xref: /linux/drivers/usb/mon/mon_bin.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The USB Monitor, inspired by Dave Harding's USBMon.
4  *
5  * This is a binary format reader.
6  *
7  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
8  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/sched/signal.h>
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/cdev.h>
16 #include <linux/export.h>
17 #include <linux/usb.h>
18 #include <linux/poll.h>
19 #include <linux/compat.h>
20 #include <linux/mm.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/time64.h>
24 
25 #include <linux/uaccess.h>
26 
27 #include "usb_mon.h"
28 
29 /*
30  * Defined by USB 2.0 clause 9.3, table 9.2.
31  */
32 #define SETUP_LEN  8
33 
34 /* ioctl macros */
35 #define MON_IOC_MAGIC 0x92
36 
37 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
38 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
39 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
40 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
41 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
42 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
43 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
44 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
45 /* #9 was MON_IOCT_SETAPI */
46 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
47 
48 #ifdef CONFIG_COMPAT
49 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
50 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
51 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
52 #endif
53 
54 /*
55  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
56  * But it's all right. Just use a simple way to make sure the chunk is never
57  * smaller than a page.
58  *
59  * N.B. An application does not know our chunk size.
60  *
61  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
62  * page-sized chunks for the time being.
63  */
64 #define CHUNK_SIZE   PAGE_SIZE
65 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
66 
67 /*
68  * The magic limit was calculated so that it allows the monitoring
69  * application to pick data once in two ticks. This way, another application,
70  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
71  *
72  * Originally, for a 480 Mbit/s bus this required a buffer of about 1 MB. For
73  * modern 20 Gbps buses, this value increases to over 50 MB. The maximum
74  * buffer size is set to 64 MiB to accommodate this.
75  *
76  * This is still too much for most cases, where we just snoop a few
77  * descriptor fetches for enumeration. So, the default is a "reasonable"
78  * amount for typical, low-throughput use cases.
79  *
80  * XXX What about multi-megabyte URBs which take minutes to transfer?
81  */
82 #define BUFF_MAX  CHUNK_ALIGN(64*1024*1024)
83 #define BUFF_DFL      CHUNK_ALIGN(300*1024)
84 #define BUFF_MIN        CHUNK_ALIGN(8*1024)
85 
86 /*
87  * The per-event API header (2 per URB).
88  *
89  * This structure is seen in userland as defined by the documentation.
90  */
91 struct mon_bin_hdr {
92 	u64 id;			/* URB ID - from submission to callback */
93 	unsigned char type;	/* Same as in text API; extensible. */
94 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
95 	unsigned char epnum;	/* Endpoint number and transfer direction */
96 	unsigned char devnum;	/* Device address */
97 	unsigned short busnum;	/* Bus number */
98 	char flag_setup;
99 	char flag_data;
100 	s64 ts_sec;		/* ktime_get_real_ts64 */
101 	s32 ts_usec;		/* ktime_get_real_ts64 */
102 	int status;
103 	unsigned int len_urb;	/* Length of data (submitted or actual) */
104 	unsigned int len_cap;	/* Delivered length */
105 	union {
106 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
107 		struct iso_rec {
108 			int error_count;
109 			int numdesc;
110 		} iso;
111 	} s;
112 	int interval;
113 	int start_frame;
114 	unsigned int xfer_flags;
115 	unsigned int ndesc;	/* Actual number of ISO descriptors */
116 };
117 
118 /*
119  * ISO vector, packed into the head of data stream.
120  * This has to take 16 bytes to make sure that the end of buffer
121  * wrap is not happening in the middle of a descriptor.
122  */
123 struct mon_bin_isodesc {
124 	int          iso_status;
125 	unsigned int iso_off;
126 	unsigned int iso_len;
127 	u32 _pad;
128 };
129 
130 /* per file statistic */
131 struct mon_bin_stats {
132 	u32 queued;
133 	u32 dropped;
134 };
135 
136 struct mon_bin_get {
137 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
138 	void __user *data;
139 	size_t alloc;		/* Length of data (can be zero) */
140 };
141 
142 struct mon_bin_mfetch {
143 	u32 __user *offvec;	/* Vector of events fetched */
144 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
145 	u32 nflush;		/* Number of events to flush */
146 };
147 
148 #ifdef CONFIG_COMPAT
149 struct mon_bin_get32 {
150 	u32 hdr32;
151 	u32 data32;
152 	u32 alloc32;
153 };
154 
155 struct mon_bin_mfetch32 {
156         u32 offvec32;
157         u32 nfetch32;
158         u32 nflush32;
159 };
160 #endif
161 
162 /* Having these two values same prevents wrapping of the mon_bin_hdr */
163 #define PKT_ALIGN   64
164 #define PKT_SIZE    64
165 
166 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
167 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
168 
169 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
170 
171 /* max number of USB bus supported */
172 #define MON_BIN_MAX_MINOR 128
173 
174 /*
175  * The buffer: map of used pages.
176  */
177 struct mon_pgmap {
178 	struct page *pg;
179 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
180 };
181 
182 /*
183  * This gets associated with an open file struct.
