1 /* 2 * The USB Monitor, inspired by Dave Harding's USBMon. 3 * 4 * This is a binary format reader. 5 * 6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) 7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/cdev.h> 14 #include <linux/usb.h> 15 #include <linux/poll.h> 16 #include <linux/compat.h> 17 #include <linux/mm.h> 18 #include <linux/smp_lock.h> 19 20 #include <asm/uaccess.h> 21 22 #include "usb_mon.h" 23 24 /* 25 * Defined by USB 2.0 clause 9.3, table 9.2. 26 */ 27 #define SETUP_LEN 8 28 29 /* ioctl macros */ 30 #define MON_IOC_MAGIC 0x92 31 32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) 33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ 34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) 35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) 36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) 37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) 38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) 39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) 40 /* #9 was MON_IOCT_SETAPI */ 41 #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) 42 43 #ifdef CONFIG_COMPAT 44 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) 45 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) 46 #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) 47 #endif 48 49 /* 50 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). 51 * But it's all right. Just use a simple way to make sure the chunk is never 52 * smaller than a page. 53 * 54 * N.B. An application does not know our chunk size. 55 * 56 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with 57 * page-sized chunks for the time being. 58 */ 59 #define CHUNK_SIZE PAGE_SIZE 60 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) 61 62 /* 63 * The magic limit was calculated so that it allows the monitoring 64 * application to pick data once in two ticks. This way, another application, 65 * which presumably drives the bus, gets to hog CPU, yet we collect our data. 66 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an 67 * enormous overhead built into the bus protocol, so we need about 1000 KB. 68 * 69 * This is still too much for most cases, where we just snoop a few 70 * descriptor fetches for enumeration. So, the default is a "reasonable" 71 * amount for systems with HZ=250 and incomplete bus saturation. 72 * 73 * XXX What about multi-megabyte URBs which take minutes to transfer? 74 */ 75 #define BUFF_MAX CHUNK_ALIGN(1200*1024) 76 #define BUFF_DFL CHUNK_ALIGN(300*1024) 77 #define BUFF_MIN CHUNK_ALIGN(8*1024) 78 79 /* 80 * The per-event API header (2 per URB). 81 * 82 * This structure is seen in userland as defined by the documentation. 83 */ 84 struct mon_bin_hdr { 85 u64 id; /* URB ID - from submission to callback */ 86 unsigned char type; /* Same as in text API; extensible. */ 87 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ 88 unsigned char epnum; /* Endpoint number and transfer direction */ 89 unsigned char devnum; /* Device address */ 90 unsigned short busnum; /* Bus number */ 91 char flag_setup; 92 char flag_data; 93 s64 ts_sec; /* gettimeofday */ 94 s32 ts_usec; /* gettimeofday */ 95 int status; 96 unsigned int len_urb; /* Length of data (submitted or actual) */ 97 unsigned int len_cap; /* Delivered length */ 98 union { 99 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ 100 struct iso_rec { 101 int error_count; 102 int numdesc; 103 } iso; 104 } s; 105 int interval; 106 int start_frame; 107 unsigned int xfer_flags; 108 unsigned int ndesc; /* Actual number of ISO descriptors */ 109 }; 110 111 /* 112 * ISO vector, packed into the head of data stream. 113 * This has to take 16 bytes to make sure that the end of buffer 114 * wrap is not happening in the middle of a descriptor. 