xref: /linux/drivers/usb/mon/mon_bin.c (revision 4c8f1cb266cba4d1052f524d04df839d8f732ace)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19 
20 #include <asm/uaccess.h>
21 
22 #include "usb_mon.h"
23 
24 /*
25  * Defined by USB 2.0 clause 9.3, table 9.2.
26  */
27 #define SETUP_LEN  8
28 
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
31 
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 /* #9 was MON_IOCT_SETAPI */
41 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
42 
43 #ifdef CONFIG_COMPAT
44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
46 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
47 #endif
48 
49 /*
50  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
51  * But it's all right. Just use a simple way to make sure the chunk is never
52  * smaller than a page.
53  *
54  * N.B. An application does not know our chunk size.
55  *
56  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
57  * page-sized chunks for the time being.
58  */
59 #define CHUNK_SIZE   PAGE_SIZE
60 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
61 
62 /*
63  * The magic limit was calculated so that it allows the monitoring
64  * application to pick data once in two ticks. This way, another application,
65  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
66  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
67  * enormous overhead built into the bus protocol, so we need about 1000 KB.
68  *
69  * This is still too much for most cases, where we just snoop a few
70  * descriptor fetches for enumeration. So, the default is a "reasonable"
71  * amount for systems with HZ=250 and incomplete bus saturation.
72  *
73  * XXX What about multi-megabyte URBs which take minutes to transfer?
74  */
75 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
76 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
77 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
78 
79 /*
80  * The per-event API header (2 per URB).
81  *
82  * This structure is seen in userland as defined by the documentation.
83  */
84 struct mon_bin_hdr {
85 	u64 id;			/* URB ID - from submission to callback */
86 	unsigned char type;	/* Same as in text API; extensible. */
87 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
88 	unsigned char epnum;	/* Endpoint number and transfer direction */
89 	unsigned char devnum;	/* Device address */
90 	unsigned short busnum;	/* Bus number */
91 	char flag_setup;
92 	char flag_data;
93 	s64 ts_sec;		/* gettimeofday */
94 	s32 ts_usec;		/* gettimeofday */
95 	int status;
96 	unsigned int len_urb;	/* Length of data (submitted or actual) */
97 	unsigned int len_cap;	/* Delivered length */
98 	union {
99 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
100 		struct iso_rec {
101 			int error_count;
102 			int numdesc;
103 		} iso;
104 	} s;
105 	int interval;
106 	int start_frame;
107 	unsigned int xfer_flags;
108 	unsigned int ndesc;	/* Actual number of ISO descriptors */
109 };
110 
111 /*
112  * ISO vector, packed into the head of data stream.
113  * This has to take 16 bytes to make sure that the end of buffer
114  * wrap is not happening in the middle of a descriptor.
115  */
116 struct mon_bin_isodesc {
117 	int          iso_status;
118 	unsigned int iso_off;
119 	unsigned int iso_len;
120 	u32 _pad;
121 };
122 
123 /* per file statistic */
124 struct mon_bin_stats {
125 	u32 queued;
126 	u32 dropped;
127 };
128 
129 struct mon_bin_get {
130 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
131 	void __user *data;
132 	size_t alloc;		/* Length of data (can be zero) */
133 };
134 
135 struct mon_bin_mfetch {
136 	u32 __user *offvec;	/* Vector of events fetched */
137 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
138 	u32 nflush;		/* Number of events to flush */
139 };
140 
141 #ifdef CONFIG_COMPAT
142 struct mon_bin_get32 {
143 	u32 hdr32;
144 	u32 data32;
145 	u32 alloc32;
146 };
147 
148 struct mon_bin_mfetch32 {
149         u32 offvec32;
150         u32 nfetch32;
151         u32 nflush32;
152 };
153 #endif
154 
155 /* Having these two values same prevents wrapping of the mon_bin_hdr */
156 #define PKT_ALIGN   64
157 #define PKT_SIZE    64
158 
159 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
160 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
161 
162 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
163 
164 /* max number of USB bus supported */
165 #define MON_BIN_MAX_MINOR 128
166 
167 /*
168  * The buffer: map of used pages.
169  */
170 struct mon_pgmap {
171 	struct page *pg;
172 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
173 };
174 
175 /*
176  * This gets associated with an open file struct.
177  */
178 struct mon_reader_bin {
179 	/* The buffer: one per open. */
180 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
181 	unsigned int b_size;		/* Current size of the buffer - bytes */
182 	unsigned int b_cnt;		/* Bytes used */
183 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
184 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
185 	struct mon_pgmap *b_vec;	/* The map array */
186 	wait_queue_head_t b_wait;	/* Wait for data here */
187 
188 	struct mutex fetch_lock;	/* Protect b_read, b_out */
189 	int mmap_active;
190 
191 	/* A list of these is needed for "bus 0". Some time later. */
192 	struct mon_reader r;
193 
194 	/* Stats */
195 	unsigned int cnt_lost;
196 };
197 
198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
199     unsigned int offset)
200 {
201 	return (struct mon_bin_hdr *)
202 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
203 }
204 
205 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
206 
207 static unsigned char xfer_to_pipe[4] = {
208 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
209 };
210 
211 static struct class *mon_bin_class;
212 static dev_t mon_bin_dev0;
213 static struct cdev mon_bin_cdev;
214 
215 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
216     unsigned int offset, unsigned int size);
217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
218 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
219 static void mon_free_buff(struct mon_pgmap *map, int npages);
220 
221 /*
222  * This is a "chunked memcpy". It does not manipulate any counters.
