1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/types.h> 13 #include <linux/fs.h> 14 #include <linux/cdev.h> 15 #include <linux/export.h> 16 #include <linux/usb.h> 17 #include <linux/poll.h> 18 #include <linux/compat.h> 19 #include <linux/mm.h> 20 #include <linux/scatterlist.h> 21 #include <linux/slab.h> 22 #include <linux/time64.h> 23 24 #include <linux/uaccess.h> 25 26 #include "usb_mon.h" 27 28 /* 29 * Defined by USB 2.0 clause 9.3, table 9.2. 30 */ 31 #define SETUP_LEN 8 32 33 /* ioctl macros */ 34 #define MON_IOC_MAGIC 0x92 35 36 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 37 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 38 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 39 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 40 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 41 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 42 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 43 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 44 /* #9 was MON_IOCT_SETAPI */ 45 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 46 47 #ifdef CONFIG_COMPAT 48 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 49 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 50 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 51 #endif 52 53 /* 54 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 55 * But it's all right. Just use a simple way to make sure the chunk is never 56 * smaller than a page. 57 * 58 * N.B. An application does not know our chunk size. 59 * 60 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 61 * page-sized chunks for the time being. 62 */ 63 #define CHUNK_SIZE PAGE_SIZE 64 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 65 66 /* 67 * The magic limit was calculated so that it allows the monitoring 68 * application to pick data once in two ticks. This way, another application, 69 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 70 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 71 * enormous overhead built into the bus protocol, so we need about 1000 KB. 72 * 73 * This is still too much for most cases, where we just snoop a few 74 * descriptor fetches for enumeration. So, the default is a "reasonable" 75 * amount for systems with HZ=250 and incomplete bus saturation. 76 * 77 * XXX What about multi-megabyte URBs which take minutes to transfer? 78 */ 79 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 80 #define BUFF_DFL CHUNK_ALIGN(300*1024) 81 #define BUFF_MIN CHUNK_ALIGN(8*1024) 82 83 /* 84 * The per-event API header (2 per URB). 85 * 86 * This structure is seen in userland as defined by the documentation. 87 */ 88 struct mon_bin_hdr { 89 u64 id; /* URB ID - from submission to callback */ 90 unsigned char type; /* Same as in text API; extensible. */ 91 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 92 unsigned char epnum; /* Endpoint number and transfer direction */ 93 unsigned char devnum; /* Device address */ 94 unsigned short busnum; /* Bus number */ 95 char flag_setup; 96 char flag_data; 97 s64 ts_sec; /* getnstimeofday64 */ 98 s32 ts_usec; /* getnstimeofday64 */ 99 int status; 100 unsigned int len_urb; /* Length of data (submitted or actual) */ 101 unsigned int len_cap; /* Delivered length */ 102 union { 103 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 104 struct iso_rec { 105 int error_count; 106 int numdesc; 107 } iso; 108 } s; 109 int interval; 110 int start_frame; 111 unsigned int xfer_flags; 112 unsigned int ndesc; /* Actual number of ISO descriptors */ 113 }; 114 115 /* 116 * ISO vector, packed into the head of data stream. 117 * This has to take 16 bytes to make sure that the end of buffer 118 * wrap is not happening in the middle of a descriptor. 119 */ 120 struct mon_bin_isodesc { 121 int iso_status; 122 unsigned int iso_off; 123 unsigned int iso_len; 124 u32 _pad; 125 }; 126 127 /* per file statistic */ 128 struct mon_bin_stats { 129 u32 queued; 130 u32 dropped; 131 }; 132 133 struct mon_bin_get { 134 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 135 void __user *data; 136 size_t alloc; /* Length of data (can be zero) */ 137 }; 138 139 struct mon_bin_mfetch { 140 u32 __user *offvec; /* Vector of events fetched */ 141 u32 nfetch; /* Number of events to fetch (out: fetched) */ 142 u32 nflush; /* Number of events to flush */ 143 }; 144 145 #ifdef CONFIG_COMPAT 146 struct mon_bin_get32 { 147 u32 hdr32; 148 u32 data32; 149 u32 alloc32; 150 }; 151 152 struct mon_bin_mfetch32 { 153 u32 offvec32; 154 u32 nfetch32; 155 u32 nflush32; 156 }; 157 #endif 158 159 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 160 #define PKT_ALIGN 64 161 #define PKT_SIZE 64 162 163 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 164 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 165 166 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 167 168 /* max number of USB bus supported */ 169 #define MON_BIN_MAX_MINOR 128 170 171 /* 172 * The buffer: map of used pages. 