1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 19 #include <asm/uaccess.h> 20 21 #include "usb_mon.h" 22 23 /* 24 * Defined by USB 2.0 clause 9.3, table 9.2. 25 */ 26 #define SETUP_LEN 8 27 28 /* ioctl macros */ 29 #define MON_IOC_MAGIC 0x92 30 31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 39 #ifdef CONFIG_COMPAT 40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 42 #endif 43 44 /* 45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 46 * But it's all right. Just use a simple way to make sure the chunk is never 47 * smaller than a page. 48 * 49 * N.B. An application does not know our chunk size. 50 * 51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 52 * page-sized chunks for the time being. 53 */ 54 #define CHUNK_SIZE PAGE_SIZE 55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 56 57 /* 58 * The magic limit was calculated so that it allows the monitoring 59 * application to pick data once in two ticks. This way, another application, 60 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 62 * enormous overhead built into the bus protocol, so we need about 1000 KB. 63 * 64 * This is still too much for most cases, where we just snoop a few 65 * descriptor fetches for enumeration. So, the default is a "reasonable" 66 * amount for systems with HZ=250 and incomplete bus saturation. 67 * 68 * XXX What about multi-megabyte URBs which take minutes to transfer? 69 */ 70 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 71 #define BUFF_DFL CHUNK_ALIGN(300*1024) 72 #define BUFF_MIN CHUNK_ALIGN(8*1024) 73 74 /* 75 * The per-event API header (2 per URB). 76 * 77 * This structure is seen in userland as defined by the documentation. 78 */ 79 struct mon_bin_hdr { 80 u64 id; /* URB ID - from submission to callback */ 81 unsigned char type; /* Same as in text API; extensible. */ 82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 83 unsigned char epnum; /* Endpoint number and transfer direction */ 84 unsigned char devnum; /* Device address */ 85 unsigned short busnum; /* Bus number */ 86 char flag_setup; 87 char flag_data; 88 s64 ts_sec; /* gettimeofday */ 89 s32 ts_usec; /* gettimeofday */ 90 int status; 91 unsigned int len_urb; /* Length of data (submitted or actual) */ 92 unsigned int len_cap; /* Delivered length */ 93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 94 }; 95 96 /* per file statistic */ 97 struct mon_bin_stats { 98 u32 queued; 99 u32 dropped; 100 }; 101 102 struct mon_bin_get { 103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */ 104 void __user *data; 105 size_t alloc; /* Length of data (can be zero) */ 106 }; 107 108 struct mon_bin_mfetch { 109 u32 __user *offvec; /* Vector of events fetched */ 110 u32 nfetch; /* Number of events to fetch (out: fetched) */ 111 u32 nflush; /* Number of events to flush */ 112 }; 113 114 #ifdef CONFIG_COMPAT 115 struct mon_bin_get32 { 116 u32 hdr32; 117 u32 data32; 118 u32 alloc32; 119 }; 120 121 struct mon_bin_mfetch32 { 122 u32 offvec32; 123 u32 nfetch32; 124 u32 nflush32; 125 }; 126 #endif 127 128 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 129 #define PKT_ALIGN 64 130 #define PKT_SIZE 64 131 132 /* max number of USB bus supported */ 133 #define MON_BIN_MAX_MINOR 128 134 135 /* 136 * The buffer: map of used pages. 137 */ 138 struct mon_pgmap { 139 struct page *pg; 140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 141 }; 142 143 /* 144 * This gets associated with an open file struct. 