223  */
224 static void mon_copy_to_buff(const struct mon_reader_bin *this,
225     unsigned int off, const unsigned char *from, unsigned int length)
226 {
227 	unsigned int step_len;
228 	unsigned char *buf;
229 	unsigned int in_page;
230 
231 	while (length) {
232 		/*
233 		 * Determine step_len.
234 		 */
235 		step_len = length;
236 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
237 		if (in_page < step_len)
238 			step_len = in_page;
239 
240 		/*
241 		 * Copy data and advance pointers.
242 		 */
243 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
244 		memcpy(buf, from, step_len);
245 		if ((off += step_len) >= this->b_size) off = 0;
246 		from += step_len;
247 		length -= step_len;
248 	}
249 }
250 
251 /*
252  * This is a little worse than the above because it's "chunked copy_to_user".
253  * The return value is an error code, not an offset.
254  */
255 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
256     char __user *to, int length)
257 {
258 	unsigned int step_len;
259 	unsigned char *buf;
260 	unsigned int in_page;
261 
262 	while (length) {
263 		/*
264 		 * Determine step_len.
265 		 */
266 		step_len = length;
267 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
268 		if (in_page < step_len)
269 			step_len = in_page;
270 
271 		/*
272 		 * Copy data and advance pointers.
273 		 */
274 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
275 		if (copy_to_user(to, buf, step_len))
276 			return -EINVAL;
277 		if ((off += step_len) >= this->b_size) off = 0;
278 		to += step_len;
279 		length -= step_len;
280 	}
281 	return 0;
282 }
283 
284 /*
285  * Allocate an (aligned) area in the buffer.
286  * This is called under b_lock.
287  * Returns ~0 on failure.
288  */
289 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
290     unsigned int size)
291 {
292 	unsigned int offset;
293 
294 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
295 	if (rp->b_cnt + size > rp->b_size)
296 		return ~0;
297 	offset = rp->b_in;
298 	rp->b_cnt += size;
299 	if ((rp->b_in += size) >= rp->b_size)
300 		rp->b_in -= rp->b_size;
301 	return offset;
302 }
303 
304 /*
305  * This is the same thing as mon_buff_area_alloc, only it does not allow
306  * buffers to wrap. This is needed by applications which pass references
307  * into mmap-ed buffers up their stacks (libpcap can do that).
308  *
309  * Currently, we always have the header stuck with the data, although
310  * it is not strictly speaking necessary.
311  *
312  * When a buffer would wrap, we place a filler packet to mark the space.
313  */
314 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
315     unsigned int size)
316 {
317 	unsigned int offset;
318 	unsigned int fill_size;
319 
320 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
321 	if (rp->b_cnt + size > rp->b_size)
322 		return ~0;
323 	if (rp->b_in + size > rp->b_size) {
324 		/*
325 		 * This would wrap. Find if we still have space after
326 		 * skipping to the end of the buffer. If we do, place
327 		 * a filler packet and allocate a new packet.
328 		 */
329 		fill_size = rp->b_size - rp->b_in;
330 		if (rp->b_cnt + size + fill_size > rp->b_size)
331 			return ~0;
332 		mon_buff_area_fill(rp, rp->b_in, fill_size);
333 
334 		offset = 0;
335 		rp->b_in = size;
336 		rp->b_cnt += size + fill_size;
337 	} else if (rp->b_in + size == rp->b_size) {
338 		offset = rp->b_in;
339 		rp->b_in = 0;
340 		rp->b_cnt += size;
341 	} else {
342 		offset = rp->b_in;
343 		rp->b_in += size;
344 		rp->b_cnt += size;
345 	}
346 	return offset;
347 }
348 
349 /*
350  * Return a few (kilo-)bytes to the head of the buffer.
351  * This is used if a DMA fetch fails.
352  */
353 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
354 {
355 
356 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
357 	rp->b_cnt -= size;
358 	if (rp->b_in < size)
359 		rp->b_in += rp->b_size;
360 	rp->b_in -= size;
361 }
362 
363 /*
364  * This has to be called under both b_lock and fetch_lock, because
365  * it accesses both b_cnt and b_out.
