1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 #include <linux/smp_lock.h> 19 20 #include <asm/uaccess.h> 21 22 #include "usb_mon.h" 23 24 /* 25 * Defined by USB 2.0 clause 9.3, table 9.2. 26 */ 27 #define SETUP_LEN 8 28 29 /* ioctl macros */ 30 #define MON_IOC_MAGIC 0x92 31 32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 40 /* #9 was MON_IOCT_SETAPI */ 41 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 42 43 #ifdef CONFIG_COMPAT 44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 46 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 47 #endif 48 49 /* 50 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 51 * But it's all right. Just use a simple way to make sure the chunk is never 52 * smaller than a page. 53 * 54 * N.B. An application does not know our chunk size. 55 * 56 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 57 * page-sized chunks for the time being. 58 */ 59 #define CHUNK_SIZE PAGE_SIZE 60 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 61 62 /* 63 * The magic limit was calculated so that it allows the monitoring 64 * application to pick data once in two ticks. This way, another application, 65 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 66 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 67 * enormous overhead built into the bus protocol, so we need about 1000 KB. 68 * 69 * This is still too much for most cases, where we just snoop a few 70 * descriptor fetches for enumeration. So, the default is a "reasonable" 71 * amount for systems with HZ=250 and incomplete bus saturation. 72 * 73 * XXX What about multi-megabyte URBs which take minutes to transfer? 74 */ 75 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 76 #define BUFF_DFL CHUNK_ALIGN(300*1024) 77 #define BUFF_MIN CHUNK_ALIGN(8*1024) 78 79 /* 80 * The per-event API header (2 per URB). 81 * 82 * This structure is seen in userland as defined by the documentation. 83 */ 84 struct mon_bin_hdr { 85 u64 id; /* URB ID - from submission to callback */ 86 unsigned char type; /* Same as in text API; extensible. */ 87 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 88 unsigned char epnum; /* Endpoint number and transfer direction */ 89 unsigned char devnum; /* Device address */ 90 unsigned short busnum; /* Bus number */ 91 char flag_setup; 92 char flag_data; 93 s64 ts_sec; /* gettimeofday */ 94 s32 ts_usec; /* gettimeofday */ 95 int status; 96 unsigned int len_urb; /* Length of data (submitted or actual) */ 97 unsigned int len_cap; /* Delivered length */ 98 union { 99 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 100 struct iso_rec { 101 int error_count; 102 int numdesc; 103 } iso; 104 } s; 105 int interval; 106 int start_frame; 107 unsigned int xfer_flags; 108 unsigned int ndesc; /* Actual number of ISO descriptors */ 109 }; 110 111 /* 112 * ISO vector, packed into the head of data stream. 113 * This has to take 16 bytes to make sure that the end of buffer 114 * wrap is not happening in the middle of a descriptor. 115 */ 116 struct mon_bin_isodesc { 117 int iso_status; 118 unsigned int iso_off; 119 unsigned int iso_len; 120 u32 _pad; 121 }; 122 123 /* per file statistic */ 124 struct mon_bin_stats { 125 u32 queued; 126 u32 dropped; 127 }; 128 129 struct mon_bin_get { 130 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 131 void __user *data; 132 size_t alloc; /* Length of data (can be zero) */ 133 }; 134 135 struct mon_bin_mfetch { 136 u32 __user *offvec; /* Vector of events fetched */ 137 u32 nfetch; /* Number of events to fetch (out: fetched) */ 138 u32 nflush; /* Number of events to flush */ 139 }; 140 141 #ifdef CONFIG_COMPAT 142 struct mon_bin_get32 { 143 u32 hdr32; 144 u32 data32; 145 u32 alloc32; 146 }; 147 148 struct mon_bin_mfetch32 { 149 u32 offvec32; 150 u32 nfetch32; 151 u32 nflush32; 152 }; 153 #endif 154 155 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 156 #define PKT_ALIGN 64 157 #define PKT_SIZE 64 158 159 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 160 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 161 162 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 163 164 /* max number of USB bus supported */ 165 #define MON_BIN_MAX_MINOR 128 166 167 /* 168 * The buffer: map of used pages. 