xref: /linux/drivers/usb/host/xhci.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (!ret) {
117 		xhci->xhc_state |= XHCI_STATE_HALTED;
118 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 	} else
120 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 				XHCI_MAX_HALT_USEC);
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 	if ((state & STS_HALT) == 0) {
171 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172 		return 0;
173 	}
174 
175 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176 	command = readl(&xhci->op_regs->command);
177 	command |= CMD_RESET;
178 	writel(command, &xhci->op_regs->command);
179 
180 	/* Existing Intel xHCI controllers require a delay of 1 mS,
181 	 * after setting the CMD_RESET bit, and before accessing any
182 	 * HC registers. This allows the HC to complete the
183 	 * reset operation and be ready for HC register access.
184 	 * Without this delay, the subsequent HC register access,
185 	 * may result in a system hang very rarely.
186 	 */
187 	if (xhci->quirks & XHCI_INTEL_HOST)
188 		udelay(1000);
189 
190 	ret = xhci_handshake(&xhci->op_regs->command,
191 			CMD_RESET, 0, 10 * 1000 * 1000);
192 	if (ret)
193 		return ret;
194 
195 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196 			 "Wait for controller to be ready for doorbell rings");
197 	/*
198 	 * xHCI cannot write to any doorbells or operational registers other
199 	 * than status until the "Controller Not Ready" flag is cleared.
200 	 */
201 	ret = xhci_handshake(&xhci->op_regs->status,
202 			STS_CNR, 0, 10 * 1000 * 1000);
203 
204 	for (i = 0; i < 2; ++i) {
205 		xhci->bus_state[i].port_c_suspend = 0;
206 		xhci->bus_state[i].suspended_ports = 0;
207 		xhci->bus_state[i].resuming_ports = 0;
208 	}
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216 	int i;
217 
218 	if (!xhci->msix_entries)
219 		return -EINVAL;
220 
221 	for (i = 0; i < xhci->msix_count; i++)
222 		if (xhci->msix_entries[i].vector)
223 			free_irq(xhci->msix_entries[i].vector,
224 					xhci_to_hcd(xhci));
225 	return 0;
226 }
227 
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233 	int ret;
234 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235 
236 	ret = pci_enable_msi(pdev);
237 	if (ret) {
238 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239 				"failed to allocate MSI entry");
240 		return ret;
241 	}
242 
243 	ret = request_irq(pdev->irq, xhci_msi_irq,
244 				0, "xhci_hcd", xhci_to_hcd(xhci));
245 	if (ret) {
246 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247 				"disable MSI interrupt");
248 		pci_disable_msi(pdev);
249 	}
250 
251 	return ret;
252 }
253 
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261 	int ret;
262 
263 	/* return if using legacy interrupt */
264 	if (xhci_to_hcd(xhci)->irq > 0)
265 		return;
266 
267 	ret = xhci_free_msi(xhci);
268 	if (!ret)
269 		return;
270 	if (pdev->irq > 0)
271 		free_irq(pdev->irq, xhci_to_hcd(xhci));
272 
273 	return;
274 }
275 
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281 	int i, ret = 0;
282 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
283 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284 
285 	/*
286 	 * calculate number of msi-x vectors supported.
287 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
289 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
290 	 *   Add additional 1 vector to ensure always available interrupt.
291 	 */
292 	xhci->msix_count = min(num_online_cpus() + 1,
293 				HCS_MAX_INTRS(xhci->hcs_params1));
294 
295 	xhci->msix_entries =
296 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297 				GFP_KERNEL);
298 	if (!xhci->msix_entries)
299 		return -ENOMEM;
300 
301 	for (i = 0; i < xhci->msix_count; i++) {
302 		xhci->msix_entries[i].entry = i;
303 		xhci->msix_entries[i].vector = 0;
304 	}
305 
306 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
307 	if (ret) {
308 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
309 				"Failed to enable MSI-X");
310 		goto free_entries;
311 	}
312 
313 	for (i = 0; i < xhci->msix_count; i++) {
314 		ret = request_irq(xhci->msix_entries[i].vector,
315 				xhci_msi_irq,
316 				0, "xhci_hcd", xhci_to_hcd(xhci));
317 		if (ret)
318 			goto disable_msix;
319 	}
320 
321 	hcd->msix_enabled = 1;
322 	return ret;
323 
324 disable_msix:
325 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
326 	xhci_free_irq(xhci);
327 	pci_disable_msix(pdev);
328 free_entries:
329 	kfree(xhci->msix_entries);
330 	xhci->msix_entries = NULL;
331 	return ret;
332 }
333 
334 /* Free any IRQs and disable MSI-X */
335 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
336 {
337 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
338 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
339 
340 	if (xhci->quirks & XHCI_PLAT)
341 		return;
342 
343 	xhci_free_irq(xhci);
344 
345 	if (xhci->msix_entries) {
346 		pci_disable_msix(pdev);
347 		kfree(xhci->msix_entries);
348 		xhci->msix_entries = NULL;
349 	} else {
350 		pci_disable_msi(pdev);
351 	}
352 
353 	hcd->msix_enabled = 0;
354 	return;
355 }
356 
357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
358 {
359 	int i;
360 
361 	if (xhci->msix_entries) {
362 		for (i = 0; i < xhci->msix_count; i++)
363 			synchronize_irq(xhci->msix_entries[i].vector);
364 	}
365 }
366 
367 static int xhci_try_enable_msi(struct usb_hcd *hcd)
368 {
369 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
370 	struct pci_dev  *pdev;
371 	int ret;
372 
373 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
374 	if (xhci->quirks & XHCI_PLAT)
375 		return 0;
376 
377 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
378 	/*
379 	 * Some Fresco Logic host controllers advertise MSI, but fail to
380 	 * generate interrupts.  Don't even try to enable MSI.
381 	 */
382 	if (xhci->quirks & XHCI_BROKEN_MSI)
383 		goto legacy_irq;
384 
385 	/* unregister the legacy interrupt */
386 	if (hcd->irq)
387 		free_irq(hcd->irq, hcd);
388 	hcd->irq = 0;
389 
390 	ret = xhci_setup_msix(xhci);
391 	if (ret)
392 		/* fall back to msi*/
393 		ret = xhci_setup_msi(xhci);
394 
395 	if (!ret)
396 		/* hcd->irq is 0, we have MSI */
397 		return 0;
398 
399 	if (!pdev->irq) {
400 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
401 		return -EINVAL;
402 	}
403 
404  legacy_irq:
405 	if (!strlen(hcd->irq_descr))
406 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
407 			 hcd->driver->description, hcd->self.busnum);
408 
409 	/* fall back to legacy interrupt*/
410 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
411 			hcd->irq_descr, hcd);
412 	if (ret) {
413 		xhci_err(xhci, "request interrupt %d failed\n",
414 				pdev->irq);
415 		return ret;
416 	}
417 	hcd->irq = pdev->irq;
418 	return 0;
419 }
420 
421 #else
422 
423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
424 {
425 	return 0;
426 }
427 
428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
429 {
430 }
431 
432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
433 {
434 }
435 
436 #endif
437 
438 static void compliance_mode_recovery(unsigned long arg)
439 {
440 	struct xhci_hcd *xhci;
441 	struct usb_hcd *hcd;
442 	u32 temp;
443 	int i;
444 
445 	xhci = (struct xhci_hcd *)arg;
446 
447 	for (i = 0; i < xhci->num_usb3_ports; i++) {
448 		temp = readl(xhci->usb3_ports[i]);
449 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
450 			/*
451 			 * Compliance Mode Detected. Letting USB Core
452 			 * handle the Warm Reset
453 			 */
454 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
455 					"Compliance mode detected->port %d",
456 					i + 1);
457 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458 					"Attempting compliance mode recovery");
459 			hcd = xhci->shared_hcd;
460 
461 			if (hcd->state == HC_STATE_SUSPENDED)
462 				usb_hcd_resume_root_hub(hcd);
463 
464 			usb_hcd_poll_rh_status(hcd);
465 		}
466 	}
467 
468 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
469 		mod_timer(&xhci->comp_mode_recovery_timer,
470 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
471 }
472 
473 /*
474  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
475  * that causes ports behind that hardware to enter compliance mode sometimes.
476  * The quirk creates a timer that polls every 2 seconds the link state of
477  * each host controller's port and recovers it by issuing a Warm reset
478  * if Compliance mode is detected, otherwise the port will become "dead" (no
479  * device connections or disconnections will be detected anymore). Becasue no
480  * status event is generated when entering compliance mode (per xhci spec),
481  * this quirk is needed on systems that have the failing hardware installed.
482  */
483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
484 {
485 	xhci->port_status_u0 = 0;
486 	setup_timer(&xhci->comp_mode_recovery_timer,
487 		    compliance_mode_recovery, (unsigned long)xhci);
488 	xhci->comp_mode_recovery_timer.expires = jiffies +
489 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
490 
491 	add_timer(&xhci->comp_mode_recovery_timer);
492 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
493 			"Compliance mode recovery timer initialized");
494 }
495 
496 /*
497  * This function identifies the systems that have installed the SN65LVPE502CP
498  * USB3.0 re-driver and that need the Compliance Mode Quirk.
499  * Systems:
500  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
501  */
502 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
503 {
504 	const char *dmi_product_name, *dmi_sys_vendor;
505 
506 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
507 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
508 	if (!dmi_product_name || !dmi_sys_vendor)
509 		return false;
510 
511 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
512 		return false;
513 
514 	if (strstr(dmi_product_name, "Z420") ||
515 			strstr(dmi_product_name, "Z620") ||
516 			strstr(dmi_product_name, "Z820") ||
517 			strstr(dmi_product_name, "Z1 Workstation"))
518 		return true;
519 
520 	return false;
521 }
522 
523 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
524 {
525 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
526 }
527 
528 
529 /*
530  * Initialize memory for HCD and xHC (one-time init).
531  *
532  * Program the PAGESIZE register, initialize the device context array, create
533  * device contexts (?), set up a command ring segment (or two?), create event
534  * ring (one for now).
535  */
536 int xhci_init(struct usb_hcd *hcd)
537 {
538 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539 	int retval = 0;
540 
541 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
542 	spin_lock_init(&xhci->lock);
543 	if (xhci->hci_version == 0x95 && link_quirk) {
544 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
545 				"QUIRK: Not clearing Link TRB chain bits.");
546 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
547 	} else {
548 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
549 				"xHCI doesn't need link TRB QUIRK");
550 	}
551 	retval = xhci_mem_init(xhci, GFP_KERNEL);
552 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
553 
554 	/* Initializing Compliance Mode Recovery Data If Needed */
555 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
556 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
557 		compliance_mode_recovery_timer_init(xhci);
558 	}
559 
560 	return retval;
561 }
562 
563 /*-------------------------------------------------------------------------*/
564 
565 
566 static int xhci_run_finished(struct xhci_hcd *xhci)
567 {
568 	if (xhci_start(xhci)) {
569 		xhci_halt(xhci);
570 		return -ENODEV;
571 	}
572 	xhci->shared_hcd->state = HC_STATE_RUNNING;
573 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
574 
575 	if (xhci->quirks & XHCI_NEC_HOST)
576 		xhci_ring_cmd_db(xhci);
577 
578 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
579 			"Finished xhci_run for USB3 roothub");
580 	return 0;
581 }
582 
583 /*
584  * Start the HC after it was halted.
585  *
586  * This function is called by the USB core when the HC driver is added.
587  * Its opposite is xhci_stop().
588  *
589  * xhci_init() must be called once before this function can be called.
590  * Reset the HC, enable device slot contexts, program DCBAAP, and
591  * set command ring pointer and event ring pointer.
592  *
593  * Setup MSI-X vectors and enable interrupts.
594  */
595 int xhci_run(struct usb_hcd *hcd)
596 {
597 	u32 temp;
598 	u64 temp_64;
599 	int ret;
600 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
601 
602 	/* Start the xHCI host controller running only after the USB 2.0 roothub
603 	 * is setup.
604 	 */
605 
606 	hcd->uses_new_polling = 1;
607 	if (!usb_hcd_is_primary_hcd(hcd))
608 		return xhci_run_finished(xhci);
609 
610 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
611 
612 	ret = xhci_try_enable_msi(hcd);
613 	if (ret)
614 		return ret;
615 
616 	xhci_dbg(xhci, "Command ring memory map follows:\n");
617 	xhci_debug_ring(xhci, xhci->cmd_ring);
618 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
619 	xhci_dbg_cmd_ptrs(xhci);
620 
621 	xhci_dbg(xhci, "ERST memory map follows:\n");
622 	xhci_dbg_erst(xhci, &xhci->erst);
623 	xhci_dbg(xhci, "Event ring:\n");
624 	xhci_debug_ring(xhci, xhci->event_ring);
625 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
626 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
627 	temp_64 &= ~ERST_PTR_MASK;
628 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
630 
631 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 			"// Set the interrupt modulation register");
633 	temp = readl(&xhci->ir_set->irq_control);
634 	temp &= ~ER_IRQ_INTERVAL_MASK;
635 	/*
636 	 * the increment interval is 8 times as much as that defined
637 	 * in xHCI spec on MTK's controller
638 	 */
639 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
640 	writel(temp, &xhci->ir_set->irq_control);
641 
642 	/* Set the HCD state before we enable the irqs */
643 	temp = readl(&xhci->op_regs->command);
644 	temp |= (CMD_EIE);
645 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
646 			"// Enable interrupts, cmd = 0x%x.", temp);
647 	writel(temp, &xhci->op_regs->command);
648 
649 	temp = readl(&xhci->ir_set->irq_pending);
650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
651 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
652 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
653 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
654 	xhci_print_ir_set(xhci, 0);
655 
656 	if (xhci->quirks & XHCI_NEC_HOST) {
657 		struct xhci_command *command;
658 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
659 		if (!command)
660 			return -ENOMEM;
661 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
662 				TRB_TYPE(TRB_NEC_GET_FW));
663 	}
664 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665 			"Finished xhci_run for USB2 roothub");
666 	return 0;
667 }
668 EXPORT_SYMBOL_GPL(xhci_run);
669 
670 /*
671  * Stop xHCI driver.
672  *
673  * This function is called by the USB core when the HC driver is removed.
674  * Its opposite is xhci_run().
675  *
676  * Disable device contexts, disable IRQs, and quiesce the HC.
677  * Reset the HC, finish any completed transactions, and cleanup memory.
678  */
679 void xhci_stop(struct usb_hcd *hcd)
680 {
681 	u32 temp;
682 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
683 
684 	mutex_lock(&xhci->mutex);
685 
686 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
687 		spin_lock_irq(&xhci->lock);
688 
689 		xhci->xhc_state |= XHCI_STATE_HALTED;
690 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
691 		xhci_halt(xhci);
692 		xhci_reset(xhci);
693 
694 		spin_unlock_irq(&xhci->lock);
695 	}
696 
697 	if (!usb_hcd_is_primary_hcd(hcd)) {
698 		mutex_unlock(&xhci->mutex);
699 		return;
700 	}
701 
702 	xhci_cleanup_msix(xhci);
703 
704 	/* Deleting Compliance Mode Recovery Timer */
705 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 			(!(xhci_all_ports_seen_u0(xhci)))) {
707 		del_timer_sync(&xhci->comp_mode_recovery_timer);
708 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 				"%s: compliance mode recovery timer deleted",
710 				__func__);
711 	}
712 
713 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 		usb_amd_dev_put();
715 
716 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 			"// Disabling event ring interrupts");
718 	temp = readl(&xhci->op_regs->status);
719 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 	temp = readl(&xhci->ir_set->irq_pending);
721 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 	xhci_print_ir_set(xhci, 0);
723 
724 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 	xhci_mem_cleanup(xhci);
726 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 			"xhci_stop completed - status = %x",
728 			readl(&xhci->op_regs->status));
729 	mutex_unlock(&xhci->mutex);
730 }
731 
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744 
745 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747 
748 	spin_lock_irq(&xhci->lock);
749 	xhci_halt(xhci);
750 	/* Workaround for spurious wakeups at shutdown with HSW */
751 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752 		xhci_reset(xhci);
753 	spin_unlock_irq(&xhci->lock);
754 
755 	xhci_cleanup_msix(xhci);
756 
757 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 			"xhci_shutdown completed - status = %x",
759 			readl(&xhci->op_regs->status));
760 
761 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
762 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765 
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769 	xhci->s3.command = readl(&xhci->op_regs->command);
770 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779 
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782 	writel(xhci->s3.command, &xhci->op_regs->command);
783 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792 
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795 	u64	val_64;
796 
797 	/* step 2: initialize command ring buffer */
798 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801 				      xhci->cmd_ring->dequeue) &
802 		 (u64) ~CMD_RING_RSVD_BITS) |
803 		xhci->cmd_ring->cycle_state;
804 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 			"// Setting command ring address to 0x%llx",
806 			(long unsigned long) val_64);
807 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809 
810 /*
811  * The whole command ring must be cleared to zero when we suspend the host.
812  *
813  * The host doesn't save the command ring pointer in the suspend well, so we
814  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
815  * aligned, because of the reserved bits in the command ring dequeue pointer
816  * register.  Therefore, we can't just set the dequeue pointer back in the
817  * middle of the ring (TRBs are 16-byte aligned).
818  */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821 	struct xhci_ring *ring;
822 	struct xhci_segment *seg;
823 
824 	ring = xhci->cmd_ring;
825 	seg = ring->deq_seg;
826 	do {
827 		memset(seg->trbs, 0,
828 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830 			cpu_to_le32(~TRB_CYCLE);
831 		seg = seg->next;
832 	} while (seg != ring->deq_seg);
833 
834 	/* Reset the software enqueue and dequeue pointers */
835 	ring->deq_seg = ring->first_seg;
836 	ring->dequeue = ring->first_seg->trbs;
837 	ring->enq_seg = ring->deq_seg;
838 	ring->enqueue = ring->dequeue;
839 
840 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841 	/*
842 	 * Ring is now zeroed, so the HW should look for change of ownership
843 	 * when the cycle bit is set to 1.
844 	 */
845 	ring->cycle_state = 1;
846 
847 	/*
848 	 * Reset the hardware dequeue pointer.
849 	 * Yes, this will need to be re-written after resume, but we're paranoid
850 	 * and want to make sure the hardware doesn't access bogus memory
851 	 * because, say, the BIOS or an SMI started the host without changing
852 	 * the command ring pointers.