173 */ 174 struct mon_pgmap { 175 struct page *pg; 176 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 177 }; 178 179 /* 180 * This gets associated with an open file struct. 181 */ 182 struct mon_reader_bin { 183 /* The buffer: one per open. */ 184 spinlock_t b_lock; /* Protect b_cnt, b_in */ 185 unsigned int b_size; /* Current size of the buffer - bytes */ 186 unsigned int b_cnt; /* Bytes used */ 187 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 188 unsigned int b_read; /* Amount of read data in curr. pkt. */ 189 struct mon_pgmap *b_vec; /* The map array */ 190 wait_queue_head_t b_wait; /* Wait for data here */ 191 192 struct mutex fetch_lock; /* Protect b_read, b_out */ 193 int mmap_active; 194 195 /* A list of these is needed for "bus 0". Some time later. */ 196 struct mon_reader r; 197 198 /* Stats */ 199 unsigned int cnt_lost; 200 }; 201 202 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 203 unsigned int offset) 204 { 205 return (struct mon_bin_hdr *) 206 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 207 } 208 209 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 210 211 static unsigned char xfer_to_pipe[4] = { 212 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 213 }; 214 215 static struct class *mon_bin_class; 216 static dev_t mon_bin_dev0; 217 static struct cdev mon_bin_cdev; 218 219 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 220 unsigned int offset, unsigned int size); 221 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 222 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 223 static void mon_free_buff(struct mon_pgmap *map, int npages); 224 225 /* 226 * This is a "chunked memcpy". It does not manipulate any counters. 227 */ 228 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 229 unsigned int off, const unsigned char *from, unsigned int length) 230 { 231 unsigned int step_len; 232 unsigned char *buf; 233 unsigned int in_page; 234 235 while (length) { 236 /* 237 * Determine step_len. 238 */ 239 step_len = length; 240 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 241 if (in_page < step_len) 242 step_len = in_page; 243 244 /* 245 * Copy data and advance pointers. 246 */ 247 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 248 memcpy(buf, from, step_len); 249 if ((off += step_len) >= this->b_size) off = 0; 250 from += step_len; 251 length -= step_len; 252 } 253 return off; 254 } 255 256 /* 257 * This is a little worse than the above because it's "chunked copy_to_user". 258 * The return value is an error code, not an offset. 259 */ 260 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 261 char __user *to, int length) 262 { 263 unsigned int step_len; 264 unsigned char *buf; 265 unsigned int in_page; 266 267 while (length) { 268 /* 269 * Determine step_len. 270 */ 271 step_len = length; 272 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 273 if (in_page < step_len) 274 step_len = in_page; 275 276 /* 277 * Copy data and advance pointers. 278 */ 279 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 280 if (copy_to_user(to, buf, step_len)) 281 return -EINVAL; 282 if ((off += step_len) >= this->b_size) off = 0; 283 to += step_len; 284 length -= step_len; 285 } 286 return 0; 287 } 288 289 /* 290 * Allocate an (aligned) area in the buffer. 291 * This is called under b_lock. 292 * Returns ~0 on failure. 293 */ 294 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 295 unsigned int size) 296 { 297 unsigned int offset; 298 299 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 300 if (rp->b_cnt + size > rp->b_size) 301 return ~0; 302 offset = rp->b_in; 303 rp->b_cnt += size; 304 if ((rp->b_in += size) >= rp->b_size) 305 rp->b_in -= rp->b_size; 306 return offset; 307 } 308 309 /* 310 * This is the same thing as mon_buff_area_alloc, only it does not allow 311 * buffers to wrap. This is needed by applications which pass references 312 * into mmap-ed buffers up their stacks (libpcap can do that). 313 * 314 * Currently, we always have the header stuck with the data, although 315 * it is not strictly speaking necessary. 316 * 317 * When a buffer would wrap, we place a filler packet to mark the space. 