1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * The USB Monitor, inspired by Dave Harding's USBMon. 4 * 5 * This is a binary format reader. 6 * 7 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 8 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/sched/signal.h> 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/cdev.h> 16 #include <linux/export.h> 17 #include <linux/usb.h> 18 #include <linux/poll.h> 19 #include <linux/compat.h> 20 #include <linux/mm.h> 21 #include <linux/scatterlist.h> 22 #include <linux/slab.h> 23 #include <linux/time64.h> 24 25 #include <linux/uaccess.h> 26 27 #include "usb_mon.h" 28 29 /* 30 * Defined by USB 2.0 clause 9.3, table 9.2. 31 */ 32 #define SETUP_LEN 8 33 34 /* ioctl macros */ 35 #define MON_IOC_MAGIC 0x92 36 37 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 38 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 39 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 40 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 41 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 42 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 43 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 44 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 45 /* #9 was MON_IOCT_SETAPI */ 46 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 47 48 #ifdef CONFIG_COMPAT 49 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 50 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 51 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 52 #endif 53 54 /* 55 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 56 * But it's all right. Just use a simple way to make sure the chunk is never 57 * smaller than a page. 58 * 59 * N.B. An application does not know our chunk size. 60 * 61 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 62 * page-sized chunks for the time being. 63 */ 64 #define CHUNK_SIZE PAGE_SIZE 65 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 66 67 /* 68 * The magic limit was calculated so that it allows the monitoring 69 * application to pick data once in two ticks. This way, another application, 70 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 71 * 72 * Originally, for a 480 Mbit/s bus this required a buffer of about 1 MB. For 73 * modern 20 Gbps buses, this value increases to over 50 MB. The maximum 74 * buffer size is set to 64 MiB to accommodate this. 75 * 76 * This is still too much for most cases, where we just snoop a few 77 * descriptor fetches for enumeration. So, the default is a "reasonable" 78 * amount for typical, low-throughput use cases. 79 * 80 * XXX What about multi-megabyte URBs which take minutes to transfer? 81 */ 82 #define BUFF_MAX CHUNK_ALIGN(64*1024*1024) 83 #define BUFF_DFL CHUNK_ALIGN(300*1024) 84 #define BUFF_MIN CHUNK_ALIGN(8*1024) 85 86 /* 87 * The per-event API header (2 per URB). 88 * 89 * This structure is seen in userland as defined by the documentation. 90 */ 91 struct mon_bin_hdr { 92 u64 id; /* URB ID - from submission to callback */ 93 unsigned char type; /* Same as in text API; extensible. */ 94 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 95 unsigned char epnum; /* Endpoint number and transfer direction */ 96 unsigned char devnum; /* Device address */ 97 unsigned short busnum; /* Bus number */ 98 char flag_setup; 99 char flag_data; 100 s64 ts_sec; /* ktime_get_real_ts64 */ 101 s32 ts_usec; /* ktime_get_real_ts64 */ 102 int status; 103 unsigned int len_urb; /* Length of data (submitted or actual) */ 104 unsigned int len_cap; /* Delivered length */ 105 union { 106 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 107 struct iso_rec { 108 int error_count; 109 int numdesc; 110 } iso; 111 } s; 112 int interval; 113 int start_frame; 114 unsigned int xfer_flags; 115 unsigned int ndesc; /* Actual number of ISO descriptors */ 116 }; 117 118 /* 119 * ISO vector, packed into the head of data stream. 120 * This has to take 16 bytes to make sure that the end of buffer 121 * wrap is not happening in the middle of a descriptor. 122 */ 123 struct mon_bin_isodesc { 124 int iso_status; 125 unsigned int iso_off; 126 unsigned int iso_len; 127 u32 _pad; 128 }; 129 130 /* per file statistic */ 131 struct mon_bin_stats { 132 u32 queued; 133 u32 dropped; 134 }; 135 136 struct mon_bin_get { 137 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 138 void __user *data; 139 size_t alloc; /* Length of data (can be zero) */ 140 }; 141 142 struct mon_bin_mfetch { 143 u32 __user *offvec; /* Vector of events fetched */ 144 u32 nfetch; /* Number of events to fetch (out: fetched) */ 145 u32 nflush; /* Number of events to flush */ 146 }; 147 148 #ifdef CONFIG_COMPAT 149 struct mon_bin_get32 { 150 u32 hdr32; 151 u32 data32; 152 u32 alloc32; 153 }; 154 155 struct mon_bin_mfetch32 { 156 u32 offvec32; 157 u32 nfetch32; 158 u32 nflush32; 159 }; 160 #endif 161 162 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 163 #define PKT_ALIGN 64 164 #define PKT_SIZE 64 165 166 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 167 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 168 169 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 170 171 /* max number of USB bus supported */ 172 #define MON_BIN_MAX_MINOR 128 173 174 /* 175 * The buffer: map of used pages. 