xref: /linux/drivers/usb/mon/mon_bin.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 
20 #include <asm/uaccess.h>
21 
22 #include "usb_mon.h"
23 
24 /*
25  * Defined by USB 2.0 clause 9.3, table 9.2.
26  */
27 #define SETUP_LEN  8
28 
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
31 
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 /* #9 was MON_IOCT_SETAPI */
41 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
42 
43 #ifdef CONFIG_COMPAT
44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
46 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
47 #endif
48 
49 /*
50  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
51  * But it's all right. Just use a simple way to make sure the chunk is never
52  * smaller than a page.
53  *
54  * N.B. An application does not know our chunk size.
55  *
56  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
57  * page-sized chunks for the time being.
58  */
59 #define CHUNK_SIZE   PAGE_SIZE
60 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
61 
62 /*
63  * The magic limit was calculated so that it allows the monitoring
64  * application to pick data once in two ticks. This way, another application,
65  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
66  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
67  * enormous overhead built into the bus protocol, so we need about 1000 KB.
68  *
69  * This is still too much for most cases, where we just snoop a few
70  * descriptor fetches for enumeration. So, the default is a "reasonable"
71  * amount for systems with HZ=250 and incomplete bus saturation.
72  *
73  * XXX What about multi-megabyte URBs which take minutes to transfer?
74  */
75 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
76 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
77 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
78 
79 /*
80  * The per-event API header (2 per URB).
81  *
82  * This structure is seen in userland as defined by the documentation.
83  */
84 struct mon_bin_hdr {
85 	u64 id;			/* URB ID - from submission to callback */
86 	unsigned char type;	/* Same as in text API; extensible. */
87 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
88 	unsigned char epnum;	/* Endpoint number and transfer direction */
89 	unsigned char devnum;	/* Device address */
90 	unsigned short busnum;	/* Bus number */
91 	char flag_setup;
92 	char flag_data;
93 	s64 ts_sec;		/* gettimeofday */
94 	s32 ts_usec;		/* gettimeofday */
95 	int status;
96 	unsigned int len_urb;	/* Length of data (submitted or actual) */
97 	unsigned int len_cap;	/* Delivered length */
98 	union {
99 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
100 		struct iso_rec {
101 			int error_count;
102 			int numdesc;
103 		} iso;
104 	} s;
105 	int interval;
106 	int start_frame;
107 	unsigned int xfer_flags;
108 	unsigned int ndesc;	/* Actual number of ISO descriptors */
109 };
110 
111 /*
112  * ISO vector, packed into the head of data stream.
113  * This has to take 16 bytes to make sure that the end of buffer
114  * wrap is not happening in the middle of a descriptor.
115  */
116 struct mon_bin_isodesc {
117 	int          iso_status;
118 	unsigned int iso_off;
119 	unsigned int iso_len;
120 	u32 _pad;
121 };
122 
123 /* per file statistic */
124 struct mon_bin_stats {
125 	u32 queued;
126 	u32 dropped;
127 };
128 
129 struct mon_bin_get {
130 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
131 	void __user *data;
132 	size_t alloc;		/* Length of data (can be zero) */
133 };
134 
135 struct mon_bin_mfetch {
136 	u32 __user *offvec;	/* Vector of events fetched */
137 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
138 	u32 nflush;		/* Number of events to flush */
139 };
140 
141 #ifdef CONFIG_COMPAT
142 struct mon_bin_get32 {
143 	u32 hdr32;
144 	u32 data32;
145 	u32 alloc32;
146 };
147 
148 struct mon_bin_mfetch32 {
149         u32 offvec32;
150         u32 nfetch32;
151         u32 nflush32;
152 };
153 #endif
154 
155 /* Having these two values same prevents wrapping of the mon_bin_hdr */
156 #define PKT_ALIGN   64
157 #define PKT_SIZE    64
158 
159 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
160 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
161 
162 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
163 
164 /* max number of USB bus supported */
165 #define MON_BIN_MAX_MINOR 128
166 
167 /*
168  * The buffer: map of used pages.
169  */
170 struct mon_pgmap {
171 	struct page *pg;
172 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
173 };
174 
175 /*
176  * This gets associated with an open file struct.
177  */
178 struct mon_reader_bin {
179 	/* The buffer: one per open. */
180 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
181 	unsigned int b_size;		/* Current size of the buffer - bytes */
182 	unsigned int b_cnt;		/* Bytes used */
183 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
184 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
185 	struct mon_pgmap *b_vec;	/* The map array */
186 	wait_queue_head_t b_wait;	/* Wait for data here */
187 
188 	struct mutex fetch_lock;	/* Protect b_read, b_out */
189 	int mmap_active;
190 
191 	/* A list of these is needed for "bus 0". Some time later. */
192 	struct mon_reader r;
193 
194 	/* Stats */
195 	unsigned int cnt_lost;
196 };
197 
198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
199     unsigned int offset)
200 {
201 	return (struct mon_bin_hdr *)
202 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
203 }
204 
205 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
206 
207 static unsigned char xfer_to_pipe[4] = {
208 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
209 };
210 
211 static struct class *mon_bin_class;
212 static dev_t mon_bin_dev0;
213 static struct cdev mon_bin_cdev;
214 
215 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
216     unsigned int offset, unsigned int size);
217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
218 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
219 static void mon_free_buff(struct mon_pgmap *map, int npages);
220 
221 /*
222  * This is a "chunked memcpy". It does not manipulate any counters.
