xref: /linux/drivers/usb/mon/mon_bin.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 
19 #include <asm/uaccess.h>
20 
21 #include "usb_mon.h"
22 
23 /*
24  * Defined by USB 2.0 clause 9.3, table 9.2.
25  */
26 #define SETUP_LEN  8
27 
28 /* ioctl macros */
29 #define MON_IOC_MAGIC 0x92
30 
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
39 #ifdef CONFIG_COMPAT
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
42 #endif
43 
44 /*
45  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46  * But it's all right. Just use a simple way to make sure the chunk is never
47  * smaller than a page.
48  *
49  * N.B. An application does not know our chunk size.
50  *
51  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52  * page-sized chunks for the time being.
53  */
54 #define CHUNK_SIZE   PAGE_SIZE
55 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
56 
57 /*
58  * The magic limit was calculated so that it allows the monitoring
59  * application to pick data once in two ticks. This way, another application,
60  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62  * enormous overhead built into the bus protocol, so we need about 1000 KB.
63  *
64  * This is still too much for most cases, where we just snoop a few
65  * descriptor fetches for enumeration. So, the default is a "reasonable"
66  * amount for systems with HZ=250 and incomplete bus saturation.
67  *
68  * XXX What about multi-megabyte URBs which take minutes to transfer?
69  */
70 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
73 
74 /*
75  * The per-event API header (2 per URB).
76  *
77  * This structure is seen in userland as defined by the documentation.
78  */
79 struct mon_bin_hdr {
80 	u64 id;			/* URB ID - from submission to callback */
81 	unsigned char type;	/* Same as in text API; extensible. */
82 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
83 	unsigned char epnum;	/* Endpoint number and transfer direction */
84 	unsigned char devnum;	/* Device address */
85 	unsigned short busnum;	/* Bus number */
86 	char flag_setup;
87 	char flag_data;
88 	s64 ts_sec;		/* gettimeofday */
89 	s32 ts_usec;		/* gettimeofday */
90 	int status;
91 	unsigned int len_urb;	/* Length of data (submitted or actual) */
92 	unsigned int len_cap;	/* Delivered length */
93 	unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
94 };
95 
96 /* per file statistic */
97 struct mon_bin_stats {
98 	u32 queued;
99 	u32 dropped;
100 };
101 
102 struct mon_bin_get {
103 	struct mon_bin_hdr __user *hdr;	/* Only 48 bytes, not 64. */
104 	void __user *data;
105 	size_t alloc;		/* Length of data (can be zero) */
106 };
107 
108 struct mon_bin_mfetch {
109 	u32 __user *offvec;	/* Vector of events fetched */
110 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
111 	u32 nflush;		/* Number of events to flush */
112 };
113 
114 #ifdef CONFIG_COMPAT
115 struct mon_bin_get32 {
116 	u32 hdr32;
117 	u32 data32;
118 	u32 alloc32;
119 };
120 
121 struct mon_bin_mfetch32 {
122         u32 offvec32;
123         u32 nfetch32;
124         u32 nflush32;
125 };
126 #endif
127 
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
129 #define PKT_ALIGN   64
130 #define PKT_SIZE    64
131 
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
134 
135 /*
136  * The buffer: map of used pages.
137  */
138 struct mon_pgmap {
139 	struct page *pg;
140 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
141 };
142 
143 /*
144  * This gets associated with an open file struct.
145  */
146 struct mon_reader_bin {
147 	/* The buffer: one per open. */
148 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
149 	unsigned int b_size;		/* Current size of the buffer - bytes */
150 	unsigned int b_cnt;		/* Bytes used */
151 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
152 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
153 	struct mon_pgmap *b_vec;	/* The map array */
154 	wait_queue_head_t b_wait;	/* Wait for data here */
155 
156 	struct mutex fetch_lock;	/* Protect b_read, b_out */
157 	int mmap_active;
158 
159 	/* A list of these is needed for "bus 0". Some time later. */
160 	struct mon_reader r;
161 
162 	/* Stats */
163 	unsigned int cnt_lost;
164 };
165 
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
167     unsigned int offset)
168 {
169 	return (struct mon_bin_hdr *)
170 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
171 }
172 
173 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
174 
175 static struct class *mon_bin_class;
176 static dev_t mon_bin_dev0;
177 static struct cdev mon_bin_cdev;
178 
179 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
180     unsigned int offset, unsigned int size);
181 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
182 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
183 static void mon_free_buff(struct mon_pgmap *map, int npages);
184 
185 /*
186  * This is a "chunked memcpy". It does not manipulate any counters.