176 */ 177 struct mon_pgmap { 178 struct page *pg; 179 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 180 }; 181 182 /* 183 * This gets associated with an open file struct. 184 */ 185 struct mon_reader_bin { 186 /* The buffer: one per open. */ 187 spinlock_t b_lock; /* Protect b_cnt, b_in */ 188 unsigned int b_size; /* Current size of the buffer - bytes */ 189 unsigned int b_cnt; /* Bytes used */ 190 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 191 unsigned int b_read; /* Amount of read data in curr. pkt. */ 192 struct mon_pgmap *b_vec; /* The map array */ 193 wait_queue_head_t b_wait; /* Wait for data here */ 194 195 struct mutex fetch_lock; /* Protect b_read, b_out */ 196 int mmap_active; 197 198 /* A list of these is needed for "bus 0". Some time later. */ 199 struct mon_reader r; 200 201 /* Stats */ 202 unsigned int cnt_lost; 203 }; 204 205 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 206 unsigned int offset) 207 { 208 return (struct mon_bin_hdr *) 209 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 210 } 211 212 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 213 214 static unsigned char xfer_to_pipe[4] = { 215 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 216 }; 217 218 static const struct class mon_bin_class = { 219 .name = "usbmon", 220 }; 221 222 static dev_t mon_bin_dev0; 223 static struct cdev mon_bin_cdev; 224 225 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 226 unsigned int offset, unsigned int size); 227 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 228 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 229 static void mon_free_buff(struct mon_pgmap *map, int npages); 230 231 /* 232 * This is a "chunked memcpy". It does not manipulate any counters. 233 */ 234 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, 235 unsigned int off, const unsigned char *from, unsigned int length) 236 { 237 unsigned int step_len; 238 unsigned char *buf; 239 unsigned int in_page; 240 241 while (length) { 242 /* 243 * Determine step_len. 244 */ 245 step_len = length; 246 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 247 if (in_page < step_len) 248 step_len = in_page; 249 250 /* 251 * Copy data and advance pointers. 252 */ 253 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 254 memcpy(buf, from, step_len); 255 if ((off += step_len) >= this->b_size) off = 0; 256 from += step_len; 257 length -= step_len; 258 } 259 return off; 260 } 261 262 /* 263 * This is a little worse than the above because it's "chunked copy_to_user". 264 * The return value is an error code, not an offset. 265 */ 266 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 267 char __user *to, int length) 268 { 269 unsigned int step_len; 270 unsigned char *buf; 271 unsigned int in_page; 272 273 while (length) { 274 /* 275 * Determine step_len. 276 */ 277 step_len = length; 278 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 279 if (in_page < step_len) 280 step_len = in_page; 281 282 /* 283 * Copy data and advance pointers. 284 */ 285 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 286 if (copy_to_user(to, buf, step_len)) 287 return -EINVAL; 288 if ((off += step_len) >= this->b_size) off = 0; 289 to += step_len; 290 length -= step_len; 291 } 292 return 0; 293 } 294 295 /* 296 * Allocate an (aligned) area in the buffer. 297 * This is called under b_lock. 298 * Returns ~0 on failure. 299 */ 300 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 301 unsigned int size) 302 { 303 unsigned int offset; 304 305 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 306 if (rp->b_cnt + size > rp->b_size) 307 return ~0; 308 offset = rp->b_in; 309 rp->b_cnt += size; 310 if ((rp->b_in += size) >= rp->b_size) 311 rp->b_in -= rp->b_size; 312 return offset; 313 } 314 315 /* 316 * This is the same thing as mon_buff_area_alloc, only it does not allow 317 * buffers to wrap. This is needed by applications which pass references 318 * into mmap-ed buffers up their stacks (libpcap can do that). 319 * 320 * Currently, we always have the header stuck with the data, although 321 * it is not strictly speaking necessary. 322 * 323 * When a buffer would wrap, we place a filler packet to mark the space. 