xref: /linux/drivers/usb/mon/mon_bin.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The USB Monitor, inspired by Dave Harding's USBMon.
4  *
5  * This is a binary format reader.
6  *
7  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
8  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/sched/signal.h>
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/cdev.h>
16 #include <linux/export.h>
17 #include <linux/usb.h>
18 #include <linux/poll.h>
19 #include <linux/compat.h>
20 #include <linux/mm.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/time64.h>
24 
25 #include <linux/uaccess.h>
26 
27 #include "usb_mon.h"
28 
29 /*
30  * Defined by USB 2.0 clause 9.3, table 9.2.
31  */
32 #define SETUP_LEN  8
33 
34 /* ioctl macros */
35 #define MON_IOC_MAGIC 0x92
36 
37 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
38 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
39 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
40 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
41 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
42 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
43 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
44 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
45 /* #9 was MON_IOCT_SETAPI */
46 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
47 
48 #ifdef CONFIG_COMPAT
49 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
50 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
51 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
52 #endif
53 
54 /*
55  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
56  * But it's all right. Just use a simple way to make sure the chunk is never
57  * smaller than a page.
58  *
59  * N.B. An application does not know our chunk size.
60  *
61  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
62  * page-sized chunks for the time being.
63  */
64 #define CHUNK_SIZE   PAGE_SIZE
65 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
66 
67 /*
68  * The magic limit was calculated so that it allows the monitoring
69  * application to pick data once in two ticks. This way, another application,
70  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
71  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
72  * enormous overhead built into the bus protocol, so we need about 1000 KB.
73  *
74  * This is still too much for most cases, where we just snoop a few
75  * descriptor fetches for enumeration. So, the default is a "reasonable"
76  * amount for systems with HZ=250 and incomplete bus saturation.
77  *
78  * XXX What about multi-megabyte URBs which take minutes to transfer?
79  */
80 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
81 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
82 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
83 
84 /*
85  * The per-event API header (2 per URB).
86  *
87  * This structure is seen in userland as defined by the documentation.
88  */
89 struct mon_bin_hdr {
90 	u64 id;			/* URB ID - from submission to callback */
91 	unsigned char type;	/* Same as in text API; extensible. */
92 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
93 	unsigned char epnum;	/* Endpoint number and transfer direction */
94 	unsigned char devnum;	/* Device address */
95 	unsigned short busnum;	/* Bus number */
96 	char flag_setup;
97 	char flag_data;
98 	s64 ts_sec;		/* ktime_get_real_ts64 */
99 	s32 ts_usec;		/* ktime_get_real_ts64 */
100 	int status;
101 	unsigned int len_urb;	/* Length of data (submitted or actual) */
102 	unsigned int len_cap;	/* Delivered length */
103 	union {
104 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
105 		struct iso_rec {
106 			int error_count;
107 			int numdesc;
108 		} iso;
109 	} s;
110 	int interval;
111 	int start_frame;
112 	unsigned int xfer_flags;
113 	unsigned int ndesc;	/* Actual number of ISO descriptors */
114 };
115 
116 /*
117  * ISO vector, packed into the head of data stream.
118  * This has to take 16 bytes to make sure that the end of buffer
119  * wrap is not happening in the middle of a descriptor.
120  */
121 struct mon_bin_isodesc {
122 	int          iso_status;
123 	unsigned int iso_off;
124 	unsigned int iso_len;
125 	u32 _pad;
126 };
127 
128 /* per file statistic */
129 struct mon_bin_stats {
130 	u32 queued;
131 	u32 dropped;
132 };
133 
134 struct mon_bin_get {
135 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
136 	void __user *data;
137 	size_t alloc;		/* Length of data (can be zero) */
138 };
139 
140 struct mon_bin_mfetch {
141 	u32 __user *offvec;	/* Vector of events fetched */
142 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
143 	u32 nflush;		/* Number of events to flush */
144 };
145 
146 #ifdef CONFIG_COMPAT
147 struct mon_bin_get32 {
148 	u32 hdr32;
149 	u32 data32;
150 	u32 alloc32;
151 };
152 
153 struct mon_bin_mfetch32 {
154         u32 offvec32;
155         u32 nfetch32;
156         u32 nflush32;
157 };
158 #endif
159 
160 /* Having these two values same prevents wrapping of the mon_bin_hdr */
161 #define PKT_ALIGN   64
162 #define PKT_SIZE    64
163 
164 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
165 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
166 
167 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
168 
169 /* max number of USB bus supported */
170 #define MON_BIN_MAX_MINOR 128
171 
172 /*
173  * The buffer: map of used pages.
174  */
175 struct mon_pgmap {
176 	struct page *pg;
177 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
178 };
179 
180 /*
181  * This gets associated with an open file struct.
182  */
183 struct mon_reader_bin {
184 	/* The buffer: one per open. */
185 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
186 	unsigned int b_size;		/* Current size of the buffer - bytes */
187 	unsigned int b_cnt;		/* Bytes used */
188 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
189 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
190 	struct mon_pgmap *b_vec;	/* The map array */
191 	wait_queue_head_t b_wait;	/* Wait for data here */
192 
193 	struct mutex fetch_lock;	/* Protect b_read, b_out */
194 	int mmap_active;
195 
196 	/* A list of these is needed for "bus 0". Some time later. */
197 	struct mon_reader r;
198 
199 	/* Stats */
200 	unsigned int cnt_lost;
201 };
202 
203 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
204     unsigned int offset)
205 {
206 	return (struct mon_bin_hdr *)
207 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
208 }
209 
210 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
211 
212 static unsigned char xfer_to_pipe[4] = {
213 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
214 };
215 
216 static struct class *mon_bin_class;
217 static dev_t mon_bin_dev0;
218 static struct cdev mon_bin_cdev;
219 
220 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
221     unsigned int offset, unsigned int size);
222 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
223 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
224 static void mon_free_buff(struct mon_pgmap *map, int npages);
225 
226 /*
227  * This is a "chunked memcpy". It does not manipulate any counters.