223  */
224 static void mon_copy_to_buff(const struct mon_reader_bin *this,
225     unsigned int off, const unsigned char *from, unsigned int length)
226 {
227 	unsigned int step_len;
228 	unsigned char *buf;
229 	unsigned int in_page;
230 
231 	while (length) {
232 		/*
233 		 * Determine step_len.
234 		 */
235 		step_len = length;
236 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
237 		if (in_page < step_len)
238 			step_len = in_page;
239 
240 		/*
241 		 * Copy data and advance pointers.
242 		 */
243 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
244 		memcpy(buf, from, step_len);
245 		if ((off += step_len) >= this->b_size) off = 0;
246 		from += step_len;
247 		length -= step_len;
248 	}
249 }
250 
251 /*
252  * This is a little worse than the above because it's "chunked copy_to_user".
253  * The return value is an error code, not an offset.
254  */
255 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
256     char __user *to, int length)
257 {
258 	unsigned int step_len;
259 	unsigned char *buf;
260 	unsigned int in_page;
261 
262 	while (length) {
263 		/*
264 		 * Determine step_len.
265 		 */
266 		step_len = length;
267 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
268 		if (in_page < step_len)
269 			step_len = in_page;
270 
271 		/*
272 		 * Copy data and advance pointers.
273 		 */
274 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
275 		if (copy_to_user(to, buf, step_len))
276 			return -EINVAL;
277 		if ((off += step_len) >= this->b_size) off = 0;
278 		to += step_len;
279 		length -= step_len;
280 	}
281 	return 0;
282 }
283 
284 /*
285  * Allocate an (aligned) area in the buffer.
286  * This is called under b_lock.
287  * Returns ~0 on failure.
288  */
289 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
290     unsigned int size)
291 {
292 	unsigned int offset;
293 
294 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
295 	if (rp->b_cnt + size > rp->b_size)
296 		return ~0;
297 	offset = rp->b_in;
298 	rp->b_cnt += size;
299 	if ((rp->b_in += size) >= rp->b_size)
300 		rp->b_in -= rp->b_size;
301 	return offset;
302 }
303 
304 /*
305  * This is the same thing as mon_buff_area_alloc, only it does not allow
306  * buffers to wrap. This is needed by applications which pass references
307  * into mmap-ed buffers up their stacks (libpcap can do that).
308  *
309  * Currently, we always have the header stuck with the data, although
310  * it is not strictly speaking necessary.
311  *
312  * When a buffer would wrap, we place a filler packet to mark the space.
313  */
314 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
315     unsigned int size)
316 {
317 	unsigned int offset;
318 	unsigned int fill_size;
319 
320 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
321 	if (rp->b_cnt + size > rp->b_size)
322 		return ~0;
323 	if (rp->b_in + size > rp->b_size) {
324 		/*
325 		 * This would wrap. Find if we still have space after
326 		 * skipping to the end of the buffer. If we do, place
327 		 * a filler packet and allocate a new packet.
328 		 */
329 		fill_size = rp->b_size - rp->b_in;
330 		if (rp->b_cnt + size + fill_size > rp->b_size)
331 			return ~0;
332 		mon_buff_area_fill(rp, rp->b_in, fill_size);
333 
334 		offset = 0;
335 		rp->b_in = size;
336 		rp->b_cnt += size + fill_size;
337 	} else if (rp->b_in + size == rp->b_size) {
338 		offset = rp->b_in;
339 		rp->b_in = 0;
340 		rp->b_cnt += size;
341 	} else {
342 		offset = rp->b_in;
343 		rp->b_in += size;
344 		rp->b_cnt += size;
345 	}
346 	return offset;
347 }
348 
349 /*
350  * Return a few (kilo-)bytes to the head of the buffer.
351  * This is used if a data fetch fails.
352  */
353 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
354 {
355 
356 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
357 	rp->b_cnt -= size;
358 	if (rp->b_in < size)
359 		rp->b_in += rp->b_size;
360 	rp->b_in -= size;
361 }
362 
363 /*
364  * This has to be called under both b_lock and fetch_lock, because
365  * it accesses both b_cnt and b_out.
