1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 19 #include <asm/uaccess.h> 20 21 #include "usb_mon.h" 22 23 /* 24 * Defined by USB 2.0 clause 9.3, table 9.2. 25 */ 26 #define SETUP_LEN 8 27 28 /* ioctl macros */ 29 #define MON_IOC_MAGIC 0x92 30 31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 39 #ifdef CONFIG_COMPAT 40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 42 #endif 43 44 /* 45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 46 * But it's all right. Just use a simple way to make sure the chunk is never 47 * smaller than a page. 48 * 49 * N.B. An application does not know our chunk size. 50 * 51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 52 * page-sized chunks for the time being. 53 */ 54 #define CHUNK_SIZE PAGE_SIZE 55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 56 57 /* 58 * The magic limit was calculated so that it allows the monitoring 59 * application to pick data once in two ticks. This way, another application, 60 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 62 * enormous overhead built into the bus protocol, so we need about 1000 KB. 63 * 64 * This is still too much for most cases, where we just snoop a few 65 * descriptor fetches for enumeration. So, the default is a "reasonable" 66 * amount for systems with HZ=250 and incomplete bus saturation. 67 * 68 * XXX What about multi-megabyte URBs which take minutes to transfer? 69 */ 70 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 71 #define BUFF_DFL CHUNK_ALIGN(300*1024) 72 #define BUFF_MIN CHUNK_ALIGN(8*1024) 73 74 /* 75 * The per-event API header (2 per URB). 76 * 77 * This structure is seen in userland as defined by the documentation. 78 */ 79 struct mon_bin_hdr { 80 u64 id; /* URB ID - from submission to callback */ 81 unsigned char type; /* Same as in text API; extensible. */ 82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 83 unsigned char epnum; /* Endpoint number and transfer direction */ 84 unsigned char devnum; /* Device address */ 85 unsigned short busnum; /* Bus number */ 86 char flag_setup; 87 char flag_data; 88 s64 ts_sec; /* gettimeofday */ 89 s32 ts_usec; /* gettimeofday */ 90 int status; 91 unsigned int len_urb; /* Length of data (submitted or actual) */ 92 unsigned int len_cap; /* Delivered length */ 93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 94 }; 95 96 /* per file statistic */ 97 struct mon_bin_stats { 98 u32 queued; 99 u32 dropped; 100 }; 101 102 struct mon_bin_get { 103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */ 104 void __user *data; 105 size_t alloc; /* Length of data (can be zero) */ 106 }; 107 108 struct mon_bin_mfetch { 109 u32 __user *offvec; /* Vector of events fetched */ 110 u32 nfetch; /* Number of events to fetch (out: fetched) */ 111 u32 nflush; /* Number of events to flush */ 112 }; 113 114 #ifdef CONFIG_COMPAT 115 struct mon_bin_get32 { 116 u32 hdr32; 117 u32 data32; 118 u32 alloc32; 119 }; 120 121 struct mon_bin_mfetch32 { 122 u32 offvec32; 123 u32 nfetch32; 124 u32 nflush32; 125 }; 126 #endif 127 128 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 129 #define PKT_ALIGN 64 130 #define PKT_SIZE 64 131 132 /* max number of USB bus supported */ 133 #define MON_BIN_MAX_MINOR 128 134 135 /* 136 * The buffer: map of used pages. 137 */ 138 struct mon_pgmap { 139 struct page *pg; 140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 141 }; 142 143 /* 144 * This gets associated with an open file struct. 