318 */ 319 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 320 unsigned int size) 321 { 322 unsigned int offset; 323 unsigned int fill_size; 324 325 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 326 if (rp->b_cnt + size > rp->b_size) 327 return ~0; 328 if (rp->b_in + size > rp->b_size) { 329 /* 330 * This would wrap. Find if we still have space after 331 * skipping to the end of the buffer. If we do, place 332 * a filler packet and allocate a new packet. 333 */ 334 fill_size = rp->b_size - rp->b_in; 335 if (rp->b_cnt + size + fill_size > rp->b_size) 336 return ~0; 337 mon_buff_area_fill(rp, rp->b_in, fill_size); 338 339 offset = 0; 340 rp->b_in = size; 341 rp->b_cnt += size + fill_size; 342 } else if (rp->b_in + size == rp->b_size) { 343 offset = rp->b_in; 344 rp->b_in = 0; 345 rp->b_cnt += size; 346 } else { 347 offset = rp->b_in; 348 rp->b_in += size; 349 rp->b_cnt += size; 350 } 351 return offset; 352 } 353 354 /* 355 * Return a few (kilo-)bytes to the head of the buffer. 356 * This is used if a data fetch fails. 357 */ 358 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 359 { 360 361 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 362 rp->b_cnt -= size; 363 if (rp->b_in < size) 364 rp->b_in += rp->b_size; 365 rp->b_in -= size; 366 } 367 368 /* 369 * This has to be called under both b_lock and fetch_lock, because 370 * it accesses both b_cnt and b_out. 371 */ 372 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 373 { 374 375 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 376 rp->b_cnt -= size; 377 if ((rp->b_out += size) >= rp->b_size) 378 rp->b_out -= rp->b_size; 379 } 380 381 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 382 unsigned int offset, unsigned int size) 383 { 384 struct mon_bin_hdr *ep; 385 386 ep = MON_OFF2HDR(rp, offset); 387 memset(ep, 0, PKT_SIZE); 388 ep->type = '@'; 389 ep->len_cap = size - PKT_SIZE; 390 } 391 392 static inline char mon_bin_get_setup(unsigned char *setupb, 393 const struct urb *urb, char ev_type) 394 { 395 396 if (urb->setup_packet == NULL) 397 return 'Z'; 398 memcpy(setupb, urb->setup_packet, SETUP_LEN); 399 return 0; 400 } 401 402 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, 403 unsigned int offset, struct urb *urb, unsigned int length, 404 char *flag) 405 { 406 int i; 407 struct scatterlist *sg; 408 unsigned int this_len; 409 410 *flag = 0; 411 if (urb->num_sgs == 0) { 412 if (urb->transfer_buffer == NULL) { 413 *flag = 'Z'; 414 return length; 415 } 416 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 417 length = 0; 418 419 } else { 420 /* If IOMMU coalescing occurred, we cannot trust sg_page */ 421 if (urb->transfer_flags & URB_DMA_SG_COMBINED) { 422 *flag = 'D'; 423 return length; 424 } 425 426 /* Copy up to the first non-addressable segment */ 427 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 428 if (length == 0 || PageHighMem(sg_page(sg))) 429 break; 430 this_len = min_t(unsigned int, sg->length, length); 431 offset = mon_copy_to_buff(rp, offset, sg_virt(sg), 432 this_len); 433 length -= this_len; 434 } 435 if (i == 0) 436 *flag = 'D'; 437 } 438 439 return length; 440 } 441 442 /* 443 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot 444 * be used to determine the length of the whole contiguous buffer. 445 */ 446 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, 447 struct urb *urb, unsigned int ndesc) 448 { 449 struct usb_iso_packet_descriptor *fp; 450 unsigned int length; 451 452 length = 0; 453 fp = urb->iso_frame_desc; 454 while (ndesc-- != 0) { 455 if (fp->actual_length != 0) { 456 if (fp->offset + fp->actual_length > length) 457 length = fp->offset + fp->actual_length; 458 } 459 fp++; 460 } 461 return length; 462 } 463 464 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 465 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 466 { 467 struct mon_bin_isodesc *dp; 468 struct usb_iso_packet_descriptor *fp; 469 470 fp = urb->iso_frame_desc; 471 while (ndesc-- != 0) { 472 dp = (struct mon_bin_isodesc *) 473 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 474 dp->iso_status = fp->status; 475 dp->iso_off = fp->offset; 476 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 477 dp->_pad = 0; 478 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 479 offset = 0; 480 fp++; 481 } 482 } 483 484 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 485 char ev_type, int status) 486 { 487 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 488 struct timespec64 ts; 489 unsigned long flags; 490 unsigned int urb_length; 491 unsigned int offset; 492 unsigned int length; 493 unsigned int delta; 494 unsigned int ndesc, lendesc; 495 unsigned char dir; 496 struct mon_bin_hdr *ep; 497 char data_tag = 0; 498 499 getnstimeofday64(&ts); 500 501 spin_lock_irqsave(&rp->b_lock, flags); 502 503 /* 504 * Find the maximum allowable length, then allocate space. 