169 */ 170 struct mon_pgmap { 171 struct page *pg; 172 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 173 }; 174 175 /* 176 * This gets associated with an open file struct. 177 */ 178 struct mon_reader_bin { 179 /* The buffer: one per open. */ 180 spinlock_t b_lock; /* Protect b_cnt, b_in */ 181 unsigned int b_size; /* Current size of the buffer - bytes */ 182 unsigned int b_cnt; /* Bytes used */ 183 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 184 unsigned int b_read; /* Amount of read data in curr. pkt. */ 185 struct mon_pgmap *b_vec; /* The map array */ 186 wait_queue_head_t b_wait; /* Wait for data here */ 187 188 struct mutex fetch_lock; /* Protect b_read, b_out */ 189 int mmap_active; 190 191 /* A list of these is needed for "bus 0". Some time later. */ 192 struct mon_reader r; 193 194 /* Stats */ 195 unsigned int cnt_lost; 196 }; 197 198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 199 unsigned int offset) 200 { 201 return (struct mon_bin_hdr *) 202 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 203 } 204 205 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 206 207 static unsigned char xfer_to_pipe[4] = { 208 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 209 }; 210 211 static struct class *mon_bin_class; 212 static dev_t mon_bin_dev0; 213 static struct cdev mon_bin_cdev; 214 215 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 216 unsigned int offset, unsigned int size); 217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 218 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 219 static void mon_free_buff(struct mon_pgmap *map, int npages); 220 221 /* 222 * This is a "chunked memcpy". It does not manipulate any counters. 223 */ 224 static void mon_copy_to_buff(const struct mon_reader_bin *this, 225 unsigned int off, const unsigned char *from, unsigned int length) 226 { 227 unsigned int step_len; 228 unsigned char *buf; 229 unsigned int in_page; 230 231 while (length) { 232 /* 233 * Determine step_len. 234 */ 235 step_len = length; 236 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 237 if (in_page < step_len) 238 step_len = in_page; 239 240 /* 241 * Copy data and advance pointers. 242 */ 243 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 244 memcpy(buf, from, step_len); 245 if ((off += step_len) >= this->b_size) off = 0; 246 from += step_len; 247 length -= step_len; 248 } 249 } 250 251 /* 252 * This is a little worse than the above because it's "chunked copy_to_user". 253 * The return value is an error code, not an offset. 254 */ 255 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 256 char __user *to, int length) 257 { 258 unsigned int step_len; 259 unsigned char *buf; 260 unsigned int in_page; 261 262 while (length) { 263 /* 264 * Determine step_len. 265 */ 266 step_len = length; 267 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 268 if (in_page < step_len) 269 step_len = in_page; 270 271 /* 272 * Copy data and advance pointers. 273 */ 274 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 275 if (copy_to_user(to, buf, step_len)) 276 return -EINVAL; 277 if ((off += step_len) >= this->b_size) off = 0; 278 to += step_len; 279 length -= step_len; 280 } 281 return 0; 282 } 283 284 /* 285 * Allocate an (aligned) area in the buffer. 286 * This is called under b_lock. 287 * Returns ~0 on failure. 288 */ 289 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 290 unsigned int size) 291 { 292 unsigned int offset; 293 294 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 295 if (rp->b_cnt + size > rp->b_size) 296 return ~0; 297 offset = rp->b_in; 298 rp->b_cnt += size; 299 if ((rp->b_in += size) >= rp->b_size) 300 rp->b_in -= rp->b_size; 301 return offset; 302 } 303 304 /* 305 * This is the same thing as mon_buff_area_alloc, only it does not allow 306 * buffers to wrap. This is needed by applications which pass references 307 * into mmap-ed buffers up their stacks (libpcap can do that). 308 * 309 * Currently, we always have the header stuck with the data, although 310 * it is not strictly speaking necessary. 311 * 312 * When a buffer would wrap, we place a filler packet to mark the space. 