187  * But it returns the new offset for repeated application.
188  */
189 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
190     unsigned int off, const unsigned char *from, unsigned int length)
191 {
192 	unsigned int step_len;
193 	unsigned char *buf;
194 	unsigned int in_page;
195 
196 	while (length) {
197 		/*
198 		 * Determine step_len.
199 		 */
200 		step_len = length;
201 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
202 		if (in_page < step_len)
203 			step_len = in_page;
204 
205 		/*
206 		 * Copy data and advance pointers.
207 		 */
208 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
209 		memcpy(buf, from, step_len);
210 		if ((off += step_len) >= this->b_size) off = 0;
211 		from += step_len;
212 		length -= step_len;
213 	}
214 	return off;
215 }
216 
217 /*
218  * This is a little worse than the above because it's "chunked copy_to_user".
219  * The return value is an error code, not an offset.
220  */
221 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
222     char __user *to, int length)
223 {
224 	unsigned int step_len;
225 	unsigned char *buf;
226 	unsigned int in_page;
227 
228 	while (length) {
229 		/*
230 		 * Determine step_len.
231 		 */
232 		step_len = length;
233 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
234 		if (in_page < step_len)
235 			step_len = in_page;
236 
237 		/*
238 		 * Copy data and advance pointers.
239 		 */
240 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
241 		if (copy_to_user(to, buf, step_len))
242 			return -EINVAL;
243 		if ((off += step_len) >= this->b_size) off = 0;
244 		to += step_len;
245 		length -= step_len;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * Allocate an (aligned) area in the buffer.
252  * This is called under b_lock.
253  * Returns ~0 on failure.
254  */
255 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
256     unsigned int size)
257 {
258 	unsigned int offset;
259 
260 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
261 	if (rp->b_cnt + size > rp->b_size)
262 		return ~0;
263 	offset = rp->b_in;
264 	rp->b_cnt += size;
265 	if ((rp->b_in += size) >= rp->b_size)
266 		rp->b_in -= rp->b_size;
267 	return offset;
268 }
269 
270 /*
271  * This is the same thing as mon_buff_area_alloc, only it does not allow
272  * buffers to wrap. This is needed by applications which pass references
273  * into mmap-ed buffers up their stacks (libpcap can do that).
274  *
275  * Currently, we always have the header stuck with the data, although
276  * it is not strictly speaking necessary.
277  *
278  * When a buffer would wrap, we place a filler packet to mark the space.
279  */
280 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
281     unsigned int size)
282 {
283 	unsigned int offset;
284 	unsigned int fill_size;
285 
286 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
287 	if (rp->b_cnt + size > rp->b_size)
288 		return ~0;
289 	if (rp->b_in + size > rp->b_size) {
290 		/*
291 		 * This would wrap. Find if we still have space after
292 		 * skipping to the end of the buffer. If we do, place
293 		 * a filler packet and allocate a new packet.
294 		 */
295 		fill_size = rp->b_size - rp->b_in;
296 		if (rp->b_cnt + size + fill_size > rp->b_size)
297 			return ~0;
298 		mon_buff_area_fill(rp, rp->b_in, fill_size);
299 
300 		offset = 0;
301 		rp->b_in = size;
302 		rp->b_cnt += size + fill_size;
303 	} else if (rp->b_in + size == rp->b_size) {
304 		offset = rp->b_in;
305 		rp->b_in = 0;
306 		rp->b_cnt += size;
307 	} else {
308 		offset = rp->b_in;
309 		rp->b_in += size;
310 		rp->b_cnt += size;
311 	}
312 	return offset;
313 }
314 
315 /*
316  * Return a few (kilo-)bytes to the head of the buffer.
317  * This is used if a DMA fetch fails.
318  */
319 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
320 {
321 
322 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
323 	rp->b_cnt -= size;
324 	if (rp->b_in < size)
325 		rp->b_in += rp->b_size;
326 	rp->b_in -= size;
327 }
328 
329 /*
330  * This has to be called under both b_lock and fetch_lock, because
331  * it accesses both b_cnt and b_out.
