1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 19 #include <asm/uaccess.h> 20 21 #include "usb_mon.h" 22 23 /* 24 * Defined by USB 2.0 clause 9.3, table 9.2. 25 */ 26 #define SETUP_LEN 8 27 28 /* ioctl macros */ 29 #define MON_IOC_MAGIC 0x92 30 31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 39 #ifdef CONFIG_COMPAT 40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 42 #endif 43 44 /* 45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 46 * But it's all right. Just use a simple way to make sure the chunk is never 47 * smaller than a page. 48 * 49 * N.B. An application does not know our chunk size. 50 * 51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 52 * page-sized chunks for the time being. 53 */ 54 #define CHUNK_SIZE PAGE_SIZE 55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 56 57 /* 58 * The magic limit was calculated so that it allows the monitoring 59 * application to pick data once in two ticks. This way, another application, 60 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 62 * enormous overhead built into the bus protocol, so we need about 1000 KB. 63 * 64 * This is still too much for most cases, where we just snoop a few 65 * descriptor fetches for enumeration. So, the default is a "reasonable" 66 * amount for systems with HZ=250 and incomplete bus saturation. 67 * 68 * XXX What about multi-megabyte URBs which take minutes to transfer? 69 */ 70 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 71 #define BUFF_DFL CHUNK_ALIGN(300*1024) 72 #define BUFF_MIN CHUNK_ALIGN(8*1024) 73 74 /* 75 * The per-event API header (2 per URB). 76 * 77 * This structure is seen in userland as defined by the documentation. 78 */ 79 struct mon_bin_hdr { 80 u64 id; /* URB ID - from submission to callback */ 81 unsigned char type; /* Same as in text API; extensible. */ 82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 83 unsigned char epnum; /* Endpoint number and transfer direction */ 84 unsigned char devnum; /* Device address */ 85 unsigned short busnum; /* Bus number */ 86 char flag_setup; 87 char flag_data; 88 s64 ts_sec; /* gettimeofday */ 89 s32 ts_usec; /* gettimeofday */ 90 int status; 91 unsigned int len_urb; /* Length of data (submitted or actual) */ 92 unsigned int len_cap; /* Delivered length */ 93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 94 }; 95 96 /* per file statistic */ 97 struct mon_bin_stats { 98 u32 queued; 99 u32 dropped; 100 }; 101 102 struct mon_bin_get { 103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */ 104 void __user *data; 105 size_t alloc; /* Length of data (can be zero) */ 106 }; 107 108 struct mon_bin_mfetch { 109 u32 __user *offvec; /* Vector of events fetched */ 110 u32 nfetch; /* Number of events to fetch (out: fetched) */ 111 u32 nflush; /* Number of events to flush */ 112 }; 113 114 #ifdef CONFIG_COMPAT 115 struct mon_bin_get32 { 116 u32 hdr32; 117 u32 data32; 118 u32 alloc32; 119 }; 120 121 struct mon_bin_mfetch32 { 122 u32 offvec32; 123 u32 nfetch32; 124 u32 nflush32; 125 }; 126 #endif 127 128 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 129 #define PKT_ALIGN 64 130 #define PKT_SIZE 64 131 132 /* max number of USB bus supported */ 133 #define MON_BIN_MAX_MINOR 128 134 135 /* 136 * The buffer: map of used pages. 137 */ 138 struct mon_pgmap { 139 struct page *pg; 140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 141 }; 142 143 /* 144 * This gets associated with an open file struct. 