313 */ 314 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 315 unsigned int size) 316 { 317 unsigned int offset; 318 unsigned int fill_size; 319 320 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 321 if (rp->b_cnt + size > rp->b_size) 322 return ~0; 323 if (rp->b_in + size > rp->b_size) { 324 /* 325 * This would wrap. Find if we still have space after 326 * skipping to the end of the buffer. If we do, place 327 * a filler packet and allocate a new packet. 328 */ 329 fill_size = rp->b_size - rp->b_in; 330 if (rp->b_cnt + size + fill_size > rp->b_size) 331 return ~0; 332 mon_buff_area_fill(rp, rp->b_in, fill_size); 333 334 offset = 0; 335 rp->b_in = size; 336 rp->b_cnt += size + fill_size; 337 } else if (rp->b_in + size == rp->b_size) { 338 offset = rp->b_in; 339 rp->b_in = 0; 340 rp->b_cnt += size; 341 } else { 342 offset = rp->b_in; 343 rp->b_in += size; 344 rp->b_cnt += size; 345 } 346 return offset; 347 } 348 349 /* 350 * Return a few (kilo-)bytes to the head of the buffer. 351 * This is used if a data fetch fails. 352 */ 353 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 354 { 355 356 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 357 rp->b_cnt -= size; 358 if (rp->b_in < size) 359 rp->b_in += rp->b_size; 360 rp->b_in -= size; 361 } 362 363 /* 364 * This has to be called under both b_lock and fetch_lock, because 365 * it accesses both b_cnt and b_out. 366 */ 367 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 368 { 369 370 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 371 rp->b_cnt -= size; 372 if ((rp->b_out += size) >= rp->b_size) 373 rp->b_out -= rp->b_size; 374 } 375 376 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 377 unsigned int offset, unsigned int size) 378 { 379 struct mon_bin_hdr *ep; 380 381 ep = MON_OFF2HDR(rp, offset); 382 memset(ep, 0, PKT_SIZE); 383 ep->type = '@'; 384 ep->len_cap = size - PKT_SIZE; 385 } 386 387 static inline char mon_bin_get_setup(unsigned char *setupb, 388 const struct urb *urb, char ev_type) 389 { 390 391 if (urb->setup_packet == NULL) 392 return 'Z'; 393 memcpy(setupb, urb->setup_packet, SETUP_LEN); 394 return 0; 395 } 396 397 static char mon_bin_get_data(const struct mon_reader_bin *rp, 398 unsigned int offset, struct urb *urb, unsigned int length) 399 { 400 401 if (urb->transfer_buffer == NULL) 402 return 'Z'; 403 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 404 return 0; 405 } 406 407 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 408 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 409 { 410 struct mon_bin_isodesc *dp; 411 struct usb_iso_packet_descriptor *fp; 412 413 fp = urb->iso_frame_desc; 414 while (ndesc-- != 0) { 415 dp = (struct mon_bin_isodesc *) 416 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 417 dp->iso_status = fp->status; 418 dp->iso_off = fp->offset; 419 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 420 dp->_pad = 0; 421 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 422 offset = 0; 423 fp++; 424 } 425 } 426 427 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 428 char ev_type, int status) 429 { 430 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 431 unsigned long flags; 432 struct timeval ts; 433 unsigned int urb_length; 434 unsigned int offset; 435 unsigned int length; 436 unsigned int delta; 437 unsigned int ndesc, lendesc; 438 unsigned char dir; 439 struct mon_bin_hdr *ep; 440 char data_tag = 0; 441 442 do_gettimeofday(&ts); 443 444 spin_lock_irqsave(&rp->b_lock, flags); 445 446 /* 447 * Find the maximum allowable length, then allocate space. 448 */ 449 if (usb_endpoint_xfer_isoc(epd)) { 450 if (urb->number_of_packets < 0) { 451 ndesc = 0; 452 } else if (urb->number_of_packets >= ISODESC_MAX) { 453 ndesc = ISODESC_MAX; 454 } else { 455 ndesc = urb->number_of_packets; 456 } 457 } else { 458 ndesc = 0; 459 } 460 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 461 462 urb_length = (ev_type == 'S') ? 