505 */ 506 urb_length = (ev_type == 'S') ? 507 urb->transfer_buffer_length : urb->actual_length; 508 length = urb_length; 509 510 if (usb_endpoint_xfer_isoc(epd)) { 511 if (urb->number_of_packets < 0) { 512 ndesc = 0; 513 } else if (urb->number_of_packets >= ISODESC_MAX) { 514 ndesc = ISODESC_MAX; 515 } else { 516 ndesc = urb->number_of_packets; 517 } 518 if (ev_type == 'C' && usb_urb_dir_in(urb)) 519 length = mon_bin_collate_isodesc(rp, urb, ndesc); 520 } else { 521 ndesc = 0; 522 } 523 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 524 525 /* not an issue unless there's a subtle bug in a HCD somewhere */ 526 if (length >= urb->transfer_buffer_length) 527 length = urb->transfer_buffer_length; 528 529 if (length >= rp->b_size/5) 530 length = rp->b_size/5; 531 532 if (usb_urb_dir_in(urb)) { 533 if (ev_type == 'S') { 534 length = 0; 535 data_tag = '<'; 536 } 537 /* Cannot rely on endpoint number in case of control ep.0 */ 538 dir = USB_DIR_IN; 539 } else { 540 if (ev_type == 'C') { 541 length = 0; 542 data_tag = '>'; 543 } 544 dir = 0; 545 } 546 547 if (rp->mmap_active) { 548 offset = mon_buff_area_alloc_contiguous(rp, 549 length + PKT_SIZE + lendesc); 550 } else { 551 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 552 } 553 if (offset == ~0) { 554 rp->cnt_lost++; 555 spin_unlock_irqrestore(&rp->b_lock, flags); 556 return; 557 } 558 559 ep = MON_OFF2HDR(rp, offset); 560 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 561 562 /* 563 * Fill the allocated area. 564 */ 565 memset(ep, 0, PKT_SIZE); 566 ep->type = ev_type; 567 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 568 ep->epnum = dir | usb_endpoint_num(epd); 569 ep->devnum = urb->dev->devnum; 570 ep->busnum = urb->dev->bus->busnum; 571 ep->id = (unsigned long) urb; 572 ep->ts_sec = ts.tv_sec; 573 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; 574 ep->status = status; 575 ep->len_urb = urb_length; 576 ep->len_cap = length + lendesc; 577 ep->xfer_flags = urb->transfer_flags; 578 579 if (usb_endpoint_xfer_int(epd)) { 580 ep->interval = urb->interval; 581 } else if (usb_endpoint_xfer_isoc(epd)) { 582 ep->interval = urb->interval; 583 ep->start_frame = urb->start_frame; 584 ep->s.iso.error_count = urb->error_count; 585 ep->s.iso.numdesc = urb->number_of_packets; 586 } 587 588 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 589 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 590 } else { 591 ep->flag_setup = '-'; 592 } 593 594 if (ndesc != 0) { 595 ep->ndesc = ndesc; 596 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 597 if ((offset += lendesc) >= rp->b_size) 598 offset -= rp->b_size; 599 } 600 601 if (length != 0) { 602 length = mon_bin_get_data(rp, offset, urb, length, 603 &ep->flag_data); 604 if (length > 0) { 605 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 606 ep->len_cap -= length; 607 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 608 mon_buff_area_shrink(rp, delta); 609 } 610 } else { 611 ep->flag_data = data_tag; 612 } 613 614 spin_unlock_irqrestore(&rp->b_lock, flags); 615 616 wake_up(&rp->b_wait); 617 } 618 619 static void mon_bin_submit(void *data, struct urb *urb) 620 { 621 struct mon_reader_bin *rp = data; 622 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 623 } 624 625 static void mon_bin_complete(void *data, struct urb *urb, int status) 626 { 627 struct mon_reader_bin *rp = data; 628 mon_bin_event(rp, urb, 'C', status); 629 } 630 631 static void mon_bin_error(void *data, struct urb *urb, int error) 632 { 633 struct mon_reader_bin *rp = data; 634 struct timespec64 ts; 635 unsigned long flags; 636 unsigned int offset; 637 struct mon_bin_hdr *ep; 638 639 getnstimeofday64(&ts); 640 641 spin_lock_irqsave(&rp->b_lock, flags); 642 643 offset = mon_buff_area_alloc(rp, PKT_SIZE); 644 if (offset == ~0) { 645 /* Not incrementing cnt_lost. Just because. */ 646 spin_unlock_irqrestore(&rp->b_lock, flags); 647 return; 648 } 649 650 ep = MON_OFF2HDR(rp, offset); 651 652 memset(ep, 0, PKT_SIZE); 653 ep->type = 'E'; 654 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 655 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 656 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 657 ep->devnum = urb->dev->devnum; 658 ep->busnum = urb->dev->bus->busnum; 659 ep->id = (unsigned long) urb; 660 ep->ts_sec = ts.tv_sec; 661 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; 662 