 mask; 1443 int result; 1444 int len; 1445 1446 result = usb_autopm_get_interface(serial->interface); 1447 if (result) 1448 return result; 1449 1450 switch (priv->partnum) { 1451 case CP210X_PARTNUM_CP2105: 1452 req_type = REQTYPE_INTERFACE_TO_HOST; 1453 len = 1; 1454 break; 1455 case CP210X_PARTNUM_CP2108: 1456 req_type = REQTYPE_INTERFACE_TO_HOST; 1457 len = 2; 1458 break; 1459 default: 1460 req_type = REQTYPE_DEVICE_TO_HOST; 1461 len = 1; 1462 break; 1463 } 1464 1465 mask = 0; 1466 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1467 &mask, len); 1468 1469 usb_autopm_put_interface(serial->interface); 1470 1471 if (result < 0) 1472 return result; 1473 1474 le16_to_cpus(&mask); 1475 1476 return !!(mask & BIT(gpio)); 1477 } 1478 1479 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1480 { 1481 struct usb_serial *serial = gpiochip_get_data(gc); 1482 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1483 struct cp210x_gpio_write16 buf16; 1484 struct cp210x_gpio_write buf; 1485 u16 mask, state; 1486 u16 wIndex; 1487 int result; 1488 1489 if (value == 1) 1490 state = BIT(gpio); 1491 else 1492 state = 0; 1493 1494 mask = BIT(gpio); 1495 1496 result = usb_autopm_get_interface(serial->interface); 1497 if (result) 1498 goto out; 1499 1500 switch (priv->partnum) { 1501 case CP210X_PARTNUM_CP2105: 1502 buf.mask = (u8)mask; 1503 buf.state = (u8)state; 1504 result = cp210x_write_vendor_block(serial, 1505 REQTYPE_HOST_TO_INTERFACE, 1506 CP210X_WRITE_LATCH, &buf, 1507 sizeof(buf)); 1508 break; 1509 case CP210X_PARTNUM_CP2108: 1510 buf16.mask = cpu_to_le16(mask); 1511 buf16.state = cpu_to_le16(state); 1512 result = cp210x_write_vendor_block(serial, 1513 REQTYPE_HOST_TO_INTERFACE, 1514 CP210X_WRITE_LATCH, &buf16, 1515 sizeof(buf16)); 1516 break; 1517 default: 1518 wIndex = state << 8 | mask; 1519 result = usb_control_msg(serial->dev, 1520 usb_sndctrlpipe(serial->dev, 0), 1521 CP210X_VENDOR_SPECIFIC, 1522 REQTYPE_HOST_TO_DEVICE, 1523 CP210X_WRITE_LATCH, 1524 wIndex, 1525 NULL, 0, USB_CTRL_SET_TIMEOUT); 1526 break; 1527 } 1528 1529 usb_autopm_put_interface(serial->interface); 1530 out: 1531 if (result < 0) { 1532 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1533 result); 1534 } 1535 } 1536 1537 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1538 { 1539 struct usb_serial *serial = gpiochip_get_data(gc); 1540 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1541 1542 return priv->gpio_input & BIT(gpio); 1543 } 1544 1545 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1546 { 1547 struct usb_serial *serial = gpiochip_get_data(gc); 1548 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1549 1550 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1551 /* hardware does not support an input mode */ 1552 return -ENOTSUPP; 1553 } 1554 1555 /* push-pull pins cannot be changed to be inputs */ 1556 if (priv->gpio_pushpull & BIT(gpio)) 1557 return -EINVAL; 1558 1559 /* make sure to release pin if it is being driven low */ 1560 cp210x_gpio_set(gc, gpio, 1); 1561 1562 priv->gpio_input |= BIT(gpio); 1563 1564 return 0; 1565 } 1566 1567 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1568 int value) 1569 { 1570 struct usb_serial *serial = gpiochip_get_data(gc); 1571 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1572 1573 priv->gpio_input &= ~BIT(gpio); 1574 cp210x_gpio_set(gc, gpio, value); 1575 1576 return 0; 1577 } 1578 1579 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1580 unsigned long config) 1581 { 1582 struct usb_serial *serial = gpiochip_get_data(gc); 1583 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1584 enum pin_config_param param = pinconf_to_config_param(config); 1585 1586 /* Succeed only if in correct mode (this can't be set at runtime) */ 1587 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1588 (priv->gpio_pushpull & BIT(gpio))) 1589 return 0; 1590 1591 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1592 !