1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 struct ktermios*); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static void cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 55 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 56 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 57 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 59 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 60 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 61 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 62 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 63 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 64 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 65 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 66 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 67 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 68 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 69 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 71 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 72 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 73 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 74 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 75 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 76 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 77 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 78 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 79 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 80 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 81 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 82 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 83 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 84 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 85 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 86 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 87 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 88 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 89 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 90 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 91 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 92 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 93 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 94 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 95 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 96 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 97 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 98 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 99 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 100 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 101 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 102 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 103 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 104 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 105 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 106 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 107 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 108 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 109 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 110 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 111 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 112 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 113 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 114 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 115 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 116 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 117 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 118 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 119 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 120 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 121 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 122 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 123 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 124 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 125 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 126 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 127 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 128 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 129 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 130 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 131 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 132 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 133 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 134 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 135 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 136 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 137 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 138 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 139 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 140 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 141 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 142 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 143 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 144 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 145 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 146 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 147 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 148 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 149 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 150 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 151 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 152 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 153 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 154 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 155 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 156 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 157 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 158 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 159 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 160 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 161 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 162 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 163 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 164 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 165 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 166 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 167 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 168 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 169 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 170 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 171 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 172 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 173 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 174 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 175 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 176 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 177 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 178 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 179 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 180 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 181 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 182 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 183 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 184 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 185 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 186 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 187 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 188 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 189 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 190 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 191 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 192 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 193 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 194 