xref: /linux/drivers/usb/serial/cp210x.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Silicon Laboratories CP210x USB to RS232 serial adaptor driver
4  *
5  * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk)
6  * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org)
7  *
8  * Support to set flow control line levels using TIOCMGET and TIOCMSET
9  * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow
10  * control thanks to Munir Nassar nassarmu@real-time.com
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/slab.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/module.h>
20 #include <linux/usb.h>
21 #include <linux/usb/serial.h>
22 #include <linux/gpio/driver.h>
23 #include <linux/bitops.h>
24 #include <linux/mutex.h>
25 
26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver"
27 
28 /*
29  * Function Prototypes
30  */
31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *);
32 static void cp210x_close(struct usb_serial_port *);
33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *,
34 							struct ktermios *);
35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *,
36 							struct ktermios*);
37 static bool cp210x_tx_empty(struct usb_serial_port *port);
38 static int cp210x_tiocmget(struct tty_struct *);
39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int);
40 static int cp210x_tiocmset_port(struct usb_serial_port *port,
41 		unsigned int, unsigned int);
42 static void cp210x_break_ctl(struct tty_struct *, int);
43 static int cp210x_attach(struct usb_serial *);
44 static void cp210x_disconnect(struct usb_serial *);
45 static void cp210x_release(struct usb_serial *);
46 static int cp210x_port_probe(struct usb_serial_port *);
47 static void cp210x_port_remove(struct usb_serial_port *);
48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on);
49 static void cp210x_process_read_urb(struct urb *urb);
50 static void cp210x_enable_event_mode(struct usb_serial_port *port);
51 static void cp210x_disable_event_mode(struct usb_serial_port *port);
52 
53 static const struct usb_device_id id_table[] = {
54 	{ USB_DEVICE(0x0404, 0x034C) },	/* NCR Retail IO Box */
55 	{ USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */
56 	{ USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */
57 	{ USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */
58 	{ USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */
59 	{ USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */
60 	{ USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */
61 	{ USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */
62 	{ USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */
63 	{ USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */
64 	{ USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */
65 	{ USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */
66 	{ USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */
67 	{ USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */
68 	{ USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */
69 	{ USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */
70 	{ USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */
71 	{ USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */
72 	{ USB_DEVICE(0x106F, 0x0003) },	/* CPI / Money Controls Bulk Coin Recycler */
73 	{ USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */
74 	{ USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */
75 	{ USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */
76 	{ USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */
77 	{ USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */
78 	{ USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */
79 	{ USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */
80 	{ USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */
81 	{ USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */
82 	{ USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */
83 	{ USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */
84 	{ USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */
85 	{ USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */
86 	{ USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */
87 	{ USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */
88 	{ USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */
89 	{ USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */
90 	{ USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */
91 	{ USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */
92 	{ USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */
93 	{ USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */
94 	{ USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */
95 	{ USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */
96 	{ USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */
97 	{ USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */
98 	{ USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */
99 	{ USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */
100 	{ USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */
101 	{ USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */
102 	{ USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */
103 	{ USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */
104 	{ USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */
105 	{ USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */
106 	{ USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */
107 	{ USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */
108 	{ USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */
109 	{ USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */
110 	{ USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */
111 	{ USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */
112 	{ USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */
113 	{ USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */
114 	{ USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */
115 	{ USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */
116 	{ USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */
117 	{ USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */
118 	{ USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */
119 	{ USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */
120 	{ USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */
121 	{ USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */
122 	{ USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */
123 	{ USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */
124 	{ USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */
125 	{ USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */
126 	{ USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */
127 	{ USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */
128 	{ USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */
129 	{ USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */
130 	{ USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */
131 	{ USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */
132 	{ USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */
133 	{ USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */
134 	{ USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */
135 	{ USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */
136 	{ USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */
137 	{ USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */
138 	{ USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */
139 	{ USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */
140 	{ USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */
141 	{ USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */
142 	{ USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */
143 	{ USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */
144 	{ USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */
145 	{ USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */
146 	{ USB_DEVICE(0x10C4, 0x8856) },	/* CEL EM357 ZigBee USB Stick - LR */
147 	{ USB_DEVICE(0x10C4, 0x8857) },	/* CEL EM357 ZigBee USB Stick */
148 	{ USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */
149 	{ USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */
150 	{ USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */
151 	{ USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */
152 	{ USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */
153 	{ USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */
154 	{ USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */
155 	{ USB_DEVICE(0x10C4, 0x8977) },	/* CEL MeshWorks DevKit Device */
156 	{ USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */
157 	{ USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */
158 	{ USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */
159 	{ USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */
160 	{ USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */
161 	{ USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */
162 	{ USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */
163 	{ USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */
164 	{ USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */
165 	{ USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */
166 	{ USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */
167 	{ USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */
168 	{ USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */
169 	{ USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */
170 	{ USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */
171 	{ USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */
172 	{ USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */
173 	{ USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */
174 	{ USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */
175 	{ USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */
176 	{ USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */
177 	{ USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */
178 	{ USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */
179 	{ USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */
180 	{ USB_DEVICE(0x155A, 0x1006) },	/* ELDAT Easywave RX09 */
181 	{ USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */
182 	{ USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */
183 	{ USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */
184 	{ USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */
185 	{ USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */
186 	{ USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */
187 	{ USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */
188 	{ USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */
189 	{ USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */
190 	{ USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */
191 	{ USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */
192 	{ USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */
193 	{ USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */
194 	{ USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */
195 	{ USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */
196 	{ USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */
197 	{ USB_DEVICE(0x17A8, 0x0101) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Int Ant) */
198 	{ USB_DEVICE(0x17A8, 0x0102) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Ext Ant) */
199 	{ USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */
200 	{ USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */
201 	{ USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */
202 	{ USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */
203 	{ USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */
204 	{ USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */
205 	{ USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */
206 	{ USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */
207 	{ USB_DEVICE(0x1901, 0x0194) },	/* GE Healthcare Remote Alarm Box */
208 	{ USB_DEVICE(0x1901, 0x0195) },	/* GE B850/B650/B450 CP2104 DP UART interface */
209 	{ USB_DEVICE(0x1901, 0x0196) },	/* GE B850 CP2105 DP UART interface */
210 	{ USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */
211 	{ USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */
212 	{ USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */
213 	{ USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */
214 	{ USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */
215 	{ USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */
216 	{ USB_DEVICE(0x1BA4, 0x0002) },	/* Silicon Labs 358x factory default */
217 	{ USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */
218 	{ USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */
219 	{ USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */
220 	{ USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */
221 	{ USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */
222 	{ USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */
223 	{ USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */
224 	{ USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */
225 	{ USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */
226 	{ USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */
227 	{ USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */
228 	{ USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */
229 	{ USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */
230 	{ USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */
231 	{ USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */
232 	{ USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */
233 	{ USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */
234 	{ USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */
235 	{ USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */
236 	{ USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */
237 	{ USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */
238 	{ USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */
239 	{ USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */
240 	{ USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */
241 	{ USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */
242 	{ USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */
243 	{ USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */
244 	{ USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */
245 	{ USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */
246 	{ USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */
247 	{ } /* Terminating Entry */
248 };
249 
250 MODULE_DEVICE_TABLE(usb, id_table);
251 
252 struct cp210x_serial_private {
253 #ifdef CONFIG_GPIOLIB
254 	struct gpio_chip	gc;
255 	bool			gpio_registered;
256 	u16			gpio_pushpull;
257 	u16			gpio_altfunc;
258 	u16			gpio_input;
259 #endif
260 	u8			partnum;
261 	u32			fw_version;
262 	speed_t			min_speed;
263 	speed_t			max_speed;
264 	bool			use_actual_rate;
265 	bool			no_flow_control;
266 	bool			no_event_mode;
267 };
268 
269 enum cp210x_event_state {
270 	ES_DATA,
271 	ES_ESCAPE,
272 	ES_LSR,
273 	ES_LSR_DATA_0,
274 	ES_LSR_DATA_1,
275 	ES_MSR
276 };
277 
278 struct cp210x_port_private {
279 	u8			bInterfaceNumber;
280 	bool			event_mode;
281 	enum cp210x_event_state event_state;
282 	u8			lsr;
283 
284 	struct mutex		mutex;
285 	bool			crtscts;
286 	bool			dtr;
287 	bool			rts;
288 };
289 
290 static struct usb_serial_driver cp210x_device = {
291 	.driver = {
292 		.owner =	THIS_MODULE,
293 		.name =		"cp210x",
294 	},
295 	.id_table		= id_table,
296 	.num_ports		= 1,
297 	.bulk_in_size		= 256,
298 	.bulk_out_size		= 256,
299 	.open			= cp210x_open,
300 	.close			= cp210x_close,
301 	.break_ctl		= cp210x_break_ctl,
302 	.set_termios		= cp210x_set_termios,
303 	.tx_empty		= cp210x_tx_empty,
304 	.throttle		= usb_serial_generic_throttle,
305 	.unthrottle		= usb_serial_generic_unthrottle,
306 	.tiocmget		= cp210x_tiocmget,
307 	.tiocmset		= cp210x_tiocmset,
308 	.get_icount		= usb_serial_generic_get_icount,
309 	.attach			= cp210x_attach,
310 	.disconnect		= cp210x_disconnect,
311 	.release		= cp210x_release,
312 	.port_probe		= cp210x_port_probe,
313 	.port_remove		= cp210x_port_remove,
314 	.dtr_rts		= cp210x_dtr_rts,
315 	.process_read_urb	= cp210x_process_read_urb,
316 };
317 
318 static struct usb_serial_driver * const serial_drivers[] = {
319 	&cp210x_device, NULL
320 };
321 
322 /* Config request types */
323 #define REQTYPE_HOST_TO_INTERFACE	0x41
324 #define REQTYPE_INTERFACE_TO_HOST	0xc1
325 #define REQTYPE_HOST_TO_DEVICE	0x40
326 #define REQTYPE_DEVICE_TO_HOST	0xc0
327 
328 /* Config request codes */
329 #define CP210X_IFC_ENABLE	0x00
330 #define CP210X_SET_BAUDDIV	0x01
331 #define CP210X_GET_BAUDDIV	0x02
332 #define CP210X_SET_LINE_CTL	0x03
333 #define CP210X_GET_LINE_CTL	0x04
334 #define CP210X_SET_BREAK	0x05
335 #define CP210X_IMM_CHAR		0x06
336 #define CP210X_SET_MHS		0x07
337 #define CP210X_GET_MDMSTS	0x08
338 #define CP210X_SET_XON		0x09
339 #define CP210X_SET_XOFF		0x0A
340 #define CP210X_SET_EVENTMASK	0x0B
341 #define CP210X_GET_EVENTMASK	0x0C
342 #define CP210X_SET_CHAR		0x0D
343 #define CP210X_GET_CHARS	0x0E
344 #define CP210X_GET_PROPS	0x0F
345 #define CP210X_GET_COMM_STATUS	0x10
346 #define CP210X_RESET		0x11
347 #define CP210X_PURGE		0x12
348 #define CP210X_SET_FLOW		0x13
349 #define CP210X_GET_FLOW		0x14
350 #define CP210X_EMBED_EVENTS	0x15
351 #define CP210X_GET_EVENTSTATE	0x16
352 #define CP210X_SET_CHARS	0x19
353 #define CP210X_GET_BAUDRATE	0x1D
354 #define CP210X_SET_BAUDRATE	0x1E
355 #define CP210X_VENDOR_SPECIFIC	0xFF
356 
357 /* CP210X_IFC_ENABLE */
358 #define UART_ENABLE		0x0001
359 #define UART_DISABLE		0x0000
360 
361 /* CP210X_(SET|GET)_BAUDDIV */
362 #define BAUD_RATE_GEN_FREQ	0x384000
363 
364 /* CP210X_(SET|GET)_LINE_CTL */
365 #define BITS_DATA_MASK		0X0f00
366 #define BITS_DATA_5		0X0500
367 #define BITS_DATA_6		0X0600
368 #define BITS_DATA_7		0X0700
369 #define BITS_DATA_8		0X0800
370 #define BITS_DATA_9		0X0900
371 
372 #define BITS_PARITY_MASK	0x00f0
373 #define BITS_PARITY_NONE	0x0000
374 #define BITS_PARITY_ODD		0x0010
375 #define BITS_PARITY_EVEN	0x0020
376 #define BITS_PARITY_MARK	0x0030
377 #define BITS_PARITY_SPACE	0x0040
378 
379 #define BITS_STOP_MASK		0x000f
380 #define BITS_STOP_1		0x0000
381 #define BITS_STOP_1_5		0x0001
382 #define BITS_STOP_2		0x0002
383 
384 /* CP210X_SET_BREAK */
385 #define BREAK_ON		0x0001
386 #define BREAK_OFF		0x0000
387 
388 /* CP210X_(SET_MHS|GET_MDMSTS) */
389 #define CONTROL_DTR		0x0001
390 #define CONTROL_RTS		0x0002
391 #define CONTROL_CTS		0x0010
392 #define CONTROL_DSR		0x0020
393 #define CONTROL_RING		0x0040
394 #define CONTROL_DCD		0x0080
395 #define CONTROL_WRITE_DTR	0x0100
396 #define CONTROL_WRITE_RTS	0x0200
397 
398 /* CP210X_(GET|SET)_CHARS */
399 struct cp210x_special_chars {
400 	u8	bEofChar;
401 	u8	bErrorChar;
402 	u8	bBreakChar;
403 	u8	bEventChar;
404 	u8	bXonChar;
405 	u8	bXoffChar;
406 };
407 
408 /* CP210X_VENDOR_SPECIFIC values */
409 #define CP210X_GET_FW_VER	0x000E
410 #define CP210X_READ_2NCONFIG	0x000E
411 #define CP210X_GET_FW_VER_2N	0x0010
412 #define CP210X_READ_LATCH	0x00C2
413 #define CP210X_GET_PARTNUM	0x370B
414 #define CP210X_GET_PORTCONFIG	0x370C
415 #define CP210X_GET_DEVICEMODE	0x3711
416 #define CP210X_WRITE_LATCH	0x37E1
417 
418 /* Part number definitions */
419 #define CP210X_PARTNUM_CP2101	0x01
420 #define CP210X_PARTNUM_CP2102	0x02
421 #define CP210X_PARTNUM_CP2103	0x03
422 #define CP210X_PARTNUM_CP2104	0x04
423 #define CP210X_PARTNUM_CP2105	0x05
424 #define CP210X_PARTNUM_CP2108	0x08
425 #define CP210X_PARTNUM_CP2102N_QFN28	0x20
426 #define CP210X_PARTNUM_CP2102N_QFN24	0x21
427 #define CP210X_PARTNUM_CP2102N_QFN20	0x22
428 #define CP210X_PARTNUM_UNKNOWN	0xFF
429 
430 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */
431 struct cp210x_comm_status {
432 	__le32   ulErrors;
433 	__le32   ulHoldReasons;
434 	__le32   ulAmountInInQueue;
435 	__le32   ulAmountInOutQueue;
436 	u8       bEofReceived;
437 	u8       bWaitForImmediate;
438 	u8       bReserved;
439 } __packed;
440 
441 /*
442  * CP210X_PURGE - 16 bits passed in wValue of USB request.
443  * SiLabs app note AN571 gives a strange description of the 4 bits:
444  * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive.
445  * writing 1 to all, however, purges cp2108 well enough to avoid the hang.
446  */
447 #define PURGE_ALL		0x000f
448 
449 /* CP210X_EMBED_EVENTS */
450 #define CP210X_ESCCHAR		0xec
451 
452 #define CP210X_LSR_OVERRUN	BIT(1)
453 #define CP210X_LSR_PARITY	BIT(2)
454 #define CP210X_LSR_FRAME	BIT(3)
455 #define CP210X_LSR_BREAK	BIT(4)
456 
457 
458 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */
459 struct cp210x_flow_ctl {
460 	__le32	ulControlHandshake;
461 	__le32	ulFlowReplace;
462 	__le32	ulXonLimit;
463 	__le32	ulXoffLimit;
464 };
465 
466 /* cp210x_flow_ctl::ulControlHandshake */
467 #define CP210X_SERIAL_DTR_MASK		GENMASK(1, 0)
468 #define CP210X_SERIAL_DTR_INACTIVE	(0 << 0)
469 #define CP210X_SERIAL_DTR_ACTIVE	(1 << 0)
470 #define CP210X_SERIAL_DTR_FLOW_CTL	(2 << 0)
471 #define CP210X_SERIAL_CTS_HANDSHAKE	BIT(3)
472 #define CP210X_SERIAL_DSR_HANDSHAKE	BIT(4)
473 #define CP210X_SERIAL_DCD_HANDSHAKE	BIT(5)
474 #define CP210X_SERIAL_DSR_SENSITIVITY	BIT(6)
475 
476 /* cp210x_flow_ctl::ulFlowReplace */
477 #define CP210X_SERIAL_AUTO_TRANSMIT	BIT(0)
478 #define CP210X_SERIAL_AUTO_RECEIVE	BIT(1)
479 #define CP210X_SERIAL_ERROR_CHAR	BIT(2)
480 #define CP210X_SERIAL_NULL_STRIPPING	BIT(3)
481 #define CP210X_SERIAL_BREAK_CHAR	BIT(4)
482 #define CP210X_SERIAL_RTS_MASK		GENMASK(7, 6)
483 #define CP210X_SERIAL_RTS_INACTIVE	(0 << 6)
484 #define CP210X_SERIAL_RTS_ACTIVE	(1 << 6)
485 #define CP210X_SERIAL_RTS_FLOW_CTL	(2 << 6)
486 #define CP210X_SERIAL_XOFF_CONTINUE	BIT(31)
487 
488 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */
489 struct cp210x_pin_mode {
490 	u8	eci;
491 	u8	sci;
492 };
493 
494 #define CP210X_PIN_MODE_MODEM		0
495 #define CP210X_PIN_MODE_GPIO		BIT(0)
496 
497 /*
498  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes
499  * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes.