853 	 */
854 	xhci_set_cmd_ring_deq(xhci);
855 }
856 
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859 	int port_index;
860 	__le32 __iomem **port_array;
861 	unsigned long flags;
862 	u32 t1, t2;
863 
864 	spin_lock_irqsave(&xhci->lock, flags);
865 
866 	/* disble usb3 ports Wake bits*/
867 	port_index = xhci->num_usb3_ports;
868 	port_array = xhci->usb3_ports;
869 	while (port_index--) {
870 		t1 = readl(port_array[port_index]);
871 		t1 = xhci_port_state_to_neutral(t1);
872 		t2 = t1 & ~PORT_WAKE_BITS;
873 		if (t1 != t2)
874 			writel(t2, port_array[port_index]);
875 	}
876 
877 	/* disble usb2 ports Wake bits*/
878 	port_index = xhci->num_usb2_ports;
879 	port_array = xhci->usb2_ports;
880 	while (port_index--) {
881 		t1 = readl(port_array[port_index]);
882 		t1 = xhci_port_state_to_neutral(t1);
883 		t2 = t1 & ~PORT_WAKE_BITS;
884 		if (t1 != t2)
885 			writel(t2, port_array[port_index]);
886 	}
887 
888 	spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890 
891 /*
892  * Stop HC (not bus-specific)
893  *
894  * This is called when the machine transition into S3/S4 mode.
895  *
896  */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899 	int			rc = 0;
900 	unsigned int		delay = XHCI_MAX_HALT_USEC;
901 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
902 	u32			command;
903 
904 	if (!hcd->state)
905 		return 0;
906 
907 	if (hcd->state != HC_STATE_SUSPENDED ||
908 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909 		return -EINVAL;
910 
911 	/* Clear root port wake on bits if wakeup not allowed. */
912 	if (!do_wakeup)
913 		xhci_disable_port_wake_on_bits(xhci);
914 
915 	/* Don't poll the roothubs on bus suspend. */
916 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 	del_timer_sync(&hcd->rh_timer);
919 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920 	del_timer_sync(&xhci->shared_hcd->rh_timer);
921 
922 	spin_lock_irq(&xhci->lock);
923 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925 	/* step 1: stop endpoint */
926 	/* skipped assuming that port suspend has done */
927 
928 	/* step 2: clear Run/Stop bit */
929 	command = readl(&xhci->op_regs->command);
930 	command &= ~CMD_RUN;
931 	writel(command, &xhci->op_regs->command);
932 
933 	/* Some chips from Fresco Logic need an extraordinary delay */
934 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935 
936 	if (xhci_handshake(&xhci->op_regs->status,
937 		      STS_HALT, STS_HALT, delay)) {
938 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939 		spin_unlock_irq(&xhci->lock);
940 		return -ETIMEDOUT;
941 	}
942 	xhci_clear_command_ring(xhci);
943 
944 	/* step 3: save registers */
945 	xhci_save_registers(xhci);
946 
947 	/* step 4: set CSS flag */
948 	command = readl(&xhci->op_regs->command);
949 	command |= CMD_CSS;
950 	writel(command, &xhci->op_regs->command);
951 	if (xhci_handshake(&xhci->op_regs->status,
952 				STS_SAVE, 0, 10 * 1000)) {
953 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
954 		spin_unlock_irq(&xhci->lock);
955 		return -ETIMEDOUT;
956 	}
957 	spin_unlock_irq(&xhci->lock);
958 
959 	/*
960 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
961 	 * is about to be suspended.
962 	 */
963 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964 			(!(xhci_all_ports_seen_u0(xhci)))) {
965 		del_timer_sync(&xhci->comp_mode_recovery_timer);
966 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967 				"%s: compliance mode recovery timer deleted",
968 				__func__);
969 	}
970 
971 	/* step 5: remove core well power */
972 	/* synchronize irq when using MSI-X */
973 	xhci_msix_sync_irqs(xhci);
974 
975 	return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978 
979 /*
980  * start xHC (not bus-specific)
981  *
982  * This is called when the machine transition from S3/S4 mode.
983  *
984  */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987 	u32			command, temp = 0, status;
988 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
989 	struct usb_hcd		*secondary_hcd;
990 	int			retval = 0;
991 	bool			comp_timer_running = false;
992 
993 	if (!hcd->state)
994 		return 0;
995 
996 	/* Wait a bit if either of the roothubs need to settle from the
997 	 * transition into bus suspend.
998 	 */
999 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000 			time_before(jiffies,
1001 				xhci->bus_state[1].next_statechange))
1002 		msleep(100);
1003 
1004 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006 
1007 	spin_lock_irq(&xhci->lock);
1008 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009 		hibernated = true;
1010 
1011 	if (!hibernated) {
1012 		/* step 1: restore register */
1013 		xhci_restore_registers(xhci);
1014 		/* step 2: initialize command ring buffer */
1015 		xhci_set_cmd_ring_deq(xhci);
1016 		/* step 3: restore state and start state*/
1017 		/* step 3: set CRS flag */
1018 		command = readl(&xhci->op_regs->command);
1019 		command |= CMD_CRS;
1020 		writel(command, &xhci->op_regs->command);
1021 		if (xhci_handshake(&xhci->op_regs->status,
1022 			      STS_RESTORE, 0, 10 * 1000)) {
1023 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 			spin_unlock_irq(&xhci->lock);
1025 			return -ETIMEDOUT;
1026 		}
1027 		temp = readl(&xhci->op_regs->status);
1028 	}
1029 
1030 	/* If restore operation fails, re-initialize the HC during resume */
1031 	if ((temp & STS_SRE) || hibernated) {
1032 
1033 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034 				!(xhci_all_ports_seen_u0(xhci))) {
1035 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1036 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037 				"Compliance Mode Recovery Timer deleted!");
1038 		}
1039 
1040 		/* Let the USB core know _both_ roothubs lost power. */
1041 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043 
1044 		xhci_dbg(xhci, "Stop HCD\n");
1045 		xhci_halt(xhci);
1046 		xhci_reset(xhci);
1047 		spin_unlock_irq(&xhci->lock);
1048 		xhci_cleanup_msix(xhci);
1049 
1050 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051 		temp = readl(&xhci->op_regs->status);
1052 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053 		temp = readl(&xhci->ir_set->irq_pending);
1054 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055 		xhci_print_ir_set(xhci, 0);
1056 
1057 		xhci_dbg(xhci, "cleaning up memory\n");
1058 		xhci_mem_cleanup(xhci);
1059 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060 			    readl(&xhci->op_regs->status));
1061 
1062 		/* USB core calls the PCI reinit and start functions twice:
1063 		 * first with the primary HCD, and then with the secondary HCD.
1064 		 * If we don't do the same, the host will never be started.
1065 		 */
1066 		if (!usb_hcd_is_primary_hcd(hcd))
1067 			secondary_hcd = hcd;
1068 		else
1069 			secondary_hcd = xhci->shared_hcd;
1070 
1071 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072 		retval = xhci_init(hcd->primary_hcd);
1073 		if (retval)
1074 			return retval;
1075 		comp_timer_running = true;
1076 
1077 		xhci_dbg(xhci, "Start the primary HCD\n");
1078 		retval = xhci_run(hcd->primary_hcd);
1079 		if (!retval) {
1080 			xhci_dbg(xhci, "Start the secondary HCD\n");
1081 			retval = xhci_run(secondary_hcd);
1082 		}
1083 		hcd->state = HC_STATE_SUSPENDED;
1084 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085 		goto done;
1086 	}
1087 
1088 	/* step 4: set Run/Stop bit */
1089 	command = readl(&xhci->op_regs->command);
1090 	command |= CMD_RUN;
1091 	writel(command, &xhci->op_regs->command);
1092 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093 		  0, 250 * 1000);
1094 
1095 	/* step 5: walk topology and initialize portsc,
1096 	 * portpmsc and portli
1097 	 */
1098 	/* this is done in bus_resume */
1099 
1100 	/* step 6: restart each of the previously
1101 	 * Running endpoints by ringing their doorbells
1102 	 */
1103 
1104 	spin_unlock_irq(&xhci->lock);
1105 
1106  done:
1107 	if (retval == 0) {
1108 		/* Resume root hubs only when have pending events. */
1109 		status = readl(&xhci->op_regs->status);
1110 		if (status & STS_EINT) {
1111 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1112 			usb_hcd_resume_root_hub(hcd);
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1118 	 * be re-initialized Always after a system resume. Ports are subject
1119 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1120 	 * ports have entered previously to U0 before system's suspension.
1121 	 */
1122 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123 		compliance_mode_recovery_timer_init(xhci);
1124 
1125 	/* Re-enable port polling. */
1126 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1128 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1129 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1130 	usb_hcd_poll_rh_status(hcd);
1131 
1132 	return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif	/* CONFIG_PM */
1136 
1137 /*-------------------------------------------------------------------------*/
1138 
1139 /**
1140  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1142  * value to right shift 1 for the bitmask.
1143  *
1144  * Index  = (epnum * 2) + direction - 1,
1145  * where direction = 0 for OUT, 1 for IN.
1146  * For control endpoints, the IN index is used (OUT index is unused), so
1147  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148  */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151 	unsigned int index;
1152 	if (usb_endpoint_xfer_control(desc))
1153 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1154 	else
1155 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157 	return index;
1158 }
1159 
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161  * address from the XHCI endpoint index.
1162  */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167 	return direction | number;
1168 }
1169 
1170 /* Find the flag for this endpoint (for use in the control context).  Use the
1171  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1172  * bit 1, etc.
1173  */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178 
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185 	return 1 << (ep_index + 1);
1186 }
1187 
1188 /* Compute the last valid endpoint context index.  Basically, this is the
1189  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1190  * we find the most significant bit set in the added contexts flags.
1191  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193  */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196 	return fls(added_ctxs) - 1;
1197 }
1198 
1199 /* Returns 1 if the arguments are OK;
1200  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201  */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204 		const char *func) {
1205 	struct xhci_hcd	*xhci;
1206 	struct xhci_virt_device	*virt_dev;
1207 
1208 	if (!hcd || (check_ep && !ep) || !udev) {
1209 		pr_debug("xHCI %s called with invalid args\n", func);
1210 		return -EINVAL;
1211 	}
1212 	if (!udev->parent) {
1213 		pr_debug("xHCI %s called for root hub\n", func);
1214 		return 0;
1215 	}
1216 
1217 	xhci = hcd_to_xhci(hcd);
1218 	if (check_virt_dev) {
1219 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221 					func);
1222 			return -EINVAL;
1223 		}
1224 
1225 		virt_dev = xhci->devs[udev->slot_id];
1226 		if (virt_dev->udev != udev) {
1227 			xhci_dbg(xhci, "xHCI %s called with udev and "
1228 					  "virt_dev does not match\n", func);
1229 			return -EINVAL;
1230 		}
1231 	}
1232 
1233 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1234 		return -ENODEV;
1235 
1236 	return 1;
1237 }
1238 
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240 		struct usb_device *udev, struct xhci_command *command,
1241 		bool ctx_change, bool must_succeed);
1242 
1243 /*
1244  * Full speed devices may have a max packet size greater than 8 bytes, but the
1245  * USB core doesn't know that until it reads the first 8 bytes of the
1246  * descriptor.  If the usb_device's max packet size changes after that point,
1247  * we need to issue an evaluate context command and wait on it.
1248  */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250 		unsigned int ep_index, struct urb *urb)
1251 {
1252 	struct xhci_container_ctx *out_ctx;
1253 	struct xhci_input_control_ctx *ctrl_ctx;
1254 	struct xhci_ep_ctx *ep_ctx;
1255 	struct xhci_command *command;
1256 	int max_packet_size;
1257 	int hw_max_packet_size;
1258 	int ret = 0;
1259 
1260 	out_ctx = xhci->devs[slot_id]->out_ctx;
1261 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264 	if (hw_max_packet_size != max_packet_size) {
1265 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266 				"Max Packet Size for ep 0 changed.");
1267 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268 				"Max packet size in usb_device = %d",
1269 				max_packet_size);
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max packet size in xHCI HW = %d",
1272 				hw_max_packet_size);
1273 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274 				"Issuing evaluate context command.");
1275 
1276 		/* Set up the input context flags for the command */
1277 		/* FIXME: This won't work if a non-default control endpoint
1278 		 * changes max packet sizes.
1279 		 */
1280 
1281 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282 		if (!command)
1283 			return -ENOMEM;
1284 
1285 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287 		if (!ctrl_ctx) {
1288 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289 					__func__);
1290 			ret = -ENOMEM;
1291 			goto command_cleanup;
1292 		}
1293 		/* Set up the modified control endpoint 0 */
1294 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295 				xhci->devs[slot_id]->out_ctx, ep_index);
1296 
1297 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300 
1301 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302 		ctrl_ctx->drop_flags = 0;
1303 
1304 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308 
1309 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310 				true, false);
1311 
1312 		/* Clean up the input context for later use by bandwidth
1313 		 * functions.
1314 		 */
1315 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317 		kfree(command->completion);
1318 		kfree(command);
1319 	}
1320 	return ret;
1321 }
1322 
1323 /*
1324  * non-error returns are a promise to giveback() the urb later
1325  * we drop ownership so next owner (or urb unlink) can get it
1326  */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330 	struct xhci_td *buffer;
1331 	unsigned long flags;
1332 	int ret = 0;
1333 	unsigned int slot_id, ep_index;
1334 	struct urb_priv	*urb_priv;
1335 	int size, i;
1336 
1337 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338 					true, true, __func__) <= 0)
1339 		return -EINVAL;
1340 
1341 	slot_id = urb->dev->slot_id;
1342 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343 
1344 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1345 		if (!in_interrupt())
1346 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347 		ret = -ESHUTDOWN;
1348 		goto exit;
1349 	}
1350 
1351 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352 		size = urb->number_of_packets;
1353 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354 	    urb->transfer_buffer_length > 0 &&
1355 	    urb->transfer_flags & URB_ZERO_PACKET &&
1356 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357 		size = 2;
1358 	else
1359 		size = 1;
1360 
1361 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1362 				  size * sizeof(struct xhci_td *), mem_flags);
1363 	if (!urb_priv)
1364 		return -ENOMEM;
1365 
1366 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367 	if (!buffer) {
1368 		kfree(urb_priv);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	for (i = 0; i < size; i++) {
1373 		urb_priv->td[i] = buffer;
1374 		buffer++;
1375 	}
1376 
1377 	urb_priv->length = size;
1378 	urb_priv->td_cnt = 0;
1379 	urb->hcpriv = urb_priv;
1380 
1381 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382 		/* Check to see if the max packet size for the default control
1383 		 * endpoint changed during FS device enumeration
1384 		 */
1385 		if (urb->dev->speed == USB_SPEED_FULL) {
1386 			ret = xhci_check_maxpacket(xhci, slot_id,
1387 					ep_index, urb);
1388 			if (ret < 0) {
1389 				xhci_urb_free_priv(urb_priv);
1390 				urb->hcpriv = NULL;
1391 				return ret;
1392 			}
1393 		}
1394 
1395 		/* We have a spinlock and interrupts disabled, so we must pass
1396 		 * atomic context to this function, which may allocate memory.
1397 		 */
1398 		spin_lock_irqsave(&xhci->lock, flags);
1399 		if (xhci->xhc_state & XHCI_STATE_DYING)
1400 			goto dying;
1401 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402 				slot_id, ep_index);
1403 		if (ret)
1404 			goto free_priv;
1405 		spin_unlock_irqrestore(&xhci->lock, flags);
1406 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407 		spin_lock_irqsave(&xhci->lock, flags);
1408 		if (xhci->xhc_state & XHCI_STATE_DYING)
1409 			goto dying;
1410 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 				EP_GETTING_STREAMS) {
1412 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 					"is transitioning to using streams.\n");
1414 			ret = -EINVAL;
1415 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 				EP_GETTING_NO_STREAMS) {
1417 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 					"is transitioning to "
1419 					"not having streams.\n");
1420 			ret = -EINVAL;
1421 		} else {
1422 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423 					slot_id, ep_index);
1424 		}
1425 		if (ret)
1426 			goto free_priv;
1427 		spin_unlock_irqrestore(&xhci->lock, flags);
1428 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429 		spin_lock_irqsave(&xhci->lock, flags);
1430 		if (xhci->xhc_state & XHCI_STATE_DYING)
1431 			goto dying;
1432 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433 				slot_id, ep_index);
1434 		if (ret)
1435 			goto free_priv;
1436 		spin_unlock_irqrestore(&xhci->lock, flags);
1437 	} else {
1438 		spin_lock_irqsave(&xhci->lock, flags);
1439 		if (xhci->xhc_state & XHCI_STATE_DYING)
1440 			goto dying;
1441 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442 				slot_id, ep_index);
1443 		if (ret)
1444 			goto free_priv;
1445 		spin_unlock_irqrestore(&xhci->lock, flags);
1446 	}
1447 exit:
1448 	return ret;
1449 dying:
1450 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451 			"non-responsive xHCI host.\n",
1452 			urb->ep->desc.bEndpointAddress, urb);
1453 	ret = -ESHUTDOWN;
1454 free_priv:
1455 	xhci_urb_free_priv(urb_priv);
1456 	urb->hcpriv = NULL;
1457 	spin_unlock_irqrestore(&xhci->lock, flags);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1463  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1464  * should pick up where it left off in the TD, unless a Set Transfer Ring
1465  * Dequeue Pointer is issued.
1466  *
1467  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1468  * the ring.  Since the ring is a contiguous structure, they can't be physically
1469  * removed.  Instead, there are two options:
1470  *
1471  *  1) If the HC is in the middle of processing the URB to be canceled, we
1472  *     simply move the ring's dequeue pointer past those TRBs using the Set
1473  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1474  *     when drivers timeout on the last submitted URB and attempt to cancel.
1475  *
1476  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1477  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1478  *     HC will need to invalidate the any TRBs it has cached after the stop
1479  *     endpoint command, as noted in the xHCI 0.95 errata.
1480  *
1481  *  3) The TD may have completed by the time the Stop Endpoint Command
1482  *     completes, so software needs to handle that case too.
1483  *
1484  * This function should protect against the TD enqueueing code ringing the
1485  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1486  * It also needs to account for multiple cancellations on happening at the same
1487  * time for the same endpoint.