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 195 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 196 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 197 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 198 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 199 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 200 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 201 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 202 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 203 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 204 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 205 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 206 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 207 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 208 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 209 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 210 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 211 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 212 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 213 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 214 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 215 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 216 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 217 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 218 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 219 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 220 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 221 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 222 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 223 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 224 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 225 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 226 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 227 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 228 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 229 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 230 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 231 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 232 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 233 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 234 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 235 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 236 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 237 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 238 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 239 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 240 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 241 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 242 { } /* Terminating Entry */ 243 }; 244 245 MODULE_DEVICE_TABLE(usb, id_table); 246 247 struct cp210x_serial_private { 248 #ifdef CONFIG_GPIOLIB 249 struct gpio_chip gc; 250 bool gpio_registered; 251 u16 gpio_pushpull; 252 u16 gpio_altfunc; 253 u16 gpio_input; 254 #endif 255 u8 partnum; 256 u32 fw_version; 257 speed_t min_speed; 258 speed_t max_speed; 259 bool use_actual_rate; 260 bool no_flow_control; 261 }; 262 263 enum cp210x_event_state { 264 ES_DATA, 265 ES_ESCAPE, 266 ES_LSR, 267 ES_LSR_DATA_0, 268 ES_LSR_DATA_1, 269 ES_MSR 270 }; 271 272 struct cp210x_port_private { 273 u8 bInterfaceNumber; 274 bool event_mode; 275 enum cp210x_event_state event_state; 276 u8 lsr; 277 278 struct mutex mutex; 279 bool crtscts; 280 bool dtr; 281 bool rts; 282 }; 283 284 static struct usb_serial_driver cp210x_device = { 285 .driver = { 286 .owner = THIS_MODULE, 287 .name = "cp210x", 288 }, 289 .id_table = id_table, 290 .num_ports = 1, 291 .bulk_in_size = 256, 292 .bulk_out_size = 256, 293 .open = cp210x_open, 294 .close = cp210x_close, 295 .break_ctl = cp210x_break_ctl, 296 .set_termios = cp210x_set_termios, 297 .tx_empty = cp210x_tx_empty, 298 .throttle = usb_serial_generic_throttle, 299 .unthrottle = usb_serial_generic_unthrottle, 300 .tiocmget = cp210x_tiocmget, 301 .tiocmset = cp210x_tiocmset, 302 .get_icount = usb_serial_generic_get_icount, 303 .attach = cp210x_attach, 304 .disconnect = cp210x_disconnect, 305 .release = cp210x_release, 306 .port_probe = cp210x_port_probe, 307 .port_remove = cp210x_port_remove, 308 .dtr_rts = cp210x_dtr_rts, 309 .process_read_urb = cp210x_process_read_urb, 310 }; 311 312 static struct usb_serial_driver * const serial_drivers[] = { 313 &cp210x_device, NULL 314 }; 315 316 /* Config request types */ 317 #define REQTYPE_HOST_TO_INTERFACE 0x41 318 #define REQTYPE_INTERFACE_TO_HOST 0xc1 319 #define REQTYPE_HOST_TO_DEVICE 0x40 320 #define REQTYPE_DEVICE_TO_HOST 0xc0 321 322 /* Config request codes */ 323 #define CP210X_IFC_ENABLE 0x00 324 #define CP210X_SET_BAUDDIV 0x01 325 #define CP210X_GET_BAUDDIV 0x02 326 #define CP210X_SET_LINE_CTL 0x03 327 #define CP210X_GET_LINE_CTL 0x04 328 #define CP210X_SET_BREAK 0x05 329 #define CP210X_IMM_CHAR 0x06 330 #define CP210X_SET_MHS 0x07 331 #define CP210X_GET_MDMSTS 0x08 332 #define CP210X_SET_XON 0x09 333 #define CP210X_SET_XOFF 0x0A 334 #define CP210X_SET_EVENTMASK 0x0B 335 #define CP210X_GET_EVENTMASK 0x0C 336 #define CP210X_SET_CHAR 0x0D 337 #define CP210X_GET_CHARS 0x0E 338 #define CP210X_GET_PROPS 0x0F 339 #define CP210X_GET_COMM_STATUS 0x10 340 #define CP210X_RESET 0x11 341 #define CP210X_PURGE 0x12 342 #define CP210X_SET_FLOW 0x13 343 #define CP210X_GET_FLOW 0x14 344 #define CP210X_EMBED_EVENTS 0x15 345 #define CP210X_GET_EVENTSTATE 0x16 346 #define CP210X_SET_CHARS 0x19 347 #define CP210X_GET_BAUDRATE 0x1D 348 #define CP210X_SET_BAUDRATE 0x1E 349 #define CP210X_VENDOR_SPECIFIC 0xFF 350 351 /* CP210X_IFC_ENABLE */ 352 #define UART_ENABLE 0x0001 353 #define UART_DISABLE 0x0000 354 355 /* CP210X_(SET|GET)_BAUDDIV */ 356 #define BAUD_RATE_GEN_FREQ 0x384000 357 358 /* CP210X_(SET|GET)_LINE_CTL */ 359 #define BITS_DATA_MASK 0X0f00 360 #define BITS_DATA_5 0X0500 361 #define BITS_DATA_6 0X0600 362 #define BITS_DATA_7 0X0700 363 #define BITS_DATA_8 0X0800 364 #define BITS_DATA_9 0X0900 365 366 #define BITS_PARITY_MASK 0x00f0 367 #define BITS_PARITY_NONE 0x0000 368 #define BITS_PARITY_ODD 0x0010 369 #define BITS_PARITY_EVEN 0x0020 370 #define BITS_PARITY_MARK 0x0030 371 #define BITS_PARITY_SPACE 0x0040 372 373 #define BITS_STOP_MASK 0x000f 374 #define BITS_STOP_1 0x0000 375 #define BITS_STOP_1_5 0x0001 376 #define BITS_STOP_2 0x0002 377 378 /* CP210X_SET_BREAK */ 379 #define BREAK_ON 0x0001 380 #define BREAK_OFF 0x0000 381 382 /* CP210X_(SET_MHS|GET_MDMSTS) */ 383 #define CONTROL_DTR 0x0001 384 #define CONTROL_RTS 0x0002 385 #define CONTROL_CTS 0x0010 386 #define CONTROL_DSR 0x0020 387 #define CONTROL_RING 0x0040 388 #define CONTROL_DCD 0x0080 389 #define CONTROL_WRITE_DTR 0x0100 390 #define CONTROL_WRITE_RTS 0x0200 391 392 /* CP210X_(GET|SET)_CHARS */ 393 struct cp210x_special_chars { 394 u8 bEofChar; 395 u8 bErrorChar; 396 u8 bBreakChar; 397 u8 bEventChar; 398 u8 bXonChar; 399 u8 bXoffChar; 400 }; 401 402 /* CP210X_VENDOR_SPECIFIC values */ 403 #define CP210X_GET_FW_VER 0x000E 404 #define CP210X_READ_2NCONFIG 0x000E 405 #define CP210X_GET_FW_VER_2N 0x0010 406 #define CP210X_READ_LATCH 0x00C2 407 #define CP210X_GET_PARTNUM 0x370B 408 #define CP210X_GET_PORTCONFIG 0x370C 409 #define CP210X_GET_DEVICEMODE 0x3711 410 #define CP210X_WRITE_LATCH 0x37E1 411 412 /* Part number definitions */ 413 #define CP210X_PARTNUM_CP2101 0x01 414 #define CP210X_PARTNUM_CP2102 0x02 415 #define CP210X_PARTNUM_CP2103 0x03 416 #define CP210X_PARTNUM_CP2104 0x04 417 #define CP210X_PARTNUM_CP2105 0x05 418 #define CP210X_PARTNUM_CP2108 0x08 419 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 420 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 421 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 422 #define CP210X_PARTNUM_UNKNOWN 0xFF 423 424 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 425 struct cp210x_comm_status { 426 __le32 ulErrors; 427 __le32 ulHoldReasons; 428 __le32 ulAmountInInQueue; 429 __le32 ulAmountInOutQueue; 430 u8 bEofReceived; 431 u8 bWaitForImmediate; 432 u8 bReserved; 433 } __packed; 434 435 /* 436 * CP210X_PURGE - 16 bits passed in wValue of USB request. 