145 */ 146 struct mon_reader_bin { 147 /* The buffer: one per open. */ 148 spinlock_t b_lock; /* Protect b_cnt, b_in */ 149 unsigned int b_size; /* Current size of the buffer - bytes */ 150 unsigned int b_cnt; /* Bytes used */ 151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 152 unsigned int b_read; /* Amount of read data in curr. pkt. */ 153 struct mon_pgmap *b_vec; /* The map array */ 154 wait_queue_head_t b_wait; /* Wait for data here */ 155 156 struct mutex fetch_lock; /* Protect b_read, b_out */ 157 int mmap_active; 158 159 /* A list of these is needed for "bus 0". Some time later. */ 160 struct mon_reader r; 161 162 /* Stats */ 163 unsigned int cnt_lost; 164 }; 165 166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 167 unsigned int offset) 168 { 169 return (struct mon_bin_hdr *) 170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 171 } 172 173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 174 175 static dev_t mon_bin_dev0; 176 static struct cdev mon_bin_cdev; 177 178 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 179 unsigned int offset, unsigned int size); 180 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 181 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 182 static void mon_free_buff(struct mon_pgmap *map, int npages); 183 184 /* 185 * This is a "chunked memcpy". It does not manipulate any counters. 186 * But it returns the new offset for repeated application. 187 */ 188 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 189 unsigned int off, const unsigned char *from, unsigned int length) 190 { 191 unsigned int step_len; 192 unsigned char *buf; 193 unsigned int in_page; 194 195 while (length) { 196 /* 197 * Determine step_len. 198 */ 199 step_len = length; 200 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 201 if (in_page < step_len) 202 step_len = in_page; 203 204 /* 205 * Copy data and advance pointers. 206 */ 207 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 208 memcpy(buf, from, step_len); 209 if ((off += step_len) >= this->b_size) off = 0; 210 from += step_len; 211 length -= step_len; 212 } 213 return off; 214 } 215 216 /* 217 * This is a little worse than the above because it's "chunked copy_to_user". 218 * The return value is an error code, not an offset. 219 */ 220 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 221 char __user *to, int length) 222 { 223 unsigned int step_len; 224 unsigned char *buf; 225 unsigned int in_page; 226 227 while (length) { 228 /* 229 * Determine step_len. 230 */ 231 step_len = length; 232 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 233 if (in_page < step_len) 234 step_len = in_page; 235 236 /* 237 * Copy data and advance pointers. 238 */ 239 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 240 if (copy_to_user(to, buf, step_len)) 241 return -EINVAL; 242 if ((off += step_len) >= this->b_size) off = 0; 243 to += step_len; 244 length -= step_len; 245 } 246 return 0; 247 } 248 249 /* 250 * Allocate an (aligned) area in the buffer. 251 * This is called under b_lock. 252 * Returns ~0 on failure. 253 */ 254 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 255 unsigned int size) 256 { 257 unsigned int offset; 258 259 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 260 if (rp->b_cnt + size > rp->b_size) 261 return ~0; 262 offset = rp->b_in; 263 rp->b_cnt += size; 264 if ((rp->b_in += size) >= rp->b_size) 265 rp->b_in -= rp->b_size; 266 return offset; 267 } 268 269 /* 270 * This is the same thing as mon_buff_area_alloc, only it does not allow 271 * buffers to wrap. This is needed by applications which pass references 272 * into mmap-ed buffers up their stacks (libpcap can do that). 273 * 274 * Currently, we always have the header stuck with the data, although 275 * it is not strictly speaking necessary. 276 * 277 * When a buffer would wrap, we place a filler packet to mark the space. 