ep->status = error; 663 664 ep->flag_setup = '-'; 665 ep->flag_data = 'E'; 666 667 spin_unlock_irqrestore(&rp->b_lock, flags); 668 669 wake_up(&rp->b_wait); 670 } 671 672 static int mon_bin_open(struct inode *inode, struct file *file) 673 { 674 struct mon_bus *mbus; 675 struct mon_reader_bin *rp; 676 size_t size; 677 int rc; 678 679 mutex_lock(&mon_lock); 680 mbus = mon_bus_lookup(iminor(inode)); 681 if (mbus == NULL) { 682 mutex_unlock(&mon_lock); 683 return -ENODEV; 684 } 685 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 686 printk(KERN_ERR TAG ": consistency error on open\n"); 687 mutex_unlock(&mon_lock); 688 return -ENODEV; 689 } 690 691 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 692 if (rp == NULL) { 693 rc = -ENOMEM; 694 goto err_alloc; 695 } 696 spin_lock_init(&rp->b_lock); 697 init_waitqueue_head(&rp->b_wait); 698 mutex_init(&rp->fetch_lock); 699 rp->b_size = BUFF_DFL; 700 701 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 702 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 703 rc = -ENOMEM; 704 goto err_allocvec; 705 } 706 707 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 708 goto err_allocbuff; 709 710 rp->r.m_bus = mbus; 711 rp->r.r_data = rp; 712 rp->r.rnf_submit = mon_bin_submit; 713 rp->r.rnf_error = mon_bin_error; 714 rp->r.rnf_complete = mon_bin_complete; 715 716 mon_reader_add(mbus, &rp->r); 717 718 file->private_data = rp; 719 mutex_unlock(&mon_lock); 720 return 0; 721 722 err_allocbuff: 723 kfree(rp->b_vec); 724 err_allocvec: 725 kfree(rp); 726 err_alloc: 727 mutex_unlock(&mon_lock); 728 return rc; 729 } 730 731 /* 732 * Extract an event from buffer and copy it to user space. 733 * Wait if there is no event ready. 734 * Returns zero or error. 735 */ 736 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 737 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 738 void __user *data, unsigned int nbytes) 739 { 740 unsigned long flags; 741 struct mon_bin_hdr *ep; 742 size_t step_len; 743 unsigned int offset; 744 int rc; 745 746 mutex_lock(&rp->fetch_lock); 747 748 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 749 mutex_unlock(&rp->fetch_lock); 750 return rc; 751 } 752 753 ep = MON_OFF2HDR(rp, rp->b_out); 754 755 if (copy_to_user(hdr, ep, hdrbytes)) { 756 mutex_unlock(&rp->fetch_lock); 757 return -EFAULT; 758 } 759 760 step_len = min(ep->len_cap, nbytes); 761 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 762 763 if (copy_from_buf(rp, offset, data, step_len)) { 764 mutex_unlock(&rp->fetch_lock); 765 return -EFAULT; 766 } 767 768 spin_lock_irqsave(&rp->b_lock, flags); 769 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 770 spin_unlock_irqrestore(&rp->b_lock, flags); 771 rp->b_read = 0; 772 773 mutex_unlock(&rp->fetch_lock); 774 return 0; 775 } 776 777 static int mon_bin_release(struct inode *inode, struct file *file) 778 { 779 struct mon_reader_bin *rp = file->private_data; 780 struct mon_bus* mbus = rp->r.m_bus; 781 782 mutex_lock(&mon_lock); 783 784 if (mbus->nreaders <= 0) { 785 printk(KERN_ERR TAG ": consistency error on close\n"); 786 mutex_unlock(&mon_lock); 787 return 0; 788 } 789 mon_reader_del(mbus, &rp->r); 790 791 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 792 kfree(rp->b_vec); 793 kfree(rp); 794 795 mutex_unlock(&mon_lock); 796 return 0; 797 } 798 799 static ssize_t mon_bin_read(struct file *file, char __user *buf, 800 size_t nbytes, loff_t *ppos) 801 { 802 struct mon_reader_bin *rp = file->private_data; 803 unsigned int hdrbytes = PKT_SZ_API0; 804 unsigned long flags; 805 struct mon_bin_hdr *ep; 806 unsigned int offset; 807 size_t step_len; 808 char *ptr; 809 ssize_t done = 0; 810 int rc; 811 812 mutex_lock(&rp->fetch_lock); 813 814 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 815 mutex_unlock(&rp->fetch_lock); 816 return rc; 817 } 818 819 ep = MON_OFF2HDR(rp, rp->b_out); 820 821 if (rp->b_read < hdrbytes) { 822 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 823 ptr = ((char *)ep) + rp->b_read; 824 if (step_len && copy_to_user(buf, ptr, step_len)) { 825 mutex_unlock(&rp->fetch_lock); 826 return -EFAULT; 827 } 828 nbytes -= step_len; 829 buf += step_len; 830 rp->b_read += step_len; 831 done += step_len; 832 } 833 834 if (rp->b_read >= hdrbytes) { 835 step_len = ep->len_cap; 836 step_len -= rp->b_read - hdrbytes; 837 if (step_len > nbytes) 838 step_len = nbytes; 839 offset = rp->b_out + PKT_SIZE; 840 offset += rp->b_read - hdrbytes; 841 if (offset >= rp->b_size) 842 offset -= rp->b_size; 843 if (copy_from_buf(rp, offset, buf, step_len)) { 844 mutex_unlock(&rp->fetch_lock); 845 return -EFAULT; 846 } 847 nbytes -= step_len; 848 buf += step_len; 849 rp->b_read += step_len; 850 done += step_len; 851 } 852 853 /* 854 * Check if whole packet was read, and if so, jump to the next one. 855 */ 856 if (rp->b_read >= hdrbytes + ep->len_cap) { 857 spin_lock_irqsave(&rp->b_lock, flags); 858 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 859 spin_unlock_irqrestore(&rp->b_lock, flags); 860 rp->b_read = 0; 861 } 862 863 mutex_unlock(&rp->fetch_lock); 864 return done; 865 } 866 867 /* 868 * Remove at most nevents from chunked buffer. 