145 */ 146 struct mon_reader_bin { 147 /* The buffer: one per open. */ 148 spinlock_t b_lock; /* Protect b_cnt, b_in */ 149 unsigned int b_size; /* Current size of the buffer - bytes */ 150 unsigned int b_cnt; /* Bytes used */ 151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 152 unsigned int b_read; /* Amount of read data in curr. pkt. */ 153 struct mon_pgmap *b_vec; /* The map array */ 154 wait_queue_head_t b_wait; /* Wait for data here */ 155 156 struct mutex fetch_lock; /* Protect b_read, b_out */ 157 int mmap_active; 158 159 /* A list of these is needed for "bus 0". Some time later. */ 160 struct mon_reader r; 161 162 /* Stats */ 163 unsigned int cnt_lost; 164 }; 165 166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 167 unsigned int offset) 168 { 169 return (struct mon_bin_hdr *) 170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 171 } 172 173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 174 175 static dev_t mon_bin_dev0; 176 static struct cdev mon_bin_cdev; 177 178 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 179 unsigned int offset, unsigned int size); 180 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 181 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 182 static void mon_free_buff(struct mon_pgmap *map, int npages); 183 184 /* 185 * This is a "chunked memcpy". It does not manipulate any counters. 186 * But it returns the new offset for repeated application. 187 */ 188 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 189 unsigned int off, const unsigned char *from, unsigned int length) 190 { 191 unsigned int step_len; 192 unsigned char *buf; 193 unsigned int in_page; 194 195 while (length) { 196 /* 197 * Determine step_len. 198 */ 199 step_len = length; 200 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 201 if (in_page < step_len) 202 step_len = in_page; 203 204 /* 205 * Copy data and advance pointers. 206 */ 207 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 208 memcpy(buf, from, step_len); 209 if ((off += step_len) >= this->b_size) off = 0; 210 from += step_len; 211 length -= step_len; 212 } 213 return off; 214 } 215 216 /* 217 * This is a little worse than the above because it's "chunked copy_to_user". 218 * The return value is an error code, not an offset. 219 */ 220 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 221 char __user *to, int length) 222 { 223 unsigned int step_len; 224 unsigned char *buf; 225 unsigned int in_page; 226 227 while (length) { 228 /* 229 * Determine step_len. 230 */ 231 step_len = length; 232 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 233 if (in_page < step_len) 234 step_len = in_page; 235 236 /* 237 * Copy data and advance pointers. 238 */ 239 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 240 if (copy_to_user(to, buf, step_len)) 241 return -EINVAL; 242 if ((off += step_len) >= this->b_size) off = 0; 243 to += step_len; 244 length -= step_len; 245 } 246 return 0; 247 } 248 249 /* 250 * Allocate an (aligned) area in the buffer. 251 * This is called under b_lock. 252 * Returns ~0 on failure. 253 */ 254 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 255 unsigned int size) 256 { 257 unsigned int offset; 258 259 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 260 if (rp->b_cnt + size > rp->b_size) 261 return ~0; 262 offset = rp->b_in; 263 rp->b_cnt += size; 264 if ((rp->b_in += size) >= rp->b_size) 265 rp->b_in -= rp->b_size; 266 return offset; 267 } 268 269 /* 270 * This is the same thing as mon_buff_area_alloc, only it does not allow 271 * buffers to wrap. This is needed by applications which pass references 272 * into mmap-ed buffers up their stacks (libpcap can do that). 273 * 274 * Currently, we always have the header stuck with the data, although 275 * it is not strictly speaking necessary. 276 * 277 * When a buffer would wrap, we place a filler packet to mark the space. 