278 */ 279 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 280 unsigned int size) 281 { 282 unsigned int offset; 283 unsigned int fill_size; 284 285 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 286 if (rp->b_cnt + size > rp->b_size) 287 return ~0; 288 if (rp->b_in + size > rp->b_size) { 289 /* 290 * This would wrap. Find if we still have space after 291 * skipping to the end of the buffer. If we do, place 292 * a filler packet and allocate a new packet. 293 */ 294 fill_size = rp->b_size - rp->b_in; 295 if (rp->b_cnt + size + fill_size > rp->b_size) 296 return ~0; 297 mon_buff_area_fill(rp, rp->b_in, fill_size); 298 299 offset = 0; 300 rp->b_in = size; 301 rp->b_cnt += size + fill_size; 302 } else if (rp->b_in + size == rp->b_size) { 303 offset = rp->b_in; 304 rp->b_in = 0; 305 rp->b_cnt += size; 306 } else { 307 offset = rp->b_in; 308 rp->b_in += size; 309 rp->b_cnt += size; 310 } 311 return offset; 312 } 313 314 /* 315 * Return a few (kilo-)bytes to the head of the buffer. 316 * This is used if a DMA fetch fails. 317 */ 318 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 319 { 320 321 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 322 rp->b_cnt -= size; 323 if (rp->b_in < size) 324 rp->b_in += rp->b_size; 325 rp->b_in -= size; 326 } 327 328 /* 329 * This has to be called under both b_lock and fetch_lock, because 330 * it accesses both b_cnt and b_out. 331 */ 332 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 333 { 334 335 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 336 rp->b_cnt -= size; 337 if ((rp->b_out += size) >= rp->b_size) 338 rp->b_out -= rp->b_size; 339 } 340 341 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 342 unsigned int offset, unsigned int size) 343 { 344 struct mon_bin_hdr *ep; 345 346 ep = MON_OFF2HDR(rp, offset); 347 memset(ep, 0, PKT_SIZE); 348 ep->type = '@'; 349 ep->len_cap = size - PKT_SIZE; 350 } 351 352 static inline char mon_bin_get_setup(unsigned char *setupb, 353 const struct urb *urb, char ev_type) 354 { 355 356 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S') 357 return '-'; 358 359 if (urb->dev->bus->uses_dma && 360 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 361 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN); 362 } 363 if (urb->setup_packet == NULL) 364 return 'Z'; 365 366 memcpy(setupb, urb->setup_packet, SETUP_LEN); 367 return 0; 368 } 369 370 static char mon_bin_get_data(const struct mon_reader_bin *rp, 371 unsigned int offset, struct urb *urb, unsigned int length) 372 { 373 374 if (urb->dev->bus->uses_dma && 375 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 376 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length); 377 return 0; 378 } 379 380 if (urb->transfer_buffer == NULL) 381 return 'Z'; 382 383 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 384 return 0; 385 } 386 387 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 388 char ev_type) 389 { 390 unsigned long flags; 391 struct timeval ts; 392 unsigned int urb_length; 393 unsigned int offset; 394 unsigned int length; 395 struct mon_bin_hdr *ep; 396 char data_tag = 0; 397 398 do_gettimeofday(&ts); 399 400 spin_lock_irqsave(&rp->b_lock, flags); 401 402 /* 403 * Find the maximum allowable length, then allocate space. 404 */ 405 urb_length = (ev_type == 'S') ? 406 urb->transfer_buffer_length : urb->actual_length; 407 length = urb_length; 408 409 if (length >= rp->b_size/5) 410 length = rp->b_size/5; 411 412 if (usb_pipein(urb->pipe)) { 413 if (ev_type == 'S') { 414 length = 0; 415 data_tag = '<'; 416 } 417 } else { 418 if (ev_type == 'C') { 419 length = 0; 420 data_tag = '>'; 421 } 422 } 423 424 if (rp->mmap_active) 425 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE); 426 else 427 offset = mon_buff_area_alloc(rp, length + PKT_SIZE); 428 if (offset == ~0) { 429 rp->cnt_lost++; 430 spin_unlock_irqrestore(&rp->b_lock, flags); 431 return; 432 } 433 434 ep = MON_OFF2HDR(rp, offset); 435 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 436 437 /* 438 * Fill the allocated area. 439 */ 440 memset(ep, 0, PKT_SIZE); 441 ep->type = ev_type; 442 ep->xfer_type = usb_pipetype(urb->pipe); 443 /* We use the fact that usb_pipein() returns 0x80 */ 444 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe); 445 ep->devnum = usb_pipedevice(urb->pipe); 446 ep->busnum = urb->dev->bus->busnum; 447 ep->id = (unsigned long) urb; 448 ep->ts_sec = ts.tv_sec; 449 ep->ts_usec = ts.tv_usec; 450 ep->status = urb->status; 451 ep->len_urb = urb_length; 452 ep->len_cap = length; 453 454 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type); 455 if (length != 0) { 456 ep->flag_data = mon_bin_get_data(rp, offset, urb, length); 457 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */ 458 ep->len_cap = 0; 459 mon_buff_area_shrink(rp, length); 460 } 461 } else { 462 ep->flag_data = data_tag; 463 } 464 465 spin_unlock_irqrestore(&rp->b_lock, flags); 466 467 wake_up(&rp->b_wait); 468 } 469 470 static void mon_bin_submit(void *data, struct urb *urb) 471 { 472 struct mon_reader_bin *rp = data; 473 mon_bin_event(rp, urb, 'S'); 474 } 475 476 static void mon_bin_complete(void *data, struct urb *urb) 477 { 478 struct mon_reader_bin *rp = data; 479 mon_bin_event(rp, urb, 'C'); 480 } 481 482 static void mon_bin_error(void *data, struct urb *urb, int error) 483 { 484 struct mon_reader_bin *rp = data; 485 unsigned long flags; 486 unsigned int offset; 487 struct mon_bin_hdr *ep; 488 489 spin_lock_irqsave(&rp->b_lock, flags); 490 491 offset = mon_buff_area_alloc(rp, PKT_SIZE); 492 if (offset == ~0) { 493 /* Not incrementing cnt_lost. Just because. */ 494 spin_unlock_irqrestore(&rp->b_lock, flags); 495 return; 496 } 497 498 ep = MON_OFF2HDR(rp, offset); 499 500 memset(ep, 0, PKT_SIZE); 501 ep->type = 'E'; 502 ep->xfer_type = usb_pipetype(urb->pipe); 503 /* We use the fact that usb_pipein() returns 0x80 */ 504 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe); 505 ep->devnum = usb_pipedevice(urb->pipe); 506 ep->busnum = urb->dev->bus->busnum; 507 ep->id = (unsigned long) urb; 508 ep->status = error; 509 510 ep->flag_setup = '-'; 511 ep->flag_data = 'E'; 512 513 spin_unlock_irqrestore(&rp->b_lock, flags); 514 515 wake_up(&rp->b_wait); 516 } 517 518 static int mon_bin_open(struct inode *inode, struct file *file) 519 { 520 struct mon_bus *mbus; 521 struct mon_reader_bin *rp; 522 size_t size; 523 int rc; 524 525 mutex_lock(&mon_lock); 526 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 527 mutex_unlock(&mon_lock); 528 return -ENODEV; 529 } 530 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 531 printk(KERN_ERR TAG ": consistency error on open\n"); 532 mutex_unlock(&mon_lock); 533 return -ENODEV; 534 } 535 536 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 537 if (rp == NULL) { 538 rc = -ENOMEM; 539 goto err_alloc; 540 } 541 spin_lock_init(&rp->b_lock); 542 init_waitqueue_head(&rp->b_wait); 543 mutex_init(&rp->fetch_lock); 544 545 rp->b_size = BUFF_DFL; 546 547 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 548 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 549 rc = -ENOMEM; 550 goto err_allocvec; 551 } 552 553 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 554 goto err_allocbuff; 555 556 rp->r.m_bus = mbus; 557 rp->r.r_data = rp; 558 rp->r.rnf_submit = mon_bin_submit; 559 rp->r.rnf_error = mon_bin_error; 560 rp->r.rnf_complete = mon_bin_complete; 561 562 mon_reader_add(mbus, &rp->r); 563 564 file->private_data = rp; 565 mutex_unlock(&mon_lock); 566 return 0; 567 568 err_allocbuff: 569 kfree(rp->b_vec); 570 err_allocvec: 571 kfree(rp); 572 err_alloc: 573 mutex_unlock(&mon_lock); 574 return rc; 575 } 576 577 /* 578 * Extract an event from buffer and copy it to user space. 