332  */
333 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
334 {
335 
336 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
337 	rp->b_cnt -= size;
338 	if ((rp->b_out += size) >= rp->b_size)
339 		rp->b_out -= rp->b_size;
340 }
341 
342 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
343     unsigned int offset, unsigned int size)
344 {
345 	struct mon_bin_hdr *ep;
346 
347 	ep = MON_OFF2HDR(rp, offset);
348 	memset(ep, 0, PKT_SIZE);
349 	ep->type = '@';
350 	ep->len_cap = size - PKT_SIZE;
351 }
352 
353 static inline char mon_bin_get_setup(unsigned char *setupb,
354     const struct urb *urb, char ev_type)
355 {
356 
357 	if (!usb_pipecontrol(urb->pipe) || ev_type != 'S')
358 		return '-';
359 
360 	if (urb->dev->bus->uses_dma &&
361 	    (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
362 		return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
363 	}
364 	if (urb->setup_packet == NULL)
365 		return 'Z';
366 
367 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
368 	return 0;
369 }
370 
371 static char mon_bin_get_data(const struct mon_reader_bin *rp,
372     unsigned int offset, struct urb *urb, unsigned int length)
373 {
374 
375 	if (urb->dev->bus->uses_dma &&
376 	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
377 		mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
378 		return 0;
379 	}
380 
381 	if (urb->transfer_buffer == NULL)
382 		return 'Z';
383 
384 	mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
385 	return 0;
386 }
387 
388 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
389     char ev_type)
390 {
391 	unsigned long flags;
392 	struct timeval ts;
393 	unsigned int urb_length;
394 	unsigned int offset;
395 	unsigned int length;
396 	struct mon_bin_hdr *ep;
397 	char data_tag = 0;
398 
399 	do_gettimeofday(&ts);
400 
401 	spin_lock_irqsave(&rp->b_lock, flags);
402 
403 	/*
404 	 * Find the maximum allowable length, then allocate space.
405 	 */
406 	urb_length = (ev_type == 'S') ?
407 	    urb->transfer_buffer_length : urb->actual_length;
408 	length = urb_length;
409 
410 	if (length >= rp->b_size/5)
411 		length = rp->b_size/5;
412 
413 	if (usb_pipein(urb->pipe)) {
414 		if (ev_type == 'S') {
415 			length = 0;
416 			data_tag = '<';
417 		}
418 	} else {
419 		if (ev_type == 'C') {
420 			length = 0;
421 			data_tag = '>';
422 		}
423 	}
424 
425 	if (rp->mmap_active)
426 		offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
427 	else
428 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
429 	if (offset == ~0) {
430 		rp->cnt_lost++;
431 		spin_unlock_irqrestore(&rp->b_lock, flags);
432 		return;
433 	}
434 
435 	ep = MON_OFF2HDR(rp, offset);
436 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
437 
438 	/*
439 	 * Fill the allocated area.
440 	 */
441 	memset(ep, 0, PKT_SIZE);
442 	ep->type = ev_type;
443 	ep->xfer_type = usb_pipetype(urb->pipe);
444 	/* We use the fact that usb_pipein() returns 0x80 */
445 	ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
446 	ep->devnum = usb_pipedevice(urb->pipe);
447 	ep->busnum = urb->dev->bus->busnum;
448 	ep->id = (unsigned long) urb;
449 	ep->ts_sec = ts.tv_sec;
450 	ep->ts_usec = ts.tv_usec;
451 	ep->status = urb->status;
452 	ep->len_urb = urb_length;
453 	ep->len_cap = length;
454 
455 	ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
456 	if (length != 0) {
457 		ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
458 		if (ep->flag_data != 0) {	/* Yes, it's 0x00, not '0' */
459 			ep->len_cap = 0;
460 			mon_buff_area_shrink(rp, length);
461 		}
462 	} else {
463 		ep->flag_data = data_tag;
464 	}
465 
466 	spin_unlock_irqrestore(&rp->b_lock, flags);
467 
468 	wake_up(&rp->b_wait);
469 }
470 
471 static void mon_bin_submit(void *data, struct urb *urb)
472 {
473 	struct mon_reader_bin *rp = data;
474 	mon_bin_event(rp, urb, 'S');
475 }
476 
477 static void mon_bin_complete(void *data, struct urb *urb)
478 {
479 	struct mon_reader_bin *rp = data;
480 	mon_bin_event(rp, urb, 'C');
481 }
482 
483 static void mon_bin_error(void *data, struct urb *urb, int error)
484 {