228  */
229 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
230     unsigned int off, const unsigned char *from, unsigned int length)
231 {
232 	unsigned int step_len;
233 	unsigned char *buf;
234 	unsigned int in_page;
235 
236 	while (length) {
237 		/*
238 		 * Determine step_len.
239 		 */
240 		step_len = length;
241 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
242 		if (in_page < step_len)
243 			step_len = in_page;
244 
245 		/*
246 		 * Copy data and advance pointers.
247 		 */
248 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
249 		memcpy(buf, from, step_len);
250 		if ((off += step_len) >= this->b_size) off = 0;
251 		from += step_len;
252 		length -= step_len;
253 	}
254 	return off;
255 }
256 
257 /*
258  * This is a little worse than the above because it's "chunked copy_to_user".
259  * The return value is an error code, not an offset.
260  */
261 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
262     char __user *to, int length)
263 {
264 	unsigned int step_len;
265 	unsigned char *buf;
266 	unsigned int in_page;
267 
268 	while (length) {
269 		/*
270 		 * Determine step_len.
271 		 */
272 		step_len = length;
273 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
274 		if (in_page < step_len)
275 			step_len = in_page;
276 
277 		/*
278 		 * Copy data and advance pointers.
279 		 */
280 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
281 		if (copy_to_user(to, buf, step_len))
282 			return -EINVAL;
283 		if ((off += step_len) >= this->b_size) off = 0;
284 		to += step_len;
285 		length -= step_len;
286 	}
287 	return 0;
288 }
289 
290 /*
291  * Allocate an (aligned) area in the buffer.
292  * This is called under b_lock.
293  * Returns ~0 on failure.
294  */
295 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
296     unsigned int size)
297 {
298 	unsigned int offset;
299 
300 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
301 	if (rp->b_cnt + size > rp->b_size)
302 		return ~0;
303 	offset = rp->b_in;
304 	rp->b_cnt += size;
305 	if ((rp->b_in += size) >= rp->b_size)
306 		rp->b_in -= rp->b_size;
307 	return offset;
308 }
309 
310 /*
311  * This is the same thing as mon_buff_area_alloc, only it does not allow
312  * buffers to wrap. This is needed by applications which pass references
313  * into mmap-ed buffers up their stacks (libpcap can do that).
314  *
315  * Currently, we always have the header stuck with the data, although
316  * it is not strictly speaking necessary.
317  *
318  * When a buffer would wrap, we place a filler packet to mark the space.
319  */
320 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
321     unsigned int size)
322 {
323 	unsigned int offset;
324 	unsigned int fill_size;
325 
326 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
327 	if (rp->b_cnt + size > rp->b_size)
328 		return ~0;
329 	if (rp->b_in + size > rp->b_size) {
330 		/*
331 		 * This would wrap. Find if we still have space after
332 		 * skipping to the end of the buffer. If we do, place
333 		 * a filler packet and allocate a new packet.
334 		 */
335 		fill_size = rp->b_size - rp->b_in;
336 		if (rp->b_cnt + size + fill_size > rp->b_size)
337 			return ~0;
338 		mon_buff_area_fill(rp, rp->b_in, fill_size);
339 
340 		offset = 0;
341 		rp->b_in = size;
342 		rp->b_cnt += size + fill_size;
343 	} else if (rp->b_in + size == rp->b_size) {
344 		offset = rp->b_in;
345 		rp->b_in = 0;
346 		rp->b_cnt += size;
347 	} else {
348 		offset = rp->b_in;
349 		rp->b_in += size;
350 		rp->b_cnt += size;
351 	}
352 	return offset;
353 }
354 
355 /*
356  * Return a few (kilo-)bytes to the head of the buffer.
357  * This is used if a data fetch fails.
358  */
359 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
360 {
361 
362 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
363 	rp->b_cnt -= size;
364 	if (rp->b_in < size)
365 		rp->b_in += rp->b_size;
366 	rp->b_in -= size;
367 }
368 
369 /*
370  * This has to be called under both b_lock and fetch_lock, because
371  * it accesses both b_cnt and b_out.