366  */
367 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
368 {
369 
370 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
371 	rp->b_cnt -= size;
372 	if ((rp->b_out += size) >= rp->b_size)
373 		rp->b_out -= rp->b_size;
374 }
375 
376 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
377     unsigned int offset, unsigned int size)
378 {
379 	struct mon_bin_hdr *ep;
380 
381 	ep = MON_OFF2HDR(rp, offset);
382 	memset(ep, 0, PKT_SIZE);
383 	ep->type = '@';
384 	ep->len_cap = size - PKT_SIZE;
385 }
386 
387 static inline char mon_bin_get_setup(unsigned char *setupb,
388     const struct urb *urb, char ev_type)
389 {
390 
391 	if (urb->setup_packet == NULL)
392 		return 'Z';
393 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
394 	return 0;
395 }
396 
397 static char mon_bin_get_data(const struct mon_reader_bin *rp,
398     unsigned int offset, struct urb *urb, unsigned int length)
399 {
400 
401 	if (urb->transfer_buffer == NULL)
402 		return 'Z';
403 	mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
404 	return 0;
405 }
406 
407 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
408     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
409 {
410 	struct mon_bin_isodesc *dp;
411 	struct usb_iso_packet_descriptor *fp;
412 
413 	fp = urb->iso_frame_desc;
414 	while (ndesc-- != 0) {
415 		dp = (struct mon_bin_isodesc *)
416 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
417 		dp->iso_status = fp->status;
418 		dp->iso_off = fp->offset;
419 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
420 		dp->_pad = 0;
421 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
422 			offset = 0;
423 		fp++;
424 	}
425 }
426 
427 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
428     char ev_type, int status)
429 {
430 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
431 	unsigned long flags;
432 	struct timeval ts;
433 	unsigned int urb_length;
434 	unsigned int offset;
435 	unsigned int length;
436 	unsigned int delta;
437 	unsigned int ndesc, lendesc;
438 	unsigned char dir;
439 	struct mon_bin_hdr *ep;
440 	char data_tag = 0;
441 
442 	do_gettimeofday(&ts);
443 
444 	spin_lock_irqsave(&rp->b_lock, flags);
445 
446 	/*
447 	 * Find the maximum allowable length, then allocate space.
448 	 */
449 	if (usb_endpoint_xfer_isoc(epd)) {
450 		if (urb->number_of_packets < 0) {
451 			ndesc = 0;
452 		} else if (urb->number_of_packets >= ISODESC_MAX) {
453 			ndesc = ISODESC_MAX;
454 		} else {
455 			ndesc = urb->number_of_packets;
456 		}
457 	} else {
458 		ndesc = 0;
459 	}
460 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
461 
462 	urb_length = (ev_type == 'S') ?
463 	    urb->transfer_buffer_length : urb->actual_length;
464 	length = urb_length;
465 
466 	if (length >= rp->b_size/5)
467 		length = rp->b_size/5;
468 
469 	if (usb_urb_dir_in(urb)) {
470 		if (ev_type == 'S') {
471 			length = 0;
472 			data_tag = '<';
473 		}
474 		/* Cannot rely on endpoint number in case of control ep.0 */
475 		dir = USB_DIR_IN;
476 	} else {
477 		if (ev_type == 'C') {
478 			length = 0;
479 			data_tag = '>';
480 		}
481 		dir = 0;
482 	}
483 
484 	if (rp->mmap_active) {
485 		offset = mon_buff_area_alloc_contiguous(rp,
486 						 length + PKT_SIZE + lendesc);
487 	} else {
488 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
489 	}
490 	if (offset == ~0) {
491 		rp->cnt_lost++;
492 		spin_unlock_irqrestore(&rp->b_lock, flags);
493 		return;
494 	}
495 
496 	ep = MON_OFF2HDR(rp, offset);
497 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
498 
499 	/*
500 	 * Fill the allocated area.
501 	 */
502 	memset(ep, 0, PKT_SIZE);
503 	ep->type = ev_type;
504 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
505 	ep->epnum = dir | usb_endpoint_num(epd);
506 	ep->devnum = urb->dev->devnum;
507 	ep->busnum = urb->dev->bus->busnum;
508 	ep->id = (unsigned long) urb;
509 	ep->ts_sec = ts.tv_sec;
510 	ep->ts_usec = ts.tv_usec;
511 	ep->status = status;
512 	ep->len_urb = urb_length;
513 	ep->len_cap = length + lendesc;
514 	ep->xfer_flags = urb->transfer_flags;
515 
516 	if (usb_endpoint_xfer_int(epd)) {
517 		ep->interval = urb->interval;