145 */ 146 struct mon_reader_bin { 147 /* The buffer: one per open. */ 148 spinlock_t b_lock; /* Protect b_cnt, b_in */ 149 unsigned int b_size; /* Current size of the buffer - bytes */ 150 unsigned int b_cnt; /* Bytes used */ 151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 152 unsigned int b_read; /* Amount of read data in curr. pkt. */ 153 struct mon_pgmap *b_vec; /* The map array */ 154 wait_queue_head_t b_wait; /* Wait for data here */ 155 156 struct mutex fetch_lock; /* Protect b_read, b_out */ 157 int mmap_active; 158 159 /* A list of these is needed for "bus 0". Some time later. */ 160 struct mon_reader r; 161 162 /* Stats */ 163 unsigned int cnt_lost; 164 }; 165 166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 167 unsigned int offset) 168 { 169 return (struct mon_bin_hdr *) 170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 171 } 172 173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 174 175 static struct class *mon_bin_class; 176 static dev_t mon_bin_dev0; 177 static struct cdev mon_bin_cdev; 178 179 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 180 unsigned int offset, unsigned int size); 181 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 182 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 183 static void mon_free_buff(struct mon_pgmap *map, int npages); 184 185 /* 186 * This is a "chunked memcpy". It does not manipulate any counters. 187 * But it returns the new offset for repeated application. 188 */ 189 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 190 unsigned int off, const unsigned char *from, unsigned int length) 191 { 192 unsigned int step_len; 193 unsigned char *buf; 194 unsigned int in_page; 195 196 while (length) { 197 /* 198 * Determine step_len. 199 */ 200 step_len = length; 201 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 202 if (in_page < step_len) 203 step_len = in_page; 204 205 /* 206 * Copy data and advance pointers. 207 */ 208 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 209 memcpy(buf, from, step_len); 210 if ((off += step_len) >= this->b_size) off = 0; 211 from += step_len; 212 length -= step_len; 213 } 214 return off; 215 } 216 217 /* 218 * This is a little worse than the above because it's "chunked copy_to_user". 219 * The return value is an error code, not an offset. 220 */ 221 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 222 char __user *to, int length) 223 { 224 unsigned int step_len; 225 unsigned char *buf; 226 unsigned int in_page; 227 228 while (length) { 229 /* 230 * Determine step_len. 231 */ 232 step_len = length; 233 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 234 if (in_page < step_len) 235 step_len = in_page; 236 237 /* 238 * Copy data and advance pointers. 239 */ 240 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 241 if (copy_to_user(to, buf, step_len)) 242 return -EINVAL; 243 if ((off += step_len) >= this->b_size) off = 0; 244 to += step_len; 245 length -= step_len; 246 } 247 return 0; 248 } 249 250 /* 251 * Allocate an (aligned) area in the buffer. 252 * This is called under b_lock. 253 * Returns ~0 on failure. 254 */ 255 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 256 unsigned int size) 257 { 258 unsigned int offset; 259 260 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 261 if (rp->b_cnt + size > rp->b_size) 262 return ~0; 263 offset = rp->b_in; 264 rp->b_cnt += size; 265 if ((rp->b_in += size) >= rp->b_size) 266 rp->b_in -= rp->b_size; 267 return offset; 268 } 269 270 /* 271 * This is the same thing as mon_buff_area_alloc, only it does not allow 272 * buffers to wrap. This is needed by applications which pass references 273 * into mmap-ed buffers up their stacks (libpcap can do that). 274 * 275 * Currently, we always have the header stuck with the data, although 276 * it is not strictly speaking necessary. 277 * 278 * When a buffer would wrap, we place a filler packet to mark the space. 279 */ 280 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 281 unsigned int size) 282 { 283 unsigned int offset; 284 unsigned int fill_size; 285 286 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 287 if (rp->b_cnt + size > rp->b_size) 288 return ~0; 289 if (rp->b_in + size > rp->b_size) { 290 /* 291 * This would wrap. Find if we still have space after 292 * skipping to the end of the buffer. If we do, place 293 * a filler packet and allocate a new packet. 