485 	struct mon_reader_bin *rp = data;
486 	unsigned long flags;
487 	unsigned int offset;
488 	struct mon_bin_hdr *ep;
489 
490 	spin_lock_irqsave(&rp->b_lock, flags);
491 
492 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
493 	if (offset == ~0) {
494 		/* Not incrementing cnt_lost. Just because. */
495 		spin_unlock_irqrestore(&rp->b_lock, flags);
496 		return;
497 	}
498 
499 	ep = MON_OFF2HDR(rp, offset);
500 
501 	memset(ep, 0, PKT_SIZE);
502 	ep->type = 'E';
503 	ep->xfer_type = usb_pipetype(urb->pipe);
504 	/* We use the fact that usb_pipein() returns 0x80 */
505 	ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
506 	ep->devnum = usb_pipedevice(urb->pipe);
507 	ep->busnum = urb->dev->bus->busnum;
508 	ep->id = (unsigned long) urb;
509 	ep->status = error;
510 
511 	ep->flag_setup = '-';
512 	ep->flag_data = 'E';
513 
514 	spin_unlock_irqrestore(&rp->b_lock, flags);
515 
516 	wake_up(&rp->b_wait);
517 }
518 
519 static int mon_bin_open(struct inode *inode, struct file *file)
520 {
521 	struct mon_bus *mbus;
522 	struct mon_reader_bin *rp;
523 	size_t size;
524 	int rc;
525 
526 	mutex_lock(&mon_lock);
527 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
528 		mutex_unlock(&mon_lock);
529 		return -ENODEV;
530 	}
531 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
532 		printk(KERN_ERR TAG ": consistency error on open\n");
533 		mutex_unlock(&mon_lock);
534 		return -ENODEV;
535 	}
536 
537 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
538 	if (rp == NULL) {
539 		rc = -ENOMEM;
540 		goto err_alloc;
541 	}
542 	spin_lock_init(&rp->b_lock);
543 	init_waitqueue_head(&rp->b_wait);
544 	mutex_init(&rp->fetch_lock);
545 
546 	rp->b_size = BUFF_DFL;
547 
548 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
549 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
550 		rc = -ENOMEM;
551 		goto err_allocvec;
552 	}
553 
554 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
555 		goto err_allocbuff;
556 
557 	rp->r.m_bus = mbus;
558 	rp->r.r_data = rp;
559 	rp->r.rnf_submit = mon_bin_submit;
560 	rp->r.rnf_error = mon_bin_error;
561 	rp->r.rnf_complete = mon_bin_complete;
562 
563 	mon_reader_add(mbus, &rp->r);
564 
565 	file->private_data = rp;
566 	mutex_unlock(&mon_lock);
567 	return 0;
568 
569 err_allocbuff:
570 	kfree(rp->b_vec);
571 err_allocvec:
572 	kfree(rp);
573 err_alloc:
574 	mutex_unlock(&mon_lock);
575 	return rc;
576 }
577 
578 /*
579  * Extract an event from buffer and copy it to user space.
580  * Wait if there is no event ready.
581  * Returns zero or error.
582  */
583 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
584     struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
585 {
586 	unsigned long flags;
587 	struct mon_bin_hdr *ep;
588 	size_t step_len;
589 	unsigned int offset;
590 	int rc;
591 
592 	mutex_lock(&rp->fetch_lock);
593 
594 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
595 		mutex_unlock(&rp->fetch_lock);
596 		return rc;
597 	}
598 
599 	ep = MON_OFF2HDR(rp, rp->b_out);
600 
601 	if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
602 		mutex_unlock(&rp->fetch_lock);
603 		return -EFAULT;
604 	}
605 
606 	step_len = min(ep->len_cap, nbytes);
607 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
608 
609 	if (copy_from_buf(rp, offset, data, step_len)) {
610 		mutex_unlock(&rp->fetch_lock);
611 		return -EFAULT;
612 	}
613 
614 	spin_lock_irqsave(&rp->b_lock, flags);
615 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
616 	spin_unlock_irqrestore(&rp->b_lock, flags);
617 	rp->b_read = 0;
618 
619 	mutex_unlock(&rp->fetch_lock);
620 	return 0;
621 }
622 
623 static int mon_bin_release(struct inode *inode, struct file *file)
624 {
625 	struct mon_reader_bin *rp = file->private_data;
626 	struct mon_bus* mbus = rp->r.m_bus;
627 
628 	mutex_lock(&mon_lock);
629 
630 	if (mbus->nreaders <= 0) {
631 		printk(KERN_ERR TAG ": consistency error on close\n");
632 		mutex_unlock(&mon_lock);
633 		return 0;
634 	}
635 	mon_reader_del(mbus, &rp->r);
636 
637 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