463 urb->transfer_buffer_length : urb->actual_length; 464 length = urb_length; 465 466 if (length >= rp->b_size/5) 467 length = rp->b_size/5; 468 469 if (usb_urb_dir_in(urb)) { 470 if (ev_type == 'S') { 471 length = 0; 472 data_tag = '<'; 473 } 474 /* Cannot rely on endpoint number in case of control ep.0 */ 475 dir = USB_DIR_IN; 476 } else { 477 if (ev_type == 'C') { 478 length = 0; 479 data_tag = '>'; 480 } 481 dir = 0; 482 } 483 484 if (rp->mmap_active) { 485 offset = mon_buff_area_alloc_contiguous(rp, 486 length + PKT_SIZE + lendesc); 487 } else { 488 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 489 } 490 if (offset == ~0) { 491 rp->cnt_lost++; 492 spin_unlock_irqrestore(&rp->b_lock, flags); 493 return; 494 } 495 496 ep = MON_OFF2HDR(rp, offset); 497 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 498 499 /* 500 * Fill the allocated area. 501 */ 502 memset(ep, 0, PKT_SIZE); 503 ep->type = ev_type; 504 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 505 ep->epnum = dir | usb_endpoint_num(epd); 506 ep->devnum = urb->dev->devnum; 507 ep->busnum = urb->dev->bus->busnum; 508 ep->id = (unsigned long) urb; 509 ep->ts_sec = ts.tv_sec; 510 ep->ts_usec = ts.tv_usec; 511 ep->status = status; 512 ep->len_urb = urb_length; 513 ep->len_cap = length + lendesc; 514 ep->xfer_flags = urb->transfer_flags; 515 516 if (usb_endpoint_xfer_int(epd)) { 517 ep->interval = urb->interval; 518 } else if (usb_endpoint_xfer_isoc(epd)) { 519 ep->interval = urb->interval; 520 ep->start_frame = urb->start_frame; 521 ep->s.iso.error_count = urb->error_count; 522 ep->s.iso.numdesc = urb->number_of_packets; 523 } 524 525 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 526 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 527 } else { 528 ep->flag_setup = '-'; 529 } 530 531 if (ndesc != 0) { 532 ep->ndesc = ndesc; 533 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 534 if ((offset += lendesc) >= rp->b_size) 535 offset -= rp->b_size; 536 } 537 538 if (length != 0) { 539 ep->flag_data = mon_bin_get_data(rp, offset, urb, length); 540 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */ 541 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 542 ep->len_cap -= length; 543 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 544 mon_buff_area_shrink(rp, delta); 545 } 546 } else { 547 ep->flag_data = data_tag; 548 } 549 550 spin_unlock_irqrestore(&rp->b_lock, flags); 551 552 wake_up(&rp->b_wait); 553 } 554 555 static void mon_bin_submit(void *data, struct urb *urb) 556 { 557 struct mon_reader_bin *rp = data; 558 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 559 } 560 561 static void mon_bin_complete(void *data, struct urb *urb, int status) 562 { 563 struct mon_reader_bin *rp = data; 564 mon_bin_event(rp, urb, 'C', status); 565 } 566 567 static void mon_bin_error(void *data, struct urb *urb, int error) 568 { 569 struct mon_reader_bin *rp = data; 570 unsigned long flags; 571 unsigned int offset; 572 struct mon_bin_hdr *ep; 573 574 spin_lock_irqsave(&rp->b_lock, flags); 575 576 offset = mon_buff_area_alloc(rp, PKT_SIZE); 577 if (offset == ~0) { 578 /* Not incrementing cnt_lost. Just because. */ 579 spin_unlock_irqrestore(&rp->b_lock, flags); 580 return; 581 } 582 583 ep = MON_OFF2HDR(rp, offset); 584 585 memset(ep, 0, PKT_SIZE); 586 ep->type = 'E'; 587 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 588 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 589 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 590 ep->devnum = urb->dev->devnum; 591 ep->busnum = urb->dev->bus->busnum; 592 ep->id = (unsigned long) urb; 593 ep->status = error; 594 595 ep->flag_setup = '-'; 596 ep->flag_data = 'E'; 597 598 spin_unlock_irqrestore(&rp->b_lock, flags); 599 600 wake_up(&rp->b_wait); 601 } 602 603 static int mon_bin_open(struct inode *inode, struct file *file) 604 { 605 struct mon_bus *mbus; 606 struct mon_reader_bin *rp; 607 size_t size; 608 int rc; 609 610 lock_kernel(); 611 mutex_lock(&mon_lock); 612 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 613 mutex_unlock(&mon_lock); 614 unlock_kernel(); 615 return -ENODEV; 616 } 617 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 618 printk(KERN_ERR TAG ": consistency error on open\n"); 619 mutex_unlock(&mon_lock); 620 unlock_kernel(); 621 return -ENODEV; 622 } 623 624 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 625 if (rp == NULL) { 626 rc = -ENOMEM; 627 goto err_alloc; 628 } 629 spin_lock_init(&rp->b_lock); 630 init_waitqueue_head(&rp->b_wait); 631 mutex_init(&rp->fetch_lock); 632 rp->b_size = BUFF_DFL; 633 634 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 635 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 636 rc = -ENOMEM; 637 goto err_allocvec; 638 } 639 640 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 641 goto err_allocbuff; 642 643 rp->r.m_bus = mbus; 644 rp->r.r_data = rp; 645 rp->r.rnf_submit = mon_bin_submit; 646 rp->r.rnf_error = mon_bin_error; 647 rp->r.rnf_complete = mon_bin_complete; 648 649 mon_reader_add(mbus, &rp->r); 650 651 file->private_data = rp; 652 mutex_unlock(&mon_lock); 653 unlock_kernel(); 654 return 0; 655 656 err_allocbuff: 657 kfree(rp->b_vec); 658 err_allocvec: 659 kfree(rp); 660 err_alloc: 661 mutex_unlock(&mon_lock); 662 unlock_kernel(); 663 return rc; 664 } 665 666 /* 667 * Extract an event from buffer and copy it to user space. 