294 */ 295 fill_size = rp->b_size - rp->b_in; 296 if (rp->b_cnt + size + fill_size > rp->b_size) 297 return ~0; 298 mon_buff_area_fill(rp, rp->b_in, fill_size); 299 300 offset = 0; 301 rp->b_in = size; 302 rp->b_cnt += size + fill_size; 303 } else if (rp->b_in + size == rp->b_size) { 304 offset = rp->b_in; 305 rp->b_in = 0; 306 rp->b_cnt += size; 307 } else { 308 offset = rp->b_in; 309 rp->b_in += size; 310 rp->b_cnt += size; 311 } 312 return offset; 313 } 314 315 /* 316 * Return a few (kilo-)bytes to the head of the buffer. 317 * This is used if a DMA fetch fails. 318 */ 319 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 320 { 321 322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 323 rp->b_cnt -= size; 324 if (rp->b_in < size) 325 rp->b_in += rp->b_size; 326 rp->b_in -= size; 327 } 328 329 /* 330 * This has to be called under both b_lock and fetch_lock, because 331 * it accesses both b_cnt and b_out. 332 */ 333 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 334 { 335 336 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 337 rp->b_cnt -= size; 338 if ((rp->b_out += size) >= rp->b_size) 339 rp->b_out -= rp->b_size; 340 } 341 342 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 343 unsigned int offset, unsigned int size) 344 { 345 struct mon_bin_hdr *ep; 346 347 ep = MON_OFF2HDR(rp, offset); 348 memset(ep, 0, PKT_SIZE); 349 ep->type = '@'; 350 ep->len_cap = size - PKT_SIZE; 351 } 352 353 static inline char mon_bin_get_setup(unsigned char *setupb, 354 const struct urb *urb, char ev_type) 355 { 356 357 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S') 358 return '-'; 359 360 if (urb->dev->bus->uses_dma && 361 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 362 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN); 363 } 364 if (urb->setup_packet == NULL) 365 return 'Z'; 366 367 memcpy(setupb, urb->setup_packet, SETUP_LEN); 368 return 0; 369 } 370 371 static char mon_bin_get_data(const struct mon_reader_bin *rp, 372 unsigned int offset, struct urb *urb, unsigned int length) 373 { 374 375 if (urb->dev->bus->uses_dma && 376 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 377 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length); 378 return 0; 379 } 380 381 if (urb->transfer_buffer == NULL) 382 return 'Z'; 383 384 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 385 return 0; 386 } 387 388 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 389 char ev_type) 390 { 391 unsigned long flags; 392 struct timeval ts; 393 unsigned int urb_length; 394 unsigned int offset; 395 unsigned int length; 396 struct mon_bin_hdr *ep; 397 char data_tag = 0; 398 399 do_gettimeofday(&ts); 400 401 spin_lock_irqsave(&rp->b_lock, flags); 402 403 /* 404 * Find the maximum allowable length, then allocate space. 405 */ 406 urb_length = (ev_type == 'S') ? 407 urb->transfer_buffer_length : urb->actual_length; 408 length = urb_length; 409 410 if (length >= rp->b_size/5) 411 length = rp->b_size/5; 412 413 if (usb_pipein(urb->pipe)) { 414 if (ev_type == 'S') { 415 length = 0; 416 data_tag = '<'; 417 } 418 } else { 419 if (ev_type == 'C') { 420 length = 0; 421 data_tag = '>'; 422 } 423 } 424 425 if (rp->mmap_active) 426 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE); 427 else 428 offset = mon_buff_area_alloc(rp, length + PKT_SIZE); 429 if (offset == ~0) { 430 rp->cnt_lost++; 431 spin_unlock_irqrestore(&rp->b_lock, flags); 432 return; 433 } 434 435 ep = MON_OFF2HDR(rp, offset); 436 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 437 438 /* 439 * Fill the allocated area. 440 */ 441 memset(ep, 0, PKT_SIZE); 442 ep->type = ev_type; 443 ep->xfer_type = usb_pipetype(urb->pipe); 444 /* We use the fact that usb_pipein() returns 