372  */
373 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
374 {
375 
376 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
377 	rp->b_cnt -= size;
378 	if ((rp->b_out += size) >= rp->b_size)
379 		rp->b_out -= rp->b_size;
380 }
381 
382 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
383     unsigned int offset, unsigned int size)
384 {
385 	struct mon_bin_hdr *ep;
386 
387 	ep = MON_OFF2HDR(rp, offset);
388 	memset(ep, 0, PKT_SIZE);
389 	ep->type = '@';
390 	ep->len_cap = size - PKT_SIZE;
391 }
392 
393 static inline char mon_bin_get_setup(unsigned char *setupb,
394     const struct urb *urb, char ev_type)
395 {
396 
397 	if (urb->setup_packet == NULL)
398 		return 'Z';
399 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
400 	return 0;
401 }
402 
403 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
404     unsigned int offset, struct urb *urb, unsigned int length,
405     char *flag)
406 {
407 	int i;
408 	struct scatterlist *sg;
409 	unsigned int this_len;
410 
411 	*flag = 0;
412 	if (urb->num_sgs == 0) {
413 		if (urb->transfer_buffer == NULL) {
414 			*flag = 'Z';
415 			return length;
416 		}
417 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
418 		length = 0;
419 
420 	} else {
421 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
422 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
423 			*flag = 'D';
424 			return length;
425 		}
426 
427 		/* Copy up to the first non-addressable segment */
428 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
429 			if (length == 0 || PageHighMem(sg_page(sg)))
430 				break;
431 			this_len = min_t(unsigned int, sg->length, length);
432 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
433 					this_len);
434 			length -= this_len;
435 		}
436 		if (i == 0)
437 			*flag = 'D';
438 	}
439 
440 	return length;
441 }
442 
443 /*
444  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
445  * be used to determine the length of the whole contiguous buffer.
446  */
447 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
448     struct urb *urb, unsigned int ndesc)
449 {
450 	struct usb_iso_packet_descriptor *fp;
451 	unsigned int length;
452 
453 	length = 0;
454 	fp = urb->iso_frame_desc;
455 	while (ndesc-- != 0) {
456 		if (fp->actual_length != 0) {
457 			if (fp->offset + fp->actual_length > length)
458 				length = fp->offset + fp->actual_length;
459 		}
460 		fp++;
461 	}
462 	return length;
463 }
464 
465 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
466     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
467 {
468 	struct mon_bin_isodesc *dp;
469 	struct usb_iso_packet_descriptor *fp;
470 
471 	fp = urb->iso_frame_desc;
472 	while (ndesc-- != 0) {
473 		dp = (struct mon_bin_isodesc *)
474 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
475 		dp->iso_status = fp->status;
476 		dp->iso_off = fp->offset;
477 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
478 		dp->_pad = 0;
479 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
480 			offset = 0;
481 		fp++;
482 	}
483 }
484 
485 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
486     char ev_type, int status)
487 {
488 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
489 	struct timespec64 ts;
490 	unsigned long flags;
491 	unsigned int urb_length;
492 	unsigned int offset;
493 	unsigned int length;
494 	unsigned int delta;
495 	unsigned int ndesc, lendesc;
496 	unsigned char dir;
497 	struct mon_bin_hdr *ep;
498 	char data_tag = 0;
499 
500 	ktime_get_real_ts64(&ts);
501 
502 	spin_lock_irqsave(&rp->b_lock, flags);
503 
504 	/*
505 	 * Find the maximum allowable length, then allocate space.
506 	 */
507 	urb_length = (ev_type == 'S') ?
508 	    urb->transfer_buffer_length : urb->actual_length;
509 	length = urb_length;
510 
511 	if (usb_endpoint_xfer_isoc(epd)) {
512 		if (urb->number_of_packets < 0) {
513 			ndesc = 0;
514 		} else if (urb->number_of_packets >= ISODESC_MAX) {
515 			ndesc = ISODESC_MAX;
516 		} else {
517 			ndesc = urb->number_of_packets;
518 		}
519 		if (ev_type == 'C' && usb_urb_dir_in(urb))
520 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
521 	} else {
522 		ndesc = 0;
523 	}
524 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
525 
526 	/* not an issue unless there's a subtle bug in a HCD somewhere */
527 	if (length >= urb->transfer_buffer_length)
528 		length = urb->transfer_buffer_length;
529 
530 	if (length >= rp->b_size/5)
531 		length = rp->b_size/5;
532 
533 	if (usb_urb_dir_in(urb)) {
534 		if (ev_type == 'S') {
535 			length = 0;
536 			data_tag = '<';
537 		}
538 		/* Cannot rely on endpoint number in case of control ep.0 */
539 		dir = USB_DIR_IN;
540 	} else {
541 		if (ev_type == 'C') {
542 			length = 0;
543 			data_tag = '>';
544 		}
545 		dir = 0;
546 	}
547 
548 	if (rp->mmap_active) {
549 		offset = mon_buff_area_alloc_contiguous(rp,
550 						 length + PKT_SIZE + lendesc);
551 	} else {
552 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
553 	}
554 	if (offset == ~0) {
555 		rp->cnt_lost++;
556 		spin_unlock_irqrestore(&rp->b_lock, flags);
557 		return;
558 	}
559 
560 	ep = MON_OFF2HDR(rp, offset);
561 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
562 
563 	/*
564 	 * Fill the allocated area.