1488  *
1489  * Note that this function can be called in any context, or so says
1490  * usb_hcd_unlink_urb()
1491  */
1492 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1493 {
1494 	unsigned long flags;
1495 	int ret, i;
1496 	u32 temp;
1497 	struct xhci_hcd *xhci;
1498 	struct urb_priv	*urb_priv;
1499 	struct xhci_td *td;
1500 	unsigned int ep_index;
1501 	struct xhci_ring *ep_ring;
1502 	struct xhci_virt_ep *ep;
1503 	struct xhci_command *command;
1504 
1505 	xhci = hcd_to_xhci(hcd);
1506 	spin_lock_irqsave(&xhci->lock, flags);
1507 	/* Make sure the URB hasn't completed or been unlinked already */
1508 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1509 	if (ret || !urb->hcpriv)
1510 		goto done;
1511 	temp = readl(&xhci->op_regs->status);
1512 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1513 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1514 				"HW died, freeing TD.");
1515 		urb_priv = urb->hcpriv;
1516 		for (i = urb_priv->td_cnt;
1517 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1518 		     i++) {
1519 			td = urb_priv->td[i];
1520 			if (!list_empty(&td->td_list))
1521 				list_del_init(&td->td_list);
1522 			if (!list_empty(&td->cancelled_td_list))
1523 				list_del_init(&td->cancelled_td_list);
1524 		}
1525 
1526 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1527 		spin_unlock_irqrestore(&xhci->lock, flags);
1528 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1529 		xhci_urb_free_priv(urb_priv);
1530 		return ret;
1531 	}
1532 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1533 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1534 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1535 				"Ep 0x%x: URB %p to be canceled on "
1536 				"non-responsive xHCI host.",
1537 				urb->ep->desc.bEndpointAddress, urb);
1538 		/* Let the stop endpoint command watchdog timer (which set this
1539 		 * state) finish cleaning up the endpoint TD lists.  We must
1540 		 * have caught it in the middle of dropping a lock and giving
1541 		 * back an URB.
1542 		 */
1543 		goto done;
1544 	}
1545 
1546 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1547 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1548 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1549 	if (!ep_ring) {
1550 		ret = -EINVAL;
1551 		goto done;
1552 	}
1553 
1554 	urb_priv = urb->hcpriv;
1555 	i = urb_priv->td_cnt;
1556 	if (i < urb_priv->length)
1557 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1558 				"Cancel URB %p, dev %s, ep 0x%x, "
1559 				"starting at offset 0x%llx",
1560 				urb, urb->dev->devpath,
1561 				urb->ep->desc.bEndpointAddress,
1562 				(unsigned long long) xhci_trb_virt_to_dma(
1563 					urb_priv->td[i]->start_seg,
1564 					urb_priv->td[i]->first_trb));
1565 
1566 	for (; i < urb_priv->length; i++) {
1567 		td = urb_priv->td[i];
1568 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1569 	}
1570 
1571 	/* Queue a stop endpoint command, but only if this is
1572 	 * the first cancellation to be handled.
1573 	 */
1574 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1575 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1576 		if (!command) {
1577 			ret = -ENOMEM;
1578 			goto done;
1579 		}
1580 		ep->ep_state |= EP_HALT_PENDING;
1581 		ep->stop_cmds_pending++;
1582 		ep->stop_cmd_timer.expires = jiffies +
1583 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1584 		add_timer(&ep->stop_cmd_timer);
1585 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1586 					 ep_index, 0);
1587 		xhci_ring_cmd_db(xhci);
1588 	}
1589 done:
1590 	spin_unlock_irqrestore(&xhci->lock, flags);
1591 	return ret;
1592 }
1593 
1594 /* Drop an endpoint from a new bandwidth configuration for this device.
1595  * Only one call to this function is allowed per endpoint before
1596  * check_bandwidth() or reset_bandwidth() must be called.
1597  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1598  * add the endpoint to the schedule with possibly new parameters denoted by a
1599  * different endpoint descriptor in usb_host_endpoint.
1600  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1601  * not allowed.
1602  *
1603  * The USB core will not allow URBs to be queued to an endpoint that is being
1604  * disabled, so there's no need for mutual exclusion to protect
1605  * the xhci->devs[slot_id] structure.
1606  */
1607 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1608 		struct usb_host_endpoint *ep)
1609 {
1610 	struct xhci_hcd *xhci;
1611 	struct xhci_container_ctx *in_ctx, *out_ctx;
1612 	struct xhci_input_control_ctx *ctrl_ctx;
1613 	unsigned int ep_index;
1614 	struct xhci_ep_ctx *ep_ctx;
1615 	u32 drop_flag;
1616 	u32 new_add_flags, new_drop_flags;
1617 	int ret;
1618 
1619 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1620 	if (ret <= 0)
1621 		return ret;
1622 	xhci = hcd_to_xhci(hcd);
1623 	if (xhci->xhc_state & XHCI_STATE_DYING)
1624 		return -ENODEV;
1625 
1626 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1627 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1628 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1629 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1630 				__func__, drop_flag);
1631 		return 0;
1632 	}
1633 
1634 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1635 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1636 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1637 	if (!ctrl_ctx) {
1638 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1639 				__func__);
1640 		return 0;
1641 	}
1642 
1643 	ep_index = xhci_get_endpoint_index(&ep->desc);
1644 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1645 	/* If the HC already knows the endpoint is disabled,
1646 	 * or the HCD has noted it is disabled, ignore this request
1647 	 */
1648 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1649 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1650 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1651 	    xhci_get_endpoint_flag(&ep->desc)) {
1652 		/* Do not warn when called after a usb_device_reset */
1653 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1654 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1655 				  __func__, ep);
1656 		return 0;
1657 	}
1658 
1659 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1660 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1661 
1662 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1663 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1664 
1665 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1666 
1667 	if (xhci->quirks & XHCI_MTK_HOST)
1668 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1669 
1670 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1671 			(unsigned int) ep->desc.bEndpointAddress,
1672 			udev->slot_id,
1673 			(unsigned int) new_drop_flags,
1674 			(unsigned int) new_add_flags);
1675 	return 0;
1676 }
1677 
1678 /* Add an endpoint to a new possible bandwidth configuration for this device.
1679  * Only one call to this function is allowed per endpoint before
1680  * check_bandwidth() or reset_bandwidth() must be called.
1681  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1682  * add the endpoint to the schedule with possibly new parameters denoted by a
1683  * different endpoint descriptor in usb_host_endpoint.
1684  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1685  * not allowed.
1686  *
1687  * The USB core will not allow URBs to be queued to an endpoint until the
1688  * configuration or alt setting is installed in the device, so there's no need
1689  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1690  */
1691 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1692 		struct usb_host_endpoint *ep)
1693 {
1694 	struct xhci_hcd *xhci;
1695 	struct xhci_container_ctx *in_ctx;
1696 	unsigned int ep_index;
1697 	struct xhci_input_control_ctx *ctrl_ctx;
1698 	u32 added_ctxs;
1699 	u32 new_add_flags, new_drop_flags;
1700 	struct xhci_virt_device *virt_dev;
1701 	int ret = 0;
1702 
1703 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1704 	if (ret <= 0) {
1705 		/* So we won't queue a reset ep command for a root hub */
1706 		ep->hcpriv = NULL;
1707 		return ret;
1708 	}
1709 	xhci = hcd_to_xhci(hcd);
1710 	if (xhci->xhc_state & XHCI_STATE_DYING)
1711 		return -ENODEV;
1712 
1713 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1714 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1715 		/* FIXME when we have to issue an evaluate endpoint command to
1716 		 * deal with ep0 max packet size changing once we get the
1717 		 * descriptors
1718 		 */
1719 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1720 				__func__, added_ctxs);
1721 		return 0;
1722 	}
1723 
1724 	virt_dev = xhci->devs[udev->slot_id];
1725 	in_ctx = virt_dev->in_ctx;
1726 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1727 	if (!ctrl_ctx) {
1728 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1729 				__func__);
1730 		return 0;
1731 	}
1732 
1733 	ep_index = xhci_get_endpoint_index(&ep->desc);
1734 	/* If this endpoint is already in use, and the upper layers are trying
1735 	 * to add it again without dropping it, reject the addition.
1736 	 */
1737 	if (virt_dev->eps[ep_index].ring &&
1738 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1739 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1740 				"without dropping it.\n",
1741 				(unsigned int) ep->desc.bEndpointAddress);
1742 		return -EINVAL;
1743 	}
1744 
1745 	/* If the HCD has already noted the endpoint is enabled,
1746 	 * ignore this request.
1747 	 */
1748 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1749 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1750 				__func__, ep);
1751 		return 0;
1752 	}
1753 
1754 	/*
1755 	 * Configuration and alternate setting changes must be done in
1756 	 * process context, not interrupt context (or so documenation
1757 	 * for usb_set_interface() and usb_set_configuration() claim).
1758 	 */
1759 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1760 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1761 				__func__, ep->desc.bEndpointAddress);
1762 		return -ENOMEM;
1763 	}
1764 
1765 	if (xhci->quirks & XHCI_MTK_HOST) {
1766 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1767 		if (ret < 0) {
1768 			xhci_free_or_cache_endpoint_ring(xhci,
1769 				virt_dev, ep_index);
1770 			return ret;
1771 		}
1772 	}
1773 
1774 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1775 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1776 
1777 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1778 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1779 	 * this re-adds a new state for the endpoint from the new endpoint
1780 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1781 	 * drop flags alone.
1782 	 */
1783 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1784 
1785 	/* Store the usb_device pointer for later use */
1786 	ep->hcpriv = udev;
1787 
1788 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1789 			(unsigned int) ep->desc.bEndpointAddress,
1790 			udev->slot_id,
1791 			(unsigned int) new_drop_flags,
1792 			(unsigned int) new_add_flags);
1793 	return 0;
1794 }
1795 
1796 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1797 {
1798 	struct xhci_input_control_ctx *ctrl_ctx;
1799 	struct xhci_ep_ctx *ep_ctx;
1800 	struct xhci_slot_ctx *slot_ctx;
1801 	int i;
1802 
1803 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1804 	if (!ctrl_ctx) {
1805 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1806 				__func__);
1807 		return;
1808 	}
1809 
1810 	/* When a device's add flag and drop flag are zero, any subsequent
1811 	 * configure endpoint command will leave that endpoint's state
1812 	 * untouched.  Make sure we don't leave any old state in the input
1813 	 * endpoint contexts.
1814 	 */
1815 	ctrl_ctx->drop_flags = 0;
1816 	ctrl_ctx->add_flags = 0;
1817 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1818 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1819 	/* Endpoint 0 is always valid */
1820 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1821 	for (i = 1; i < 31; ++i) {
1822 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1823 		ep_ctx->ep_info = 0;
1824 		ep_ctx->ep_info2 = 0;
1825 		ep_ctx->deq = 0;
1826 		ep_ctx->tx_info = 0;
1827 	}
1828 }
1829 
1830 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1831 		struct usb_device *udev, u32 *cmd_status)
1832 {
1833 	int ret;
1834 
1835 	switch (*cmd_status) {
1836 	case COMP_CMD_ABORT:
1837 	case COMP_CMD_STOP:
1838 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1839 		ret = -ETIME;
1840 		break;
1841 	case COMP_ENOMEM:
1842 		dev_warn(&udev->dev,
1843 			 "Not enough host controller resources for new device state.\n");
1844 		ret = -ENOMEM;
1845 		/* FIXME: can we allocate more resources for the HC? */
1846 		break;
1847 	case COMP_BW_ERR:
1848 	case COMP_2ND_BW_ERR:
1849 		dev_warn(&udev->dev,
1850 			 "Not enough bandwidth for new device state.\n");
1851 		ret = -ENOSPC;
1852 		/* FIXME: can we go back to the old state? */
1853 		break;
1854 	case COMP_TRB_ERR:
1855 		/* the HCD set up something wrong */
1856 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1857 				"add flag = 1, "
1858 				"and endpoint is not disabled.\n");
1859 		ret = -EINVAL;
1860 		break;
1861 	case COMP_DEV_ERR:
1862 		dev_warn(&udev->dev,
1863 			 "ERROR: Incompatible device for endpoint configure command.\n");
1864 		ret = -ENODEV;
1865 		break;
1866 	case COMP_SUCCESS:
1867 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1868 				"Successful Endpoint Configure command");
1869 		ret = 0;
1870 		break;
1871 	default:
1872 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1873 				*cmd_status);
1874 		ret = -EINVAL;
1875 		break;
1876 	}
1877 	return ret;
1878 }
1879 
1880 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1881 		struct usb_device *udev, u32 *cmd_status)
1882 {
1883 	int ret;
1884 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1885 
1886 	switch (*cmd_status) {
1887 	case COMP_CMD_ABORT:
1888 	case COMP_CMD_STOP:
1889 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1890 		ret = -ETIME;
1891 		break;
1892 	case COMP_EINVAL:
1893 		dev_warn(&udev->dev,
1894 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1895 		ret = -EINVAL;
1896 		break;
1897 	case COMP_EBADSLT:
1898 		dev_warn(&udev->dev,
1899 			"WARN: slot not enabled for evaluate context command.\n");
1900 		ret = -EINVAL;
1901 		break;
1902 	case COMP_CTX_STATE:
1903 		dev_warn(&udev->dev,
1904 			"WARN: invalid context state for evaluate context command.\n");
1905 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1906 		ret = -EINVAL;
1907 		break;
1908 	case COMP_DEV_ERR:
1909 		dev_warn(&udev->dev,
1910 			"ERROR: Incompatible device for evaluate context command.\n");
1911 		ret = -ENODEV;
1912 		break;
1913 	case COMP_MEL_ERR:
1914 		/* Max Exit Latency too large error */
1915 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1916 		ret = -EINVAL;
1917 		break;
1918 	case COMP_SUCCESS:
1919 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1920 				"Successful evaluate context command");
1921 		ret = 0;
1922 		break;
1923 	default:
1924 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1925 			*cmd_status);
1926 		ret = -EINVAL;
1927 		break;
1928 	}
1929 	return ret;
1930 }
1931 
1932 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1933 		struct xhci_input_control_ctx *ctrl_ctx)
1934 {
1935 	u32 valid_add_flags;
1936 	u32 valid_drop_flags;
1937 
1938 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1939 	 * (bit 1).  The default control endpoint is added during the Address
1940 	 * Device command and is never removed until the slot is disabled.
1941 	 */
1942 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1943 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1944 
1945 	/* Use hweight32 to count the number of ones in the add flags, or
1946 	 * number of endpoints added.  Don't count endpoints that are changed
1947 	 * (both added and dropped).
1948 	 */
1949 	return hweight32(valid_add_flags) -
1950 		hweight32(valid_add_flags & valid_drop_flags);
1951 }
1952 
1953 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1954 		struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956 	u32 valid_add_flags;
1957 	u32 valid_drop_flags;
1958 
1959 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1960 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1961 
1962 	return hweight32(valid_drop_flags) -
1963 		hweight32(valid_add_flags & valid_drop_flags);
1964 }
1965 
1966 /*
1967  * We need to reserve the new number of endpoints before the configure endpoint
1968  * command completes.  We can't subtract the dropped endpoints from the number
1969  * of active endpoints until the command completes because we can oversubscribe
1970  * the host in this case:
1971  *
1972  *  - the first configure endpoint command drops more endpoints than it adds
1973  *  - a second configure endpoint command that adds more endpoints is queued
1974  *  - the first configure endpoint command fails, so the config is unchanged
1975  *  - the second command may succeed, even though there isn't enough resources
1976  *
1977  * Must be called with xhci->lock held.
1978  */
1979 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1980 		struct xhci_input_control_ctx *ctrl_ctx)
1981 {
1982 	u32 added_eps;
1983 
1984 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1985 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1986 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1987 				"Not enough ep ctxs: "
1988 				"%u active, need to add %u, limit is %u.",
1989 				xhci->num_active_eps, added_eps,
1990 				xhci->limit_active_eps);
1991 		return -ENOMEM;
1992 	}
1993 	xhci->num_active_eps += added_eps;
1994 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995 			"Adding %u ep ctxs, %u now active.", added_eps,
1996 			xhci->num_active_eps);
1997 	return 0;
1998 }
1999 
2000 /*
2001  * The configure endpoint was failed by the xHC for some other reason, so we
2002  * need to revert the resources that failed configuration would have used.
2003  *
2004  * Must be called with xhci->lock held.
2005  */
2006 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2007 		struct xhci_input_control_ctx *ctrl_ctx)
2008 {
2009 	u32 num_failed_eps;
2010 
2011 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2012 	xhci->num_active_eps -= num_failed_eps;
2013 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2014 			"Removing %u failed ep ctxs, %u now active.",
2015 			num_failed_eps,
2016 			xhci->num_active_eps);
2017 }
2018 
2019 /*
2020  * Now that the command has completed, clean up the active endpoint count by
2021  * subtracting out the endpoints that were dropped (but not changed).
2022  *
2023  * Must be called with xhci->lock held.
2024  */
2025 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2026 		struct xhci_input_control_ctx *ctrl_ctx)
2027 {
2028 	u32 num_dropped_eps;
2029 
2030 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2031 	xhci->num_active_eps -= num_dropped_eps;
2032 	if (num_dropped_eps)
2033 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2034 				"Removing %u dropped ep ctxs, %u now active.",
2035 				num_dropped_eps,
2036 				xhci->num_active_eps);
2037 }
2038 
2039 static unsigned int xhci_get_block_size(struct usb_device *udev)
2040 {
2041 	switch (udev->speed) {
2042 	case USB_SPEED_LOW:
2043 	case USB_SPEED_FULL:
2044 		return FS_BLOCK;
2045 	case USB_SPEED_HIGH:
2046 		return HS_BLOCK;
2047 	case USB_SPEED_SUPER:
2048 	case USB_SPEED_SUPER_PLUS:
2049 		return SS_BLOCK;
2050 	case USB_SPEED_UNKNOWN:
2051 	case USB_SPEED_WIRELESS:
2052 	default:
2053 		/* Should never happen */
2054 		return 1;
2055 	}
2056 }
2057 
2058 static unsigned int
2059 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2060 {
2061 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2062 		return LS_OVERHEAD;
2063 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2064 		return FS_OVERHEAD;
2065 	return HS_OVERHEAD;
2066 }
2067 
2068 /* If we are changing a LS/FS device under a HS hub,
2069  * make sure (if we are activating a new TT) that the HS bus has enough
2070  * bandwidth for this new TT.