0x80 */ 445 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe); 446 ep->devnum = usb_pipedevice(urb->pipe); 447 ep->busnum = urb->dev->bus->busnum; 448 ep->id = (unsigned long) urb; 449 ep->ts_sec = ts.tv_sec; 450 ep->ts_usec = ts.tv_usec; 451 ep->status = urb->status; 452 ep->len_urb = urb_length; 453 ep->len_cap = length; 454 455 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type); 456 if (length != 0) { 457 ep->flag_data = mon_bin_get_data(rp, offset, urb, length); 458 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */ 459 ep->len_cap = 0; 460 mon_buff_area_shrink(rp, length); 461 } 462 } else { 463 ep->flag_data = data_tag; 464 } 465 466 spin_unlock_irqrestore(&rp->b_lock, flags); 467 468 wake_up(&rp->b_wait); 469 } 470 471 static void mon_bin_submit(void *data, struct urb *urb) 472 { 473 struct mon_reader_bin *rp = data; 474 mon_bin_event(rp, urb, 'S'); 475 } 476 477 static void mon_bin_complete(void *data, struct urb *urb) 478 { 479 struct mon_reader_bin *rp = data; 480 mon_bin_event(rp, urb, 'C'); 481 } 482 483 static void mon_bin_error(void *data, struct urb *urb, int error) 484 { 485 struct mon_reader_bin *rp = data; 486 unsigned long flags; 487 unsigned int offset; 488 struct mon_bin_hdr *ep; 489 490 spin_lock_irqsave(&rp->b_lock, flags); 491 492 offset = mon_buff_area_alloc(rp, PKT_SIZE); 493 if (offset == ~0) { 494 /* Not incrementing cnt_lost. Just because. */ 495 spin_unlock_irqrestore(&rp->b_lock, flags); 496 return; 497 } 498 499 ep = MON_OFF2HDR(rp, offset); 500 501 memset(ep, 0, PKT_SIZE); 502 ep->type = 'E'; 503 ep->xfer_type = usb_pipetype(urb->pipe); 504 /* We use the fact that usb_pipein() returns 0x80 */ 505 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe); 506 ep->devnum = usb_pipedevice(urb->pipe); 507 ep->busnum = urb->dev->bus->busnum; 508 ep->id = (unsigned long) urb; 509 ep->status = error; 510 511 ep->flag_setup = '-'; 512 ep->flag_data = 'E'; 513 514 spin_unlock_irqrestore(&rp->b_lock, flags); 515 516 wake_up(&rp->b_wait); 517 } 518 519 static int mon_bin_open(struct inode *inode, struct file *file) 520 { 521 struct mon_bus *mbus; 522 struct mon_reader_bin *rp; 523 size_t size; 524 int rc; 525 526 mutex_lock(&mon_lock); 527 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 528 mutex_unlock(&mon_lock); 529 return -ENODEV; 530 } 531 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 532 printk(KERN_ERR TAG ": consistency error on open\n"); 533 mutex_unlock(&mon_lock); 534 return -ENODEV; 535 } 536 537 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 538 if (rp == NULL) { 539 rc = -ENOMEM; 540 goto err_alloc; 541 } 542 spin_lock_init(&rp->b_lock); 543 init_waitqueue_head(&rp->b_wait); 544 mutex_init(&rp->fetch_lock); 545 546 rp->b_size = BUFF_DFL; 547 548 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 549 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 550 rc = -ENOMEM; 551 goto err_allocvec; 552 } 553 554 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 555 goto err_allocbuff; 556 557 rp->r.m_bus = mbus; 558 rp->r.r_data = rp; 559 rp->r.rnf_submit = mon_bin_submit; 560 rp->r.rnf_error = mon_bin_error; 561 rp->r.rnf_complete = mon_bin_complete; 562 563 mon_reader_add(mbus, &rp->r); 564 565 file->private_data = rp; 566 mutex_unlock(&mon_lock); 567 return 0; 568 569 err_allocbuff: 570 kfree(rp->b_vec); 571 err_allocvec: 572 kfree(rp); 573 err_alloc: 574 mutex_unlock(&mon_lock); 575 return rc; 576 } 577 578 /* 579 * Extract an event from buffer and copy it to user space. 580 * Wait if there is no event ready. 581 * Returns zero or error. 