638 	kfree(rp->b_vec);
639 	kfree(rp);
640 
641 	mutex_unlock(&mon_lock);
642 	return 0;
643 }
644 
645 static ssize_t mon_bin_read(struct file *file, char __user *buf,
646     size_t nbytes, loff_t *ppos)
647 {
648 	struct mon_reader_bin *rp = file->private_data;
649 	unsigned long flags;
650 	struct mon_bin_hdr *ep;
651 	unsigned int offset;
652 	size_t step_len;
653 	char *ptr;
654 	ssize_t done = 0;
655 	int rc;
656 
657 	mutex_lock(&rp->fetch_lock);
658 
659 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
660 		mutex_unlock(&rp->fetch_lock);
661 		return rc;
662 	}
663 
664 	ep = MON_OFF2HDR(rp, rp->b_out);
665 
666 	if (rp->b_read < sizeof(struct mon_bin_hdr)) {
667 		step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
668 		ptr = ((char *)ep) + rp->b_read;
669 		if (step_len && copy_to_user(buf, ptr, step_len)) {
670 			mutex_unlock(&rp->fetch_lock);
671 			return -EFAULT;
672 		}
673 		nbytes -= step_len;
674 		buf += step_len;
675 		rp->b_read += step_len;
676 		done += step_len;
677 	}
678 
679 	if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
680 		step_len = min(nbytes, (size_t)ep->len_cap);
681 		offset = rp->b_out + PKT_SIZE;
682 		offset += rp->b_read - sizeof(struct mon_bin_hdr);
683 		if (offset >= rp->b_size)
684 			offset -= rp->b_size;
685 		if (copy_from_buf(rp, offset, buf, step_len)) {
686 			mutex_unlock(&rp->fetch_lock);
687 			return -EFAULT;
688 		}
689 		nbytes -= step_len;
690 		buf += step_len;
691 		rp->b_read += step_len;
692 		done += step_len;
693 	}
694 
695 	/*
696 	 * Check if whole packet was read, and if so, jump to the next one.
697 	 */
698 	if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
699 		spin_lock_irqsave(&rp->b_lock, flags);
700 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
701 		spin_unlock_irqrestore(&rp->b_lock, flags);
702 		rp->b_read = 0;
703 	}
704 
705 	mutex_unlock(&rp->fetch_lock);
706 	return done;
707 }
708 
709 /*
710  * Remove at most nevents from chunked buffer.
711  * Returns the number of removed events.
712  */
713 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
714 {
715 	unsigned long flags;
716 	struct mon_bin_hdr *ep;
717 	int i;
718 
719 	mutex_lock(&rp->fetch_lock);
720 	spin_lock_irqsave(&rp->b_lock, flags);
721 	for (i = 0; i < nevents; ++i) {
722 		if (MON_RING_EMPTY(rp))
723 			break;
724 
725 		ep = MON_OFF2HDR(rp, rp->b_out);
726 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
727 	}
728 	spin_unlock_irqrestore(&rp->b_lock, flags);
729 	rp->b_read = 0;
730 	mutex_unlock(&rp->fetch_lock);
731 	return i;
732 }
733 
734 /*
735  * Fetch at most max event offsets into the buffer and put them into vec.
736  * The events are usually freed later with mon_bin_flush.
737  * Return the effective number of events fetched.
738  */
739 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
740     u32 __user *vec, unsigned int max)
741 {
742 	unsigned int cur_out;
743 	unsigned int bytes, avail;
744 	unsigned int size;
745 	unsigned int nevents;
746 	struct mon_bin_hdr *ep;
747 	unsigned long flags;
748 	int rc;
749 
750 	mutex_lock(&rp->fetch_lock);
751 
752 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
753 		mutex_unlock(&rp->fetch_lock);
754 		return rc;
755 	}
756 
757 	spin_lock_irqsave(&rp->b_lock, flags);
758 	avail = rp->b_cnt;
759 	spin_unlock_irqrestore(&rp->b_lock, flags);
760 
761 	cur_out = rp->b_out;
762 	nevents = 0;
763 	bytes = 0;
764 	while (bytes < avail) {
765 		if (nevents >= max)
766 			break;
767 
768 		ep = MON_OFF2HDR(rp, cur_out);
769 		if (put_user(cur_out, &vec[nevents])) {
770 			mutex_unlock(&rp->fetch_lock);
771 			return -EFAULT;
772 		}
773 
774 		nevents++;
775 		size = ep->len_cap + PKT_SIZE;
776 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
777 		if ((cur_out += size) >= rp->b_size)
778 			cur_out -= rp->b_size;
779 		bytes += size;
780 	}
781 
782 	mutex_unlock(&rp->fetch_lock);
783 	return nevents;
784 }
785 
786 /*
787  * Count events. This is almost the same as the above mon_bin_fetch,
788  * only we do not store offsets into user vector, and we have no limit.