2071  */
2072 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2073 		struct xhci_virt_device *virt_dev,
2074 		int old_active_eps)
2075 {
2076 	struct xhci_interval_bw_table *bw_table;
2077 	struct xhci_tt_bw_info *tt_info;
2078 
2079 	/* Find the bandwidth table for the root port this TT is attached to. */
2080 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2081 	tt_info = virt_dev->tt_info;
2082 	/* If this TT already had active endpoints, the bandwidth for this TT
2083 	 * has already been added.  Removing all periodic endpoints (and thus
2084 	 * making the TT enactive) will only decrease the bandwidth used.
2085 	 */
2086 	if (old_active_eps)
2087 		return 0;
2088 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2089 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2090 			return -ENOMEM;
2091 		return 0;
2092 	}
2093 	/* Not sure why we would have no new active endpoints...
2094 	 *
2095 	 * Maybe because of an Evaluate Context change for a hub update or a
2096 	 * control endpoint 0 max packet size change?
2097 	 * FIXME: skip the bandwidth calculation in that case.
2098 	 */
2099 	return 0;
2100 }
2101 
2102 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2103 		struct xhci_virt_device *virt_dev)
2104 {
2105 	unsigned int bw_reserved;
2106 
2107 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2108 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2109 		return -ENOMEM;
2110 
2111 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2112 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2113 		return -ENOMEM;
2114 
2115 	return 0;
2116 }
2117 
2118 /*
2119  * This algorithm is a very conservative estimate of the worst-case scheduling
2120  * scenario for any one interval.  The hardware dynamically schedules the
2121  * packets, so we can't tell which microframe could be the limiting factor in
2122  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2123  *
2124  * Obviously, we can't solve an NP complete problem to find the minimum worst
2125  * case scenario.  Instead, we come up with an estimate that is no less than
2126  * the worst case bandwidth used for any one microframe, but may be an
2127  * over-estimate.
2128  *
2129  * We walk the requirements for each endpoint by interval, starting with the
2130  * smallest interval, and place packets in the schedule where there is only one
2131  * possible way to schedule packets for that interval.  In order to simplify
2132  * this algorithm, we record the largest max packet size for each interval, and
2133  * assume all packets will be that size.
2134  *
2135  * For interval 0, we obviously must schedule all packets for each interval.
2136  * The bandwidth for interval 0 is just the amount of data to be transmitted
2137  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2138  * the number of packets).
2139  *
2140  * For interval 1, we have two possible microframes to schedule those packets
2141  * in.  For this algorithm, if we can schedule the same number of packets for
2142  * each possible scheduling opportunity (each microframe), we will do so.  The
2143  * remaining number of packets will be saved to be transmitted in the gaps in
2144  * the next interval's scheduling sequence.
2145  *
2146  * As we move those remaining packets to be scheduled with interval 2 packets,
2147  * we have to double the number of remaining packets to transmit.  This is
2148  * because the intervals are actually powers of 2, and we would be transmitting
2149  * the previous interval's packets twice in this interval.  We also have to be
2150  * sure that when we look at the largest max packet size for this interval, we
2151  * also look at the largest max packet size for the remaining packets and take
2152  * the greater of the two.
2153  *
2154  * The algorithm continues to evenly distribute packets in each scheduling
2155  * opportunity, and push the remaining packets out, until we get to the last
2156  * interval.  Then those packets and their associated overhead are just added
2157  * to the bandwidth used.
2158  */
2159 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2160 		struct xhci_virt_device *virt_dev,
2161 		int old_active_eps)
2162 {
2163 	unsigned int bw_reserved;
2164 	unsigned int max_bandwidth;
2165 	unsigned int bw_used;
2166 	unsigned int block_size;
2167 	struct xhci_interval_bw_table *bw_table;
2168 	unsigned int packet_size = 0;
2169 	unsigned int overhead = 0;
2170 	unsigned int packets_transmitted = 0;
2171 	unsigned int packets_remaining = 0;
2172 	unsigned int i;
2173 
2174 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2175 		return xhci_check_ss_bw(xhci, virt_dev);
2176 
2177 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2178 		max_bandwidth = HS_BW_LIMIT;
2179 		/* Convert percent of bus BW reserved to blocks reserved */
2180 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2181 	} else {
2182 		max_bandwidth = FS_BW_LIMIT;
2183 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2184 	}
2185 
2186 	bw_table = virt_dev->bw_table;
2187 	/* We need to translate the max packet size and max ESIT payloads into
2188 	 * the units the hardware uses.
2189 	 */
2190 	block_size = xhci_get_block_size(virt_dev->udev);
2191 
2192 	/* If we are manipulating a LS/FS device under a HS hub, double check
2193 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2194 	 */
2195 	if (virt_dev->tt_info) {
2196 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197 				"Recalculating BW for rootport %u",
2198 				virt_dev->real_port);
2199 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2200 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2201 					"newly activated TT.\n");
2202 			return -ENOMEM;
2203 		}
2204 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205 				"Recalculating BW for TT slot %u port %u",
2206 				virt_dev->tt_info->slot_id,
2207 				virt_dev->tt_info->ttport);
2208 	} else {
2209 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2210 				"Recalculating BW for rootport %u",
2211 				virt_dev->real_port);
2212 	}
2213 
2214 	/* Add in how much bandwidth will be used for interval zero, or the
2215 	 * rounded max ESIT payload + number of packets * largest overhead.
2216 	 */
2217 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2218 		bw_table->interval_bw[0].num_packets *
2219 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2220 
2221 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2222 		unsigned int bw_added;
2223 		unsigned int largest_mps;
2224 		unsigned int interval_overhead;
2225 
2226 		/*
2227 		 * How many packets could we transmit in this interval?
2228 		 * If packets didn't fit in the previous interval, we will need
2229 		 * to transmit that many packets twice within this interval.
2230 		 */
2231 		packets_remaining = 2 * packets_remaining +
2232 			bw_table->interval_bw[i].num_packets;
2233 
2234 		/* Find the largest max packet size of this or the previous
2235 		 * interval.
2236 		 */
2237 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2238 			largest_mps = 0;
2239 		else {
2240 			struct xhci_virt_ep *virt_ep;
2241 			struct list_head *ep_entry;
2242 
2243 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2244 			virt_ep = list_entry(ep_entry,
2245 					struct xhci_virt_ep, bw_endpoint_list);
2246 			/* Convert to blocks, rounding up */
2247 			largest_mps = DIV_ROUND_UP(
2248 					virt_ep->bw_info.max_packet_size,
2249 					block_size);
2250 		}
2251 		if (largest_mps > packet_size)
2252 			packet_size = largest_mps;
2253 
2254 		/* Use the larger overhead of this or the previous interval. */
2255 		interval_overhead = xhci_get_largest_overhead(
2256 				&bw_table->interval_bw[i]);
2257 		if (interval_overhead > overhead)
2258 			overhead = interval_overhead;
2259 
2260 		/* How many packets can we evenly distribute across
2261 		 * (1 << (i + 1)) possible scheduling opportunities?
2262 		 */
2263 		packets_transmitted = packets_remaining >> (i + 1);
2264 
2265 		/* Add in the bandwidth used for those scheduled packets */
2266 		bw_added = packets_transmitted * (overhead + packet_size);
2267 
2268 		/* How many packets do we have remaining to transmit? */
2269 		packets_remaining = packets_remaining % (1 << (i + 1));
2270 
2271 		/* What largest max packet size should those packets have? */
2272 		/* If we've transmitted all packets, don't carry over the
2273 		 * largest packet size.
2274 		 */
2275 		if (packets_remaining == 0) {
2276 			packet_size = 0;
2277 			overhead = 0;
2278 		} else if (packets_transmitted > 0) {
2279 			/* Otherwise if we do have remaining packets, and we've
2280 			 * scheduled some packets in this interval, take the
2281 			 * largest max packet size from endpoints with this
2282 			 * interval.
2283 			 */
2284 			packet_size = largest_mps;
2285 			overhead = interval_overhead;
2286 		}
2287 		/* Otherwise carry over packet_size and overhead from the last
2288 		 * time we had a remainder.
2289 		 */
2290 		bw_used += bw_added;
2291 		if (bw_used > max_bandwidth) {
2292 			xhci_warn(xhci, "Not enough bandwidth. "
2293 					"Proposed: %u, Max: %u\n",
2294 				bw_used, max_bandwidth);
2295 			return -ENOMEM;
2296 		}
2297 	}
2298 	/*
2299 	 * Ok, we know we have some packets left over after even-handedly
2300 	 * scheduling interval 15.  We don't know which microframes they will
2301 	 * fit into, so we over-schedule and say they will be scheduled every
2302 	 * microframe.
2303 	 */
2304 	if (packets_remaining > 0)
2305 		bw_used += overhead + packet_size;
2306 
2307 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2308 		unsigned int port_index = virt_dev->real_port - 1;
2309 
2310 		/* OK, we're manipulating a HS device attached to a
2311 		 * root port bandwidth domain.  Include the number of active TTs
2312 		 * in the bandwidth used.
2313 		 */
2314 		bw_used += TT_HS_OVERHEAD *
2315 			xhci->rh_bw[port_index].num_active_tts;
2316 	}
2317 
2318 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2319 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2320 		"Available: %u " "percent",
2321 		bw_used, max_bandwidth, bw_reserved,
2322 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2323 		max_bandwidth);
2324 
2325 	bw_used += bw_reserved;
2326 	if (bw_used > max_bandwidth) {
2327 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2328 				bw_used, max_bandwidth);
2329 		return -ENOMEM;
2330 	}
2331 
2332 	bw_table->bw_used = bw_used;
2333 	return 0;
2334 }
2335 
2336 static bool xhci_is_async_ep(unsigned int ep_type)
2337 {
2338 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2339 					ep_type != ISOC_IN_EP &&
2340 					ep_type != INT_IN_EP);
2341 }
2342 
2343 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2344 {
2345 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2346 }
2347 
2348 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2349 {
2350 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2351 
2352 	if (ep_bw->ep_interval == 0)
2353 		return SS_OVERHEAD_BURST +
2354 			(ep_bw->mult * ep_bw->num_packets *
2355 					(SS_OVERHEAD + mps));
2356 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2357 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2358 				1 << ep_bw->ep_interval);
2359 
2360 }
2361 
2362 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2363 		struct xhci_bw_info *ep_bw,
2364 		struct xhci_interval_bw_table *bw_table,
2365 		struct usb_device *udev,
2366 		struct xhci_virt_ep *virt_ep,
2367 		struct xhci_tt_bw_info *tt_info)
2368 {
2369 	struct xhci_interval_bw	*interval_bw;
2370 	int normalized_interval;
2371 
2372 	if (xhci_is_async_ep(ep_bw->type))
2373 		return;
2374 
2375 	if (udev->speed >= USB_SPEED_SUPER) {
2376 		if (xhci_is_sync_in_ep(ep_bw->type))
2377 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2378 				xhci_get_ss_bw_consumed(ep_bw);
2379 		else
2380 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2381 				xhci_get_ss_bw_consumed(ep_bw);
2382 		return;
2383 	}
2384 
2385 	/* SuperSpeed endpoints never get added to intervals in the table, so
2386 	 * this check is only valid for HS/FS/LS devices.
2387 	 */
2388 	if (list_empty(&virt_ep->bw_endpoint_list))
2389 		return;
2390 	/* For LS/FS devices, we need to translate the interval expressed in
2391 	 * microframes to frames.
2392 	 */
2393 	if (udev->speed == USB_SPEED_HIGH)
2394 		normalized_interval = ep_bw->ep_interval;
2395 	else
2396 		normalized_interval = ep_bw->ep_interval - 3;
2397 
2398 	if (normalized_interval == 0)
2399 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2400 	interval_bw = &bw_table->interval_bw[normalized_interval];
2401 	interval_bw->num_packets -= ep_bw->num_packets;
2402 	switch (udev->speed) {
2403 	case USB_SPEED_LOW:
2404 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2405 		break;
2406 	case USB_SPEED_FULL:
2407 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2408 		break;
2409 	case USB_SPEED_HIGH:
2410 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2411 		break;
2412 	case USB_SPEED_SUPER:
2413 	case USB_SPEED_SUPER_PLUS:
2414 	case USB_SPEED_UNKNOWN:
2415 	case USB_SPEED_WIRELESS:
2416 		/* Should never happen because only LS/FS/HS endpoints will get
2417 		 * added to the endpoint list.
2418 		 */
2419 		return;
2420 	}
2421 	if (tt_info)
2422 		tt_info->active_eps -= 1;
2423 	list_del_init(&virt_ep->bw_endpoint_list);
2424 }
2425 
2426 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2427 		struct xhci_bw_info *ep_bw,
2428 		struct xhci_interval_bw_table *bw_table,
2429 		struct usb_device *udev,
2430 		struct xhci_virt_ep *virt_ep,
2431 		struct xhci_tt_bw_info *tt_info)
2432 {
2433 	struct xhci_interval_bw	*interval_bw;
2434 	struct xhci_virt_ep *smaller_ep;
2435 	int normalized_interval;
2436 
2437 	if (xhci_is_async_ep(ep_bw->type))
2438 		return;
2439 
2440 	if (udev->speed == USB_SPEED_SUPER) {
2441 		if (xhci_is_sync_in_ep(ep_bw->type))
2442 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2443 				xhci_get_ss_bw_consumed(ep_bw);
2444 		else
2445 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2446 				xhci_get_ss_bw_consumed(ep_bw);
2447 		return;
2448 	}
2449 
2450 	/* For LS/FS devices, we need to translate the interval expressed in
2451 	 * microframes to frames.
2452 	 */
2453 	if (udev->speed == USB_SPEED_HIGH)
2454 		normalized_interval = ep_bw->ep_interval;
2455 	else
2456 		normalized_interval = ep_bw->ep_interval - 3;
2457 
2458 	if (normalized_interval == 0)
2459 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2460 	interval_bw = &bw_table->interval_bw[normalized_interval];
2461 	interval_bw->num_packets += ep_bw->num_packets;
2462 	switch (udev->speed) {
2463 	case USB_SPEED_LOW:
2464 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2465 		break;
2466 	case USB_SPEED_FULL:
2467 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2468 		break;
2469 	case USB_SPEED_HIGH:
2470 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2471 		break;
2472 	case USB_SPEED_SUPER:
2473 	case USB_SPEED_SUPER_PLUS:
2474 	case USB_SPEED_UNKNOWN:
2475 	case USB_SPEED_WIRELESS:
2476 		/* Should never happen because only LS/FS/HS endpoints will get
2477 		 * added to the endpoint list.
2478 		 */
2479 		return;
2480 	}
2481 
2482 	if (tt_info)
2483 		tt_info->active_eps += 1;
2484 	/* Insert the endpoint into the list, largest max packet size first. */
2485 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2486 			bw_endpoint_list) {
2487 		if (ep_bw->max_packet_size >=
2488 				smaller_ep->bw_info.max_packet_size) {
2489 			/* Add the new ep before the smaller endpoint */
2490 			list_add_tail(&virt_ep->bw_endpoint_list,
2491 					&smaller_ep->bw_endpoint_list);
2492 			return;
2493 		}
2494 	}
2495 	/* Add the new endpoint at the end of the list. */
2496 	list_add_tail(&virt_ep->bw_endpoint_list,
2497 			&interval_bw->endpoints);
2498 }
2499 
2500 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2501 		struct xhci_virt_device *virt_dev,
2502 		int old_active_eps)
2503 {
2504 	struct xhci_root_port_bw_info *rh_bw_info;
2505 	if (!virt_dev->tt_info)
2506 		return;
2507 
2508 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2509 	if (old_active_eps == 0 &&
2510 				virt_dev->tt_info->active_eps != 0) {
2511 		rh_bw_info->num_active_tts += 1;
2512 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2513 	} else if (old_active_eps != 0 &&
2514 				virt_dev->tt_info->active_eps == 0) {
2515 		rh_bw_info->num_active_tts -= 1;
2516 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2517 	}
2518 }
2519 
2520 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2521 		struct xhci_virt_device *virt_dev,
2522 		struct xhci_container_ctx *in_ctx)
2523 {
2524 	struct xhci_bw_info ep_bw_info[31];
2525 	int i;
2526 	struct xhci_input_control_ctx *ctrl_ctx;
2527 	int old_active_eps = 0;
2528 
2529 	if (virt_dev->tt_info)
2530 		old_active_eps = virt_dev->tt_info->active_eps;
2531 
2532 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2533 	if (!ctrl_ctx) {
2534 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2535 				__func__);
2536 		return -ENOMEM;
2537 	}
2538 
2539 	for (i = 0; i < 31; i++) {
2540 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2541 			continue;
2542 
2543 		/* Make a copy of the BW info in case we need to revert this */
2544 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2545 				sizeof(ep_bw_info[i]));
2546 		/* Drop the endpoint from the interval table if the endpoint is
2547 		 * being dropped or changed.
2548 		 */
2549 		if (EP_IS_DROPPED(ctrl_ctx, i))
2550 			xhci_drop_ep_from_interval_table(xhci,
2551 					&virt_dev->eps[i].bw_info,
2552 					virt_dev->bw_table,
2553 					virt_dev->udev,
2554 					&virt_dev->eps[i],
2555 					virt_dev->tt_info);
2556 	}
2557 	/* Overwrite the information stored in the endpoints' bw_info */
2558 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2559 	for (i = 0; i < 31; i++) {
2560 		/* Add any changed or added endpoints to the interval table */
2561 		if (EP_IS_ADDED(ctrl_ctx, i))
2562 			xhci_add_ep_to_interval_table(xhci,
2563 					&virt_dev->eps[i].bw_info,
2564 					virt_dev->bw_table,
2565 					virt_dev->udev,
2566 					&virt_dev->eps[i],
2567 					virt_dev->tt_info);
2568 	}
2569 
2570 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2571 		/* Ok, this fits in the bandwidth we have.
2572 		 * Update the number of active TTs.
2573 		 */
2574 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2575 		return 0;
2576 	}
2577 
2578 	/* We don't have enough bandwidth for this, revert the stored info. */
2579 	for (i = 0; i < 31; i++) {
2580 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2581 			continue;
2582 
2583 		/* Drop the new copies of any added or changed endpoints from
2584 		 * the interval table.