278 */ 279 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 280 unsigned int size) 281 { 282 unsigned int offset; 283 unsigned int fill_size; 284 285 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 286 if (rp->b_cnt + size > rp->b_size) 287 return ~0; 288 if (rp->b_in + size > rp->b_size) { 289 /* 290 * This would wrap. Find if we still have space after 291 * skipping to the end of the buffer. If we do, place 292 * a filler packet and allocate a new packet. 293 */ 294 fill_size = rp->b_size - rp->b_in; 295 if (rp->b_cnt + size + fill_size > rp->b_size) 296 return ~0; 297 mon_buff_area_fill(rp, rp->b_in, fill_size); 298 299 offset = 0; 300 rp->b_in = size; 301 rp->b_cnt += size + fill_size; 302 } else if (rp->b_in + size == rp->b_size) { 303 offset = rp->b_in; 304 rp->b_in = 0; 305 rp->b_cnt += size; 306 } else { 307 offset = rp->b_in; 308 rp->b_in += size; 309 rp->b_cnt += size; 310 } 311 return offset; 312 } 313 314 /* 315 * Return a few (kilo-)bytes to the head of the buffer. 316 * This is used if a DMA fetch fails. 317 */ 318 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 319 { 320 321 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 322 rp->b_cnt -= size; 323 if (rp->b_in < size) 324 rp->b_in += rp->b_size; 325 rp->b_in -= size; 326 } 327 328 /* 329 * This has to be called under both b_lock and fetch_lock, because 330 * it accesses both b_cnt and b_out. 331 */ 332 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 333 { 334 335 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 336 rp->b_cnt -= size; 337 if ((rp->b_out += size) >= rp->b_size) 338 rp->b_out -= rp->b_size; 339 } 340 341 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 342 unsigned int offset, unsigned int size) 343 { 344 struct mon_bin_hdr *ep; 345 346 ep = MON_OFF2HDR(rp, offset); 347 memset(ep, 0, PKT_SIZE); 348 ep->type = '@'; 349 ep->len_cap = size - PKT_SIZE; 350 } 351 352 static inline char mon_bin_get_setup(unsigned char *setupb, 353 const struct urb *urb, char ev_type) 354 { 355 356 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S') 357 return '-'; 358 359 if (urb->transfer_flags & URB_NO_SETUP_DMA_MAP) 360 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN); 361 if (urb->setup_packet == NULL) 362 return 'Z'; 363 364 memcpy(setupb, urb->setup_packet, SETUP_LEN); 365 return 0; 366 } 367 368 static char mon_bin_get_data(const struct mon_reader_bin *rp, 369 unsigned int offset, struct urb *urb, unsigned int length) 370 { 371 372 if (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) { 373 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length); 374 return 0; 375 } 376 377 if (urb->transfer_buffer == NULL) 378 return 'Z'; 379 380 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 381 return 0; 382 } 383 384 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 385 char ev_type) 386 { 387 unsigned long flags; 388 struct timeval ts; 389 unsigned int urb_length; 390 unsigned int offset; 391 unsigned int length; 392 struct mon_bin_hdr *ep; 393 char data_tag = 0; 394 395 do_gettimeofday(&ts); 396 397 spin_lock_irqsave(&rp->b_lock, flags); 398 399 /* 400 * Find the maximum allowable length, then allocate space. 401 */ 402 urb_length = (ev_type == 'S') ? 403 urb->transfer_buffer_length : urb->actual_length; 404 length = urb_length; 405 406 if (length >= rp->b_size/5) 407 length = rp->b_size/5; 408 409 if (usb_pipein(urb->pipe)) { 410 if (ev_type == 'S') { 411 length = 0; 412 data_tag = '<'; 413 } 414 } else { 415 if (ev_type == 'C') { 416 length = 0; 417 data_tag = '>'; 418 } 419 } 420 421 if (rp->mmap_active) 422 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE); 423 else 424 offset = mon_buff_area_alloc(rp, length + PKT_SIZE); 425 if (offset == ~0) { 426 rp->cnt_lost++; 427 spin_unlock_irqrestore(&rp->b_lock, flags); 428 return; 429 } 430 431 ep = MON_OFF2HDR(rp, offset); 432 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 