579 * Wait if there is no event ready. 580 * Returns zero or error. 581 */ 582 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 583 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes) 584 { 585 unsigned long flags; 586 struct mon_bin_hdr *ep; 587 size_t step_len; 588 unsigned int offset; 589 int rc; 590 591 mutex_lock(&rp->fetch_lock); 592 593 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 594 mutex_unlock(&rp->fetch_lock); 595 return rc; 596 } 597 598 ep = MON_OFF2HDR(rp, rp->b_out); 599 600 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) { 601 mutex_unlock(&rp->fetch_lock); 602 return -EFAULT; 603 } 604 605 step_len = min(ep->len_cap, nbytes); 606 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 607 608 if (copy_from_buf(rp, offset, data, step_len)) { 609 mutex_unlock(&rp->fetch_lock); 610 return -EFAULT; 611 } 612 613 spin_lock_irqsave(&rp->b_lock, flags); 614 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 615 spin_unlock_irqrestore(&rp->b_lock, flags); 616 rp->b_read = 0; 617 618 mutex_unlock(&rp->fetch_lock); 619 return 0; 620 } 621 622 static int mon_bin_release(struct inode *inode, struct file *file) 623 { 624 struct mon_reader_bin *rp = file->private_data; 625 struct mon_bus* mbus = rp->r.m_bus; 626 627 mutex_lock(&mon_lock); 628 629 if (mbus->nreaders <= 0) { 630 printk(KERN_ERR TAG ": consistency error on close\n"); 631 mutex_unlock(&mon_lock); 632 return 0; 633 } 634 mon_reader_del(mbus, &rp->r); 635 636 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 637 kfree(rp->b_vec); 638 kfree(rp); 639 640 mutex_unlock(&mon_lock); 641 return 0; 642 } 643 644 static ssize_t mon_bin_read(struct file *file, char __user *buf, 645 size_t nbytes, loff_t *ppos) 646 { 647 struct mon_reader_bin *rp = file->private_data; 648 unsigned long flags; 649 struct mon_bin_hdr *ep; 650 unsigned int offset; 651 size_t step_len; 652 char *ptr; 653 ssize_t done = 0; 654 int rc; 655 656 mutex_lock(&rp->fetch_lock); 657 658 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 659 mutex_unlock(&rp->fetch_lock); 660 return rc; 661 } 662 663 ep = MON_OFF2HDR(rp, rp->b_out); 664 665 if (rp->b_read < sizeof(struct mon_bin_hdr)) { 666 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read); 667 ptr = ((char *)ep) + rp->b_read; 668 if (step_len && copy_to_user(buf, ptr, step_len)) { 669 mutex_unlock(&rp->fetch_lock); 670 return -EFAULT; 671 } 672 nbytes -= step_len; 673 buf += step_len; 674 rp->b_read += step_len; 675 done += step_len; 676 } 677 678 if (rp->b_read >= sizeof(struct mon_bin_hdr)) { 679 step_len = min(nbytes, (size_t)ep->len_cap); 680 offset = rp->b_out + PKT_SIZE; 681 offset += rp->b_read - sizeof(struct mon_bin_hdr); 682 if (offset >= rp->b_size) 683 offset -= rp->b_size; 684 if (copy_from_buf(rp, offset, buf, step_len)) { 685 mutex_unlock(&rp->fetch_lock); 686 return -EFAULT; 687 } 688 nbytes -= step_len; 689 buf += step_len; 690 rp->b_read += step_len; 691 done += step_len; 692 } 693 694 /* 695 * Check if whole packet was read, and if so, jump to the next one. 696 */ 697 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) { 698 spin_lock_irqsave(&rp->b_lock, flags); 699 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 700 spin_unlock_irqrestore(&rp->b_lock, flags); 701 rp->b_read = 0; 702 } 703 704 mutex_unlock(&rp->fetch_lock); 705 return done; 706 } 707 708 /* 709 * Remove at most nevents from chunked buffer. 710 * Returns the number of removed events. 