1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 struct ktermios*); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static void cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 55 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 56 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 57 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 59 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 60 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 61 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 62 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 63 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 64 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 65 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 66 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 67 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 68 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 69 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 71 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 72 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 73 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 74 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 75 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 76 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 77 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 78 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 79 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 80 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 81 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 82 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 83 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 84 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 85 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 86 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 87 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 88 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 89 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 90 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 91 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 92 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 93 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 94 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 95 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 96 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 97 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 98 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 99 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 100 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 101 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 102 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 103 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 104 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 105 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 106 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 107 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 108 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 109 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 110 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 111 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 112 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 113 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 114 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 115 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 116 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 117 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 118 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 119 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 120 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 121 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 122 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 123 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 124 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 125 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 126 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 127 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 128 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 129 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 130 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 131 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 132 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 133 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 134 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 135 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 136 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 137 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 138 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 139 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 140 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 141 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 142 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 143 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 144 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 145 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 146 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 147 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 148 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 149 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 150 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 151 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 152 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 153 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 154 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 155 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 156 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 157 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 158 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 159 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 160 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 161 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 162 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 163 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 164 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 165 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 166 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 167 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 168 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 169 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 170 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 171 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 172 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 173 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 174 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 175 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 176 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 177 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 178 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 179 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 180 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 181 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 182 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 183 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 184 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 185 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 186 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 187 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 188 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 189 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 190 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 191 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 192 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 193 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 194 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 195 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 196 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 197 