184  */
185 struct mon_reader_bin {
186 	/* The buffer: one per open. */
187 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
188 	unsigned int b_size;		/* Current size of the buffer - bytes */
189 	unsigned int b_cnt;		/* Bytes used */
190 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
191 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
192 	struct mon_pgmap *b_vec;	/* The map array */
193 	wait_queue_head_t b_wait;	/* Wait for data here */
194 
195 	struct mutex fetch_lock;	/* Protect b_read, b_out */
196 	int mmap_active;
197 
198 	/* A list of these is needed for "bus 0". Some time later. */
199 	struct mon_reader r;
200 
201 	/* Stats */
202 	unsigned int cnt_lost;
203 };
204 
205 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
206     unsigned int offset)
207 {
208 	return (struct mon_bin_hdr *)
209 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
210 }
211 
212 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
213 
214 static unsigned char xfer_to_pipe[4] = {
215 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
216 };
217 
218 static const struct class mon_bin_class = {
219 	.name = "usbmon",
220 };
221 
222 static dev_t mon_bin_dev0;
223 static struct cdev mon_bin_cdev;
224 
225 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
226     unsigned int offset, unsigned int size);
227 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
228 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
229 static void mon_free_buff(struct mon_pgmap *map, int npages);
230 
231 /*
232  * This is a "chunked memcpy". It does not manipulate any counters.
233  */
234 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
235     unsigned int off, const unsigned char *from, unsigned int length)
236 {
237 	unsigned int step_len;
238 	unsigned char *buf;
239 	unsigned int in_page;
240 
241 	while (length) {
242 		/*
243 		 * Determine step_len.
244 		 */
245 		step_len = length;
246 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
247 		if (in_page < step_len)
248 			step_len = in_page;
249 
250 		/*
251 		 * Copy data and advance pointers.
252 		 */
253 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
254 		memcpy(buf, from, step_len);
255 		if ((off += step_len) >= this->b_size) off = 0;
256 		from += step_len;
257 		length -= step_len;
258 	}
259 	return off;
260 }
261 
262 /*
263  * This is a little worse than the above because it's "chunked copy_to_user".
264  * The return value is an error code, not an offset.
265  */
266 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
267     char __user *to, int length)
268 {
269 	unsigned int step_len;
270 	unsigned char *buf;
271 	unsigned int in_page;
272 
273 	while (length) {
274 		/*
275 		 * Determine step_len.
276 		 */
277 		step_len = length;
278 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
279 		if (in_page < step_len)
280 			step_len = in_page;
281 
282 		/*
283 		 * Copy data and advance pointers.
284 		 */
285 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
286 		if (copy_to_user(to, buf, step_len))
287 			return -EINVAL;
288 		if ((off += step_len) >= this->b_size) off = 0;
289 		to += step_len;
290 		length -= step_len;
291 	}
292 	return 0;
293 }
294 
295 /*
296  * Allocate an (aligned) area in the buffer.
297  * This is called under b_lock.
298  * Returns ~0 on failure.
299  */
300 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
301     unsigned int size)
302 {
303 	unsigned int offset;
304 
305 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
306 	if (rp->b_cnt + size > rp->b_size)
307 		return ~0;
308 	offset = rp->b_in;
309 	rp->b_cnt += size;
310 	if ((rp->b_in += size) >= rp->b_size)
311 		rp->b_in -= rp->b_size;
312 	return offset;
313 }
314 
315 /*
316  * This is the same thing as mon_buff_area_alloc, only it does not allow
317  * buffers to wrap. This is needed by applications which pass references
318  * into mmap-ed buffers up their stacks (libpcap can do that).
319  *
320  * Currently, we always have the header stuck with the data, although
321  * it is not strictly speaking necessary.
322  *
323  * When a buffer would wrap, we place a filler packet to mark the space.
324  */
325 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
326     unsigned int size)
327 {
328 	unsigned int offset;
329 	unsigned int fill_size;
330 
331 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
332 	if (rp->b_cnt + size > rp->b_size)
333 		return ~0;
334 	if (rp->b_in + size > rp->b_size) {
335 		/*
336 		 * This would wrap. Find if we still have space after
337 		 * skipping to the end of the buffer. If we do, place
338 		 * a filler packet and allocate a new packet.
339 		 */
340 		fill_size = rp->b_size - rp->b_in;
341 		if (rp->b_cnt + size + fill_size > rp->b_size)
342 			return ~0;
343 		mon_buff_area_fill(rp, rp->b_in, fill_size);
344 
345 		offset = 0;
346 		rp->b_in = size;
347 		rp->b_cnt += size + fill_size;
348 	} else if (rp->b_in + size == rp->b_size) {
349 		offset = rp->b_in;
350 		rp->b_in = 0;
351 		rp->b_cnt += size;
352 	} else {
353 		offset = rp->b_in;
354 		rp->b_in += size;
355 		rp->b_cnt += size;
356 	}
357 	return offset;
358 }
359 
360 /*
361  * Return a few (kilo-)bytes to the head of the buffer.
362  * This is used if a data fetch fails.
363  */
364 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
365 {
366 
367 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
368 	rp->b_cnt -= size;
369 	if (rp->b_in < size)
370 		rp->b_in += rp->b_size;
371 	rp->b_in -= size;
372 }
373 
374 /*
375  * This has to be called under both b_lock and fetch_lock, because
376  * it accesses both b_cnt and b_out.