582 */ 583 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 584 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes) 585 { 586 unsigned long flags; 587 struct mon_bin_hdr *ep; 588 size_t step_len; 589 unsigned int offset; 590 int rc; 591 592 mutex_lock(&rp->fetch_lock); 593 594 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 595 mutex_unlock(&rp->fetch_lock); 596 return rc; 597 } 598 599 ep = MON_OFF2HDR(rp, rp->b_out); 600 601 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) { 602 mutex_unlock(&rp->fetch_lock); 603 return -EFAULT; 604 } 605 606 step_len = min(ep->len_cap, nbytes); 607 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 608 609 if (copy_from_buf(rp, offset, data, step_len)) { 610 mutex_unlock(&rp->fetch_lock); 611 return -EFAULT; 612 } 613 614 spin_lock_irqsave(&rp->b_lock, flags); 615 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 616 spin_unlock_irqrestore(&rp->b_lock, flags); 617 rp->b_read = 0; 618 619 mutex_unlock(&rp->fetch_lock); 620 return 0; 621 } 622 623 static int mon_bin_release(struct inode *inode, struct file *file) 624 { 625 struct mon_reader_bin *rp = file->private_data; 626 struct mon_bus* mbus = rp->r.m_bus; 627 628 mutex_lock(&mon_lock); 629 630 if (mbus->nreaders <= 0) { 631 printk(KERN_ERR TAG ": consistency error on close\n"); 632 mutex_unlock(&mon_lock); 633 return 0; 634 } 635 mon_reader_del(mbus, &rp->r); 636 637 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 638 kfree(rp->b_vec); 639 kfree(rp); 640 641 mutex_unlock(&mon_lock); 642 return 0; 643 } 644 645 static ssize_t mon_bin_read(struct file *file, char __user *buf, 646 size_t nbytes, loff_t *ppos) 647 { 648 struct mon_reader_bin *rp = file->private_data; 649 unsigned long flags; 650 struct mon_bin_hdr *ep; 651 unsigned int offset; 652 size_t step_len; 653 char *ptr; 654 ssize_t done = 0; 655 int rc; 656 657 mutex_lock(&rp->fetch_lock); 658 659 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 660 mutex_unlock(&rp->fetch_lock); 661 return rc; 662 } 663 664 ep = MON_OFF2HDR(rp, rp->b_out); 665 666 if (rp->b_read < sizeof(struct mon_bin_hdr)) { 667 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read); 668 ptr = ((char *)ep) + rp->b_read; 669 if (step_len && copy_to_user(buf, ptr, step_len)) { 670 mutex_unlock(&rp->fetch_lock); 671 return -EFAULT; 672 } 673 nbytes -= step_len; 674 buf += step_len; 675 rp->b_read += step_len; 676 done += step_len; 677 } 678 679 if (rp->b_read >= sizeof(struct mon_bin_hdr)) { 680 step_len = min(nbytes, (size_t)ep->len_cap); 681 offset = rp->b_out + PKT_SIZE; 682 offset += rp->b_read - sizeof(struct mon_bin_hdr); 683 if (offset >= rp->b_size) 684 offset -= rp->b_size; 685 if (copy_from_buf(rp, offset, buf, step_len)) { 686 mutex_unlock(&rp->fetch_lock); 687 return -EFAULT; 688 } 689 nbytes -= step_len; 690 buf += step_len; 691 rp->b_read += step_len; 692 done += step_len; 693 } 694 695 /* 696 * Check if whole packet was read, and if so, jump to the next one. 697 */ 698 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) { 699 spin_lock_irqsave(&rp->b_lock, flags); 700 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 701 spin_unlock_irqrestore(&rp->b_lock, flags); 702 rp->b_read = 0; 703 } 704 705 mutex_unlock(&rp->fetch_lock); 706 return done; 707 } 708 709 /* 710 * Remove at most nevents from chunked buffer. 711 * Returns the number of removed events. 712 */ 713 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 714 { 715 unsigned long flags; 716 struct mon_bin_hdr *ep; 717 int i; 718 719 mutex_lock(&rp->fetch_lock); 720 spin_lock_irqsave(&rp->b_lock, flags); 721 for (i = 0; i < nevents; ++i) { 722 if (MON_RING_EMPTY(rp)) 723 break; 724 725 ep = MON_OFF2HDR(rp, rp->b_out); 726 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 727 } 728 spin_unlock_irqrestore(&rp->b_lock, flags); 729 rp->b_read = 0; 730 mutex_unlock(&rp->fetch_lock); 731 return i; 732 } 733 734 /* 735 * Fetch at most max event offsets into the buffer and put them into vec. 736 * The events are usually freed later with mon_bin_flush. 737 * Return the effective number of events fetched. 