518 	} else if (usb_endpoint_xfer_isoc(epd)) {
519 		ep->interval = urb->interval;
520 		ep->start_frame = urb->start_frame;
521 		ep->s.iso.error_count = urb->error_count;
522 		ep->s.iso.numdesc = urb->number_of_packets;
523 	}
524 
525 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
526 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
527 	} else {
528 		ep->flag_setup = '-';
529 	}
530 
531 	if (ndesc != 0) {
532 		ep->ndesc = ndesc;
533 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
534 		if ((offset += lendesc) >= rp->b_size)
535 			offset -= rp->b_size;
536 	}
537 
538 	if (length != 0) {
539 		ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
540 		if (ep->flag_data != 0) {	/* Yes, it's 0x00, not '0' */
541 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
542 			ep->len_cap -= length;
543 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
544 			mon_buff_area_shrink(rp, delta);
545 		}
546 	} else {
547 		ep->flag_data = data_tag;
548 	}
549 
550 	spin_unlock_irqrestore(&rp->b_lock, flags);
551 
552 	wake_up(&rp->b_wait);
553 }
554 
555 static void mon_bin_submit(void *data, struct urb *urb)
556 {
557 	struct mon_reader_bin *rp = data;
558 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
559 }
560 
561 static void mon_bin_complete(void *data, struct urb *urb, int status)
562 {
563 	struct mon_reader_bin *rp = data;
564 	mon_bin_event(rp, urb, 'C', status);
565 }
566 
567 static void mon_bin_error(void *data, struct urb *urb, int error)
568 {
569 	struct mon_reader_bin *rp = data;
570 	unsigned long flags;
571 	unsigned int offset;
572 	struct mon_bin_hdr *ep;
573 
574 	spin_lock_irqsave(&rp->b_lock, flags);
575 
576 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
577 	if (offset == ~0) {
578 		/* Not incrementing cnt_lost. Just because. */
579 		spin_unlock_irqrestore(&rp->b_lock, flags);
580 		return;
581 	}
582 
583 	ep = MON_OFF2HDR(rp, offset);
584 
585 	memset(ep, 0, PKT_SIZE);
586 	ep->type = 'E';
587 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
588 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
589 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
590 	ep->devnum = urb->dev->devnum;
591 	ep->busnum = urb->dev->bus->busnum;
592 	ep->id = (unsigned long) urb;
593 	ep->status = error;
594 
595 	ep->flag_setup = '-';
596 	ep->flag_data = 'E';
597 
598 	spin_unlock_irqrestore(&rp->b_lock, flags);
599 
600 	wake_up(&rp->b_wait);
601 }
602 
603 static int mon_bin_open(struct inode *inode, struct file *file)
604 {
605 	struct mon_bus *mbus;
606 	struct mon_reader_bin *rp;
607 	size_t size;
608 	int rc;
609 
610 	lock_kernel();
611 	mutex_lock(&mon_lock);
612 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
613 		mutex_unlock(&mon_lock);
614 		unlock_kernel();
615 		return -ENODEV;
616 	}
617 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
618 		printk(KERN_ERR TAG ": consistency error on open\n");
619 		mutex_unlock(&mon_lock);
620 		unlock_kernel();
621 		return -ENODEV;
622 	}
623 
624 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
625 	if (rp == NULL) {
626 		rc = -ENOMEM;
627 		goto err_alloc;
628 	}
629 	spin_lock_init(&rp->b_lock);
630 	init_waitqueue_head(&rp->b_wait);
631 	mutex_init(&rp->fetch_lock);
632 	rp->b_size = BUFF_DFL;
633 
634 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
635 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
636 		rc = -ENOMEM;
637 		goto err_allocvec;
638 	}
639 
640 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
641 		goto err_allocbuff;
642 
643 	rp->r.m_bus = mbus;
644 	rp->r.r_data = rp;
645 	rp->r.rnf_submit = mon_bin_submit;
646 	rp->r.rnf_error = mon_bin_error;
647 	rp->r.rnf_complete = mon_bin_complete;
648 
649 	mon_reader_add(mbus, &rp->r);
650 
651 	file->private_data = rp;
652 	mutex_unlock(&mon_lock);
653 	unlock_kernel();
654 	return 0;
655 
656 err_allocbuff:
657 	kfree(rp->b_vec);
658 err_allocvec:
659 	kfree(rp);
660 err_alloc:
661 	mutex_unlock(&mon_lock);
662 	unlock_kernel();
663 	return rc;
664 }
665 
666 /*
667  * Extract an event from buffer and copy it to user space.
668  * Wait if there is no event ready.
669  * Returns zero or error.