115 */ 116 struct mon_bin_isodesc { 117 int iso_status; 118 unsigned int iso_off; 119 unsigned int iso_len; 120 u32 _pad; 121 }; 122 123 /* per file statistic */ 124 struct mon_bin_stats { 125 u32 queued; 126 u32 dropped; 127 }; 128 129 struct mon_bin_get { 130 struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ 131 void __user *data; 132 size_t alloc; /* Length of data (can be zero) */ 133 }; 134 135 struct mon_bin_mfetch { 136 u32 __user *offvec; /* Vector of events fetched */ 137 u32 nfetch; /* Number of events to fetch (out: fetched) */ 138 u32 nflush; /* Number of events to flush */ 139 }; 140 141 #ifdef CONFIG_COMPAT 142 struct mon_bin_get32 { 143 u32 hdr32; 144 u32 data32; 145 u32 alloc32; 146 }; 147 148 struct mon_bin_mfetch32 { 149 u32 offvec32; 150 u32 nfetch32; 151 u32 nflush32; 152 }; 153 #endif 154 155 /* Having these two values same prevents wrapping of the mon_bin_hdr */ 156 #define PKT_ALIGN 64 157 #define PKT_SIZE 64 158 159 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ 160 #define PKT_SZ_API1 64 /* API 1 size: extra fields */ 161 162 #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ 163 164 /* max number of USB bus supported */ 165 #define MON_BIN_MAX_MINOR 128 166 167 /* 168 * The buffer: map of used pages. 169 */ 170 struct mon_pgmap { 171 struct page *pg; 172 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ 173 }; 174 175 /* 176 * This gets associated with an open file struct. 177 */ 178 struct mon_reader_bin { 179 /* The buffer: one per open. */ 180 spinlock_t b_lock; /* Protect b_cnt, b_in */ 181 unsigned int b_size; /* Current size of the buffer - bytes */ 182 unsigned int b_cnt; /* Bytes used */ 183 unsigned int b_in, b_out; /* Offsets into buffer - bytes */ 184 unsigned int b_read; /* Amount of read data in curr. pkt. */ 185 struct mon_pgmap *b_vec; /* The map array */ 186 wait_queue_head_t b_wait; /* Wait for data here */ 187 188 struct mutex fetch_lock; /* Protect b_read, b_out */ 189 int mmap_active; 190 191 /* A list of these is needed for "bus 0". Some time later. */ 192 struct mon_reader r; 193 194 /* Stats */ 195 unsigned int cnt_lost; 196 }; 197 198 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, 199 unsigned int offset) 200 { 201 return (struct mon_bin_hdr *) 202 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 203 } 204 205 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) 206 207 static unsigned char xfer_to_pipe[4] = { 208 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT 209 }; 210 211 static struct class *mon_bin_class; 212 static dev_t mon_bin_dev0; 213 static struct cdev mon_bin_cdev; 214 215 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 216 unsigned int offset, unsigned int size); 217 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); 218 static int mon_alloc_buff(struct mon_pgmap *map, int npages); 219 static void mon_free_buff(struct mon_pgmap *map, int npages); 220 221 /* 222 * This is a "chunked memcpy". It does not manipulate any counters. 223 */ 224 static void mon_copy_to_buff(const struct mon_reader_bin *this, 225 unsigned int off, const unsigned char *from, unsigned int length) 226 { 227 unsigned int step_len; 228 unsigned char *buf; 229 unsigned int in_page; 230 231 while (length) { 232 /* 233 * Determine step_len. 234 */ 235 step_len = length; 236 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 237 if (in_page < step_len) 238 step_len = in_page; 239 240 /* 241 * Copy data and advance pointers. 242 */ 243 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 244 memcpy(buf, from, step_len); 245 if ((off += step_len) >= this->b_size) off = 0; 246 from += step_len; 247 length -= step_len; 248 } 249 } 250 251 /* 252 * This is a little worse than the above because it's "chunked copy_to_user". 253 * The return value is an error code, not an offset. 254 */ 255 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, 256 char __user *to, int length) 257 { 258 unsigned int step_len; 259 unsigned char *buf; 260 unsigned int in_page; 261 262 while (length) { 263 /* 264 * Determine step_len. 265 */ 266 step_len = length; 267 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); 268 if (in_page < step_len) 269 step_len = in_page; 270 271 /* 272 * Copy data and advance pointers. 273 */ 274 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; 275 if (copy_to_user(to, buf, step_len)) 276 return -EINVAL; 277 if ((off += step_len) >= this->b_size) off = 0; 278 to += step_len; 279 length -= step_len; 280 } 281 return 0; 282 } 283 284 /* 285 * Allocate an (aligned) area in the buffer. 286 * This is called under b_lock. 287 * Returns ~0 on failure. 288 */ 289 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, 290 unsigned int size) 291 { 292 unsigned int offset; 293 294 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 295 if (rp->b_cnt + size > rp->b_size) 296 return ~0; 297 offset = rp->b_in; 298 rp->b_cnt += size; 299 if ((rp->b_in += size) >= rp->b_size) 300 rp->b_in -= rp->b_size; 301 return offset; 302 } 303 304 /* 305 * This is the same thing as mon_buff_area_alloc, only it does not allow 306 * buffers to wrap. This is needed by applications which pass references 307 * into mmap-ed buffers up their stacks (libpcap can do that). 