377  */
378 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
379 {
380 
381 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
382 	rp->b_cnt -= size;
383 	if ((rp->b_out += size) >= rp->b_size)
384 		rp->b_out -= rp->b_size;
385 }
386 
387 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
388     unsigned int offset, unsigned int size)
389 {
390 	struct mon_bin_hdr *ep;
391 
392 	ep = MON_OFF2HDR(rp, offset);
393 	memset(ep, 0, PKT_SIZE);
394 	ep->type = '@';
395 	ep->len_cap = size - PKT_SIZE;
396 }
397 
398 static inline char mon_bin_get_setup(unsigned char *setupb,
399     const struct urb *urb, char ev_type)
400 {
401 
402 	if (urb->setup_packet == NULL)
403 		return 'Z';
404 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
405 	return 0;
406 }
407 
408 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
409     unsigned int offset, struct urb *urb, unsigned int length,
410     char *flag)
411 {
412 	int i;
413 	struct scatterlist *sg;
414 	unsigned int this_len;
415 
416 	*flag = 0;
417 	if (urb->num_sgs == 0) {
418 		if (urb->transfer_buffer == NULL) {
419 			*flag = 'Z';
420 			return length;
421 		}
422 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
423 		length = 0;
424 
425 	} else {
426 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
427 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
428 			*flag = 'D';
429 			return length;
430 		}
431 
432 		/* Copy up to the first non-addressable segment */
433 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
434 			if (length == 0 || PageHighMem(sg_page(sg)))
435 				break;
436 			this_len = min_t(unsigned int, sg->length, length);
437 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
438 					this_len);
439 			length -= this_len;
440 		}
441 		if (i == 0)
442 			*flag = 'D';
443 	}
444 
445 	return length;
446 }
447 
448 /*
449  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
450  * be used to determine the length of the whole contiguous buffer.
451  */
452 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
453     struct urb *urb, unsigned int ndesc)
454 {
455 	struct usb_iso_packet_descriptor *fp;
456 	unsigned int length;
457 
458 	length = 0;
459 	fp = urb->iso_frame_desc;
460 	while (ndesc-- != 0) {
461 		if (fp->actual_length != 0) {
462 			if (fp->offset + fp->actual_length > length)
463 				length = fp->offset + fp->actual_length;
464 		}
465 		fp++;
466 	}
467 	return length;
468 }
469 
470 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
471     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
472 {
473 	struct mon_bin_isodesc *dp;
474 	struct usb_iso_packet_descriptor *fp;
475 
476 	fp = urb->iso_frame_desc;
477 	while (ndesc-- != 0) {
478 		dp = (struct mon_bin_isodesc *)
479 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
480 		dp->iso_status = fp->status;
481 		dp->iso_off = fp->offset;
482 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
483 		dp->_pad = 0;
484 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
485 			offset = 0;
486 		fp++;
487 	}
488 }
489 
490 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
491     char ev_type, int status)
492 {
493 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
494 	struct timespec64 ts;
495 	unsigned long flags;
496 	unsigned int urb_length;
497 	unsigned int offset;
498 	unsigned int length;
499 	unsigned int delta;
500 	unsigned int ndesc, lendesc;
501 	unsigned char dir;
502 	struct mon_bin_hdr *ep;
503 	char data_tag = 0;
504 
505 	ktime_get_real_ts64(&ts);
506 
507 	spin_lock_irqsave(&rp->b_lock, flags);
508 
509 	/*
510 	 * Find the maximum allowable length, then allocate space.
511 	 */
512 	urb_length = (ev_type == 'S') ?
513 	    urb->transfer_buffer_length : urb->actual_length;
514 	length = urb_length;
515 
516 	if (usb_endpoint_xfer_isoc(epd)) {
517 		if (urb->number_of_packets < 0) {
518 			ndesc = 0;
519 		} else if (urb->number_of_packets >= ISODESC_MAX) {
520 			ndesc = ISODESC_MAX;
521 		} else {
522 			ndesc = urb->number_of_packets;
523 		}
524 		if (ev_type == 'C' && usb_urb_dir_in(urb))
525 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
526 	} else {
527 		ndesc = 0;
528 	}
529 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
530 
531 	/* not an issue unless there's a subtle bug in a HCD somewhere */
532 	if (length >= urb->transfer_buffer_length)
533 		length = urb->transfer_buffer_length;
534 
535 	if (length >= rp->b_size/5)
536 		length = rp->b_size/5;
537 
538 	if (usb_urb_dir_in(urb)) {
539 		if (ev_type == 'S') {
540 			length = 0;
541 			data_tag = '<';
542 		}
543 		/* Cannot rely on endpoint number in case of control ep.0 */
544 		dir = USB_DIR_IN;
545 	} else {
546 		if (ev_type == 'C') {
547 			length = 0;
548 			data_tag = '>';
549 		}
550 		dir = 0;
551 	}
552 
553 	if (rp->mmap_active) {
554 		offset = mon_buff_area_alloc_contiguous(rp,
555 						 length + PKT_SIZE + lendesc);
556 	} else {
557 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
558 	}
559 	if (offset == ~0) {
560 		rp->cnt_lost++;
561 		spin_unlock_irqrestore(&rp->b_lock, flags);
562 		return;
563 	}
564 
565 	ep = MON_OFF2HDR(rp, offset);
566 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
567 
568 	/*
569 	 * Fill the allocated area.