668 * Wait if there is no event ready. 669 * Returns zero or error. 670 */ 671 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 672 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 673 void __user *data, unsigned int nbytes) 674 { 675 unsigned long flags; 676 struct mon_bin_hdr *ep; 677 size_t step_len; 678 unsigned int offset; 679 int rc; 680 681 mutex_lock(&rp->fetch_lock); 682 683 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 684 mutex_unlock(&rp->fetch_lock); 685 return rc; 686 } 687 688 ep = MON_OFF2HDR(rp, rp->b_out); 689 690 if (copy_to_user(hdr, ep, hdrbytes)) { 691 mutex_unlock(&rp->fetch_lock); 692 return -EFAULT; 693 } 694 695 step_len = min(ep->len_cap, nbytes); 696 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 697 698 if (copy_from_buf(rp, offset, data, step_len)) { 699 mutex_unlock(&rp->fetch_lock); 700 return -EFAULT; 701 } 702 703 spin_lock_irqsave(&rp->b_lock, flags); 704 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 705 spin_unlock_irqrestore(&rp->b_lock, flags); 706 rp->b_read = 0; 707 708 mutex_unlock(&rp->fetch_lock); 709 return 0; 710 } 711 712 static int mon_bin_release(struct inode *inode, struct file *file) 713 { 714 struct mon_reader_bin *rp = file->private_data; 715 struct mon_bus* mbus = rp->r.m_bus; 716 717 mutex_lock(&mon_lock); 718 719 if (mbus->nreaders <= 0) { 720 printk(KERN_ERR TAG ": consistency error on close\n"); 721 mutex_unlock(&mon_lock); 722 return 0; 723 } 724 mon_reader_del(mbus, &rp->r); 725 726 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 727 kfree(rp->b_vec); 728 kfree(rp); 729 730 mutex_unlock(&mon_lock); 731 return 0; 732 } 733 734 static ssize_t mon_bin_read(struct file *file, char __user *buf, 735 size_t nbytes, loff_t *ppos) 736 { 737 struct mon_reader_bin *rp = file->private_data; 738 unsigned int hdrbytes = PKT_SZ_API0; 739 unsigned long flags; 740 struct mon_bin_hdr *ep; 741 unsigned int offset; 742 size_t step_len; 743 char *ptr; 744 ssize_t done = 0; 745 int rc; 746 747 mutex_lock(&rp->fetch_lock); 748 749 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 750 mutex_unlock(&rp->fetch_lock); 751 return rc; 752 } 753 754 ep = MON_OFF2HDR(rp, rp->b_out); 755 756 if (rp->b_read < hdrbytes) { 757 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 758 ptr = ((char *)ep) + rp->b_read; 759 if (step_len && copy_to_user(buf, ptr, step_len)) { 760 mutex_unlock(&rp->fetch_lock); 761 return -EFAULT; 762 } 763 nbytes -= step_len; 764 buf += step_len; 765 rp->b_read += step_len; 766 done += step_len; 767 } 768 769 if (rp->b_read >= hdrbytes) { 770 step_len = ep->len_cap; 771 step_len -= rp->b_read - hdrbytes; 772 if (step_len > nbytes) 773 step_len = nbytes; 774 offset = rp->b_out + PKT_SIZE; 775 offset += rp->b_read - hdrbytes; 776 if (offset >= rp->b_size) 777 offset -= rp->b_size; 778 if (copy_from_buf(rp, offset, buf, step_len)) { 779 mutex_unlock(&rp->fetch_lock); 780 return -EFAULT; 781 } 782 nbytes -= step_len; 783 buf += step_len; 784 rp->b_read += step_len; 785 done += step_len; 786 } 787 788 /* 789 * Check if whole packet was read, and if so, jump to the next one. 790 */ 791 if (rp->b_read >= hdrbytes + ep->len_cap) { 792 spin_lock_irqsave(&rp->b_lock, flags); 793 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 794 spin_unlock_irqrestore(&rp->b_lock, flags); 795 rp->b_read = 0; 796 } 797 798 mutex_unlock(&rp->fetch_lock); 799 return done; 800 } 801 802 /* 803 * Remove at most nevents from chunked buffer. 804 * Returns the number of removed events. 