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 198 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 199 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 200 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 201 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 202 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 203 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 204 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 205 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 206 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 207 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 208 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 209 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 210 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 211 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 212 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 213 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 214 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 215 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 216 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 217 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 218 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 219 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 220 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 221 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 222 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 223 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 224 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 225 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 226 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 227 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 228 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 229 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 230 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 231 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 232 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 233 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 234 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 235 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 236 { USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */ 237 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 238 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 239 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 240 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 241 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 242 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 243 { } /* Terminating Entry */ 244 }; 245 246 MODULE_DEVICE_TABLE(usb, id_table); 247 248 struct cp210x_serial_private { 249 #ifdef CONFIG_GPIOLIB 250 struct gpio_chip gc; 251 bool gpio_registered; 252 u16 gpio_pushpull; 253 u16 gpio_altfunc; 254 u16 gpio_input; 255 #endif 256 u8 partnum; 257 u32 fw_version; 258 speed_t min_speed; 259 speed_t max_speed; 260 bool use_actual_rate; 261 bool no_flow_control; 262 bool no_event_mode; 263 }; 264 265 enum cp210x_event_state { 266 ES_DATA, 267 ES_ESCAPE, 268 ES_LSR, 269 ES_LSR_DATA_0, 270 ES_LSR_DATA_1, 271 ES_MSR 272 }; 273 274 struct cp210x_port_private { 275 u8 bInterfaceNumber; 276 bool event_mode; 277 enum cp210x_event_state event_state; 278 u8 lsr; 279 280 struct mutex mutex; 281 bool crtscts; 282 bool dtr; 283 bool rts; 284 }; 285 286 static struct usb_serial_driver cp210x_device = { 287 .driver = { 288 .owner = THIS_MODULE, 289 .name = "cp210x", 290 }, 291 .id_table = id_table, 292 .num_ports = 1, 293 .bulk_in_size = 256, 294 .bulk_out_size = 256, 295 .open = cp210x_open, 296 .close = cp210x_close, 297 .break_ctl = cp210x_break_ctl, 298 .set_termios = cp210x_set_termios, 299 .tx_empty = cp210x_tx_empty, 300 .throttle = usb_serial_generic_throttle, 301 .unthrottle = usb_serial_generic_unthrottle, 302 .tiocmget = cp210x_tiocmget, 303 .tiocmset = cp210x_tiocmset, 304 .get_icount = usb_serial_generic_get_icount, 305 .attach = cp210x_attach, 306 .disconnect = cp210x_disconnect, 307 .release = cp210x_release, 308 .port_probe = cp210x_port_probe, 309 .port_remove = cp210x_port_remove, 310 .dtr_rts = cp210x_dtr_rts, 311 .process_read_urb = cp210x_process_read_urb, 312 }; 313 314 static struct usb_serial_driver * const serial_drivers[] = { 315 &cp210x_device, NULL 316 }; 317 318 /* Config request types */ 319 #define REQTYPE_HOST_TO_INTERFACE 0x41 320 #define REQTYPE_INTERFACE_TO_HOST 0xc1 321 #define REQTYPE_HOST_TO_DEVICE 0x40 322 #define REQTYPE_DEVICE_TO_HOST 0xc0 323 324 /* Config request codes */ 325 #define CP210X_IFC_ENABLE 0x00 326 #define CP210X_SET_BAUDDIV 0x01 327 #define CP210X_GET_BAUDDIV 0x02 328 #define CP210X_SET_LINE_CTL 0x03 329 #define CP210X_GET_LINE_CTL 0x04 330 #define CP210X_SET_BREAK 0x05 331 #define CP210X_IMM_CHAR 0x06 332 #define CP210X_SET_MHS 0x07 333 #define CP210X_GET_MDMSTS 0x08 334 #define CP210X_SET_XON 0x09 335 #define CP210X_SET_XOFF 0x0A 336 #define CP210X_SET_EVENTMASK 0x0B 337 #define CP210X_GET_EVENTMASK 0x0C 338 #define CP210X_SET_CHAR 0x0D 339 #define CP210X_GET_CHARS 0x0E 340 #define CP210X_GET_PROPS 0x0F 341 #define CP210X_GET_COMM_STATUS 0x10 342 #define CP210X_RESET 0x11 343 #define CP210X_PURGE 0x12 344 #define CP210X_SET_FLOW 0x13 345 #define CP210X_GET_FLOW 0x14 346 #define CP210X_EMBED_EVENTS 0x15 347 #define CP210X_GET_EVENTSTATE 0x16 348 #define CP210X_SET_CHARS 0x19 349 #define CP210X_GET_BAUDRATE 0x1D 350 #define CP210X_SET_BAUDRATE 0x1E 351 #define CP210X_VENDOR_SPECIFIC 0xFF 352 353 /* CP210X_IFC_ENABLE */ 354 #define UART_ENABLE 0x0001 355 #define UART_DISABLE 0x0000 356 357 /* CP210X_(SET|GET)_BAUDDIV */ 358 #define BAUD_RATE_GEN_FREQ 0x384000 359 360 /* CP210X_(SET|GET)_LINE_CTL */ 361 #define BITS_DATA_MASK 0X0f00 362 #define BITS_DATA_5 0X0500 363 #define BITS_DATA_6 0X0600 364 #define BITS_DATA_7 0X0700 365 #define BITS_DATA_8 0X0800 366 #define BITS_DATA_9 0X0900 367 368 #define BITS_PARITY_MASK 0x00f0 369 #define BITS_PARITY_NONE 0x0000 370 #define BITS_PARITY_ODD 0x0010 371 #define BITS_PARITY_EVEN 0x0020 372 #define BITS_PARITY_MARK 0x0030 373 #define BITS_PARITY_SPACE 0x0040 374 375 #define BITS_STOP_MASK 0x000f 376 #define BITS_STOP_1 0x0000 377 #define BITS_STOP_1_5 0x0001 378 #define BITS_STOP_2 0x0002 379 380 /* CP210X_SET_BREAK */ 381 #define BREAK_ON 0x0001 382 #define BREAK_OFF 0x0000 383 384 /* CP210X_(SET_MHS|GET_MDMSTS) */ 385 #define CONTROL_DTR 0x0001 386 #define CONTROL_RTS 0x0002 387 #define CONTROL_CTS 0x0010 388 #define CONTROL_DSR 0x0020 389 #define CONTROL_RING 0x0040 390 #define CONTROL_DCD 0x0080 391 #define CONTROL_WRITE_DTR 0x0100 392 #define CONTROL_WRITE_RTS 0x0200 393 394 /* CP210X_(GET|SET)_CHARS */ 395 struct cp210x_special_chars { 396 u8 bEofChar; 397 u8 bErrorChar; 398 u8 bBreakChar; 399 u8 bEventChar; 400 u8 bXonChar; 401 u8 bXoffChar; 402 }; 403 404 /* CP210X_VENDOR_SPECIFIC values */ 405 #define CP210X_GET_FW_VER 0x000E 406 #define CP210X_READ_2NCONFIG 0x000E 407 #define CP210X_GET_FW_VER_2N 0x0010 408 #define CP210X_READ_LATCH 0x00C2 409 #define CP210X_GET_PARTNUM 0x370B 410 #define CP210X_GET_PORTCONFIG 0x370C 411 #define CP210X_GET_DEVICEMODE 0x3711 412 #define CP210X_WRITE_LATCH 0x37E1 413 414 /* Part number definitions */ 415 #define CP210X_PARTNUM_CP2101 0x01 416 #define CP210X_PARTNUM_CP2102 0x02 417 #define CP210X_PARTNUM_CP2103 0x03 418 #define CP210X_PARTNUM_CP2104 0x04 419 #define CP210X_PARTNUM_CP2105 0x05 420 #define CP210X_PARTNUM_CP2108 0x08 421 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 422 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 423 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 424 #define CP210X_PARTNUM_UNKNOWN 0xFF 425 426 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 427 struct cp210x_comm_status { 428 __le32 ulErrors; 429 __le32 ulHoldReasons; 430 __le32 ulAmountInInQueue; 431 __le32 ulAmountInOutQueue; 432 u8 bEofReceived; 433 u8 bWaitForImmediate; 434 u8 bReserved; 435 } __packed; 436 437 /* 438 * CP210X_PURGE - 16 bits passed in wValue of USB request. 