570 	 */
571 	memset(ep, 0, PKT_SIZE);
572 	ep->type = ev_type;
573 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
574 	ep->epnum = dir | usb_endpoint_num(epd);
575 	ep->devnum = urb->dev->devnum;
576 	ep->busnum = urb->dev->bus->busnum;
577 	ep->id = (unsigned long) urb;
578 	ep->ts_sec = ts.tv_sec;
579 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
580 	ep->status = status;
581 	ep->len_urb = urb_length;
582 	ep->len_cap = length + lendesc;
583 	ep->xfer_flags = urb->transfer_flags;
584 
585 	if (usb_endpoint_xfer_int(epd)) {
586 		ep->interval = urb->interval;
587 	} else if (usb_endpoint_xfer_isoc(epd)) {
588 		ep->interval = urb->interval;
589 		ep->start_frame = urb->start_frame;
590 		ep->s.iso.error_count = urb->error_count;
591 		ep->s.iso.numdesc = urb->number_of_packets;
592 	}
593 
594 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
595 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
596 	} else {
597 		ep->flag_setup = '-';
598 	}
599 
600 	if (ndesc != 0) {
601 		ep->ndesc = ndesc;
602 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
603 		if ((offset += lendesc) >= rp->b_size)
604 			offset -= rp->b_size;
605 	}
606 
607 	if (length != 0) {
608 		length = mon_bin_get_data(rp, offset, urb, length,
609 				&ep->flag_data);
610 		if (length > 0) {
611 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
612 			ep->len_cap -= length;
613 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
614 			mon_buff_area_shrink(rp, delta);
615 		}
616 	} else {
617 		ep->flag_data = data_tag;
618 	}
619 
620 	spin_unlock_irqrestore(&rp->b_lock, flags);
621 
622 	wake_up(&rp->b_wait);
623 }
624 
625 static void mon_bin_submit(void *data, struct urb *urb)
626 {
627 	struct mon_reader_bin *rp = data;
628 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
629 }
630 
631 static void mon_bin_complete(void *data, struct urb *urb, int status)
632 {
633 	struct mon_reader_bin *rp = data;
634 	mon_bin_event(rp, urb, 'C', status);
635 }
636 
637 static void mon_bin_error(void *data, struct urb *urb, int error)
638 {
639 	struct mon_reader_bin *rp = data;
640 	struct timespec64 ts;
641 	unsigned long flags;
642 	unsigned int offset;
643 	struct mon_bin_hdr *ep;
644 
645 	ktime_get_real_ts64(&ts);
646 
647 	spin_lock_irqsave(&rp->b_lock, flags);
648 
649 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
650 	if (offset == ~0) {
651 		/* Not incrementing cnt_lost. Just because. */
652 		spin_unlock_irqrestore(&rp->b_lock, flags);
653 		return;
654 	}
655 
656 	ep = MON_OFF2HDR(rp, offset);
657 
658 	memset(ep, 0, PKT_SIZE);
659 	ep->type = 'E';
660 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
661 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
662 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
663 	ep->devnum = urb->dev->devnum;
664 	ep->busnum = urb->dev->bus->busnum;
665 	ep->id = (unsigned long) urb;
666 	ep->ts_sec = ts.tv_sec;
667 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
668 	ep->status = error;
669 
670 	ep->flag_setup = '-';
671 	ep->flag_data = 'E';
672 
673 	spin_unlock_irqrestore(&rp->b_lock, flags);
674 
675 	wake_up(&rp->b_wait);
676 }
677 
678 static int mon_bin_open(struct inode *inode, struct file *file)
679 {
680 	struct mon_bus *mbus;
681 	struct mon_reader_bin *rp;
682 	size_t size;
683 	int rc;
684 
685 	mutex_lock(&mon_lock);
686 	mbus = mon_bus_lookup(iminor(inode));
687 	if (mbus == NULL) {
688 		mutex_unlock(&mon_lock);
689 		return -ENODEV;
690 	}
691 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
692 		printk(KERN_ERR TAG ": consistency error on open\n");
693 		mutex_unlock(&mon_lock);
694 		return -ENODEV;
695 	}
696 
697 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
698 	if (rp == NULL) {
699 		rc = -ENOMEM;
700 		goto err_alloc;
701 	}
702 	spin_lock_init(&rp->b_lock);
703 	init_waitqueue_head(&rp->b_wait);
704 	mutex_init(&rp->fetch_lock);
705 	rp->b_size = BUFF_DFL;
706 
707 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
708 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
709 		rc = -ENOMEM;
710 		goto err_allocvec;
711 	}
712 
713 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
714 		goto err_allocbuff;
715 
716 	rp->r.m_bus = mbus;
717 	rp->r.r_data = rp;
718 	rp->r.rnf_submit = mon_bin_submit;
719 	rp->r.rnf_error = mon_bin_error;
720 	rp->r.rnf_complete = mon_bin_complete;
721 
722 	mon_reader_add(mbus, &rp->r);
723 
724 	file->private_data = rp;
725 	mutex_unlock(&mon_lock);
726 	return 0;
727 
728 err_allocbuff:
729 	kfree(rp->b_vec);
730 err_allocvec:
731 	kfree(rp);
732 err_alloc:
733 	mutex_unlock(&mon_lock);
734 	return rc;
735 }
736 
737 /*
738  * Extract an event from buffer and copy it to user space.
739  * Wait if there is no event ready.
740  * Returns zero or error.