366  */
367 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
368 {
369 
370 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
371 	rp->b_cnt -= size;
372 	if ((rp->b_out += size) >= rp->b_size)
373 		rp->b_out -= rp->b_size;
374 }
375 
376 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
377     unsigned int offset, unsigned int size)
378 {
379 	struct mon_bin_hdr *ep;
380 
381 	ep = MON_OFF2HDR(rp, offset);
382 	memset(ep, 0, PKT_SIZE);
383 	ep->type = '@';
384 	ep->len_cap = size - PKT_SIZE;
385 }
386 
387 static inline char mon_bin_get_setup(unsigned char *setupb,
388     const struct urb *urb, char ev_type)
389 {
390 
391 	if (urb->setup_packet == NULL)
392 		return 'Z';
393 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
394 	return 0;
395 }
396 
397 static char mon_bin_get_data(const struct mon_reader_bin *rp,
398     unsigned int offset, struct urb *urb, unsigned int length)
399 {
400 
401 	if (urb->transfer_buffer == NULL)
402 		return 'Z';
403 	mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
404 	return 0;
405 }
406 
407 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
408     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
409 {
410 	struct mon_bin_isodesc *dp;
411 	struct usb_iso_packet_descriptor *fp;
412 
413 	fp = urb->iso_frame_desc;
414 	while (ndesc-- != 0) {
415 		dp = (struct mon_bin_isodesc *)
416 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
417 		dp->iso_status = fp->status;
418 		dp->iso_off = fp->offset;
419 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
420 		dp->_pad = 0;
421 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
422 			offset = 0;
423 		fp++;
424 	}
425 }
426 
427 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
428     char ev_type, int status)
429 {
430 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
431 	unsigned long flags;
432 	struct timeval ts;
433 	unsigned int urb_length;
434 	unsigned int offset;
435 	unsigned int length;
436 	unsigned int ndesc, lendesc;
437 	unsigned char dir;
438 	struct mon_bin_hdr *ep;
439 	char data_tag = 0;
440 
441 	do_gettimeofday(&ts);
442 
443 	spin_lock_irqsave(&rp->b_lock, flags);
444 
445 	/*
446 	 * Find the maximum allowable length, then allocate space.
447 	 */
448 	if (usb_endpoint_xfer_isoc(epd)) {
449 		if (urb->number_of_packets < 0) {
450 			ndesc = 0;
451 		} else if (urb->number_of_packets >= ISODESC_MAX) {
452 			ndesc = ISODESC_MAX;
453 		} else {
454 			ndesc = urb->number_of_packets;
455 		}
456 	} else {
457 		ndesc = 0;
458 	}
459 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
460 
461 	urb_length = (ev_type == 'S') ?
462 	    urb->transfer_buffer_length : urb->actual_length;
463 	length = urb_length;
464 
465 	if (length >= rp->b_size/5)
466 		length = rp->b_size/5;
467 
468 	if (usb_urb_dir_in(urb)) {
469 		if (ev_type == 'S') {
470 			length = 0;
471 			data_tag = '<';
472 		}
473 		/* Cannot rely on endpoint number in case of control ep.0 */
474 		dir = USB_DIR_IN;
475 	} else {
476 		if (ev_type == 'C') {
477 			length = 0;
478 			data_tag = '>';
479 		}
480 		dir = 0;
481 	}
482 
483 	if (rp->mmap_active) {
484 		offset = mon_buff_area_alloc_contiguous(rp,
485 						 length + PKT_SIZE + lendesc);
486 	} else {
487 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
488 	}
489 	if (offset == ~0) {
490 		rp->cnt_lost++;
491 		spin_unlock_irqrestore(&rp->b_lock, flags);
492 		return;
493 	}
494 
495 	ep = MON_OFF2HDR(rp, offset);
496 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
497 
498 	/*
499 	 * Fill the allocated area.
500 	 */
501 	memset(ep, 0, PKT_SIZE);
502 	ep->type = ev_type;
503 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
504 	ep->epnum = dir | usb_endpoint_num(epd);
505 	ep->devnum = urb->dev->devnum;
506 	ep->busnum = urb->dev->bus->busnum;
507 	ep->id = (unsigned long) urb;
508 	ep->ts_sec = ts.tv_sec;
509 	ep->ts_usec = ts.tv_usec;
510 	ep->status = status;
511 	ep->len_urb = urb_length;
512 	ep->len_cap = length + lendesc;
513 	ep->xfer_flags = urb->transfer_flags;
514 
515 	if (usb_endpoint_xfer_int(epd)) {