439 * SiLabs app note AN571 gives a strange description of the 4 bits: 440 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 441 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 442 */ 443 #define PURGE_ALL 0x000f 444 445 /* CP210X_EMBED_EVENTS */ 446 #define CP210X_ESCCHAR 0xec 447 448 #define CP210X_LSR_OVERRUN BIT(1) 449 #define CP210X_LSR_PARITY BIT(2) 450 #define CP210X_LSR_FRAME BIT(3) 451 #define CP210X_LSR_BREAK BIT(4) 452 453 454 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 455 struct cp210x_flow_ctl { 456 __le32 ulControlHandshake; 457 __le32 ulFlowReplace; 458 __le32 ulXonLimit; 459 __le32 ulXoffLimit; 460 }; 461 462 /* cp210x_flow_ctl::ulControlHandshake */ 463 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 464 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 465 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 466 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 467 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 468 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 469 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 470 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 471 472 /* cp210x_flow_ctl::ulFlowReplace */ 473 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 474 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 475 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 476 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 477 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 478 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 479 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 480 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 481 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 482 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 483 484 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 485 struct cp210x_pin_mode { 486 u8 eci; 487 u8 sci; 488 }; 489 490 #define CP210X_PIN_MODE_MODEM 0 491 #define CP210X_PIN_MODE_GPIO BIT(0) 492 493 /* 494 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 495 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 496 */ 497 struct cp210x_dual_port_config { 498 __le16 gpio_mode; 499 u8 __pad0[2]; 500 __le16 reset_state; 501 u8 __pad1[4]; 502 __le16 suspend_state; 503 u8 sci_cfg; 504 u8 eci_cfg; 505 u8 device_cfg; 506 } __packed; 507 508 /* 509 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 510 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 511 */ 512 struct cp210x_single_port_config { 513 __le16 gpio_mode; 514 u8 __pad0[2]; 515 __le16 reset_state; 516 u8 __pad1[4]; 517 __le16 suspend_state; 518 u8 device_cfg; 519 } __packed; 520 521 /* GPIO modes */ 522 #define CP210X_SCI_GPIO_MODE_OFFSET 9 523 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 524 525 #define CP210X_ECI_GPIO_MODE_OFFSET 2 526 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 527 528 #define CP210X_GPIO_MODE_OFFSET 8 529 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 530 531 /* CP2105 port configuration values */ 532 #define CP2105_GPIO0_TXLED_MODE BIT(0) 533 #define CP2105_GPIO1_RXLED_MODE BIT(1) 534 #define CP2105_GPIO1_RS485_MODE BIT(2) 535 536 /* CP2104 port configuration values */ 537 #define CP2104_GPIO0_TXLED_MODE BIT(0) 538 #define CP2104_GPIO1_RXLED_MODE BIT(1) 539 #define CP2104_GPIO2_RS485_MODE BIT(2) 540 541 struct cp210x_quad_port_state { 542 __le16 gpio_mode_pb0; 543 __le16 gpio_mode_pb1; 544 __le16 gpio_mode_pb2; 545 __le16 gpio_mode_pb3; 546 __le16 gpio_mode_pb4; 547 548 __le16 gpio_lowpower_pb0; 549 __le16 gpio_lowpower_pb1; 550 __le16 gpio_lowpower_pb2; 551 __le16 gpio_lowpower_pb3; 552 __le16 gpio_lowpower_pb4; 553 554 __le16 gpio_latch_pb0; 555 __le16 gpio_latch_pb1; 556 __le16 gpio_latch_pb2; 557 __le16 gpio_latch_pb3; 558 __le16 gpio_latch_pb4; 559 }; 560 561 /* 562 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 563 * on a CP2108 chip. 564 * 565 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 566 */ 567 struct cp210x_quad_port_config { 568 struct cp210x_quad_port_state reset_state; 569 struct cp210x_quad_port_state suspend_state; 570 u8 ipdelay_ifc[4]; 571 u8 enhancedfxn_ifc[4]; 572 u8 enhancedfxn_device; 573 u8 extclkfreq[4]; 574 } __packed; 575 576 #define CP2108_EF_IFC_GPIO_TXLED 0x01 577 #define CP2108_EF_IFC_GPIO_RXLED 0x02 578 #define CP2108_EF_IFC_GPIO_RS485 0x04 579 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 580 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 581 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 582 583 /* CP2102N configuration array indices */ 584 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 585 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 586 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 587 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 588 589 /* CP2102N QFN20 port configuration values */ 590 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 591 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 592 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 593 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 594 595 /* 596 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 597 * for CP2102N, CP2103, CP2104 and CP2105. 598 */ 599 struct cp210x_gpio_write { 600 u8 mask; 601 u8 state; 602 }; 603 604 /* 605 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 606 * for CP2108. 607 */ 608 struct cp210x_gpio_write16 { 609 __le16 mask; 610 __le16 state; 611 }; 612 613 /* 614 * Helper to get interface number when we only have struct usb_serial. 615 */ 616 static u8 cp210x_interface_num(struct usb_serial *serial) 617 { 618 struct usb_host_interface *cur_altsetting; 619 620 cur_altsetting = serial->interface->cur_altsetting; 621 622 return cur_altsetting->desc.bInterfaceNumber; 623 } 624 625 /* 626 * Reads a variable-sized block of CP210X_ registers, identified by req. 627 * Returns data into buf in native USB byte order. 628 */ 629 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 630 void *buf, int bufsize) 631 { 632 struct usb_serial *serial = port->serial; 633 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 634 void *dmabuf; 635 int result; 636 637 dmabuf = kmalloc(bufsize, GFP_KERNEL); 638 if (!dmabuf) 639 return -ENOMEM; 640 641 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 642 req, REQTYPE_INTERFACE_TO_HOST, 0, 643 port_priv->bInterfaceNumber, dmabuf, bufsize, 644 USB_CTRL_GET_TIMEOUT); 645 if (result == bufsize) { 646 memcpy(buf, dmabuf, bufsize); 647 result = 0; 648 } else { 649 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 650 req, bufsize, result); 651 if (result >= 0) 652 result = -EIO; 653 } 654 655 kfree(dmabuf); 656 657 return result; 658 } 659 660 /* 661 * Reads any 8-bit CP210X_ register identified by req. 662 */ 663 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 664 { 665 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 666 } 667 668 /* 669 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 670 * Returns data into buf in native USB byte order. 671 */ 672 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 673 void *buf, int bufsize) 674 { 675 void *dmabuf; 676 int result; 677 678 dmabuf = kmalloc(bufsize, GFP_KERNEL); 679 if (!dmabuf) 680 return -ENOMEM; 681 682 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 683 CP210X_VENDOR_SPECIFIC, type, val, 684 cp210x_interface_num(serial), dmabuf, bufsize, 685 USB_CTRL_GET_TIMEOUT); 686 if (result == bufsize) { 687 memcpy(buf, dmabuf, bufsize); 688 result = 0; 689 } else { 690 dev_err(&serial->interface->dev, 691 "failed to get vendor val 0x%04x size %d: %d\n", val, 692 bufsize, result); 693 if (result >= 0) 694 result = -EIO; 695 } 696 697 kfree(dmabuf); 698 699 return result; 700 } 701 702 /* 703 * Writes any 16-bit CP210X_ register (req) whose value is passed 704 * entirely in the wValue field of the USB request. 705 */ 706 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 707 { 708 struct usb_serial *serial = port->serial; 709 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 710 int result; 711 712 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 713 req, REQTYPE_HOST_TO_INTERFACE, val, 714 port_priv->bInterfaceNumber, NULL, 0, 715 USB_CTRL_SET_TIMEOUT); 716 if (result < 0) { 717 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 718 req, result); 719 } 720 721 return result; 722 } 723 724 /* 725 * Writes a variable-sized block of CP210X_ registers, identified by req. 726 * Data in buf must be in native USB byte order. 