437 * SiLabs app note AN571 gives a strange description of the 4 bits: 438 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 439 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 440 */ 441 #define PURGE_ALL 0x000f 442 443 /* CP210X_EMBED_EVENTS */ 444 #define CP210X_ESCCHAR 0xec 445 446 #define CP210X_LSR_OVERRUN BIT(1) 447 #define CP210X_LSR_PARITY BIT(2) 448 #define CP210X_LSR_FRAME BIT(3) 449 #define CP210X_LSR_BREAK BIT(4) 450 451 452 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 453 struct cp210x_flow_ctl { 454 __le32 ulControlHandshake; 455 __le32 ulFlowReplace; 456 __le32 ulXonLimit; 457 __le32 ulXoffLimit; 458 }; 459 460 /* cp210x_flow_ctl::ulControlHandshake */ 461 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 462 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 463 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 464 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 465 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 466 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 467 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 468 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 469 470 /* cp210x_flow_ctl::ulFlowReplace */ 471 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 472 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 473 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 474 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 475 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 476 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 477 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 478 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 479 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 480 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 481 482 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 483 struct cp210x_pin_mode { 484 u8 eci; 485 u8 sci; 486 }; 487 488 #define CP210X_PIN_MODE_MODEM 0 489 #define CP210X_PIN_MODE_GPIO BIT(0) 490 491 /* 492 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 493 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 494 */ 495 struct cp210x_dual_port_config { 496 __le16 gpio_mode; 497 u8 __pad0[2]; 498 __le16 reset_state; 499 u8 __pad1[4]; 500 __le16 suspend_state; 501 u8 sci_cfg; 502 u8 eci_cfg; 503 u8 device_cfg; 504 } __packed; 505 506 /* 507 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 508 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 509 */ 510 struct cp210x_single_port_config { 511 __le16 gpio_mode; 512 u8 __pad0[2]; 513 __le16 reset_state; 514 u8 __pad1[4]; 515 __le16 suspend_state; 516 u8 device_cfg; 517 } __packed; 518 519 /* GPIO modes */ 520 #define CP210X_SCI_GPIO_MODE_OFFSET 9 521 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 522 523 #define CP210X_ECI_GPIO_MODE_OFFSET 2 524 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 525 526 #define CP210X_GPIO_MODE_OFFSET 8 527 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 528 529 /* CP2105 port configuration values */ 530 #define CP2105_GPIO0_TXLED_MODE BIT(0) 531 #define CP2105_GPIO1_RXLED_MODE BIT(1) 532 #define CP2105_GPIO1_RS485_MODE BIT(2) 533 534 /* CP2104 port configuration values */ 535 #define CP2104_GPIO0_TXLED_MODE BIT(0) 536 #define CP2104_GPIO1_RXLED_MODE BIT(1) 537 #define CP2104_GPIO2_RS485_MODE BIT(2) 538 539 struct cp210x_quad_port_state { 540 __le16 gpio_mode_pb0; 541 __le16 gpio_mode_pb1; 542 __le16 gpio_mode_pb2; 543 __le16 gpio_mode_pb3; 544 __le16 gpio_mode_pb4; 545 546 __le16 gpio_lowpower_pb0; 547 __le16 gpio_lowpower_pb1; 548 __le16 gpio_lowpower_pb2; 549 __le16 gpio_lowpower_pb3; 550 __le16 gpio_lowpower_pb4; 551 552 __le16 gpio_latch_pb0; 553 __le16 gpio_latch_pb1; 554 __le16 gpio_latch_pb2; 555 __le16 gpio_latch_pb3; 556 __le16 gpio_latch_pb4; 557 }; 558 559 /* 560 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 561 * on a CP2108 chip. 562 * 563 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 564 */ 565 struct cp210x_quad_port_config { 566 struct cp210x_quad_port_state reset_state; 567 struct cp210x_quad_port_state suspend_state; 568 u8 ipdelay_ifc[4]; 569 u8 enhancedfxn_ifc[4]; 570 u8 enhancedfxn_device; 571 u8 extclkfreq[4]; 572 } __packed; 573 574 #define CP2108_EF_IFC_GPIO_TXLED 0x01 575 #define CP2108_EF_IFC_GPIO_RXLED 0x02 576 #define CP2108_EF_IFC_GPIO_RS485 0x04 577 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 578 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 579 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 580 581 /* CP2102N configuration array indices */ 582 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 583 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 584 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 585 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 586 587 /* CP2102N QFN20 port configuration values */ 588 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 589 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 590 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 591 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 592 593 /* 594 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 595 * for CP2102N, CP2103, CP2104 and CP2105. 596 */ 597 struct cp210x_gpio_write { 598 u8 mask; 599 u8 state; 600 }; 601 602 /* 603 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 604 * for CP2108. 605 */ 606 struct cp210x_gpio_write16 { 607 __le16 mask; 608 __le16 state; 609 }; 610 611 /* 612 * Helper to get interface number when we only have struct usb_serial. 613 */ 614 static u8 cp210x_interface_num(struct usb_serial *serial) 615 { 616 struct usb_host_interface *cur_altsetting; 617 618 cur_altsetting = serial->interface->cur_altsetting; 619 620 return cur_altsetting->desc.bInterfaceNumber; 621 } 622 623 /* 624 * Reads a variable-sized block of CP210X_ registers, identified by req. 625 * Returns data into buf in native USB byte order. 626 */ 627 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 628 void *buf, int bufsize) 629 { 630 struct usb_serial *serial = port->serial; 631 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 632 void *dmabuf; 633 int result; 634 635 dmabuf = kmalloc(bufsize, GFP_KERNEL); 636 if (!dmabuf) 637 return -ENOMEM; 638 639 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 640 req, REQTYPE_INTERFACE_TO_HOST, 0, 641 port_priv->bInterfaceNumber, dmabuf, bufsize, 642 USB_CTRL_GET_TIMEOUT); 643 if (result == bufsize) { 644 memcpy(buf, dmabuf, bufsize); 645 result = 0; 646 } else { 647 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 648 req, bufsize, result); 649 if (result >= 0) 650 result = -EIO; 651 } 652 653 kfree(dmabuf); 654 655 return result; 656 } 657 658 /* 659 * Reads any 8-bit CP210X_ register identified by req. 660 */ 661 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 662 { 663 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 664 } 665 666 /* 667 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 668 * Returns data into buf in native USB byte order. 669 */ 670 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 671 void *buf, int bufsize) 672 { 673 void *dmabuf; 674 int result; 675 676 dmabuf = kmalloc(bufsize, GFP_KERNEL); 677 if (!dmabuf) 678 return -ENOMEM; 679 680 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 681 CP210X_VENDOR_SPECIFIC, type, val, 682 cp210x_interface_num(serial), dmabuf, bufsize, 683 USB_CTRL_GET_TIMEOUT); 684 if (result == bufsize) { 685 memcpy(buf, dmabuf, bufsize); 686 result = 0; 687 } else { 688 dev_err(&serial->interface->dev, 689 "failed to get vendor val 0x%04x size %d: %d\n", val, 690 bufsize, result); 691 if (result >= 0) 692 result = -EIO; 693 } 694 695 kfree(dmabuf); 696 697 return result; 698 } 699 700 /* 701 * Writes any 16-bit CP210X_ register (req) whose value is passed 702 * entirely in the wValue field of the USB request. 