565 	 */
566 	memset(ep, 0, PKT_SIZE);
567 	ep->type = ev_type;
568 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
569 	ep->epnum = dir | usb_endpoint_num(epd);
570 	ep->devnum = urb->dev->devnum;
571 	ep->busnum = urb->dev->bus->busnum;
572 	ep->id = (unsigned long) urb;
573 	ep->ts_sec = ts.tv_sec;
574 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
575 	ep->status = status;
576 	ep->len_urb = urb_length;
577 	ep->len_cap = length + lendesc;
578 	ep->xfer_flags = urb->transfer_flags;
579 
580 	if (usb_endpoint_xfer_int(epd)) {
581 		ep->interval = urb->interval;
582 	} else if (usb_endpoint_xfer_isoc(epd)) {
583 		ep->interval = urb->interval;
584 		ep->start_frame = urb->start_frame;
585 		ep->s.iso.error_count = urb->error_count;
586 		ep->s.iso.numdesc = urb->number_of_packets;
587 	}
588 
589 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
590 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
591 	} else {
592 		ep->flag_setup = '-';
593 	}
594 
595 	if (ndesc != 0) {
596 		ep->ndesc = ndesc;
597 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
598 		if ((offset += lendesc) >= rp->b_size)
599 			offset -= rp->b_size;
600 	}
601 
602 	if (length != 0) {
603 		length = mon_bin_get_data(rp, offset, urb, length,
604 				&ep->flag_data);
605 		if (length > 0) {
606 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
607 			ep->len_cap -= length;
608 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
609 			mon_buff_area_shrink(rp, delta);
610 		}
611 	} else {
612 		ep->flag_data = data_tag;
613 	}
614 
615 	spin_unlock_irqrestore(&rp->b_lock, flags);
616 
617 	wake_up(&rp->b_wait);
618 }
619 
620 static void mon_bin_submit(void *data, struct urb *urb)
621 {
622 	struct mon_reader_bin *rp = data;
623 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
624 }
625 
626 static void mon_bin_complete(void *data, struct urb *urb, int status)
627 {
628 	struct mon_reader_bin *rp = data;
629 	mon_bin_event(rp, urb, 'C', status);
630 }
631 
632 static void mon_bin_error(void *data, struct urb *urb, int error)
633 {
634 	struct mon_reader_bin *rp = data;
635 	struct timespec64 ts;
636 	unsigned long flags;
637 	unsigned int offset;
638 	struct mon_bin_hdr *ep;
639 
640 	ktime_get_real_ts64(&ts);
641 
642 	spin_lock_irqsave(&rp->b_lock, flags);
643 
644 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
645 	if (offset == ~0) {
646 		/* Not incrementing cnt_lost. Just because. */
647 		spin_unlock_irqrestore(&rp->b_lock, flags);
648 		return;
649 	}
650 
651 	ep = MON_OFF2HDR(rp, offset);
652 
653 	memset(ep, 0, PKT_SIZE);
654 	ep->type = 'E';
655 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
656 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
657 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
658 	ep->devnum = urb->dev->devnum;
659 	ep->busnum = urb->dev->bus->busnum;
660 	ep->id = (unsigned long) urb;
661 	ep->ts_sec = ts.tv_sec;
662 	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
663 	ep->status = error;
664 
665 	ep->flag_setup = '-';
666 	ep->flag_data = 'E';
667 
668 	spin_unlock_irqrestore(&rp->b_lock, flags);
669 
670 	wake_up(&rp->b_wait);
671 }
672 
673 static int mon_bin_open(struct inode *inode, struct file *file)
674 {
675 	struct mon_bus *mbus;
676 	struct mon_reader_bin *rp;
677 	size_t size;
678 	int rc;
679 
680 	mutex_lock(&mon_lock);
681 	mbus = mon_bus_lookup(iminor(inode));
682 	if (mbus == NULL) {
683 		mutex_unlock(&mon_lock);
684 		return -ENODEV;
685 	}
686 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
687 		printk(KERN_ERR TAG ": consistency error on open\n");
688 		mutex_unlock(&mon_lock);
689 		return -ENODEV;
690 	}
691 
692 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
693 	if (rp == NULL) {
694 		rc = -ENOMEM;
695 		goto err_alloc;
696 	}
697 	spin_lock_init(&rp->b_lock);
698 	init_waitqueue_head(&rp->b_wait);
699 	mutex_init(&rp->fetch_lock);
700 	rp->b_size = BUFF_DFL;
701 
702 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
703 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
704 		rc = -ENOMEM;
705 		goto err_allocvec;
706 	}
707 
708 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
709 		goto err_allocbuff;
710 
711 	rp->r.m_bus = mbus;
712 	rp->r.r_data = rp;
713 	rp->r.rnf_submit = mon_bin_submit;
714 	rp->r.rnf_error = mon_bin_error;
715 	rp->r.rnf_complete = mon_bin_complete;
716 
717 	mon_reader_add(mbus, &rp->r);
718 
719 	file->private_data = rp;
720 	mutex_unlock(&mon_lock);
721 	return 0;
722 
723 err_allocbuff:
724 	kfree(rp->b_vec);
725 err_allocvec:
726 	kfree(rp);
727 err_alloc:
728 	mutex_unlock(&mon_lock);
729 	return rc;
730 }
731 
732 /*
733  * Extract an event from buffer and copy it to user space.
734  * Wait if there is no event ready.
735  * Returns zero or error.