727 */ 728 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 729 void *buf, int bufsize) 730 { 731 struct usb_serial *serial = port->serial; 732 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 733 void *dmabuf; 734 int result; 735 736 dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); 737 if (!dmabuf) 738 return -ENOMEM; 739 740 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 741 req, REQTYPE_HOST_TO_INTERFACE, 0, 742 port_priv->bInterfaceNumber, dmabuf, bufsize, 743 USB_CTRL_SET_TIMEOUT); 744 745 kfree(dmabuf); 746 747 if (result < 0) { 748 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 749 req, bufsize, result); 750 return result; 751 } 752 753 return 0; 754 } 755 756 /* 757 * Writes any 32-bit CP210X_ register identified by req. 758 */ 759 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 760 { 761 __le32 le32_val; 762 763 le32_val = cpu_to_le32(val); 764 765 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 766 } 767 768 #ifdef CONFIG_GPIOLIB 769 /* 770 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 771 * Data in buf must be in native USB byte order. 772 */ 773 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 774 u16 val, void *buf, int bufsize) 775 { 776 void *dmabuf; 777 int result; 778 779 dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); 780 if (!dmabuf) 781 return -ENOMEM; 782 783 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 784 CP210X_VENDOR_SPECIFIC, type, val, 785 cp210x_interface_num(serial), dmabuf, bufsize, 786 USB_CTRL_SET_TIMEOUT); 787 788 kfree(dmabuf); 789 790 if (result < 0) { 791 dev_err(&serial->interface->dev, 792 "failed to set vendor val 0x%04x size %d: %d\n", val, 793 bufsize, result); 794 return result; 795 } 796 797 return 0; 798 } 799 #endif 800 801 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 802 { 803 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 804 int result; 805 806 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 807 if (result) { 808 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 809 return result; 810 } 811 812 if (tty) 813 cp210x_set_termios(tty, port, NULL); 814 815 result = usb_serial_generic_open(tty, port); 816 if (result) 817 goto err_disable; 818 819 return 0; 820 821 err_disable: 822 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 823 port_priv->event_mode = false; 824 825 return result; 826 } 827 828 static void cp210x_close(struct usb_serial_port *port) 829 { 830 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 831 832 usb_serial_generic_close(port); 833 834 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 835 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 836 837 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 838 839 /* Disabling the interface disables event-insertion mode. */ 840 port_priv->event_mode = false; 841 } 842 843 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 844 { 845 if (lsr & CP210X_LSR_BREAK) { 846 port->icount.brk++; 847 *flag = TTY_BREAK; 848 } else if (lsr & CP210X_LSR_PARITY) { 849 port->icount.parity++; 850 *flag = TTY_PARITY; 851 } else if (lsr & CP210X_LSR_FRAME) { 852 port->icount.frame++; 853 *flag = TTY_FRAME; 854 } 855 856 if (lsr & CP210X_LSR_OVERRUN) { 857 port->icount.overrun++; 858 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 859 } 860 } 861 862 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 863 { 864 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 865 866 switch (port_priv->event_state) { 867 case ES_DATA: 868 if (*ch == CP210X_ESCCHAR) { 869 port_priv->event_state = ES_ESCAPE; 870 break; 871 } 872 return false; 873 case ES_ESCAPE: 874 switch (*ch) { 875 case 0: 876 dev_dbg(&port->dev, "%s - escape char\n", __func__); 877 *ch = CP210X_ESCCHAR; 878 port_priv->event_state = ES_DATA; 879 return false; 880 case 1: 881 port_priv->event_state = ES_LSR_DATA_0; 882 break; 883 case 2: 884 port_priv->event_state = ES_LSR; 885 break; 886 case 3: 887 port_priv->event_state = ES_MSR; 888 break; 889 default: 890 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 891 port_priv->event_state = ES_DATA; 892 break; 893 } 894 break; 895 case ES_LSR_DATA_0: 896 port_priv->lsr = *ch; 897 port_priv->event_state = ES_LSR_DATA_1; 898 break; 899 case ES_LSR_DATA_1: 900 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 901 __func__, port_priv->lsr, *ch); 902 cp210x_process_lsr(port, port_priv->lsr, flag); 903 port_priv->event_state = ES_DATA; 904 return false; 905 case ES_LSR: 906 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 907 port_priv->lsr = *ch; 908 cp210x_process_lsr(port, port_priv->lsr, flag); 909 port_priv->event_state = ES_DATA; 910 break; 911 case ES_MSR: 912 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 913 /* unimplemented */ 914 port_priv->event_state = ES_DATA; 915 break; 916 } 917 918 return true; 919 } 920 921 static void cp210x_process_read_urb(struct urb *urb) 922 { 923 struct usb_serial_port *port = urb->context; 924 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 925 unsigned char *ch = urb->transfer_buffer; 926 char flag; 927 int i; 928 929 if (!urb->actual_length) 930 return; 931 932 if (port_priv->event_mode) { 933 for (i = 0; i < urb->actual_length; i++, ch++) { 934 flag = TTY_NORMAL; 935 936 if (cp210x_process_char(port, ch, &flag)) 937 continue; 938 939 tty_insert_flip_char(&port->port, *ch, flag); 940 } 941 } else { 942 tty_insert_flip_string(&port->port, ch, urb->actual_length); 943 } 944 tty_flip_buffer_push(&port->port); 945 } 946 947 /* 948 * Read how many bytes are waiting in the TX queue. 949 */ 950 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 951 u32 *count) 952 { 953 struct usb_serial *serial = port->serial; 954 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 955 struct cp210x_comm_status *sts; 956 int result; 957 958 sts = kmalloc(sizeof(*sts), GFP_KERNEL); 959 if (!sts) 960 return -ENOMEM; 961 962 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 963 CP210X_GET_COMM_STATUS, REQTYPE_INTERFACE_TO_HOST, 964 0, port_priv->bInterfaceNumber, sts, sizeof(*sts), 965 USB_CTRL_GET_TIMEOUT); 966 if (result == sizeof(*sts)) { 967 *count = le32_to_cpu(sts->ulAmountInOutQueue); 968 result = 0; 969 } else { 970 dev_err(&port->dev, "failed to get comm status: %d\n", result); 971 if (result >= 0) 972 result = -EIO; 973 } 974 975 kfree(sts); 976 977 return result; 978 } 979 980 static bool cp210x_tx_empty(struct usb_serial_port *port) 981 { 982 int err; 983 u32 count; 984 985 err = cp210x_get_tx_queue_byte_count(port, &count); 986 if (err) 987 return true; 988 989 return !count; 990 } 991 992 struct cp210x_rate { 993 speed_t rate; 994 speed_t high; 995 }; 996 997 static const struct cp210x_rate cp210x_an205_table1[] = { 998 { 300, 300 }, 999 { 600, 600 }, 1000 { 1200, 1200 }, 1001 { 1800, 1800 }, 1002 { 2400, 2400 }, 1003 { 4000, 4000 }, 1004 { 4800, 4803 }, 1005 { 7200, 7207 }, 1006 { 9600, 9612 }, 1007 { 14400, 14428 }, 1008 { 16000, 16062 }, 1009 { 19200, 19250 }, 1010 { 28800, 28912 }, 1011 { 38400, 38601 }, 1012 { 51200, 51558 }, 1013 { 56000, 56280 }, 1014 { 57600, 58053 }, 1015 { 64000, 64111 }, 1016 { 76800, 77608 }, 1017 { 115200, 117028 }, 1018 { 128000, 129347 }, 1019 { 153600, 156868 }, 1020 { 230400, 237832 }, 1021 { 250000, 254234 }, 1022 { 256000, 273066 }, 1023 { 460800, 491520 }, 1024 { 500000, 567138 }, 1025 { 576000, 670254 }, 1026 { 921600, UINT_MAX } 1027 }; 1028 1029 /* 1030 * Quantises the baud rate as per AN205 Table 1 1031 */ 1032 static speed_t cp210x_get_an205_rate(speed_t baud) 1033 { 1034 int i; 1035 1036 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 1037 if (baud <= cp210x_an205_table1[i].high) 1038 break; 1039 } 1040 1041 return cp210x_an205_table1[i].rate; 1042 } 1043 1044 static speed_t cp210x_get_actual_rate(speed_t baud) 1045 { 1046 unsigned int prescale = 1; 1047 unsigned int div; 1048 1049 if (baud <= 365) 1050 prescale = 4; 1051 1052 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1053 baud = 48000000 / (2 * prescale * div); 1054 1055 return baud; 1056 } 1057 1058 /* 1059 * CP2101 supports the following baud rates: 1060 * 1061 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1062 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1063 * 1064 * CP2102 and CP2103 support the following additional rates: 1065 * 1066 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1067 * 576000 1068 * 1069 * The device will map a requested rate to a supported one, but the result 1070 * of requests for rates greater than 1053257 is undefined (see AN205). 