703 */ 704 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 705 { 706 struct usb_serial *serial = port->serial; 707 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 708 int result; 709 710 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 711 req, REQTYPE_HOST_TO_INTERFACE, val, 712 port_priv->bInterfaceNumber, NULL, 0, 713 USB_CTRL_SET_TIMEOUT); 714 if (result < 0) { 715 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 716 req, result); 717 } 718 719 return result; 720 } 721 722 /* 723 * Writes a variable-sized block of CP210X_ registers, identified by req. 724 * Data in buf must be in native USB byte order. 725 */ 726 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 727 void *buf, int bufsize) 728 { 729 struct usb_serial *serial = port->serial; 730 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 731 void *dmabuf; 732 int result; 733 734 dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); 735 if (!dmabuf) 736 return -ENOMEM; 737 738 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 739 req, REQTYPE_HOST_TO_INTERFACE, 0, 740 port_priv->bInterfaceNumber, dmabuf, bufsize, 741 USB_CTRL_SET_TIMEOUT); 742 743 kfree(dmabuf); 744 745 if (result < 0) { 746 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 747 req, bufsize, result); 748 return result; 749 } 750 751 return 0; 752 } 753 754 /* 755 * Writes any 32-bit CP210X_ register identified by req. 756 */ 757 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 758 { 759 __le32 le32_val; 760 761 le32_val = cpu_to_le32(val); 762 763 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 764 } 765 766 #ifdef CONFIG_GPIOLIB 767 /* 768 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 769 * Data in buf must be in native USB byte order. 770 */ 771 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 772 u16 val, void *buf, int bufsize) 773 { 774 void *dmabuf; 775 int result; 776 777 dmabuf = kmemdup(buf, bufsize, GFP_KERNEL); 778 if (!dmabuf) 779 return -ENOMEM; 780 781 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 782 CP210X_VENDOR_SPECIFIC, type, val, 783 cp210x_interface_num(serial), dmabuf, bufsize, 784 USB_CTRL_SET_TIMEOUT); 785 786 kfree(dmabuf); 787 788 if (result < 0) { 789 dev_err(&serial->interface->dev, 790 "failed to set vendor val 0x%04x size %d: %d\n", val, 791 bufsize, result); 792 return result; 793 } 794 795 return 0; 796 } 797 #endif 798 799 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 800 { 801 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 802 int result; 803 804 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 805 if (result) { 806 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 807 return result; 808 } 809 810 if (tty) 811 cp210x_set_termios(tty, port, NULL); 812 813 result = usb_serial_generic_open(tty, port); 814 if (result) 815 goto err_disable; 816 817 return 0; 818 819 err_disable: 820 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 821 port_priv->event_mode = false; 822 823 return result; 824 } 825 826 static void cp210x_close(struct usb_serial_port *port) 827 { 828 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 829 830 usb_serial_generic_close(port); 831 832 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 833 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 834 835 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 836 837 /* Disabling the interface disables event-insertion mode. */ 838 port_priv->event_mode = false; 839 } 840 841 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 842 { 843 if (lsr & CP210X_LSR_BREAK) { 844 port->icount.brk++; 845 *flag = TTY_BREAK; 846 } else if (lsr & CP210X_LSR_PARITY) { 847 port->icount.parity++; 848 *flag = TTY_PARITY; 849 } else if (lsr & CP210X_LSR_FRAME) { 850 port->icount.frame++; 851 *flag = TTY_FRAME; 852 } 853 854 if (lsr & CP210X_LSR_OVERRUN) { 855 port->icount.overrun++; 856 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 857 } 858 } 859 860 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 861 { 862 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 863 864 switch (port_priv->event_state) { 865 case ES_DATA: 866 if (*ch == CP210X_ESCCHAR) { 867 port_priv->event_state = ES_ESCAPE; 868 break; 869 } 870 return false; 871 case ES_ESCAPE: 872 switch (*ch) { 873 case 0: 874 dev_dbg(&port->dev, "%s - escape char\n", __func__); 875 *ch = CP210X_ESCCHAR; 876 port_priv->event_state = ES_DATA; 877 return false; 878 case 1: 879 port_priv->event_state = ES_LSR_DATA_0; 880 break; 881 case 2: 882 port_priv->event_state = ES_LSR; 883 break; 884 case 3: 885 port_priv->event_state = ES_MSR; 886 break; 887 default: 888 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 889 port_priv->event_state = ES_DATA; 890 break; 891 } 892 break; 893 case ES_LSR_DATA_0: 894 port_priv->lsr = *ch; 895 port_priv->event_state = ES_LSR_DATA_1; 896 break; 897 case ES_LSR_DATA_1: 898 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 899 __func__, port_priv->lsr, *ch); 900 cp210x_process_lsr(port, port_priv->lsr, flag); 901 port_priv->event_state = ES_DATA; 902 return false; 903 case ES_LSR: 904 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 905 port_priv->lsr = *ch; 906 cp210x_process_lsr(port, port_priv->lsr, flag); 907 port_priv->event_state = ES_DATA; 908 break; 909 case ES_MSR: 910 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 911 /* unimplemented */ 912 port_priv->event_state = ES_DATA; 913 break; 914 } 915 916 return true; 917 } 918 919 static void cp210x_process_read_urb(struct urb *urb) 920 { 921 struct usb_serial_port *port = urb->context; 922 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 923 unsigned char *ch = urb->transfer_buffer; 924 char flag; 925 int i; 926 927 if (!urb->actual_length) 928 return; 929 930 if (port_priv->event_mode) { 931 for (i = 0; i < urb->actual_length; i++, ch++) { 932 flag = TTY_NORMAL; 933 934 if (cp210x_process_char(port, ch, &flag)) 935 continue; 936 937 tty_insert_flip_char(&port->port, *ch, flag); 938 } 939 } else { 940 tty_insert_flip_string(&port->port, ch, urb->actual_length); 941 } 942 tty_flip_buffer_push(&port->port); 943 } 944 945 /* 946 * Read how many bytes are waiting in the TX queue. 947 */ 948 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 949 u32 *count) 950 { 951 struct usb_serial *serial = port->serial; 952 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 953 struct cp210x_comm_status *sts; 954 int result; 955 956 sts = kmalloc(sizeof(*sts), GFP_KERNEL); 957 if (!sts) 958 return -ENOMEM; 959 960 result = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 961 CP210X_GET_COMM_STATUS, REQTYPE_INTERFACE_TO_HOST, 962 0, port_priv->bInterfaceNumber, sts, sizeof(*sts), 963 USB_CTRL_GET_TIMEOUT); 964 if (result == sizeof(*sts)) { 965 *count = le32_to_cpu(sts->ulAmountInOutQueue); 966 result = 0; 967 } else { 968 dev_err(&port->dev, "failed to get comm status: %d\n", result); 969 if (result >= 0) 970 result = -EIO; 971 } 972 973 kfree(sts); 974 975 return result; 976 } 977 978 static bool cp210x_tx_empty(struct usb_serial_port *port) 979 { 980 int err; 981 u32 count; 982 983 err = cp210x_get_tx_queue_byte_count(port, &count); 984 if (err) 985 return true; 986 987 return !count; 988 } 989 990 struct cp210x_rate { 991 speed_t rate; 992 speed_t high; 993 }; 994 995 static const struct cp210x_rate cp210x_an205_table1[] = { 996 { 300, 300 }, 997 { 600, 600 }, 998 { 1200, 1200 }, 999 { 1800, 1800 }, 1000 { 2400, 2400 }, 1001 { 4000, 4000 }, 1002 { 4800, 4803 }, 1003 { 7200, 7207 }, 1004 { 9600, 9612 }, 1005 { 14400, 14428 }, 1006 { 16000, 16062 }, 1007 { 19200, 19250 }, 1008 { 28800, 28912 }, 1009 { 38400, 38601 }, 1010 { 51200, 51558 }, 1011 { 56000, 56280 }, 1012 { 57600, 58053 }, 1013 { 64000, 64111 }, 1014 { 76800, 77608 }, 1015 { 115200, 117028 }, 1016 { 128000, 129347 }, 1017 { 153600, 156868 }, 1018 { 230400, 237832 }, 1019 { 250000, 254234 }, 1020 { 256000, 273066 }, 1021 { 460800, 491520 }, 1022 { 500000, 567138 }, 1023 { 576000, 670254 }, 1024 { 921600, UINT_MAX } 1025 }; 1026 1027 /* 1028 * Quantises the baud rate as per AN205 Table 1 1029 */ 1030 static speed_t cp210x_get_an205_rate(speed_t baud) 1031 { 1032 int i; 1033 1034 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 1035 if (baud <= cp210x_an205_table1[i].high) 1036 break; 1037 } 1038 1039 return cp210x_an205_table1[i].rate; 1040 } 1041 1042 static speed_t cp210x_get_actual_rate(speed_t baud) 1043 { 1044 unsigned int prescale = 1; 1045 unsigned int div; 1046 1047 if (baud <= 365) 1048 prescale = 4; 1049 1050 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1051 baud = 48000000 / (2 * prescale * div); 1052 1053 return baud; 1054 } 1055 1056 /* 1057 * CP2101 supports the following baud rates: 1058 * 1059 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1060 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1061 * 1062 * CP2102 and CP2103 support the following additional rates: 1063 * 1064 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1065 * 576000 1066 * 1067 * The device will map a requested rate to a supported one, but the result 1068 * of requests for rates greater than 1053257 is undefined (see AN205). 