500  */
501 struct cp210x_dual_port_config {
502 	__le16	gpio_mode;
503 	u8	__pad0[2];
504 	__le16	reset_state;
505 	u8	__pad1[4];
506 	__le16	suspend_state;
507 	u8	sci_cfg;
508 	u8	eci_cfg;
509 	u8	device_cfg;
510 } __packed;
511 
512 /*
513  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes
514  * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes.
515  */
516 struct cp210x_single_port_config {
517 	__le16	gpio_mode;
518 	u8	__pad0[2];
519 	__le16	reset_state;
520 	u8	__pad1[4];
521 	__le16	suspend_state;
522 	u8	device_cfg;
523 } __packed;
524 
525 /* GPIO modes */
526 #define CP210X_SCI_GPIO_MODE_OFFSET	9
527 #define CP210X_SCI_GPIO_MODE_MASK	GENMASK(11, 9)
528 
529 #define CP210X_ECI_GPIO_MODE_OFFSET	2
530 #define CP210X_ECI_GPIO_MODE_MASK	GENMASK(3, 2)
531 
532 #define CP210X_GPIO_MODE_OFFSET		8
533 #define CP210X_GPIO_MODE_MASK		GENMASK(11, 8)
534 
535 /* CP2105 port configuration values */
536 #define CP2105_GPIO0_TXLED_MODE		BIT(0)
537 #define CP2105_GPIO1_RXLED_MODE		BIT(1)
538 #define CP2105_GPIO1_RS485_MODE		BIT(2)
539 
540 /* CP2104 port configuration values */
541 #define CP2104_GPIO0_TXLED_MODE		BIT(0)
542 #define CP2104_GPIO1_RXLED_MODE		BIT(1)
543 #define CP2104_GPIO2_RS485_MODE		BIT(2)
544 
545 struct cp210x_quad_port_state {
546 	__le16 gpio_mode_pb0;
547 	__le16 gpio_mode_pb1;
548 	__le16 gpio_mode_pb2;
549 	__le16 gpio_mode_pb3;
550 	__le16 gpio_mode_pb4;
551 
552 	__le16 gpio_lowpower_pb0;
553 	__le16 gpio_lowpower_pb1;
554 	__le16 gpio_lowpower_pb2;
555 	__le16 gpio_lowpower_pb3;
556 	__le16 gpio_lowpower_pb4;
557 
558 	__le16 gpio_latch_pb0;
559 	__le16 gpio_latch_pb1;
560 	__le16 gpio_latch_pb2;
561 	__le16 gpio_latch_pb3;
562 	__le16 gpio_latch_pb4;
563 };
564 
565 /*
566  * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes
567  * on a CP2108 chip.
568  *
569  * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf
570  */
571 struct cp210x_quad_port_config {
572 	struct cp210x_quad_port_state reset_state;
573 	struct cp210x_quad_port_state suspend_state;
574 	u8 ipdelay_ifc[4];
575 	u8 enhancedfxn_ifc[4];
576 	u8 enhancedfxn_device;
577 	u8 extclkfreq[4];
578 } __packed;
579 
580 #define CP2108_EF_IFC_GPIO_TXLED		0x01
581 #define CP2108_EF_IFC_GPIO_RXLED		0x02
582 #define CP2108_EF_IFC_GPIO_RS485		0x04
583 #define CP2108_EF_IFC_GPIO_RS485_LOGIC		0x08
584 #define CP2108_EF_IFC_GPIO_CLOCK		0x10
585 #define CP2108_EF_IFC_DYNAMIC_SUSPEND		0x40
586 
587 /* CP2102N configuration array indices */
588 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX	2
589 #define CP210X_2NCONFIG_GPIO_MODE_IDX		581
590 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX	587
591 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX	600
592 
593 /* CP2102N QFN20 port configuration values */
594 #define CP2102N_QFN20_GPIO2_TXLED_MODE		BIT(2)
595 #define CP2102N_QFN20_GPIO3_RXLED_MODE		BIT(3)
596 #define CP2102N_QFN20_GPIO1_RS485_MODE		BIT(4)
597 #define CP2102N_QFN20_GPIO0_CLK_MODE		BIT(6)
598 
599 /*
600  * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes
601  * for CP2102N, CP2103, CP2104 and CP2105.
602  */
603 struct cp210x_gpio_write {
604 	u8	mask;
605 	u8	state;
606 };
607 
608 /*
609  * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes
610  * for CP2108.
611  */
612 struct cp210x_gpio_write16 {
613 	__le16	mask;
614 	__le16	state;
615 };
616 
617 /*
618  * Helper to get interface number when we only have struct usb_serial.
619  */
620 static u8 cp210x_interface_num(struct usb_serial *serial)
621 {
622 	struct usb_host_interface *cur_altsetting;
623 
624 	cur_altsetting = serial->interface->cur_altsetting;
625 
626 	return cur_altsetting->desc.bInterfaceNumber;
627 }
628 
629 /*
630  * Reads a variable-sized block of CP210X_ registers, identified by req.
631  * Returns data into buf in native USB byte order.
632  */
633 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req,
634 		void *buf, int bufsize)
635 {
636 	struct usb_serial *serial = port->serial;
637 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
638 	int result;
639 
640 
641 	result = usb_control_msg_recv(serial->dev, 0, req,
642 			REQTYPE_INTERFACE_TO_HOST, 0,
643 			port_priv->bInterfaceNumber, buf, bufsize,
644 			USB_CTRL_SET_TIMEOUT, GFP_KERNEL);
645 	if (result) {
646 		dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n",
647 				req, bufsize, result);
648 		return result;
649 	}
650 
651 	return 0;
652 }
653 
654 /*
655  * Reads any 8-bit CP210X_ register identified by req.
656  */
657 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val)
658 {
659 	return cp210x_read_reg_block(port, req, val, sizeof(*val));
660 }
661 
662 /*
663  * Reads a variable-sized vendor block of CP210X_ registers, identified by val.
664  * Returns data into buf in native USB byte order.
665  */
666 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val,
667 				    void *buf, int bufsize)
668 {
669 	int result;
670 
671 	result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC,
672 			type, val, cp210x_interface_num(serial), buf, bufsize,
673 			USB_CTRL_GET_TIMEOUT, GFP_KERNEL);
674 	if (result) {
675 		dev_err(&serial->interface->dev,
676 			"failed to get vendor val 0x%04x size %d: %d\n", val,
677 			bufsize, result);
678 		return result;
679 	}
680 
681 	return 0;
682 }
683 
684 /*
685  * Writes any 16-bit CP210X_ register (req) whose value is passed
686  * entirely in the wValue field of the USB request.
687  */
688 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val)
689 {
690 	struct usb_serial *serial = port->serial;
691 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
692 	int result;
693 
694 	result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
695 			req, REQTYPE_HOST_TO_INTERFACE, val,
696 			port_priv->bInterfaceNumber, NULL, 0,
697 			USB_CTRL_SET_TIMEOUT);
698 	if (result < 0) {
699 		dev_err(&port->dev, "failed set request 0x%x status: %d\n",
700 				req, result);
701 	}
702 
703 	return result;
704 }
705 
706 /*
707  * Writes a variable-sized block of CP210X_ registers, identified by req.
708  * Data in buf must be in native USB byte order.
709  */
710 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req,
711 		void *buf, int bufsize)
712 {
713 	struct usb_serial *serial = port->serial;
714 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
715 	int result;
716 
717 	result = usb_control_msg_send(serial->dev, 0, req,
718 			REQTYPE_HOST_TO_INTERFACE, 0,
719 			port_priv->bInterfaceNumber, buf, bufsize,
720 			USB_CTRL_SET_TIMEOUT, GFP_KERNEL);
721 	if (result) {
722 		dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n",
723 				req, bufsize, result);
724 		return result;
725 	}
726 
727 	return 0;
728 }
729 
730 /*
731  * Writes any 32-bit CP210X_ register identified by req.
732  */
733 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val)
734 {
735 	__le32 le32_val;
736 
737 	le32_val = cpu_to_le32(val);
738 
739 	return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val));
740 }
741 
742 #ifdef CONFIG_GPIOLIB
743 /*
744  * Writes a variable-sized vendor block of CP210X_ registers, identified by val.
745  * Data in buf must be in native USB byte order.