711 */ 712 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 713 { 714 unsigned long flags; 715 struct mon_bin_hdr *ep; 716 int i; 717 718 mutex_lock(&rp->fetch_lock); 719 spin_lock_irqsave(&rp->b_lock, flags); 720 for (i = 0; i < nevents; ++i) { 721 if (MON_RING_EMPTY(rp)) 722 break; 723 724 ep = MON_OFF2HDR(rp, rp->b_out); 725 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 726 } 727 spin_unlock_irqrestore(&rp->b_lock, flags); 728 rp->b_read = 0; 729 mutex_unlock(&rp->fetch_lock); 730 return i; 731 } 732 733 /* 734 * Fetch at most max event offsets into the buffer and put them into vec. 735 * The events are usually freed later with mon_bin_flush. 736 * Return the effective number of events fetched. 737 */ 738 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 739 u32 __user *vec, unsigned int max) 740 { 741 unsigned int cur_out; 742 unsigned int bytes, avail; 743 unsigned int size; 744 unsigned int nevents; 745 struct mon_bin_hdr *ep; 746 unsigned long flags; 747 int rc; 748 749 mutex_lock(&rp->fetch_lock); 750 751 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 752 mutex_unlock(&rp->fetch_lock); 753 return rc; 754 } 755 756 spin_lock_irqsave(&rp->b_lock, flags); 757 avail = rp->b_cnt; 758 spin_unlock_irqrestore(&rp->b_lock, flags); 759 760 cur_out = rp->b_out; 761 nevents = 0; 762 bytes = 0; 763 while (bytes < avail) { 764 if (nevents >= max) 765 break; 766 767 ep = MON_OFF2HDR(rp, cur_out); 768 if (put_user(cur_out, &vec[nevents])) { 769 mutex_unlock(&rp->fetch_lock); 770 return -EFAULT; 771 } 772 773 nevents++; 774 size = ep->len_cap + PKT_SIZE; 775 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 776 if ((cur_out += size) >= rp->b_size) 777 cur_out -= rp->b_size; 778 bytes += size; 779 } 780 781 mutex_unlock(&rp->fetch_lock); 782 return nevents; 783 } 784 785 /* 786 * Count events. This is almost the same as the above mon_bin_fetch, 787 * only we do not store offsets into user vector, and we have no limit. 788 */ 789 static int mon_bin_queued(struct mon_reader_bin *rp) 790 { 791 unsigned int cur_out; 792 unsigned int bytes, avail; 793 unsigned int size; 794 unsigned int nevents; 795 struct mon_bin_hdr *ep; 796 unsigned long flags; 797 798 mutex_lock(&rp->fetch_lock); 799 800 spin_lock_irqsave(&rp->b_lock, flags); 801 avail = rp->b_cnt; 802 spin_unlock_irqrestore(&rp->b_lock, flags); 803 804 cur_out = rp->b_out; 805 nevents = 0; 806 bytes = 0; 807 while (bytes < avail) { 808 ep = MON_OFF2HDR(rp, cur_out); 809 810 nevents++; 811 size = ep->len_cap + PKT_SIZE; 812 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 813 if ((cur_out += size) >= rp->b_size) 814 cur_out -= rp->b_size; 815 bytes += size; 816 } 817 818 mutex_unlock(&rp->fetch_lock); 819 return nevents; 820 } 821 822 /* 823 */ 824 static int mon_bin_ioctl(struct inode *inode, struct file *file, 825 unsigned int cmd, unsigned long arg) 826 { 827 struct mon_reader_bin *rp = file->private_data; 828 // struct mon_bus* mbus = rp->r.m_bus; 829 int ret = 0; 830 struct mon_bin_hdr *ep; 831 unsigned long flags; 832 833 switch (cmd) { 834 835 case MON_IOCQ_URB_LEN: 836 /* 837 * N.B. This only returns the size of data, without the header. 838 */ 839 spin_lock_irqsave(&rp->b_lock, flags); 840 if (!MON_RING_EMPTY(rp)) { 841 ep = MON_OFF2HDR(rp, rp->b_out); 842 ret = ep->len_cap; 843 } 844 spin_unlock_irqrestore(&rp->b_lock, flags); 845 break; 846 847 case MON_IOCQ_RING_SIZE: 848 ret = rp->b_size; 849 break; 850 851 case MON_IOCT_RING_SIZE: 852 /* 853 * Changing the buffer size will flush it's contents; the new 854 * buffer is allocated before releasing the old one to be sure 855 * the device will stay functional also in case of memory 856 * pressure. 