2585 		 */
2586 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2587 			xhci_drop_ep_from_interval_table(xhci,
2588 					&virt_dev->eps[i].bw_info,
2589 					virt_dev->bw_table,
2590 					virt_dev->udev,
2591 					&virt_dev->eps[i],
2592 					virt_dev->tt_info);
2593 		}
2594 		/* Revert the endpoint back to its old information */
2595 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2596 				sizeof(ep_bw_info[i]));
2597 		/* Add any changed or dropped endpoints back into the table */
2598 		if (EP_IS_DROPPED(ctrl_ctx, i))
2599 			xhci_add_ep_to_interval_table(xhci,
2600 					&virt_dev->eps[i].bw_info,
2601 					virt_dev->bw_table,
2602 					virt_dev->udev,
2603 					&virt_dev->eps[i],
2604 					virt_dev->tt_info);
2605 	}
2606 	return -ENOMEM;
2607 }
2608 
2609 
2610 /* Issue a configure endpoint command or evaluate context command
2611  * and wait for it to finish.
2612  */
2613 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2614 		struct usb_device *udev,
2615 		struct xhci_command *command,
2616 		bool ctx_change, bool must_succeed)
2617 {
2618 	int ret;
2619 	unsigned long flags;
2620 	struct xhci_input_control_ctx *ctrl_ctx;
2621 	struct xhci_virt_device *virt_dev;
2622 
2623 	if (!command)
2624 		return -EINVAL;
2625 
2626 	spin_lock_irqsave(&xhci->lock, flags);
2627 	virt_dev = xhci->devs[udev->slot_id];
2628 
2629 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2630 	if (!ctrl_ctx) {
2631 		spin_unlock_irqrestore(&xhci->lock, flags);
2632 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2633 				__func__);
2634 		return -ENOMEM;
2635 	}
2636 
2637 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2638 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2639 		spin_unlock_irqrestore(&xhci->lock, flags);
2640 		xhci_warn(xhci, "Not enough host resources, "
2641 				"active endpoint contexts = %u\n",
2642 				xhci->num_active_eps);
2643 		return -ENOMEM;
2644 	}
2645 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2646 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2647 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2648 			xhci_free_host_resources(xhci, ctrl_ctx);
2649 		spin_unlock_irqrestore(&xhci->lock, flags);
2650 		xhci_warn(xhci, "Not enough bandwidth\n");
2651 		return -ENOMEM;
2652 	}
2653 
2654 	if (!ctx_change)
2655 		ret = xhci_queue_configure_endpoint(xhci, command,
2656 				command->in_ctx->dma,
2657 				udev->slot_id, must_succeed);
2658 	else
2659 		ret = xhci_queue_evaluate_context(xhci, command,
2660 				command->in_ctx->dma,
2661 				udev->slot_id, must_succeed);
2662 	if (ret < 0) {
2663 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2664 			xhci_free_host_resources(xhci, ctrl_ctx);
2665 		spin_unlock_irqrestore(&xhci->lock, flags);
2666 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2667 				"FIXME allocate a new ring segment");
2668 		return -ENOMEM;
2669 	}
2670 	xhci_ring_cmd_db(xhci);
2671 	spin_unlock_irqrestore(&xhci->lock, flags);
2672 
2673 	/* Wait for the configure endpoint command to complete */
2674 	wait_for_completion(command->completion);
2675 
2676 	if (!ctx_change)
2677 		ret = xhci_configure_endpoint_result(xhci, udev,
2678 						     &command->status);
2679 	else
2680 		ret = xhci_evaluate_context_result(xhci, udev,
2681 						   &command->status);
2682 
2683 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2684 		spin_lock_irqsave(&xhci->lock, flags);
2685 		/* If the command failed, remove the reserved resources.
2686 		 * Otherwise, clean up the estimate to include dropped eps.
2687 		 */
2688 		if (ret)
2689 			xhci_free_host_resources(xhci, ctrl_ctx);
2690 		else
2691 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2692 		spin_unlock_irqrestore(&xhci->lock, flags);
2693 	}
2694 	return ret;
2695 }
2696 
2697 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2698 	struct xhci_virt_device *vdev, int i)
2699 {
2700 	struct xhci_virt_ep *ep = &vdev->eps[i];
2701 
2702 	if (ep->ep_state & EP_HAS_STREAMS) {
2703 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2704 				xhci_get_endpoint_address(i));
2705 		xhci_free_stream_info(xhci, ep->stream_info);
2706 		ep->stream_info = NULL;
2707 		ep->ep_state &= ~EP_HAS_STREAMS;
2708 	}
2709 }
2710 
2711 /* Called after one or more calls to xhci_add_endpoint() or
2712  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2713  * to call xhci_reset_bandwidth().
2714  *
2715  * Since we are in the middle of changing either configuration or
2716  * installing a new alt setting, the USB core won't allow URBs to be
2717  * enqueued for any endpoint on the old config or interface.  Nothing
2718  * else should be touching the xhci->devs[slot_id] structure, so we
2719  * don't need to take the xhci->lock for manipulating that.
2720  */
2721 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2722 {
2723 	int i;
2724 	int ret = 0;
2725 	struct xhci_hcd *xhci;
2726 	struct xhci_virt_device	*virt_dev;
2727 	struct xhci_input_control_ctx *ctrl_ctx;
2728 	struct xhci_slot_ctx *slot_ctx;
2729 	struct xhci_command *command;
2730 
2731 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2732 	if (ret <= 0)
2733 		return ret;
2734 	xhci = hcd_to_xhci(hcd);
2735 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2736 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2737 		return -ENODEV;
2738 
2739 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2740 	virt_dev = xhci->devs[udev->slot_id];
2741 
2742 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2743 	if (!command)
2744 		return -ENOMEM;
2745 
2746 	command->in_ctx = virt_dev->in_ctx;
2747 
2748 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2749 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2750 	if (!ctrl_ctx) {
2751 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2752 				__func__);
2753 		ret = -ENOMEM;
2754 		goto command_cleanup;
2755 	}
2756 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2757 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2758 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2759 
2760 	/* Don't issue the command if there's no endpoints to update. */
2761 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2762 	    ctrl_ctx->drop_flags == 0) {
2763 		ret = 0;
2764 		goto command_cleanup;
2765 	}
2766 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2767 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2768 	for (i = 31; i >= 1; i--) {
2769 		__le32 le32 = cpu_to_le32(BIT(i));
2770 
2771 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2772 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2773 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2774 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2775 			break;
2776 		}
2777 	}
2778 	xhci_dbg(xhci, "New Input Control Context:\n");
2779 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2780 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2781 
2782 	ret = xhci_configure_endpoint(xhci, udev, command,
2783 			false, false);
2784 	if (ret)
2785 		/* Callee should call reset_bandwidth() */
2786 		goto command_cleanup;
2787 
2788 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2789 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2790 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2791 
2792 	/* Free any rings that were dropped, but not changed. */
2793 	for (i = 1; i < 31; ++i) {
2794 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2795 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2796 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2797 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2798 		}
2799 	}
2800 	xhci_zero_in_ctx(xhci, virt_dev);
2801 	/*
2802 	 * Install any rings for completely new endpoints or changed endpoints,
2803 	 * and free or cache any old rings from changed endpoints.
2804 	 */
2805 	for (i = 1; i < 31; ++i) {
2806 		if (!virt_dev->eps[i].new_ring)
2807 			continue;
2808 		/* Only cache or free the old ring if it exists.
2809 		 * It may not if this is the first add of an endpoint.
2810 		 */
2811 		if (virt_dev->eps[i].ring) {
2812 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2813 		}
2814 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2815 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2816 		virt_dev->eps[i].new_ring = NULL;
2817 	}
2818 command_cleanup:
2819 	kfree(command->completion);
2820 	kfree(command);
2821 
2822 	return ret;
2823 }
2824 
2825 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2826 {
2827 	struct xhci_hcd *xhci;
2828 	struct xhci_virt_device	*virt_dev;
2829 	int i, ret;
2830 
2831 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2832 	if (ret <= 0)
2833 		return;
2834 	xhci = hcd_to_xhci(hcd);
2835 
2836 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2837 	virt_dev = xhci->devs[udev->slot_id];
2838 	/* Free any rings allocated for added endpoints */
2839 	for (i = 0; i < 31; ++i) {
2840 		if (virt_dev->eps[i].new_ring) {
2841 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2842 			virt_dev->eps[i].new_ring = NULL;
2843 		}
2844 	}
2845 	xhci_zero_in_ctx(xhci, virt_dev);
2846 }
2847 
2848 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2849 		struct xhci_container_ctx *in_ctx,
2850 		struct xhci_container_ctx *out_ctx,
2851 		struct xhci_input_control_ctx *ctrl_ctx,
2852 		u32 add_flags, u32 drop_flags)
2853 {
2854 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2855 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2856 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2857 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2858 
2859 	xhci_dbg(xhci, "Input Context:\n");
2860 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2861 }
2862 
2863 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2864 		unsigned int slot_id, unsigned int ep_index,
2865 		struct xhci_dequeue_state *deq_state)
2866 {
2867 	struct xhci_input_control_ctx *ctrl_ctx;
2868 	struct xhci_container_ctx *in_ctx;
2869 	struct xhci_ep_ctx *ep_ctx;
2870 	u32 added_ctxs;
2871 	dma_addr_t addr;
2872 
2873 	in_ctx = xhci->devs[slot_id]->in_ctx;
2874 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2875 	if (!ctrl_ctx) {
2876 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2877 				__func__);
2878 		return;
2879 	}
2880 
2881 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2882 			xhci->devs[slot_id]->out_ctx, ep_index);
2883 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2884 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2885 			deq_state->new_deq_ptr);
2886 	if (addr == 0) {
2887 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2888 				"reset ep command\n");
2889 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2890 				deq_state->new_deq_seg,
2891 				deq_state->new_deq_ptr);
2892 		return;
2893 	}
2894 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2895 
2896 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2897 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2898 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2899 			added_ctxs, added_ctxs);
2900 }
2901 
2902 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2903 			unsigned int ep_index, struct xhci_td *td)
2904 {
2905 	struct xhci_dequeue_state deq_state;
2906 	struct xhci_virt_ep *ep;
2907 	struct usb_device *udev = td->urb->dev;
2908 
2909 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2910 			"Cleaning up stalled endpoint ring");
2911 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2912 	/* We need to move the HW's dequeue pointer past this TD,
2913 	 * or it will attempt to resend it on the next doorbell ring.
2914 	 */
2915 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2916 			ep_index, ep->stopped_stream, td, &deq_state);
2917 
2918 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2919 		return;
2920 
2921 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2922 	 * issue a configure endpoint command later.
2923 	 */
2924 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2925 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2926 				"Queueing new dequeue state");
2927 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2928 				ep_index, ep->stopped_stream, &deq_state);
2929 	} else {
2930 		/* Better hope no one uses the input context between now and the
2931 		 * reset endpoint completion!
2932 		 * XXX: No idea how this hardware will react when stream rings
2933 		 * are enabled.
2934 		 */
2935 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2936 				"Setting up input context for "
2937 				"configure endpoint command");
2938 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2939 				ep_index, &deq_state);
2940 	}
2941 }
2942 
2943 /* Called when clearing halted device. The core should have sent the control
2944  * message to clear the device halt condition. The host side of the halt should
2945  * already be cleared with a reset endpoint command issued when the STALL tx
2946  * event was received.
2947  *
2948  * Context: in_interrupt
2949  */
2950 
2951 void xhci_endpoint_reset(struct usb_hcd *hcd,
2952 		struct usb_host_endpoint *ep)
2953 {
2954 	struct xhci_hcd *xhci;
2955 
2956 	xhci = hcd_to_xhci(hcd);
2957 
2958 	/*
2959 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2960 	 * The Reset Endpoint Command may only be issued to endpoints in the
2961 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2962 	 * Number of an endpoint that isn't in the Halted state, then software
2963 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2964 	 * for the target endpoint. that is in the Stopped state.
2965 	 */
2966 
2967 	/* For now just print debug to follow the situation */
2968 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2969 		 ep->desc.bEndpointAddress);
2970 }
2971 
2972 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2973 		struct usb_device *udev, struct usb_host_endpoint *ep,
2974 		unsigned int slot_id)
2975 {
2976 	int ret;
2977 	unsigned int ep_index;
2978 	unsigned int ep_state;
2979 
2980 	if (!ep)
2981 		return -EINVAL;
2982 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2983 	if (ret <= 0)
2984 		return -EINVAL;
2985 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2986 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2987 				" descriptor for ep 0x%x does not support streams\n",
2988 				ep->desc.bEndpointAddress);
2989 		return -EINVAL;
2990 	}
2991 
2992 	ep_index = xhci_get_endpoint_index(&ep->desc);
2993 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2994 	if (ep_state & EP_HAS_STREAMS ||
2995 			ep_state & EP_GETTING_STREAMS) {
2996 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2997 				"already has streams set up.\n",
2998 				ep->desc.bEndpointAddress);
2999 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3000 				"dynamic stream context array reallocation.\n");
3001 		return -EINVAL;
3002 	}
3003 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3004 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3005 				"endpoint 0x%x; URBs are pending.\n",
3006 				ep->desc.bEndpointAddress);
3007 		return -EINVAL;
3008 	}
3009 	return 0;
3010 }
3011 
3012 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3013 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3014 {
3015 	unsigned int max_streams;
3016 
3017 	/* The stream context array size must be a power of two */
3018 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3019 	/*
3020 	 * Find out how many primary stream array entries the host controller
3021 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3022 	 * level page entries), but that's an optional feature for xHCI host
3023 	 * controllers. xHCs must support at least 4 stream IDs.
3024 	 */
3025 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3026 	if (*num_stream_ctxs > max_streams) {
3027 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3028 				max_streams);
3029 		*num_stream_ctxs = max_streams;
3030 		*num_streams = max_streams;
3031 	}
3032 }
3033 
3034 /* Returns an error code if one of the endpoint already has streams.
3035  * This does not change any data structures, it only checks and gathers
3036  * information.
3037  */
3038 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3039 		struct usb_device *udev,
3040 		struct usb_host_endpoint **eps, unsigned int num_eps,
3041 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3042 {
3043 	unsigned int max_streams;
3044 	unsigned int endpoint_flag;
3045 	int i;
3046 	int ret;
3047 
3048 	for (i = 0; i < num_eps; i++) {
3049 		ret = xhci_check_streams_endpoint(xhci, udev,
3050 				eps[i], udev->slot_id);
3051 		if (ret < 0)
3052 			return ret;
3053 
3054 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3055 		if (max_streams < (*num_streams - 1)) {
3056 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3057 					eps[i]->desc.bEndpointAddress,
3058 					max_streams);
3059 			*num_streams = max_streams+1;
3060 		}
3061 
3062 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3063 		if (*changed_ep_bitmask & endpoint_flag)
3064 			return -EINVAL;
3065 		*changed_ep_bitmask |= endpoint_flag;
3066 	}
3067 	return 0;
3068 }
3069 
3070 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3071 		struct usb_device *udev,
3072 		struct usb_host_endpoint **eps, unsigned int num_eps)
3073 {
3074 	u32 changed_ep_bitmask = 0;
3075 	unsigned int slot_id;
3076 	unsigned int ep_index;
3077 	unsigned int ep_state;
3078 	int i;
3079 
3080 	slot_id = udev->slot_id;
3081 	if (!xhci->devs[slot_id])
3082 		return 0;
3083 
3084 	for (i = 0; i < num_eps; i++) {
3085 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3086 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3087 		/* Are streams already being freed for the endpoint? */
3088 		if (ep_state & EP_GETTING_NO_STREAMS) {
3089 			xhci_warn(xhci, "WARN Can't disable streams for "
3090 					"endpoint 0x%x, "
3091 					"streams are being disabled already\n",
3092 					eps[i]->desc.bEndpointAddress);
3093 			return 0;
3094 		}
3095 		/* Are there actually any streams to free? */
3096 		if (!(ep_state & EP_HAS_STREAMS) &&
3097 				!(ep_state & EP_GETTING_STREAMS)) {
3098 			xhci_warn(xhci, "WARN Can't disable streams for "
3099 					"endpoint 0x%x, "
3100 					"streams are already disabled!\n",
3101 					eps[i]->desc.bEndpointAddress);
3102 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3103 					"with non-streams endpoint\n");
3104 			return 0;
3105 		}
3106 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3107 	}
3108 	return changed_ep_bitmask;
3109 }
3110 
3111 /*
3112  * The USB device drivers use this function (through the HCD interface in USB
3113  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3114  * coordinate mass storage command queueing across multiple endpoints (basically
3115  * a stream ID == a task ID).
3116  *
3117  * Setting up streams involves allocating the same size stream context array
3118  * for each endpoint and issuing a configure endpoint command for all endpoints.
3119  *
3120  * Don't allow the call to succeed if one endpoint only supports one stream
3121  * (which means it doesn't support streams at all).
3122  *
3123  * Drivers may get less stream IDs than they asked for, if the host controller
3124  * hardware or endpoints claim they can't support the number of requested
3125  * stream IDs.
3126  */
3127 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3128 		struct usb_host_endpoint **eps, unsigned int num_eps,
3129 		unsigned int num_streams, gfp_t mem_flags)
3130 {
3131 	int i, ret;
3132 	struct xhci_hcd *xhci;
3133 	struct xhci_virt_device *vdev;
3134 	struct xhci_command *config_cmd;
3135 	struct xhci_input_control_ctx *ctrl_ctx;
3136 	unsigned int ep_index;
3137 	unsigned int num_stream_ctxs;
3138 	unsigned int max_packet;
3139 	unsigned long flags;
3140 	u32 changed_ep_bitmask = 0;
3141 
3142 	if (!eps)
3143 		return -EINVAL;
3144 
3145 	/* Add one to the number of streams requested to account for
3146 	 * stream 0 that is reserved for xHCI usage.
3147 	 */
3148 	num_streams += 1;
3149 	xhci = hcd_to_xhci(hcd);
3150 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3151 			num_streams);
3152 
3153 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3154 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3155 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3156 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3157 		return -ENOSYS;
3158 	}
3159 
3160 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3161 	if (!config_cmd) {
3162 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3163 		return -ENOMEM;
3164 	}
3165 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3166 	if (!ctrl_ctx) {
3167 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3168 				__func__);
3169 		xhci_free_command(xhci, config_cmd);
3170 		return -ENOMEM;
3171 	}
3172 
3173 	/* Check to make sure all endpoints are not already configured for
3174 	 * streams.  While we're at it, find the maximum number of streams that
3175 	 * all the endpoints will support and check for duplicate endpoints.