746  */
747 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type,
748 				     u16 val, void *buf, int bufsize)
749 {
750 	int result;
751 
752 	result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC,
753 			type, val, cp210x_interface_num(serial), buf, bufsize,
754 			USB_CTRL_SET_TIMEOUT, GFP_KERNEL);
755 	if (result) {
756 		dev_err(&serial->interface->dev,
757 			"failed to set vendor val 0x%04x size %d: %d\n", val,
758 			bufsize, result);
759 		return result;
760 	}
761 
762 	return 0;
763 }
764 #endif
765 
766 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port)
767 {
768 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
769 	int result;
770 
771 	result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE);
772 	if (result) {
773 		dev_err(&port->dev, "%s - Unable to enable UART\n", __func__);
774 		return result;
775 	}
776 
777 	if (tty)
778 		cp210x_set_termios(tty, port, NULL);
779 
780 	result = usb_serial_generic_open(tty, port);
781 	if (result)
782 		goto err_disable;
783 
784 	return 0;
785 
786 err_disable:
787 	cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE);
788 	port_priv->event_mode = false;
789 
790 	return result;
791 }
792 
793 static void cp210x_close(struct usb_serial_port *port)
794 {
795 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
796 
797 	usb_serial_generic_close(port);
798 
799 	/* Clear both queues; cp2108 needs this to avoid an occasional hang */
800 	cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL);
801 
802 	cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE);
803 
804 	/* Disabling the interface disables event-insertion mode. */
805 	port_priv->event_mode = false;
806 }
807 
808 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag)
809 {
810 	if (lsr & CP210X_LSR_BREAK) {
811 		port->icount.brk++;
812 		*flag = TTY_BREAK;
813 	} else if (lsr & CP210X_LSR_PARITY) {
814 		port->icount.parity++;
815 		*flag = TTY_PARITY;
816 	} else if (lsr & CP210X_LSR_FRAME) {
817 		port->icount.frame++;
818 		*flag = TTY_FRAME;
819 	}
820 
821 	if (lsr & CP210X_LSR_OVERRUN) {
822 		port->icount.overrun++;
823 		tty_insert_flip_char(&port->port, 0, TTY_OVERRUN);
824 	}
825 }
826 
827 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag)
828 {
829 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
830 
831 	switch (port_priv->event_state) {
832 	case ES_DATA:
833 		if (*ch == CP210X_ESCCHAR) {
834 			port_priv->event_state = ES_ESCAPE;
835 			break;
836 		}
837 		return false;
838 	case ES_ESCAPE:
839 		switch (*ch) {
840 		case 0:
841 			dev_dbg(&port->dev, "%s - escape char\n", __func__);
842 			*ch = CP210X_ESCCHAR;
843 			port_priv->event_state = ES_DATA;
844 			return false;
845 		case 1:
846 			port_priv->event_state = ES_LSR_DATA_0;
847 			break;
848 		case 2:
849 			port_priv->event_state = ES_LSR;
850 			break;
851 		case 3:
852 			port_priv->event_state = ES_MSR;
853 			break;
854 		default:
855 			dev_err(&port->dev, "malformed event 0x%02x\n", *ch);
856 			port_priv->event_state = ES_DATA;
857 			break;
858 		}
859 		break;
860 	case ES_LSR_DATA_0:
861 		port_priv->lsr = *ch;
862 		port_priv->event_state = ES_LSR_DATA_1;
863 		break;
864 	case ES_LSR_DATA_1:
865 		dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n",
866 				__func__, port_priv->lsr, *ch);
867 		cp210x_process_lsr(port, port_priv->lsr, flag);
868 		port_priv->event_state = ES_DATA;
869 		return false;
870 	case ES_LSR:
871 		dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch);
872 		port_priv->lsr = *ch;
873 		cp210x_process_lsr(port, port_priv->lsr, flag);
874 		port_priv->event_state = ES_DATA;
875 		break;
876 	case ES_MSR:
877 		dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch);
878 		/* unimplemented */
879 		port_priv->event_state = ES_DATA;
880 		break;
881 	}
882 
883 	return true;
884 }
885 
886 static void cp210x_process_read_urb(struct urb *urb)
887 {
888 	struct usb_serial_port *port = urb->context;
889 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
890 	unsigned char *ch = urb->transfer_buffer;
891 	char flag;
892 	int i;
893 
894 	if (!urb->actual_length)
895 		return;
896 
897 	if (port_priv->event_mode) {
898 		for (i = 0; i < urb->actual_length; i++, ch++) {
899 			flag = TTY_NORMAL;
900 
901 			if (cp210x_process_char(port, ch, &flag))
902 				continue;
903 
904 			tty_insert_flip_char(&port->port, *ch, flag);
905 		}
906 	} else {
907 		tty_insert_flip_string(&port->port, ch, urb->actual_length);
908 	}
909 	tty_flip_buffer_push(&port->port);
910 }
911 
912 /*
913  * Read how many bytes are waiting in the TX queue.
914  */
915 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port,
916 		u32 *count)
917 {
918 	struct usb_serial *serial = port->serial;
919 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
920 	struct cp210x_comm_status sts;
921 	int result;
922 
923 	result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS,
924 			REQTYPE_INTERFACE_TO_HOST, 0,
925 			port_priv->bInterfaceNumber, &sts, sizeof(sts),
926 			USB_CTRL_GET_TIMEOUT, GFP_KERNEL);
927 	if (result) {
928 		dev_err(&port->dev, "failed to get comm status: %d\n", result);
929 		return result;
930 	}
931 
932 	*count = le32_to_cpu(sts.ulAmountInOutQueue);
933 
934 	return 0;
935 }
936 
937 static bool cp210x_tx_empty(struct usb_serial_port *port)
938 {
939 	int err;
940 	u32 count;
941 
942 	err = cp210x_get_tx_queue_byte_count(port, &count);
943 	if (err)
944 		return true;
945 
946 	return !count;
947 }
948 
949 struct cp210x_rate {
950 	speed_t rate;
951 	speed_t high;
952 };
953 
954 static const struct cp210x_rate cp210x_an205_table1[] = {
955 	{ 300, 300 },
956 	{ 600, 600 },
957 	{ 1200, 1200 },
958 	{ 1800, 1800 },
959 	{ 2400, 2400 },
960 	{ 4000, 4000 },
961 	{ 4800, 4803 },
962 	{ 7200, 7207 },
963 	{ 9600, 9612 },
964 	{ 14400, 14428 },
965 	{ 16000, 16062 },
966 	{ 19200, 19250 },
967 	{ 28800, 28912 },
968 	{ 38400, 38601 },
969 	{ 51200, 51558 },
970 	{ 56000, 56280 },
971 	{ 57600, 58053 },
972 	{ 64000, 64111 },
973 	{ 76800, 77608 },
974 	{ 115200, 117028 },
975 	{ 128000, 129347 },
976 	{ 153600, 156868 },
977 	{ 230400, 237832 },
978 	{ 250000, 254234 },
979 	{ 256000, 273066 },
980 	{ 460800, 491520 },
981 	{ 500000, 567138 },
982 	{ 576000, 670254 },
983 	{ 921600, UINT_MAX }
984 };
985 
986 /*
987  * Quantises the baud rate as per AN205 Table 1
988  */
989 static speed_t cp210x_get_an205_rate(speed_t baud)
990 {
991 	int i;
992 
993 	for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) {
994 		if (baud <= cp210x_an205_table1[i].high)
995 			break;
996 	}
997 
998 	return cp210x_an205_table1[i].rate;
999 }
1000 
1001 static speed_t cp210x_get_actual_rate(speed_t baud)
1002 {
1003 	unsigned int prescale = 1;
1004 	unsigned int div;
1005 
1006 	if (baud <= 365)
1007 		prescale = 4;
1008 
1009 	div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud);
1010 	baud = 48000000 / (2 * prescale * div);
1011 
1012 	return baud;
1013 }
1014 
1015 /*
1016  * CP2101 supports the following baud rates:
1017  *
1018  *	300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800,
1019  *	38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600
1020  *
1021  * CP2102 and CP2103 support the following additional rates:
1022  *
1023  *	4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000,
1024  *	576000
1025  *
1026  * The device will map a requested rate to a supported one, but the result
1027  * of requests for rates greater than 1053257 is undefined (see AN205).
1028  *
1029  * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud,
1030  * respectively, with an error less than 1%. The actual rates are determined
1031  * by
1032  *
1033  *	div = round(freq / (2 x prescale x request))
1034  *	actual = freq / (2 x prescale x div)
1035  *
1036  * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps
1037  * or 1 otherwise.
1038  * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1
1039  * otherwise.
1040  */
1041 static void cp210x_change_speed(struct tty_struct *tty,
1042 		struct usb_serial_port *port, struct ktermios *old_termios)
1043 {
1044 	struct usb_serial *serial = port->serial;
1045 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1046 	u32 baud;
1047 
1048 	/*
1049 	 * This maps the requested rate to the actual rate, a valid rate on
1050 	 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed].
1051 	 *
1052 	 * NOTE: B0 is not implemented.