1071 * 1072 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1073 * respectively, with an error less than 1%. The actual rates are determined 1074 * by 1075 * 1076 * div = round(freq / (2 x prescale x request)) 1077 * actual = freq / (2 x prescale x div) 1078 * 1079 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1080 * or 1 otherwise. 1081 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1082 * otherwise. 1083 */ 1084 static void cp210x_change_speed(struct tty_struct *tty, 1085 struct usb_serial_port *port, struct ktermios *old_termios) 1086 { 1087 struct usb_serial *serial = port->serial; 1088 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1089 u32 baud; 1090 1091 /* 1092 * This maps the requested rate to the actual rate, a valid rate on 1093 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1094 * 1095 * NOTE: B0 is not implemented. 1096 */ 1097 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1098 1099 if (priv->use_actual_rate) 1100 baud = cp210x_get_actual_rate(baud); 1101 else if (baud < 1000000) 1102 baud = cp210x_get_an205_rate(baud); 1103 1104 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1105 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1106 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1107 if (old_termios) 1108 baud = old_termios->c_ospeed; 1109 else 1110 baud = 9600; 1111 } 1112 1113 tty_encode_baud_rate(tty, baud, baud); 1114 } 1115 1116 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1117 { 1118 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1119 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1120 int ret; 1121 1122 if (port_priv->event_mode) 1123 return; 1124 1125 if (priv->no_event_mode) 1126 return; 1127 1128 port_priv->event_state = ES_DATA; 1129 port_priv->event_mode = true; 1130 1131 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1132 if (ret) { 1133 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1134 port_priv->event_mode = false; 1135 } 1136 } 1137 1138 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1139 { 1140 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1141 int ret; 1142 1143 if (!port_priv->event_mode) 1144 return; 1145 1146 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1147 if (ret) { 1148 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1149 return; 1150 } 1151 1152 port_priv->event_mode = false; 1153 } 1154 1155 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1156 { 1157 bool iflag_change, cc_change; 1158 1159 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1160 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1161 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1162 1163 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1164 } 1165 1166 static void cp210x_set_flow_control(struct tty_struct *tty, 1167 struct usb_serial_port *port, struct ktermios *old_termios) 1168 { 1169 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1170 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1171 struct cp210x_special_chars chars; 1172 struct cp210x_flow_ctl flow_ctl; 1173 u32 flow_repl; 1174 u32 ctl_hs; 1175 bool crtscts; 1176 int ret; 1177 1178 /* 1179 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1180 * CP2102N_E104). Report back that flow control is not supported. 1181 */ 1182 if (priv->no_flow_control) { 1183 tty->termios.c_cflag &= ~CRTSCTS; 1184 tty->termios.c_iflag &= ~(IXON | IXOFF); 1185 } 1186 1187 if (old_termios && 1188 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1189 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1190 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1191 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1192 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1193 return; 1194 } 1195 1196 if (I_IXON(tty) || I_IXOFF(tty)) { 1197 memset(&chars, 0, sizeof(chars)); 1198 1199 chars.bXonChar = START_CHAR(tty); 1200 chars.bXoffChar = STOP_CHAR(tty); 1201 1202 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1203 sizeof(chars)); 1204 if (ret) { 1205 dev_err(&port->dev, "failed to set special chars: %d\n", 1206 ret); 1207 } 1208 } 1209 1210 mutex_lock(&port_priv->mutex); 1211 1212 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1213 sizeof(flow_ctl)); 1214 if (ret) 1215 goto out_unlock; 1216 1217 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1218 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1219 1220 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1221 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1222 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1223 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1224 if (port_priv->dtr) 1225 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1226 else 1227 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1228 1229 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1230 if (C_CRTSCTS(tty)) { 1231 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1232 if (port_priv->rts) 1233 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1234 else 1235 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1236 crtscts = true; 1237 } else { 1238 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1239 if (port_priv->rts) 1240 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1241 else 1242 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1243 crtscts = false; 1244 } 1245 1246 if (I_IXOFF(tty)) { 1247 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1248 1249 flow_ctl.ulXonLimit = cpu_to_le32(128); 1250 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1251 } else { 1252 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1253 } 1254 1255 if (I_IXON(tty)) 1256 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1257 else 1258 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1259 1260 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1261 ctl_hs, flow_repl); 1262 1263 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1264 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1265 1266 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1267 sizeof(flow_ctl)); 1268 if (ret) 1269 goto out_unlock; 1270 1271 port_priv->crtscts = crtscts; 1272 out_unlock: 1273 mutex_unlock(&port_priv->mutex); 1274 } 1275 1276 static void cp210x_set_termios(struct tty_struct *tty, 1277 struct usb_serial_port *port, struct ktermios *old_termios) 1278 { 1279 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1280 u16 bits; 1281 int ret; 1282 1283 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) 1284 return; 1285 1286 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1287 cp210x_change_speed(tty, port, old_termios); 1288 1289 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1290 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1291 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1292 tty->termios.c_cflag |= CS8; 1293 } 1294 1295 bits = 0; 1296 1297 switch (C_CSIZE(tty)) { 1298 case CS5: 1299 bits |= BITS_DATA_5; 1300 break; 1301 case CS6: 1302 bits |= BITS_DATA_6; 1303 break; 1304 case CS7: 1305 bits |= BITS_DATA_7; 1306 break; 1307 case CS8: 1308 default: 1309 bits |= BITS_DATA_8; 1310 break; 1311 } 1312 1313 if (C_PARENB(tty)) { 1314 if (C_CMSPAR(tty)) { 1315 if (C_PARODD(tty)) 1316 bits |= BITS_PARITY_MARK; 1317 else 1318 bits |= BITS_PARITY_SPACE; 1319 } else { 1320 if (C_PARODD(tty)) 1321 bits |= BITS_PARITY_ODD; 1322 else 1323 bits |= BITS_PARITY_EVEN; 1324 } 1325 } 1326 1327 if (C_CSTOPB(tty)) 1328 bits |= BITS_STOP_2; 1329 else 1330 bits |= BITS_STOP_1; 1331 1332 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1333 if (ret) 1334 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1335 1336 cp210x_set_flow_control(tty, port, old_termios); 1337 1338 /* 1339 * Enable event-insertion mode only if input parity checking is 1340 * enabled for now. 1341 */ 1342 if (I_INPCK(tty)) 1343 cp210x_enable_event_mode(port); 1344 else 1345 cp210x_disable_event_mode(port); 1346 } 1347 1348 static int cp210x_tiocmset(struct tty_struct *tty, 1349 unsigned int set, unsigned int clear) 1350 { 1351 struct usb_serial_port *port = tty->driver_data; 1352 return cp210x_tiocmset_port(port, set, clear); 1353 } 1354 1355 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1356 unsigned int set, unsigned int clear) 1357 { 1358 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1359 struct cp210x_flow_ctl flow_ctl; 1360 u32 ctl_hs, flow_repl; 1361 u16 control = 0; 1362 int ret; 1363 1364 mutex_lock(&port_priv->mutex); 1365 1366 if (set & TIOCM_RTS) { 1367 port_priv->rts = true; 1368 control |= CONTROL_RTS; 1369 control |= CONTROL_WRITE_RTS; 1370 } 1371 if (set & TIOCM_DTR) { 1372 port_priv->dtr = true; 1373 control |= CONTROL_DTR; 1374 control |= CONTROL_WRITE_DTR; 1375 } 1376 if (clear & TIOCM_RTS) { 1377 port_priv->rts = false; 1378 control &= ~CONTROL_RTS; 1379 control |= CONTROL_WRITE_RTS; 1380 } 1381 if (clear & TIOCM_DTR) { 1382 port_priv->dtr = false; 1383 control &= ~CONTROL_DTR; 1384 control |= CONTROL_WRITE_DTR; 1385 } 1386 1387 /* 1388 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1389 * flow control is enabled. 