869 * Returns the number of removed events. 870 */ 871 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 872 { 873 unsigned long flags; 874 struct mon_bin_hdr *ep; 875 int i; 876 877 mutex_lock(&rp->fetch_lock); 878 spin_lock_irqsave(&rp->b_lock, flags); 879 for (i = 0; i < nevents; ++i) { 880 if (MON_RING_EMPTY(rp)) 881 break; 882 883 ep = MON_OFF2HDR(rp, rp->b_out); 884 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 885 } 886 spin_unlock_irqrestore(&rp->b_lock, flags); 887 rp->b_read = 0; 888 mutex_unlock(&rp->fetch_lock); 889 return i; 890 } 891 892 /* 893 * Fetch at most max event offsets into the buffer and put them into vec. 894 * The events are usually freed later with mon_bin_flush. 895 * Return the effective number of events fetched. 896 */ 897 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 898 u32 __user *vec, unsigned int max) 899 { 900 unsigned int cur_out; 901 unsigned int bytes, avail; 902 unsigned int size; 903 unsigned int nevents; 904 struct mon_bin_hdr *ep; 905 unsigned long flags; 906 int rc; 907 908 mutex_lock(&rp->fetch_lock); 909 910 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 911 mutex_unlock(&rp->fetch_lock); 912 return rc; 913 } 914 915 spin_lock_irqsave(&rp->b_lock, flags); 916 avail = rp->b_cnt; 917 spin_unlock_irqrestore(&rp->b_lock, flags); 918 919 cur_out = rp->b_out; 920 nevents = 0; 921 bytes = 0; 922 while (bytes < avail) { 923 if (nevents >= max) 924 break; 925 926 ep = MON_OFF2HDR(rp, cur_out); 927 if (put_user(cur_out, &vec[nevents])) { 928 mutex_unlock(&rp->fetch_lock); 929 return -EFAULT; 930 } 931 932 nevents++; 933 size = ep->len_cap + PKT_SIZE; 934 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 935 if ((cur_out += size) >= rp->b_size) 936 cur_out -= rp->b_size; 937 bytes += size; 938 } 939 940 mutex_unlock(&rp->fetch_lock); 941 return nevents; 942 } 943 944 /* 945 * Count events. This is almost the same as the above mon_bin_fetch, 946 * only we do not store offsets into user vector, and we have no limit. 947 */ 948 static int mon_bin_queued(struct mon_reader_bin *rp) 949 { 950 unsigned int cur_out; 951 unsigned int bytes, avail; 952 unsigned int size; 953 unsigned int nevents; 954 struct mon_bin_hdr *ep; 955 unsigned long flags; 956 957 mutex_lock(&rp->fetch_lock); 958 959 spin_lock_irqsave(&rp->b_lock, flags); 960 avail = rp->b_cnt; 961 spin_unlock_irqrestore(&rp->b_lock, flags); 962 963 cur_out = rp->b_out; 964 nevents = 0; 965 bytes = 0; 966 while (bytes < avail) { 967 ep = MON_OFF2HDR(rp, cur_out); 968 969 nevents++; 970 size = ep->len_cap + PKT_SIZE; 971 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 972 if ((cur_out += size) >= rp->b_size) 973 cur_out -= rp->b_size; 974 bytes += size; 975 } 976 977 mutex_unlock(&rp->fetch_lock); 978 return nevents; 979 } 980 981 /* 982 */ 983 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 984 { 985 struct mon_reader_bin *rp = file->private_data; 986 // struct mon_bus* mbus = rp->r.m_bus; 987 int ret = 0; 988 struct mon_bin_hdr *ep; 989 unsigned long flags; 990 991 switch (cmd) { 992 993 case MON_IOCQ_URB_LEN: 994 /* 995 * N.B. This only returns the size of data, without the header. 996 */ 997 spin_lock_irqsave(&rp->b_lock, flags); 998 if (!MON_RING_EMPTY(rp)) { 999 ep = MON_OFF2HDR(rp, rp->b_out); 1000 ret = ep->len_cap; 1001 } 1002 spin_unlock_irqrestore(&rp->b_lock, flags); 1003 break; 1004 1005 case MON_IOCQ_RING_SIZE: 1006 ret = rp->b_size; 1007 break; 1008 1009 case MON_IOCT_RING_SIZE: 1010 /* 1011 * Changing the buffer size will flush it's contents; the new 1012 * buffer is allocated before releasing the old one to be sure 1013 * the device will stay functional also in case of memory 1014 * pressure. 