1069 * 1070 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1071 * respectively, with an error less than 1%. The actual rates are determined 1072 * by 1073 * 1074 * div = round(freq / (2 x prescale x request)) 1075 * actual = freq / (2 x prescale x div) 1076 * 1077 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1078 * or 1 otherwise. 1079 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1080 * otherwise. 1081 */ 1082 static void cp210x_change_speed(struct tty_struct *tty, 1083 struct usb_serial_port *port, struct ktermios *old_termios) 1084 { 1085 struct usb_serial *serial = port->serial; 1086 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1087 u32 baud; 1088 1089 /* 1090 * This maps the requested rate to the actual rate, a valid rate on 1091 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1092 * 1093 * NOTE: B0 is not implemented. 1094 */ 1095 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1096 1097 if (priv->use_actual_rate) 1098 baud = cp210x_get_actual_rate(baud); 1099 else if (baud < 1000000) 1100 baud = cp210x_get_an205_rate(baud); 1101 1102 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1103 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1104 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1105 if (old_termios) 1106 baud = old_termios->c_ospeed; 1107 else 1108 baud = 9600; 1109 } 1110 1111 tty_encode_baud_rate(tty, baud, baud); 1112 } 1113 1114 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1115 { 1116 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1117 int ret; 1118 1119 if (port_priv->event_mode) 1120 return; 1121 1122 port_priv->event_state = ES_DATA; 1123 port_priv->event_mode = true; 1124 1125 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1126 if (ret) { 1127 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1128 port_priv->event_mode = false; 1129 } 1130 } 1131 1132 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1133 { 1134 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1135 int ret; 1136 1137 if (!port_priv->event_mode) 1138 return; 1139 1140 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1141 if (ret) { 1142 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1143 return; 1144 } 1145 1146 port_priv->event_mode = false; 1147 } 1148 1149 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1150 { 1151 bool iflag_change, cc_change; 1152 1153 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1154 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1155 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1156 1157 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1158 } 1159 1160 static void cp210x_set_flow_control(struct tty_struct *tty, 1161 struct usb_serial_port *port, struct ktermios *old_termios) 1162 { 1163 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1164 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1165 struct cp210x_special_chars chars; 1166 struct cp210x_flow_ctl flow_ctl; 1167 u32 flow_repl; 1168 u32 ctl_hs; 1169 bool crtscts; 1170 int ret; 1171 1172 /* 1173 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1174 * CP2102N_E104). Report back that flow control is not supported. 1175 */ 1176 if (priv->no_flow_control) { 1177 tty->termios.c_cflag &= ~CRTSCTS; 1178 tty->termios.c_iflag &= ~(IXON | IXOFF); 1179 } 1180 1181 if (old_termios && 1182 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1183 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1184 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1185 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1186 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1187 return; 1188 } 1189 1190 if (I_IXON(tty) || I_IXOFF(tty)) { 1191 memset(&chars, 0, sizeof(chars)); 1192 1193 chars.bXonChar = START_CHAR(tty); 1194 chars.bXoffChar = STOP_CHAR(tty); 1195 1196 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1197 sizeof(chars)); 1198 if (ret) { 1199 dev_err(&port->dev, "failed to set special chars: %d\n", 1200 ret); 1201 } 1202 } 1203 1204 mutex_lock(&port_priv->mutex); 1205 1206 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1207 sizeof(flow_ctl)); 1208 if (ret) 1209 goto out_unlock; 1210 1211 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1212 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1213 1214 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1215 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1216 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1217 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1218 if (port_priv->dtr) 1219 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1220 else 1221 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1222 1223 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1224 if (C_CRTSCTS(tty)) { 1225 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1226 if (port_priv->rts) 1227 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1228 else 1229 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1230 crtscts = true; 1231 } else { 1232 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1233 if (port_priv->rts) 1234 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1235 else 1236 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1237 crtscts = false; 1238 } 1239 1240 if (I_IXOFF(tty)) { 1241 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1242 1243 flow_ctl.ulXonLimit = cpu_to_le32(128); 1244 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1245 } else { 1246 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1247 } 1248 1249 if (I_IXON(tty)) 1250 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1251 else 1252 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1253 1254 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1255 ctl_hs, flow_repl); 1256 1257 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1258 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1259 1260 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1261 sizeof(flow_ctl)); 1262 if (ret) 1263 goto out_unlock; 1264 1265 port_priv->crtscts = crtscts; 1266 out_unlock: 1267 mutex_unlock(&port_priv->mutex); 1268 } 1269 1270 static void cp210x_set_termios(struct tty_struct *tty, 1271 struct usb_serial_port *port, struct ktermios *old_termios) 1272 { 1273 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1274 u16 bits; 1275 int ret; 1276 1277 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) 1278 return; 1279 1280 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1281 cp210x_change_speed(tty, port, old_termios); 1282 1283 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1284 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1285 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1286 tty->termios.c_cflag |= CS8; 1287 } 1288 1289 bits = 0; 1290 1291 switch (C_CSIZE(tty)) { 1292 case CS5: 1293 bits |= BITS_DATA_5; 1294 break; 1295 case CS6: 1296 bits |= BITS_DATA_6; 1297 break; 1298 case CS7: 1299 bits |= BITS_DATA_7; 1300 break; 1301 case CS8: 1302 default: 1303 bits |= BITS_DATA_8; 1304 break; 1305 } 1306 1307 if (C_PARENB(tty)) { 1308 if (C_CMSPAR(tty)) { 1309 if (C_PARODD(tty)) 1310 bits |= BITS_PARITY_MARK; 1311 else 1312 bits |= BITS_PARITY_SPACE; 1313 } else { 1314 if (C_PARODD(tty)) 1315 bits |= BITS_PARITY_ODD; 1316 else 1317 bits |= BITS_PARITY_EVEN; 1318 } 