736  */
737 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
738     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
739     void __user *data, unsigned int nbytes)
740 {
741 	unsigned long flags;
742 	struct mon_bin_hdr *ep;
743 	size_t step_len;
744 	unsigned int offset;
745 	int rc;
746 
747 	mutex_lock(&rp->fetch_lock);
748 
749 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
750 		mutex_unlock(&rp->fetch_lock);
751 		return rc;
752 	}
753 
754 	ep = MON_OFF2HDR(rp, rp->b_out);
755 
756 	if (copy_to_user(hdr, ep, hdrbytes)) {
757 		mutex_unlock(&rp->fetch_lock);
758 		return -EFAULT;
759 	}
760 
761 	step_len = min(ep->len_cap, nbytes);
762 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
763 
764 	if (copy_from_buf(rp, offset, data, step_len)) {
765 		mutex_unlock(&rp->fetch_lock);
766 		return -EFAULT;
767 	}
768 
769 	spin_lock_irqsave(&rp->b_lock, flags);
770 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
771 	spin_unlock_irqrestore(&rp->b_lock, flags);
772 	rp->b_read = 0;
773 
774 	mutex_unlock(&rp->fetch_lock);
775 	return 0;
776 }
777 
778 static int mon_bin_release(struct inode *inode, struct file *file)
779 {
780 	struct mon_reader_bin *rp = file->private_data;
781 	struct mon_bus* mbus = rp->r.m_bus;
782 
783 	mutex_lock(&mon_lock);
784 
785 	if (mbus->nreaders <= 0) {
786 		printk(KERN_ERR TAG ": consistency error on close\n");
787 		mutex_unlock(&mon_lock);
788 		return 0;
789 	}
790 	mon_reader_del(mbus, &rp->r);
791 
792 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
793 	kfree(rp->b_vec);
794 	kfree(rp);
795 
796 	mutex_unlock(&mon_lock);
797 	return 0;
798 }
799 
800 static ssize_t mon_bin_read(struct file *file, char __user *buf,
801     size_t nbytes, loff_t *ppos)
802 {
803 	struct mon_reader_bin *rp = file->private_data;
804 	unsigned int hdrbytes = PKT_SZ_API0;
805 	unsigned long flags;
806 	struct mon_bin_hdr *ep;
807 	unsigned int offset;
808 	size_t step_len;
809 	char *ptr;
810 	ssize_t done = 0;
811 	int rc;
812 
813 	mutex_lock(&rp->fetch_lock);
814 
815 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
816 		mutex_unlock(&rp->fetch_lock);
817 		return rc;
818 	}
819 
820 	ep = MON_OFF2HDR(rp, rp->b_out);
821 
822 	if (rp->b_read < hdrbytes) {
823 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
824 		ptr = ((char *)ep) + rp->b_read;
825 		if (step_len && copy_to_user(buf, ptr, step_len)) {
826 			mutex_unlock(&rp->fetch_lock);
827 			return -EFAULT;
828 		}
829 		nbytes -= step_len;
830 		buf += step_len;
831 		rp->b_read += step_len;
832 		done += step_len;
833 	}
834 
835 	if (rp->b_read >= hdrbytes) {
836 		step_len = ep->len_cap;
837 		step_len -= rp->b_read - hdrbytes;
838 		if (step_len > nbytes)
839 			step_len = nbytes;
840 		offset = rp->b_out + PKT_SIZE;
841 		offset += rp->b_read - hdrbytes;
842 		if (offset >= rp->b_size)
843 			offset -= rp->b_size;
844 		if (copy_from_buf(rp, offset, buf, step_len)) {
845 			mutex_unlock(&rp->fetch_lock);
846 			return -EFAULT;
847 		}
848 		nbytes -= step_len;
849 		buf += step_len;
850 		rp->b_read += step_len;
851 		done += step_len;
852 	}
853 
854 	/*
855 	 * Check if whole packet was read, and if so, jump to the next one.
856 	 */
857 	if (rp->b_read >= hdrbytes + ep->len_cap) {
858 		spin_lock_irqsave(&rp->b_lock, flags);
859 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
860 		spin_unlock_irqrestore(&rp->b_lock, flags);
861 		rp->b_read = 0;
862 	}
863 
864 	mutex_unlock(&rp->fetch_lock);
865 	return done;
866 }
867 
868 /*
869  * Remove at most nevents from chunked buffer.
870  * Returns the number of removed events.
871  */
872 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
873 {
874 	unsigned long flags;
875 	struct mon_bin_hdr *ep;
876 	int i;
877 
878 	mutex_lock(&rp->fetch_lock);
879 	spin_lock_irqsave(&rp->b_lock, flags);
880 	for (i = 0; i < nevents; ++i) {
881 		if (MON_RING_EMPTY(rp))
882 			break;
883 
884 		ep = MON_OFF2HDR(rp, rp->b_out);
885 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
886 	}
887 	spin_unlock_irqrestore(&rp->b_lock, flags);
888 	rp->b_read = 0;
889 	mutex_unlock(&rp->fetch_lock);
890 	return i;
891 }
892 
893 /*
894  * Fetch at most max event offsets into the buffer and put them into vec.
895  * The events are usually freed later with mon_bin_flush.
896  * Return the effective number of events fetched.