1015 */ 1016 { 1017 int size; 1018 struct mon_pgmap *vec; 1019 1020 if (arg < BUFF_MIN || arg > BUFF_MAX) 1021 return -EINVAL; 1022 1023 size = CHUNK_ALIGN(arg); 1024 vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL); 1025 if (vec == NULL) { 1026 ret = -ENOMEM; 1027 break; 1028 } 1029 1030 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 1031 if (ret < 0) { 1032 kfree(vec); 1033 break; 1034 } 1035 1036 mutex_lock(&rp->fetch_lock); 1037 spin_lock_irqsave(&rp->b_lock, flags); 1038 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 1039 kfree(rp->b_vec); 1040 rp->b_vec = vec; 1041 rp->b_size = size; 1042 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 1043 rp->cnt_lost = 0; 1044 spin_unlock_irqrestore(&rp->b_lock, flags); 1045 mutex_unlock(&rp->fetch_lock); 1046 } 1047 break; 1048 1049 case MON_IOCH_MFLUSH: 1050 ret = mon_bin_flush(rp, arg); 1051 break; 1052 1053 case MON_IOCX_GET: 1054 case MON_IOCX_GETX: 1055 { 1056 struct mon_bin_get getb; 1057 1058 if (copy_from_user(&getb, (void __user *)arg, 1059 sizeof(struct mon_bin_get))) 1060 return -EFAULT; 1061 1062 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1063 return -EINVAL; 1064 ret = mon_bin_get_event(file, rp, getb.hdr, 1065 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1066 getb.data, (unsigned int)getb.alloc); 1067 } 1068 break; 1069 1070 case MON_IOCX_MFETCH: 1071 { 1072 struct mon_bin_mfetch mfetch; 1073 struct mon_bin_mfetch __user *uptr; 1074 1075 uptr = (struct mon_bin_mfetch __user *)arg; 1076 1077 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1078 return -EFAULT; 1079 1080 if (mfetch.nflush) { 1081 ret = mon_bin_flush(rp, mfetch.nflush); 1082 if (ret < 0) 1083 return ret; 1084 if (put_user(ret, &uptr->nflush)) 1085 return -EFAULT; 1086 } 1087 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1088 if (ret < 0) 1089 return ret; 1090 if (put_user(ret, &uptr->nfetch)) 1091 return -EFAULT; 1092 ret = 0; 1093 } 1094 break; 1095 1096 case MON_IOCG_STATS: { 1097 struct mon_bin_stats __user *sp; 1098 unsigned int nevents; 1099 unsigned int ndropped; 1100 1101 spin_lock_irqsave(&rp->b_lock, flags); 1102 ndropped = rp->cnt_lost; 1103 rp->cnt_lost = 0; 1104 spin_unlock_irqrestore(&rp->b_lock, flags); 1105 nevents = mon_bin_queued(rp); 1106 1107 sp = (struct mon_bin_stats __user *)arg; 1108 if (put_user(ndropped, &sp->dropped)) 1109 return -EFAULT; 1110 if (put_user(nevents, &sp->queued)) 1111 return -EFAULT; 1112 1113 } 1114 break; 1115 1116 default: 1117 return -ENOTTY; 1118 } 1119 1120 return ret; 1121 } 1122 1123 #ifdef CONFIG_COMPAT 1124 static long mon_bin_compat_ioctl(struct file *file, 1125 unsigned int cmd, unsigned long arg) 1126 { 1127 struct mon_reader_bin *rp = file->private_data; 1128 int ret; 1129 1130 switch (cmd) { 1131 1132 case MON_IOCX_GET32: 1133 case MON_IOCX_GETX32: 1134 { 1135 struct mon_bin_get32 getb; 1136 1137 if (copy_from_user(&getb, (void __user *)arg, 1138 sizeof(struct mon_bin_get32))) 1139 return -EFAULT; 1140 1141 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1142 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1143 compat_ptr(getb.data32), getb.alloc32); 1144 if (ret < 0) 1145 return ret; 1146 } 1147 return 0; 1148 1149 case MON_IOCX_MFETCH32: 1150 { 1151 struct mon_bin_mfetch32 mfetch; 1152 struct mon_bin_mfetch32 __user *uptr; 1153 1154 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1155 1156 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1157 return -EFAULT; 1158 1159 if (mfetch.nflush32) { 1160 ret = mon_bin_flush(rp, mfetch.nflush32); 1161 if (ret < 0) 1162 return ret; 1163 if (put_user(ret, &uptr->nflush32)) 1164 return -EFAULT; 1165 } 1166 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1167 mfetch.nfetch32); 1168 if (ret < 0) 1169 return ret; 1170 if (put_user(ret, &uptr->nfetch32)) 1171 return -EFAULT; 1172 } 1173 return 0; 1174 1175 case MON_IOCG_STATS: 1176 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1177 1178 case MON_IOCQ_URB_LEN: 1179 case MON_IOCQ_RING_SIZE: 1180 case MON_IOCT_RING_SIZE: 1181 case MON_IOCH_MFLUSH: 1182 return mon_bin_ioctl(file, cmd, arg); 1183 1184 default: 1185 ; 1186 } 1187 return -ENOTTY; 1188 } 1189 #endif /* CONFIG_COMPAT */ 1190 1191 static unsigned int 1192 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1193 { 1194 struct mon_reader_bin *rp = file->private_data; 1195 unsigned int mask = 0; 1196 unsigned long flags; 1197 1198 if (file->f_mode & FMODE_READ) 1199 poll_wait(file, &rp->b_wait, wait); 1200 1201 spin_lock_irqsave(&rp->b_lock, flags); 1202 if (!MON_RING_EMPTY(rp)) 1203 mask |= POLLIN | POLLRDNORM; /* readable */ 1204 spin_unlock_irqrestore(&rp->b_lock, flags); 1205 return mask; 1206 } 1207 1208 /* 1209 * open and close: just keep track of how many times the device is 1210 * mapped, to use the proper memory allocation function. 