(priv->gpio_pushpull & BIT(gpio))) 1593 return 0; 1594 1595 return -ENOTSUPP; 1596 } 1597 1598 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1599 unsigned long *valid_mask, unsigned int ngpios) 1600 { 1601 struct usb_serial *serial = gpiochip_get_data(gc); 1602 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1603 struct device *dev = &serial->interface->dev; 1604 unsigned long altfunc_mask = priv->gpio_altfunc; 1605 1606 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1607 1608 if (bitmap_empty(valid_mask, ngpios)) 1609 dev_dbg(dev, "no pin configured for GPIO\n"); 1610 else 1611 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1612 valid_mask); 1613 return 0; 1614 } 1615 1616 /* 1617 * This function is for configuring GPIO using shared pins, where other signals 1618 * are made unavailable by configuring the use of GPIO. This is believed to be 1619 * only applicable to the cp2105 at this point, the other devices supported by 1620 * this driver that provide GPIO do so in a way that does not impact other 1621 * signals and are thus expected to have very different initialisation. 1622 */ 1623 static int cp2105_gpioconf_init(struct usb_serial *serial) 1624 { 1625 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1626 struct cp210x_pin_mode mode; 1627 struct cp210x_dual_port_config config; 1628 u8 intf_num = cp210x_interface_num(serial); 1629 u8 iface_config; 1630 int result; 1631 1632 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1633 CP210X_GET_DEVICEMODE, &mode, 1634 sizeof(mode)); 1635 if (result < 0) 1636 return result; 1637 1638 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1639 CP210X_GET_PORTCONFIG, &config, 1640 sizeof(config)); 1641 if (result < 0) 1642 return result; 1643 1644 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1645 if (intf_num == 0) { 1646 priv->gc.ngpio = 2; 1647 1648 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1649 /* mark all GPIOs of this interface as reserved */ 1650 priv->gpio_altfunc = 0xff; 1651 return 0; 1652 } 1653 1654 iface_config = config.eci_cfg; 1655 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1656 CP210X_ECI_GPIO_MODE_MASK) >> 1657 CP210X_ECI_GPIO_MODE_OFFSET); 1658 } else if (intf_num == 1) { 1659 priv->gc.ngpio = 3; 1660 1661 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1662 /* mark all GPIOs of this interface as reserved */ 1663 priv->gpio_altfunc = 0xff; 1664 return 0; 1665 } 1666 1667 iface_config = config.sci_cfg; 1668 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1669 CP210X_SCI_GPIO_MODE_MASK) >> 1670 CP210X_SCI_GPIO_MODE_OFFSET); 1671 } else { 1672 return -ENODEV; 1673 } 1674 1675 /* mark all pins which are not in GPIO mode */ 1676 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1677 priv->gpio_altfunc |= BIT(0); 1678 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1679 CP2105_GPIO1_RS485_MODE)) 1680 priv->gpio_altfunc |= BIT(1); 1681 1682 /* driver implementation for CP2105 only supports outputs */ 1683 priv->gpio_input = 0; 1684 1685 return 0; 1686 } 1687 1688 static int cp2104_gpioconf_init(struct usb_serial *serial) 1689 { 1690 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1691 struct cp210x_single_port_config config; 1692 u8 iface_config; 1693 u8 gpio_latch; 1694 int result; 1695 u8 i; 1696 1697 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1698 CP210X_GET_PORTCONFIG, &config, 1699 sizeof(config)); 1700 if (result < 0) 1701 return result; 1702 1703 priv->gc.ngpio = 4; 1704 1705 iface_config = config.device_cfg; 1706 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1707 CP210X_GPIO_MODE_MASK) >> 1708 CP210X_GPIO_MODE_OFFSET); 1709 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1710 CP210X_GPIO_MODE_MASK) >> 1711 CP210X_GPIO_MODE_OFFSET); 1712 1713 /* mark all pins which are not in GPIO mode */ 1714 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1715 priv->gpio_altfunc |= BIT(0); 1716 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1717 priv->gpio_altfunc |= BIT(1); 1718 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1719 priv->gpio_altfunc |= BIT(2); 1720 1721 /* 1722 * Like CP2102N, CP2104 has also no strict input and output pin 1723 * modes. 1724 * Do the same input mode emulation as CP2102N. 1725 */ 1726 for (i = 0; i < priv->gc.ngpio; ++i) { 1727 /* 1728 * Set direction to "input" iff pin is open-drain and reset 1729 * value is 1. 