324 */ 325 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 326 unsigned int size) 327 { 328 unsigned int offset; 329 unsigned int fill_size; 330 331 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 332 if (rp->b_cnt + size > rp->b_size) 333 return ~0; 334 if (rp->b_in + size > rp->b_size) { 335 /* 336 * This would wrap. Find if we still have space after 337 * skipping to the end of the buffer. If we do, place 338 * a filler packet and allocate a new packet. 339 */ 340 fill_size = rp->b_size - rp->b_in; 341 if (rp->b_cnt + size + fill_size > rp->b_size) 342 return ~0; 343 mon_buff_area_fill(rp, rp->b_in, fill_size); 344 345 offset = 0; 346 rp->b_in = size; 347 rp->b_cnt += size + fill_size; 348 } else if (rp->b_in + size == rp->b_size) { 349 offset = rp->b_in; 350 rp->b_in = 0; 351 rp->b_cnt += size; 352 } else { 353 offset = rp->b_in; 354 rp->b_in += size; 355 rp->b_cnt += size; 356 } 357 return offset; 358 } 359 360 /* 361 * Return a few (kilo-)bytes to the head of the buffer. 362 * This is used if a data fetch fails. 363 */ 364 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 365 { 366 367 /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ 368 rp->b_cnt -= size; 369 if (rp->b_in < size) 370 rp->b_in += rp->b_size; 371 rp->b_in -= size; 372 } 373 374 /* 375 * This has to be called under both b_lock and fetch_lock, because 376 * it accesses both b_cnt and b_out. 377 */ 378 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 379 { 380 381 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 382 rp->b_cnt -= size; 383 if ((rp->b_out += size) >= rp->b_size) 384 rp->b_out -= rp->b_size; 385 } 386 387 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 388 unsigned int offset, unsigned int size) 389 { 390 struct mon_bin_hdr *ep; 391 392 ep = MON_OFF2HDR(rp, offset); 393 memset(ep, 0, PKT_SIZE); 394 ep->type = '@'; 395 ep->len_cap = size - PKT_SIZE; 396 } 397 398 static inline char mon_bin_get_setup(unsigned char *setupb, 399 const struct urb *urb, char ev_type) 400 { 401 402 if (urb->setup_packet == NULL) 403 return 'Z'; 404 memcpy(setupb, urb->setup_packet, SETUP_LEN); 405 return 0; 406 } 407 408 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, 409 unsigned int offset, struct urb *urb, unsigned int length, 410 char *flag) 411 { 412 int i; 413 struct scatterlist *sg; 414 unsigned int this_len; 415 416 *flag = 0; 417 if (urb->num_sgs == 0) { 418 if (urb->transfer_buffer == NULL) { 419 *flag = 'Z'; 420 return length; 421 } 422 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 423 length = 0; 424 425 } else { 426 /* If IOMMU coalescing occurred, we cannot trust sg_page */ 427 if (urb->transfer_flags & URB_DMA_SG_COMBINED) { 428 *flag = 'D'; 429 return length; 430 } 431 432 /* Copy up to the first non-addressable segment */ 433 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 434 if (length == 0 || PageHighMem(sg_page(sg))) 435 break; 436 this_len = min_t(unsigned int, sg->length, length); 437 offset = mon_copy_to_buff(rp, offset, sg_virt(sg), 438 this_len); 439 length -= this_len; 440 } 441 if (i == 0) 442 *flag = 'D'; 443 } 444 445 return length; 446 } 447 448 /* 449 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot 450 * be used to determine the length of the whole contiguous buffer. 451 */ 452 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, 453 struct urb *urb, unsigned int ndesc) 454 { 455 struct usb_iso_packet_descriptor *fp; 456 unsigned int length; 457 458 length = 0; 459 fp = urb->iso_frame_desc; 460 while (ndesc-- != 0) { 461 if (fp->actual_length != 0) { 462 if (fp->offset + fp->actual_length > length) 463 length = fp->offset + fp->actual_length; 464 } 465 fp++; 466 } 467 return length; 468 } 469 470 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 471 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 472 { 473 struct mon_bin_isodesc *dp; 474 struct usb_iso_packet_descriptor *fp; 475 476 fp = urb->iso_frame_desc; 477 while (ndesc-- != 0) { 478 dp = (struct mon_bin_isodesc *) 479 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 480 dp->iso_status = fp->status; 481 dp->iso_off = fp->offset; 482 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 483 dp->_pad = 0; 484 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 485 offset = 0; 486 fp++; 487 } 488 } 489 490 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 491 char ev_type, int status) 492 { 493 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 494 struct timespec64 ts; 495 unsigned long flags; 496 unsigned int urb_length; 497 unsigned int offset; 498 unsigned int length; 499 unsigned int delta; 500 unsigned int ndesc, lendesc; 501 unsigned char dir; 502 struct mon_bin_hdr *ep; 503 char data_tag = 0; 504 505 ktime_get_real_ts64(&ts); 506 507 spin_lock_irqsave(&rp->b_lock, flags); 508 509 /* 510 * Find the maximum allowable length, then allocate space. 