1211 */ 1212 static void mon_bin_vma_open(struct vm_area_struct *vma) 1213 { 1214 struct mon_reader_bin *rp = vma->vm_private_data; 1215 rp->mmap_active++; 1216 } 1217 1218 static void mon_bin_vma_close(struct vm_area_struct *vma) 1219 { 1220 struct mon_reader_bin *rp = vma->vm_private_data; 1221 rp->mmap_active--; 1222 } 1223 1224 /* 1225 * Map ring pages to user space. 1226 */ 1227 static int mon_bin_vma_fault(struct vm_fault *vmf) 1228 { 1229 struct mon_reader_bin *rp = vmf->vma->vm_private_data; 1230 unsigned long offset, chunk_idx; 1231 struct page *pageptr; 1232 1233 offset = vmf->pgoff << PAGE_SHIFT; 1234 if (offset >= rp->b_size) 1235 return VM_FAULT_SIGBUS; 1236 chunk_idx = offset / CHUNK_SIZE; 1237 pageptr = rp->b_vec[chunk_idx].pg; 1238 get_page(pageptr); 1239 vmf->page = pageptr; 1240 return 0; 1241 } 1242 1243 static const struct vm_operations_struct mon_bin_vm_ops = { 1244 .open = mon_bin_vma_open, 1245 .close = mon_bin_vma_close, 1246 .fault = mon_bin_vma_fault, 1247 }; 1248 1249 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1250 { 1251 /* don't do anything here: "fault" will set up page table entries */ 1252 vma->vm_ops = &mon_bin_vm_ops; 1253 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1254 vma->vm_private_data = filp->private_data; 1255 mon_bin_vma_open(vma); 1256 return 0; 1257 } 1258 1259 static const struct file_operations mon_fops_binary = { 1260 .owner = THIS_MODULE, 1261 .open = mon_bin_open, 1262 .llseek = no_llseek, 1263 .read = mon_bin_read, 1264 /* .write = mon_text_write, */ 1265 .poll = mon_bin_poll, 1266 .unlocked_ioctl = mon_bin_ioctl, 1267 #ifdef CONFIG_COMPAT 1268 .compat_ioctl = mon_bin_compat_ioctl, 1269 #endif 1270 .release = mon_bin_release, 1271 .mmap = mon_bin_mmap, 1272 }; 1273 1274 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1275 { 1276 DECLARE_WAITQUEUE(waita, current); 1277 unsigned long flags; 1278 1279 add_wait_queue(&rp->b_wait, &waita); 1280 set_current_state(TASK_INTERRUPTIBLE); 1281 1282 spin_lock_irqsave(&rp->b_lock, flags); 1283 while (MON_RING_EMPTY(rp)) { 1284 spin_unlock_irqrestore(&rp->b_lock, flags); 1285 1286 if (file->f_flags & O_NONBLOCK) { 1287 set_current_state(TASK_RUNNING); 1288 remove_wait_queue(&rp->b_wait, &waita); 1289 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1290 } 1291 schedule(); 1292 if (signal_pending(current)) { 1293 remove_wait_queue(&rp->b_wait, &waita); 1294 return -EINTR; 1295 } 1296 set_current_state(TASK_INTERRUPTIBLE); 1297 1298 spin_lock_irqsave(&rp->b_lock, flags); 1299 } 1300 spin_unlock_irqrestore(&rp->b_lock, flags); 1301 1302 set_current_state(TASK_RUNNING); 1303 remove_wait_queue(&rp->b_wait, &waita); 1304 return 0; 1305 } 1306 1307 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1308 { 1309 int n; 1310 unsigned long vaddr; 1311 1312 for (n = 0; n < npages; n++) { 1313 vaddr = get_zeroed_page(GFP_KERNEL); 1314 if (vaddr == 0) { 1315 while (n-- != 0) 1316 free_page((unsigned long) map[n].ptr); 1317 return -ENOMEM; 1318 } 1319 map[n].ptr = (unsigned char *) vaddr; 1320 map[n].pg = virt_to_page((void *) vaddr); 1321 } 1322 return 0; 1323 } 1324 1325 static void mon_free_buff(struct mon_pgmap *map, int npages) 1326 { 1327 int n; 1328 1329 for (n = 0; n < npages; n++) 1330 free_page((unsigned long) map[n].ptr); 1331 } 1332 1333 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1334 { 1335 struct device *dev; 1336 unsigned minor = ubus? ubus->busnum: 0; 1337 1338 if (minor >= MON_BIN_MAX_MINOR) 1339 return 0; 1340 1341 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1342 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1343 "usbmon%d", minor); 1344 if (IS_ERR(dev)) 1345 return 0; 1346 1347 mbus->classdev = dev; 1348 return 1; 1349 } 1350 1351 void mon_bin_del(struct mon_bus *mbus) 1352 { 1353 device_destroy(mon_bin_class, mbus->classdev->devt); 1354 } 1355 1356 int __init mon_bin_init(void) 1357 { 1358 int rc; 1359 1360 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1361 if (IS_ERR(mon_bin_class)) { 1362 rc = PTR_ERR(mon_bin_class); 1363 goto err_class; 1364 } 1365 1366 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1367 if (rc < 0) 1368 goto err_dev; 1369 1370 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1371 mon_bin_cdev.owner = THIS_MODULE; 1372 1373 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1374 if (rc < 0) 1375 goto err_add; 1376 1377 return 0; 1378 1379 err_add: 1380 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1381 err_dev: 1382 class_destroy(mon_bin_class); 1383 err_class: 1384 return rc; 1385 } 1386 1387 void mon_bin_exit(void) 1388 { 1389 cdev_del(&mon_bin_cdev); 1390 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1391 class_destroy(mon_bin_class); 1392 } 1393