308 * 309 * Currently, we always have the header stuck with the data, although 310 * it is not strictly speaking necessary. 311 * 312 * When a buffer would wrap, we place a filler packet to mark the space. 313 */ 314 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, 315 unsigned int size) 316 { 317 unsigned int offset; 318 unsigned int fill_size; 319 320 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 321 if (rp->b_cnt + size > rp->b_size) 322 return ~0; 323 if (rp->b_in + size > rp->b_size) { 324 /* 325 * This would wrap. Find if we still have space after 326 * skipping to the end of the buffer. If we do, place 327 * a filler packet and allocate a new packet. 328 */ 329 fill_size = rp->b_size - rp->b_in; 330 if (rp->b_cnt + size + fill_size > rp->b_size) 331 return ~0; 332 mon_buff_area_fill(rp, rp->b_in, fill_size); 333 334 offset = 0; 335 rp->b_in = size; 336 rp->b_cnt += size + fill_size; 337 } else if (rp->b_in + size == rp->b_size) { 338 offset = rp->b_in; 339 rp->b_in = 0; 340 rp->b_cnt += size; 341 } else { 342 offset = rp->b_in; 343 rp->b_in += size; 344 rp->b_cnt += size; 345 } 346 return offset; 347 } 348 349 /* 350 * Return a few (kilo-)bytes to the head of the buffer. 351 * This is used if a DMA fetch fails. 352 */ 353 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) 354 { 355 356 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 357 rp->b_cnt -= size; 358 if (rp->b_in < size) 359 rp->b_in += rp->b_size; 360 rp->b_in -= size; 361 } 362 363 /* 364 * This has to be called under both b_lock and fetch_lock, because 365 * it accesses both b_cnt and b_out. 366 */ 367 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) 368 { 369 370 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 371 rp->b_cnt -= size; 372 if ((rp->b_out += size) >= rp->b_size) 373 rp->b_out -= rp->b_size; 374 } 375 376 static void mon_buff_area_fill(const struct mon_reader_bin *rp, 377 unsigned int offset, unsigned int size) 378 { 379 struct mon_bin_hdr *ep; 380 381 ep = MON_OFF2HDR(rp, offset); 382 memset(ep, 0, PKT_SIZE); 383 ep->type = '@'; 384 ep->len_cap = size - PKT_SIZE; 385 } 386 387 static inline char mon_bin_get_setup(unsigned char *setupb, 388 const struct urb *urb, char ev_type) 389 { 390 391 if (urb->setup_packet == NULL) 392 return 'Z'; 393 memcpy(setupb, urb->setup_packet, SETUP_LEN); 394 return 0; 395 } 396 397 static char mon_bin_get_data(const struct mon_reader_bin *rp, 398 unsigned int offset, struct urb *urb, unsigned int length) 399 { 400 401 if (urb->transfer_buffer == NULL) 402 return 'Z'; 403 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); 404 return 0; 405 } 406 407 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, 408 unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) 409 { 410 struct mon_bin_isodesc *dp; 411 struct usb_iso_packet_descriptor *fp; 412 413 fp = urb->iso_frame_desc; 414 while (ndesc-- != 0) { 415 dp = (struct mon_bin_isodesc *) 416 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); 417 dp->iso_status = fp->status; 418 dp->iso_off = fp->offset; 419 dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; 420 dp->_pad = 0; 421 if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) 422 offset = 0; 423 fp++; 424 } 425 } 426 427 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, 428 char ev_type, int status) 429 { 430 const struct usb_endpoint_descriptor *epd = &urb->ep->desc; 431 unsigned long flags; 432 struct timeval ts; 433 unsigned int urb_length; 434 unsigned int offset; 435 unsigned int length; 436 unsigned int ndesc, lendesc; 437 unsigned char dir; 438 struct mon_bin_hdr *ep; 439 char data_tag = 0; 440 441 do_gettimeofday(&ts); 442 443 spin_lock_irqsave(&rp->b_lock, flags); 444 445 /* 446 * Find the maximum allowable length, then allocate space. 447 */ 448 if (usb_endpoint_xfer_isoc(epd)) { 449 if (urb->number_of_packets < 0) { 450 ndesc = 0; 451 } else if (urb->number_of_packets >= ISODESC_MAX) { 452 ndesc = ISODESC_MAX; 453 } else { 454 ndesc = urb->number_of_packets; 455 } 456 } else { 457 ndesc = 0; 458 } 459 lendesc = ndesc*sizeof(struct mon_bin_isodesc); 460 461 urb_length = (ev_type == 'S') ? 