433 434 /* 435 * Fill the allocated area. 436 */ 437 memset(ep, 0, PKT_SIZE); 438 ep->type = ev_type; 439 ep->xfer_type = usb_pipetype(urb->pipe); 440 /* We use the fact that usb_pipein() returns 0x80 */ 441 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe); 442 ep->devnum = usb_pipedevice(urb->pipe); 443 ep->busnum = rp->r.m_bus->u_bus->busnum; 444 ep->id = (unsigned long) urb; 445 ep->ts_sec = ts.tv_sec; 446 ep->ts_usec = ts.tv_usec; 447 ep->status = urb->status; 448 ep->len_urb = urb_length; 449 ep->len_cap = length; 450 451 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type); 452 if (length != 0) { 453 ep->flag_data = mon_bin_get_data(rp, offset, urb, length); 454 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */ 455 ep->len_cap = 0; 456 mon_buff_area_shrink(rp, length); 457 } 458 } else { 459 ep->flag_data = data_tag; 460 } 461 462 spin_unlock_irqrestore(&rp->b_lock, flags); 463 464 wake_up(&rp->b_wait); 465 } 466 467 static void mon_bin_submit(void *data, struct urb *urb) 468 { 469 struct mon_reader_bin *rp = data; 470 mon_bin_event(rp, urb, 'S'); 471 } 472 473 static void mon_bin_complete(void *data, struct urb *urb) 474 { 475 struct mon_reader_bin *rp = data; 476 mon_bin_event(rp, urb, 'C'); 477 } 478 479 static void mon_bin_error(void *data, struct urb *urb, int error) 480 { 481 struct mon_reader_bin *rp = data; 482 unsigned long flags; 483 unsigned int offset; 484 struct mon_bin_hdr *ep; 485 486 spin_lock_irqsave(&rp->b_lock, flags); 487 488 offset = mon_buff_area_alloc(rp, PKT_SIZE); 489 if (offset == ~0) { 490 /* Not incrementing cnt_lost. Just because. */ 491 spin_unlock_irqrestore(&rp->b_lock, flags); 492 return; 493 } 494 495 ep = MON_OFF2HDR(rp, offset); 496 497 memset(ep, 0, PKT_SIZE); 498 ep->type = 'E'; 499 ep->xfer_type = usb_pipetype(urb->pipe); 500 /* We use the fact that usb_pipein() returns 0x80 */ 501 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe); 502 ep->devnum = usb_pipedevice(urb->pipe); 503 ep->busnum = rp->r.m_bus->u_bus->busnum; 504 ep->id = (unsigned long) urb; 505 ep->status = error; 506 507 ep->flag_setup = '-'; 508 ep->flag_data = 'E'; 509 510 spin_unlock_irqrestore(&rp->b_lock, flags); 511 512 wake_up(&rp->b_wait); 513 } 514 515 static int mon_bin_open(struct inode *inode, struct file *file) 516 { 517 struct mon_bus *mbus; 518 struct usb_bus *ubus; 519 struct mon_reader_bin *rp; 520 size_t size; 521 int rc; 522 523 mutex_lock(&mon_lock); 524 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 525 mutex_unlock(&mon_lock); 526 return -ENODEV; 527 } 528 if ((ubus = mbus->u_bus) == NULL) { 529 printk(KERN_ERR TAG ": consistency error on open\n"); 530 mutex_unlock(&mon_lock); 531 return -ENODEV; 532 } 533 534 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 535 if (rp == NULL) { 536 rc = -ENOMEM; 537 goto err_alloc; 538 } 539 spin_lock_init(&rp->b_lock); 540 init_waitqueue_head(&rp->b_wait); 541 mutex_init(&rp->fetch_lock); 542 543 rp->b_size = BUFF_DFL; 544 545 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 546 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 547 rc = -ENOMEM; 548 goto err_allocvec; 549 } 550 551 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 552 goto err_allocbuff; 553 554 rp->r.m_bus = mbus; 555 rp->r.r_data = rp; 556 rp->r.rnf_submit = mon_bin_submit; 557 rp->r.rnf_error = mon_bin_error; 558 rp->r.rnf_complete = mon_bin_complete; 559 560 mon_reader_add(mbus, &rp->r); 561 562 file->private_data = rp; 563 mutex_unlock(&mon_lock); 564 return 0; 565 566 err_allocbuff: 567 kfree(rp->b_vec); 568 err_allocvec: 569 kfree(rp); 570 err_alloc: 571 mutex_unlock(&mon_lock); 572 return rc; 573 } 574 575 /* 576 * Extract an event from buffer and copy it to user space. 