670  */
671 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
672     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
673     void __user *data, unsigned int nbytes)
674 {
675 	unsigned long flags;
676 	struct mon_bin_hdr *ep;
677 	size_t step_len;
678 	unsigned int offset;
679 	int rc;
680 
681 	mutex_lock(&rp->fetch_lock);
682 
683 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
684 		mutex_unlock(&rp->fetch_lock);
685 		return rc;
686 	}
687 
688 	ep = MON_OFF2HDR(rp, rp->b_out);
689 
690 	if (copy_to_user(hdr, ep, hdrbytes)) {
691 		mutex_unlock(&rp->fetch_lock);
692 		return -EFAULT;
693 	}
694 
695 	step_len = min(ep->len_cap, nbytes);
696 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
697 
698 	if (copy_from_buf(rp, offset, data, step_len)) {
699 		mutex_unlock(&rp->fetch_lock);
700 		return -EFAULT;
701 	}
702 
703 	spin_lock_irqsave(&rp->b_lock, flags);
704 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
705 	spin_unlock_irqrestore(&rp->b_lock, flags);
706 	rp->b_read = 0;
707 
708 	mutex_unlock(&rp->fetch_lock);
709 	return 0;
710 }
711 
712 static int mon_bin_release(struct inode *inode, struct file *file)
713 {
714 	struct mon_reader_bin *rp = file->private_data;
715 	struct mon_bus* mbus = rp->r.m_bus;
716 
717 	mutex_lock(&mon_lock);
718 
719 	if (mbus->nreaders <= 0) {
720 		printk(KERN_ERR TAG ": consistency error on close\n");
721 		mutex_unlock(&mon_lock);
722 		return 0;
723 	}
724 	mon_reader_del(mbus, &rp->r);
725 
726 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
727 	kfree(rp->b_vec);
728 	kfree(rp);
729 
730 	mutex_unlock(&mon_lock);
731 	return 0;
732 }
733 
734 static ssize_t mon_bin_read(struct file *file, char __user *buf,
735     size_t nbytes, loff_t *ppos)
736 {
737 	struct mon_reader_bin *rp = file->private_data;
738 	unsigned int hdrbytes = PKT_SZ_API0;
739 	unsigned long flags;
740 	struct mon_bin_hdr *ep;
741 	unsigned int offset;
742 	size_t step_len;
743 	char *ptr;
744 	ssize_t done = 0;
745 	int rc;
746 
747 	mutex_lock(&rp->fetch_lock);
748 
749 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
750 		mutex_unlock(&rp->fetch_lock);
751 		return rc;
752 	}
753 
754 	ep = MON_OFF2HDR(rp, rp->b_out);
755 
756 	if (rp->b_read < hdrbytes) {
757 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
758 		ptr = ((char *)ep) + rp->b_read;
759 		if (step_len && copy_to_user(buf, ptr, step_len)) {
760 			mutex_unlock(&rp->fetch_lock);
761 			return -EFAULT;
762 		}
763 		nbytes -= step_len;
764 		buf += step_len;
765 		rp->b_read += step_len;
766 		done += step_len;
767 	}
768 
769 	if (rp->b_read >= hdrbytes) {
770 		step_len = ep->len_cap;
771 		step_len -= rp->b_read - hdrbytes;
772 		if (step_len > nbytes)
773 			step_len = nbytes;
774 		offset = rp->b_out + PKT_SIZE;
775 		offset += rp->b_read - hdrbytes;
776 		if (offset >= rp->b_size)
777 			offset -= rp->b_size;
778 		if (copy_from_buf(rp, offset, buf, step_len)) {
779 			mutex_unlock(&rp->fetch_lock);
780 			return -EFAULT;
781 		}
782 		nbytes -= step_len;
783 		buf += step_len;
784 		rp->b_read += step_len;
785 		done += step_len;
786 	}
787 
788 	/*
789 	 * Check if whole packet was read, and if so, jump to the next one.
790 	 */
791 	if (rp->b_read >= hdrbytes + ep->len_cap) {
792 		spin_lock_irqsave(&rp->b_lock, flags);
793 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
794 		spin_unlock_irqrestore(&rp->b_lock, flags);
795 		rp->b_read = 0;
796 	}
797 
798 	mutex_unlock(&rp->fetch_lock);
799 	return done;
800 }
801 
802 /*
803  * Remove at most nevents from chunked buffer.
804  * Returns the number of removed events.
805  */
806 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
807 {
808 	unsigned long flags;
809 	struct mon_bin_hdr *ep;
810 	int i;
811 
812 	mutex_lock(&rp->fetch_lock);
813 	spin_lock_irqsave(&rp->b_lock, flags);
814 	for (i = 0; i < nevents; ++i) {
815 		if (MON_RING_EMPTY(rp))
816 			break;
817 
818 		ep = MON_OFF2HDR(rp, rp->b_out);
819 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
820 	}
821 	spin_unlock_irqrestore(&rp->b_lock, flags);
822 	rp->b_read = 0;
823 	mutex_unlock(&rp->fetch_lock);
824 	return i;
825 }
826 
827 /*
828  * Fetch at most max event offsets into the buffer and put them into vec.
829  * The events are usually freed later with mon_bin_flush.
830  * Return the effective number of events fetched.
831  */
832 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
833     u32 __user *vec, unsigned int max)
834 {
835 	unsigned int cur_out;
836 	unsigned int bytes, avail;
837 	unsigned int size;
838 	unsigned int nevents;
839 	struct mon_bin_hdr *ep;
840 	unsigned long flags;
841 	int rc;
842 
843 	mutex_lock(&rp->fetch_lock);
844 
845 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
846 		mutex_unlock(&rp->fetch_lock);
847 		return rc;
848 	}
849 
850 	spin_lock_irqsave(&rp->b_lock, flags);
851 	avail = rp->b_cnt;
852 	spin_unlock_irqrestore(&rp->b_lock, flags);
853 
854 	cur_out = rp->b_out;
855 	nevents = 0;
856 	bytes = 0;
857 	while (bytes < avail) {
858 		if (nevents >= max)
859 			break;
860 
861 		ep = MON_OFF2HDR(rp, cur_out);
862 		if (put_user(cur_out, &vec[nevents])) {
863 			mutex_unlock(&rp->fetch_lock);
864 			return -EFAULT;
865 		}
866 
867 		nevents++;
868 		size = ep->len_cap + PKT_SIZE;
869 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
870 		if ((cur_out += size) >= rp->b_size)
871 			cur_out -= rp->b_size;
872 		bytes += size;
873 	}
874 
875 	mutex_unlock(&rp->fetch_lock);
876 	return nevents;
877 }
878 
879 /*
880  * Count events. This is almost the same as the above mon_bin_fetch,
881  * only we do not store offsets into user vector, and we have no limit.