1390 */ 1391 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1392 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1393 sizeof(flow_ctl)); 1394 if (ret) 1395 goto out_unlock; 1396 1397 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1398 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1399 1400 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1401 if (port_priv->dtr) 1402 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1403 else 1404 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1405 1406 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1407 if (port_priv->rts) 1408 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1409 else 1410 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1411 1412 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1413 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1414 1415 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1416 __func__, ctl_hs, flow_repl); 1417 1418 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1419 sizeof(flow_ctl)); 1420 } else { 1421 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1422 1423 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1424 } 1425 out_unlock: 1426 mutex_unlock(&port_priv->mutex); 1427 1428 return ret; 1429 } 1430 1431 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1432 { 1433 if (on) 1434 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1435 else 1436 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1437 } 1438 1439 static int cp210x_tiocmget(struct tty_struct *tty) 1440 { 1441 struct usb_serial_port *port = tty->driver_data; 1442 u8 control; 1443 int result; 1444 1445 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1446 if (result) 1447 return result; 1448 1449 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1450 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1451 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1452 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1453 |((control & CONTROL_RING)? TIOCM_RI : 0) 1454 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1455 1456 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1457 1458 return result; 1459 } 1460 1461 static void cp210x_break_ctl(struct tty_struct *tty, int break_state) 1462 { 1463 struct usb_serial_port *port = tty->driver_data; 1464 u16 state; 1465 1466 if (break_state == 0) 1467 state = BREAK_OFF; 1468 else 1469 state = BREAK_ON; 1470 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1471 state == BREAK_OFF ? "off" : "on"); 1472 cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1473 } 1474 1475 #ifdef CONFIG_GPIOLIB 1476 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1477 { 1478 struct usb_serial *serial = gpiochip_get_data(gc); 1479 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1480 u8 req_type; 1481 u16 mask; 1482 int result; 1483 int len; 1484 1485 result = usb_autopm_get_interface(serial->interface); 1486 if (result) 1487 return result; 1488 1489 switch (priv->partnum) { 1490 case CP210X_PARTNUM_CP2105: 1491 req_type = REQTYPE_INTERFACE_TO_HOST; 1492 len = 1; 1493 break; 1494 case CP210X_PARTNUM_CP2108: 1495 req_type = REQTYPE_INTERFACE_TO_HOST; 1496 len = 2; 1497 break; 1498 default: 1499 req_type = REQTYPE_DEVICE_TO_HOST; 1500 len = 1; 1501 break; 1502 } 1503 1504 mask = 0; 1505 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1506 &mask, len); 1507 1508 usb_autopm_put_interface(serial->interface); 1509 1510 if (result < 0) 1511 return result; 1512 1513 le16_to_cpus(&mask); 1514 1515 return !!(mask & BIT(gpio)); 1516 } 1517 1518 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1519 { 1520 struct usb_serial *serial = gpiochip_get_data(gc); 1521 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1522 struct cp210x_gpio_write16 buf16; 1523 struct cp210x_gpio_write buf; 1524 u16 mask, state; 1525 u16 wIndex; 1526 int result; 1527 1528 if (value == 1) 1529 state = BIT(gpio); 1530 else 1531 state = 0; 1532 1533 mask = BIT(gpio); 1534 1535 result = usb_autopm_get_interface(serial->interface); 1536 if (result) 1537 goto out; 1538 1539 switch (priv->partnum) { 1540 case CP210X_PARTNUM_CP2105: 1541 buf.mask = (u8)mask; 1542 buf.state = (u8)state; 1543 result = cp210x_write_vendor_block(serial, 1544 REQTYPE_HOST_TO_INTERFACE, 1545 CP210X_WRITE_LATCH, &buf, 1546 sizeof(buf)); 1547 break; 1548 case CP210X_PARTNUM_CP2108: 1549 buf16.mask = cpu_to_le16(mask); 1550 buf16.state = cpu_to_le16(state); 1551 result = cp210x_write_vendor_block(serial, 1552 REQTYPE_HOST_TO_INTERFACE, 1553 CP210X_WRITE_LATCH, &buf16, 1554 sizeof(buf16)); 1555 break; 1556 default: 1557 wIndex = state << 8 | mask; 1558 result = usb_control_msg(serial->dev, 1559 usb_sndctrlpipe(serial->dev, 0), 1560 CP210X_VENDOR_SPECIFIC, 1561 REQTYPE_HOST_TO_DEVICE, 1562 CP210X_WRITE_LATCH, 1563 wIndex, 1564 NULL, 0, USB_CTRL_SET_TIMEOUT); 1565 break; 1566 } 1567 1568 usb_autopm_put_interface(serial->interface); 1569 out: 1570 if (result < 0) { 1571 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1572 result); 1573 } 1574 } 1575 1576 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1577 { 1578 struct usb_serial *serial = gpiochip_get_data(gc); 1579 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1580 1581 return priv->gpio_input & BIT(gpio); 1582 } 1583 1584 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1585 { 1586 struct usb_serial *serial = gpiochip_get_data(gc); 1587 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1588 1589 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1590 /* hardware does not support an input mode */ 1591 return -ENOTSUPP; 1592 } 1593 1594 /* push-pull pins cannot be changed to be inputs */ 1595 if (priv->gpio_pushpull & BIT(gpio)) 1596 return -EINVAL; 1597 1598 /* make sure to release pin if it is being driven low */ 1599 cp210x_gpio_set(gc, gpio, 1); 1600 1601 priv->gpio_input |= BIT(gpio); 1602 1603 return 0; 1604 } 1605 1606 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1607 int value) 1608 { 1609 struct usb_serial *serial = gpiochip_get_data(gc); 1610 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1611 1612 priv->gpio_input &= ~BIT(gpio); 1613 cp210x_gpio_set(gc, gpio, value); 1614 1615 return 0; 1616 } 1617 1618 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1619 unsigned long config) 1620 { 1621 struct usb_serial *serial = gpiochip_get_data(gc); 1622 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1623 enum pin_config_param param = pinconf_to_config_param(config); 1624 1625 /* Succeed only if in correct mode (this can't be set at runtime) */ 1626 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1627 (priv->gpio_pushpull & BIT(gpio))) 1628 return 0; 1629 1630 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1631 !