1053 	 */
1054 	baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed);
1055 
1056 	if (priv->use_actual_rate)
1057 		baud = cp210x_get_actual_rate(baud);
1058 	else if (baud < 1000000)
1059 		baud = cp210x_get_an205_rate(baud);
1060 
1061 	dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud);
1062 	if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) {
1063 		dev_warn(&port->dev, "failed to set baud rate to %u\n", baud);
1064 		if (old_termios)
1065 			baud = old_termios->c_ospeed;
1066 		else
1067 			baud = 9600;
1068 	}
1069 
1070 	tty_encode_baud_rate(tty, baud, baud);
1071 }
1072 
1073 static void cp210x_enable_event_mode(struct usb_serial_port *port)
1074 {
1075 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1076 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1077 	int ret;
1078 
1079 	if (port_priv->event_mode)
1080 		return;
1081 
1082 	if (priv->no_event_mode)
1083 		return;
1084 
1085 	port_priv->event_state = ES_DATA;
1086 	port_priv->event_mode = true;
1087 
1088 	ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR);
1089 	if (ret) {
1090 		dev_err(&port->dev, "failed to enable events: %d\n", ret);
1091 		port_priv->event_mode = false;
1092 	}
1093 }
1094 
1095 static void cp210x_disable_event_mode(struct usb_serial_port *port)
1096 {
1097 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1098 	int ret;
1099 
1100 	if (!port_priv->event_mode)
1101 		return;
1102 
1103 	ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0);
1104 	if (ret) {
1105 		dev_err(&port->dev, "failed to disable events: %d\n", ret);
1106 		return;
1107 	}
1108 
1109 	port_priv->event_mode = false;
1110 }
1111 
1112 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b)
1113 {
1114 	bool iflag_change, cc_change;
1115 
1116 	iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF));
1117 	cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] ||
1118 			a->c_cc[VSTOP] != b->c_cc[VSTOP];
1119 
1120 	return tty_termios_hw_change(a, b) || iflag_change || cc_change;
1121 }
1122 
1123 static void cp210x_set_flow_control(struct tty_struct *tty,
1124 		struct usb_serial_port *port, struct ktermios *old_termios)
1125 {
1126 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1127 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1128 	struct cp210x_special_chars chars;
1129 	struct cp210x_flow_ctl flow_ctl;
1130 	u32 flow_repl;
1131 	u32 ctl_hs;
1132 	bool crtscts;
1133 	int ret;
1134 
1135 	/*
1136 	 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum
1137 	 * CP2102N_E104). Report back that flow control is not supported.
1138 	 */
1139 	if (priv->no_flow_control) {
1140 		tty->termios.c_cflag &= ~CRTSCTS;
1141 		tty->termios.c_iflag &= ~(IXON | IXOFF);
1142 	}
1143 
1144 	if (old_termios &&
1145 			C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) &&
1146 			I_IXON(tty) == (old_termios->c_iflag & IXON) &&
1147 			I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) &&
1148 			START_CHAR(tty) == old_termios->c_cc[VSTART] &&
1149 			STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) {
1150 		return;
1151 	}
1152 
1153 	if (I_IXON(tty) || I_IXOFF(tty)) {
1154 		memset(&chars, 0, sizeof(chars));
1155 
1156 		chars.bXonChar = START_CHAR(tty);
1157 		chars.bXoffChar = STOP_CHAR(tty);
1158 
1159 		ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars,
1160 				sizeof(chars));
1161 		if (ret) {
1162 			dev_err(&port->dev, "failed to set special chars: %d\n",
1163 					ret);
1164 		}
1165 	}
1166 
1167 	mutex_lock(&port_priv->mutex);
1168 
1169 	ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl,
1170 			sizeof(flow_ctl));
1171 	if (ret)
1172 		goto out_unlock;
1173 
1174 	ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake);
1175 	flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace);
1176 
1177 	ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE;
1178 	ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE;
1179 	ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY;
1180 	ctl_hs &= ~CP210X_SERIAL_DTR_MASK;
1181 	if (port_priv->dtr)
1182 		ctl_hs |= CP210X_SERIAL_DTR_ACTIVE;
1183 	else
1184 		ctl_hs |= CP210X_SERIAL_DTR_INACTIVE;
1185 
1186 	flow_repl &= ~CP210X_SERIAL_RTS_MASK;
1187 	if (C_CRTSCTS(tty)) {
1188 		ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE;
1189 		if (port_priv->rts)
1190 			flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL;
1191 		else
1192 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1193 		crtscts = true;
1194 	} else {
1195 		ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE;
1196 		if (port_priv->rts)
1197 			flow_repl |= CP210X_SERIAL_RTS_ACTIVE;
1198 		else
1199 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1200 		crtscts = false;
1201 	}
1202 
1203 	if (I_IXOFF(tty)) {
1204 		flow_repl |= CP210X_SERIAL_AUTO_RECEIVE;
1205 
1206 		flow_ctl.ulXonLimit = cpu_to_le32(128);
1207 		flow_ctl.ulXoffLimit = cpu_to_le32(128);
1208 	} else {
1209 		flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE;
1210 	}
1211 
1212 	if (I_IXON(tty))
1213 		flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT;
1214 	else
1215 		flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT;
1216 
1217 	dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__,
1218 			ctl_hs, flow_repl);
1219 
1220 	flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs);
1221 	flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl);
1222 
1223 	ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl,
1224 			sizeof(flow_ctl));
1225 	if (ret)
1226 		goto out_unlock;
1227 
1228 	port_priv->crtscts = crtscts;
1229 out_unlock:
1230 	mutex_unlock(&port_priv->mutex);
1231 }
1232 
1233 static void cp210x_set_termios(struct tty_struct *tty,
1234 		struct usb_serial_port *port, struct ktermios *old_termios)
1235 {
1236 	struct cp210x_serial_private *priv = usb_get_serial_data(port->serial);
1237 	u16 bits;
1238 	int ret;
1239 
1240 	if (old_termios && !cp210x_termios_change(&tty->termios, old_termios))
1241 		return;
1242 
1243 	if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed)
1244 		cp210x_change_speed(tty, port, old_termios);
1245 
1246 	/* CP2101 only supports CS8, 1 stop bit and non-stick parity. */
1247 	if (priv->partnum == CP210X_PARTNUM_CP2101) {
1248 		tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR);
1249 		tty->termios.c_cflag |= CS8;
1250 	}
1251 
1252 	bits = 0;
1253 
1254 	switch (C_CSIZE(tty)) {
1255 	case CS5:
1256 		bits |= BITS_DATA_5;
1257 		break;
1258 	case CS6:
1259 		bits |= BITS_DATA_6;
1260 		break;
1261 	case CS7:
1262 		bits |= BITS_DATA_7;
1263 		break;
1264 	case CS8:
1265 	default:
1266 		bits |= BITS_DATA_8;
1267 		break;
1268 	}
1269 
1270 	if (C_PARENB(tty)) {
1271 		if (C_CMSPAR(tty)) {
1272 			if (C_PARODD(tty))
1273 				bits |= BITS_PARITY_MARK;
1274 			else
1275 				bits |= BITS_PARITY_SPACE;
1276 		} else {
1277 			if (C_PARODD(tty))
1278 				bits |= BITS_PARITY_ODD;
1279 			else
1280 				bits |= BITS_PARITY_EVEN;
1281 		}
1282 	}
1283 
1284 	if (C_CSTOPB(tty))
1285 		bits |= BITS_STOP_2;
1286 	else
1287 		bits |= BITS_STOP_1;
1288 
1289 	ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits);
1290 	if (ret)
1291 		dev_err(&port->dev, "failed to set line control: %d\n", ret);
1292 
1293 	cp210x_set_flow_control(tty, port, old_termios);
1294 
1295 	/*
1296 	 * Enable event-insertion mode only if input parity checking is
1297 	 * enabled for now.
1298 	 */
1299 	if (I_INPCK(tty))
1300 		cp210x_enable_event_mode(port);
1301 	else
1302 		cp210x_disable_event_mode(port);
1303 }
1304 
1305 static int cp210x_tiocmset(struct tty_struct *tty,
1306 		unsigned int set, unsigned int clear)
1307 {
1308 	struct usb_serial_port *port = tty->driver_data;
1309 	return cp210x_tiocmset_port(port, set, clear);
1310 }
1311 
1312 static int cp210x_tiocmset_port(struct usb_serial_port *port,
1313 		unsigned int set, unsigned int clear)
1314 {
1315 	struct cp210x_port_private *port_priv = usb_get_serial_port_data(port);
1316 	struct cp210x_flow_ctl flow_ctl;
1317 	u32 ctl_hs, flow_repl;
1318 	u16 control = 0;
1319 	int ret;
1320 
1321 	mutex_lock(&port_priv->mutex);
1322 
1323 	if (set & TIOCM_RTS) {
1324 		port_priv->rts = true;
1325 		control |= CONTROL_RTS;
1326 		control |= CONTROL_WRITE_RTS;
1327 	}
1328 	if (set & TIOCM_DTR) {
1329 		port_priv->dtr = true;
1330 		control |= CONTROL_DTR;
1331 		control |= CONTROL_WRITE_DTR;
1332 	}
1333 	if (clear & TIOCM_RTS) {
1334 		port_priv->rts = false;
1335 		control &= ~CONTROL_RTS;
1336 		control |= CONTROL_WRITE_RTS;
1337 	}
1338 	if (clear & TIOCM_DTR) {
1339 		port_priv->dtr = false;
1340 		control &= ~CONTROL_DTR;
1341 		control |= CONTROL_WRITE_DTR;
1342 	}
1343 
1344 	/*
1345 	 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware
1346 	 * flow control is enabled.