741  */
742 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
743     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
744     void __user *data, unsigned int nbytes)
745 {
746 	unsigned long flags;
747 	struct mon_bin_hdr *ep;
748 	size_t step_len;
749 	unsigned int offset;
750 	int rc;
751 
752 	mutex_lock(&rp->fetch_lock);
753 
754 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
755 		mutex_unlock(&rp->fetch_lock);
756 		return rc;
757 	}
758 
759 	ep = MON_OFF2HDR(rp, rp->b_out);
760 
761 	if (copy_to_user(hdr, ep, hdrbytes)) {
762 		mutex_unlock(&rp->fetch_lock);
763 		return -EFAULT;
764 	}
765 
766 	step_len = min(ep->len_cap, nbytes);
767 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
768 
769 	if (copy_from_buf(rp, offset, data, step_len)) {
770 		mutex_unlock(&rp->fetch_lock);
771 		return -EFAULT;
772 	}
773 
774 	spin_lock_irqsave(&rp->b_lock, flags);
775 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
776 	spin_unlock_irqrestore(&rp->b_lock, flags);
777 	rp->b_read = 0;
778 
779 	mutex_unlock(&rp->fetch_lock);
780 	return 0;
781 }
782 
783 static int mon_bin_release(struct inode *inode, struct file *file)
784 {
785 	struct mon_reader_bin *rp = file->private_data;
786 	struct mon_bus* mbus = rp->r.m_bus;
787 
788 	mutex_lock(&mon_lock);
789 
790 	if (mbus->nreaders <= 0) {
791 		printk(KERN_ERR TAG ": consistency error on close\n");
792 		mutex_unlock(&mon_lock);
793 		return 0;
794 	}
795 	mon_reader_del(mbus, &rp->r);
796 
797 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
798 	kfree(rp->b_vec);
799 	kfree(rp);
800 
801 	mutex_unlock(&mon_lock);
802 	return 0;
803 }
804 
805 static ssize_t mon_bin_read(struct file *file, char __user *buf,
806     size_t nbytes, loff_t *ppos)
807 {
808 	struct mon_reader_bin *rp = file->private_data;
809 	unsigned int hdrbytes = PKT_SZ_API0;
810 	unsigned long flags;
811 	struct mon_bin_hdr *ep;
812 	unsigned int offset;
813 	size_t step_len;
814 	char *ptr;
815 	ssize_t done = 0;
816 	int rc;
817 
818 	mutex_lock(&rp->fetch_lock);
819 
820 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
821 		mutex_unlock(&rp->fetch_lock);
822 		return rc;
823 	}
824 
825 	ep = MON_OFF2HDR(rp, rp->b_out);
826 
827 	if (rp->b_read < hdrbytes) {
828 		step_len = min_t(size_t, nbytes, hdrbytes - rp->b_read);
829 		ptr = ((char *)ep) + rp->b_read;
830 		if (step_len && copy_to_user(buf, ptr, step_len)) {
831 			mutex_unlock(&rp->fetch_lock);
832 			return -EFAULT;
833 		}
834 		nbytes -= step_len;
835 		buf += step_len;
836 		rp->b_read += step_len;
837 		done += step_len;
838 	}
839 
840 	if (rp->b_read >= hdrbytes) {
841 		step_len = ep->len_cap;
842 		step_len -= rp->b_read - hdrbytes;
843 		if (step_len > nbytes)
844 			step_len = nbytes;
845 		offset = rp->b_out + PKT_SIZE;
846 		offset += rp->b_read - hdrbytes;
847 		if (offset >= rp->b_size)
848 			offset -= rp->b_size;
849 		if (copy_from_buf(rp, offset, buf, step_len)) {
850 			mutex_unlock(&rp->fetch_lock);
851 			return -EFAULT;
852 		}
853 		nbytes -= step_len;
854 		buf += step_len;
855 		rp->b_read += step_len;
856 		done += step_len;
857 	}
858 
859 	/*
860 	 * Check if whole packet was read, and if so, jump to the next one.
861 	 */
862 	if (rp->b_read >= hdrbytes + ep->len_cap) {
863 		spin_lock_irqsave(&rp->b_lock, flags);
864 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
865 		spin_unlock_irqrestore(&rp->b_lock, flags);
866 		rp->b_read = 0;
867 	}
868 
869 	mutex_unlock(&rp->fetch_lock);
870 	return done;
871 }
872 
873 /*
874  * Remove at most nevents from chunked buffer.
875  * Returns the number of removed events.
876  */
877 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
878 {
879 	unsigned long flags;
880 	struct mon_bin_hdr *ep;
881 	int i;
882 
883 	mutex_lock(&rp->fetch_lock);
884 	spin_lock_irqsave(&rp->b_lock, flags);
885 	for (i = 0; i < nevents; ++i) {
886 		if (MON_RING_EMPTY(rp))
887 			break;
888 
889 		ep = MON_OFF2HDR(rp, rp->b_out);
890 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
891 	}
892 	spin_unlock_irqrestore(&rp->b_lock, flags);
893 	rp->b_read = 0;
894 	mutex_unlock(&rp->fetch_lock);
895 	return i;
896 }
897 
898 /*
899  * Fetch at most max event offsets into the buffer and put them into vec.
900  * The events are usually freed later with mon_bin_flush.
901  * Return the effective number of events fetched.
902  */
903 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
904     u32 __user *vec, unsigned int max)
905 {
906 	unsigned int cur_out;
907 	unsigned int bytes, avail;
908 	unsigned int size;
909 	unsigned int nevents;
910 	struct mon_bin_hdr *ep;
911 	unsigned long flags;
912 	int rc;
913 
914 	mutex_lock(&rp->fetch_lock);
915 
916 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
917 		mutex_unlock(&rp->fetch_lock);
918 		return rc;
919 	}
920 
921 	spin_lock_irqsave(&rp->b_lock, flags);
922 	avail = rp->b_cnt;
923 	spin_unlock_irqrestore(&rp->b_lock, flags);
924 
925 	cur_out = rp->b_out;
926 	nevents = 0;
927 	bytes = 0;
928 	while (bytes < avail) {
929 		if (nevents >= max)
930 			break;
931 
932 		ep = MON_OFF2HDR(rp, cur_out);
933 		if (put_user(cur_out, &vec[nevents])) {
934 			mutex_unlock(&rp->fetch_lock);
935 			return -EFAULT;
936 		}
937 
938 		nevents++;
939 		size = ep->len_cap + PKT_SIZE;
940 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
941 		if ((cur_out += size) >= rp->b_size)
942 			cur_out -= rp->b_size;
943 		bytes += size;
944 	}
945 
946 	mutex_unlock(&rp->fetch_lock);
947 	return nevents;
948 }
949 
950 /*
951  * Count events. This is almost the same as the above mon_bin_fetch,
952  * only we do not store offsets into user vector, and we have no limit.