511 */ 512 urb_length = (ev_type == 'S') ? 513 urb->transfer_buffer_length : urb->actual_length; 514 length = urb_length; 515 516 if (usb_endpoint_xfer_isoc(epd)) { 517 if (urb->number_of_packets < 0) { 518 ndesc = 0; 519 } else if (urb->number_of_packets >= ISODESC_MAX) { 520 ndesc = ISODESC_MAX; 521 } else { 522 ndesc = urb->number_of_packets; 523 } 524 if (ev_type == 'C' && usb_urb_dir_in(urb)) 525 length = mon_bin_collate_isodesc(rp, urb, ndesc); 526 } else { 527 ndesc = 0; 528 } 529 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 530 531 /* not an issue unless there's a subtle bug in a HCD somewhere */ 532 if (length >= urb->transfer_buffer_length) 533 length = urb->transfer_buffer_length; 534 535 if (length >= rp->b_size/5) 536 length = rp->b_size/5; 537 538 if (usb_urb_dir_in(urb)) { 539 if (ev_type == 'S') { 540 length = 0; 541 data_tag = '<'; 542 } 543 /* Cannot rely on endpoint number in case of control ep.0 */ 544 dir = USB_DIR_IN; 545 } else { 546 if (ev_type == 'C') { 547 length = 0; 548 data_tag = '>'; 549 } 550 dir = 0; 551 } 552 553 if (rp->mmap_active) { 554 offset = mon_buff_area_alloc_contiguous(rp, 555 length + PKT_SIZE + lendesc); 556 } else { 557 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 558 } 559 if (offset == ~0) { 560 rp->cnt_lost++; 561 spin_unlock_irqrestore(&rp->b_lock, flags); 562 return; 563 } 564 565 ep = MON_OFF2HDR(rp, offset); 566 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 567 568 /* 569 * Fill the allocated area. 570 */ 571 memset(ep, 0, PKT_SIZE); 572 ep->type = ev_type; 573 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 574 ep->epnum = dir | usb_endpoint_num(epd); 575 ep->devnum = urb->dev->devnum; 576 ep->busnum = urb->dev->bus->busnum; 577 ep->id = (unsigned long) urb; 578 ep->ts_sec = ts.tv_sec; 579 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; 580 ep->status = status; 581 ep->len_urb = urb_length; 582 ep->len_cap = length + lendesc; 583 ep->xfer_flags = urb->transfer_flags; 584 585 if (usb_endpoint_xfer_int(epd)) { 586 ep->interval = urb->interval; 587 } else if (usb_endpoint_xfer_isoc(epd)) { 588 ep->interval = urb->interval; 589 ep->start_frame = urb->start_frame; 590 ep->s.iso.error_count = urb->error_count; 591 ep->s.iso.numdesc = urb->number_of_packets; 592 } 593 594 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 595 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 596 } else { 597 ep->flag_setup = '-'; 598 } 599 600 if (ndesc != 0) { 601 ep->ndesc = ndesc; 602 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 603 if ((offset += lendesc) >= rp->b_size) 604 offset -= rp->b_size; 605 } 606 607 if (length != 0) { 608 length = mon_bin_get_data(rp, offset, urb, length, 609 &ep->flag_data); 610 if (length > 0) { 611 delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 612 ep->len_cap -= length; 613 delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 614 mon_buff_area_shrink(rp, delta); 615 } 616 } else { 617 ep->flag_data = data_tag; 618 } 619 620 spin_unlock_irqrestore(&rp->b_lock, flags); 621 622 wake_up(&rp->b_wait); 623 } 624 625 static void mon_bin_submit(void *data, struct urb *urb) 626 { 627 struct mon_reader_bin *rp = data; 628 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 629 } 630 631 static void mon_bin_complete(void *data, struct urb *urb, int status) 632 { 633 struct mon_reader_bin *rp = data; 634 mon_bin_event(rp, urb, 'C', status); 635 } 636 637 static void mon_bin_error(void *data, struct urb *urb, int error) 638 { 639 struct mon_reader_bin *rp = data; 640 struct timespec64 ts; 641 unsigned long flags; 642 unsigned int offset; 643 struct mon_bin_hdr *ep; 644 645 ktime_get_real_ts64(&ts); 646 647 spin_lock_irqsave(&rp->b_lock, flags); 648 649 offset = mon_buff_area_alloc(rp, PKT_SIZE); 650 if (offset == ~0) { 651 /* Not incrementing cnt_lost. Just because. */ 652 spin_unlock_irqrestore(&rp->b_lock, flags); 653 return; 654 } 655 656 ep = MON_OFF2HDR(rp, offset); 657 658 memset(ep, 0, PKT_SIZE); 659 ep->type = 'E'; 660 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 661 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 662 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 663 ep->devnum = urb->dev->devnum; 664 ep->busnum = urb->dev->bus->busnum; 665 ep->id = (unsigned long) urb; 666 ep->ts_sec = ts.tv_sec; 667 ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; 668 ep->status = error; 669 670 ep->flag_setup = '-'; 671 ep->flag_data = 'E'; 672 673 spin_unlock_irqrestore(&rp->b_lock, flags); 674 675 wake_up(&rp->b_wait); 