1347 	 */
1348 	if (port_priv->crtscts && control & CONTROL_WRITE_RTS) {
1349 		ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl,
1350 				sizeof(flow_ctl));
1351 		if (ret)
1352 			goto out_unlock;
1353 
1354 		ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake);
1355 		flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace);
1356 
1357 		ctl_hs &= ~CP210X_SERIAL_DTR_MASK;
1358 		if (port_priv->dtr)
1359 			ctl_hs |= CP210X_SERIAL_DTR_ACTIVE;
1360 		else
1361 			ctl_hs |= CP210X_SERIAL_DTR_INACTIVE;
1362 
1363 		flow_repl &= ~CP210X_SERIAL_RTS_MASK;
1364 		if (port_priv->rts)
1365 			flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL;
1366 		else
1367 			flow_repl |= CP210X_SERIAL_RTS_INACTIVE;
1368 
1369 		flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs);
1370 		flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl);
1371 
1372 		dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n",
1373 				__func__, ctl_hs, flow_repl);
1374 
1375 		ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl,
1376 				sizeof(flow_ctl));
1377 	} else {
1378 		dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control);
1379 
1380 		ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control);
1381 	}
1382 out_unlock:
1383 	mutex_unlock(&port_priv->mutex);
1384 
1385 	return ret;
1386 }
1387 
1388 static void cp210x_dtr_rts(struct usb_serial_port *port, int on)
1389 {
1390 	if (on)
1391 		cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0);
1392 	else
1393 		cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS);
1394 }
1395 
1396 static int cp210x_tiocmget(struct tty_struct *tty)
1397 {
1398 	struct usb_serial_port *port = tty->driver_data;
1399 	u8 control;
1400 	int result;
1401 
1402 	result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control);
1403 	if (result)
1404 		return result;
1405 
1406 	result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0)
1407 		|((control & CONTROL_RTS) ? TIOCM_RTS : 0)
1408 		|((control & CONTROL_CTS) ? TIOCM_CTS : 0)
1409 		|((control & CONTROL_DSR) ? TIOCM_DSR : 0)
1410 		|((control & CONTROL_RING)? TIOCM_RI  : 0)
1411 		|((control & CONTROL_DCD) ? TIOCM_CD  : 0);
1412 
1413 	dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control);
1414 
1415 	return result;
1416 }
1417 
1418 static void cp210x_break_ctl(struct tty_struct *tty, int break_state)
1419 {
1420 	struct usb_serial_port *port = tty->driver_data;
1421 	u16 state;
1422 
1423 	if (break_state == 0)
1424 		state = BREAK_OFF;
1425 	else
1426 		state = BREAK_ON;
1427 	dev_dbg(&port->dev, "%s - turning break %s\n", __func__,
1428 		state == BREAK_OFF ? "off" : "on");
1429 	cp210x_write_u16_reg(port, CP210X_SET_BREAK, state);
1430 }
1431 
1432 #ifdef CONFIG_GPIOLIB
1433 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio)
1434 {
1435 	struct usb_serial *serial = gpiochip_get_data(gc);
1436 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1437 	u8 req_type;
1438 	u16 mask;
1439 	int result;
1440 	int len;
1441 
1442 	result = usb_autopm_get_interface(serial->interface);
1443 	if (result)
1444 		return result;
1445 
1446 	switch (priv->partnum) {
1447 	case CP210X_PARTNUM_CP2105:
1448 		req_type = REQTYPE_INTERFACE_TO_HOST;
1449 		len = 1;
1450 		break;
1451 	case CP210X_PARTNUM_CP2108:
1452 		req_type = REQTYPE_INTERFACE_TO_HOST;
1453 		len = 2;
1454 		break;
1455 	default:
1456 		req_type = REQTYPE_DEVICE_TO_HOST;
1457 		len = 1;
1458 		break;
1459 	}
1460 
1461 	mask = 0;
1462 	result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH,
1463 					  &mask, len);
1464 
1465 	usb_autopm_put_interface(serial->interface);
1466 
1467 	if (result < 0)
1468 		return result;
1469 
1470 	le16_to_cpus(&mask);
1471 
1472 	return !!(mask & BIT(gpio));
1473 }
1474 
1475 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value)
1476 {
1477 	struct usb_serial *serial = gpiochip_get_data(gc);
1478 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1479 	struct cp210x_gpio_write16 buf16;
1480 	struct cp210x_gpio_write buf;
1481 	u16 mask, state;
1482 	u16 wIndex;
1483 	int result;
1484 
1485 	if (value == 1)
1486 		state = BIT(gpio);
1487 	else
1488 		state = 0;
1489 
1490 	mask = BIT(gpio);
1491 
1492 	result = usb_autopm_get_interface(serial->interface);
1493 	if (result)
1494 		goto out;
1495 
1496 	switch (priv->partnum) {
1497 	case CP210X_PARTNUM_CP2105:
1498 		buf.mask = (u8)mask;
1499 		buf.state = (u8)state;
1500 		result = cp210x_write_vendor_block(serial,
1501 						   REQTYPE_HOST_TO_INTERFACE,
1502 						   CP210X_WRITE_LATCH, &buf,
1503 						   sizeof(buf));
1504 		break;
1505 	case CP210X_PARTNUM_CP2108:
1506 		buf16.mask = cpu_to_le16(mask);
1507 		buf16.state = cpu_to_le16(state);
1508 		result = cp210x_write_vendor_block(serial,
1509 						   REQTYPE_HOST_TO_INTERFACE,
1510 						   CP210X_WRITE_LATCH, &buf16,
1511 						   sizeof(buf16));
1512 		break;
1513 	default:
1514 		wIndex = state << 8 | mask;
1515 		result = usb_control_msg(serial->dev,
1516 					 usb_sndctrlpipe(serial->dev, 0),
1517 					 CP210X_VENDOR_SPECIFIC,
1518 					 REQTYPE_HOST_TO_DEVICE,
1519 					 CP210X_WRITE_LATCH,
1520 					 wIndex,
1521 					 NULL, 0, USB_CTRL_SET_TIMEOUT);
1522 		break;
1523 	}
1524 
1525 	usb_autopm_put_interface(serial->interface);
1526 out:
1527 	if (result < 0) {
1528 		dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n",
1529 				result);
1530 	}
1531 }
1532 
1533 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio)
1534 {
1535 	struct usb_serial *serial = gpiochip_get_data(gc);
1536 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1537 
1538 	return priv->gpio_input & BIT(gpio);
1539 }
1540 
1541 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio)
1542 {
1543 	struct usb_serial *serial = gpiochip_get_data(gc);
1544 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1545 
1546 	if (priv->partnum == CP210X_PARTNUM_CP2105) {
1547 		/* hardware does not support an input mode */
1548 		return -ENOTSUPP;
1549 	}
1550 
1551 	/* push-pull pins cannot be changed to be inputs */
1552 	if (priv->gpio_pushpull & BIT(gpio))
1553 		return -EINVAL;
1554 
1555 	/* make sure to release pin if it is being driven low */
1556 	cp210x_gpio_set(gc, gpio, 1);
1557 
1558 	priv->gpio_input |= BIT(gpio);
1559 
1560 	return 0;
1561 }
1562 
1563 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio,
1564 					int value)
1565 {
1566 	struct usb_serial *serial = gpiochip_get_data(gc);
1567 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1568 
1569 	priv->gpio_input &= ~BIT(gpio);
1570 	cp210x_gpio_set(gc, gpio, value);
1571 
1572 	return 0;
1573 }
1574 
1575 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio,
1576 				  unsigned long config)
1577 {
1578 	struct usb_serial *serial = gpiochip_get_data(gc);
1579 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1580 	enum pin_config_param param = pinconf_to_config_param(config);
1581 
1582 	/* Succeed only if in correct mode (this can't be set at runtime) */
1583 	if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) &&
1584 	    (priv->gpio_pushpull & BIT(gpio)))
1585 		return 0;
1586 
1587 	if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) &&
1588 	    !(priv->gpio_pushpull & BIT(gpio)))
1589 		return 0;
1590 
1591 	return -ENOTSUPP;
1592 }
1593 
1594 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc,
1595 		unsigned long *valid_mask, unsigned int ngpios)
1596 {
1597 	struct usb_serial *serial = gpiochip_get_data(gc);
1598 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1599 	struct device *dev = &serial->interface->dev;
1600 	unsigned long altfunc_mask = priv->gpio_altfunc;
1601 
1602 	bitmap_complement(valid_mask, &altfunc_mask, ngpios);
1603 
1604 	if (bitmap_empty(valid_mask, ngpios))
1605 		dev_dbg(dev, "no pin configured for GPIO\n");
1606 	else
1607 		dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios,
1608 				valid_mask);
1609 	return 0;
1610 }
1611 
1612 /*
1613  * This function is for configuring GPIO using shared pins, where other signals
1614  * are made unavailable by configuring the use of GPIO. This is believed to be
1615  * only applicable to the cp2105 at this point, the other devices supported by
1616  * this driver that provide GPIO do so in a way that does not impact other
1617  * signals and are thus expected to have very different initialisation.