3176 	 */
3177 	spin_lock_irqsave(&xhci->lock, flags);
3178 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3179 			num_eps, &num_streams, &changed_ep_bitmask);
3180 	if (ret < 0) {
3181 		xhci_free_command(xhci, config_cmd);
3182 		spin_unlock_irqrestore(&xhci->lock, flags);
3183 		return ret;
3184 	}
3185 	if (num_streams <= 1) {
3186 		xhci_warn(xhci, "WARN: endpoints can't handle "
3187 				"more than one stream.\n");
3188 		xhci_free_command(xhci, config_cmd);
3189 		spin_unlock_irqrestore(&xhci->lock, flags);
3190 		return -EINVAL;
3191 	}
3192 	vdev = xhci->devs[udev->slot_id];
3193 	/* Mark each endpoint as being in transition, so
3194 	 * xhci_urb_enqueue() will reject all URBs.
3195 	 */
3196 	for (i = 0; i < num_eps; i++) {
3197 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3199 	}
3200 	spin_unlock_irqrestore(&xhci->lock, flags);
3201 
3202 	/* Setup internal data structures and allocate HW data structures for
3203 	 * streams (but don't install the HW structures in the input context
3204 	 * until we're sure all memory allocation succeeded).
3205 	 */
3206 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3207 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3208 			num_stream_ctxs, num_streams);
3209 
3210 	for (i = 0; i < num_eps; i++) {
3211 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3212 		max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3213 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3214 				num_stream_ctxs,
3215 				num_streams,
3216 				max_packet, mem_flags);
3217 		if (!vdev->eps[ep_index].stream_info)
3218 			goto cleanup;
3219 		/* Set maxPstreams in endpoint context and update deq ptr to
3220 		 * point to stream context array. FIXME
3221 		 */
3222 	}
3223 
3224 	/* Set up the input context for a configure endpoint command. */
3225 	for (i = 0; i < num_eps; i++) {
3226 		struct xhci_ep_ctx *ep_ctx;
3227 
3228 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3230 
3231 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3232 				vdev->out_ctx, ep_index);
3233 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3234 				vdev->eps[ep_index].stream_info);
3235 	}
3236 	/* Tell the HW to drop its old copy of the endpoint context info
3237 	 * and add the updated copy from the input context.
3238 	 */
3239 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3240 			vdev->out_ctx, ctrl_ctx,
3241 			changed_ep_bitmask, changed_ep_bitmask);
3242 
3243 	/* Issue and wait for the configure endpoint command */
3244 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3245 			false, false);
3246 
3247 	/* xHC rejected the configure endpoint command for some reason, so we
3248 	 * leave the old ring intact and free our internal streams data
3249 	 * structure.
3250 	 */
3251 	if (ret < 0)
3252 		goto cleanup;
3253 
3254 	spin_lock_irqsave(&xhci->lock, flags);
3255 	for (i = 0; i < num_eps; i++) {
3256 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3257 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3258 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3259 			 udev->slot_id, ep_index);
3260 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3261 	}
3262 	xhci_free_command(xhci, config_cmd);
3263 	spin_unlock_irqrestore(&xhci->lock, flags);
3264 
3265 	/* Subtract 1 for stream 0, which drivers can't use */
3266 	return num_streams - 1;
3267 
3268 cleanup:
3269 	/* If it didn't work, free the streams! */
3270 	for (i = 0; i < num_eps; i++) {
3271 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3273 		vdev->eps[ep_index].stream_info = NULL;
3274 		/* FIXME Unset maxPstreams in endpoint context and
3275 		 * update deq ptr to point to normal string ring.
3276 		 */
3277 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3278 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3279 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3280 	}
3281 	xhci_free_command(xhci, config_cmd);
3282 	return -ENOMEM;
3283 }
3284 
3285 /* Transition the endpoint from using streams to being a "normal" endpoint
3286  * without streams.
3287  *
3288  * Modify the endpoint context state, submit a configure endpoint command,
3289  * and free all endpoint rings for streams if that completes successfully.
3290  */
3291 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3292 		struct usb_host_endpoint **eps, unsigned int num_eps,
3293 		gfp_t mem_flags)
3294 {
3295 	int i, ret;
3296 	struct xhci_hcd *xhci;
3297 	struct xhci_virt_device *vdev;
3298 	struct xhci_command *command;
3299 	struct xhci_input_control_ctx *ctrl_ctx;
3300 	unsigned int ep_index;
3301 	unsigned long flags;
3302 	u32 changed_ep_bitmask;
3303 
3304 	xhci = hcd_to_xhci(hcd);
3305 	vdev = xhci->devs[udev->slot_id];
3306 
3307 	/* Set up a configure endpoint command to remove the streams rings */
3308 	spin_lock_irqsave(&xhci->lock, flags);
3309 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3310 			udev, eps, num_eps);
3311 	if (changed_ep_bitmask == 0) {
3312 		spin_unlock_irqrestore(&xhci->lock, flags);
3313 		return -EINVAL;
3314 	}
3315 
3316 	/* Use the xhci_command structure from the first endpoint.  We may have
3317 	 * allocated too many, but the driver may call xhci_free_streams() for
3318 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3319 	 */
3320 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3321 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3322 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3323 	if (!ctrl_ctx) {
3324 		spin_unlock_irqrestore(&xhci->lock, flags);
3325 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3326 				__func__);
3327 		return -EINVAL;
3328 	}
3329 
3330 	for (i = 0; i < num_eps; i++) {
3331 		struct xhci_ep_ctx *ep_ctx;
3332 
3333 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3334 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3335 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3336 			EP_GETTING_NO_STREAMS;
3337 
3338 		xhci_endpoint_copy(xhci, command->in_ctx,
3339 				vdev->out_ctx, ep_index);
3340 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3341 				&vdev->eps[ep_index]);
3342 	}
3343 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3344 			vdev->out_ctx, ctrl_ctx,
3345 			changed_ep_bitmask, changed_ep_bitmask);
3346 	spin_unlock_irqrestore(&xhci->lock, flags);
3347 
3348 	/* Issue and wait for the configure endpoint command,
3349 	 * which must succeed.
3350 	 */
3351 	ret = xhci_configure_endpoint(xhci, udev, command,
3352 			false, true);
3353 
3354 	/* xHC rejected the configure endpoint command for some reason, so we
3355 	 * leave the streams rings intact.
3356 	 */
3357 	if (ret < 0)
3358 		return ret;
3359 
3360 	spin_lock_irqsave(&xhci->lock, flags);
3361 	for (i = 0; i < num_eps; i++) {
3362 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3364 		vdev->eps[ep_index].stream_info = NULL;
3365 		/* FIXME Unset maxPstreams in endpoint context and
3366 		 * update deq ptr to point to normal string ring.
3367 		 */
3368 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3369 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3370 	}
3371 	spin_unlock_irqrestore(&xhci->lock, flags);
3372 
3373 	return 0;
3374 }
3375 
3376 /*
3377  * Deletes endpoint resources for endpoints that were active before a Reset
3378  * Device command, or a Disable Slot command.  The Reset Device command leaves
3379  * the control endpoint intact, whereas the Disable Slot command deletes it.
3380  *
3381  * Must be called with xhci->lock held.
3382  */
3383 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3384 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3385 {
3386 	int i;
3387 	unsigned int num_dropped_eps = 0;
3388 	unsigned int drop_flags = 0;
3389 
3390 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3391 		if (virt_dev->eps[i].ring) {
3392 			drop_flags |= 1 << i;
3393 			num_dropped_eps++;
3394 		}
3395 	}
3396 	xhci->num_active_eps -= num_dropped_eps;
3397 	if (num_dropped_eps)
3398 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3399 				"Dropped %u ep ctxs, flags = 0x%x, "
3400 				"%u now active.",
3401 				num_dropped_eps, drop_flags,
3402 				xhci->num_active_eps);
3403 }
3404 
3405 /*
3406  * This submits a Reset Device Command, which will set the device state to 0,
3407  * set the device address to 0, and disable all the endpoints except the default
3408  * control endpoint.  The USB core should come back and call
3409  * xhci_address_device(), and then re-set up the configuration.  If this is
3410  * called because of a usb_reset_and_verify_device(), then the old alternate
3411  * settings will be re-installed through the normal bandwidth allocation
3412  * functions.
3413  *
3414  * Wait for the Reset Device command to finish.  Remove all structures
3415  * associated with the endpoints that were disabled.  Clear the input device
3416  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3417  *
3418  * If the virt_dev to be reset does not exist or does not match the udev,
3419  * it means the device is lost, possibly due to the xHC restore error and
3420  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3421  * re-allocate the device.
3422  */
3423 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3424 {
3425 	int ret, i;
3426 	unsigned long flags;
3427 	struct xhci_hcd *xhci;
3428 	unsigned int slot_id;
3429 	struct xhci_virt_device *virt_dev;
3430 	struct xhci_command *reset_device_cmd;
3431 	int last_freed_endpoint;
3432 	struct xhci_slot_ctx *slot_ctx;
3433 	int old_active_eps = 0;
3434 
3435 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3436 	if (ret <= 0)
3437 		return ret;
3438 	xhci = hcd_to_xhci(hcd);
3439 	slot_id = udev->slot_id;
3440 	virt_dev = xhci->devs[slot_id];
3441 	if (!virt_dev) {
3442 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3443 				"not exist. Re-allocate the device\n", slot_id);
3444 		ret = xhci_alloc_dev(hcd, udev);
3445 		if (ret == 1)
3446 			return 0;
3447 		else
3448 			return -EINVAL;
3449 	}
3450 
3451 	if (virt_dev->tt_info)
3452 		old_active_eps = virt_dev->tt_info->active_eps;
3453 
3454 	if (virt_dev->udev != udev) {
3455 		/* If the virt_dev and the udev does not match, this virt_dev
3456 		 * may belong to another udev.
3457 		 * Re-allocate the device.
3458 		 */
3459 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3460 				"not match the udev. Re-allocate the device\n",
3461 				slot_id);
3462 		ret = xhci_alloc_dev(hcd, udev);
3463 		if (ret == 1)
3464 			return 0;
3465 		else
3466 			return -EINVAL;
3467 	}
3468 
3469 	/* If device is not setup, there is no point in resetting it */
3470 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3471 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3472 						SLOT_STATE_DISABLED)
3473 		return 0;
3474 
3475 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3476 	/* Allocate the command structure that holds the struct completion.
3477 	 * Assume we're in process context, since the normal device reset
3478 	 * process has to wait for the device anyway.  Storage devices are
3479 	 * reset as part of error handling, so use GFP_NOIO instead of
3480 	 * GFP_KERNEL.
3481 	 */
3482 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3483 	if (!reset_device_cmd) {
3484 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3485 		return -ENOMEM;
3486 	}
3487 
3488 	/* Attempt to submit the Reset Device command to the command ring */
3489 	spin_lock_irqsave(&xhci->lock, flags);
3490 
3491 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3492 	if (ret) {
3493 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3494 		spin_unlock_irqrestore(&xhci->lock, flags);
3495 		goto command_cleanup;
3496 	}
3497 	xhci_ring_cmd_db(xhci);
3498 	spin_unlock_irqrestore(&xhci->lock, flags);
3499 
3500 	/* Wait for the Reset Device command to finish */
3501 	wait_for_completion(reset_device_cmd->completion);
3502 
3503 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3504 	 * unless we tried to reset a slot ID that wasn't enabled,
3505 	 * or the device wasn't in the addressed or configured state.
3506 	 */
3507 	ret = reset_device_cmd->status;
3508 	switch (ret) {
3509 	case COMP_CMD_ABORT:
3510 	case COMP_CMD_STOP:
3511 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3512 		ret = -ETIME;
3513 		goto command_cleanup;
3514 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3515 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3516 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3517 				slot_id,
3518 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3519 		xhci_dbg(xhci, "Not freeing device rings.\n");
3520 		/* Don't treat this as an error.  May change my mind later. */
3521 		ret = 0;
3522 		goto command_cleanup;
3523 	case COMP_SUCCESS:
3524 		xhci_dbg(xhci, "Successful reset device command.\n");
3525 		break;
3526 	default:
3527 		if (xhci_is_vendor_info_code(xhci, ret))
3528 			break;
3529 		xhci_warn(xhci, "Unknown completion code %u for "
3530 				"reset device command.\n", ret);
3531 		ret = -EINVAL;
3532 		goto command_cleanup;
3533 	}
3534 
3535 	/* Free up host controller endpoint resources */
3536 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3537 		spin_lock_irqsave(&xhci->lock, flags);
3538 		/* Don't delete the default control endpoint resources */
3539 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3540 		spin_unlock_irqrestore(&xhci->lock, flags);
3541 	}
3542 
3543 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3544 	last_freed_endpoint = 1;
3545 	for (i = 1; i < 31; ++i) {
3546 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3547 
3548 		if (ep->ep_state & EP_HAS_STREAMS) {
3549 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3550 					xhci_get_endpoint_address(i));
3551 			xhci_free_stream_info(xhci, ep->stream_info);
3552 			ep->stream_info = NULL;
3553 			ep->ep_state &= ~EP_HAS_STREAMS;
3554 		}
3555 
3556 		if (ep->ring) {
3557 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3558 			last_freed_endpoint = i;
3559 		}
3560 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3561 			xhci_drop_ep_from_interval_table(xhci,
3562 					&virt_dev->eps[i].bw_info,
3563 					virt_dev->bw_table,
3564 					udev,
3565 					&virt_dev->eps[i],
3566 					virt_dev->tt_info);
3567 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3568 	}
3569 	/* If necessary, update the number of active TTs on this root port */
3570 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3571 
3572 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3573 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3574 	ret = 0;
3575 
3576 command_cleanup:
3577 	xhci_free_command(xhci, reset_device_cmd);
3578 	return ret;
3579 }
3580 
3581 /*
3582  * At this point, the struct usb_device is about to go away, the device has
3583  * disconnected, and all traffic has been stopped and the endpoints have been
3584  * disabled.  Free any HC data structures associated with that device.
3585  */
3586 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3587 {
3588 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3589 	struct xhci_virt_device *virt_dev;
3590 	unsigned long flags;
3591 	u32 state;
3592 	int i, ret;
3593 	struct xhci_command *command;
3594 
3595 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3596 	if (!command)
3597 		return;
3598 
3599 #ifndef CONFIG_USB_DEFAULT_PERSIST
3600 	/*
3601 	 * We called pm_runtime_get_noresume when the device was attached.
3602 	 * Decrement the counter here to allow controller to runtime suspend
3603 	 * if no devices remain.
3604 	 */
3605 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3606 		pm_runtime_put_noidle(hcd->self.controller);
3607 #endif
3608 
3609 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3610 	/* If the host is halted due to driver unload, we still need to free the
3611 	 * device.
3612 	 */
3613 	if (ret <= 0 && ret != -ENODEV) {
3614 		kfree(command);
3615 		return;
3616 	}
3617 
3618 	virt_dev = xhci->devs[udev->slot_id];
3619 
3620 	/* Stop any wayward timer functions (which may grab the lock) */
3621 	for (i = 0; i < 31; ++i) {
3622 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3623 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3624 	}
3625 
3626 	spin_lock_irqsave(&xhci->lock, flags);
3627 	/* Don't disable the slot if the host controller is dead. */
3628 	state = readl(&xhci->op_regs->status);
3629 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3630 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3631 		xhci_free_virt_device(xhci, udev->slot_id);
3632 		spin_unlock_irqrestore(&xhci->lock, flags);
3633 		kfree(command);
3634 		return;
3635 	}
3636 
3637 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3638 				    udev->slot_id)) {
3639 		spin_unlock_irqrestore(&xhci->lock, flags);
3640 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3641 		return;
3642 	}
3643 	xhci_ring_cmd_db(xhci);
3644 	spin_unlock_irqrestore(&xhci->lock, flags);
3645 
3646 	/*
3647 	 * Event command completion handler will free any data structures
3648 	 * associated with the slot.  XXX Can free sleep?
3649 	 */
3650 }
3651 
3652 /*
3653  * Checks if we have enough host controller resources for the default control
3654  * endpoint.
3655  *
3656  * Must be called with xhci->lock held.
3657  */
3658 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3659 {
3660 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3661 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3662 				"Not enough ep ctxs: "
3663 				"%u active, need to add 1, limit is %u.",
3664 				xhci->num_active_eps, xhci->limit_active_eps);
3665 		return -ENOMEM;
3666 	}
3667 	xhci->num_active_eps += 1;
3668 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3669 			"Adding 1 ep ctx, %u now active.",
3670 			xhci->num_active_eps);
3671 	return 0;
3672 }
3673 
3674 
3675 /*
3676  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3677  * timed out, or allocating memory failed.  Returns 1 on success.
3678  */
3679 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3680 {
3681 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3682 	unsigned long flags;
3683 	int ret, slot_id;
3684 	struct xhci_command *command;
3685 
3686 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3687 	if (!command)
3688 		return 0;
3689 
3690 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3691 	mutex_lock(&xhci->mutex);
3692 	spin_lock_irqsave(&xhci->lock, flags);
3693 	command->completion = &xhci->addr_dev;
3694 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3695 	if (ret) {
3696 		spin_unlock_irqrestore(&xhci->lock, flags);
3697 		mutex_unlock(&xhci->mutex);
3698 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3699 		kfree(command);
3700 		return 0;
3701 	}
3702 	xhci_ring_cmd_db(xhci);
3703 	spin_unlock_irqrestore(&xhci->lock, flags);
3704 
3705 	wait_for_completion(command->completion);
3706 	slot_id = xhci->slot_id;
3707 	mutex_unlock(&xhci->mutex);
3708 
3709 	if (!slot_id || command->status != COMP_SUCCESS) {
3710 		xhci_err(xhci, "Error while assigning device slot ID\n");
3711 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3712 				HCS_MAX_SLOTS(
3713 					readl(&xhci->cap_regs->hcs_params1)));
3714 		kfree(command);
3715 		return 0;
3716 	}
3717 
3718 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3719 		spin_lock_irqsave(&xhci->lock, flags);
3720 		ret = xhci_reserve_host_control_ep_resources(xhci);
3721 		if (ret) {
3722 			spin_unlock_irqrestore(&xhci->lock, flags);
3723 			xhci_warn(xhci, "Not enough host resources, "
3724 					"active endpoint contexts = %u\n",
3725 					xhci->num_active_eps);
3726 			goto disable_slot;
3727 		}
3728 		spin_unlock_irqrestore(&xhci->lock, flags);
3729 	}
3730 	/* Use GFP_NOIO, since this function can be called from
3731 	 * xhci_discover_or_reset_device(), which may be called as part of
3732 	 * mass storage driver error handling.