676 } 677 678 static int mon_bin_open(struct inode *inode, struct file *file) 679 { 680 struct mon_bus *mbus; 681 struct mon_reader_bin *rp; 682 size_t size; 683 int rc; 684 685 mutex_lock(&mon_lock); 686 mbus = mon_bus_lookup(iminor(inode)); 687 if (mbus == NULL) { 688 mutex_unlock(&mon_lock); 689 return -ENODEV; 690 } 691 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 692 printk(KERN_ERR TAG ": consistency error on open\n"); 693 mutex_unlock(&mon_lock); 694 return -ENODEV; 695 } 696 697 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 698 if (rp == NULL) { 699 rc = -ENOMEM; 700 goto err_alloc; 701 } 702 spin_lock_init(&rp->b_lock); 703 init_waitqueue_head(&rp->b_wait); 704 mutex_init(&rp->fetch_lock); 705 rp->b_size = BUFF_DFL; 706 707 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 708 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 709 rc = -ENOMEM; 710 goto err_allocvec; 711 } 712 713 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 714 goto err_allocbuff; 715 716 rp->r.m_bus = mbus; 717 rp->r.r_data = rp; 718 rp->r.rnf_submit = mon_bin_submit; 719 rp->r.rnf_error = mon_bin_error; 720 rp->r.rnf_complete = mon_bin_complete; 721 722 mon_reader_add(mbus, &rp->r); 723 724 file->private_data = rp; 725 mutex_unlock(&mon_lock); 726 return 0; 727 728 err_allocbuff: 729 kfree(rp->b_vec); 730 err_allocvec: 731 kfree(rp); 732 err_alloc: 733 mutex_unlock(&mon_lock); 734 return rc; 735 } 736 737 /* 738 * Extract an event from buffer and copy it to user space. 739 * Wait if there is no event ready. 740 * Returns zero or error. 741 */ 742 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 743 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 744 void __user *data, unsigned int nbytes) 745 { 746 unsigned long flags; 747 struct mon_bin_hdr *ep; 748 size_t step_len; 749 unsigned int offset; 750 int rc; 751 752 mutex_lock(&rp->fetch_lock); 753 754 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 755 mutex_unlock(&rp->fetch_lock); 756 return rc; 757 } 758 759 ep = MON_OFF2HDR(rp, rp->b_out); 760 761 if (copy_to_user(hdr, ep, hdrbytes)) { 762 mutex_unlock(&rp->fetch_lock); 763 return -EFAULT; 764 } 765 766 step_len = min(ep->len_cap, nbytes); 767 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 768 769 if (copy_from_buf(rp, offset, data, step_len)) { 770 mutex_unlock(&rp->fetch_lock); 771 return -EFAULT; 772 } 773 774 spin_lock_irqsave(&rp->b_lock, flags); 775 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 776 spin_unlock_irqrestore(&rp->b_lock, flags); 777 rp->b_read = 0; 778 779 mutex_unlock(&rp->fetch_lock); 780 return 0; 781 } 782 783 static int mon_bin_release(struct inode *inode, struct file *file) 784 { 785 struct mon_reader_bin *rp = file->private_data; 786 struct mon_bus* mbus = rp->r.m_bus; 787 788 mutex_lock(&mon_lock); 789 790 if (mbus->nreaders <= 0) { 791 printk(KERN_ERR TAG ": consistency error on close\n"); 792 mutex_unlock(&mon_lock); 793 return 0; 794 } 795 mon_reader_del(mbus, &rp->r); 796 797 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 798 kfree(rp->b_vec); 799 kfree(rp); 800 801 mutex_unlock(&mon_lock); 802 return 0; 803 } 804 805 static ssize_t mon_bin_read(struct file *file, char __user *buf, 806 size_t nbytes, loff_t *ppos) 807 { 808 struct mon_reader_bin *rp = file->private_data; 809 unsigned int hdrbytes = PKT_SZ_API0; 810 unsigned long flags; 811 struct mon_bin_hdr *ep; 812 unsigned int offset; 813 size_t step_len; 814 char *ptr; 815 ssize_t done = 0; 816 int rc; 817 818 mutex_lock(&rp->fetch_lock); 819 820 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 821 mutex_unlock(&rp->fetch_lock); 822 return rc; 823 } 824 825 ep = MON_OFF2HDR(rp, rp->b_out); 826 827 if (rp->b_read < hdrbytes) { 828 step_len = min_t(size_t, nbytes, hdrbytes - rp->b_read); 829 ptr = ((char *)ep) + rp->b_read; 830 if (step_len && copy_to_user(buf, ptr, step_len)) { 831 mutex_unlock(&rp->fetch_lock); 832 return -EFAULT; 833 } 834 nbytes -= step_len; 835 buf += step_len; 836 rp->b_read += step_len; 837 done += step_len; 838 } 839 840 if (rp->b_read >= hdrbytes) { 841 step_len = ep->len_cap; 842 step_len -= rp->b_read - hdrbytes; 843 if (step_len > nbytes) 844 step_len = nbytes; 845 offset = rp->b_out + PKT_SIZE; 846 offset += rp->b_read - hdrbytes; 847 if (offset >= rp->b_size) 848 offset -= rp->b_size; 849 if (copy_from_buf(rp, offset, buf, step_len)) { 850 mutex_unlock(&rp->fetch_lock); 851 return -EFAULT; 852 } 853 nbytes -= step_len; 854 buf += step_len; 855 rp->b_read += step_len; 856 done += step_len; 857 } 858 859 /* 860 * Check if whole packet was read, and if so, jump to the next one. 861 */ 862 if (rp->b_read >= hdrbytes + ep->len_cap) { 863 spin_lock_irqsave(&rp->b_lock, flags); 864 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 865 spin_unlock_irqrestore(&rp->b_lock, flags); 866 rp->b_read = 0; 867 } 868 869 mutex_unlock(&rp->fetch_lock); 870 return done; 871 } 872 873 /* 874 * Remove at most nevents from chunked buffer. 