789  */
790 static int mon_bin_queued(struct mon_reader_bin *rp)
791 {
792 	unsigned int cur_out;
793 	unsigned int bytes, avail;
794 	unsigned int size;
795 	unsigned int nevents;
796 	struct mon_bin_hdr *ep;
797 	unsigned long flags;
798 
799 	mutex_lock(&rp->fetch_lock);
800 
801 	spin_lock_irqsave(&rp->b_lock, flags);
802 	avail = rp->b_cnt;
803 	spin_unlock_irqrestore(&rp->b_lock, flags);
804 
805 	cur_out = rp->b_out;
806 	nevents = 0;
807 	bytes = 0;
808 	while (bytes < avail) {
809 		ep = MON_OFF2HDR(rp, cur_out);
810 
811 		nevents++;
812 		size = ep->len_cap + PKT_SIZE;
813 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
814 		if ((cur_out += size) >= rp->b_size)
815 			cur_out -= rp->b_size;
816 		bytes += size;
817 	}
818 
819 	mutex_unlock(&rp->fetch_lock);
820 	return nevents;
821 }
822 
823 /*
824  */
825 static int mon_bin_ioctl(struct inode *inode, struct file *file,
826     unsigned int cmd, unsigned long arg)
827 {
828 	struct mon_reader_bin *rp = file->private_data;
829 	// struct mon_bus* mbus = rp->r.m_bus;
830 	int ret = 0;
831 	struct mon_bin_hdr *ep;
832 	unsigned long flags;
833 
834 	switch (cmd) {
835 
836 	case MON_IOCQ_URB_LEN:
837 		/*
838 		 * N.B. This only returns the size of data, without the header.
839 		 */
840 		spin_lock_irqsave(&rp->b_lock, flags);
841 		if (!MON_RING_EMPTY(rp)) {
842 			ep = MON_OFF2HDR(rp, rp->b_out);
843 			ret = ep->len_cap;
844 		}
845 		spin_unlock_irqrestore(&rp->b_lock, flags);
846 		break;
847 
848 	case MON_IOCQ_RING_SIZE:
849 		ret = rp->b_size;
850 		break;
851 
852 	case MON_IOCT_RING_SIZE:
853 		/*
854 		 * Changing the buffer size will flush it's contents; the new
855 		 * buffer is allocated before releasing the old one to be sure
856 		 * the device will stay functional also in case of memory
857 		 * pressure.
858 		 */
859 		{
860 		int size;
861 		struct mon_pgmap *vec;
862 
863 		if (arg < BUFF_MIN || arg > BUFF_MAX)
864 			return -EINVAL;
865 
866 		size = CHUNK_ALIGN(arg);
867 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
868 		    GFP_KERNEL)) == NULL) {
869 			ret = -ENOMEM;
870 			break;
871 		}
872 
873 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
874 		if (ret < 0) {
875 			kfree(vec);
876 			break;
877 		}
878 
879 		mutex_lock(&rp->fetch_lock);
880 		spin_lock_irqsave(&rp->b_lock, flags);
881 		mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
882 		kfree(rp->b_vec);
883 		rp->b_vec  = vec;
884 		rp->b_size = size;
885 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
886 		rp->cnt_lost = 0;
887 		spin_unlock_irqrestore(&rp->b_lock, flags);
888 		mutex_unlock(&rp->fetch_lock);
889 		}
890 		break;
891 
892 	case MON_IOCH_MFLUSH:
893 		ret = mon_bin_flush(rp, arg);
894 		break;
895 
896 	case MON_IOCX_GET:
897 		{
898 		struct mon_bin_get getb;
899 
900 		if (copy_from_user(&getb, (void __user *)arg,
901 					    sizeof(struct mon_bin_get)))
902 			return -EFAULT;
903 
904 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
905 			return -EINVAL;
906 		ret = mon_bin_get_event(file, rp,
907 			  getb.hdr, getb.data, (unsigned int)getb.alloc);
908 		}
909 		break;
910 
911 #ifdef CONFIG_COMPAT
912 	case MON_IOCX_GET32: {
913 		struct mon_bin_get32 getb;
914 
915 		if (copy_from_user(&getb, (void __user *)arg,