577 * Wait if there is no event ready. 578 * Returns zero or error. 579 */ 580 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 581 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes) 582 { 583 unsigned long flags; 584 struct mon_bin_hdr *ep; 585 size_t step_len; 586 unsigned int offset; 587 int rc; 588 589 mutex_lock(&rp->fetch_lock); 590 591 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 592 mutex_unlock(&rp->fetch_lock); 593 return rc; 594 } 595 596 ep = MON_OFF2HDR(rp, rp->b_out); 597 598 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) { 599 mutex_unlock(&rp->fetch_lock); 600 return -EFAULT; 601 } 602 603 step_len = min(ep->len_cap, nbytes); 604 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 605 606 if (copy_from_buf(rp, offset, data, step_len)) { 607 mutex_unlock(&rp->fetch_lock); 608 return -EFAULT; 609 } 610 611 spin_lock_irqsave(&rp->b_lock, flags); 612 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 613 spin_unlock_irqrestore(&rp->b_lock, flags); 614 rp->b_read = 0; 615 616 mutex_unlock(&rp->fetch_lock); 617 return 0; 618 } 619 620 static int mon_bin_release(struct inode *inode, struct file *file) 621 { 622 struct mon_reader_bin *rp = file->private_data; 623 struct mon_bus* mbus = rp->r.m_bus; 624 625 mutex_lock(&mon_lock); 626 627 if (mbus->nreaders <= 0) { 628 printk(KERN_ERR TAG ": consistency error on close\n"); 629 mutex_unlock(&mon_lock); 630 return 0; 631 } 632 mon_reader_del(mbus, &rp->r); 633 634 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 635 kfree(rp->b_vec); 636 kfree(rp); 637 638 mutex_unlock(&mon_lock); 639 return 0; 640 } 641 642 static ssize_t mon_bin_read(struct file *file, char __user *buf, 643 size_t nbytes, loff_t *ppos) 644 { 645 struct mon_reader_bin *rp = file->private_data; 646 unsigned long flags; 647 struct mon_bin_hdr *ep; 648 unsigned int offset; 649 size_t step_len; 650 char *ptr; 651 ssize_t done = 0; 652 int rc; 653 654 mutex_lock(&rp->fetch_lock); 655 656 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 657 mutex_unlock(&rp->fetch_lock); 658 return rc; 659 } 660 661 ep = MON_OFF2HDR(rp, rp->b_out); 662 663 if (rp->b_read < sizeof(struct mon_bin_hdr)) { 664 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read); 665 ptr = ((char *)ep) + rp->b_read; 666 if (step_len && copy_to_user(buf, ptr, step_len)) { 667 mutex_unlock(&rp->fetch_lock); 668 return -EFAULT; 669 } 670 nbytes -= step_len; 671 buf += step_len; 672 rp->b_read += step_len; 673 done += step_len; 674 } 675 676 if (rp->b_read >= sizeof(struct mon_bin_hdr)) { 677 step_len = min(nbytes, (size_t)ep->len_cap); 678 offset = rp->b_out + PKT_SIZE; 679 offset += rp->b_read - sizeof(struct mon_bin_hdr); 680 if (offset >= rp->b_size) 681 offset -= rp->b_size; 682 if (copy_from_buf(rp, offset, buf, step_len)) { 683 mutex_unlock(&rp->fetch_lock); 684 return -EFAULT; 685 } 686 nbytes -= step_len; 687 buf += step_len; 688 rp->b_read += step_len; 689 done += step_len; 690 } 691 692 /* 693 * Check if whole packet was read, and if so, jump to the next one. 694 */ 695 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) { 696 spin_lock_irqsave(&rp->b_lock, flags); 697 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 698 spin_unlock_irqrestore(&rp->b_lock, flags); 699 rp->b_read = 0; 700 } 701 702 mutex_unlock(&rp->fetch_lock); 703 return done; 704 } 705 706 /* 707 * Remove at most nevents from chunked buffer. 708 * Returns the number of removed events. 