953  */
954 static int mon_bin_queued(struct mon_reader_bin *rp)
955 {
956 	unsigned int cur_out;
957 	unsigned int bytes, avail;
958 	unsigned int size;
959 	unsigned int nevents;
960 	struct mon_bin_hdr *ep;
961 	unsigned long flags;
962 
963 	mutex_lock(&rp->fetch_lock);
964 
965 	spin_lock_irqsave(&rp->b_lock, flags);
966 	avail = rp->b_cnt;
967 	spin_unlock_irqrestore(&rp->b_lock, flags);
968 
969 	cur_out = rp->b_out;
970 	nevents = 0;
971 	bytes = 0;
972 	while (bytes < avail) {
973 		ep = MON_OFF2HDR(rp, cur_out);
974 
975 		nevents++;
976 		size = ep->len_cap + PKT_SIZE;
977 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
978 		if ((cur_out += size) >= rp->b_size)
979 			cur_out -= rp->b_size;
980 		bytes += size;
981 	}
982 
983 	mutex_unlock(&rp->fetch_lock);
984 	return nevents;
985 }
986 
987 /*
988  */
989 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
990 {
991 	struct mon_reader_bin *rp = file->private_data;
992 	// struct mon_bus* mbus = rp->r.m_bus;
993 	int ret = 0;
994 	struct mon_bin_hdr *ep;
995 	unsigned long flags;
996 
997 	switch (cmd) {
998 
999 	case MON_IOCQ_URB_LEN:
1000 		/*
1001 		 * N.B. This only returns the size of data, without the header.
1002 		 */
1003 		spin_lock_irqsave(&rp->b_lock, flags);
1004 		if (!MON_RING_EMPTY(rp)) {
1005 			ep = MON_OFF2HDR(rp, rp->b_out);
1006 			ret = ep->len_cap;
1007 		}
1008 		spin_unlock_irqrestore(&rp->b_lock, flags);
1009 		break;
1010 
1011 	case MON_IOCQ_RING_SIZE:
1012 		mutex_lock(&rp->fetch_lock);
1013 		ret = rp->b_size;
1014 		mutex_unlock(&rp->fetch_lock);
1015 		break;
1016 
1017 	case MON_IOCT_RING_SIZE:
1018 		/*
1019 		 * Changing the buffer size will flush it's contents; the new
1020 		 * buffer is allocated before releasing the old one to be sure
1021 		 * the device will stay functional also in case of memory
1022 		 * pressure.
1023 		 */
1024 		{
1025 		int size;
1026 		struct mon_pgmap *vec;
1027 
1028 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1029 			return -EINVAL;
1030 
1031 		size = CHUNK_ALIGN(arg);
1032 		vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1033 			      GFP_KERNEL);
1034 		if (vec == NULL) {
1035 			ret = -ENOMEM;
1036 			break;
1037 		}
1038 
1039 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1040 		if (ret < 0) {
1041 			kfree(vec);
1042 			break;
1043 		}
1044 
1045 		mutex_lock(&rp->fetch_lock);
1046 		spin_lock_irqsave(&rp->b_lock, flags);
1047 		if (rp->mmap_active) {
1048 			mon_free_buff(vec, size/CHUNK_SIZE);
1049 			kfree(vec);
1050 			ret = -EBUSY;
1051 		} else {
1052 			mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1053 			kfree(rp->b_vec);
1054 			rp->b_vec  = vec;
1055 			rp->b_size = size;
1056 			rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1057 			rp->cnt_lost = 0;
1058 		}
1059 		spin_unlock_irqrestore(&rp->b_lock, flags);
1060 		mutex_unlock(&rp->fetch_lock);
1061 		}
1062 		break;
1063 
1064 	case MON_IOCH_MFLUSH:
1065 		ret = mon_bin_flush(rp, arg);
1066 		break;
1067 
1068 	case MON_IOCX_GET:
1069 	case MON_IOCX_GETX:
1070 		{
1071 		struct mon_bin_get getb;
1072 
1073 		if (copy_from_user(&getb, (void __user *)arg,
1074 					    sizeof(struct mon_bin_get)))
1075 			return -EFAULT;
1076 
1077 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1078 			return -EINVAL;
1079 		ret = mon_bin_get_event(file, rp, getb.hdr,
1080 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1081 		    getb.data, (unsigned int)getb.alloc);
1082 		}
1083 		break;
1084 
1085 	case MON_IOCX_MFETCH:
1086 		{
1087 		struct mon_bin_mfetch mfetch;
1088 		struct mon_bin_mfetch __user *uptr;
1089 
1090 		uptr = (struct mon_bin_mfetch __user *)arg;
1091 
1092 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1093 			return -EFAULT;
1094 
1095 		if (mfetch.nflush) {
1096 			ret = mon_bin_flush(rp, mfetch.nflush);
1097 			if (ret < 0)
1098 				return ret;
1099 			if (put_user(ret, &uptr->nflush))