3733 	 */
3734 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3735 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3736 		goto disable_slot;
3737 	}
3738 	udev->slot_id = slot_id;
3739 
3740 #ifndef CONFIG_USB_DEFAULT_PERSIST
3741 	/*
3742 	 * If resetting upon resume, we can't put the controller into runtime
3743 	 * suspend if there is a device attached.
3744 	 */
3745 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3746 		pm_runtime_get_noresume(hcd->self.controller);
3747 #endif
3748 
3749 
3750 	kfree(command);
3751 	/* Is this a LS or FS device under a HS hub? */
3752 	/* Hub or peripherial? */
3753 	return 1;
3754 
3755 disable_slot:
3756 	/* Disable slot, if we can do it without mem alloc */
3757 	spin_lock_irqsave(&xhci->lock, flags);
3758 	command->completion = NULL;
3759 	command->status = 0;
3760 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3761 				     udev->slot_id))
3762 		xhci_ring_cmd_db(xhci);
3763 	spin_unlock_irqrestore(&xhci->lock, flags);
3764 	return 0;
3765 }
3766 
3767 /*
3768  * Issue an Address Device command and optionally send a corresponding
3769  * SetAddress request to the device.
3770  */
3771 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3772 			     enum xhci_setup_dev setup)
3773 {
3774 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3775 	unsigned long flags;
3776 	struct xhci_virt_device *virt_dev;
3777 	int ret = 0;
3778 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3779 	struct xhci_slot_ctx *slot_ctx;
3780 	struct xhci_input_control_ctx *ctrl_ctx;
3781 	u64 temp_64;
3782 	struct xhci_command *command = NULL;
3783 
3784 	mutex_lock(&xhci->mutex);
3785 
3786 	if (xhci->xhc_state)	/* dying, removing or halted */
3787 		goto out;
3788 
3789 	if (!udev->slot_id) {
3790 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3791 				"Bad Slot ID %d", udev->slot_id);
3792 		ret = -EINVAL;
3793 		goto out;
3794 	}
3795 
3796 	virt_dev = xhci->devs[udev->slot_id];
3797 
3798 	if (WARN_ON(!virt_dev)) {
3799 		/*
3800 		 * In plug/unplug torture test with an NEC controller,
3801 		 * a zero-dereference was observed once due to virt_dev = 0.
3802 		 * Print useful debug rather than crash if it is observed again!
3803 		 */
3804 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3805 			udev->slot_id);
3806 		ret = -EINVAL;
3807 		goto out;
3808 	}
3809 
3810 	if (setup == SETUP_CONTEXT_ONLY) {
3811 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3812 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3813 		    SLOT_STATE_DEFAULT) {
3814 			xhci_dbg(xhci, "Slot already in default state\n");
3815 			goto out;
3816 		}
3817 	}
3818 
3819 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3820 	if (!command) {
3821 		ret = -ENOMEM;
3822 		goto out;
3823 	}
3824 
3825 	command->in_ctx = virt_dev->in_ctx;
3826 	command->completion = &xhci->addr_dev;
3827 
3828 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3829 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3830 	if (!ctrl_ctx) {
3831 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3832 				__func__);
3833 		ret = -EINVAL;
3834 		goto out;
3835 	}
3836 	/*
3837 	 * If this is the first Set Address since device plug-in or
3838 	 * virt_device realloaction after a resume with an xHCI power loss,
3839 	 * then set up the slot context.
3840 	 */
3841 	if (!slot_ctx->dev_info)
3842 		xhci_setup_addressable_virt_dev(xhci, udev);
3843 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3844 	else
3845 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3846 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3847 	ctrl_ctx->drop_flags = 0;
3848 
3849 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3850 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3851 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3852 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3853 
3854 	spin_lock_irqsave(&xhci->lock, flags);
3855 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3856 					udev->slot_id, setup);
3857 	if (ret) {
3858 		spin_unlock_irqrestore(&xhci->lock, flags);
3859 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3860 				"FIXME: allocate a command ring segment");
3861 		goto out;
3862 	}
3863 	xhci_ring_cmd_db(xhci);
3864 	spin_unlock_irqrestore(&xhci->lock, flags);
3865 
3866 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3867 	wait_for_completion(command->completion);
3868 
3869 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3870 	 * the SetAddress() "recovery interval" required by USB and aborting the
3871 	 * command on a timeout.
3872 	 */
3873 	switch (command->status) {
3874 	case COMP_CMD_ABORT:
3875 	case COMP_CMD_STOP:
3876 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3877 		ret = -ETIME;
3878 		break;
3879 	case COMP_CTX_STATE:
3880 	case COMP_EBADSLT:
3881 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3882 			 act, udev->slot_id);
3883 		ret = -EINVAL;
3884 		break;
3885 	case COMP_TX_ERR:
3886 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3887 		ret = -EPROTO;
3888 		break;
3889 	case COMP_DEV_ERR:
3890 		dev_warn(&udev->dev,
3891 			 "ERROR: Incompatible device for setup %s command\n", act);
3892 		ret = -ENODEV;
3893 		break;
3894 	case COMP_SUCCESS:
3895 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3896 			       "Successful setup %s command", act);
3897 		break;
3898 	default:
3899 		xhci_err(xhci,
3900 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3901 			 act, command->status);
3902 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3903 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3904 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3905 		ret = -EINVAL;
3906 		break;
3907 	}
3908 	if (ret)
3909 		goto out;
3910 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3911 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912 			"Op regs DCBAA ptr = %#016llx", temp_64);
3913 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3914 		"Slot ID %d dcbaa entry @%p = %#016llx",
3915 		udev->slot_id,
3916 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3917 		(unsigned long long)
3918 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3919 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3920 			"Output Context DMA address = %#08llx",
3921 			(unsigned long long)virt_dev->out_ctx->dma);
3922 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3923 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3924 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3925 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3926 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3927 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3928 	/*
3929 	 * USB core uses address 1 for the roothubs, so we add one to the
3930 	 * address given back to us by the HC.
3931 	 */
3932 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3933 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3934 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3935 	/* Zero the input context control for later use */
3936 	ctrl_ctx->add_flags = 0;
3937 	ctrl_ctx->drop_flags = 0;
3938 
3939 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3940 		       "Internal device address = %d",
3941 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3942 out:
3943 	mutex_unlock(&xhci->mutex);
3944 	kfree(command);
3945 	return ret;
3946 }
3947 
3948 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3951 }
3952 
3953 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3954 {
3955 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3956 }
3957 
3958 /*
3959  * Transfer the port index into real index in the HW port status
3960  * registers. Caculate offset between the port's PORTSC register
3961  * and port status base. Divide the number of per port register
3962  * to get the real index. The raw port number bases 1.
3963  */
3964 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3965 {
3966 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3967 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3968 	__le32 __iomem *addr;
3969 	int raw_port;
3970 
3971 	if (hcd->speed < HCD_USB3)
3972 		addr = xhci->usb2_ports[port1 - 1];
3973 	else
3974 		addr = xhci->usb3_ports[port1 - 1];
3975 
3976 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3977 	return raw_port;
3978 }
3979 
3980 /*
3981  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3982  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3983  */
3984 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3985 			struct usb_device *udev, u16 max_exit_latency)
3986 {
3987 	struct xhci_virt_device *virt_dev;
3988 	struct xhci_command *command;
3989 	struct xhci_input_control_ctx *ctrl_ctx;
3990 	struct xhci_slot_ctx *slot_ctx;
3991 	unsigned long flags;
3992 	int ret;
3993 
3994 	spin_lock_irqsave(&xhci->lock, flags);
3995 
3996 	virt_dev = xhci->devs[udev->slot_id];
3997 
3998 	/*
3999 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4000 	 * xHC was re-initialized. Exit latency will be set later after
4001 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4002 	 */
4003 
4004 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4005 		spin_unlock_irqrestore(&xhci->lock, flags);
4006 		return 0;
4007 	}
4008 
4009 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4010 	command = xhci->lpm_command;
4011 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4012 	if (!ctrl_ctx) {
4013 		spin_unlock_irqrestore(&xhci->lock, flags);
4014 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4015 				__func__);
4016 		return -ENOMEM;
4017 	}
4018 
4019 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4020 	spin_unlock_irqrestore(&xhci->lock, flags);
4021 
4022 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4023 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4024 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4025 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4026 	slot_ctx->dev_state = 0;
4027 
4028 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4029 			"Set up evaluate context for LPM MEL change.");
4030 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4031 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4032 
4033 	/* Issue and wait for the evaluate context command. */
4034 	ret = xhci_configure_endpoint(xhci, udev, command,
4035 			true, true);
4036 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4037 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4038 
4039 	if (!ret) {
4040 		spin_lock_irqsave(&xhci->lock, flags);
4041 		virt_dev->current_mel = max_exit_latency;
4042 		spin_unlock_irqrestore(&xhci->lock, flags);
4043 	}
4044 	return ret;
4045 }
4046 
4047 #ifdef CONFIG_PM
4048 
4049 /* BESL to HIRD Encoding array for USB2 LPM */
4050 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4051 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4052 
4053 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4054 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4055 					struct usb_device *udev)
4056 {
4057 	int u2del, besl, besl_host;
4058 	int besl_device = 0;
4059 	u32 field;
4060 
4061 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4062 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4063 
4064 	if (field & USB_BESL_SUPPORT) {
4065 		for (besl_host = 0; besl_host < 16; besl_host++) {
4066 			if (xhci_besl_encoding[besl_host] >= u2del)
4067 				break;
4068 		}
4069 		/* Use baseline BESL value as default */
4070 		if (field & USB_BESL_BASELINE_VALID)
4071 			besl_device = USB_GET_BESL_BASELINE(field);
4072 		else if (field & USB_BESL_DEEP_VALID)
4073 			besl_device = USB_GET_BESL_DEEP(field);
4074 	} else {
4075 		if (u2del <= 50)
4076 			besl_host = 0;
4077 		else
4078 			besl_host = (u2del - 51) / 75 + 1;
4079 	}
4080 
4081 	besl = besl_host + besl_device;
4082 	if (besl > 15)
4083 		besl = 15;
4084 
4085 	return besl;
4086 }
4087 
4088 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4089 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4090 {
4091 	u32 field;
4092 	int l1;
4093 	int besld = 0;
4094 	int hirdm = 0;
4095 
4096 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4097 
4098 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4099 	l1 = udev->l1_params.timeout / 256;
4100 
4101 	/* device has preferred BESLD */
4102 	if (field & USB_BESL_DEEP_VALID) {
4103 		besld = USB_GET_BESL_DEEP(field);
4104 		hirdm = 1;
4105 	}
4106 
4107 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4108 }
4109 
4110 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4111 			struct usb_device *udev, int enable)
4112 {
4113 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4114 	__le32 __iomem	**port_array;
4115 	__le32 __iomem	*pm_addr, *hlpm_addr;
4116 	u32		pm_val, hlpm_val, field;
4117 	unsigned int	port_num;
4118 	unsigned long	flags;
4119 	int		hird, exit_latency;
4120 	int		ret;
4121 
4122 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4123 			!udev->lpm_capable)
4124 		return -EPERM;
4125 
4126 	if (!udev->parent || udev->parent->parent ||
4127 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4128 		return -EPERM;
4129 
4130 	if (udev->usb2_hw_lpm_capable != 1)
4131 		return -EPERM;
4132 
4133 	spin_lock_irqsave(&xhci->lock, flags);
4134 
4135 	port_array = xhci->usb2_ports;
4136 	port_num = udev->portnum - 1;
4137 	pm_addr = port_array[port_num] + PORTPMSC;
4138 	pm_val = readl(pm_addr);
4139 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4140 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4141 
4142 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4143 			enable ? "enable" : "disable", port_num + 1);
4144 
4145 	if (enable) {
4146 		/* Host supports BESL timeout instead of HIRD */
4147 		if (udev->usb2_hw_lpm_besl_capable) {
4148 			/* if device doesn't have a preferred BESL value use a
4149 			 * default one which works with mixed HIRD and BESL
4150 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4151 			 */
4152 			if ((field & USB_BESL_SUPPORT) &&
4153 			    (field & USB_BESL_BASELINE_VALID))
4154 				hird = USB_GET_BESL_BASELINE(field);
4155 			else
4156 				hird = udev->l1_params.besl;
4157 
4158 			exit_latency = xhci_besl_encoding[hird];
4159 			spin_unlock_irqrestore(&xhci->lock, flags);
4160 
4161 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4162 			 * input context for link powermanagement evaluate
4163 			 * context commands. It is protected by hcd->bandwidth
4164 			 * mutex and is shared by all devices. We need to set
4165 			 * the max ext latency in USB 2 BESL LPM as well, so
4166 			 * use the same mutex and xhci_change_max_exit_latency()
4167 			 */
4168 			mutex_lock(hcd->bandwidth_mutex);
4169 			ret = xhci_change_max_exit_latency(xhci, udev,
4170 							   exit_latency);
4171 			mutex_unlock(hcd->bandwidth_mutex);
4172 
4173 			if (ret < 0)
4174 				return ret;
4175 			spin_lock_irqsave(&xhci->lock, flags);
4176 
4177 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4178 			writel(hlpm_val, hlpm_addr);
4179 			/* flush write */
4180 			readl(hlpm_addr);
4181 		} else {
4182 			hird = xhci_calculate_hird_besl(xhci, udev);
4183 		}
4184 
4185 		pm_val &= ~PORT_HIRD_MASK;
4186 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4187 		writel(pm_val, pm_addr);
4188 		pm_val = readl(pm_addr);
4189 		pm_val |= PORT_HLE;
4190 		writel(pm_val, pm_addr);
4191 		/* flush write */
4192 		readl(pm_addr);
4193 	} else {
4194 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4195 		writel(pm_val, pm_addr);
4196 		/* flush write */
4197 		readl(pm_addr);
4198 		if (udev->usb2_hw_lpm_besl_capable) {
4199 			spin_unlock_irqrestore(&xhci->lock, flags);
4200 			mutex_lock(hcd->bandwidth_mutex);
4201 			xhci_change_max_exit_latency(xhci, udev, 0);
4202 			mutex_unlock(hcd->bandwidth_mutex);
4203 			return 0;
4204 		}
4205 	}
4206 
4207 	spin_unlock_irqrestore(&xhci->lock, flags);
4208 	return 0;
4209 }
4210 
4211 /* check if a usb2 port supports a given extened capability protocol
4212  * only USB2 ports extended protocol capability values are cached.
4213  * Return 1 if capability is supported
4214  */
4215 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4216 					   unsigned capability)
4217 {
4218 	u32 port_offset, port_count;
4219 	int i;
4220 
4221 	for (i = 0; i < xhci->num_ext_caps; i++) {
4222 		if (xhci->ext_caps[i] & capability) {
4223 			/* port offsets starts at 1 */
4224 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4225 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4226 			if (port >= port_offset &&
4227 			    port < port_offset + port_count)
4228 				return 1;
4229 		}
4230 	}
4231 	return 0;
4232 }
4233 
4234 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4235 {
4236 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4237 	int		portnum = udev->portnum - 1;
4238 
4239 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4240 			!udev->lpm_capable)
4241 		return 0;
4242 
4243 	/* we only support lpm for non-hub device connected to root hub yet */
4244 	if (!udev->parent || udev->parent->parent ||
4245 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4246 		return 0;
4247 
4248 	if (xhci->hw_lpm_support == 1 &&
4249 			xhci_check_usb2_port_capability(
4250 				xhci, portnum, XHCI_HLC)) {
4251 		udev->usb2_hw_lpm_capable = 1;
4252 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4253 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4254 		if (xhci_check_usb2_port_capability(xhci, portnum,
4255 					XHCI_BLC))
4256 			udev->usb2_hw_lpm_besl_capable = 1;
4257 	}
4258 
4259 	return 0;
4260 }
4261 
4262 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4263 
4264 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4265 static unsigned long long xhci_service_interval_to_ns(
4266 		struct usb_endpoint_descriptor *desc)
4267 {
4268 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4269 }
4270 
4271 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4272 		enum usb3_link_state state)
4273 {
4274 	unsigned long long sel;
4275 	unsigned long long pel;
4276 	unsigned int max_sel_pel;
4277 	char *state_name;
4278 
4279 	switch (state) {
4280 	case USB3_LPM_U1:
4281 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4282 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4283 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4284 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4285 		state_name = "U1";
4286 		break;
4287 	case USB3_LPM_U2:
4288 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4289 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4290 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4291 		state_name = "U2";
4292 		break;
4293 	default:
4294 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4295 				__func__);
4296 		return USB3_LPM_DISABLED;
4297 	}
4298 
4299 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4300 		return USB3_LPM_DEVICE_INITIATED;
4301 
4302 	if (sel > max_sel_pel)
4303 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4304 				"due to long SEL %llu ms\n",
4305 				state_name, sel);
4306 	else
4307 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4308 				"due to long PEL %llu ms\n",
4309 				state_name, pel);
4310 	return USB3_LPM_DISABLED;
4311 }
4312 
4313 /* The U1 timeout should be the maximum of the following values:
4314  *  - For control endpoints, U1 system exit latency (SEL) * 3
4315  *  - For bulk endpoints, U1 SEL * 5
4316  *  - For interrupt endpoints:
4317  *    - Notification EPs, U1 SEL * 3
4318  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4319  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4320  */
4321 static unsigned long long xhci_calculate_intel_u1_timeout(
4322 		struct usb_device *udev,
4323 		struct usb_endpoint_descriptor *desc)
4324 {
4325 	unsigned long long timeout_ns;
4326 	int ep_type;
4327 	int intr_type;
4328 
4329 	ep_type = usb_endpoint_type(desc);
4330 	switch (ep_type) {
4331 	case USB_ENDPOINT_XFER_CONTROL:
4332 		timeout_ns = udev->u1_params.sel * 3;
4333 		break;
4334 	case USB_ENDPOINT_XFER_BULK:
4335 		timeout_ns = udev->u1_params.sel * 5;
4336 		break;
4337 	case USB_ENDPOINT_XFER_INT:
4338 		intr_type = usb_endpoint_interrupt_type(desc);
4339 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4340 			timeout_ns = udev->u1_params.sel * 3;
4341 			break;
4342 		}
4343 		/* Otherwise the calculation is the same as isoc eps */
4344 	case USB_ENDPOINT_XFER_ISOC:
4345 		timeout_ns = xhci_service_interval_to_ns(desc);
4346 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4347 		if (timeout_ns < udev->u1_params.sel * 2)
4348 			timeout_ns = udev->u1_params.sel * 2;
4349 		break;
4350 	default:
4351 		return 0;
4352 	}
4353 
4354 	return timeout_ns;
4355 }
4356 
4357 /* Returns the hub-encoded U1 timeout value. */
4358 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4359 		struct usb_device *udev,
4360 		struct usb_endpoint_descriptor *desc)
4361 {
4362 	unsigned long long timeout_ns;
4363 
4364 	if (xhci->quirks & XHCI_INTEL_HOST)
4365 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4366 	else
4367 		timeout_ns = udev->u1_params.sel;
4368 
4369 	/* The U1 timeout is encoded in 1us intervals.