897  */
898 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
899     u32 __user *vec, unsigned int max)
900 {
901 	unsigned int cur_out;
902 	unsigned int bytes, avail;
903 	unsigned int size;
904 	unsigned int nevents;
905 	struct mon_bin_hdr *ep;
906 	unsigned long flags;
907 	int rc;
908 
909 	mutex_lock(&rp->fetch_lock);
910 
911 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
912 		mutex_unlock(&rp->fetch_lock);
913 		return rc;
914 	}
915 
916 	spin_lock_irqsave(&rp->b_lock, flags);
917 	avail = rp->b_cnt;
918 	spin_unlock_irqrestore(&rp->b_lock, flags);
919 
920 	cur_out = rp->b_out;
921 	nevents = 0;
922 	bytes = 0;
923 	while (bytes < avail) {
924 		if (nevents >= max)
925 			break;
926 
927 		ep = MON_OFF2HDR(rp, cur_out);
928 		if (put_user(cur_out, &vec[nevents])) {
929 			mutex_unlock(&rp->fetch_lock);
930 			return -EFAULT;
931 		}
932 
933 		nevents++;
934 		size = ep->len_cap + PKT_SIZE;
935 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
936 		if ((cur_out += size) >= rp->b_size)
937 			cur_out -= rp->b_size;
938 		bytes += size;
939 	}
940 
941 	mutex_unlock(&rp->fetch_lock);
942 	return nevents;
943 }
944 
945 /*
946  * Count events. This is almost the same as the above mon_bin_fetch,
947  * only we do not store offsets into user vector, and we have no limit.
948  */
949 static int mon_bin_queued(struct mon_reader_bin *rp)
950 {
951 	unsigned int cur_out;
952 	unsigned int bytes, avail;
953 	unsigned int size;
954 	unsigned int nevents;
955 	struct mon_bin_hdr *ep;
956 	unsigned long flags;
957 
958 	mutex_lock(&rp->fetch_lock);
959 
960 	spin_lock_irqsave(&rp->b_lock, flags);
961 	avail = rp->b_cnt;
962 	spin_unlock_irqrestore(&rp->b_lock, flags);
963 
964 	cur_out = rp->b_out;
965 	nevents = 0;
966 	bytes = 0;
967 	while (bytes < avail) {
968 		ep = MON_OFF2HDR(rp, cur_out);
969 
970 		nevents++;
971 		size = ep->len_cap + PKT_SIZE;
972 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
973 		if ((cur_out += size) >= rp->b_size)
974 			cur_out -= rp->b_size;
975 		bytes += size;
976 	}
977 
978 	mutex_unlock(&rp->fetch_lock);
979 	return nevents;
980 }
981 
982 /*
983  */
984 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
985 {
986 	struct mon_reader_bin *rp = file->private_data;
987 	// struct mon_bus* mbus = rp->r.m_bus;
988 	int ret = 0;
989 	struct mon_bin_hdr *ep;
990 	unsigned long flags;
991 
992 	switch (cmd) {
993 
994 	case MON_IOCQ_URB_LEN:
995 		/*
996 		 * N.B. This only returns the size of data, without the header.
997 		 */
998 		spin_lock_irqsave(&rp->b_lock, flags);
999 		if (!MON_RING_EMPTY(rp)) {
1000 			ep = MON_OFF2HDR(rp, rp->b_out);
1001 			ret = ep->len_cap;
1002 		}
1003 		spin_unlock_irqrestore(&rp->b_lock, flags);
1004 		break;
1005 
1006 	case MON_IOCQ_RING_SIZE:
1007 		mutex_lock(&rp->fetch_lock);
1008 		ret = rp->b_size;
1009 		mutex_unlock(&rp->fetch_lock);
1010 		break;
1011 
1012 	case MON_IOCT_RING_SIZE:
1013 		/*
1014 		 * Changing the buffer size will flush it's contents; the new
1015 		 * buffer is allocated before releasing the old one to be sure
1016 		 * the device will stay functional also in case of memory
1017 		 * pressure.
1018 		 */
1019 		{
1020 		int size;
1021 		struct mon_pgmap *vec;
1022 
1023 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1024 			return -EINVAL;
1025 
1026 		size = CHUNK_ALIGN(arg);
1027 		vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1028 			      GFP_KERNEL);
1029 		if (vec == NULL) {
1030 			ret = -ENOMEM;
1031 			break;
1032 		}
1033 
1034 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1035 		if (ret < 0) {
1036 			kfree(vec);
1037 			break;
1038 		}
1039 
1040 		mutex_lock(&rp->fetch_lock);
1041 		spin_lock_irqsave(&rp->b_lock, flags);
1042 		if (rp->mmap_active) {
1043 			mon_free_buff(vec, size/CHUNK_SIZE);
1044 			kfree(vec);
1045 			ret = -EBUSY;
1046 		} else {
1047 			mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1048 			kfree(rp->b_vec);
1049 			rp->b_vec  = vec;
1050 			rp->b_size = size;
1051 			rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1052 			rp->cnt_lost = 0;
1053 		}
1054 		spin_unlock_irqrestore(&rp->b_lock, flags);
1055 		mutex_unlock(&rp->fetch_lock);
1056 		}
1057 		break;
1058 
1059 	case MON_IOCH_MFLUSH:
1060 		ret = mon_bin_flush(rp, arg);
1061 		break;
1062 
1063 	case MON_IOCX_GET:
1064 	case MON_IOCX_GETX:
1065 		{
1066 		struct mon_bin_get getb;
1067 
1068 		if (copy_from_user(&getb, (void __user *)arg,
1069 					    sizeof(struct mon_bin_get)))
1070 			return -EFAULT;
1071 
1072 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1073 			return -EINVAL;