857 */ 858 { 859 int size; 860 struct mon_pgmap *vec; 861 862 if (arg < BUFF_MIN || arg > BUFF_MAX) 863 return -EINVAL; 864 865 size = CHUNK_ALIGN(arg); 866 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 867 GFP_KERNEL)) == NULL) { 868 ret = -ENOMEM; 869 break; 870 } 871 872 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 873 if (ret < 0) { 874 kfree(vec); 875 break; 876 } 877 878 mutex_lock(&rp->fetch_lock); 879 spin_lock_irqsave(&rp->b_lock, flags); 880 mon_free_buff(rp->b_vec, size/CHUNK_SIZE); 881 kfree(rp->b_vec); 882 rp->b_vec = vec; 883 rp->b_size = size; 884 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 885 rp->cnt_lost = 0; 886 spin_unlock_irqrestore(&rp->b_lock, flags); 887 mutex_unlock(&rp->fetch_lock); 888 } 889 break; 890 891 case MON_IOCH_MFLUSH: 892 ret = mon_bin_flush(rp, arg); 893 break; 894 895 case MON_IOCX_GET: 896 { 897 struct mon_bin_get getb; 898 899 if (copy_from_user(&getb, (void __user *)arg, 900 sizeof(struct mon_bin_get))) 901 return -EFAULT; 902 903 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 904 return -EINVAL; 905 ret = mon_bin_get_event(file, rp, 906 getb.hdr, getb.data, (unsigned int)getb.alloc); 907 } 908 break; 909 910 #ifdef CONFIG_COMPAT 911 case MON_IOCX_GET32: { 912 struct mon_bin_get32 getb; 913 914 if (copy_from_user(&getb, (void __user *)arg, 915 sizeof(struct mon_bin_get32))) 916 return -EFAULT; 917 918 ret = mon_bin_get_event(file, rp, 919 compat_ptr(getb.hdr32), compat_ptr(getb.data32), 920 getb.alloc32); 921 } 922 break; 923 #endif 924 925 case MON_IOCX_MFETCH: 926 { 927 struct mon_bin_mfetch mfetch; 928 struct mon_bin_mfetch __user *uptr; 929 930 uptr = (struct mon_bin_mfetch __user *)arg; 931 932 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 933 return -EFAULT; 934 935 if (mfetch.nflush) { 936 ret = mon_bin_flush(rp, mfetch.nflush); 937 if (ret < 0) 938 return ret; 939 if (put_user(ret, &uptr->nflush)) 940 return -EFAULT; 941 } 942 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 943 if (ret < 0) 944 return ret; 945 if (put_user(ret, &uptr->nfetch)) 946 return -EFAULT; 947 ret = 0; 948 } 949 break; 950 951 #ifdef CONFIG_COMPAT 952 case MON_IOCX_MFETCH32: 953 { 954 struct mon_bin_mfetch32 mfetch; 955 struct mon_bin_mfetch32 __user *uptr; 956 957 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 958 959 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 960 return -EFAULT; 961 962 if (mfetch.nflush32) { 963 ret = mon_bin_flush(rp, mfetch.nflush32); 964 if (ret < 0) 965 return ret; 966 if (put_user(ret, &uptr->nflush32)) 967 return -EFAULT; 968 } 969 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 970 mfetch.nfetch32); 971 if (ret < 0) 972 return ret; 973 if (put_user(ret, &uptr->nfetch32)) 974 return -EFAULT; 975 ret = 0; 976 } 977 break; 978 #endif 979 980 case MON_IOCG_STATS: { 981 struct mon_bin_stats __user *sp; 982 unsigned int nevents; 983 unsigned int ndropped; 984 985 spin_lock_irqsave(&rp->b_lock, flags); 986 ndropped = rp->cnt_lost; 987 rp->cnt_lost = 0; 988 spin_unlock_irqrestore(&rp->b_lock, flags); 989 nevents = mon_bin_queued(rp); 990 991 sp = (struct mon_bin_stats __user *)arg; 992 if (put_user(rp->cnt_lost, &sp->dropped)) 993 return -EFAULT; 994 if (put_user(nevents, &sp->queued)) 995 return -EFAULT; 996 997 } 998 break; 999 1000 default: 1001 return -ENOTTY; 1002 } 1003 1004 return ret; 1005 } 1006 1007 static unsigned int 1008 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1009 { 1010 struct mon_reader_bin *rp = file->private_data; 1011 unsigned int mask = 0; 1012 unsigned long flags; 1013 1014 if (file->f_mode & FMODE_READ) 1015 poll_wait(file, &rp->b_wait, wait); 1016 1017 spin_lock_irqsave(&rp->b_lock, flags); 1018 if (!MON_RING_EMPTY(rp)) 1019 mask |= POLLIN | POLLRDNORM; /* readable */ 1020 spin_unlock_irqrestore(&rp->b_lock, flags); 1021 return mask; 1022 } 1023 1024 /* 1025 * open and close: just keep track of how many times the device is 1026 * mapped, to use the proper memory allocation function. 