738 */ 739 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 740 u32 __user *vec, unsigned int max) 741 { 742 unsigned int cur_out; 743 unsigned int bytes, avail; 744 unsigned int size; 745 unsigned int nevents; 746 struct mon_bin_hdr *ep; 747 unsigned long flags; 748 int rc; 749 750 mutex_lock(&rp->fetch_lock); 751 752 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 753 mutex_unlock(&rp->fetch_lock); 754 return rc; 755 } 756 757 spin_lock_irqsave(&rp->b_lock, flags); 758 avail = rp->b_cnt; 759 spin_unlock_irqrestore(&rp->b_lock, flags); 760 761 cur_out = rp->b_out; 762 nevents = 0; 763 bytes = 0; 764 while (bytes < avail) { 765 if (nevents >= max) 766 break; 767 768 ep = MON_OFF2HDR(rp, cur_out); 769 if (put_user(cur_out, &vec[nevents])) { 770 mutex_unlock(&rp->fetch_lock); 771 return -EFAULT; 772 } 773 774 nevents++; 775 size = ep->len_cap + PKT_SIZE; 776 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 777 if ((cur_out += size) >= rp->b_size) 778 cur_out -= rp->b_size; 779 bytes += size; 780 } 781 782 mutex_unlock(&rp->fetch_lock); 783 return nevents; 784 } 785 786 /* 787 * Count events. This is almost the same as the above mon_bin_fetch, 788 * only we do not store offsets into user vector, and we have no limit. 789 */ 790 static int mon_bin_queued(struct mon_reader_bin *rp) 791 { 792 unsigned int cur_out; 793 unsigned int bytes, avail; 794 unsigned int size; 795 unsigned int nevents; 796 struct mon_bin_hdr *ep; 797 unsigned long flags; 798 799 mutex_lock(&rp->fetch_lock); 800 801 spin_lock_irqsave(&rp->b_lock, flags); 802 avail = rp->b_cnt; 803 spin_unlock_irqrestore(&rp->b_lock, flags); 804 805 cur_out = rp->b_out; 806 nevents = 0; 807 bytes = 0; 808 while (bytes < avail) { 809 ep = MON_OFF2HDR(rp, cur_out); 810 811 nevents++; 812 size = ep->len_cap + PKT_SIZE; 813 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 814 if ((cur_out += size) >= rp->b_size) 815 cur_out -= rp->b_size; 816 bytes += size; 817 } 818 819 mutex_unlock(&rp->fetch_lock); 820 return nevents; 821 } 822 823 /* 824 */ 825 static int mon_bin_ioctl(struct inode *inode, struct file *file, 826 unsigned int cmd, unsigned long arg) 827 { 828 struct mon_reader_bin *rp = file->private_data; 829 // struct mon_bus* mbus = rp->r.m_bus; 830 int ret = 0; 831 struct mon_bin_hdr *ep; 832 unsigned long flags; 833 834 switch (cmd) { 835 836 case MON_IOCQ_URB_LEN: 837 /* 838 * N.B. This only returns the size of data, without the header. 839 */ 840 spin_lock_irqsave(&rp->b_lock, flags); 841 if (!MON_RING_EMPTY(rp)) { 842 ep = MON_OFF2HDR(rp, rp->b_out); 843 ret = ep->len_cap; 844 } 845 spin_unlock_irqrestore(&rp->b_lock, flags); 846 break; 847 848 case MON_IOCQ_RING_SIZE: 849 ret = rp->b_size; 850 break; 851 852 case MON_IOCT_RING_SIZE: 853 /* 854 * Changing the buffer size will flush it's contents; the new 855 * buffer is allocated before releasing the old one to be sure 856 * the device will stay functional also in case of memory 857 * pressure. 858 */ 859 { 860 int size; 861 struct mon_pgmap *vec; 862 863 if (arg < BUFF_MIN || arg > BUFF_MAX) 864 return -EINVAL; 865 866 size = CHUNK_ALIGN(arg); 867 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 868 GFP_KERNEL)) == NULL) { 869 ret = -ENOMEM; 870 break; 871 } 872 873 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 874 if (ret < 0) { 875 kfree(vec); 876 break; 877 } 878 879 mutex_lock(&rp->fetch_lock); 880 spin_lock_irqsave(&rp->b_lock, flags); 881 mon_free_buff(rp->b_vec, size/CHUNK_SIZE); 882 kfree(rp->b_vec); 883 rp->b_vec = vec; 884 rp->b_size = size; 885 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 886 rp->cnt_lost = 0; 887 spin_unlock_irqrestore(&rp->b_lock, flags); 888 mutex_unlock(&rp->fetch_lock); 889 } 890 break; 891 892 case MON_IOCH_MFLUSH: 893 ret = mon_bin_flush(rp, arg); 894 break; 895 896 case MON_IOCX_GET: 897 { 898 struct mon_bin_get getb; 899 900 if (copy_from_user(&getb, (void __user *)arg, 901 sizeof(struct mon_bin_get))) 902 return -EFAULT; 903 904 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 905 return -EINVAL; 906 ret = mon_bin_get_event(file, rp, 907 getb.hdr, getb.data, (unsigned int)getb.alloc); 908 } 909 break; 910 911 #ifdef CONFIG_COMPAT 912 case MON_IOCX_GET32: { 913 struct mon_bin_get32 getb; 914 915 if (copy_from_user(&getb, (void __user *)arg, 916 sizeof(struct mon_bin_get32))) 917 return -EFAULT; 918 919 ret = mon_bin_get_event(file, rp, 920 compat_ptr(getb.hdr32), compat_ptr(getb.data32), 921 getb.alloc32); 922 } 923 break; 924 #endif 925 926 case MON_IOCX_MFETCH: 927 { 928 struct mon_bin_mfetch mfetch; 929 struct mon_bin_mfetch __user *uptr; 930 931 uptr = (struct mon_bin_mfetch __user *)arg; 932 933 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 934 return -EFAULT; 935 936 if (mfetch.nflush) { 937 ret = mon_bin_flush(rp, mfetch.nflush); 938 if (ret < 0) 939 return ret; 940 if (put_user(ret, &uptr->nflush)) 941 return -EFAULT; 942 } 943 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 944 if (ret < 0) 945 return ret; 946 if (put_user(ret, &uptr->nfetch)) 947 return -EFAULT; 948 ret = 0; 949 } 950 break; 951 952 #ifdef CONFIG_COMPAT 953 case MON_IOCX_MFETCH32: 954 { 955 struct mon_bin_mfetch32 mfetch; 956 struct mon_bin_mfetch32 __user *uptr; 957 958 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 959 960 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 961 return -EFAULT; 962 963 if (mfetch.nflush32) { 964 ret = mon_bin_flush(rp, mfetch.nflush32); 965 if (ret < 0) 966 return ret; 967 if (put_user(ret, &uptr->nflush32)) 968 return -EFAULT; 969 } 970 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 971 mfetch.nfetch32); 972 if (ret < 0) 973 return ret; 974 if (put_user(ret, &uptr->nfetch32)) 975 return -EFAULT; 976 ret = 0; 977 } 978 break; 979 #endif 980 981 case MON_IOCG_STATS: { 982 struct mon_bin_stats __user *sp; 983 unsigned int nevents; 984 unsigned int ndropped; 985 986 spin_lock_irqsave(&rp->b_lock, flags); 987 ndropped = rp->cnt_lost; 988 rp->cnt_lost = 0; 989 spin_unlock_irqrestore(&rp->b_lock, flags); 990 nevents = mon_bin_queued(rp); 991 992 sp = (struct mon_bin_stats __user *)arg; 993 if (put_user(rp->cnt_lost, &sp->dropped)) 994 return -EFAULT; 995 if (put_user(nevents, &sp->queued)) 996 return -EFAULT; 997 998 } 999 break; 1000 1001 default: 1002 return -ENOTTY; 1003 } 1004 1005 return ret; 1006 } 1007 1008 static unsigned int 1009 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1010 { 1011 struct mon_reader_bin *rp = file->private_data; 1012 unsigned int mask = 0; 1013 unsigned long flags; 1014 1015 if (file->f_mode & FMODE_READ) 1016 poll_wait(file, &rp->b_wait, wait); 1017 1018 spin_lock_irqsave(&rp->b_lock, flags); 1019 if (!MON_RING_EMPTY(rp)) 1020 mask |= POLLIN | POLLRDNORM; /* readable */ 1021 spin_unlock_irqrestore(&rp->b_lock, flags); 1022 return mask; 1023 } 1024 1025 /* 1026 * open and close: just keep track of how many times the device is 1027 * mapped, to use the proper memory allocation function. 1028 */ 1029 static void mon_bin_vma_open(struct vm_area_struct *vma) 1030 { 1031 struct mon_reader_bin *rp = vma->vm_private_data; 1032 rp->mmap_active++; 1033 } 1034 1035 static void mon_bin_vma_close(struct vm_area_struct *vma) 1036 { 1037 struct mon_reader_bin *rp = vma->vm_private_data; 1038 rp->mmap_active--; 1039 } 1040 1041 /* 1042 * Map ring pages to user space. 