805 */ 806 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 807 { 808 unsigned long flags; 809 struct mon_bin_hdr *ep; 810 int i; 811 812 mutex_lock(&rp->fetch_lock); 813 spin_lock_irqsave(&rp->b_lock, flags); 814 for (i = 0; i < nevents; ++i) { 815 if (MON_RING_EMPTY(rp)) 816 break; 817 818 ep = MON_OFF2HDR(rp, rp->b_out); 819 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 820 } 821 spin_unlock_irqrestore(&rp->b_lock, flags); 822 rp->b_read = 0; 823 mutex_unlock(&rp->fetch_lock); 824 return i; 825 } 826 827 /* 828 * Fetch at most max event offsets into the buffer and put them into vec. 829 * The events are usually freed later with mon_bin_flush. 830 * Return the effective number of events fetched. 831 */ 832 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 833 u32 __user *vec, unsigned int max) 834 { 835 unsigned int cur_out; 836 unsigned int bytes, avail; 837 unsigned int size; 838 unsigned int nevents; 839 struct mon_bin_hdr *ep; 840 unsigned long flags; 841 int rc; 842 843 mutex_lock(&rp->fetch_lock); 844 845 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 846 mutex_unlock(&rp->fetch_lock); 847 return rc; 848 } 849 850 spin_lock_irqsave(&rp->b_lock, flags); 851 avail = rp->b_cnt; 852 spin_unlock_irqrestore(&rp->b_lock, flags); 853 854 cur_out = rp->b_out; 855 nevents = 0; 856 bytes = 0; 857 while (bytes < avail) { 858 if (nevents >= max) 859 break; 860 861 ep = MON_OFF2HDR(rp, cur_out); 862 if (put_user(cur_out, &vec[nevents])) { 863 mutex_unlock(&rp->fetch_lock); 864 return -EFAULT; 865 } 866 867 nevents++; 868 size = ep->len_cap + PKT_SIZE; 869 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 870 if ((cur_out += size) >= rp->b_size) 871 cur_out -= rp->b_size; 872 bytes += size; 873 } 874 875 mutex_unlock(&rp->fetch_lock); 876 return nevents; 877 } 878 879 /* 880 * Count events. This is almost the same as the above mon_bin_fetch, 881 * only we do not store offsets into user vector, and we have no limit. 882 */ 883 static int mon_bin_queued(struct mon_reader_bin *rp) 884 { 885 unsigned int cur_out; 886 unsigned int bytes, avail; 887 unsigned int size; 888 unsigned int nevents; 889 struct mon_bin_hdr *ep; 890 unsigned long flags; 891 892 mutex_lock(&rp->fetch_lock); 893 894 spin_lock_irqsave(&rp->b_lock, flags); 895 avail = rp->b_cnt; 896 spin_unlock_irqrestore(&rp->b_lock, flags); 897 898 cur_out = rp->b_out; 899 nevents = 0; 900 bytes = 0; 901 while (bytes < avail) { 902 ep = MON_OFF2HDR(rp, cur_out); 903 904 nevents++; 905 size = ep->len_cap + PKT_SIZE; 906 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 907 if ((cur_out += size) >= rp->b_size) 908 cur_out -= rp->b_size; 909 bytes += size; 910 } 911 912 mutex_unlock(&rp->fetch_lock); 913 return nevents; 914 } 915 916 /* 917 */ 918 static int mon_bin_ioctl(struct inode *inode, struct file *file, 919 unsigned int cmd, unsigned long arg) 920 { 921 struct mon_reader_bin *rp = file->private_data; 922 // struct mon_bus* mbus = rp->r.m_bus; 923 int ret = 0; 924 struct mon_bin_hdr *ep; 925 unsigned long flags; 926 927 switch (cmd) { 928 929 case MON_IOCQ_URB_LEN: 930 /* 931 * N.B. This only returns the size of data, without the header. 932 */ 933 spin_lock_irqsave(&rp->b_lock, flags); 934 if (!MON_RING_EMPTY(rp)) { 935 ep = MON_OFF2HDR(rp, rp->b_out); 936 ret = ep->len_cap; 937 } 938 spin_unlock_irqrestore(&rp->b_lock, flags); 939 break; 940 941 case MON_IOCQ_RING_SIZE: 942 ret = rp->b_size; 943 break; 944 945 case MON_IOCT_RING_SIZE: 946 /* 947 * Changing the buffer size will flush it's contents; the new 948 * buffer is allocated before releasing the old one to be sure 949 * the device will stay functional also in case of memory 950 * pressure. 951 */ 952 { 953 int size; 954 struct mon_pgmap *vec; 955 956 if (arg < BUFF_MIN || arg > BUFF_MAX) 957 return -EINVAL; 958 959 size = CHUNK_ALIGN(arg); 960 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 961 GFP_KERNEL)) == NULL) { 962 ret = -ENOMEM; 963 break; 964 } 965 966 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 967 if (ret < 0) { 968 kfree(vec); 969 break; 970 } 971 972 mutex_lock(&rp->fetch_lock); 973 spin_lock_irqsave(&rp->b_lock, flags); 974 mon_free_buff(rp->b_vec, size/CHUNK_SIZE); 975 kfree(rp->b_vec); 976 rp->b_vec = vec; 977 rp->b_size = size; 978 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 979 rp->cnt_lost = 0; 980 spin_unlock_irqrestore(&rp->b_lock, flags); 981 mutex_unlock(&rp->fetch_lock); 982 } 983 break; 984 985 case MON_IOCH_MFLUSH: 986 ret = mon_bin_flush(rp, arg); 987 break; 988 989 case MON_IOCX_GET: 990 case MON_IOCX_GETX: 991 { 992 struct