1319 } 1320 1321 if (C_CSTOPB(tty)) 1322 bits |= BITS_STOP_2; 1323 else 1324 bits |= BITS_STOP_1; 1325 1326 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1327 if (ret) 1328 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1329 1330 cp210x_set_flow_control(tty, port, old_termios); 1331 1332 /* 1333 * Enable event-insertion mode only if input parity checking is 1334 * enabled for now. 1335 */ 1336 if (I_INPCK(tty)) 1337 cp210x_enable_event_mode(port); 1338 else 1339 cp210x_disable_event_mode(port); 1340 } 1341 1342 static int cp210x_tiocmset(struct tty_struct *tty, 1343 unsigned int set, unsigned int clear) 1344 { 1345 struct usb_serial_port *port = tty->driver_data; 1346 return cp210x_tiocmset_port(port, set, clear); 1347 } 1348 1349 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1350 unsigned int set, unsigned int clear) 1351 { 1352 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1353 struct cp210x_flow_ctl flow_ctl; 1354 u32 ctl_hs, flow_repl; 1355 u16 control = 0; 1356 int ret; 1357 1358 mutex_lock(&port_priv->mutex); 1359 1360 if (set & TIOCM_RTS) { 1361 port_priv->rts = true; 1362 control |= CONTROL_RTS; 1363 control |= CONTROL_WRITE_RTS; 1364 } 1365 if (set & TIOCM_DTR) { 1366 port_priv->dtr = true; 1367 control |= CONTROL_DTR; 1368 control |= CONTROL_WRITE_DTR; 1369 } 1370 if (clear & TIOCM_RTS) { 1371 port_priv->rts = false; 1372 control &= ~CONTROL_RTS; 1373 control |= CONTROL_WRITE_RTS; 1374 } 1375 if (clear & TIOCM_DTR) { 1376 port_priv->dtr = false; 1377 control &= ~CONTROL_DTR; 1378 control |= CONTROL_WRITE_DTR; 1379 } 1380 1381 /* 1382 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1383 * flow control is enabled. 1384 */ 1385 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1386 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1387 sizeof(flow_ctl)); 1388 if (ret) 1389 goto out_unlock; 1390 1391 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1392 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1393 1394 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1395 if (port_priv->dtr) 1396 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1397 else 1398 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1399 1400 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1401 if (port_priv->rts) 1402 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1403 else 1404 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1405 1406 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1407 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1408 1409 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1410 __func__, ctl_hs, flow_repl); 1411 1412 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1413 sizeof(flow_ctl)); 1414 } else { 1415 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1416 1417 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1418 } 1419 out_unlock: 1420 mutex_unlock(&port_priv->mutex); 1421 1422 return ret; 1423 } 1424 1425 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1426 { 1427 if (on) 1428 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1429 else 1430 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1431 } 1432 1433 static int cp210x_tiocmget(struct tty_struct *tty) 1434 { 1435 struct usb_serial_port *port = tty->driver_data; 1436 u8 control; 1437 int result; 1438 1439 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1440 if (result) 1441 return result; 1442 1443 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1444 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1445 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1446 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1447 |((control & CONTROL_RING)? TIOCM_RI : 0) 1448 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1449 1450 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1451 1452 return result; 1453 } 1454 1455 static void cp210x_break_ctl(struct tty_struct *tty, int break_state) 1456 { 1457 struct usb_serial_port *port = tty->driver_data; 1458 u16 state; 1459 1460 if (break_state == 0) 1461 state = BREAK_OFF; 1462 else 1463 state = BREAK_ON; 1464 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1465 state == BREAK_OFF ? "off" : "on"); 1466 cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1467 } 1468 1469 #ifdef CONFIG_GPIOLIB 1470 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1471 { 1472 struct usb_serial *serial = gpiochip_get_data(gc); 1473 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1474 u8 req_type; 1475 u16 mask; 1476 int result; 1477 int len; 1478 1479 result = usb_autopm_get_interface(serial->interface); 1480 if (result) 1481 return result; 1482 1483 switch (priv->partnum) { 1484 case CP210X_PARTNUM_CP2105: 1485 req_type = REQTYPE_INTERFACE_TO_HOST; 1486 len = 1; 1487 break; 1488 case CP210X_PARTNUM_CP2108: 1489 req_type = REQTYPE_INTERFACE_TO_HOST; 1490 len = 2; 1491 break; 1492 default: 1493 req_type = REQTYPE_DEVICE_TO_HOST; 1494 len = 1; 1495 break; 1496 } 1497 1498 mask = 0; 1499 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1500 &mask, len); 1501 1502 usb_autopm_put_interface(serial->interface); 1503 1504 if (result < 0) 1505 return result; 1506 1507 le16_to_cpus(&mask); 1508 1509 return !!(mask & BIT(gpio)); 1510 } 1511 1512 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1513 { 1514 struct usb_serial *serial = gpiochip_get_data(gc); 1515 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1516 struct cp210x_gpio_write16 buf16; 1517 struct cp210x_gpio_write buf; 1518 u16 mask, state; 1519 u16 wIndex; 1520 int result; 1521 1522 if (value == 1) 1523 state = BIT(gpio); 1524 else 1525 state = 0; 1526 1527 mask = BIT(gpio); 1528 1529 result = usb_autopm_get_interface(serial->interface); 1530 if (result) 1531 goto out; 1532 1533 switch (priv->partnum) { 1534 case CP210X_PARTNUM_CP2105: 1535 buf.mask = (u8)mask; 1536 buf.state = (u8)state; 1537 result = cp210x_write_vendor_block(serial, 1538 REQTYPE_HOST_TO_INTERFACE, 1539 CP210X_WRITE_LATCH, &buf, 1540 sizeof(buf)); 1541 break; 1542 case CP210X_PARTNUM_CP2108: 1543 buf16.mask = cpu_to_le16(mask); 1544 buf16.state = cpu_to_le16(state); 1545 result = cp210x_write_vendor_block(serial, 1546 REQTYPE_HOST_TO_INTERFACE, 1547 CP210X_WRITE_LATCH, &buf16, 1548 sizeof(buf16)); 1549 break; 1550 default: 1551 wIndex = state << 8 | mask; 1552 result = usb_control_msg(serial->dev, 1553 usb_sndctrlpipe(serial->dev, 0), 1554 CP210X_VENDOR_SPECIFIC, 1555 REQTYPE_HOST_TO_DEVICE, 1556 CP210X_WRITE_LATCH, 1557 wIndex, 1558 NULL, 0, USB_CTRL_SET_TIMEOUT); 1559 break; 1560 } 1561 1562 usb_autopm_put_interface(serial->interface); 1563 out: 1564 if (result < 0) { 1565 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1566 result); 1567 } 1568 } 1569 1570 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1571 { 1572 struct usb_serial *serial = gpiochip_get_data(gc); 1573 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1574 1575 return priv->gpio_input & BIT(gpio); 1576 } 1577 1578 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1579 { 1580 struct usb_serial *serial = gpiochip_get_data(gc); 1581 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1582 1583 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1584 /* hardware does not support an input mode */ 1585 return -ENOTSUPP; 1586 } 1587 1588 /* push-pull pins cannot be changed to be inputs */ 1589 if (priv->gpio_pushpull & BIT(gpio)) 1590 return -EINVAL; 1591 1592 /* make sure to release pin if it is being driven low */ 1593 cp210x_gpio_set(gc, gpio, 1); 1594 1595 priv->gpio_input |= BIT(gpio); 1596 1597 return 0; 1598 } 1599 1600 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1601 int value) 1602 { 1603 struct usb_serial *serial = gpiochip_get_data(gc); 1604 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1605 1606 priv->gpio_input &= ~BIT(gpio); 1607 cp210x_gpio_set(gc, gpio, value); 1608 1609 return 0; 1610 } 1611 1612 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1613 unsigned long config) 1614 { 1615 struct usb_serial *serial = gpiochip_get_data(gc); 1616 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1617 enum pin_config_param param = pinconf_to_config_param(config); 1618 1619 /* Succeed only if in correct mode (this can't be set at runtime) */ 1620 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1621 (priv->gpio_pushpull & BIT(gpio))) 1622 return 0; 1623 1624 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1625 !