462 urb->transfer_buffer_length : urb->actual_length; 463 length = urb_length; 464 465 if (length >= rp->b_size/5) 466 length = rp->b_size/5; 467 468 if (usb_urb_dir_in(urb)) { 469 if (ev_type == 'S') { 470 length = 0; 471 data_tag = '<'; 472 } 473 /* Cannot rely on endpoint number in case of control ep.0 */ 474 dir = USB_DIR_IN; 475 } else { 476 if (ev_type == 'C') { 477 length = 0; 478 data_tag = '>'; 479 } 480 dir = 0; 481 } 482 483 if (rp->mmap_active) { 484 offset = mon_buff_area_alloc_contiguous(rp, 485 length + PKT_SIZE + lendesc); 486 } else { 487 offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); 488 } 489 if (offset == ~0) { 490 rp->cnt_lost++; 491 spin_unlock_irqrestore(&rp->b_lock, flags); 492 return; 493 } 494 495 ep = MON_OFF2HDR(rp, offset); 496 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; 497 498 /* 499 * Fill the allocated area. 500 */ 501 memset(ep, 0, PKT_SIZE); 502 ep->type = ev_type; 503 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; 504 ep->epnum = dir | usb_endpoint_num(epd); 505 ep->devnum = urb->dev->devnum; 506 ep->busnum = urb->dev->bus->busnum; 507 ep->id = (unsigned long) urb; 508 ep->ts_sec = ts.tv_sec; 509 ep->ts_usec = ts.tv_usec; 510 ep->status = status; 511 ep->len_urb = urb_length; 512 ep->len_cap = length + lendesc; 513 ep->xfer_flags = urb->transfer_flags; 514 515 if (usb_endpoint_xfer_int(epd)) { 516 ep->interval = urb->interval; 517 } else if (usb_endpoint_xfer_isoc(epd)) { 518 ep->interval = urb->interval; 519 ep->start_frame = urb->start_frame; 520 ep->s.iso.error_count = urb->error_count; 521 ep->s.iso.numdesc = urb->number_of_packets; 522 } 523 524 if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { 525 ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); 526 } else { 527 ep->flag_setup = '-'; 528 } 529 530 if (ndesc != 0) { 531 ep->ndesc = ndesc; 532 mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); 533 if ((offset += lendesc) >= rp->b_size) 534 offset -= rp->b_size; 535 } 536 537 if (length != 0) { 538 ep->flag_data = mon_bin_get_data(rp, offset, urb, length); 539 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */ 540 ep->len_cap = 0; 541 mon_buff_area_shrink(rp, length); 542 } 543 } else { 544 ep->flag_data = data_tag; 545 } 546 547 spin_unlock_irqrestore(&rp->b_lock, flags); 548 549 wake_up(&rp->b_wait); 550 } 551 552 static void mon_bin_submit(void *data, struct urb *urb) 553 { 554 struct mon_reader_bin *rp = data; 555 mon_bin_event(rp, urb, 'S', -EINPROGRESS); 556 } 557 558 static void mon_bin_complete(void *data, struct urb *urb, int status) 559 { 560 struct mon_reader_bin *rp = data; 561 mon_bin_event(rp, urb, 'C', status); 562 } 563 564 static void mon_bin_error(void *data, struct urb *urb, int error) 565 { 566 struct mon_reader_bin *rp = data; 567 unsigned long flags; 568 unsigned int offset; 569 struct mon_bin_hdr *ep; 570 571 spin_lock_irqsave(&rp->b_lock, flags); 572 573 offset = mon_buff_area_alloc(rp, PKT_SIZE); 574 if (offset == ~0) { 575 /* Not incrementing cnt_lost. Just because. */ 576 spin_unlock_irqrestore(&rp->b_lock, flags); 577 return; 578 } 579 580 ep = MON_OFF2HDR(rp, offset); 581 582 memset(ep, 0, PKT_SIZE); 583 ep->type = 'E'; 584 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; 585 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; 586 ep->epnum |= usb_endpoint_num(&urb->ep->desc); 587 ep->devnum = urb->dev->devnum; 588 ep->busnum = urb->dev->bus->busnum; 589 ep->id = (unsigned long) urb; 590 ep->status = error; 591 592 ep->flag_setup = '-'; 593 ep->flag_data = 'E'; 594 595 spin_unlock_irqrestore(&rp->b_lock, flags); 596 597 wake_up(&rp->b_wait); 598 } 599 600 static int mon_bin_open(struct inode *inode, struct file *file) 601 { 602 struct mon_bus *mbus; 603 struct mon_reader_bin *rp; 604 size_t size; 605 int rc; 606 607 lock_kernel(); 608 mutex_lock(&mon_lock); 609 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) { 610 mutex_unlock(&mon_lock); 611 unlock_kernel(); 612 return -ENODEV; 613 } 614 if (mbus != &mon_bus0 && mbus->u_bus == NULL) { 615 printk(KERN_ERR TAG ": consistency error on open\n"); 616 mutex_unlock(&mon_lock); 617 unlock_kernel(); 618 return -ENODEV; 619 } 620 621 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); 622 if (rp == NULL) { 623 rc = -ENOMEM; 624 goto err_alloc; 625 } 626 spin_lock_init(&rp->b_lock); 627 init_waitqueue_head(&rp->b_wait); 628 mutex_init(&rp->fetch_lock); 629 rp->b_size = BUFF_DFL; 630 631 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); 632 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { 633 rc = -ENOMEM; 634 goto err_allocvec; 635 } 636 637 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) 638 goto err_allocbuff; 639 640 rp->r.m_bus = mbus; 641 rp->r.r_data = rp; 642 rp->r.rnf_submit = mon_bin_submit; 643 rp->r.rnf_error = mon_bin_error; 644 rp->r.rnf_complete = mon_bin_complete; 645 646 mon_reader_add(mbus, &rp->r); 647 648 file->private_data = rp; 649 mutex_unlock(&mon_lock); 650 unlock_kernel(); 651 return 0; 652 653 err_allocbuff: 654 kfree(rp->b_vec); 655 err_allocvec: 656 kfree(rp); 657 err_alloc: 658 mutex_unlock(&mon_lock); 659 unlock_kernel(); 660 return rc; 661 } 662 663 /* 664 * Extract an event from buffer and copy it to user space. 665 * Wait if there is no event ready. 666 * Returns zero or error. 667 */ 668 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, 669 struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, 670 void __user *data, unsigned int nbytes) 671 { 672 unsigned long flags; 673 struct mon_bin_hdr *ep; 674 size_t step_len; 675 unsigned int offset; 676 int rc; 677 678 mutex_lock(&rp->fetch_lock); 679 680 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 681 mutex_unlock(&rp->fetch_lock); 682 return rc; 683 } 684 685 ep = MON_OFF2HDR(rp, rp->b_out); 686 687 if (copy_to_user(hdr, ep, hdrbytes)) { 688 mutex_unlock(&rp->fetch_lock); 689 return -EFAULT; 690 } 691 692 step_len = min(ep->len_cap, nbytes); 693 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; 694 695 if (copy_from_buf(rp, offset, data, step_len)) { 696 mutex_unlock(&rp->fetch_lock); 697 return -EFAULT; 698 } 699 700 spin_lock_irqsave(&rp->b_lock, flags); 701 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 702 spin_unlock_irqrestore(&rp->b_lock, flags); 703 rp->b_read = 0; 704 705 mutex_unlock(&rp->fetch_lock); 706 return 0; 707 } 708 709 static int mon_bin_release(struct inode *inode, struct file *file) 710 { 711 struct mon_reader_bin *rp = file->private_data; 712 struct mon_bus* mbus = rp->r.m_bus; 713 714 mutex_lock(&mon_lock); 715 716 if (mbus->nreaders <= 0) { 717 printk(KERN_ERR TAG ": consistency error on close\n"); 718 mutex_unlock(&mon_lock); 719 return 0; 720 } 721 mon_reader_del(mbus, &rp->r); 722 723 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); 724 kfree(rp->b_vec); 725 kfree(rp); 726 727 mutex_unlock(&mon_lock); 728 return 0; 729 } 730 731 static ssize_t mon_bin_read(struct file *file, char __user *buf, 732 size_t nbytes, loff_t *ppos) 733 { 734 struct mon_reader_bin *rp = file->private_data; 735 unsigned int hdrbytes = PKT_SZ_API0; 736 unsigned long flags; 737 struct mon_bin_hdr *ep; 738 unsigned int offset; 739 size_t step_len; 740 char *ptr; 741 ssize_t done = 0; 742 int rc; 743 744 mutex_lock(&rp->fetch_lock); 745 746 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 747 mutex_unlock(&rp->fetch_lock); 748 return rc; 749 } 750 751 ep = MON_OFF2HDR(rp, rp->b_out); 752 753 if (rp->b_read < hdrbytes) { 754 step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); 755 ptr = ((char *)ep) + rp->b_read; 756 if (step_len && copy_to_user(buf, ptr, step_len)) { 757 mutex_unlock(&rp->fetch_lock); 758 return -EFAULT; 759 } 760 nbytes -= step_len; 761 buf += step_len; 762 rp->b_read += step_len; 763 done += step_len; 764 } 765 766 if (rp->b_read >= hdrbytes) { 767 step_len = ep->len_cap; 768 step_len -= rp->b_read - hdrbytes; 769 if (step_len > nbytes) 770 step_len = nbytes; 771 offset = rp->b_out + PKT_SIZE; 772 offset += rp->b_read - hdrbytes; 773 if (offset >= rp->b_size) 774 offset -= rp->b_size; 775 if (copy_from_buf(rp, offset, buf, step_len)) { 776 mutex_unlock(&rp->fetch_lock); 777 return -EFAULT; 778 } 779 nbytes -= step_len; 780 buf += step_len; 781 rp->b_read += step_len; 782 done += step_len; 783 } 784 785 /* 786 * Check if whole packet was read, and if so, jump to the next one. 787 */ 788 if (rp->b_read >= hdrbytes + ep->len_cap) { 789 spin_lock_irqsave(&rp->b_lock, flags); 790 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 791 spin_unlock_irqrestore(&rp->b_lock, flags); 792 rp->b_read = 0; 793 } 794 795 mutex_unlock(&rp->fetch_lock); 796 return done; 797 } 798 799 /* 800 * Remove at most nevents from chunked buffer. 801 * Returns the number of removed events. 