516 		ep->interval = urb->interval;
517 	} else if (usb_endpoint_xfer_isoc(epd)) {
518 		ep->interval = urb->interval;
519 		ep->start_frame = urb->start_frame;
520 		ep->s.iso.error_count = urb->error_count;
521 		ep->s.iso.numdesc = urb->number_of_packets;
522 	}
523 
524 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
525 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
526 	} else {
527 		ep->flag_setup = '-';
528 	}
529 
530 	if (ndesc != 0) {
531 		ep->ndesc = ndesc;
532 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
533 		if ((offset += lendesc) >= rp->b_size)
534 			offset -= rp->b_size;
535 	}
536 
537 	if (length != 0) {
538 		ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
539 		if (ep->flag_data != 0) {	/* Yes, it's 0x00, not '0' */
540 			ep->len_cap = 0;
541 			mon_buff_area_shrink(rp, length);
542 		}
543 	} else {
544 		ep->flag_data = data_tag;
545 	}
546 
547 	spin_unlock_irqrestore(&rp->b_lock, flags);
548 
549 	wake_up(&rp->b_wait);
550 }
551 
552 static void mon_bin_submit(void *data, struct urb *urb)
553 {
554 	struct mon_reader_bin *rp = data;
555 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
556 }
557 
558 static void mon_bin_complete(void *data, struct urb *urb, int status)
559 {
560 	struct mon_reader_bin *rp = data;
561 	mon_bin_event(rp, urb, 'C', status);
562 }
563 
564 static void mon_bin_error(void *data, struct urb *urb, int error)
565 {
566 	struct mon_reader_bin *rp = data;
567 	unsigned long flags;
568 	unsigned int offset;
569 	struct mon_bin_hdr *ep;
570 
571 	spin_lock_irqsave(&rp->b_lock, flags);
572 
573 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
574 	if (offset == ~0) {
575 		/* Not incrementing cnt_lost. Just because. */
576 		spin_unlock_irqrestore(&rp->b_lock, flags);
577 		return;
578 	}
579 
580 	ep = MON_OFF2HDR(rp, offset);
581 
582 	memset(ep, 0, PKT_SIZE);
583 	ep->type = 'E';
584 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
585 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
586 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
587 	ep->devnum = urb->dev->devnum;
588 	ep->busnum = urb->dev->bus->busnum;
589 	ep->id = (unsigned long) urb;
590 	ep->status = error;
591 
592 	ep->flag_setup = '-';
593 	ep->flag_data = 'E';
594 
595 	spin_unlock_irqrestore(&rp->b_lock, flags);
596 
597 	wake_up(&rp->b_wait);
598 }
599 
600 static int mon_bin_open(struct inode *inode, struct file *file)
601 {
602 	struct mon_bus *mbus;
603 	struct mon_reader_bin *rp;
604 	size_t size;
605 	int rc;
606 
607 	lock_kernel();
608 	mutex_lock(&mon_lock);
609 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
610 		mutex_unlock(&mon_lock);
611 		unlock_kernel();
612 		return -ENODEV;
613 	}
614 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
615 		printk(KERN_ERR TAG ": consistency error on open\n");
616 		mutex_unlock(&mon_lock);
617 		unlock_kernel();
618 		return -ENODEV;
619 	}
620 
621 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
622 	if (rp == NULL) {
623 		rc = -ENOMEM;
624 		goto err_alloc;
625 	}
626 	spin_lock_init(&rp->b_lock);
627 	init_waitqueue_head(&rp->b_wait);
628 	mutex_init(&rp->fetch_lock);
629 	rp->b_size = BUFF_DFL;
630 
631 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
632 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
633 		rc = -ENOMEM;
634 		goto err_allocvec;
635 	}
636 
637 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
638 		goto err_allocbuff;
639 
640 	rp->r.m_bus = mbus;
641 	rp->r.r_data = rp;
642 	rp->r.rnf_submit = mon_bin_submit;
643 	rp->r.rnf_error = mon_bin_error;
644 	rp->r.rnf_complete = mon_bin_complete;
645 
646 	mon_reader_add(mbus, &rp->r);
647 
648 	file->private_data = rp;
649 	mutex_unlock(&mon_lock);
650 	unlock_kernel();
651 	return 0;
652 
653 err_allocbuff:
654 	kfree(rp->b_vec);
655 err_allocvec:
656 	kfree(rp);
657 err_alloc:
658 	mutex_unlock(&mon_lock);
659 	unlock_kernel();
660 	return rc;
661 }
662 
663 /*
664  * Extract an event from buffer and copy it to user space.
665  * Wait if there is no event ready.
666  * Returns zero or error.