1618  */
1619 static int cp2105_gpioconf_init(struct usb_serial *serial)
1620 {
1621 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1622 	struct cp210x_pin_mode mode;
1623 	struct cp210x_dual_port_config config;
1624 	u8 intf_num = cp210x_interface_num(serial);
1625 	u8 iface_config;
1626 	int result;
1627 
1628 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1629 					  CP210X_GET_DEVICEMODE, &mode,
1630 					  sizeof(mode));
1631 	if (result < 0)
1632 		return result;
1633 
1634 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1635 					  CP210X_GET_PORTCONFIG, &config,
1636 					  sizeof(config));
1637 	if (result < 0)
1638 		return result;
1639 
1640 	/*  2 banks of GPIO - One for the pins taken from each serial port */
1641 	if (intf_num == 0) {
1642 		priv->gc.ngpio = 2;
1643 
1644 		if (mode.eci == CP210X_PIN_MODE_MODEM) {
1645 			/* mark all GPIOs of this interface as reserved */
1646 			priv->gpio_altfunc = 0xff;
1647 			return 0;
1648 		}
1649 
1650 		iface_config = config.eci_cfg;
1651 		priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1652 						CP210X_ECI_GPIO_MODE_MASK) >>
1653 						CP210X_ECI_GPIO_MODE_OFFSET);
1654 	} else if (intf_num == 1) {
1655 		priv->gc.ngpio = 3;
1656 
1657 		if (mode.sci == CP210X_PIN_MODE_MODEM) {
1658 			/* mark all GPIOs of this interface as reserved */
1659 			priv->gpio_altfunc = 0xff;
1660 			return 0;
1661 		}
1662 
1663 		iface_config = config.sci_cfg;
1664 		priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1665 						CP210X_SCI_GPIO_MODE_MASK) >>
1666 						CP210X_SCI_GPIO_MODE_OFFSET);
1667 	} else {
1668 		return -ENODEV;
1669 	}
1670 
1671 	/* mark all pins which are not in GPIO mode */
1672 	if (iface_config & CP2105_GPIO0_TXLED_MODE)	/* GPIO 0 */
1673 		priv->gpio_altfunc |= BIT(0);
1674 	if (iface_config & (CP2105_GPIO1_RXLED_MODE |	/* GPIO 1 */
1675 			CP2105_GPIO1_RS485_MODE))
1676 		priv->gpio_altfunc |= BIT(1);
1677 
1678 	/* driver implementation for CP2105 only supports outputs */
1679 	priv->gpio_input = 0;
1680 
1681 	return 0;
1682 }
1683 
1684 static int cp2104_gpioconf_init(struct usb_serial *serial)
1685 {
1686 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1687 	struct cp210x_single_port_config config;
1688 	u8 iface_config;
1689 	u8 gpio_latch;
1690 	int result;
1691 	u8 i;
1692 
1693 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1694 					  CP210X_GET_PORTCONFIG, &config,
1695 					  sizeof(config));
1696 	if (result < 0)
1697 		return result;
1698 
1699 	priv->gc.ngpio = 4;
1700 
1701 	iface_config = config.device_cfg;
1702 	priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) &
1703 					CP210X_GPIO_MODE_MASK) >>
1704 					CP210X_GPIO_MODE_OFFSET);
1705 	gpio_latch = (u8)((le16_to_cpu(config.reset_state) &
1706 					CP210X_GPIO_MODE_MASK) >>
1707 					CP210X_GPIO_MODE_OFFSET);
1708 
1709 	/* mark all pins which are not in GPIO mode */
1710 	if (iface_config & CP2104_GPIO0_TXLED_MODE)	/* GPIO 0 */
1711 		priv->gpio_altfunc |= BIT(0);
1712 	if (iface_config & CP2104_GPIO1_RXLED_MODE)	/* GPIO 1 */
1713 		priv->gpio_altfunc |= BIT(1);
1714 	if (iface_config & CP2104_GPIO2_RS485_MODE)	/* GPIO 2 */
1715 		priv->gpio_altfunc |= BIT(2);
1716 
1717 	/*
1718 	 * Like CP2102N, CP2104 has also no strict input and output pin
1719 	 * modes.
1720 	 * Do the same input mode emulation as CP2102N.
1721 	 */
1722 	for (i = 0; i < priv->gc.ngpio; ++i) {
1723 		/*
1724 		 * Set direction to "input" iff pin is open-drain and reset
1725 		 * value is 1.
1726 		 */
1727 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1728 			priv->gpio_input |= BIT(i);
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static int cp2108_gpio_init(struct usb_serial *serial)
1735 {
1736 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1737 	struct cp210x_quad_port_config config;
1738 	u16 gpio_latch;
1739 	int result;
1740 	u8 i;
1741 
1742 	result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
1743 					  CP210X_GET_PORTCONFIG, &config,
1744 					  sizeof(config));
1745 	if (result < 0)
1746 		return result;
1747 
1748 	priv->gc.ngpio = 16;
1749 	priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1);
1750 	gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1);
1751 
1752 	/*
1753 	 * Mark all pins which are not in GPIO mode.
1754 	 *
1755 	 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet:
1756 	 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf
1757 	 *
1758 	 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0]
1759 	 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7,
1760 	 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15.
1761 	 */
1762 	for (i = 0; i < 4; i++) {
1763 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED)
1764 			priv->gpio_altfunc |= BIT(i * 4);
1765 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED)
1766 			priv->gpio_altfunc |= BIT((i * 4) + 1);
1767 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485)
1768 			priv->gpio_altfunc |= BIT((i * 4) + 2);
1769 		if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK)
1770 			priv->gpio_altfunc |= BIT((i * 4) + 3);
1771 	}
1772 
1773 	/*
1774 	 * Like CP2102N, CP2108 has also no strict input and output pin
1775 	 * modes. Do the same input mode emulation as CP2102N.
1776 	 */
1777 	for (i = 0; i < priv->gc.ngpio; ++i) {
1778 		/*
1779 		 * Set direction to "input" iff pin is open-drain and reset
1780 		 * value is 1.
1781 		 */
1782 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1783 			priv->gpio_input |= BIT(i);
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 static int cp2102n_gpioconf_init(struct usb_serial *serial)
1790 {
1791 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1792 	const u16 config_size = 0x02a6;
1793 	u8 gpio_rst_latch;
1794 	u8 config_version;
1795 	u8 gpio_pushpull;
1796 	u8 *config_buf;
1797 	u8 gpio_latch;
1798 	u8 gpio_ctrl;
1799 	int result;
1800 	u8 i;
1801 
1802 	/*
1803 	 * Retrieve device configuration from the device.
1804 	 * The array received contains all customization settings done at the
1805 	 * factory/manufacturer. Format of the array is documented at the
1806 	 * time of writing at:
1807 	 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa
1808 	 */
1809 	config_buf = kmalloc(config_size, GFP_KERNEL);
1810 	if (!config_buf)
1811 		return -ENOMEM;
1812 
1813 	result = cp210x_read_vendor_block(serial,
1814 					  REQTYPE_DEVICE_TO_HOST,
1815 					  CP210X_READ_2NCONFIG,
1816 					  config_buf,
1817 					  config_size);
1818 	if (result < 0) {
1819 		kfree(config_buf);
1820 		return result;
1821 	}
1822 
1823 	config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX];
1824 	gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX];
1825 	gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX];
1826 	gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX];
1827 
1828 	kfree(config_buf);
1829 
1830 	/* Make sure this is a config format we understand. */
1831 	if (config_version != 0x01)
1832 		return -ENOTSUPP;
1833 
1834 	priv->gc.ngpio = 4;
1835 
1836 	/*
1837 	 * Get default pin states after reset. Needed so we can determine
1838 	 * the direction of an open-drain pin.
1839 	 */
1840 	gpio_latch = (gpio_rst_latch >> 3) & 0x0f;
1841 
1842 	/* 0 indicates open-drain mode, 1 is push-pull */
1843 	priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f;
1844 
1845 	/* 0 indicates GPIO mode, 1 is alternate function */
1846 	if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) {
1847 		/* QFN20 is special... */
1848 		if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE)   /* GPIO 0 */
1849 			priv->gpio_altfunc |= BIT(0);
1850 		if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */
1851 			priv->gpio_altfunc |= BIT(1);
1852 		if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */
1853 			priv->gpio_altfunc |= BIT(2);
1854 		if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */
1855 			priv->gpio_altfunc |= BIT(3);
1856 	} else {
1857 		priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f;
1858 	}
1859 
1860 	if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) {
1861 		/*
1862 		 * For the QFN28 package, GPIO4-6 are controlled by
1863 		 * the low three bits of the mode/latch fields.
1864 		 * Contrary to the document linked above, the bits for
1865 		 * the SUSPEND pins are elsewhere.  No alternate
1866 		 * function is available for these pins.
1867 		 */
1868 		priv->gc.ngpio = 7;
1869 		gpio_latch |= (gpio_rst_latch & 7) << 4;
1870 		priv->gpio_pushpull |= (gpio_pushpull & 7) << 4;
1871 	}
1872 
1873 	/*
1874 	 * The CP2102N does not strictly has input and output pin modes,
1875 	 * it only knows open-drain and push-pull modes which is set at
1876 	 * factory. An open-drain pin can function both as an
1877 	 * input or an output. We emulate input mode for open-drain pins
1878 	 * by making sure they are not driven low, and we do not allow
1879 	 * push-pull pins to be set as an input.