882  */
883 static int mon_bin_queued(struct mon_reader_bin *rp)
884 {
885 	unsigned int cur_out;
886 	unsigned int bytes, avail;
887 	unsigned int size;
888 	unsigned int nevents;
889 	struct mon_bin_hdr *ep;
890 	unsigned long flags;
891 
892 	mutex_lock(&rp->fetch_lock);
893 
894 	spin_lock_irqsave(&rp->b_lock, flags);
895 	avail = rp->b_cnt;
896 	spin_unlock_irqrestore(&rp->b_lock, flags);
897 
898 	cur_out = rp->b_out;
899 	nevents = 0;
900 	bytes = 0;
901 	while (bytes < avail) {
902 		ep = MON_OFF2HDR(rp, cur_out);
903 
904 		nevents++;
905 		size = ep->len_cap + PKT_SIZE;
906 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
907 		if ((cur_out += size) >= rp->b_size)
908 			cur_out -= rp->b_size;
909 		bytes += size;
910 	}
911 
912 	mutex_unlock(&rp->fetch_lock);
913 	return nevents;
914 }
915 
916 /*
917  */
918 static int mon_bin_ioctl(struct inode *inode, struct file *file,
919     unsigned int cmd, unsigned long arg)
920 {
921 	struct mon_reader_bin *rp = file->private_data;
922 	// struct mon_bus* mbus = rp->r.m_bus;
923 	int ret = 0;
924 	struct mon_bin_hdr *ep;
925 	unsigned long flags;
926 
927 	switch (cmd) {
928 
929 	case MON_IOCQ_URB_LEN:
930 		/*
931 		 * N.B. This only returns the size of data, without the header.
932 		 */
933 		spin_lock_irqsave(&rp->b_lock, flags);
934 		if (!MON_RING_EMPTY(rp)) {
935 			ep = MON_OFF2HDR(rp, rp->b_out);
936 			ret = ep->len_cap;
937 		}
938 		spin_unlock_irqrestore(&rp->b_lock, flags);
939 		break;
940 
941 	case MON_IOCQ_RING_SIZE:
942 		ret = rp->b_size;
943 		break;
944 
945 	case MON_IOCT_RING_SIZE:
946 		/*
947 		 * Changing the buffer size will flush it's contents; the new
948 		 * buffer is allocated before releasing the old one to be sure
949 		 * the device will stay functional also in case of memory
950 		 * pressure.
951 		 */
952 		{
953 		int size;
954 		struct mon_pgmap *vec;
955 
956 		if (arg < BUFF_MIN || arg > BUFF_MAX)
957 			return -EINVAL;
958 
959 		size = CHUNK_ALIGN(arg);
960 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
961 		    GFP_KERNEL)) == NULL) {
962 			ret = -ENOMEM;
963 			break;
964 		}
965 
966 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
967 		if (ret < 0) {
968 			kfree(vec);
969 			break;
970 		}
971 
972 		mutex_lock(&rp->fetch_lock);
973 		spin_lock_irqsave(&rp->b_lock, flags);
974 		mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
975 		kfree(rp->b_vec);
976 		rp->b_vec  = vec;
977 		rp->b_size = size;
978 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
979 		rp->cnt_lost = 0;
980 		spin_unlock_irqrestore(&rp->b_lock, flags);
981 		mutex_unlock(&rp->fetch_lock);
982 		}
983 		break;
984 
985 	case MON_IOCH_MFLUSH:
986 		ret = mon_bin_flush(rp, arg);
987 		break;
988 
989 	case MON_IOCX_GET:
990 	case MON_IOCX_GETX:
991 		{
992 		struct mon_bin_get getb;
993 
994 		if (copy_from_user(&getb, (void __user *)arg,
995 					    sizeof(struct mon_bin_get)))
996 			return -EFAULT;
997 
998 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
999 			return -EINVAL;
1000 		ret = mon_bin_get_event(file, rp, getb.hdr,
1001 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1002 		    getb.data, (unsigned int)getb.alloc);
1003 		}
1004 		break;
1005 
1006 	case MON_IOCX_MFETCH:
1007 		{
1008 		struct mon_bin_mfetch mfetch;
1009 		struct mon_bin_mfetch __user *uptr;
1010 
1011 		uptr = (struct mon_bin_mfetch __user *)arg;
1012 
1013 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1014 			return -EFAULT;
1015 
1016 		if (mfetch.nflush) {
1017 			ret = mon_bin_flush(rp, mfetch.nflush);
1018 			if (ret < 0)
1019 				return ret;
1020 			if (put_user(ret, &uptr->nflush))
1021 				return -EFAULT;
1022 		}