709 */ 710 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 711 { 712 unsigned long flags; 713 struct mon_bin_hdr *ep; 714 int i; 715 716 mutex_lock(&rp->fetch_lock); 717 spin_lock_irqsave(&rp->b_lock, flags); 718 for (i = 0; i < nevents; ++i) { 719 if (MON_RING_EMPTY(rp)) 720 break; 721 722 ep = MON_OFF2HDR(rp, rp->b_out); 723 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 724 } 725 spin_unlock_irqrestore(&rp->b_lock, flags); 726 rp->b_read = 0; 727 mutex_unlock(&rp->fetch_lock); 728 return i; 729 } 730 731 /* 732 * Fetch at most max event offsets into the buffer and put them into vec. 733 * The events are usually freed later with mon_bin_flush. 734 * Return the effective number of events fetched. 735 */ 736 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 737 u32 __user *vec, unsigned int max) 738 { 739 unsigned int cur_out; 740 unsigned int bytes, avail; 741 unsigned int size; 742 unsigned int nevents; 743 struct mon_bin_hdr *ep; 744 unsigned long flags; 745 int rc; 746 747 mutex_lock(&rp->fetch_lock); 748 749 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 750 mutex_unlock(&rp->fetch_lock); 751 return rc; 752 } 753 754 spin_lock_irqsave(&rp->b_lock, flags); 755 avail = rp->b_cnt; 756 spin_unlock_irqrestore(&rp->b_lock, flags); 757 758 cur_out = rp->b_out; 759 nevents = 0; 760 bytes = 0; 761 while (bytes < avail) { 762 if (nevents >= max) 763 break; 764 765 ep = MON_OFF2HDR(rp, cur_out); 766 if (put_user(cur_out, &vec[nevents])) { 767 mutex_unlock(&rp->fetch_lock); 768 return -EFAULT; 769 } 770 771 nevents++; 772 size = ep->len_cap + PKT_SIZE; 773 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 774 if ((cur_out += size) >= rp->b_size) 775 cur_out -= rp->b_size; 776 bytes += size; 777 } 778 779 mutex_unlock(&rp->fetch_lock); 780 return nevents; 781 } 782 783 /* 784 * Count events. This is almost the same as the above mon_bin_fetch, 785 * only we do not store offsets into user vector, and we have no limit. 786 */ 787 static int mon_bin_queued(struct mon_reader_bin *rp) 788 { 789 unsigned int cur_out; 790 unsigned int bytes, avail; 791 unsigned int size; 792 unsigned int nevents; 793 struct mon_bin_hdr *ep; 794 unsigned long flags; 795 796 mutex_lock(&rp->fetch_lock); 797 798 spin_lock_irqsave(&rp->b_lock, flags); 799 avail = rp->b_cnt; 800 spin_unlock_irqrestore(&rp->b_lock, flags); 801 802 cur_out = rp->b_out; 803 nevents = 0; 804 bytes = 0; 805 while (bytes < avail) { 806 ep = MON_OFF2HDR(rp, cur_out); 807 808 nevents++; 809 size = ep->len_cap + PKT_SIZE; 810 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 811 if ((cur_out += size) >= rp->b_size) 812 cur_out -= rp->b_size; 813 bytes += size; 814 } 815 816 mutex_unlock(&rp->fetch_lock); 817 return nevents; 818 } 819 820 /* 821 */ 822 static int mon_bin_ioctl(struct inode *inode, struct file *file, 823 unsigned int cmd, unsigned long arg) 824 { 825 struct mon_reader_bin *rp = file->private_data; 826 // struct mon_bus* mbus = rp->r.m_bus; 827 int ret = 0; 828 struct mon_bin_hdr *ep; 829 unsigned long flags; 830 831 switch (cmd) { 832 833 case MON_IOCQ_URB_LEN: 834 /* 835 * N.B. This only returns the size of data, without the header. 836 */ 837 spin_lock_irqsave(&rp->b_lock, flags); 838 if (!MON_RING_EMPTY(rp)) { 839 ep = MON_OFF2HDR(rp, rp->b_out); 840 ret = ep->len_cap; 841 } 842 spin_unlock_irqrestore(&rp->b_lock, flags); 843 break; 844 845 case MON_IOCQ_RING_SIZE: 846 ret = rp->b_size; 847 break; 848 849 case MON_IOCT_RING_SIZE: 850 /* 851 * Changing the buffer size will flush it's contents; the new 852 * buffer is allocated before releasing the old one to be sure 853 * the device will stay functional also in case of memory 854 * pressure. 