1730 */ 1731 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1732 priv->gpio_input |= BIT(i); 1733 } 1734 1735 return 0; 1736 } 1737 1738 static int cp2108_gpio_init(struct usb_serial *serial) 1739 { 1740 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1741 struct cp210x_quad_port_config config; 1742 u16 gpio_latch; 1743 int result; 1744 u8 i; 1745 1746 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1747 CP210X_GET_PORTCONFIG, &config, 1748 sizeof(config)); 1749 if (result < 0) 1750 return result; 1751 1752 priv->gc.ngpio = 16; 1753 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1754 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1755 1756 /* 1757 * Mark all pins which are not in GPIO mode. 1758 * 1759 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1760 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1761 * 1762 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1763 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1764 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1765 */ 1766 for (i = 0; i < 4; i++) { 1767 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1768 priv->gpio_altfunc |= BIT(i * 4); 1769 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1770 priv->gpio_altfunc |= BIT((i * 4) + 1); 1771 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1772 priv->gpio_altfunc |= BIT((i * 4) + 2); 1773 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1774 priv->gpio_altfunc |= BIT((i * 4) + 3); 1775 } 1776 1777 /* 1778 * Like CP2102N, CP2108 has also no strict input and output pin 1779 * modes. Do the same input mode emulation as CP2102N. 1780 */ 1781 for (i = 0; i < priv->gc.ngpio; ++i) { 1782 /* 1783 * Set direction to "input" iff pin is open-drain and reset 1784 * value is 1. 1785 */ 1786 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1787 priv->gpio_input |= BIT(i); 1788 } 1789 1790 return 0; 1791 } 1792 1793 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1794 { 1795 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1796 const u16 config_size = 0x02a6; 1797 u8 gpio_rst_latch; 1798 u8 config_version; 1799 u8 gpio_pushpull; 1800 u8 *config_buf; 1801 u8 gpio_latch; 1802 u8 gpio_ctrl; 1803 int result; 1804 u8 i; 1805 1806 /* 1807 * Retrieve device configuration from the device. 1808 * The array received contains all customization settings done at the 1809 * factory/manufacturer. Format of the array is documented at the 1810 * time of writing at: 1811 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1812 */ 1813 config_buf = kmalloc(config_size, GFP_KERNEL); 1814 if (!config_buf) 1815 return -ENOMEM; 1816 1817 result = cp210x_read_vendor_block(serial, 1818 REQTYPE_DEVICE_TO_HOST, 1819 CP210X_READ_2NCONFIG, 1820 config_buf, 1821 config_size); 1822 if (result < 0) { 1823 kfree(config_buf); 1824 return result; 1825 } 1826 1827 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1828 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1829 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1830 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1831 1832 kfree(config_buf); 1833 1834 /* Make sure this is a config format we understand. */ 1835 if (config_version != 0x01) 1836 return -ENOTSUPP; 1837 1838 priv->gc.ngpio = 4; 1839 1840 /* 1841 * Get default pin states after reset. Needed so we can determine 1842 * the direction of an open-drain pin. 1843 */ 1844 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1845 1846 /* 0 indicates open-drain mode, 1 is push-pull */ 1847 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1848 1849 /* 0 indicates GPIO mode, 1 is alternate function */ 1850 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1851 /* QFN20 is special... */ 1852 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1853 priv->gpio_altfunc |= BIT(0); 1854 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1855 priv->gpio_altfunc |= BIT(1); 1856 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1857 priv->gpio_altfunc |= BIT(2); 1858 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1859 priv->gpio_altfunc |= BIT(3); 1860 } else { 1861 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1862 } 1863 1864 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1865 /* 1866 * For the QFN28 package, GPIO4-6 are controlled by 1867 * the low three bits of the mode/latch fields. 