1023 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1024 		if (ret < 0)
1025 			return ret;
1026 		if (put_user(ret, &uptr->nfetch))
1027 			return -EFAULT;
1028 		ret = 0;
1029 		}
1030 		break;
1031 
1032 	case MON_IOCG_STATS: {
1033 		struct mon_bin_stats __user *sp;
1034 		unsigned int nevents;
1035 		unsigned int ndropped;
1036 
1037 		spin_lock_irqsave(&rp->b_lock, flags);
1038 		ndropped = rp->cnt_lost;
1039 		rp->cnt_lost = 0;
1040 		spin_unlock_irqrestore(&rp->b_lock, flags);
1041 		nevents = mon_bin_queued(rp);
1042 
1043 		sp = (struct mon_bin_stats __user *)arg;
1044 		if (put_user(rp->cnt_lost, &sp->dropped))
1045 			return -EFAULT;
1046 		if (put_user(nevents, &sp->queued))
1047 			return -EFAULT;
1048 
1049 		}
1050 		break;
1051 
1052 	default:
1053 		return -ENOTTY;
1054 	}
1055 
1056 	return ret;
1057 }
1058 
1059 #ifdef CONFIG_COMPAT
1060 static long mon_bin_compat_ioctl(struct file *file,
1061     unsigned int cmd, unsigned long arg)
1062 {
1063 	struct mon_reader_bin *rp = file->private_data;
1064 	int ret;
1065 
1066 	switch (cmd) {
1067 
1068 	case MON_IOCX_GET32:
1069 	case MON_IOCX_GETX32:
1070 		{
1071 		struct mon_bin_get32 getb;
1072 
1073 		if (copy_from_user(&getb, (void __user *)arg,
1074 					    sizeof(struct mon_bin_get32)))
1075 			return -EFAULT;
1076 
1077 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1078 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1079 		    compat_ptr(getb.data32), getb.alloc32);
1080 		if (ret < 0)
1081 			return ret;
1082 		}
1083 		return 0;
1084 
1085 	case MON_IOCX_MFETCH32:
1086 		{
1087 		struct mon_bin_mfetch32 mfetch;
1088 		struct mon_bin_mfetch32 __user *uptr;
1089 
1090 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1091 
1092 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1093 			return -EFAULT;
1094 
1095 		if (mfetch.nflush32) {
1096 			ret = mon_bin_flush(rp, mfetch.nflush32);
1097 			if (ret < 0)
1098 				return ret;
1099 			if (put_user(ret, &uptr->nflush32))
1100 				return -EFAULT;
1101 		}
1102 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1103 		    mfetch.nfetch32);
1104 		if (ret < 0)
1105 			return ret;
1106 		if (put_user(ret, &uptr->nfetch32))
1107 			return -EFAULT;
1108 		}
1109 		return 0;
1110 
1111 	case MON_IOCG_STATS:
1112 		return mon_bin_ioctl(NULL, file, cmd,
1113 					    (unsigned long) compat_ptr(arg));
1114 
1115 	case MON_IOCQ_URB_LEN:
1116 	case MON_IOCQ_RING_SIZE:
1117 	case MON_IOCT_RING_SIZE:
1118 	case MON_IOCH_MFLUSH:
1119 		return mon_bin_ioctl(NULL, file, cmd, arg);
1120 
1121 	default:
1122 		;
1123 	}
1124 	return -ENOTTY;
1125 }
1126 #endif /* CONFIG_COMPAT */
1127 
1128 static unsigned int
1129 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1130 {
1131 	struct mon_reader_bin *rp = file->private_data;
1132 	unsigned int mask = 0;
1133 	unsigned long flags;
1134 
1135 	if (file->f_mode & FMODE_READ)
1136 		poll_wait(file, &rp->b_wait, wait);
1137 
1138 	spin_lock_irqsave(&rp->b_lock, flags);
1139 	if (!MON_RING_EMPTY(rp))
1140 		mask |= POLLIN | POLLRDNORM;    /* readable */
1141 	spin_unlock_irqrestore(&rp->b_lock, flags);
1142 	return mask;
1143 }
1144 
1145 /*
1146  * open and close: just keep track of how many times the device is
1147  * mapped, to use the proper memory allocation function.
1148  */
1149 static void mon_bin_vma_open(struct vm_area_struct *vma)
1150 {
1151 	struct mon_reader_bin *rp = vma->vm_private_data;
1152 	rp->mmap_active++;
1153 }
1154 
1155 static void mon_bin_vma_close(struct vm_area_struct *vma)
1156 {
1157 	struct mon_reader_bin *rp = vma->vm_private_data;
1158 	rp->mmap_active--;
1159 }
1160 
1161 /*
1162  * Map ring pages to user space.