855 */ 856 { 857 int size; 858 struct mon_pgmap *vec; 859 860 if (arg < BUFF_MIN || arg > BUFF_MAX) 861 return -EINVAL; 862 863 size = CHUNK_ALIGN(arg); 864 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 865 GFP_KERNEL)) == NULL) { 866 ret = -ENOMEM; 867 break; 868 } 869 870 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 871 if (ret < 0) { 872 kfree(vec); 873 break; 874 } 875 876 mutex_lock(&rp->fetch_lock); 877 spin_lock_irqsave(&rp->b_lock, flags); 878 mon_free_buff(rp->b_vec, size/CHUNK_SIZE); 879 kfree(rp->b_vec); 880 rp->b_vec = vec; 881 rp->b_size = size; 882 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 883 rp->cnt_lost = 0; 884 spin_unlock_irqrestore(&rp->b_lock, flags); 885 mutex_unlock(&rp->fetch_lock); 886 } 887 break; 888 889 case MON_IOCH_MFLUSH: 890 ret = mon_bin_flush(rp, arg); 891 break; 892 893 case MON_IOCX_GET: 894 { 895 struct mon_bin_get getb; 896 897 if (copy_from_user(&getb, (void __user *)arg, 898 sizeof(struct mon_bin_get))) 899 return -EFAULT; 900 901 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 902 return -EINVAL; 903 ret = mon_bin_get_event(file, rp, 904 getb.hdr, getb.data, (unsigned int)getb.alloc); 905 } 906 break; 907 908 #ifdef CONFIG_COMPAT 909 case MON_IOCX_GET32: { 910 struct mon_bin_get32 getb; 911 912 if (copy_from_user(&getb, (void __user *)arg, 913 sizeof(struct mon_bin_get32))) 914 return -EFAULT; 915 916 ret = mon_bin_get_event(file, rp, 917 compat_ptr(getb.hdr32), compat_ptr(getb.data32), 918 getb.alloc32); 919 } 920 break; 921 #endif 922 923 case MON_IOCX_MFETCH: 924 { 925 struct mon_bin_mfetch mfetch; 926 struct mon_bin_mfetch __user *uptr; 927 928 uptr = (struct mon_bin_mfetch __user *)arg; 929 930 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 931 return -EFAULT; 932 933 if (mfetch.nflush) { 934 ret = mon_bin_flush(rp, mfetch.nflush); 935 if (ret < 0) 936 return ret; 937 if (put_user(ret, &uptr->nflush)) 938 return -EFAULT; 939 } 940 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 941 if (ret < 0) 942 return ret; 943 if (put_user(ret, &uptr->nfetch)) 944 return -EFAULT; 945 ret = 0; 946 } 947 break; 948 949 #ifdef CONFIG_COMPAT 950 case MON_IOCX_MFETCH32: 951 { 952 struct mon_bin_mfetch32 mfetch; 953 struct mon_bin_mfetch32 __user *uptr; 954 955 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 956 957 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 958 return -EFAULT; 959 960 if (mfetch.nflush32) { 961 ret = mon_bin_flush(rp, mfetch.nflush32); 962 if (ret < 0) 963 return ret; 964 if (put_user(ret, &uptr->nflush32)) 965 return -EFAULT; 966 } 967 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 968 mfetch.nfetch32); 969 if (ret < 0) 970 return ret; 971 if (put_user(ret, &uptr->nfetch32)) 972 return -EFAULT; 973 ret = 0; 974 } 975 break; 976 #endif 977 978 case MON_IOCG_STATS: { 979 struct mon_bin_stats __user *sp; 980 unsigned int nevents; 981 unsigned int ndropped; 982 983 spin_lock_irqsave(&rp->b_lock, flags); 984 ndropped = rp->cnt_lost; 985 rp->cnt_lost = 0; 986 spin_unlock_irqrestore(&rp->b_lock, flags); 987 nevents = mon_bin_queued(rp); 988 989 sp = (struct mon_bin_stats __user *)arg; 990 if (put_user(rp->cnt_lost, &sp->dropped)) 991 return -EFAULT; 992 if (put_user(nevents, &sp->queued)) 993 return -EFAULT; 994 995 } 996 break; 997 998 default: 999 return -ENOTTY; 1000 } 1001 1002 return ret; 1003 } 1004 1005 static unsigned int 1006 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1007 { 1008 struct mon_reader_bin *rp = file->private_data; 1009 unsigned int mask = 0; 1010 unsigned long flags; 1011 1012 if (file->f_mode & FMODE_READ) 1013 poll_wait(file, &rp->b_wait, wait); 1014 1015 spin_lock_irqsave(&rp->b_lock, flags); 1016 if (!MON_RING_EMPTY(rp)) 1017 mask |= POLLIN | POLLRDNORM; /* readable */ 1018 spin_unlock_irqrestore(&rp->b_lock, flags); 1019 return mask; 1020 } 1021 1022 /* 1023 * open and close: just keep track of how many times the device is 1024 * mapped, to use the proper memory allocation function. 