916 					    sizeof(struct mon_bin_get32)))
917 			return -EFAULT;
918 
919 		ret = mon_bin_get_event(file, rp,
920 		    compat_ptr(getb.hdr32), compat_ptr(getb.data32),
921 		    getb.alloc32);
922 		}
923 		break;
924 #endif
925 
926 	case MON_IOCX_MFETCH:
927 		{
928 		struct mon_bin_mfetch mfetch;
929 		struct mon_bin_mfetch __user *uptr;
930 
931 		uptr = (struct mon_bin_mfetch __user *)arg;
932 
933 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
934 			return -EFAULT;
935 
936 		if (mfetch.nflush) {
937 			ret = mon_bin_flush(rp, mfetch.nflush);
938 			if (ret < 0)
939 				return ret;
940 			if (put_user(ret, &uptr->nflush))
941 				return -EFAULT;
942 		}
943 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
944 		if (ret < 0)
945 			return ret;
946 		if (put_user(ret, &uptr->nfetch))
947 			return -EFAULT;
948 		ret = 0;
949 		}
950 		break;
951 
952 #ifdef CONFIG_COMPAT
953 	case MON_IOCX_MFETCH32:
954 		{
955 		struct mon_bin_mfetch32 mfetch;
956 		struct mon_bin_mfetch32 __user *uptr;
957 
958 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
959 
960 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
961 			return -EFAULT;
962 
963 		if (mfetch.nflush32) {
964 			ret = mon_bin_flush(rp, mfetch.nflush32);
965 			if (ret < 0)
966 				return ret;
967 			if (put_user(ret, &uptr->nflush32))
968 				return -EFAULT;
969 		}
970 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
971 		    mfetch.nfetch32);
972 		if (ret < 0)
973 			return ret;
974 		if (put_user(ret, &uptr->nfetch32))
975 			return -EFAULT;
976 		ret = 0;
977 		}
978 		break;
979 #endif
980 
981 	case MON_IOCG_STATS: {
982 		struct mon_bin_stats __user *sp;
983 		unsigned int nevents;
984 		unsigned int ndropped;
985 
986 		spin_lock_irqsave(&rp->b_lock, flags);
987 		ndropped = rp->cnt_lost;
988 		rp->cnt_lost = 0;
989 		spin_unlock_irqrestore(&rp->b_lock, flags);
990 		nevents = mon_bin_queued(rp);
991 
992 		sp = (struct mon_bin_stats __user *)arg;
993 		if (put_user(rp->cnt_lost, &sp->dropped))
994 			return -EFAULT;
995 		if (put_user(nevents, &sp->queued))
996 			return -EFAULT;
997 
998 		}
999 		break;
1000 
1001 	default:
1002 		return -ENOTTY;
1003 	}
1004 
1005 	return ret;
1006 }
1007 
1008 static unsigned int
1009 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1010 {
1011 	struct mon_reader_bin *rp = file->private_data;
1012 	unsigned int mask = 0;
1013 	unsigned long flags;
1014 
1015 	if (file->f_mode & FMODE_READ)
1016 		poll_wait(file, &rp->b_wait, wait);
1017 
1018 	spin_lock_irqsave(&rp->b_lock, flags);
1019 	if (!MON_RING_EMPTY(rp))
1020 		mask |= POLLIN | POLLRDNORM;    /* readable */
1021 	spin_unlock_irqrestore(&rp->b_lock, flags);
1022 	return mask;
1023 }
1024 
1025 /*
1026  * open and close: just keep track of how many times the device is
1027  * mapped, to use the proper memory allocation function.
1028  */
1029 static void mon_bin_vma_open(struct vm_area_struct *vma)
1030 {
1031 	struct mon_reader_bin *rp = vma->vm_private_data;
1032 	rp->mmap_active++;
1033 }
1034 
1035 static void mon_bin_vma_close(struct vm_area_struct *vma)
1036 {
1037 	struct mon_reader_bin *rp = vma->vm_private_data;
1038 	rp->mmap_active--;
1039 }
1040 
1041 /*
1042  * Map ring pages to user space.