1074 		ret = mon_bin_get_event(file, rp, getb.hdr,
1075 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1076 		    getb.data, (unsigned int)getb.alloc);
1077 		}
1078 		break;
1079 
1080 	case MON_IOCX_MFETCH:
1081 		{
1082 		struct mon_bin_mfetch mfetch;
1083 		struct mon_bin_mfetch __user *uptr;
1084 
1085 		uptr = (struct mon_bin_mfetch __user *)arg;
1086 
1087 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1088 			return -EFAULT;
1089 
1090 		if (mfetch.nflush) {
1091 			ret = mon_bin_flush(rp, mfetch.nflush);
1092 			if (ret < 0)
1093 				return ret;
1094 			if (put_user(ret, &uptr->nflush))
1095 				return -EFAULT;
1096 		}
1097 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1098 		if (ret < 0)
1099 			return ret;
1100 		if (put_user(ret, &uptr->nfetch))
1101 			return -EFAULT;
1102 		ret = 0;
1103 		}
1104 		break;
1105 
1106 	case MON_IOCG_STATS: {
1107 		struct mon_bin_stats __user *sp;
1108 		unsigned int nevents;
1109 		unsigned int ndropped;
1110 
1111 		spin_lock_irqsave(&rp->b_lock, flags);
1112 		ndropped = rp->cnt_lost;
1113 		rp->cnt_lost = 0;
1114 		spin_unlock_irqrestore(&rp->b_lock, flags);
1115 		nevents = mon_bin_queued(rp);
1116 
1117 		sp = (struct mon_bin_stats __user *)arg;
1118 		if (put_user(ndropped, &sp->dropped))
1119 			return -EFAULT;
1120 		if (put_user(nevents, &sp->queued))
1121 			return -EFAULT;
1122 
1123 		}
1124 		break;
1125 
1126 	default:
1127 		return -ENOTTY;
1128 	}
1129 
1130 	return ret;
1131 }
1132 
1133 #ifdef CONFIG_COMPAT
1134 static long mon_bin_compat_ioctl(struct file *file,
1135     unsigned int cmd, unsigned long arg)
1136 {
1137 	struct mon_reader_bin *rp = file->private_data;
1138 	int ret;
1139 
1140 	switch (cmd) {
1141 
1142 	case MON_IOCX_GET32:
1143 	case MON_IOCX_GETX32:
1144 		{
1145 		struct mon_bin_get32 getb;
1146 
1147 		if (copy_from_user(&getb, (void __user *)arg,
1148 					    sizeof(struct mon_bin_get32)))
1149 			return -EFAULT;
1150 
1151 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1152 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1153 		    compat_ptr(getb.data32), getb.alloc32);
1154 		if (ret < 0)
1155 			return ret;
1156 		}
1157 		return 0;
1158 
1159 	case MON_IOCX_MFETCH32:
1160 		{
1161 		struct mon_bin_mfetch32 mfetch;
1162 		struct mon_bin_mfetch32 __user *uptr;
1163 
1164 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1165 
1166 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1167 			return -EFAULT;
1168 
1169 		if (mfetch.nflush32) {
1170 			ret = mon_bin_flush(rp, mfetch.nflush32);
1171 			if (ret < 0)
1172 				return ret;
1173 			if (put_user(ret, &uptr->nflush32))
1174 				return -EFAULT;
1175 		}
1176 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1177 		    mfetch.nfetch32);
1178 		if (ret < 0)
1179 			return ret;
1180 		if (put_user(ret, &uptr->nfetch32))
1181 			return -EFAULT;
1182 		}
1183 		return 0;
1184 
1185 	case MON_IOCG_STATS:
1186 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1187 
1188 	case MON_IOCQ_URB_LEN:
1189 	case MON_IOCQ_RING_SIZE:
1190 	case MON_IOCT_RING_SIZE:
1191 	case MON_IOCH_MFLUSH:
1192 		return mon_bin_ioctl(file, cmd, arg);
1193 
1194 	default:
1195 		;
1196 	}
1197 	return -ENOTTY;
1198 }
1199 #endif /* CONFIG_COMPAT */
1200 
1201 static __poll_t
1202 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1203 {
1204 	struct mon_reader_bin *rp = file->private_data;
1205 	__poll_t mask = 0;
1206 	unsigned long flags;
1207 
1208 	if (file->f_mode & FMODE_READ)
1209 		poll_wait(file, &rp->b_wait, wait);
1210 
1211 	spin_lock_irqsave(&rp->b_lock, flags);
1212 	if (!MON_RING_EMPTY(rp))
1213 		mask |= EPOLLIN | EPOLLRDNORM;    /* readable */
1214 	spin_unlock_irqrestore(&rp->b_lock, flags);
1215 	return mask;
1216 }
1217 
1218 /*
1219  * open and close: just keep track of how many times the device is
1220  * mapped, to use the proper memory allocation function.
1221  */
1222 static void mon_bin_vma_open(struct vm_area_struct *vma)
1223 {
1224 	struct mon_reader_bin *rp = vma->vm_private_data;
1225 	unsigned long flags;
1226 
1227 	spin_lock_irqsave(&rp->b_lock, flags);
1228 	rp->mmap_active++;
1229 	spin_unlock_irqrestore(&rp->b_lock, flags);
1230 }
1231 
1232 static void mon_bin_vma_close(struct vm_area_struct *vma)
1233 {
1234 	unsigned long flags;
1235 
1236 	struct mon_reader_bin *rp = vma->vm_private_data;
1237 	spin_lock_irqsave(&rp->b_lock, flags);
1238 	rp->mmap_active--;
1239 	spin_unlock_irqrestore(&rp->b_lock, flags);
1240 }
1241 
1242 /*
1243  * Map ring pages to user space.