1043 */ 1044 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma, 1045 unsigned long address, int *type) 1046 { 1047 struct mon_reader_bin *rp = vma->vm_private_data; 1048 unsigned long offset, chunk_idx; 1049 struct page *pageptr; 1050 1051 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); 1052 if (offset >= rp->b_size) 1053 return NOPAGE_SIGBUS; 1054 chunk_idx = offset / CHUNK_SIZE; 1055 pageptr = rp->b_vec[chunk_idx].pg; 1056 get_page(pageptr); 1057 if (type) 1058 *type = VM_FAULT_MINOR; 1059 return pageptr; 1060 } 1061 1062 struct vm_operations_struct mon_bin_vm_ops = { 1063 .open = mon_bin_vma_open, 1064 .close = mon_bin_vma_close, 1065 .nopage = mon_bin_vma_nopage, 1066 }; 1067 1068 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1069 { 1070 /* don't do anything here: "nopage" will set up page table entries */ 1071 vma->vm_ops = &mon_bin_vm_ops; 1072 vma->vm_flags |= VM_RESERVED; 1073 vma->vm_private_data = filp->private_data; 1074 mon_bin_vma_open(vma); 1075 return 0; 1076 } 1077 1078 struct file_operations mon_fops_binary = { 1079 .owner = THIS_MODULE, 1080 .open = mon_bin_open, 1081 .llseek = no_llseek, 1082 .read = mon_bin_read, 1083 /* .write = mon_text_write, */ 1084 .poll = mon_bin_poll, 1085 .ioctl = mon_bin_ioctl, 1086 .release = mon_bin_release, 1087 }; 1088 1089 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1090 { 1091 DECLARE_WAITQUEUE(waita, current); 1092 unsigned long flags; 1093 1094 add_wait_queue(&rp->b_wait, &waita); 1095 set_current_state(TASK_INTERRUPTIBLE); 1096 1097 spin_lock_irqsave(&rp->b_lock, flags); 1098 while (MON_RING_EMPTY(rp)) { 1099 spin_unlock_irqrestore(&rp->b_lock, flags); 1100 1101 if (file->f_flags & O_NONBLOCK) { 1102 set_current_state(TASK_RUNNING); 1103 remove_wait_queue(&rp->b_wait, &waita); 1104 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1105 } 1106 schedule(); 1107 if (signal_pending(current)) { 1108 remove_wait_queue(&rp->b_wait, &waita); 1109 return -EINTR; 1110 } 1111 set_current_state(TASK_INTERRUPTIBLE); 1112 1113 spin_lock_irqsave(&rp->b_lock, flags); 1114 } 1115 spin_unlock_irqrestore(&rp->b_lock, flags); 1116 1117 set_current_state(TASK_RUNNING); 1118 remove_wait_queue(&rp->b_wait, &waita); 1119 return 0; 1120 } 1121 1122 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1123 { 1124 int n; 1125 unsigned long vaddr; 1126 1127 for (n = 0; n < npages; n++) { 1128 vaddr = get_zeroed_page(GFP_KERNEL); 1129 if (vaddr == 0) { 1130 while (n-- != 0) 1131 free_page((unsigned long) map[n].ptr); 1132 return -ENOMEM; 1133 } 1134 map[n].ptr = (unsigned char *) vaddr; 1135 map[n].pg = virt_to_page(vaddr); 1136 } 1137 return 0; 1138 } 1139 1140 static void mon_free_buff(struct mon_pgmap *map, int npages) 1141 { 1142 int n; 1143 1144 for (n = 0; n < npages; n++) 1145 free_page((unsigned long) map[n].ptr); 1146 } 1147 1148 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1149 { 1150 struct device *dev; 1151 unsigned minor = ubus? ubus->busnum: 0; 1152 1153 if (minor >= MON_BIN_MAX_MINOR) 1154 return 0; 1155 1156 dev = device_create(mon_bin_class, ubus? ubus->controller: NULL, 1157 MKDEV(MAJOR(mon_bin_dev0), minor), "usbmon%d", minor); 1158 if (IS_ERR(dev)) 1159 return 0; 1160 1161 mbus->classdev = dev; 1162 return 1; 1163 } 1164 1165 void mon_bin_del(struct mon_bus *mbus) 1166 { 1167 device_destroy(mon_bin_class, mbus->classdev->devt); 1168 } 1169 1170 int __init mon_bin_init(void) 1171 { 1172 int rc; 1173 1174 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1175 if (IS_ERR(mon_bin_class)) { 1176 rc = PTR_ERR(mon_bin_class); 1177 goto err_class; 1178 } 1179 1180 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1181 if (rc < 0) 1182 goto err_dev; 1183 1184 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1185 mon_bin_cdev.owner = THIS_MODULE; 1186 1187 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1188 if (rc < 0) 1189 goto err_add; 1190 1191 return 0; 1192 1193 err_add: 1194 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1195 err_dev: 1196 class_destroy(mon_bin_class); 1197 err_class: 1198 return rc; 1199 } 1200 1201 void mon_bin_exit(void) 1202 { 1203 cdev_del(&mon_bin_cdev); 1204 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1205 class_destroy(mon_bin_class); 1206 } 1207