802 */ 803 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) 804 { 805 unsigned long flags; 806 struct mon_bin_hdr *ep; 807 int i; 808 809 mutex_lock(&rp->fetch_lock); 810 spin_lock_irqsave(&rp->b_lock, flags); 811 for (i = 0; i < nevents; ++i) { 812 if (MON_RING_EMPTY(rp)) 813 break; 814 815 ep = MON_OFF2HDR(rp, rp->b_out); 816 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); 817 } 818 spin_unlock_irqrestore(&rp->b_lock, flags); 819 rp->b_read = 0; 820 mutex_unlock(&rp->fetch_lock); 821 return i; 822 } 823 824 /* 825 * Fetch at most max event offsets into the buffer and put them into vec. 826 * The events are usually freed later with mon_bin_flush. 827 * Return the effective number of events fetched. 828 */ 829 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, 830 u32 __user *vec, unsigned int max) 831 { 832 unsigned int cur_out; 833 unsigned int bytes, avail; 834 unsigned int size; 835 unsigned int nevents; 836 struct mon_bin_hdr *ep; 837 unsigned long flags; 838 int rc; 839 840 mutex_lock(&rp->fetch_lock); 841 842 if ((rc = mon_bin_wait_event(file, rp)) < 0) { 843 mutex_unlock(&rp->fetch_lock); 844 return rc; 845 } 846 847 spin_lock_irqsave(&rp->b_lock, flags); 848 avail = rp->b_cnt; 849 spin_unlock_irqrestore(&rp->b_lock, flags); 850 851 cur_out = rp->b_out; 852 nevents = 0; 853 bytes = 0; 854 while (bytes < avail) { 855 if (nevents >= max) 856 break; 857 858 ep = MON_OFF2HDR(rp, cur_out); 859 if (put_user(cur_out, &vec[nevents])) { 860 mutex_unlock(&rp->fetch_lock); 861 return -EFAULT; 862 } 863 864 nevents++; 865 size = ep->len_cap + PKT_SIZE; 866 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 867 if ((cur_out += size) >= rp->b_size) 868 cur_out -= rp->b_size; 869 bytes += size; 870 } 871 872 mutex_unlock(&rp->fetch_lock); 873 return nevents; 874 } 875 876 /* 877 * Count events. This is almost the same as the above mon_bin_fetch, 878 * only we do not store offsets into user vector, and we have no limit. 879 */ 880 static int mon_bin_queued(struct mon_reader_bin *rp) 881 { 882 unsigned int cur_out; 883 unsigned int bytes, avail; 884 unsigned int size; 885 unsigned int nevents; 886 struct mon_bin_hdr *ep; 887 unsigned long flags; 888 889 mutex_lock(&rp->fetch_lock); 890 891 spin_lock_irqsave(&rp->b_lock, flags); 892 avail = rp->b_cnt; 893 spin_unlock_irqrestore(&rp->b_lock, flags); 894 895 cur_out = rp->b_out; 896 nevents = 0; 897 bytes = 0; 898 while (bytes < avail) { 899 ep = MON_OFF2HDR(rp, cur_out); 900 901 nevents++; 902 size = ep->len_cap + PKT_SIZE; 903 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); 904 if ((cur_out += size) >= rp->b_size) 905 cur_out -= rp->b_size; 906 bytes += size; 907 } 908 909 mutex_unlock(&rp->fetch_lock); 910 return nevents; 911 } 912 913 /* 914 */ 915 static int mon_bin_ioctl(struct inode *inode, struct file *file, 916 unsigned int cmd, unsigned long arg) 917 { 918 struct mon_reader_bin *rp = file->private_data; 919 // struct mon_bus* mbus = rp->r.m_bus; 920 int ret = 0; 921 struct mon_bin_hdr *ep; 922 unsigned long flags; 923 924 switch (cmd) { 925 926 case MON_IOCQ_URB_LEN: 927 /* 928 * N.B. This only returns the size of data, without the header. 929 */ 930 spin_lock_irqsave(&rp->b_lock, flags); 931 if (!MON_RING_EMPTY(rp)) { 932 ep = MON_OFF2HDR(rp, rp->b_out); 933 ret = ep->len_cap; 934 } 935 spin_unlock_irqrestore(&rp->b_lock, flags); 936 break; 937 938 case MON_IOCQ_RING_SIZE: 939 ret = rp->b_size; 940 break; 941 942 case MON_IOCT_RING_SIZE: 943 /* 944 * Changing the buffer size will flush it's contents; the new 945 * buffer is allocated before releasing the old one to be sure 946 * the device will stay functional also in case of memory 947 * pressure. 948 */ 949 { 950 int size; 951 struct mon_pgmap *vec; 952 953 if (arg < BUFF_MIN || arg > BUFF_MAX) 954 return -EINVAL; 955 956 size = CHUNK_ALIGN(arg); 957 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE), 958 GFP_KERNEL)) == NULL) { 959 ret = -ENOMEM; 960 break; 961 } 962 963 ret = mon_alloc_buff(vec, size/CHUNK_SIZE); 964 if (ret < 0) { 965 kfree(vec); 966 break; 967 } 968 969 mutex_lock(&rp->fetch_lock); 970 spin_lock_irqsave(&rp->b_lock, flags); 971 mon_free_buff(rp->b_vec, size/CHUNK_SIZE); 972 kfree(rp->b_vec); 973 rp->b_vec = vec; 974 rp->b_size = size; 975 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; 976 rp->cnt_lost = 0; 977 spin_unlock_irqrestore(&rp->b_lock, flags); 978 mutex_unlock(&rp->fetch_lock); 979 } 980 