(priv->gpio_pushpull & BIT(gpio))) 1626 return 0; 1627 1628 return -ENOTSUPP; 1629 } 1630 1631 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1632 unsigned long *valid_mask, unsigned int ngpios) 1633 { 1634 struct usb_serial *serial = gpiochip_get_data(gc); 1635 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1636 struct device *dev = &serial->interface->dev; 1637 unsigned long altfunc_mask = priv->gpio_altfunc; 1638 1639 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1640 1641 if (bitmap_empty(valid_mask, ngpios)) 1642 dev_dbg(dev, "no pin configured for GPIO\n"); 1643 else 1644 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1645 valid_mask); 1646 return 0; 1647 } 1648 1649 /* 1650 * This function is for configuring GPIO using shared pins, where other signals 1651 * are made unavailable by configuring the use of GPIO. This is believed to be 1652 * only applicable to the cp2105 at this point, the other devices supported by 1653 * this driver that provide GPIO do so in a way that does not impact other 1654 * signals and are thus expected to have very different initialisation. 1655 */ 1656 static int cp2105_gpioconf_init(struct usb_serial *serial) 1657 { 1658 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1659 struct cp210x_pin_mode mode; 1660 struct cp210x_dual_port_config config; 1661 u8 intf_num = cp210x_interface_num(serial); 1662 u8 iface_config; 1663 int result; 1664 1665 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1666 CP210X_GET_DEVICEMODE, &mode, 1667 sizeof(mode)); 1668 if (result < 0) 1669 return result; 1670 1671 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1672 CP210X_GET_PORTCONFIG, &config, 1673 sizeof(config)); 1674 if (result < 0) 1675 return result; 1676 1677 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1678 if (intf_num == 0) { 1679 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1680 /* mark all GPIOs of this interface as reserved */ 1681 priv->gpio_altfunc = 0xff; 1682 return 0; 1683 } 1684 1685 iface_config = config.eci_cfg; 1686 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1687 CP210X_ECI_GPIO_MODE_MASK) >> 1688 CP210X_ECI_GPIO_MODE_OFFSET); 1689 priv->gc.ngpio = 2; 1690 } else if (intf_num == 1) { 1691 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1692 /* mark all GPIOs of this interface as reserved */ 1693 priv->gpio_altfunc = 0xff; 1694 return 0; 1695 } 1696 1697 iface_config = config.sci_cfg; 1698 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1699 CP210X_SCI_GPIO_MODE_MASK) >> 1700 CP210X_SCI_GPIO_MODE_OFFSET); 1701 priv->gc.ngpio = 3; 1702 } else { 1703 return -ENODEV; 1704 } 1705 1706 /* mark all pins which are not in GPIO mode */ 1707 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1708 priv->gpio_altfunc |= BIT(0); 1709 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1710 CP2105_GPIO1_RS485_MODE)) 1711 priv->gpio_altfunc |= BIT(1); 1712 1713 /* driver implementation for CP2105 only supports outputs */ 1714 priv->gpio_input = 0; 1715 1716 return 0; 1717 } 1718 1719 static int cp2104_gpioconf_init(struct usb_serial *serial) 1720 { 1721 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1722 struct cp210x_single_port_config config; 1723 u8 iface_config; 1724 u8 gpio_latch; 1725 int result; 1726 u8 i; 1727 1728 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1729 CP210X_GET_PORTCONFIG, &config, 1730 sizeof(config)); 1731 if (result < 0) 1732 return result; 1733 1734 priv->gc.ngpio = 4; 1735 1736 iface_config = config.device_cfg; 1737 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1738 CP210X_GPIO_MODE_MASK) >> 1739 CP210X_GPIO_MODE_OFFSET); 1740 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1741 CP210X_GPIO_MODE_MASK) >> 1742 CP210X_GPIO_MODE_OFFSET); 1743 1744 /* mark all pins which are not in GPIO mode */ 1745 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1746 priv->gpio_altfunc |= BIT(0); 1747 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1748 priv->gpio_altfunc |= BIT(1); 1749 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1750 priv->gpio_altfunc |= BIT(2); 1751 1752 /* 1753 * Like CP2102N, CP2104 has also no strict input and output pin 1754 * modes. 1755 * Do the same input mode emulation as CP2102N. 1756 */ 1757 for (i = 0; i < priv->gc.ngpio; ++i) { 1758 /* 1759 * Set direction to "input" iff pin is open-drain and reset 1760 * value is 1. 1761 */ 1762 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1763 priv->gpio_input |= BIT(i); 1764 } 1765 1766 return 0; 1767 } 1768 1769 static int cp2108_gpio_init(struct usb_serial *serial) 1770 { 1771 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1772 struct cp210x_quad_port_config config; 1773 u16 gpio_latch; 1774 int result; 1775 u8 i; 1776 1777 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1778 CP210X_GET_PORTCONFIG, &config, 1779 sizeof(config)); 1780 if (result < 0) 1781 return result; 1782 1783 priv->gc.ngpio = 16; 1784 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1785 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1786 1787 /* 1788 * Mark all pins which are not in GPIO mode. 1789 * 1790 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1791 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1792 * 1793 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1794 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1795 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1796 */ 1797 for (i = 0; i < 4; i++) { 1798 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1799 priv->gpio_altfunc |= BIT(i * 4); 1800 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1801 priv->gpio_altfunc |= BIT((i * 4) + 1); 1802 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1803 priv->gpio_altfunc |= BIT((i * 4) + 2); 1804 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1805 priv->gpio_altfunc |= BIT((i * 4) + 3); 1806 } 1807 1808 /* 1809 * Like CP2102N, CP2108 has also no strict input and output pin 1810 * modes. Do the same input mode emulation as CP2102N. 1811 */ 1812 for (i = 0; i < priv->gc.ngpio; ++i) { 1813 /* 1814 * Set direction to "input" iff pin is open-drain and reset 1815 * value is 1. 1816 */ 1817 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1818 priv->gpio_input |= BIT(i); 1819 } 1820 1821 return 0; 1822 } 1823 1824 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1825 { 1826 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1827 const u16 config_size = 0x02a6; 1828 u8 gpio_rst_latch; 1829 u8 config_version; 1830 u8 gpio_pushpull; 1831 u8 *config_buf; 1832 u8 gpio_latch; 1833 u8 gpio_ctrl; 1834 int result; 1835 u8 i; 1836 1837 /* 1838 * Retrieve device configuration from the device. 1839 * The array received contains all customization settings done at the 1840 * factory/manufacturer. Format of the array is documented at the 1841 * time of writing at: 1842 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1843 */ 1844 config_buf = kmalloc(config_size, GFP_KERNEL); 1845 if (!config_buf) 1846 return -ENOMEM; 1847 1848 result = cp210x_read_vendor_block(serial, 1849 REQTYPE_DEVICE_TO_HOST, 1850 CP210X_READ_2NCONFIG, 1851 config_buf, 1852 config_size); 1853 if (result < 0) { 1854 kfree(config_buf); 1855 return result; 1856 } 1857 1858 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1859 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1860 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1861 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1862 1863 kfree(config_buf); 1864 1865 /* Make sure this is a config format we understand. */ 1866 if (config_version != 0x01) 1867 return -ENOTSUPP; 1868 1869 priv->gc.ngpio = 4; 1870 1871 /* 1872 * Get default pin states after reset. Needed so we can determine 1873 * the direction of an open-drain pin. 1874 */ 1875 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1876 1877 /* 0 indicates open-drain mode, 1 is push-pull */ 1878 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1879 1880 /* 0 indicates GPIO mode, 1 is alternate function */ 1881 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1882 /* QFN20 is special... */ 1883 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1884 priv->gpio_altfunc |= BIT(0); 1885 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1886 priv->gpio_altfunc |= BIT(1); 1887 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1888 priv->gpio_altfunc |= BIT(2); 1889 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1890 priv->gpio_altfunc |= BIT(3); 1891 } else { 1892 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1893 } 1894 1895 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1896 /* 1897 * For the QFN28 package, GPIO4-6 are controlled by 1898 * the low three bits of the mode/latch fields. 