667  */
668 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
669     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
670     void __user *data, unsigned int nbytes)
671 {
672 	unsigned long flags;
673 	struct mon_bin_hdr *ep;
674 	size_t step_len;
675 	unsigned int offset;
676 	int rc;
677 
678 	mutex_lock(&rp->fetch_lock);
679 
680 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
681 		mutex_unlock(&rp->fetch_lock);
682 		return rc;
683 	}
684 
685 	ep = MON_OFF2HDR(rp, rp->b_out);
686 
687 	if (copy_to_user(hdr, ep, hdrbytes)) {
688 		mutex_unlock(&rp->fetch_lock);
689 		return -EFAULT;
690 	}
691 
692 	step_len = min(ep->len_cap, nbytes);
693 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
694 
695 	if (copy_from_buf(rp, offset, data, step_len)) {
696 		mutex_unlock(&rp->fetch_lock);
697 		return -EFAULT;
698 	}
699 
700 	spin_lock_irqsave(&rp->b_lock, flags);
701 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
702 	spin_unlock_irqrestore(&rp->b_lock, flags);
703 	rp->b_read = 0;
704 
705 	mutex_unlock(&rp->fetch_lock);
706 	return 0;
707 }
708 
709 static int mon_bin_release(struct inode *inode, struct file *file)
710 {
711 	struct mon_reader_bin *rp = file->private_data;
712 	struct mon_bus* mbus = rp->r.m_bus;
713 
714 	mutex_lock(&mon_lock);
715 
716 	if (mbus->nreaders <= 0) {
717 		printk(KERN_ERR TAG ": consistency error on close\n");
718 		mutex_unlock(&mon_lock);
719 		return 0;
720 	}
721 	mon_reader_del(mbus, &rp->r);
722 
723 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
724 	kfree(rp->b_vec);
725 	kfree(rp);
726 
727 	mutex_unlock(&mon_lock);
728 	return 0;
729 }
730 
731 static ssize_t mon_bin_read(struct file *file, char __user *buf,
732     size_t nbytes, loff_t *ppos)
733 {
734 	struct mon_reader_bin *rp = file->private_data;
735 	unsigned int hdrbytes = PKT_SZ_API0;
736 	unsigned long flags;
737 	struct mon_bin_hdr *ep;
738 	unsigned int offset;
739 	size_t step_len;
740 	char *ptr;
741 	ssize_t done = 0;
742 	int rc;
743 
744 	mutex_lock(&rp->fetch_lock);
745 
746 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
747 		mutex_unlock(&rp->fetch_lock);
748 		return rc;
749 	}
750 
751 	ep = MON_OFF2HDR(rp, rp->b_out);
752 
753 	if (rp->b_read < hdrbytes) {
754 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
755 		ptr = ((char *)ep) + rp->b_read;
756 		if (step_len && copy_to_user(buf, ptr, step_len)) {
757 			mutex_unlock(&rp->fetch_lock);
758 			return -EFAULT;
759 		}
760 		nbytes -= step_len;
761 		buf += step_len;
762 		rp->b_read += step_len;
763 		done += step_len;
764 	}
765 
766 	if (rp->b_read >= hdrbytes) {
767 		step_len = ep->len_cap;
768 		step_len -= rp->b_read - hdrbytes;
769 		if (step_len > nbytes)
770 			step_len = nbytes;
771 		offset = rp->b_out + PKT_SIZE;
772 		offset += rp->b_read - hdrbytes;
773 		if (offset >= rp->b_size)
774 			offset -= rp->b_size;
775 		if (copy_from_buf(rp, offset, buf, step_len)) {
776 			mutex_unlock(&rp->fetch_lock);
777 			return -EFAULT;
778 		}
779 		nbytes -= step_len;
780 		buf += step_len;
781 		rp->b_read += step_len;
782 		done += step_len;
783 	}
784 
785 	/*
786 	 * Check if whole packet was read, and if so, jump to the next one.
787 	 */
788 	if (rp->b_read >= hdrbytes + ep->len_cap) {
789 		spin_lock_irqsave(&rp->b_lock, flags);
790 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
791 		spin_unlock_irqrestore(&rp->b_lock, flags);
792 		rp->b_read = 0;
793 	}
794 
795 	mutex_unlock(&rp->fetch_lock);
796 	return done;
797 }
798 
799 /*
800  * Remove at most nevents from chunked buffer.
801  * Returns the number of removed events.
802  */
803 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
804 {
805 	unsigned long flags;
806 	struct mon_bin_hdr *ep;
807 	int i;
808 
809 	mutex_lock(&rp->fetch_lock);
810 	spin_lock_irqsave(&rp->b_lock, flags);
811 	for (i = 0; i < nevents; ++i) {
812 		if (MON_RING_EMPTY(rp))
813 			break;
814 
815 		ep = MON_OFF2HDR(rp, rp->b_out);
816 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
817 	}
818 	spin_unlock_irqrestore(&rp->b_lock, flags);
819 	rp->b_read = 0;
820 	mutex_unlock(&rp->fetch_lock);
821 	return i;
822 }
823 
824 /*
825  * Fetch at most max event offsets into the buffer and put them into vec.
826  * The events are usually freed later with mon_bin_flush.
827  * Return the effective number of events fetched.
828  */
829 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
830     u32 __user *vec, unsigned int max)
831 {
832 	unsigned int cur_out;
833 	unsigned int bytes, avail;
834 	unsigned int size;
835 	unsigned int nevents;
836 	struct mon_bin_hdr *ep;
837 	unsigned long flags;
838 	int rc;
839 
840 	mutex_lock(&rp->fetch_lock);
841 
842 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
843 		mutex_unlock(&rp->fetch_lock);
844 		return rc;
845 	}
846 
847 	spin_lock_irqsave(&rp->b_lock, flags);
848 	avail = rp->b_cnt;
849 	spin_unlock_irqrestore(&rp->b_lock, flags);
850 
851 	cur_out = rp->b_out;
852 	nevents = 0;
853 	bytes = 0;
854 	while (bytes < avail) {
855 		if (nevents >= max)
856 			break;
857 
858 		ep = MON_OFF2HDR(rp, cur_out);
859 		if (put_user(cur_out, &vec[nevents])) {
860 			mutex_unlock(&rp->fetch_lock);
861 			return -EFAULT;
862 		}
863 
864 		nevents++;
865 		size = ep->len_cap + PKT_SIZE;
866 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
867 		if ((cur_out += size) >= rp->b_size)
868 			cur_out -= rp->b_size;
869 		bytes += size;
870 	}
871 
872 	mutex_unlock(&rp->fetch_lock);
873 	return nevents;
874 }
875 
876 /*
877  * Count events. This is almost the same as the above mon_bin_fetch,
878  * only we do not store offsets into user vector, and we have no limit.