1043  */
1044 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1045                                 unsigned long address, int *type)
1046 {
1047 	struct mon_reader_bin *rp = vma->vm_private_data;
1048 	unsigned long offset, chunk_idx;
1049 	struct page *pageptr;
1050 
1051 	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1052 	if (offset >= rp->b_size)
1053 		return NOPAGE_SIGBUS;
1054 	chunk_idx = offset / CHUNK_SIZE;
1055 	pageptr = rp->b_vec[chunk_idx].pg;
1056 	get_page(pageptr);
1057 	if (type)
1058 		*type = VM_FAULT_MINOR;
1059 	return pageptr;
1060 }
1061 
1062 struct vm_operations_struct mon_bin_vm_ops = {
1063 	.open =     mon_bin_vma_open,
1064 	.close =    mon_bin_vma_close,
1065 	.nopage =   mon_bin_vma_nopage,
1066 };
1067 
1068 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1069 {
1070 	/* don't do anything here: "nopage" will set up page table entries */
1071 	vma->vm_ops = &mon_bin_vm_ops;
1072 	vma->vm_flags |= VM_RESERVED;
1073 	vma->vm_private_data = filp->private_data;
1074 	mon_bin_vma_open(vma);
1075 	return 0;
1076 }
1077 
1078 struct file_operations mon_fops_binary = {
1079 	.owner =	THIS_MODULE,
1080 	.open =		mon_bin_open,
1081 	.llseek =	no_llseek,
1082 	.read =		mon_bin_read,
1083 	/* .write =	mon_text_write, */
1084 	.poll =		mon_bin_poll,
1085 	.ioctl =	mon_bin_ioctl,
1086 	.release =	mon_bin_release,
1087 };
1088 
1089 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1090 {
1091 	DECLARE_WAITQUEUE(waita, current);
1092 	unsigned long flags;
1093 
1094 	add_wait_queue(&rp->b_wait, &waita);
1095 	set_current_state(TASK_INTERRUPTIBLE);
1096 
1097 	spin_lock_irqsave(&rp->b_lock, flags);
1098 	while (MON_RING_EMPTY(rp)) {
1099 		spin_unlock_irqrestore(&rp->b_lock, flags);
1100 
1101 		if (file->f_flags & O_NONBLOCK) {
1102 			set_current_state(TASK_RUNNING);
1103 			remove_wait_queue(&rp->b_wait, &waita);
1104 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1105 		}
1106 		schedule();
1107 		if (signal_pending(current)) {
1108 			remove_wait_queue(&rp->b_wait, &waita);
1109 			return -EINTR;
1110 		}
1111 		set_current_state(TASK_INTERRUPTIBLE);
1112 
1113 		spin_lock_irqsave(&rp->b_lock, flags);
1114 	}
1115 	spin_unlock_irqrestore(&rp->b_lock, flags);
1116 
1117 	set_current_state(TASK_RUNNING);
1118 	remove_wait_queue(&rp->b_wait, &waita);
1119 	return 0;
1120 }
1121 
1122 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1123 {
1124 	int n;
1125 	unsigned long vaddr;
1126 
1127 	for (n = 0; n < npages; n++) {
1128 		vaddr = get_zeroed_page(GFP_KERNEL);
1129 		if (vaddr == 0) {
1130 			while (n-- != 0)
1131 				free_page((unsigned long) map[n].ptr);
1132 			return -ENOMEM;
1133 		}
1134 		map[n].ptr = (unsigned char *) vaddr;
1135 		map[n].pg = virt_to_page(vaddr);
1136 	}
1137 	return 0;
1138 }
1139 
1140 static void mon_free_buff(struct mon_pgmap *map, int npages)
1141 {
1142 	int n;
1143 
1144 	for (n = 0; n < npages; n++)
1145 		free_page((unsigned long) map[n].ptr);
1146 }
1147 
1148 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1149 {
1150 	struct device *dev;
1151 	unsigned minor = ubus? ubus->busnum: 0;
1152 
1153 	if (minor >= MON_BIN_MAX_MINOR)
1154 		return 0;
1155 
1156 	dev = device_create(mon_bin_class, ubus? ubus->controller: NULL,
1157 			MKDEV(MAJOR(mon_bin_dev0), minor), "usbmon%d", minor);
1158 	if (IS_ERR(dev))
1159 		return 0;
1160 
1161 	mbus->classdev = dev;
1162 	return 1;
1163 }
1164 
1165 void mon_bin_del(struct mon_bus *mbus)
1166 {
1167 	device_destroy(mon_bin_class, mbus->classdev->devt);
1168 }
1169 
1170 int __init mon_bin_init(void)
1171 {
1172 	int rc;
1173 
1174 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1175 	if (IS_ERR(mon_bin_class)) {
1176 		rc = PTR_ERR(mon_bin_class);
1177 		goto err_class;
1178 	}
1179 
1180 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1181 	if (rc < 0)
1182 		goto err_dev;
1183 
1184 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1185 	mon_bin_cdev.owner = THIS_MODULE;
1186 
1187 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1188 	if (rc < 0)
1189 		goto err_add;
1190 
1191 	return 0;
1192 
1193 err_add:
1194 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1195 err_dev:
1196 	class_destroy(mon_bin_class);
1197 err_class:
1198 	return rc;
1199 }
1200 
1201 void mon_bin_exit(void)
1202 {
1203 	cdev_del(&mon_bin_cdev);
1204 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1205 	class_destroy(mon_bin_class);
1206 }
1207