1100 				return -EFAULT;
1101 		}
1102 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1103 		if (ret < 0)
1104 			return ret;
1105 		if (put_user(ret, &uptr->nfetch))
1106 			return -EFAULT;
1107 		ret = 0;
1108 		}
1109 		break;
1110 
1111 	case MON_IOCG_STATS: {
1112 		struct mon_bin_stats __user *sp;
1113 		unsigned int nevents;
1114 		unsigned int ndropped;
1115 
1116 		spin_lock_irqsave(&rp->b_lock, flags);
1117 		ndropped = rp->cnt_lost;
1118 		rp->cnt_lost = 0;
1119 		spin_unlock_irqrestore(&rp->b_lock, flags);
1120 		nevents = mon_bin_queued(rp);
1121 
1122 		sp = (struct mon_bin_stats __user *)arg;
1123 		if (put_user(ndropped, &sp->dropped))
1124 			return -EFAULT;
1125 		if (put_user(nevents, &sp->queued))
1126 			return -EFAULT;
1127 
1128 		}
1129 		break;
1130 
1131 	default:
1132 		return -ENOTTY;
1133 	}
1134 
1135 	return ret;
1136 }
1137 
1138 #ifdef CONFIG_COMPAT
1139 static long mon_bin_compat_ioctl(struct file *file,
1140     unsigned int cmd, unsigned long arg)
1141 {
1142 	struct mon_reader_bin *rp = file->private_data;
1143 	int ret;
1144 
1145 	switch (cmd) {
1146 
1147 	case MON_IOCX_GET32:
1148 	case MON_IOCX_GETX32:
1149 		{
1150 		struct mon_bin_get32 getb;
1151 
1152 		if (copy_from_user(&getb, (void __user *)arg,
1153 					    sizeof(struct mon_bin_get32)))
1154 			return -EFAULT;
1155 
1156 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1157 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1158 		    compat_ptr(getb.data32), getb.alloc32);
1159 		if (ret < 0)
1160 			return ret;
1161 		}
1162 		return 0;
1163 
1164 	case MON_IOCX_MFETCH32:
1165 		{
1166 		struct mon_bin_mfetch32 mfetch;
1167 		struct mon_bin_mfetch32 __user *uptr;
1168 
1169 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1170 
1171 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1172 			return -EFAULT;
1173 
1174 		if (mfetch.nflush32) {
1175 			ret = mon_bin_flush(rp, mfetch.nflush32);
1176 			if (ret < 0)
1177 				return ret;
1178 			if (put_user(ret, &uptr->nflush32))
1179 				return -EFAULT;
1180 		}
1181 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1182 		    mfetch.nfetch32);
1183 		if (ret < 0)
1184 			return ret;
1185 		if (put_user(ret, &uptr->nfetch32))
1186 			return -EFAULT;
1187 		}
1188 		return 0;
1189 
1190 	case MON_IOCG_STATS:
1191 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1192 
1193 	case MON_IOCQ_URB_LEN:
1194 	case MON_IOCQ_RING_SIZE:
1195 	case MON_IOCT_RING_SIZE:
1196 	case MON_IOCH_MFLUSH:
1197 		return mon_bin_ioctl(file, cmd, arg);
1198 
1199 	default:
1200 		;
1201 	}
1202 	return -ENOTTY;
1203 }
1204 #endif /* CONFIG_COMPAT */
1205 
1206 static __poll_t
1207 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1208 {
1209 	struct mon_reader_bin *rp = file->private_data;
1210 	__poll_t mask = 0;
1211 	unsigned long flags;
1212 
1213 	if (file->f_mode & FMODE_READ)
1214 		poll_wait(file, &rp->b_wait, wait);
1215 
1216 	spin_lock_irqsave(&rp->b_lock, flags);
1217 	if (!MON_RING_EMPTY(rp))
1218 		mask |= EPOLLIN | EPOLLRDNORM;    /* readable */
1219 	spin_unlock_irqrestore(&rp->b_lock, flags);
1220 	return mask;
1221 }
1222 
1223 /*
1224  * open and close: just keep track of how many times the device is
1225  * mapped, to use the proper memory allocation function.
1226  */
1227 static void mon_bin_vma_open(struct vm_area_struct *vma)
1228 {
1229 	struct mon_reader_bin *rp = vma->vm_private_data;
1230 	unsigned long flags;
1231 
1232 	spin_lock_irqsave(&rp->b_lock, flags);
1233 	rp->mmap_active++;
1234 	spin_unlock_irqrestore(&rp->b_lock, flags);
1235 }
1236 
1237 static void mon_bin_vma_close(struct vm_area_struct *vma)
1238 {
1239 	unsigned long flags;
1240 
1241 	struct mon_reader_bin *rp = vma->vm_private_data;
1242 	spin_lock_irqsave(&rp->b_lock, flags);
1243 	rp->mmap_active--;
1244 	spin_unlock_irqrestore(&rp->b_lock, flags);
1245 }
1246 
1247 /*
1248  * Map ring pages to user space.