1025 */ 1026 static void mon_bin_vma_open(struct vm_area_struct *vma) 1027 { 1028 struct mon_reader_bin *rp = vma->vm_private_data; 1029 rp->mmap_active++; 1030 } 1031 1032 static void mon_bin_vma_close(struct vm_area_struct *vma) 1033 { 1034 struct mon_reader_bin *rp = vma->vm_private_data; 1035 rp->mmap_active--; 1036 } 1037 1038 /* 1039 * Map ring pages to user space. 1040 */ 1041 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma, 1042 unsigned long address, int *type) 1043 { 1044 struct mon_reader_bin *rp = vma->vm_private_data; 1045 unsigned long offset, chunk_idx; 1046 struct page *pageptr; 1047 1048 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); 1049 if (offset >= rp->b_size) 1050 return NOPAGE_SIGBUS; 1051 chunk_idx = offset / CHUNK_SIZE; 1052 pageptr = rp->b_vec[chunk_idx].pg; 1053 get_page(pageptr); 1054 if (type) 1055 *type = VM_FAULT_MINOR; 1056 return pageptr; 1057 } 1058 1059 struct vm_operations_struct mon_bin_vm_ops = { 1060 .open = mon_bin_vma_open, 1061 .close = mon_bin_vma_close, 1062 .nopage = mon_bin_vma_nopage, 1063 }; 1064 1065 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1066 { 1067 /* don't do anything here: "nopage" will set up page table entries */ 1068 vma->vm_ops = &mon_bin_vm_ops; 1069 vma->vm_flags |= VM_RESERVED; 1070 vma->vm_private_data = filp->private_data; 1071 mon_bin_vma_open(vma); 1072 return 0; 1073 } 1074 1075 struct file_operations mon_fops_binary = { 1076 .owner = THIS_MODULE, 1077 .open = mon_bin_open, 1078 .llseek = no_llseek, 1079 .read = mon_bin_read, 1080 /* .write = mon_text_write, */ 1081 .poll = mon_bin_poll, 1082 .ioctl = mon_bin_ioctl, 1083 .release = mon_bin_release, 1084 }; 1085 1086 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1087 { 1088 DECLARE_WAITQUEUE(waita, current); 1089 unsigned long flags; 1090 1091 add_wait_queue(&rp->b_wait, &waita); 1092 set_current_state(TASK_INTERRUPTIBLE); 1093 1094 spin_lock_irqsave(&rp->b_lock, flags); 1095 while (MON_RING_EMPTY(rp)) { 1096 spin_unlock_irqrestore(&rp->b_lock, flags); 1097 1098 if (file->f_flags & O_NONBLOCK) { 1099 set_current_state(TASK_RUNNING); 1100 remove_wait_queue(&rp->b_wait, &waita); 1101 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1102 } 1103 schedule(); 1104 if (signal_pending(current)) { 1105 remove_wait_queue(&rp->b_wait, &waita); 1106 return -EINTR; 1107 } 1108 set_current_state(TASK_INTERRUPTIBLE); 1109 1110 spin_lock_irqsave(&rp->b_lock, flags); 1111 } 1112 spin_unlock_irqrestore(&rp->b_lock, flags); 1113 1114 set_current_state(TASK_RUNNING); 1115 remove_wait_queue(&rp->b_wait, &waita); 1116 return 0; 1117 } 1118 1119 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1120 { 1121 int n; 1122 unsigned long vaddr; 1123 1124 for (n = 0; n < npages; n++) { 1125 vaddr = get_zeroed_page(GFP_KERNEL); 1126 if (vaddr == 0) { 1127 while (n-- != 0) 1128 free_page((unsigned long) map[n].ptr); 1129 return -ENOMEM; 1130 } 1131 map[n].ptr = (unsigned char *) vaddr; 1132 map[n].pg = virt_to_page(vaddr); 1133 } 1134 return 0; 1135 } 1136 1137 static void mon_free_buff(struct mon_pgmap *map, int npages) 1138 { 1139 int n; 1140 1141 for (n = 0; n < npages; n++) 1142 free_page((unsigned long) map[n].ptr); 1143 } 1144 1145 int __init mon_bin_init(void) 1146 { 1147 int rc; 1148 1149 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1150 if (rc < 0) 1151 goto err_dev; 1152 1153 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1154 mon_bin_cdev.owner = THIS_MODULE; 1155 1156 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1157 if (rc < 0) 1158 goto err_add; 1159 1160 return 0; 1161 1162 err_add: 1163 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1164 err_dev: 1165 return rc; 1166 } 1167 1168 void __exit mon_bin_exit(void) 1169 { 1170 cdev_del(&mon_bin_cdev); 1171 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1172 } 1173