875 * Returns the number of removed events. 876 */ 877 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 878 { 879 unsigned long flags; 880 struct mon_bin_hdr *ep; 881 int i; 882 883 mutex_lock(&rp->fetch_lock); 884 spin_lock_irqsave(&rp->b_lock, flags); 885 for (i = 0; i < nevents; ++i) { 886 if (MON_RING_EMPTY(rp)) 887 break; 888 889 ep = MON_OFF2HDR(rp, rp->b_out); 890 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 891 } 892 spin_unlock_irqrestore(&rp->b_lock, flags); 893 rp->b_read = 0; 894 mutex_unlock(&rp->fetch_lock); 895 return i; 896 } 897 898 /* 899 * Fetch at most max event offsets into the buffer and put them into vec. 900 * The events are usually freed later with mon_bin_flush. 901 * Return the effective number of events fetched. 902 */ 903 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 904 u32 __user *vec, unsigned int max) 905 { 906 unsigned int cur_out; 907 unsigned int bytes, avail; 908 unsigned int size; 909 unsigned int nevents; 910 struct mon_bin_hdr *ep; 911 unsigned long flags; 912 int rc; 913 914 mutex_lock(&rp->fetch_lock); 915 916 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 917 mutex_unlock(&rp->fetch_lock); 918 return rc; 919 } 920 921 spin_lock_irqsave(&rp->b_lock, flags); 922 avail = rp->b_cnt; 923 spin_unlock_irqrestore(&rp->b_lock, flags); 924 925 cur_out = rp->b_out; 926 nevents = 0; 927 bytes = 0; 928 while (bytes < avail) { 929 if (nevents >= max) 930 break; 931 932 ep = MON_OFF2HDR(rp, cur_out); 933 if (put_user(cur_out, &vec[nevents])) { 934 mutex_unlock(&rp->fetch_lock); 935 return -EFAULT; 936 } 937 938 nevents++; 939 size = ep->len_cap + PKT_SIZE; 940 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 941 if ((cur_out += size) >= rp->b_size) 942 cur_out -= rp->b_size; 943 bytes += size; 944 } 945 946 mutex_unlock(&rp->fetch_lock); 947 return nevents; 948 } 949 950 /* 951 * Count events. This is almost the same as the above mon_bin_fetch, 952 * only we do not store offsets into user vector, and we have no limit. 953 */ 954 static int mon_bin_queued(struct mon_reader_bin *rp) 955 { 956 unsigned int cur_out; 957 unsigned int bytes, avail; 958 unsigned int size; 959 unsigned int nevents; 960 struct mon_bin_hdr *ep; 961 unsigned long flags; 962 963 mutex_lock(&rp->fetch_lock); 964 965 spin_lock_irqsave(&rp->b_lock, flags); 966 avail = rp->b_cnt; 967 spin_unlock_irqrestore(&rp->b_lock, flags); 968 969 cur_out = rp->b_out; 970 nevents = 0; 971 bytes = 0; 972 while (bytes < avail) { 973 ep = MON_OFF2HDR(rp, cur_out); 974 975 nevents++; 976 size = ep->len_cap + PKT_SIZE; 977 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 978 if ((cur_out += size) >= rp->b_size) 979 cur_out -= rp->b_size; 980 bytes += size; 981 } 982 983 mutex_unlock(&rp->fetch_lock); 984 return nevents; 985 } 986 987 /* 988 */ 989 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 990 { 991 struct mon_reader_bin *rp = file->private_data; 992 // struct mon_bus* mbus = rp->r.m_bus; 993 int ret = 0; 994 struct mon_bin_hdr *ep; 995 unsigned long flags; 996 997 switch (cmd) { 998 999 case MON_IOCQ_URB_LEN: 1000 /* 1001 * N.B. This only returns the size of data, without the header. 1002 */ 1003 spin_lock_irqsave(&rp->b_lock, flags); 1004 if (!MON_RING_EMPTY(rp)) { 1005 ep = MON_OFF2HDR(rp, rp->b_out); 1006 ret = ep->len_cap; 1007 } 1008 spin_unlock_irqrestore(&rp->b_lock, flags); 1009 break; 1010 1011 case MON_IOCQ_RING_SIZE: 1012 mutex_lock(&rp->fetch_lock); 1013 ret = rp->b_size; 1014 mutex_unlock(&rp->fetch_lock); 1015 break; 1016 1017 case MON_IOCT_RING_SIZE: 1018 /* 1019 * Changing the buffer size will flush it's contents; the new 1020 * buffer is allocated before releasing the old one to be sure 1021 * the device will stay functional also in case of memory 1022 * pressure. 