(priv->gpio_pushpull & BIT(gpio))) 1632 return 0; 1633 1634 return -ENOTSUPP; 1635 } 1636 1637 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1638 unsigned long *valid_mask, unsigned int ngpios) 1639 { 1640 struct usb_serial *serial = gpiochip_get_data(gc); 1641 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1642 struct device *dev = &serial->interface->dev; 1643 unsigned long altfunc_mask = priv->gpio_altfunc; 1644 1645 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1646 1647 if (bitmap_empty(valid_mask, ngpios)) 1648 dev_dbg(dev, "no pin configured for GPIO\n"); 1649 else 1650 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1651 valid_mask); 1652 return 0; 1653 } 1654 1655 /* 1656 * This function is for configuring GPIO using shared pins, where other signals 1657 * are made unavailable by configuring the use of GPIO. This is believed to be 1658 * only applicable to the cp2105 at this point, the other devices supported by 1659 * this driver that provide GPIO do so in a way that does not impact other 1660 * signals and are thus expected to have very different initialisation. 1661 */ 1662 static int cp2105_gpioconf_init(struct usb_serial *serial) 1663 { 1664 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1665 struct cp210x_pin_mode mode; 1666 struct cp210x_dual_port_config config; 1667 u8 intf_num = cp210x_interface_num(serial); 1668 u8 iface_config; 1669 int result; 1670 1671 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1672 CP210X_GET_DEVICEMODE, &mode, 1673 sizeof(mode)); 1674 if (result < 0) 1675 return result; 1676 1677 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1678 CP210X_GET_PORTCONFIG, &config, 1679 sizeof(config)); 1680 if (result < 0) 1681 return result; 1682 1683 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1684 if (intf_num == 0) { 1685 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1686 /* mark all GPIOs of this interface as reserved */ 1687 priv->gpio_altfunc = 0xff; 1688 return 0; 1689 } 1690 1691 iface_config = config.eci_cfg; 1692 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1693 CP210X_ECI_GPIO_MODE_MASK) >> 1694 CP210X_ECI_GPIO_MODE_OFFSET); 1695 priv->gc.ngpio = 2; 1696 } else if (intf_num == 1) { 1697 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1698 /* mark all GPIOs of this interface as reserved */ 1699 priv->gpio_altfunc = 0xff; 1700 return 0; 1701 } 1702 1703 iface_config = config.sci_cfg; 1704 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1705 CP210X_SCI_GPIO_MODE_MASK) >> 1706 CP210X_SCI_GPIO_MODE_OFFSET); 1707 priv->gc.ngpio = 3; 1708 } else { 1709 return -ENODEV; 1710 } 1711 1712 /* mark all pins which are not in GPIO mode */ 1713 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1714 priv->gpio_altfunc |= BIT(0); 1715 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1716 CP2105_GPIO1_RS485_MODE)) 1717 priv->gpio_altfunc |= BIT(1); 1718 1719 /* driver implementation for CP2105 only supports outputs */ 1720 priv->gpio_input = 0; 1721 1722 return 0; 1723 } 1724 1725 static int cp2104_gpioconf_init(struct usb_serial *serial) 1726 { 1727 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1728 struct cp210x_single_port_config config; 1729 u8 iface_config; 1730 u8 gpio_latch; 1731 int result; 1732 u8 i; 1733 1734 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1735 CP210X_GET_PORTCONFIG, &config, 1736 sizeof(config)); 1737 if (result < 0) 1738 return result; 1739 1740 priv->gc.ngpio = 4; 1741 1742 iface_config = config.device_cfg; 1743 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1744 CP210X_GPIO_MODE_MASK) >> 1745 CP210X_GPIO_MODE_OFFSET); 1746 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1747 CP210X_GPIO_MODE_MASK) >> 1748 CP210X_GPIO_MODE_OFFSET); 1749 1750 /* mark all pins which are not in GPIO mode */ 1751 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1752 priv->gpio_altfunc |= BIT(0); 1753 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1754 priv->gpio_altfunc |= BIT(1); 1755 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1756 priv->gpio_altfunc |= BIT(2); 1757 1758 /* 1759 * Like CP2102N, CP2104 has also no strict input and output pin 1760 * modes. 1761 * Do the same input mode emulation as CP2102N. 1762 */ 1763 for (i = 0; i < priv->gc.ngpio; ++i) { 1764 /* 1765 * Set direction to "input" iff pin is open-drain and reset 1766 * value is 1. 1767 */ 1768 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1769 priv->gpio_input |= BIT(i); 1770 } 1771 1772 return 0; 1773 } 1774 1775 static int cp2108_gpio_init(struct usb_serial *serial) 1776 { 1777 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1778 struct cp210x_quad_port_config config; 1779 u16 gpio_latch; 1780 int result; 1781 u8 i; 1782 1783 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1784 CP210X_GET_PORTCONFIG, &config, 1785 sizeof(config)); 1786 if (result < 0) 1787 return result; 1788 1789 priv->gc.ngpio = 16; 1790 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1791 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1792 1793 /* 1794 * Mark all pins which are not in GPIO mode. 1795 * 1796 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1797 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1798 * 1799 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1800 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1801 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1802 */ 1803 for (i = 0; i < 4; i++) { 1804 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1805 priv->gpio_altfunc |= BIT(i * 4); 1806 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1807 priv->gpio_altfunc |= BIT((i * 4) + 1); 1808 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1809 priv->gpio_altfunc |= BIT((i * 4) + 2); 1810 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1811 priv->gpio_altfunc |= BIT((i * 4) + 3); 1812 } 1813 1814 /* 1815 * Like CP2102N, CP2108 has also no strict input and output pin 1816 * modes. Do the same input mode emulation as CP2102N. 1817 */ 1818 for (i = 0; i < priv->gc.ngpio; ++i) { 1819 /* 1820 * Set direction to "input" iff pin is open-drain and reset 1821 * value is 1. 1822 */ 1823 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1824 priv->gpio_input |= BIT(i); 1825 } 1826 1827 return 0; 1828 } 1829 1830 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1831 { 1832 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1833 const u16 config_size = 0x02a6; 1834 u8 gpio_rst_latch; 1835 u8 config_version; 1836 u8 gpio_pushpull; 1837 u8 *config_buf; 1838 u8 gpio_latch; 1839 u8 gpio_ctrl; 1840 int result; 1841 u8 i; 1842 1843 /* 1844 * Retrieve device configuration from the device. 1845 * The array received contains all customization settings done at the 1846 * factory/manufacturer. Format of the array is documented at the 1847 * time of writing at: 1848 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1849 */ 1850 config_buf = kmalloc(config_size, GFP_KERNEL); 1851 if (!config_buf) 1852 return -ENOMEM; 1853 1854 result = cp210x_read_vendor_block(serial, 1855 REQTYPE_DEVICE_TO_HOST, 1856 CP210X_READ_2NCONFIG, 1857 config_buf, 1858 config_size); 1859 if (result < 0) { 1860 kfree(config_buf); 1861 return result; 1862 } 1863 1864 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1865 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1866 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1867 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1868 1869 kfree(config_buf); 1870 1871 /* Make sure this is a config format we understand. */ 1872 if (config_version != 0x01) 1873 return -ENOTSUPP; 1874 1875 priv->gc.ngpio = 4; 1876 1877 /* 1878 * Get default pin states after reset. Needed so we can determine 1879 * the direction of an open-drain pin. 1880 */ 1881 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1882 1883 /* 0 indicates open-drain mode, 1 is push-pull */ 1884 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1885 1886 /* 0 indicates GPIO mode, 1 is alternate function */ 1887 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1888 /* QFN20 is special... */ 1889 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1890 priv->gpio_altfunc |= BIT(0); 1891 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1892 priv->gpio_altfunc |= BIT(1); 1893 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1894 priv->gpio_altfunc |= BIT(2); 1895 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1896 priv->gpio_altfunc |= BIT(3); 1897 } else { 1898 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1899 } 1900 1901 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1902 /* 1903 * For the QFN28 package, GPIO4-6 are controlled by 1904 * the low three bits of the mode/latch fields. 