1249  */
1250 static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1251 {
1252 	struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1253 	unsigned long offset, chunk_idx;
1254 	struct page *pageptr;
1255 	unsigned long flags;
1256 
1257 	spin_lock_irqsave(&rp->b_lock, flags);
1258 	offset = vmf->pgoff << PAGE_SHIFT;
1259 	if (offset >= rp->b_size) {
1260 		spin_unlock_irqrestore(&rp->b_lock, flags);
1261 		return VM_FAULT_SIGBUS;
1262 	}
1263 	chunk_idx = offset / CHUNK_SIZE;
1264 	pageptr = rp->b_vec[chunk_idx].pg;
1265 	get_page(pageptr);
1266 	vmf->page = pageptr;
1267 	spin_unlock_irqrestore(&rp->b_lock, flags);
1268 	return 0;
1269 }
1270 
1271 static const struct vm_operations_struct mon_bin_vm_ops = {
1272 	.open =     mon_bin_vma_open,
1273 	.close =    mon_bin_vma_close,
1274 	.fault =    mon_bin_vma_fault,
1275 };
1276 
1277 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1278 {
1279 	/* don't do anything here: "fault" will set up page table entries */
1280 	vma->vm_ops = &mon_bin_vm_ops;
1281 
1282 	if (vma->vm_flags & VM_WRITE)
1283 		return -EPERM;
1284 
1285 	vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE);
1286 	vma->vm_private_data = filp->private_data;
1287 	mon_bin_vma_open(vma);
1288 	return 0;
1289 }
1290 
1291 static const struct file_operations mon_fops_binary = {
1292 	.owner =	THIS_MODULE,
1293 	.open =		mon_bin_open,
1294 	.read =		mon_bin_read,
1295 	/* .write =	mon_text_write, */
1296 	.poll =		mon_bin_poll,
1297 	.unlocked_ioctl = mon_bin_ioctl,
1298 #ifdef CONFIG_COMPAT
1299 	.compat_ioctl =	mon_bin_compat_ioctl,
1300 #endif
1301 	.release =	mon_bin_release,
1302 	.mmap =		mon_bin_mmap,
1303 };
1304 
1305 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1306 {
1307 	DECLARE_WAITQUEUE(waita, current);
1308 	unsigned long flags;
1309 
1310 	add_wait_queue(&rp->b_wait, &waita);
1311 	set_current_state(TASK_INTERRUPTIBLE);
1312 
1313 	spin_lock_irqsave(&rp->b_lock, flags);
1314 	while (MON_RING_EMPTY(rp)) {
1315 		spin_unlock_irqrestore(&rp->b_lock, flags);
1316 
1317 		if (file->f_flags & O_NONBLOCK) {
1318 			set_current_state(TASK_RUNNING);
1319 			remove_wait_queue(&rp->b_wait, &waita);
1320 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1321 		}
1322 		schedule();
1323 		if (signal_pending(current)) {
1324 			remove_wait_queue(&rp->b_wait, &waita);
1325 			return -EINTR;
1326 		}
1327 		set_current_state(TASK_INTERRUPTIBLE);
1328 
1329 		spin_lock_irqsave(&rp->b_lock, flags);
1330 	}
1331 	spin_unlock_irqrestore(&rp->b_lock, flags);
1332 
1333 	set_current_state(TASK_RUNNING);
1334 	remove_wait_queue(&rp->b_wait, &waita);
1335 	return 0;
1336 }
1337 
1338 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1339 {
1340 	int n;
1341 	unsigned long vaddr;
1342 
1343 	for (n = 0; n < npages; n++) {
1344 		vaddr = get_zeroed_page(GFP_KERNEL);
1345 		if (vaddr == 0) {
1346 			while (n-- != 0)
1347 				free_page((unsigned long) map[n].ptr);
1348 			return -ENOMEM;
1349 		}
1350 		map[n].ptr = (unsigned char *) vaddr;
1351 		map[n].pg = virt_to_page((void *) vaddr);
1352 	}
1353 	return 0;
1354 }
1355 
1356 static void mon_free_buff(struct mon_pgmap *map, int npages)
1357 {
1358 	int n;
1359 
1360 	for (n = 0; n < npages; n++)
1361 		free_page((unsigned long) map[n].ptr);
1362 }
1363 
1364 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1365 {
1366 	struct device *dev;
1367 	unsigned minor = ubus? ubus->busnum: 0;
1368 
1369 	if (minor >= MON_BIN_MAX_MINOR)
1370 		return 0;
1371 
1372 	dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL,
1373 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1374 			    "usbmon%d", minor);
1375 	if (IS_ERR(dev))
1376 		return 0;
1377 
1378 	mbus->classdev = dev;
1379 	return 1;
1380 }
1381 
1382 void mon_bin_del(struct mon_bus *mbus)
1383 {
1384 	device_destroy(&mon_bin_class, mbus->classdev->devt);
1385 }
1386 
1387 int __init mon_bin_init(void)
1388 {
1389 	int rc;
1390 
1391 	rc = class_register(&mon_bin_class);
1392 	if (rc)
1393 		goto err_class;
1394 
1395 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1396 	if (rc < 0)
1397 		goto err_dev;
1398 
1399 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1400 	mon_bin_cdev.owner = THIS_MODULE;
1401 
1402 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1403 	if (rc < 0)
1404 		goto err_add;
1405 
1406 	return 0;
1407 
1408 err_add:
1409 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1410 err_dev:
1411 	class_unregister(&mon_bin_class);
1412 err_class:
1413 	return rc;
1414 }
1415 
1416 void mon_bin_exit(void)
1417 {
1418 	cdev_del(&mon_bin_cdev);
1419 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1420 	class_unregister(&mon_bin_class);
1421 }
1422