1899 * Contrary to the document linked above, the bits for 1900 * the SUSPEND pins are elsewhere. No alternate 1901 * function is available for these pins. 1902 */ 1903 priv->gc.ngpio = 7; 1904 gpio_latch |= (gpio_rst_latch & 7) << 4; 1905 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1906 } 1907 1908 /* 1909 * The CP2102N does not strictly has input and output pin modes, 1910 * it only knows open-drain and push-pull modes which is set at 1911 * factory. An open-drain pin can function both as an 1912 * input or an output. We emulate input mode for open-drain pins 1913 * by making sure they are not driven low, and we do not allow 1914 * push-pull pins to be set as an input. 1915 */ 1916 for (i = 0; i < priv->gc.ngpio; ++i) { 1917 /* 1918 * Set direction to "input" iff pin is open-drain and reset 1919 * value is 1. 1920 */ 1921 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1922 priv->gpio_input |= BIT(i); 1923 } 1924 1925 return 0; 1926 } 1927 1928 static int cp210x_gpio_init(struct usb_serial *serial) 1929 { 1930 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1931 int result; 1932 1933 switch (priv->partnum) { 1934 case CP210X_PARTNUM_CP2104: 1935 result = cp2104_gpioconf_init(serial); 1936 break; 1937 case CP210X_PARTNUM_CP2105: 1938 result = cp2105_gpioconf_init(serial); 1939 break; 1940 case CP210X_PARTNUM_CP2108: 1941 /* 1942 * The GPIOs are not tied to any specific port so only register 1943 * once for interface 0. 1944 */ 1945 if (cp210x_interface_num(serial) != 0) 1946 return 0; 1947 result = cp2108_gpio_init(serial); 1948 break; 1949 case CP210X_PARTNUM_CP2102N_QFN28: 1950 case CP210X_PARTNUM_CP2102N_QFN24: 1951 case CP210X_PARTNUM_CP2102N_QFN20: 1952 result = cp2102n_gpioconf_init(serial); 1953 break; 1954 default: 1955 return 0; 1956 } 1957 1958 if (result < 0) 1959 return result; 1960 1961 priv->gc.label = "cp210x"; 1962 priv->gc.get_direction = cp210x_gpio_direction_get; 1963 priv->gc.direction_input = cp210x_gpio_direction_input; 1964 priv->gc.direction_output = cp210x_gpio_direction_output; 1965 priv->gc.get = cp210x_gpio_get; 1966 priv->gc.set = cp210x_gpio_set; 1967 priv->gc.set_config = cp210x_gpio_set_config; 1968 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1969 priv->gc.owner = THIS_MODULE; 1970 priv->gc.parent = &serial->interface->dev; 1971 priv->gc.base = -1; 1972 priv->gc.can_sleep = true; 1973 1974 result = gpiochip_add_data(&priv->gc, serial); 1975 if (!result) 1976 priv->gpio_registered = true; 1977 1978 return result; 1979 } 1980 1981 static void cp210x_gpio_remove(struct usb_serial *serial) 1982 { 1983 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1984 1985 if (priv->gpio_registered) { 1986 gpiochip_remove(&priv->gc); 1987 priv->gpio_registered = false; 1988 } 1989 } 1990 1991 #else 1992 1993 static int cp210x_gpio_init(struct usb_serial *serial) 1994 { 1995 return 0; 1996 } 1997 1998 static void cp210x_gpio_remove(struct usb_serial *serial) 1999 { 2000 /* Nothing to do */ 2001 } 2002 2003 #endif 2004 2005 static int cp210x_port_probe(struct usb_serial_port *port) 2006 { 2007 struct usb_serial *serial = port->serial; 2008 struct cp210x_port_private *port_priv; 2009 2010 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 2011 if (!port_priv) 2012 return -ENOMEM; 2013 2014 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 2015 mutex_init(&port_priv->mutex); 2016 2017 usb_set_serial_port_data(port, port_priv); 2018 2019 return 0; 2020 } 2021 2022 static void cp210x_port_remove(struct usb_serial_port *port) 2023 { 2024 struct cp210x_port_private *port_priv; 2025 2026 port_priv = usb_get_serial_port_data(port); 2027 kfree(port_priv); 2028 } 2029 2030 static void cp210x_init_max_speed(struct usb_serial *serial) 2031 { 2032 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2033 bool use_actual_rate = false; 2034 speed_t min = 300; 2035 speed_t max; 2036 2037 switch (priv->partnum) { 2038 case CP210X_PARTNUM_CP2101: 2039 max = 921600; 2040 break; 2041 case CP210X_PARTNUM_CP2102: 2042 case CP210X_PARTNUM_CP2103: 2043 max = 1000000; 2044 break; 2045 case CP210X_PARTNUM_CP2104: 2046 use_actual_rate = true; 2047 max = 2000000; 2048 break; 2049 case CP210X_PARTNUM_CP2108: 2050 max = 2000000; 2051 break; 2052 case CP210X_PARTNUM_CP2105: 2053 if (cp210x_interface_num(serial) == 0) { 2054 use_actual_rate = true; 2055 max = 2000000; /* ECI */ 2056 } else { 2057 min = 2400; 2058 max = 921600; /* SCI */ 2059 } 2060 break; 2061 case CP210X_PARTNUM_CP2102N_QFN28: 2062 case CP210X_PARTNUM_CP2102N_QFN24: 2063 case CP210X_PARTNUM_CP2102N_QFN20: 2064 use_actual_rate = true; 2065 max = 3000000; 2066 break; 2067 default: 2068 max = 2000000; 2069 break; 2070 } 2071 2072 priv->min_speed = min; 2073 priv->max_speed = max; 2074 priv->use_actual_rate = use_actual_rate; 2075 } 2076 2077 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2078 { 2079 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2080 u8 ver[3]; 2081 int ret; 2082 2083 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2084 ver, sizeof(ver)); 2085 if (ret) 2086 return ret; 2087 2088 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2089 ver[0], ver[1], ver[2]); 2090 2091 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2092 2093 return 0; 2094 } 2095 2096 static void cp210x_determine_type(struct usb_serial *serial) 2097 { 2098 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2099 int ret; 2100 2101 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2102 CP210X_GET_PARTNUM, &priv->partnum, 2103 sizeof(priv->partnum)); 2104 if (ret < 0) { 2105 dev_warn(&serial->interface->dev, 2106 "querying part number failed\n"); 2107 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2108 return; 2109 } 2110 2111 switch (priv->partnum) { 2112 case CP210X_PARTNUM_CP2105: 2113 case CP210X_PARTNUM_CP2108: 2114 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2115 break; 2116 case CP210X_PARTNUM_CP2102N_QFN28: 2117 case CP210X_PARTNUM_CP2102N_QFN24: 2118 case CP210X_PARTNUM_CP2102N_QFN20: 2119 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2120 if (ret) 2121 break; 2122 if (priv->fw_version <= 0x10004) 2123 priv->no_flow_control = true; 2124 break; 2125 default: 2126 break; 2127 } 2128 } 2129 2130 static int cp210x_attach(struct usb_serial *serial) 2131 { 2132 int result; 2133 struct cp210x_serial_private *priv; 2134 2135 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2136 if (!priv) 2137 return -ENOMEM; 2138 2139 usb_set_serial_data(serial, priv); 2140 2141 cp210x_determine_type(serial); 2142 cp210x_init_max_speed(serial); 2143 2144 result = cp210x_gpio_init(serial); 2145 if (result < 0) { 2146 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2147 result); 2148 } 2149 2150 return 0; 2151 } 2152 2153 static void cp210x_disconnect(struct usb_serial *serial) 2154 { 2155 cp210x_gpio_remove(serial); 2156 } 2157 2158 static void cp210x_release(struct usb_serial *serial) 2159 { 2160 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2161 2162 cp210x_gpio_remove(serial); 2163 2164 kfree(priv); 2165 } 2166 2167 module_usb_serial_driver(serial_drivers, id_table); 2168 2169 MODULE_DESCRIPTION(DRIVER_DESC); 2170 MODULE_LICENSE("GPL v2"); 2171