879  */
880 static int mon_bin_queued(struct mon_reader_bin *rp)
881 {
882 	unsigned int cur_out;
883 	unsigned int bytes, avail;
884 	unsigned int size;
885 	unsigned int nevents;
886 	struct mon_bin_hdr *ep;
887 	unsigned long flags;
888 
889 	mutex_lock(&rp->fetch_lock);
890 
891 	spin_lock_irqsave(&rp->b_lock, flags);
892 	avail = rp->b_cnt;
893 	spin_unlock_irqrestore(&rp->b_lock, flags);
894 
895 	cur_out = rp->b_out;
896 	nevents = 0;
897 	bytes = 0;
898 	while (bytes < avail) {
899 		ep = MON_OFF2HDR(rp, cur_out);
900 
901 		nevents++;
902 		size = ep->len_cap + PKT_SIZE;
903 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
904 		if ((cur_out += size) >= rp->b_size)
905 			cur_out -= rp->b_size;
906 		bytes += size;
907 	}
908 
909 	mutex_unlock(&rp->fetch_lock);
910 	return nevents;
911 }
912 
913 /*
914  */
915 static int mon_bin_ioctl(struct inode *inode, struct file *file,
916     unsigned int cmd, unsigned long arg)
917 {
918 	struct mon_reader_bin *rp = file->private_data;
919 	// struct mon_bus* mbus = rp->r.m_bus;
920 	int ret = 0;
921 	struct mon_bin_hdr *ep;
922 	unsigned long flags;
923 
924 	switch (cmd) {
925 
926 	case MON_IOCQ_URB_LEN:
927 		/*
928 		 * N.B. This only returns the size of data, without the header.
929 		 */
930 		spin_lock_irqsave(&rp->b_lock, flags);
931 		if (!MON_RING_EMPTY(rp)) {
932 			ep = MON_OFF2HDR(rp, rp->b_out);
933 			ret = ep->len_cap;
934 		}
935 		spin_unlock_irqrestore(&rp->b_lock, flags);
936 		break;
937 
938 	case MON_IOCQ_RING_SIZE:
939 		ret = rp->b_size;
940 		break;
941 
942 	case MON_IOCT_RING_SIZE:
943 		/*
944 		 * Changing the buffer size will flush it's contents; the new
945 		 * buffer is allocated before releasing the old one to be sure
946 		 * the device will stay functional also in case of memory
947 		 * pressure.
948 		 */
949 		{
950 		int size;
951 		struct mon_pgmap *vec;
952 
953 		if (arg < BUFF_MIN || arg > BUFF_MAX)
954 			return -EINVAL;
955 
956 		size = CHUNK_ALIGN(arg);
957 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
958 		    GFP_KERNEL)) == NULL) {
959 			ret = -ENOMEM;
960 			break;
961 		}
962 
963 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
964 		if (ret < 0) {
965 			kfree(vec);
966 			break;
967 		}
968 
969 		mutex_lock(&rp->fetch_lock);
970 		spin_lock_irqsave(&rp->b_lock, flags);
971 		mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
972 		kfree(rp->b_vec);
973 		rp->b_vec  = vec;
974 		rp->b_size = size;
975 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
976 		rp->cnt_lost = 0;
977 		spin_unlock_irqrestore(&rp->b_lock, flags);
978 		mutex_unlock(&rp->fetch_lock);
979 		}
980 		break;
981 
982 	case MON_IOCH_MFLUSH:
983 		ret = mon_bin_flush(rp, arg);
984 		break;
985 
986 	case MON_IOCX_GET:
987 	case MON_IOCX_GETX:
988 		{
989 		struct mon_bin_get getb;
990 
991 		if (copy_from_user(&getb, (void __user *)arg,
992 					    sizeof(struct mon_bin_get)))
993 			return -EFAULT;
994 
995 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
996 			return -EINVAL;
997 		ret = mon_bin_get_event(file, rp, getb.hdr,
998 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
999 		    getb.data, (unsigned int)getb.alloc);
1000 		}
1001 		break;
1002 
1003 	case MON_IOCX_MFETCH:
1004 		{
1005 		struct mon_bin_mfetch mfetch;
1006 		struct mon_bin_mfetch __user *uptr;
1007 
1008 		uptr = (struct mon_bin_mfetch __user *)arg;
1009 
1010 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1011 			return -EFAULT;
1012 
1013 		if (mfetch.nflush) {
1014 			ret = mon_bin_flush(rp, mfetch.nflush);
1015 			if (ret < 0)
1016 				return ret;
1017 			if (put_user(ret, &uptr->nflush))
1018 				return -EFAULT;
1019 		}