1023 */ 1024 { 1025 int size; 1026 struct mon_pgmap *vec; 1027 1028 if (arg < BUFF_MIN || arg > BUFF_MAX) 1029 return -EINVAL; 1030 1031 size = CHUNK_ALIGN(arg); 1032 vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap), 1033 GFP_KERNEL); 1034 if (vec == NULL) { 1035 ret = -ENOMEM; 1036 break; 1037 } 1038 1039 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 1040 if (ret < 0) { 1041 kfree(vec); 1042 break; 1043 } 1044 1045 mutex_lock(&rp->fetch_lock); 1046 spin_lock_irqsave(&rp->b_lock, flags); 1047 if (rp->mmap_active) { 1048 mon_free_buff(vec, size/CHUNK_SIZE); 1049 kfree(vec); 1050 ret = -EBUSY; 1051 } else { 1052 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 1053 kfree(rp->b_vec); 1054 rp->b_vec = vec; 1055 rp->b_size = size; 1056 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 1057 rp->cnt_lost = 0; 1058 } 1059 spin_unlock_irqrestore(&rp->b_lock, flags); 1060 mutex_unlock(&rp->fetch_lock); 1061 } 1062 break; 1063 1064 case MON_IOCH_MFLUSH: 1065 ret = mon_bin_flush(rp, arg); 1066 break; 1067 1068 case MON_IOCX_GET: 1069 case MON_IOCX_GETX: 1070 { 1071 struct mon_bin_get getb; 1072 1073 if (copy_from_user(&getb, (void __user *)arg, 1074 sizeof(struct mon_bin_get))) 1075 return -EFAULT; 1076 1077 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 1078 return -EINVAL; 1079 ret = mon_bin_get_event(file, rp, getb.hdr, 1080 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 1081 getb.data, (unsigned int)getb.alloc); 1082 } 1083 break; 1084 1085 case MON_IOCX_MFETCH: 1086 { 1087 struct mon_bin_mfetch mfetch; 1088 struct mon_bin_mfetch __user *uptr; 1089 1090 uptr = (struct mon_bin_mfetch __user *)arg; 1091 1092 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1093 return -EFAULT; 1094 1095 if (mfetch.nflush) { 1096 ret = mon_bin_flush(rp, mfetch.nflush); 1097 if (ret < 0) 1098 return ret; 1099 if (put_user(ret, &uptr->nflush)) 1100 return -EFAULT; 1101 } 1102 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1103 if (ret < 0) 1104 return ret; 1105 if (put_user(ret, &uptr->nfetch)) 1106 return -EFAULT; 1107 ret = 0; 1108 } 1109 break; 1110 1111 case MON_IOCG_STATS: { 1112 struct mon_bin_stats __user *sp; 1113 unsigned int nevents; 1114 unsigned int ndropped; 1115 1116 spin_lock_irqsave(&rp->b_lock, flags); 1117 ndropped = rp->cnt_lost; 1118 rp->cnt_lost = 0; 1119 spin_unlock_irqrestore(&rp->b_lock, flags); 1120 nevents = mon_bin_queued(rp); 1121 1122 sp = (struct mon_bin_stats __user *)arg; 1123 if (put_user(ndropped, &sp->dropped)) 1124 return -EFAULT; 1125 if (put_user(nevents, &sp->queued)) 1126 return -EFAULT; 1127 1128 } 1129 break; 1130 1131 default: 1132 return -ENOTTY; 1133 } 1134 1135 return ret; 1136 } 1137 1138 #ifdef CONFIG_COMPAT 1139 static long mon_bin_compat_ioctl(struct file *file, 1140 unsigned int cmd, unsigned long arg) 1141 { 1142 struct mon_reader_bin *rp = file->private_data; 1143 int ret; 1144 1145 switch (cmd) { 1146 1147 case MON_IOCX_GET32: 1148 case MON_IOCX_GETX32: 1149 { 1150 struct mon_bin_get32 getb; 1151 1152 if (copy_from_user(&getb, (void __user *)arg, 1153 sizeof(struct mon_bin_get32))) 1154 return -EFAULT; 1155 1156 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1157 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1158 compat_ptr(getb.data32), getb.alloc32); 1159 if (ret < 0) 1160 return ret; 1161 } 1162 return 0; 1163 1164 case MON_IOCX_MFETCH32: 1165 { 1166 struct mon_bin_mfetch32 mfetch; 1167 struct mon_bin_mfetch32 __user *uptr; 1168 1169 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1170 1171 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1172 return -EFAULT; 1173 1174 if (mfetch.nflush32) { 1175 ret = mon_bin_flush(rp, mfetch.nflush32); 1176 if (ret < 0) 1177 return ret; 1178 if (put_user(ret, &uptr->nflush32)) 1179 return -EFAULT; 1180 } 1181 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1182 mfetch.nfetch32); 1183 if (ret < 0) 1184 return ret; 1185 if (put_user(ret, &uptr->nfetch32)) 1186 return -EFAULT; 1187 } 1188 return 0; 1189 1190 case MON_IOCG_STATS: 1191 return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1192 1193 case MON_IOCQ_URB_LEN: 1194 case MON_IOCQ_RING_SIZE: 1195 case MON_IOCT_RING_SIZE: 1196 case MON_IOCH_MFLUSH: 1197 return mon_bin_ioctl(file, cmd, arg); 1198 1199 default: 1200 ; 1201 } 1202 return -ENOTTY; 1203 } 1204 #endif /* CONFIG_COMPAT */ 1205 1206 static __poll_t 1207 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1208 { 1209 struct mon_reader_bin *rp = file->private_data; 1210 __poll_t mask = 0; 1211 unsigned long flags; 1212 1213 if (file->f_mode & FMODE_READ) 1214 poll_wait(file, &rp->b_wait, wait); 1215 1216 spin_lock_irqsave(&rp->b_lock, flags); 1217 if (!MON_RING_EMPTY(rp)) 1218 mask |= EPOLLIN | EPOLLRDNORM; /* readable */ 1219 spin_unlock_irqrestore(&rp->b_lock, flags); 1220 return mask; 1221 } 1222 1223 /* 1224 * open and close: just keep track of how many times the device is 1225 * mapped, to use the proper memory allocation function. 1226 */ 1227 static void mon_bin_vma_open(struct vm_area_struct *vma) 1228 { 1229 struct mon_reader_bin *rp = vma->vm_private_data; 1230 unsigned long flags; 1231 1232 spin_lock_irqsave(&rp->b_lock, flags); 1233 rp->mmap_active++; 1234 spin_unlock_irqrestore(&rp->b_lock, flags); 1235 } 1236 1237 static void mon_bin_vma_close(struct vm_area_struct *vma) 1238 { 1239 unsigned long flags; 1240 1241 struct mon_reader_bin *rp = vma->vm_private_data; 1242 spin_lock_irqsave(&rp->b_lock, flags); 1243 rp->mmap_active--; 1244 spin_unlock_irqrestore(&rp->b_lock, flags); 1245 } 1246 1247 /* 1248 * Map ring pages to user space. 