1880 	 */
1881 	for (i = 0; i < priv->gc.ngpio; ++i) {
1882 		/*
1883 		 * Set direction to "input" iff pin is open-drain and reset
1884 		 * value is 1.
1885 		 */
1886 		if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i)))
1887 			priv->gpio_input |= BIT(i);
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static int cp210x_gpio_init(struct usb_serial *serial)
1894 {
1895 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1896 	int result;
1897 
1898 	switch (priv->partnum) {
1899 	case CP210X_PARTNUM_CP2104:
1900 		result = cp2104_gpioconf_init(serial);
1901 		break;
1902 	case CP210X_PARTNUM_CP2105:
1903 		result = cp2105_gpioconf_init(serial);
1904 		break;
1905 	case CP210X_PARTNUM_CP2108:
1906 		/*
1907 		 * The GPIOs are not tied to any specific port so only register
1908 		 * once for interface 0.
1909 		 */
1910 		if (cp210x_interface_num(serial) != 0)
1911 			return 0;
1912 		result = cp2108_gpio_init(serial);
1913 		break;
1914 	case CP210X_PARTNUM_CP2102N_QFN28:
1915 	case CP210X_PARTNUM_CP2102N_QFN24:
1916 	case CP210X_PARTNUM_CP2102N_QFN20:
1917 		result = cp2102n_gpioconf_init(serial);
1918 		break;
1919 	default:
1920 		return 0;
1921 	}
1922 
1923 	if (result < 0)
1924 		return result;
1925 
1926 	priv->gc.label = "cp210x";
1927 	priv->gc.get_direction = cp210x_gpio_direction_get;
1928 	priv->gc.direction_input = cp210x_gpio_direction_input;
1929 	priv->gc.direction_output = cp210x_gpio_direction_output;
1930 	priv->gc.get = cp210x_gpio_get;
1931 	priv->gc.set = cp210x_gpio_set;
1932 	priv->gc.set_config = cp210x_gpio_set_config;
1933 	priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask;
1934 	priv->gc.owner = THIS_MODULE;
1935 	priv->gc.parent = &serial->interface->dev;
1936 	priv->gc.base = -1;
1937 	priv->gc.can_sleep = true;
1938 
1939 	result = gpiochip_add_data(&priv->gc, serial);
1940 	if (!result)
1941 		priv->gpio_registered = true;
1942 
1943 	return result;
1944 }
1945 
1946 static void cp210x_gpio_remove(struct usb_serial *serial)
1947 {
1948 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1949 
1950 	if (priv->gpio_registered) {
1951 		gpiochip_remove(&priv->gc);
1952 		priv->gpio_registered = false;
1953 	}
1954 }
1955 
1956 #else
1957 
1958 static int cp210x_gpio_init(struct usb_serial *serial)
1959 {
1960 	return 0;
1961 }
1962 
1963 static void cp210x_gpio_remove(struct usb_serial *serial)
1964 {
1965 	/* Nothing to do */
1966 }
1967 
1968 #endif
1969 
1970 static int cp210x_port_probe(struct usb_serial_port *port)
1971 {
1972 	struct usb_serial *serial = port->serial;
1973 	struct cp210x_port_private *port_priv;
1974 
1975 	port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL);
1976 	if (!port_priv)
1977 		return -ENOMEM;
1978 
1979 	port_priv->bInterfaceNumber = cp210x_interface_num(serial);
1980 	mutex_init(&port_priv->mutex);
1981 
1982 	usb_set_serial_port_data(port, port_priv);
1983 
1984 	return 0;
1985 }
1986 
1987 static void cp210x_port_remove(struct usb_serial_port *port)
1988 {
1989 	struct cp210x_port_private *port_priv;
1990 
1991 	port_priv = usb_get_serial_port_data(port);
1992 	kfree(port_priv);
1993 }
1994 
1995 static void cp210x_init_max_speed(struct usb_serial *serial)
1996 {
1997 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
1998 	bool use_actual_rate = false;
1999 	speed_t min = 300;
2000 	speed_t max;
2001 
2002 	switch (priv->partnum) {
2003 	case CP210X_PARTNUM_CP2101:
2004 		max = 921600;
2005 		break;
2006 	case CP210X_PARTNUM_CP2102:
2007 	case CP210X_PARTNUM_CP2103:
2008 		max = 1000000;
2009 		break;
2010 	case CP210X_PARTNUM_CP2104:
2011 		use_actual_rate = true;
2012 		max = 2000000;
2013 		break;
2014 	case CP210X_PARTNUM_CP2108:
2015 		max = 2000000;
2016 		break;
2017 	case CP210X_PARTNUM_CP2105:
2018 		if (cp210x_interface_num(serial) == 0) {
2019 			use_actual_rate = true;
2020 			max = 2000000;	/* ECI */
2021 		} else {
2022 			min = 2400;
2023 			max = 921600;	/* SCI */
2024 		}
2025 		break;
2026 	case CP210X_PARTNUM_CP2102N_QFN28:
2027 	case CP210X_PARTNUM_CP2102N_QFN24:
2028 	case CP210X_PARTNUM_CP2102N_QFN20:
2029 		use_actual_rate = true;
2030 		max = 3000000;
2031 		break;
2032 	default:
2033 		max = 2000000;
2034 		break;
2035 	}
2036 
2037 	priv->min_speed = min;
2038 	priv->max_speed = max;
2039 	priv->use_actual_rate = use_actual_rate;
2040 }
2041 
2042 static void cp2102_determine_quirks(struct usb_serial *serial)
2043 {
2044 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2045 	u8 *buf;
2046 	int ret;
2047 
2048 	buf = kmalloc(2, GFP_KERNEL);
2049 	if (!buf)
2050 		return;
2051 	/*
2052 	 * Some (possibly counterfeit) CP2102 do not support event-insertion
2053 	 * mode and respond differently to malformed vendor requests.
2054 	 * Specifically, they return one instead of two bytes when sent a
2055 	 * two-byte part-number request.
2056 	 */
2057 	ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
2058 			CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST,
2059 			CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT);
2060 	if (ret == 1) {
2061 		dev_dbg(&serial->interface->dev,
2062 				"device does not support event-insertion mode\n");
2063 		priv->no_event_mode = true;
2064 	}
2065 
2066 	kfree(buf);
2067 }
2068 
2069 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value)
2070 {
2071 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2072 	u8 ver[3];
2073 	int ret;
2074 
2075 	ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value,
2076 			ver, sizeof(ver));
2077 	if (ret)
2078 		return ret;
2079 
2080 	dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__,
2081 			ver[0], ver[1], ver[2]);
2082 
2083 	priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2];
2084 
2085 	return 0;
2086 }
2087 
2088 static void cp210x_determine_type(struct usb_serial *serial)
2089 {
2090 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2091 	int ret;
2092 
2093 	ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST,
2094 			CP210X_GET_PARTNUM, &priv->partnum,
2095 			sizeof(priv->partnum));
2096 	if (ret < 0) {
2097 		dev_warn(&serial->interface->dev,
2098 				"querying part number failed\n");
2099 		priv->partnum = CP210X_PARTNUM_UNKNOWN;
2100 		return;
2101 	}
2102 
2103 	dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum);
2104 
2105 	switch (priv->partnum) {
2106 	case CP210X_PARTNUM_CP2102:
2107 		cp2102_determine_quirks(serial);
2108 		break;
2109 	case CP210X_PARTNUM_CP2105:
2110 	case CP210X_PARTNUM_CP2108:
2111 		cp210x_get_fw_version(serial, CP210X_GET_FW_VER);
2112 		break;
2113 	case CP210X_PARTNUM_CP2102N_QFN28:
2114 	case CP210X_PARTNUM_CP2102N_QFN24:
2115 	case CP210X_PARTNUM_CP2102N_QFN20:
2116 		ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N);
2117 		if (ret)
2118 			break;
2119 		if (priv->fw_version <= 0x10004)
2120 			priv->no_flow_control = true;
2121 		break;
2122 	default:
2123 		break;
2124 	}
2125 }
2126 
2127 static int cp210x_attach(struct usb_serial *serial)
2128 {
2129 	int result;
2130 	struct cp210x_serial_private *priv;
2131 
2132 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
2133 	if (!priv)
2134 		return -ENOMEM;
2135 
2136 	usb_set_serial_data(serial, priv);
2137 
2138 	cp210x_determine_type(serial);
2139 	cp210x_init_max_speed(serial);
2140 
2141 	result = cp210x_gpio_init(serial);
2142 	if (result < 0) {
2143 		dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n",
2144 				result);
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static void cp210x_disconnect(struct usb_serial *serial)
2151 {
2152 	cp210x_gpio_remove(serial);
2153 }
2154 
2155 static void cp210x_release(struct usb_serial *serial)
2156 {
2157 	struct cp210x_serial_private *priv = usb_get_serial_data(serial);
2158 
2159 	cp210x_gpio_remove(serial);
2160 
2161 	kfree(priv);
2162 }
2163 
2164 module_usb_serial_driver(serial_drivers, id_table);
2165 
2166 MODULE_DESCRIPTION(DRIVER_DESC);
2167 MODULE_LICENSE("GPL v2");
2168