break; 981 982 case MON_IOCH_MFLUSH: 983 ret = mon_bin_flush(rp, arg); 984 break; 985 986 case MON_IOCX_GET: 987 case MON_IOCX_GETX: 988 { 989 struct mon_bin_get getb; 990 991 if (copy_from_user(&getb, (void __user *)arg, 992 sizeof(struct mon_bin_get))) 993 return -EFAULT; 994 995 if (getb.alloc > 0x10000000) /* Want to cast to u32 */ 996 return -EINVAL; 997 ret = mon_bin_get_event(file, rp, getb.hdr, 998 (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, 999 getb.data, (unsigned int)getb.alloc); 1000 } 1001 break; 1002 1003 case MON_IOCX_MFETCH: 1004 { 1005 struct mon_bin_mfetch mfetch; 1006 struct mon_bin_mfetch __user *uptr; 1007 1008 uptr = (struct mon_bin_mfetch __user *)arg; 1009 1010 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1011 return -EFAULT; 1012 1013 if (mfetch.nflush) { 1014 ret = mon_bin_flush(rp, mfetch.nflush); 1015 if (ret < 0) 1016 return ret; 1017 if (put_user(ret, &uptr->nflush)) 1018 return -EFAULT; 1019 } 1020 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); 1021 if (ret < 0) 1022 return ret; 1023 if (put_user(ret, &uptr->nfetch)) 1024 return -EFAULT; 1025 ret = 0; 1026 } 1027 break; 1028 1029 case MON_IOCG_STATS: { 1030 struct mon_bin_stats __user *sp; 1031 unsigned int nevents; 1032 unsigned int ndropped; 1033 1034 spin_lock_irqsave(&rp->b_lock, flags); 1035 ndropped = rp->cnt_lost; 1036 rp->cnt_lost = 0; 1037 spin_unlock_irqrestore(&rp->b_lock, flags); 1038 nevents = mon_bin_queued(rp); 1039 1040 sp = (struct mon_bin_stats __user *)arg; 1041 if (put_user(rp->cnt_lost, &sp->dropped)) 1042 return -EFAULT; 1043 if (put_user(nevents, &sp->queued)) 1044 return -EFAULT; 1045 1046 } 1047 break; 1048 1049 default: 1050 return -ENOTTY; 1051 } 1052 1053 return ret; 1054 } 1055 1056 #ifdef CONFIG_COMPAT 1057 static long mon_bin_compat_ioctl(struct file *file, 1058 unsigned int cmd, unsigned long arg) 1059 { 1060 struct mon_reader_bin *rp = file->private_data; 1061 int ret; 1062 1063 switch (cmd) { 1064 1065 case MON_IOCX_GET32: 1066 case MON_IOCX_GETX32: 1067 { 1068 struct mon_bin_get32 getb; 1069 1070 if (copy_from_user(&getb, (void __user *)arg, 1071 sizeof(struct mon_bin_get32))) 1072 return -EFAULT; 1073 1074 ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), 1075 (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, 1076 compat_ptr(getb.data32), getb.alloc32); 1077 if (ret < 0) 1078 return ret; 1079 } 1080 return 0; 1081 1082 case MON_IOCX_MFETCH32: 1083 { 1084 struct mon_bin_mfetch32 mfetch; 1085 struct mon_bin_mfetch32 __user *uptr; 1086 1087 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); 1088 1089 if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) 1090 return -EFAULT; 1091 1092 if (mfetch.nflush32) { 1093 ret = mon_bin_flush(rp, mfetch.nflush32); 1094 if (ret < 0) 1095 return ret; 1096 if (put_user(ret, &uptr->nflush32)) 1097 return -EFAULT; 1098 } 1099 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), 1100 mfetch.nfetch32); 1101 if (ret < 0) 1102 return ret; 1103 if (put_user(ret, &uptr->nfetch32)) 1104 return -EFAULT; 1105 } 1106 return 0; 1107 1108 case MON_IOCG_STATS: 1109 return mon_bin_ioctl(NULL, file, cmd, 1110 (unsigned long) compat_ptr(arg)); 1111 1112 case MON_IOCQ_URB_LEN: 1113 case MON_IOCQ_RING_SIZE: 1114 case MON_IOCT_RING_SIZE: 1115 case MON_IOCH_MFLUSH: 1116 return mon_bin_ioctl(NULL, file, cmd, arg); 1117 1118 default: 1119 ; 1120 } 1121 return -ENOTTY; 1122 } 1123 #endif /* CONFIG_COMPAT */ 1124 1125 static unsigned int 1126 mon_bin_poll(struct file *file, struct poll_table_struct *wait) 1127 { 1128 struct mon_reader_bin *rp = file->private_data; 1129 unsigned int mask = 0; 1130 unsigned long flags; 1131 1132 if (file->f_mode & FMODE_READ) 1133 poll_wait(file, &rp->b_wait, wait); 1134 1135 spin_lock_irqsave(&rp->b_lock, flags); 1136 if (!MON_RING_EMPTY(rp)) 1137 mask |= POLLIN | POLLRDNORM; /* readable */ 1138 spin_unlock_irqrestore(&rp->b_lock, flags); 1139 return mask; 1140 } 1141 1142 /* 1143 * open and close: just keep track of how many times the device is 1144 * mapped, to use the proper memory allocation function. 1145 */ 1146 static void mon_bin_vma_open(struct vm_area_struct *vma) 1147 { 1148 struct mon_reader_bin *rp = vma->vm_private_data; 1149 rp->mmap_active++; 1150 } 1151 1152 static void mon_bin_vma_close(struct vm_area_struct *vma) 1153 { 1154 struct mon_reader_bin *rp = vma->vm_private_data; 1155 rp->mmap_active--; 1156 } 1157 1158 /* 1159 * Map ring pages to user space. 