1905 * Contrary to the document linked above, the bits for 1906 * the SUSPEND pins are elsewhere. No alternate 1907 * function is available for these pins. 1908 */ 1909 priv->gc.ngpio = 7; 1910 gpio_latch |= (gpio_rst_latch & 7) << 4; 1911 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1912 } 1913 1914 /* 1915 * The CP2102N does not strictly has input and output pin modes, 1916 * it only knows open-drain and push-pull modes which is set at 1917 * factory. An open-drain pin can function both as an 1918 * input or an output. We emulate input mode for open-drain pins 1919 * by making sure they are not driven low, and we do not allow 1920 * push-pull pins to be set as an input. 1921 */ 1922 for (i = 0; i < priv->gc.ngpio; ++i) { 1923 /* 1924 * Set direction to "input" iff pin is open-drain and reset 1925 * value is 1. 1926 */ 1927 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1928 priv->gpio_input |= BIT(i); 1929 } 1930 1931 return 0; 1932 } 1933 1934 static int cp210x_gpio_init(struct usb_serial *serial) 1935 { 1936 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1937 int result; 1938 1939 switch (priv->partnum) { 1940 case CP210X_PARTNUM_CP2104: 1941 result = cp2104_gpioconf_init(serial); 1942 break; 1943 case CP210X_PARTNUM_CP2105: 1944 result = cp2105_gpioconf_init(serial); 1945 break; 1946 case CP210X_PARTNUM_CP2108: 1947 /* 1948 * The GPIOs are not tied to any specific port so only register 1949 * once for interface 0. 1950 */ 1951 if (cp210x_interface_num(serial) != 0) 1952 return 0; 1953 result = cp2108_gpio_init(serial); 1954 break; 1955 case CP210X_PARTNUM_CP2102N_QFN28: 1956 case CP210X_PARTNUM_CP2102N_QFN24: 1957 case CP210X_PARTNUM_CP2102N_QFN20: 1958 result = cp2102n_gpioconf_init(serial); 1959 break; 1960 default: 1961 return 0; 1962 } 1963 1964 if (result < 0) 1965 return result; 1966 1967 priv->gc.label = "cp210x"; 1968 priv->gc.get_direction = cp210x_gpio_direction_get; 1969 priv->gc.direction_input = cp210x_gpio_direction_input; 1970 priv->gc.direction_output = cp210x_gpio_direction_output; 1971 priv->gc.get = cp210x_gpio_get; 1972 priv->gc.set = cp210x_gpio_set; 1973 priv->gc.set_config = cp210x_gpio_set_config; 1974 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1975 priv->gc.owner = THIS_MODULE; 1976 priv->gc.parent = &serial->interface->dev; 1977 priv->gc.base = -1; 1978 priv->gc.can_sleep = true; 1979 1980 result = gpiochip_add_data(&priv->gc, serial); 1981 if (!result) 1982 priv->gpio_registered = true; 1983 1984 return result; 1985 } 1986 1987 static void cp210x_gpio_remove(struct usb_serial *serial) 1988 { 1989 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1990 1991 if (priv->gpio_registered) { 1992 gpiochip_remove(&priv->gc); 1993 priv->gpio_registered = false; 1994 } 1995 } 1996 1997 #else 1998 1999 static int cp210x_gpio_init(struct usb_serial *serial) 2000 { 2001 return 0; 2002 } 2003 2004 static void cp210x_gpio_remove(struct usb_serial *serial) 2005 { 2006 /* Nothing to do */ 2007 } 2008 2009 #endif 2010 2011 static int cp210x_port_probe(struct usb_serial_port *port) 2012 { 2013 struct usb_serial *serial = port->serial; 2014 struct cp210x_port_private *port_priv; 2015 2016 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 2017 if (!port_priv) 2018 return -ENOMEM; 2019 2020 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 2021 mutex_init(&port_priv->mutex); 2022 2023 usb_set_serial_port_data(port, port_priv); 2024 2025 return 0; 2026 } 2027 2028 static void cp210x_port_remove(struct usb_serial_port *port) 2029 { 2030 struct cp210x_port_private *port_priv; 2031 2032 port_priv = usb_get_serial_port_data(port); 2033 kfree(port_priv); 2034 } 2035 2036 static void cp210x_init_max_speed(struct usb_serial *serial) 2037 { 2038 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2039 bool use_actual_rate = false; 2040 speed_t min = 300; 2041 speed_t max; 2042 2043 switch (priv->partnum) { 2044 case CP210X_PARTNUM_CP2101: 2045 max = 921600; 2046 break; 2047 case CP210X_PARTNUM_CP2102: 2048 case CP210X_PARTNUM_CP2103: 2049 max = 1000000; 2050 break; 2051 case CP210X_PARTNUM_CP2104: 2052 use_actual_rate = true; 2053 max = 2000000; 2054 break; 2055 case CP210X_PARTNUM_CP2108: 2056 max = 2000000; 2057 break; 2058 case CP210X_PARTNUM_CP2105: 2059 if (cp210x_interface_num(serial) == 0) { 2060 use_actual_rate = true; 2061 max = 2000000; /* ECI */ 2062 } else { 2063 min = 2400; 2064 max = 921600; /* SCI */ 2065 } 2066 break; 2067 case CP210X_PARTNUM_CP2102N_QFN28: 2068 case CP210X_PARTNUM_CP2102N_QFN24: 2069 case CP210X_PARTNUM_CP2102N_QFN20: 2070 use_actual_rate = true; 2071 max = 3000000; 2072 break; 2073 default: 2074 max = 2000000; 2075 break; 2076 } 2077 2078 priv->min_speed = min; 2079 priv->max_speed = max; 2080 priv->use_actual_rate = use_actual_rate; 2081 } 2082 2083 static void cp2102_determine_quirks(struct usb_serial *serial) 2084 { 2085 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2086 u8 *buf; 2087 int ret; 2088 2089 buf = kmalloc(2, GFP_KERNEL); 2090 if (!buf) 2091 return; 2092 /* 2093 * Some (possibly counterfeit) CP2102 do not support event-insertion 2094 * mode and respond differently to malformed vendor requests. 2095 * Specifically, they return one instead of two bytes when sent a 2096 * two-byte part-number request. 2097 */ 2098 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2099 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2100 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2101 if (ret == 1) { 2102 dev_dbg(&serial->interface->dev, 2103 "device does not support event-insertion mode\n"); 2104 priv->no_event_mode = true; 2105 } 2106 2107 kfree(buf); 2108 } 2109 2110 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2111 { 2112 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2113 u8 ver[3]; 2114 int ret; 2115 2116 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2117 ver, sizeof(ver)); 2118 if (ret) 2119 return ret; 2120 2121 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2122 ver[0], ver[1], ver[2]); 2123 2124 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2125 2126 return 0; 2127 } 2128 2129 static void cp210x_determine_type(struct usb_serial *serial) 2130 { 2131 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2132 int ret; 2133 2134 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2135 CP210X_GET_PARTNUM, &priv->partnum, 2136 sizeof(priv->partnum)); 2137 if (ret < 0) { 2138 dev_warn(&serial->interface->dev, 2139 "querying part number failed\n"); 2140 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2141 return; 2142 } 2143 2144 dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum); 2145 2146 switch (priv->partnum) { 2147 case CP210X_PARTNUM_CP2102: 2148 cp2102_determine_quirks(serial); 2149 break; 2150 case CP210X_PARTNUM_CP2105: 2151 case CP210X_PARTNUM_CP2108: 2152 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2153 break; 2154 case CP210X_PARTNUM_CP2102N_QFN28: 2155 case CP210X_PARTNUM_CP2102N_QFN24: 2156 case CP210X_PARTNUM_CP2102N_QFN20: 2157 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2158 if (ret) 2159 break; 2160 if (priv->fw_version <= 0x10004) 2161 priv->no_flow_control = true; 2162 break; 2163 default: 2164 break; 2165 } 2166 } 2167 2168 static int cp210x_attach(struct usb_serial *serial) 2169 { 2170 int result; 2171 struct cp210x_serial_private *priv; 2172 2173 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2174 if (!priv) 2175 return -ENOMEM; 2176 2177 usb_set_serial_data(serial, priv); 2178 2179 cp210x_determine_type(serial); 2180 cp210x_init_max_speed(serial); 2181 2182 result = cp210x_gpio_init(serial); 2183 if (result < 0) { 2184 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2185 result); 2186 } 2187 2188 return 0; 2189 } 2190 2191 static void cp210x_disconnect(struct usb_serial *serial) 2192 { 2193 cp210x_gpio_remove(serial); 2194 } 2195 2196 static void cp210x_release(struct usb_serial *serial) 2197 { 2198 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2199 2200 cp210x_gpio_remove(serial); 2201 2202 kfree(priv); 2203 } 2204 2205 module_usb_serial_driver(serial_drivers, id_table); 2206 2207 MODULE_DESCRIPTION(DRIVER_DESC); 2208 MODULE_LICENSE("GPL v2"); 2209