mon_bin_get getb; 993 994 if (copy_from_user(&getb, (void __user *)arg, 995 sizeof(struct mon_bin_get))) 996 return -EFAULT; 997 998 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 999 return -EINVAL; 1000 ret = mon_bin_get_event(file, rp, getb.hdr, 1001 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1002 getb.data, (unsigned int)getb.alloc); 1003 } 1004 break; 1005 1006 case MON_IOCX_MFETCH: 1007 { 1008 struct mon_bin_mfetch mfetch; 1009 struct mon_bin_mfetch __user *uptr; 1010 1011 uptr = (struct mon_bin_mfetch __user *)arg; 1012 1013 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1014 return -EFAULT; 1015 1016 if (mfetch.nflush) { 1017 ret = mon_bin_flush(rp, mfetch.nflush); 1018 if (ret < 0) 1019 return ret; 1020 if (put_user(ret, &uptr->nflush)) 1021 return -EFAULT; 1022 } 1023 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1024 if (ret < 0) 1025 return ret; 1026 if (put_user(ret, &uptr->nfetch)) 1027 return -EFAULT; 1028 ret = 0; 1029 } 1030 break; 1031 1032 case MON_IOCG_STATS: { 1033 struct mon_bin_stats __user *sp; 1034 unsigned int nevents; 1035 unsigned int ndropped; 1036 1037 spin_lock_irqsave(&rp->b_lock, flags); 1038 ndropped = rp->cnt_lost; 1039 rp->cnt_lost = 0; 1040 spin_unlock_irqrestore(&rp->b_lock, flags); 1041 nevents = mon_bin_queued(rp); 1042 1043 sp = (struct mon_bin_stats __user *)arg; 1044 if (put_user(rp->cnt_lost, &sp->dropped)) 1045 return -EFAULT; 1046 if (put_user(nevents, &sp->queued)) 1047 return -EFAULT; 1048 1049 } 1050 break; 1051 1052 default: 1053 return -ENOTTY; 1054 } 1055 1056 return ret; 1057 } 1058 1059 #ifdef CONFIG_COMPAT 1060 static long mon_bin_compat_ioctl(struct file *file, 1061 unsigned int cmd, unsigned long arg) 1062 { 1063 struct mon_reader_bin *rp = file->private_data; 1064 int ret; 1065 1066 switch (cmd) { 1067 1068 case MON_IOCX_GET32: 1069 case MON_IOCX_GETX32: 1070 { 1071 struct mon_bin_get32 getb; 1072 1073 if (copy_from_user(&getb, (void __user *)arg, 1074 sizeof(struct mon_bin_get32))) 1075 return -EFAULT; 1076 1077 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1078 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1079 compat_ptr(getb.data32), getb.alloc32); 1080 if (ret < 0) 1081 return ret; 1082 } 1083 return 0; 1084 1085 case MON_IOCX_MFETCH32: 1086 { 1087 struct mon_bin_mfetch32 mfetch; 1088 struct mon_bin_mfetch32 __user *uptr; 1089 1090 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1091 1092 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1093 return -EFAULT; 1094 1095 if (mfetch.nflush32) { 1096 ret = mon_bin_flush(rp, mfetch.nflush32); 1097 if (ret < 0) 1098 return ret; 1099 if (put_user(ret, &uptr->nflush32)) 1100 return -EFAULT; 1101 } 1102 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1103 mfetch.nfetch32); 1104 if (ret < 0) 1105 return ret; 1106 if (put_user(ret, &uptr->nfetch32)) 1107 return -EFAULT; 1108 } 1109 return 0; 1110 1111 case MON_IOCG_STATS: 1112 return mon_bin_ioctl(NULL, file, cmd, 1113 (unsigned long) compat_ptr(arg)); 1114 1115 case MON_IOCQ_URB_LEN: 1116 case MON_IOCQ_RING_SIZE: 1117 case MON_IOCT_RING_SIZE: 1118 case MON_IOCH_MFLUSH: 1119 return mon_bin_ioctl(NULL, file, cmd, arg); 1120 1121 default: 1122 ; 1123 } 1124 return -ENOTTY; 1125 } 1126 #endif /* CONFIG_COMPAT */ 1127 1128 static unsigned int 1129 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1130 { 1131 struct mon_reader_bin *rp = file->private_data; 1132 unsigned int mask = 0; 1133 unsigned long flags; 1134 1135 if (file->f_mode & FMODE_READ) 1136 poll_wait(file, &rp->b_wait, wait); 1137 1138 spin_lock_irqsave(&rp->b_lock, flags); 1139 if (!MON_RING_EMPTY(rp)) 1140 mask |= POLLIN | POLLRDNORM; /* readable */ 1141 spin_unlock_irqrestore(&rp->b_lock, flags); 1142 return mask; 1143 } 1144 1145 /* 1146 * open and close: just keep track of how many times the device is 1147 * mapped, to use the proper memory allocation function. 1148 */ 1149 static void mon_bin_vma_open(struct vm_area_struct *vma) 1150 { 1151 struct mon_reader_bin *rp = vma->vm_private_data; 1152 rp->mmap_active++; 1153 } 1154 1155 static void mon_bin_vma_close(struct vm_area_struct *vma) 1156 { 1157 struct mon_reader_bin *rp = vma->vm_private_data; 1158 rp->mmap_active--; 1159 } 1160 1161 /* 1162 * Map ring pages to user space. 