1868 * Contrary to the document linked above, the bits for 1869 * the SUSPEND pins are elsewhere. No alternate 1870 * function is available for these pins. 1871 */ 1872 priv->gc.ngpio = 7; 1873 gpio_latch |= (gpio_rst_latch & 7) << 4; 1874 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1875 } 1876 1877 /* 1878 * The CP2102N does not strictly has input and output pin modes, 1879 * it only knows open-drain and push-pull modes which is set at 1880 * factory. An open-drain pin can function both as an 1881 * input or an output. We emulate input mode for open-drain pins 1882 * by making sure they are not driven low, and we do not allow 1883 * push-pull pins to be set as an input. 1884 */ 1885 for (i = 0; i < priv->gc.ngpio; ++i) { 1886 /* 1887 * Set direction to "input" iff pin is open-drain and reset 1888 * value is 1. 1889 */ 1890 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1891 priv->gpio_input |= BIT(i); 1892 } 1893 1894 return 0; 1895 } 1896 1897 static int cp210x_gpio_init(struct usb_serial *serial) 1898 { 1899 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1900 int result; 1901 1902 switch (priv->partnum) { 1903 case CP210X_PARTNUM_CP2104: 1904 result = cp2104_gpioconf_init(serial); 1905 break; 1906 case CP210X_PARTNUM_CP2105: 1907 result = cp2105_gpioconf_init(serial); 1908 break; 1909 case CP210X_PARTNUM_CP2108: 1910 /* 1911 * The GPIOs are not tied to any specific port so only register 1912 * once for interface 0. 1913 */ 1914 if (cp210x_interface_num(serial) != 0) 1915 return 0; 1916 result = cp2108_gpio_init(serial); 1917 break; 1918 case CP210X_PARTNUM_CP2102N_QFN28: 1919 case CP210X_PARTNUM_CP2102N_QFN24: 1920 case CP210X_PARTNUM_CP2102N_QFN20: 1921 result = cp2102n_gpioconf_init(serial); 1922 break; 1923 default: 1924 return 0; 1925 } 1926 1927 if (result < 0) 1928 return result; 1929 1930 priv->gc.label = "cp210x"; 1931 priv->gc.get_direction = cp210x_gpio_direction_get; 1932 priv->gc.direction_input = cp210x_gpio_direction_input; 1933 priv->gc.direction_output = cp210x_gpio_direction_output; 1934 priv->gc.get = cp210x_gpio_get; 1935 priv->gc.set = cp210x_gpio_set; 1936 priv->gc.set_config = cp210x_gpio_set_config; 1937 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1938 priv->gc.owner = THIS_MODULE; 1939 priv->gc.parent = &serial->interface->dev; 1940 priv->gc.base = -1; 1941 priv->gc.can_sleep = true; 1942 1943 result = gpiochip_add_data(&priv->gc, serial); 1944 if (!result) 1945 priv->gpio_registered = true; 1946 1947 return result; 1948 } 1949 1950 static void cp210x_gpio_remove(struct usb_serial *serial) 1951 { 1952 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1953 1954 if (priv->gpio_registered) { 1955 gpiochip_remove(&priv->gc); 1956 priv->gpio_registered = false; 1957 } 1958 } 1959 1960 #else 1961 1962 static int cp210x_gpio_init(struct usb_serial *serial) 1963 { 1964 return 0; 1965 } 1966 1967 static void cp210x_gpio_remove(struct usb_serial *serial) 1968 { 1969 /* Nothing to do */ 1970 } 1971 1972 #endif 1973 1974 static int cp210x_port_probe(struct usb_serial_port *port) 1975 { 1976 struct usb_serial *serial = port->serial; 1977 struct cp210x_port_private *port_priv; 1978 1979 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 1980 if (!port_priv) 1981 return -ENOMEM; 1982 1983 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 1984 mutex_init(&port_priv->mutex); 1985 1986 usb_set_serial_port_data(port, port_priv); 1987 1988 return 0; 1989 } 1990 1991 static void cp210x_port_remove(struct usb_serial_port *port) 1992 { 1993 struct cp210x_port_private *port_priv; 1994 1995 port_priv = usb_get_serial_port_data(port); 1996 kfree(port_priv); 1997 } 1998 1999 static void cp210x_init_max_speed(struct usb_serial *serial) 2000 { 2001 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2002 bool use_actual_rate = false; 2003 speed_t min = 300; 2004 speed_t max; 2005 2006 switch (priv->partnum) { 2007 case CP210X_PARTNUM_CP2101: 2008 max = 921600; 2009 break; 2010 case CP210X_PARTNUM_CP2102: 2011 case