1020 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1021 		if (ret < 0)
1022 			return ret;
1023 		if (put_user(ret, &uptr->nfetch))
1024 			return -EFAULT;
1025 		ret = 0;
1026 		}
1027 		break;
1028 
1029 	case MON_IOCG_STATS: {
1030 		struct mon_bin_stats __user *sp;
1031 		unsigned int nevents;
1032 		unsigned int ndropped;
1033 
1034 		spin_lock_irqsave(&rp->b_lock, flags);
1035 		ndropped = rp->cnt_lost;
1036 		rp->cnt_lost = 0;
1037 		spin_unlock_irqrestore(&rp->b_lock, flags);
1038 		nevents = mon_bin_queued(rp);
1039 
1040 		sp = (struct mon_bin_stats __user *)arg;
1041 		if (put_user(rp->cnt_lost, &sp->dropped))
1042 			return -EFAULT;
1043 		if (put_user(nevents, &sp->queued))
1044 			return -EFAULT;
1045 
1046 		}
1047 		break;
1048 
1049 	default:
1050 		return -ENOTTY;
1051 	}
1052 
1053 	return ret;
1054 }
1055 
1056 #ifdef CONFIG_COMPAT
1057 static long mon_bin_compat_ioctl(struct file *file,
1058     unsigned int cmd, unsigned long arg)
1059 {
1060 	struct mon_reader_bin *rp = file->private_data;
1061 	int ret;
1062 
1063 	switch (cmd) {
1064 
1065 	case MON_IOCX_GET32:
1066 	case MON_IOCX_GETX32:
1067 		{
1068 		struct mon_bin_get32 getb;
1069 
1070 		if (copy_from_user(&getb, (void __user *)arg,
1071 					    sizeof(struct mon_bin_get32)))
1072 			return -EFAULT;
1073 
1074 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1075 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1076 		    compat_ptr(getb.data32), getb.alloc32);
1077 		if (ret < 0)
1078 			return ret;
1079 		}
1080 		return 0;
1081 
1082 	case MON_IOCX_MFETCH32:
1083 		{
1084 		struct mon_bin_mfetch32 mfetch;
1085 		struct mon_bin_mfetch32 __user *uptr;
1086 
1087 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1088 
1089 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1090 			return -EFAULT;
1091 
1092 		if (mfetch.nflush32) {
1093 			ret = mon_bin_flush(rp, mfetch.nflush32);
1094 			if (ret < 0)
1095 				return ret;
1096 			if (put_user(ret, &uptr->nflush32))
1097 				return -EFAULT;
1098 		}
1099 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1100 		    mfetch.nfetch32);
1101 		if (ret < 0)
1102 			return ret;
1103 		if (put_user(ret, &uptr->nfetch32))
1104 			return -EFAULT;
1105 		}
1106 		return 0;
1107 
1108 	case MON_IOCG_STATS:
1109 		return mon_bin_ioctl(NULL, file, cmd,
1110 					    (unsigned long) compat_ptr(arg));
1111 
1112 	case MON_IOCQ_URB_LEN:
1113 	case MON_IOCQ_RING_SIZE:
1114 	case MON_IOCT_RING_SIZE:
1115 	case MON_IOCH_MFLUSH:
1116 		return mon_bin_ioctl(NULL, file, cmd, arg);
1117 
1118 	default:
1119 		;
1120 	}
1121 	return -ENOTTY;
1122 }
1123 #endif /* CONFIG_COMPAT */
1124 
1125 static unsigned int
1126 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1127 {
1128 	struct mon_reader_bin *rp = file->private_data;
1129 	unsigned int mask = 0;
1130 	unsigned long flags;
1131 
1132 	if (file->f_mode & FMODE_READ)
1133 		poll_wait(file, &rp->b_wait, wait);
1134 
1135 	spin_lock_irqsave(&rp->b_lock, flags);
1136 	if (!MON_RING_EMPTY(rp))
1137 		mask |= POLLIN | POLLRDNORM;    /* readable */
1138 	spin_unlock_irqrestore(&rp->b_lock, flags);
1139 	return mask;
1140 }
1141 
1142 /*
1143  * open and close: just keep track of how many times the device is
1144  * mapped, to use the proper memory allocation function.
1145  */
1146 static void mon_bin_vma_open(struct vm_area_struct *vma)
1147 {
1148 	struct mon_reader_bin *rp = vma->vm_private_data;
1149 	rp->mmap_active++;
1150 }
1151 
1152 static void mon_bin_vma_close(struct vm_area_struct *vma)
1153 {
1154 	struct mon_reader_bin *rp = vma->vm_private_data;
1155 	rp->mmap_active--;
1156 }
1157 
1158 /*
1159  * Map ring pages to user space.