1244  */
1245 static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1246 {
1247 	struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1248 	unsigned long offset, chunk_idx;
1249 	struct page *pageptr;
1250 
1251 	offset = vmf->pgoff << PAGE_SHIFT;
1252 	if (offset >= rp->b_size)
1253 		return VM_FAULT_SIGBUS;
1254 	chunk_idx = offset / CHUNK_SIZE;
1255 	pageptr = rp->b_vec[chunk_idx].pg;
1256 	get_page(pageptr);
1257 	vmf->page = pageptr;
1258 	return 0;
1259 }
1260 
1261 static const struct vm_operations_struct mon_bin_vm_ops = {
1262 	.open =     mon_bin_vma_open,
1263 	.close =    mon_bin_vma_close,
1264 	.fault =    mon_bin_vma_fault,
1265 };
1266 
1267 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1268 {
1269 	/* don't do anything here: "fault" will set up page table entries */
1270 	vma->vm_ops = &mon_bin_vm_ops;
1271 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1272 	vma->vm_private_data = filp->private_data;
1273 	mon_bin_vma_open(vma);
1274 	return 0;
1275 }
1276 
1277 static const struct file_operations mon_fops_binary = {
1278 	.owner =	THIS_MODULE,
1279 	.open =		mon_bin_open,
1280 	.llseek =	no_llseek,
1281 	.read =		mon_bin_read,
1282 	/* .write =	mon_text_write, */
1283 	.poll =		mon_bin_poll,
1284 	.unlocked_ioctl = mon_bin_ioctl,
1285 #ifdef CONFIG_COMPAT
1286 	.compat_ioctl =	mon_bin_compat_ioctl,
1287 #endif
1288 	.release =	mon_bin_release,
1289 	.mmap =		mon_bin_mmap,
1290 };
1291 
1292 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1293 {
1294 	DECLARE_WAITQUEUE(waita, current);
1295 	unsigned long flags;
1296 
1297 	add_wait_queue(&rp->b_wait, &waita);
1298 	set_current_state(TASK_INTERRUPTIBLE);
1299 
1300 	spin_lock_irqsave(&rp->b_lock, flags);
1301 	while (MON_RING_EMPTY(rp)) {
1302 		spin_unlock_irqrestore(&rp->b_lock, flags);
1303 
1304 		if (file->f_flags & O_NONBLOCK) {
1305 			set_current_state(TASK_RUNNING);
1306 			remove_wait_queue(&rp->b_wait, &waita);
1307 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1308 		}
1309 		schedule();
1310 		if (signal_pending(current)) {
1311 			remove_wait_queue(&rp->b_wait, &waita);
1312 			return -EINTR;
1313 		}
1314 		set_current_state(TASK_INTERRUPTIBLE);
1315 
1316 		spin_lock_irqsave(&rp->b_lock, flags);
1317 	}
1318 	spin_unlock_irqrestore(&rp->b_lock, flags);
1319 
1320 	set_current_state(TASK_RUNNING);
1321 	remove_wait_queue(&rp->b_wait, &waita);
1322 	return 0;
1323 }
1324 
1325 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1326 {
1327 	int n;
1328 	unsigned long vaddr;
1329 
1330 	for (n = 0; n < npages; n++) {
1331 		vaddr = get_zeroed_page(GFP_KERNEL);
1332 		if (vaddr == 0) {
1333 			while (n-- != 0)
1334 				free_page((unsigned long) map[n].ptr);
1335 			return -ENOMEM;
1336 		}
1337 		map[n].ptr = (unsigned char *) vaddr;
1338 		map[n].pg = virt_to_page((void *) vaddr);
1339 	}
1340 	return 0;
1341 }
1342 
1343 static void mon_free_buff(struct mon_pgmap *map, int npages)
1344 {
1345 	int n;
1346 
1347 	for (n = 0; n < npages; n++)
1348 		free_page((unsigned long) map[n].ptr);
1349 }
1350 
1351 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1352 {
1353 	struct device *dev;
1354 	unsigned minor = ubus? ubus->busnum: 0;
1355 
1356 	if (minor >= MON_BIN_MAX_MINOR)
1357 		return 0;
1358 
1359 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1360 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1361 			    "usbmon%d", minor);
1362 	if (IS_ERR(dev))
1363 		return 0;
1364 
1365 	mbus->classdev = dev;
1366 	return 1;
1367 }
1368 
1369 void mon_bin_del(struct mon_bus *mbus)
1370 {
1371 	device_destroy(mon_bin_class, mbus->classdev->devt);
1372 }
1373 
1374 int __init mon_bin_init(void)
1375 {
1376 	int rc;
1377 
1378 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1379 	if (IS_ERR(mon_bin_class)) {
1380 		rc = PTR_ERR(mon_bin_class);
1381 		goto err_class;
1382 	}
1383 
1384 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1385 	if (rc < 0)
1386 		goto err_dev;
1387 
1388 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1389 	mon_bin_cdev.owner = THIS_MODULE;
1390 
1391 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1392 	if (rc < 0)
1393 		goto err_add;
1394 
1395 	return 0;
1396 
1397 err_add:
1398 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1399 err_dev:
1400 	class_destroy(mon_bin_class);
1401 err_class:
1402 	return rc;
1403 }
1404 
1405 void mon_bin_exit(void)
1406 {
1407 	cdev_del(&mon_bin_cdev);
1408 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1409 	class_destroy(mon_bin_class);
1410 }
1411