1249 */ 1250 static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf) 1251 { 1252 struct mon_reader_bin *rp = vmf->vma->vm_private_data; 1253 unsigned long offset, chunk_idx; 1254 struct page *pageptr; 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&rp->b_lock, flags); 1258 offset = vmf->pgoff << PAGE_SHIFT; 1259 if (offset >= rp->b_size) { 1260 spin_unlock_irqrestore(&rp->b_lock, flags); 1261 return VM_FAULT_SIGBUS; 1262 } 1263 chunk_idx = offset / CHUNK_SIZE; 1264 pageptr = rp->b_vec[chunk_idx].pg; 1265 get_page(pageptr); 1266 vmf->page = pageptr; 1267 spin_unlock_irqrestore(&rp->b_lock, flags); 1268 return 0; 1269 } 1270 1271 static const struct vm_operations_struct mon_bin_vm_ops = { 1272 .open = mon_bin_vma_open, 1273 .close = mon_bin_vma_close, 1274 .fault = mon_bin_vma_fault, 1275 }; 1276 1277 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1278 { 1279 /* don't do anything here: "fault" will set up page table entries */ 1280 vma->vm_ops = &mon_bin_vm_ops; 1281 1282 if (vma->vm_flags & VM_WRITE) 1283 return -EPERM; 1284 1285 vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE); 1286 vma->vm_private_data = filp->private_data; 1287 mon_bin_vma_open(vma); 1288 return 0; 1289 } 1290 1291 static const struct file_operations mon_fops_binary = { 1292 .owner = THIS_MODULE, 1293 .open = mon_bin_open, 1294 .read = mon_bin_read, 1295 /* .write = mon_text_write, */ 1296 .poll = mon_bin_poll, 1297 .unlocked_ioctl = mon_bin_ioctl, 1298 #ifdef CONFIG_COMPAT 1299 .compat_ioctl = mon_bin_compat_ioctl, 1300 #endif 1301 .release = mon_bin_release, 1302 .mmap = mon_bin_mmap, 1303 }; 1304 1305 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1306 { 1307 DECLARE_WAITQUEUE(waita, current); 1308 unsigned long flags; 1309 1310 add_wait_queue(&rp->b_wait, &waita); 1311 set_current_state(TASK_INTERRUPTIBLE); 1312 1313 spin_lock_irqsave(&rp->b_lock, flags); 1314 while (MON_RING_EMPTY(rp)) { 1315 spin_unlock_irqrestore(&rp->b_lock, flags); 1316 1317 if (file->f_flags & O_NONBLOCK) { 1318 set_current_state(TASK_RUNNING); 1319 remove_wait_queue(&rp->b_wait, &waita); 1320 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1321 } 1322 schedule(); 1323 if (signal_pending(current)) { 1324 remove_wait_queue(&rp->b_wait, &waita); 1325 return -EINTR; 1326 } 1327 set_current_state(TASK_INTERRUPTIBLE); 1328 1329 spin_lock_irqsave(&rp->b_lock, flags); 1330 } 1331 spin_unlock_irqrestore(&rp->b_lock, flags); 1332 1333 set_current_state(TASK_RUNNING); 1334 remove_wait_queue(&rp->b_wait, &waita); 1335 return 0; 1336 } 1337 1338 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1339 { 1340 int n; 1341 unsigned long vaddr; 1342 1343 for (n = 0; n < npages; n++) { 1344 vaddr = get_zeroed_page(GFP_KERNEL); 1345 if (vaddr == 0) { 1346 while (n-- != 0) 1347 free_page((unsigned long) map[n].ptr); 1348 return -ENOMEM; 1349 } 1350 map[n].ptr = (unsigned char *) vaddr; 1351 map[n].pg = virt_to_page((void *) vaddr); 1352 } 1353 return 0; 1354 } 1355 1356 static void mon_free_buff(struct mon_pgmap *map, int npages) 1357 { 1358 int n; 1359 1360 for (n = 0; n < npages; n++) 1361 free_page((unsigned long) map[n].ptr); 1362 } 1363 1364 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1365 { 1366 struct device *dev; 1367 unsigned minor = ubus? ubus->busnum: 0; 1368 1369 if (minor >= MON_BIN_MAX_MINOR) 1370 return 0; 1371 1372 dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL, 1373 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1374 "usbmon%d", minor); 1375 if (IS_ERR(dev)) 1376 return 0; 1377 1378 mbus->classdev = dev; 1379 return 1; 1380 } 1381 1382 void mon_bin_del(struct mon_bus *mbus) 1383 { 1384 device_destroy(&mon_bin_class, mbus->classdev->devt); 1385 } 1386 1387 int __init mon_bin_init(void) 1388 { 1389 int rc; 1390 1391 rc = class_register(&mon_bin_class); 1392 if (rc) 1393 goto err_class; 1394 1395 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1396 if (rc < 0) 1397 goto err_dev; 1398 1399 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1400 mon_bin_cdev.owner = THIS_MODULE; 1401 1402 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1403 if (rc < 0) 1404 goto err_add; 1405 1406 return 0; 1407 1408 err_add: 1409 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1410 err_dev: 1411 class_unregister(&mon_bin_class); 1412 err_class: 1413 return rc; 1414 } 1415 1416 void mon_bin_exit(void) 1417 { 1418 cdev_del(&mon_bin_cdev); 1419 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1420 class_unregister(&mon_bin_class); 1421 } 1422