1163  */
1164 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166 	struct mon_reader_bin *rp = vma->vm_private_data;
1167 	unsigned long offset, chunk_idx;
1168 	struct page *pageptr;
1169 
1170 	offset = vmf->pgoff << PAGE_SHIFT;
1171 	if (offset >= rp->b_size)
1172 		return VM_FAULT_SIGBUS;
1173 	chunk_idx = offset / CHUNK_SIZE;
1174 	pageptr = rp->b_vec[chunk_idx].pg;
1175 	get_page(pageptr);
1176 	vmf->page = pageptr;
1177 	return 0;
1178 }
1179 
1180 static const struct vm_operations_struct mon_bin_vm_ops = {
1181 	.open =     mon_bin_vma_open,
1182 	.close =    mon_bin_vma_close,
1183 	.fault =    mon_bin_vma_fault,
1184 };
1185 
1186 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1187 {
1188 	/* don't do anything here: "fault" will set up page table entries */
1189 	vma->vm_ops = &mon_bin_vm_ops;
1190 	vma->vm_flags |= VM_RESERVED;
1191 	vma->vm_private_data = filp->private_data;
1192 	mon_bin_vma_open(vma);
1193 	return 0;
1194 }
1195 
1196 static const struct file_operations mon_fops_binary = {
1197 	.owner =	THIS_MODULE,
1198 	.open =		mon_bin_open,
1199 	.llseek =	no_llseek,
1200 	.read =		mon_bin_read,
1201 	/* .write =	mon_text_write, */
1202 	.poll =		mon_bin_poll,
1203 	.ioctl =	mon_bin_ioctl,
1204 #ifdef CONFIG_COMPAT
1205 	.compat_ioctl =	mon_bin_compat_ioctl,
1206 #endif
1207 	.release =	mon_bin_release,
1208 	.mmap =		mon_bin_mmap,
1209 };
1210 
1211 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1212 {
1213 	DECLARE_WAITQUEUE(waita, current);
1214 	unsigned long flags;
1215 
1216 	add_wait_queue(&rp->b_wait, &waita);
1217 	set_current_state(TASK_INTERRUPTIBLE);
1218 
1219 	spin_lock_irqsave(&rp->b_lock, flags);
1220 	while (MON_RING_EMPTY(rp)) {
1221 		spin_unlock_irqrestore(&rp->b_lock, flags);
1222 
1223 		if (file->f_flags & O_NONBLOCK) {
1224 			set_current_state(TASK_RUNNING);
1225 			remove_wait_queue(&rp->b_wait, &waita);
1226 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1227 		}
1228 		schedule();
1229 		if (signal_pending(current)) {
1230 			remove_wait_queue(&rp->b_wait, &waita);
1231 			return -EINTR;
1232 		}
1233 		set_current_state(TASK_INTERRUPTIBLE);
1234 
1235 		spin_lock_irqsave(&rp->b_lock, flags);
1236 	}
1237 	spin_unlock_irqrestore(&rp->b_lock, flags);
1238 
1239 	set_current_state(TASK_RUNNING);
1240 	remove_wait_queue(&rp->b_wait, &waita);
1241 	return 0;
1242 }
1243 
1244 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1245 {
1246 	int n;
1247 	unsigned long vaddr;
1248 
1249 	for (n = 0; n < npages; n++) {
1250 		vaddr = get_zeroed_page(GFP_KERNEL);
1251 		if (vaddr == 0) {
1252 			while (n-- != 0)
1253 				free_page((unsigned long) map[n].ptr);
1254 			return -ENOMEM;
1255 		}
1256 		map[n].ptr = (unsigned char *) vaddr;
1257 		map[n].pg = virt_to_page((void *) vaddr);
1258 	}
1259 	return 0;
1260 }
1261 
1262 static void mon_free_buff(struct mon_pgmap *map, int npages)
1263 {
1264 	int n;
1265 
1266 	for (n = 0; n < npages; n++)
1267 		free_page((unsigned long) map[n].ptr);
1268 }
1269 
1270 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1271 {
1272 	struct device *dev;
1273 	unsigned minor = ubus? ubus->busnum: 0;
1274 
1275 	if (minor >= MON_BIN_MAX_MINOR)
1276 		return 0;
1277 
1278 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1279 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1280 			    "usbmon%d", minor);
1281 	if (IS_ERR(dev))
1282 		return 0;
1283 
1284 	mbus->classdev = dev;
1285 	return 1;
1286 }
1287 
1288 void mon_bin_del(struct mon_bus *mbus)
1289 {
1290 	device_destroy(mon_bin_class, mbus->classdev->devt);
1291 }
1292 
1293 int __init mon_bin_init(void)
1294 {
1295 	int rc;
1296 
1297 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1298 	if (IS_ERR(mon_bin_class)) {
1299 		rc = PTR_ERR(mon_bin_class);
1300 		goto err_class;
1301 	}
1302 
1303 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1304 	if (rc < 0)
1305 		goto err_dev;
1306 
1307 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1308 	mon_bin_cdev.owner = THIS_MODULE;
1309 
1310 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1311 	if (rc < 0)
1312 		goto err_add;
1313 
1314 	return 0;
1315 
1316 err_add:
1317 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1318 err_dev:
1319 	class_destroy(mon_bin_class);
1320 err_class:
1321 	return rc;
1322 }
1323 
1324 void mon_bin_exit(void)
1325 {
1326 	cdev_del(&mon_bin_cdev);
1327 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1328 	class_destroy(mon_bin_class);
1329 }
1330