CP210X_PARTNUM_CP2103: 2012 max = 1000000; 2013 break; 2014 case CP210X_PARTNUM_CP2104: 2015 use_actual_rate = true; 2016 max = 2000000; 2017 break; 2018 case CP210X_PARTNUM_CP2108: 2019 max = 2000000; 2020 break; 2021 case CP210X_PARTNUM_CP2105: 2022 if (cp210x_interface_num(serial) == 0) { 2023 use_actual_rate = true; 2024 max = 2000000; /* ECI */ 2025 } else { 2026 min = 2400; 2027 max = 921600; /* SCI */ 2028 } 2029 break; 2030 case CP210X_PARTNUM_CP2102N_QFN28: 2031 case CP210X_PARTNUM_CP2102N_QFN24: 2032 case CP210X_PARTNUM_CP2102N_QFN20: 2033 use_actual_rate = true; 2034 max = 3000000; 2035 break; 2036 default: 2037 max = 2000000; 2038 break; 2039 } 2040 2041 priv->min_speed = min; 2042 priv->max_speed = max; 2043 priv->use_actual_rate = use_actual_rate; 2044 } 2045 2046 static void cp2102_determine_quirks(struct usb_serial *serial) 2047 { 2048 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2049 u8 *buf; 2050 int ret; 2051 2052 buf = kmalloc(2, GFP_KERNEL); 2053 if (!buf) 2054 return; 2055 /* 2056 * Some (possibly counterfeit) CP2102 do not support event-insertion 2057 * mode and respond differently to malformed vendor requests. 2058 * Specifically, they return one instead of two bytes when sent a 2059 * two-byte part-number request. 2060 */ 2061 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2062 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2063 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2064 if (ret == 1) { 2065 dev_dbg(&serial->interface->dev, 2066 "device does not support event-insertion mode\n"); 2067 priv->no_event_mode = true; 2068 } 2069 2070 kfree(buf); 2071 } 2072 2073 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2074 { 2075 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2076 u8 ver[3]; 2077 int ret; 2078 2079 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2080 ver, sizeof(ver)); 2081 if (ret) 2082 return ret; 2083 2084 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2085 ver[0], ver[1], ver[2]); 2086 2087 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2088 2089 return 0; 2090 } 2091 2092 static void cp210x_determine_type(struct usb_serial *serial) 2093 { 2094 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2095 int ret; 2096 2097 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2098 CP210X_GET_PARTNUM, &priv->partnum, 2099 sizeof(priv->partnum)); 2100 if (ret < 0) { 2101 dev_warn(&serial->interface->dev, 2102 "querying part number failed\n"); 2103 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2104 return; 2105 } 2106 2107 dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum); 2108 2109 switch (priv->partnum) { 2110 case CP210X_PARTNUM_CP2102: 2111 cp2102_determine_quirks(serial); 2112 break; 2113 case CP210X_PARTNUM_CP2105: 2114 case CP210X_PARTNUM_CP2108: 2115 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2116 break; 2117 case CP210X_PARTNUM_CP2102N_QFN28: 2118 case CP210X_PARTNUM_CP2102N_QFN24: 2119 case CP210X_PARTNUM_CP2102N_QFN20: 2120 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2121 if (ret) 2122 break; 2123 if (priv->fw_version <= 0x10004) 2124 priv->no_flow_control = true; 2125 break; 2126 default: 2127 break; 2128 } 2129 } 2130 2131 static int cp210x_attach(struct usb_serial *serial) 2132 { 2133 int result; 2134 struct cp210x_serial_private *priv; 2135 2136 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2137 if (!priv) 2138 return -ENOMEM; 2139 2140 usb_set_serial_data(serial, priv); 2141 2142 cp210x_determine_type(serial); 2143 cp210x_init_max_speed(serial); 2144 2145 result = cp210x_gpio_init(serial); 2146 if (result < 0) { 2147 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2148 result); 2149 } 2150 2151 return 0; 2152 } 2153 2154 static void cp210x_disconnect(struct usb_serial *serial) 2155 { 2156 cp210x_gpio_remove(serial); 2157 } 2158 2159 static void cp210x_release(struct usb_serial *serial) 2160 { 2161 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2162 2163 cp210x_gpio_remove(serial); 2164 2165 kfree(priv); 2166 } 2167 2168 module_usb_serial_driver(serial_drivers, id_table); 2169 2170 MODULE_DESCRIPTION(DRIVER_DESC); 2171 MODULE_LICENSE("GPL v2"); 2172