1160  */
1161 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1162 {
1163 	struct mon_reader_bin *rp = vma->vm_private_data;
1164 	unsigned long offset, chunk_idx;
1165 	struct page *pageptr;
1166 
1167 	offset = vmf->pgoff << PAGE_SHIFT;
1168 	if (offset >= rp->b_size)
1169 		return VM_FAULT_SIGBUS;
1170 	chunk_idx = offset / CHUNK_SIZE;
1171 	pageptr = rp->b_vec[chunk_idx].pg;
1172 	get_page(pageptr);
1173 	vmf->page = pageptr;
1174 	return 0;
1175 }
1176 
1177 static const struct vm_operations_struct mon_bin_vm_ops = {
1178 	.open =     mon_bin_vma_open,
1179 	.close =    mon_bin_vma_close,
1180 	.fault =    mon_bin_vma_fault,
1181 };
1182 
1183 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1184 {
1185 	/* don't do anything here: "fault" will set up page table entries */
1186 	vma->vm_ops = &mon_bin_vm_ops;
1187 	vma->vm_flags |= VM_RESERVED;
1188 	vma->vm_private_data = filp->private_data;
1189 	mon_bin_vma_open(vma);
1190 	return 0;
1191 }
1192 
1193 static const struct file_operations mon_fops_binary = {
1194 	.owner =	THIS_MODULE,
1195 	.open =		mon_bin_open,
1196 	.llseek =	no_llseek,
1197 	.read =		mon_bin_read,
1198 	/* .write =	mon_text_write, */
1199 	.poll =		mon_bin_poll,
1200 	.ioctl =	mon_bin_ioctl,
1201 #ifdef CONFIG_COMPAT
1202 	.compat_ioctl =	mon_bin_compat_ioctl,
1203 #endif
1204 	.release =	mon_bin_release,
1205 	.mmap =		mon_bin_mmap,
1206 };
1207 
1208 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1209 {
1210 	DECLARE_WAITQUEUE(waita, current);
1211 	unsigned long flags;
1212 
1213 	add_wait_queue(&rp->b_wait, &waita);
1214 	set_current_state(TASK_INTERRUPTIBLE);
1215 
1216 	spin_lock_irqsave(&rp->b_lock, flags);
1217 	while (MON_RING_EMPTY(rp)) {
1218 		spin_unlock_irqrestore(&rp->b_lock, flags);
1219 
1220 		if (file->f_flags & O_NONBLOCK) {
1221 			set_current_state(TASK_RUNNING);
1222 			remove_wait_queue(&rp->b_wait, &waita);
1223 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1224 		}
1225 		schedule();
1226 		if (signal_pending(current)) {
1227 			remove_wait_queue(&rp->b_wait, &waita);
1228 			return -EINTR;
1229 		}
1230 		set_current_state(TASK_INTERRUPTIBLE);
1231 
1232 		spin_lock_irqsave(&rp->b_lock, flags);
1233 	}
1234 	spin_unlock_irqrestore(&rp->b_lock, flags);
1235 
1236 	set_current_state(TASK_RUNNING);
1237 	remove_wait_queue(&rp->b_wait, &waita);
1238 	return 0;
1239 }
1240 
1241 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1242 {
1243 	int n;
1244 	unsigned long vaddr;
1245 
1246 	for (n = 0; n < npages; n++) {
1247 		vaddr = get_zeroed_page(GFP_KERNEL);
1248 		if (vaddr == 0) {
1249 			while (n-- != 0)
1250 				free_page((unsigned long) map[n].ptr);
1251 			return -ENOMEM;
1252 		}
1253 		map[n].ptr = (unsigned char *) vaddr;
1254 		map[n].pg = virt_to_page((void *) vaddr);
1255 	}
1256 	return 0;
1257 }
1258 
1259 static void mon_free_buff(struct mon_pgmap *map, int npages)
1260 {
1261 	int n;
1262 
1263 	for (n = 0; n < npages; n++)
1264 		free_page((unsigned long) map[n].ptr);
1265 }
1266 
1267 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1268 {
1269 	struct device *dev;
1270 	unsigned minor = ubus? ubus->busnum: 0;
1271 
1272 	if (minor >= MON_BIN_MAX_MINOR)
1273 		return 0;
1274 
1275 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1276 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1277 			    "usbmon%d", minor);
1278 	if (IS_ERR(dev))
1279 		return 0;
1280 
1281 	mbus->classdev = dev;
1282 	return 1;
1283 }
1284 
1285 void mon_bin_del(struct mon_bus *mbus)
1286 {
1287 	device_destroy(mon_bin_class, mbus->classdev->devt);
1288 }
1289 
1290 int __init mon_bin_init(void)
1291 {
1292 	int rc;
1293 
1294 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1295 	if (IS_ERR(mon_bin_class)) {
1296 		rc = PTR_ERR(mon_bin_class);
1297 		goto err_class;
1298 	}
1299 
1300 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1301 	if (rc < 0)
1302 		goto err_dev;
1303 
1304 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1305 	mon_bin_cdev.owner = THIS_MODULE;
1306 
1307 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1308 	if (rc < 0)
1309 		goto err_add;
1310 
1311 	return 0;
1312 
1313 err_add:
1314 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1315 err_dev:
1316 	class_destroy(mon_bin_class);
1317 err_class:
1318 	return rc;
1319 }
1320 
1321 void mon_bin_exit(void)
1322 {
1323 	cdev_del(&mon_bin_cdev);
1324 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1325 	class_destroy(mon_bin_class);
1326 }
1327