1027 */ 1028 static void mon_bin_vma_open(struct vm_area_struct *vma) 1029 { 1030 struct mon_reader_bin *rp = vma->vm_private_data; 1031 rp->mmap_active++; 1032 } 1033 1034 static void mon_bin_vma_close(struct vm_area_struct *vma) 1035 { 1036 struct mon_reader_bin *rp = vma->vm_private_data; 1037 rp->mmap_active--; 1038 } 1039 1040 /* 1041 * Map ring pages to user space. 1042 */ 1043 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma, 1044 unsigned long address, int *type) 1045 { 1046 struct mon_reader_bin *rp = vma->vm_private_data; 1047 unsigned long offset, chunk_idx; 1048 struct page *pageptr; 1049 1050 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); 1051 if (offset >= rp->b_size) 1052 return NOPAGE_SIGBUS; 1053 chunk_idx = offset / CHUNK_SIZE; 1054 pageptr = rp->b_vec[chunk_idx].pg; 1055 get_page(pageptr); 1056 if (type) 1057 *type = VM_FAULT_MINOR; 1058 return pageptr; 1059 } 1060 1061 struct vm_operations_struct mon_bin_vm_ops = { 1062 .open = mon_bin_vma_open, 1063 .close = mon_bin_vma_close, 1064 .nopage = mon_bin_vma_nopage, 1065 }; 1066 1067 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1068 { 1069 /* don't do anything here: "nopage" will set up page table entries */ 1070 vma->vm_ops = &mon_bin_vm_ops; 1071 vma->vm_flags |= VM_RESERVED; 1072 vma->vm_private_data = filp->private_data; 1073 mon_bin_vma_open(vma); 1074 return 0; 1075 } 1076 1077 struct file_operations mon_fops_binary = { 1078 .owner = THIS_MODULE, 1079 .open = mon_bin_open, 1080 .llseek = no_llseek, 1081 .read = mon_bin_read, 1082 /* .write = mon_text_write, */ 1083 .poll = mon_bin_poll, 1084 .ioctl = mon_bin_ioctl, 1085 .release = mon_bin_release, 1086 }; 1087 1088 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1089 { 1090 DECLARE_WAITQUEUE(waita, current); 1091 unsigned long flags; 1092 1093 add_wait_queue(&rp->b_wait, &waita); 1094 set_current_state(TASK_INTERRUPTIBLE); 1095 1096 spin_lock_irqsave(&rp->b_lock, flags); 1097 while (MON_RING_EMPTY(rp)) { 1098 spin_unlock_irqrestore(&rp->b_lock, flags); 1099 1100 if (file->f_flags & O_NONBLOCK) { 1101 set_current_state(TASK_RUNNING); 1102 remove_wait_queue(&rp->b_wait, &waita); 1103 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1104 } 1105 schedule(); 1106 if (signal_pending(current)) { 1107 remove_wait_queue(&rp->b_wait, &waita); 1108 return -EINTR; 1109 } 1110 set_current_state(TASK_INTERRUPTIBLE); 1111 1112 spin_lock_irqsave(&rp->b_lock, flags); 1113 } 1114 spin_unlock_irqrestore(&rp->b_lock, flags); 1115 1116 set_current_state(TASK_RUNNING); 1117 remove_wait_queue(&rp->b_wait, &waita); 1118 return 0; 1119 } 1120 1121 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1122 { 1123 int n; 1124 unsigned long vaddr; 1125 1126 for (n = 0; n < npages; n++) { 1127 vaddr = get_zeroed_page(GFP_KERNEL); 1128 if (vaddr == 0) { 1129 while (n-- != 0) 1130 free_page((unsigned long) map[n].ptr); 1131 return -ENOMEM; 1132 } 1133 map[n].ptr = (unsigned char *) vaddr; 1134 map[n].pg = virt_to_page(vaddr); 1135 } 1136 return 0; 1137 } 1138 1139 static void mon_free_buff(struct mon_pgmap *map, int npages) 1140 { 1141 int n; 1142 1143 for (n = 0; n < npages; n++) 1144 free_page((unsigned long) map[n].ptr); 1145 } 1146 1147 int __init mon_bin_init(void) 1148 { 1149 int rc; 1150 1151 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1152 if (rc < 0) 1153 goto err_dev; 1154 1155 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1156 mon_bin_cdev.owner = THIS_MODULE; 1157 1158 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1159 if (rc < 0) 1160 goto err_add; 1161 1162 return 0; 1163 1164 err_add: 1165 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1166 err_dev: 1167 return rc; 1168 } 1169 1170 void mon_bin_exit(void) 1171 { 1172 cdev_del(&mon_bin_cdev); 1173 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1174 } 1175