1160 */ 1161 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1162 { 1163 struct mon_reader_bin *rp = vma->vm_private_data; 1164 unsigned long offset, chunk_idx; 1165 struct page *pageptr; 1166 1167 offset = vmf->pgoff << PAGE_SHIFT; 1168 if (offset >= rp->b_size) 1169 return VM_FAULT_SIGBUS; 1170 chunk_idx = offset / CHUNK_SIZE; 1171 pageptr = rp->b_vec[chunk_idx].pg; 1172 get_page(pageptr); 1173 vmf->page = pageptr; 1174 return 0; 1175 } 1176 1177 static const struct vm_operations_struct mon_bin_vm_ops = { 1178 .open = mon_bin_vma_open, 1179 .close = mon_bin_vma_close, 1180 .fault = mon_bin_vma_fault, 1181 }; 1182 1183 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) 1184 { 1185 /* don't do anything here: "fault" will set up page table entries */ 1186 vma->vm_ops = &mon_bin_vm_ops; 1187 vma->vm_flags |= VM_RESERVED; 1188 vma->vm_private_data = filp->private_data; 1189 mon_bin_vma_open(vma); 1190 return 0; 1191 } 1192 1193 static const struct file_operations mon_fops_binary = { 1194 .owner = THIS_MODULE, 1195 .open = mon_bin_open, 1196 .llseek = no_llseek, 1197 .read = mon_bin_read, 1198 /* .write = mon_text_write, */ 1199 .poll = mon_bin_poll, 1200 .ioctl = mon_bin_ioctl, 1201 #ifdef CONFIG_COMPAT 1202 .compat_ioctl = mon_bin_compat_ioctl, 1203 #endif 1204 .release = mon_bin_release, 1205 .mmap = mon_bin_mmap, 1206 }; 1207 1208 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) 1209 { 1210 DECLARE_WAITQUEUE(waita, current); 1211 unsigned long flags; 1212 1213 add_wait_queue(&rp->b_wait, &waita); 1214 set_current_state(TASK_INTERRUPTIBLE); 1215 1216 spin_lock_irqsave(&rp->b_lock, flags); 1217 while (MON_RING_EMPTY(rp)) { 1218 spin_unlock_irqrestore(&rp->b_lock, flags); 1219 1220 if (file->f_flags & O_NONBLOCK) { 1221 set_current_state(TASK_RUNNING); 1222 remove_wait_queue(&rp->b_wait, &waita); 1223 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ 1224 } 1225 schedule(); 1226 if (signal_pending(current)) { 1227 remove_wait_queue(&rp->b_wait, &waita); 1228 return -EINTR; 1229 } 1230 set_current_state(TASK_INTERRUPTIBLE); 1231 1232 spin_lock_irqsave(&rp->b_lock, flags); 1233 } 1234 spin_unlock_irqrestore(&rp->b_lock, flags); 1235 1236 set_current_state(TASK_RUNNING); 1237 remove_wait_queue(&rp->b_wait, &waita); 1238 return 0; 1239 } 1240 1241 static int mon_alloc_buff(struct mon_pgmap *map, int npages) 1242 { 1243 int n; 1244 unsigned long vaddr; 1245 1246 for (n = 0; n < npages; n++) { 1247 vaddr = get_zeroed_page(GFP_KERNEL); 1248 if (vaddr == 0) { 1249 while (n-- != 0) 1250 free_page((unsigned long) map[n].ptr); 1251 return -ENOMEM; 1252 } 1253 map[n].ptr = (unsigned char *) vaddr; 1254 map[n].pg = virt_to_page((void *) vaddr); 1255 } 1256 return 0; 1257 } 1258 1259 static void mon_free_buff(struct mon_pgmap *map, int npages) 1260 { 1261 int n; 1262 1263 for (n = 0; n < npages; n++) 1264 free_page((unsigned long) map[n].ptr); 1265 } 1266 1267 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) 1268 { 1269 struct device *dev; 1270 unsigned minor = ubus? ubus->busnum: 0; 1271 1272 if (minor >= MON_BIN_MAX_MINOR) 1273 return 0; 1274 1275 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL, 1276 MKDEV(MAJOR(mon_bin_dev0), minor), NULL, 1277 "usbmon%d", minor); 1278 if (IS_ERR(dev)) 1279 return 0; 1280 1281 mbus->classdev = dev; 1282 return 1; 1283 } 1284 1285 void mon_bin_del(struct mon_bus *mbus) 1286 { 1287 device_destroy(mon_bin_class, mbus->classdev->devt); 1288 } 1289 1290 int __init mon_bin_init(void) 1291 { 1292 int rc; 1293 1294 mon_bin_class = class_create(THIS_MODULE, "usbmon"); 1295 if (IS_ERR(mon_bin_class)) { 1296 rc = PTR_ERR(mon_bin_class); 1297 goto err_class; 1298 } 1299 1300 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); 1301 if (rc < 0) 1302 goto err_dev; 1303 1304 cdev_init(&mon_bin_cdev, &mon_fops_binary); 1305 mon_bin_cdev.owner = THIS_MODULE; 1306 1307 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); 1308 if (rc < 0) 1309 goto err_add; 1310 1311 return 0; 1312 1313 err_add: 1314 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1315 err_dev: 1316 class_destroy(mon_bin_class); 1317 err_class: 1318 return rc; 1319 } 1320 1321 void mon_bin_exit(void) 1322 { 1323 cdev_del(&mon_bin_cdev); 1324 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); 1325 class_destroy(mon_bin_class); 1326 } 1327