1163 */ 1164 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1165 { 1166 struct mon_reader_bin *rp = vma->vm_private_data; 1167 unsigned long offset, chunk_idx; 1168 struct page *pageptr; 1169 1170 offset = vmf->pgoff << PAGE_SHIFT; 1171 if (offset >= rp->b_size) 1172 return VM_FAULT_SIGBUS; 1173 chunk_idx = offset / CHUNK_SIZE; 1174 pageptr = rp->b_vec[chunk_idx].pg; 1175 get_page(pageptr); 1176 vmf->page = pageptr; 1177 return 0; 1178 } 1179 1180 static const struct vm_operations_struct mon_bin_vm_ops = { 1181 .open = mon_bin_vma_open, 1182 .close = mon_bin_vma_close, 1183 .fault = mon_bin_vma_fault, 1184 }; 1185 1186 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1187 { 1188 /* don't do anything here: "fault" will set up page table entries */ 1189 vma->vm_ops = &mon_bin_vm_ops; 1190 vma->vm_flags |= VM_RESERVED; 1191 vma->vm_private_data = filp->private_data; 1192 mon_bin_vma_open(vma); 1193 return 0; 1194 } 1195 1196 static const struct file_operations mon_fops_binary = { 1197 .owner = THIS_MODULE, 1198 .open = mon_bin_open, 1199 .llseek = no_llseek, 1200 .read = mon_bin_read, 1201 /* .write = mon_text_write, */ 1202 .poll = mon_bin_poll, 1203 .ioctl = mon_bin_ioctl, 1204 #ifdef CONFIG_COMPAT 1205 .compat_ioctl = mon_bin_compat_ioctl, 1206 #endif 1207 .release = mon_bin_release, 1208 .mmap = mon_bin_mmap, 1209 }; 1210 1211 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1212 { 1213 DECLARE_WAITQUEUE(waita, current); 1214 unsigned long flags; 1215 1216 add_wait_queue(&rp->b_wait, &waita); 1217 set_current_state(TASK_INTERRUPTIBLE); 1218 1219 spin_lock_irqsave(&rp->b_lock, flags); 1220 while (MON_RING_EMPTY(rp)) { 1221 spin_unlock_irqrestore(&rp->b_lock, flags); 1222 1223 if (file->f_flags & O_NONBLOCK) { 1224 set_current_state(TASK_RUNNING); 1225 remove_wait_queue(&rp->b_wait, &waita); 1226 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1227 } 1228 schedule(); 1229 if (signal_pending(current)) { 1230 remove_wait_queue(&rp->b_wait, &waita); 1231 return -EINTR; 1232 } 1233 set_current_state(TASK_INTERRUPTIBLE); 1234 1235 spin_lock_irqsave(&rp->b_lock, flags); 1236 } 1237 spin_unlock_irqrestore(&rp->b_lock, flags); 1238 1239 set_current_state(TASK_RUNNING); 1240 remove_wait_queue(&rp->b_wait, &waita); 1241 return 0; 1242 } 1243 1244 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1245 { 1246 int n; 1247 unsigned long vaddr; 1248 1249 for (n = 0; n < npages; n++) { 1250 vaddr = get_zeroed_page(GFP_KERNEL); 1251 if (vaddr == 0) { 1252 while (n-- != 0) 1253 free_page((unsigned long) map[n].ptr); 1254 return -ENOMEM; 1255 } 1256 map[n].ptr = (unsigned char *) vaddr; 1257 map[n].pg = virt_to_page((void *) vaddr); 1258 } 1259 return 0; 1260 } 1261 1262 static void mon_free_buff(struct mon_pgmap *map, int npages) 1263 { 1264 int n; 1265 1266 for (n = 0; n < npages; n++) 1267 free_page((unsigned long) map[n].ptr); 1268 } 1269 1270 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1271 { 1272 struct device *dev; 1273 unsigned minor = ubus? ubus->busnum: 0; 1274 1275 if (minor >= MON_BIN_MAX_MINOR) 1276 return 0; 1277 1278 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1279 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1280 "usbmon%d", minor); 1281 if (IS_ERR(dev)) 1282 return 0; 1283 1284 mbus->classdev = dev; 1285 return 1; 1286 } 1287 1288 void mon_bin_del(struct mon_bus *mbus) 1289 { 1290 device_destroy(mon_bin_class, mbus->classdev->devt); 1291 } 1292 1293 int __init mon_bin_init(void) 1294 { 1295 int rc; 1296 1297 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1298 if (IS_ERR(mon_bin_class)) { 1299 rc = PTR_ERR(mon_bin_class); 1300 goto err_class; 1301 } 1302 1303 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1304 if (rc < 0) 1305 goto err_dev; 1306 1307 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1308 mon_bin_cdev.owner = THIS_MODULE; 1309 1310 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1311 if (rc < 0) 1312 goto err_add; 1313 1314 return 0; 1315 1316 err_add: 1317 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1318 err_dev: 1319 class_destroy(mon_bin_class); 1320 err_class: 1321 return rc; 1322 } 1323 1324 void mon_bin_exit(void) 1325 { 1326 cdev_del(&mon_bin_cdev); 1327 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1328 class_destroy(mon_bin_class); 1329 } 1330