4370 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4371 	 */
4372 	if (timeout_ns == USB3_LPM_DISABLED)
4373 		timeout_ns = 1;
4374 	else
4375 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4376 
4377 	/* If the necessary timeout value is bigger than what we can set in the
4378 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4379 	 */
4380 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4381 		return timeout_ns;
4382 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4383 			"due to long timeout %llu ms\n", timeout_ns);
4384 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4385 }
4386 
4387 /* The U2 timeout should be the maximum of:
4388  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4389  *  - largest bInterval of any active periodic endpoint (to avoid going
4390  *    into lower power link states between intervals).
4391  *  - the U2 Exit Latency of the device
4392  */
4393 static unsigned long long xhci_calculate_intel_u2_timeout(
4394 		struct usb_device *udev,
4395 		struct usb_endpoint_descriptor *desc)
4396 {
4397 	unsigned long long timeout_ns;
4398 	unsigned long long u2_del_ns;
4399 
4400 	timeout_ns = 10 * 1000 * 1000;
4401 
4402 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4403 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4404 		timeout_ns = xhci_service_interval_to_ns(desc);
4405 
4406 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4407 	if (u2_del_ns > timeout_ns)
4408 		timeout_ns = u2_del_ns;
4409 
4410 	return timeout_ns;
4411 }
4412 
4413 /* Returns the hub-encoded U2 timeout value. */
4414 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4415 		struct usb_device *udev,
4416 		struct usb_endpoint_descriptor *desc)
4417 {
4418 	unsigned long long timeout_ns;
4419 
4420 	if (xhci->quirks & XHCI_INTEL_HOST)
4421 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4422 	else
4423 		timeout_ns = udev->u2_params.sel;
4424 
4425 	/* The U2 timeout is encoded in 256us intervals */
4426 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4427 	/* If the necessary timeout value is bigger than what we can set in the
4428 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4429 	 */
4430 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4431 		return timeout_ns;
4432 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4433 			"due to long timeout %llu ms\n", timeout_ns);
4434 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4435 }
4436 
4437 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4438 		struct usb_device *udev,
4439 		struct usb_endpoint_descriptor *desc,
4440 		enum usb3_link_state state,
4441 		u16 *timeout)
4442 {
4443 	if (state == USB3_LPM_U1)
4444 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4445 	else if (state == USB3_LPM_U2)
4446 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4447 
4448 	return USB3_LPM_DISABLED;
4449 }
4450 
4451 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4452 		struct usb_device *udev,
4453 		struct usb_endpoint_descriptor *desc,
4454 		enum usb3_link_state state,
4455 		u16 *timeout)
4456 {
4457 	u16 alt_timeout;
4458 
4459 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4460 		desc, state, timeout);
4461 
4462 	/* If we found we can't enable hub-initiated LPM, or
4463 	 * the U1 or U2 exit latency was too high to allow
4464 	 * device-initiated LPM as well, just stop searching.
4465 	 */
4466 	if (alt_timeout == USB3_LPM_DISABLED ||
4467 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4468 		*timeout = alt_timeout;
4469 		return -E2BIG;
4470 	}
4471 	if (alt_timeout > *timeout)
4472 		*timeout = alt_timeout;
4473 	return 0;
4474 }
4475 
4476 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4477 		struct usb_device *udev,
4478 		struct usb_host_interface *alt,
4479 		enum usb3_link_state state,
4480 		u16 *timeout)
4481 {
4482 	int j;
4483 
4484 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4485 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4486 					&alt->endpoint[j].desc, state, timeout))
4487 			return -E2BIG;
4488 		continue;
4489 	}
4490 	return 0;
4491 }
4492 
4493 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4494 		enum usb3_link_state state)
4495 {
4496 	struct usb_device *parent;
4497 	unsigned int num_hubs;
4498 
4499 	if (state == USB3_LPM_U2)
4500 		return 0;
4501 
4502 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4503 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4504 			parent = parent->parent)
4505 		num_hubs++;
4506 
4507 	if (num_hubs < 2)
4508 		return 0;
4509 
4510 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4511 			" below second-tier hub.\n");
4512 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4513 			"to decrease power consumption.\n");
4514 	return -E2BIG;
4515 }
4516 
4517 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4518 		struct usb_device *udev,
4519 		enum usb3_link_state state)
4520 {
4521 	if (xhci->quirks & XHCI_INTEL_HOST)
4522 		return xhci_check_intel_tier_policy(udev, state);
4523 	else
4524 		return 0;
4525 }
4526 
4527 /* Returns the U1 or U2 timeout that should be enabled.
4528  * If the tier check or timeout setting functions return with a non-zero exit
4529  * code, that means the timeout value has been finalized and we shouldn't look
4530  * at any more endpoints.
4531  */
4532 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4533 			struct usb_device *udev, enum usb3_link_state state)
4534 {
4535 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4536 	struct usb_host_config *config;
4537 	char *state_name;
4538 	int i;
4539 	u16 timeout = USB3_LPM_DISABLED;
4540 
4541 	if (state == USB3_LPM_U1)
4542 		state_name = "U1";
4543 	else if (state == USB3_LPM_U2)
4544 		state_name = "U2";
4545 	else {
4546 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4547 				state);
4548 		return timeout;
4549 	}
4550 
4551 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4552 		return timeout;
4553 
4554 	/* Gather some information about the currently installed configuration
4555 	 * and alternate interface settings.
4556 	 */
4557 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4558 			state, &timeout))
4559 		return timeout;
4560 
4561 	config = udev->actconfig;
4562 	if (!config)
4563 		return timeout;
4564 
4565 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4566 		struct usb_driver *driver;
4567 		struct usb_interface *intf = config->interface[i];
4568 
4569 		if (!intf)
4570 			continue;
4571 
4572 		/* Check if any currently bound drivers want hub-initiated LPM
4573 		 * disabled.
4574 		 */
4575 		if (intf->dev.driver) {
4576 			driver = to_usb_driver(intf->dev.driver);
4577 			if (driver && driver->disable_hub_initiated_lpm) {
4578 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4579 						"at request of driver %s\n",
4580 						state_name, driver->name);
4581 				return xhci_get_timeout_no_hub_lpm(udev, state);
4582 			}
4583 		}
4584 
4585 		/* Not sure how this could happen... */
4586 		if (!intf->cur_altsetting)
4587 			continue;
4588 
4589 		if (xhci_update_timeout_for_interface(xhci, udev,
4590 					intf->cur_altsetting,
4591 					state, &timeout))
4592 			return timeout;
4593 	}
4594 	return timeout;
4595 }
4596 
4597 static int calculate_max_exit_latency(struct usb_device *udev,
4598 		enum usb3_link_state state_changed,
4599 		u16 hub_encoded_timeout)
4600 {
4601 	unsigned long long u1_mel_us = 0;
4602 	unsigned long long u2_mel_us = 0;
4603 	unsigned long long mel_us = 0;
4604 	bool disabling_u1;
4605 	bool disabling_u2;
4606 	bool enabling_u1;
4607 	bool enabling_u2;
4608 
4609 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4610 			hub_encoded_timeout == USB3_LPM_DISABLED);
4611 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4612 			hub_encoded_timeout == USB3_LPM_DISABLED);
4613 
4614 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4615 			hub_encoded_timeout != USB3_LPM_DISABLED);
4616 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4617 			hub_encoded_timeout != USB3_LPM_DISABLED);
4618 
4619 	/* If U1 was already enabled and we're not disabling it,
4620 	 * or we're going to enable U1, account for the U1 max exit latency.
4621 	 */
4622 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4623 			enabling_u1)
4624 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4625 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4626 			enabling_u2)
4627 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4628 
4629 	if (u1_mel_us > u2_mel_us)
4630 		mel_us = u1_mel_us;
4631 	else
4632 		mel_us = u2_mel_us;
4633 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4634 	if (mel_us > MAX_EXIT) {
4635 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4636 				"is too big.\n", mel_us);
4637 		return -E2BIG;
4638 	}
4639 	return mel_us;
4640 }
4641 
4642 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4643 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644 			struct usb_device *udev, enum usb3_link_state state)
4645 {
4646 	struct xhci_hcd	*xhci;
4647 	u16 hub_encoded_timeout;
4648 	int mel;
4649 	int ret;
4650 
4651 	xhci = hcd_to_xhci(hcd);
4652 	/* The LPM timeout values are pretty host-controller specific, so don't
4653 	 * enable hub-initiated timeouts unless the vendor has provided
4654 	 * information about their timeout algorithm.
4655 	 */
4656 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4657 			!xhci->devs[udev->slot_id])
4658 		return USB3_LPM_DISABLED;
4659 
4660 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4661 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4662 	if (mel < 0) {
4663 		/* Max Exit Latency is too big, disable LPM. */
4664 		hub_encoded_timeout = USB3_LPM_DISABLED;
4665 		mel = 0;
4666 	}
4667 
4668 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4669 	if (ret)
4670 		return ret;
4671 	return hub_encoded_timeout;
4672 }
4673 
4674 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4675 			struct usb_device *udev, enum usb3_link_state state)
4676 {
4677 	struct xhci_hcd	*xhci;
4678 	u16 mel;
4679 
4680 	xhci = hcd_to_xhci(hcd);
4681 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4682 			!xhci->devs[udev->slot_id])
4683 		return 0;
4684 
4685 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4686 	return xhci_change_max_exit_latency(xhci, udev, mel);
4687 }
4688 #else /* CONFIG_PM */
4689 
4690 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4691 				struct usb_device *udev, int enable)
4692 {
4693 	return 0;
4694 }
4695 
4696 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4697 {
4698 	return 0;
4699 }
4700 
4701 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4702 			struct usb_device *udev, enum usb3_link_state state)
4703 {
4704 	return USB3_LPM_DISABLED;
4705 }
4706 
4707 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4708 			struct usb_device *udev, enum usb3_link_state state)
4709 {
4710 	return 0;
4711 }
4712 #endif	/* CONFIG_PM */
4713 
4714 /*-------------------------------------------------------------------------*/
4715 
4716 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4717  * internal data structures for the device.
4718  */
4719 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4720 			struct usb_tt *tt, gfp_t mem_flags)
4721 {
4722 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4723 	struct xhci_virt_device *vdev;
4724 	struct xhci_command *config_cmd;
4725 	struct xhci_input_control_ctx *ctrl_ctx;
4726 	struct xhci_slot_ctx *slot_ctx;
4727 	unsigned long flags;
4728 	unsigned think_time;
4729 	int ret;
4730 
4731 	/* Ignore root hubs */
4732 	if (!hdev->parent)
4733 		return 0;
4734 
4735 	vdev = xhci->devs[hdev->slot_id];
4736 	if (!vdev) {
4737 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4738 		return -EINVAL;
4739 	}
4740 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4741 	if (!config_cmd) {
4742 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4743 		return -ENOMEM;
4744 	}
4745 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4746 	if (!ctrl_ctx) {
4747 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4748 				__func__);
4749 		xhci_free_command(xhci, config_cmd);
4750 		return -ENOMEM;
4751 	}
4752 
4753 	spin_lock_irqsave(&xhci->lock, flags);
4754 	if (hdev->speed == USB_SPEED_HIGH &&
4755 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4756 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4757 		xhci_free_command(xhci, config_cmd);
4758 		spin_unlock_irqrestore(&xhci->lock, flags);
4759 		return -ENOMEM;
4760 	}
4761 
4762 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4763 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4764 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4765 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4766 	/*
4767 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4768 	 * but it may be already set to 1 when setup an xHCI virtual
4769 	 * device, so clear it anyway.
4770 	 */
4771 	if (tt->multi)
4772 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4773 	else if (hdev->speed == USB_SPEED_FULL)
4774 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4775 
4776 	if (xhci->hci_version > 0x95) {
4777 		xhci_dbg(xhci, "xHCI version %x needs hub "
4778 				"TT think time and number of ports\n",
4779 				(unsigned int) xhci->hci_version);
4780 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4781 		/* Set TT think time - convert from ns to FS bit times.
4782 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4783 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4784 		 *
4785 		 * xHCI 1.0: this field shall be 0 if the device is not a
4786 		 * High-spped hub.
4787 		 */
4788 		think_time = tt->think_time;
4789 		if (think_time != 0)
4790 			think_time = (think_time / 666) - 1;
4791 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4792 			slot_ctx->tt_info |=
4793 				cpu_to_le32(TT_THINK_TIME(think_time));
4794 	} else {
4795 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4796 				"TT think time or number of ports\n",
4797 				(unsigned int) xhci->hci_version);
4798 	}
4799 	slot_ctx->dev_state = 0;
4800 	spin_unlock_irqrestore(&xhci->lock, flags);
4801 
4802 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4803 			(xhci->hci_version > 0x95) ?
4804 			"configure endpoint" : "evaluate context");
4805 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4806 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4807 
4808 	/* Issue and wait for the configure endpoint or
4809 	 * evaluate context command.
4810 	 */
4811 	if (xhci->hci_version > 0x95)
4812 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4813 				false, false);
4814 	else
4815 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816 				true, false);
4817 
4818 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4819 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4820 
4821 	xhci_free_command(xhci, config_cmd);
4822 	return ret;
4823 }
4824 
4825 int xhci_get_frame(struct usb_hcd *hcd)
4826 {
4827 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4828 	/* EHCI mods by the periodic size.  Why? */
4829 	return readl(&xhci->run_regs->microframe_index) >> 3;
4830 }
4831 
4832 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4833 {
4834 	struct xhci_hcd		*xhci;
4835 	struct device		*dev = hcd->self.controller;
4836 	int			retval;
4837 
4838 	/* Accept arbitrarily long scatter-gather lists */
4839 	hcd->self.sg_tablesize = ~0;
4840 
4841 	/* support to build packet from discontinuous buffers */
4842 	hcd->self.no_sg_constraint = 1;
4843 
4844 	/* XHCI controllers don't stop the ep queue on short packets :| */
4845 	hcd->self.no_stop_on_short = 1;
4846 
4847 	xhci = hcd_to_xhci(hcd);
4848 
4849 	if (usb_hcd_is_primary_hcd(hcd)) {
4850 		xhci->main_hcd = hcd;
4851 		/* Mark the first roothub as being USB 2.0.
4852 		 * The xHCI driver will register the USB 3.0 roothub.
4853 		 */
4854 		hcd->speed = HCD_USB2;
4855 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4856 		/*
4857 		 * USB 2.0 roothub under xHCI has an integrated TT,
4858 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4859 		 * companion controller.
4860 		 */
4861 		hcd->has_tt = 1;
4862 	} else {
4863 		if (xhci->sbrn == 0x31) {
4864 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4865 			hcd->speed = HCD_USB31;
4866 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4867 		}
4868 		/* xHCI private pointer was set in xhci_pci_probe for the second
4869 		 * registered roothub.
4870 		 */
4871 		return 0;
4872 	}
4873 
4874 	mutex_init(&xhci->mutex);
4875 	xhci->cap_regs = hcd->regs;
4876 	xhci->op_regs = hcd->regs +
4877 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4878 	xhci->run_regs = hcd->regs +
4879 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4880 	/* Cache read-only capability registers */
4881 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4882 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4883 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4884 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4885 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4886 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4887 	if (xhci->hci_version > 0x100)
4888 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4889 	xhci_print_registers(xhci);
4890 
4891 	xhci->quirks |= quirks;
4892 
4893 	get_quirks(dev, xhci);
4894 
4895 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4896 	 * success event after a short transfer. This quirk will ignore such
4897 	 * spurious event.
4898 	 */
4899 	if (xhci->hci_version > 0x96)
4900 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4901 
4902 	/* Make sure the HC is halted. */
4903 	retval = xhci_halt(xhci);
4904 	if (retval)
4905 		return retval;
4906 
4907 	xhci_dbg(xhci, "Resetting HCD\n");
4908 	/* Reset the internal HC memory state and registers. */
4909 	retval = xhci_reset(xhci);
4910 	if (retval)
4911 		return retval;
4912 	xhci_dbg(xhci, "Reset complete\n");
4913 
4914 	/*
4915 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4916 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4917 	 * address memory pointers actually. So, this driver clears the AC64
4918 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4919 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4920 	 */
4921 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4922 		xhci->hcc_params &= ~BIT(0);
4923 
4924 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4925 	 * if xHC supports 64-bit addressing */
4926 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4927 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4928 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4929 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4930 	} else {
4931 		/*
4932 		 * This is to avoid error in cases where a 32-bit USB
4933 		 * controller is used on a 64-bit capable system.
4934 		 */
4935 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4936 		if (retval)
4937 			return retval;
4938 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4939 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4940 	}
4941 
4942 	xhci_dbg(xhci, "Calling HCD init\n");
4943 	/* Initialize HCD and host controller data structures. */
4944 	retval = xhci_init(hcd);
4945 	if (retval)
4946 		return retval;
4947 	xhci_dbg(xhci, "Called HCD init\n");
4948 
4949 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4950 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4951 
4952 	return 0;
4953 }
4954 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4955 
4956 static const struct hc_driver xhci_hc_driver = {
4957 	.description =		"xhci-hcd",
4958 	.product_desc =		"xHCI Host Controller",
4959 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4960 
4961 	/*
4962 	 * generic hardware linkage
4963 	 */
4964 	.irq =			xhci_irq,
4965 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4966 
4967 	/*
4968 	 * basic lifecycle operations
4969 	 */
4970 	.reset =		NULL, /* set in xhci_init_driver() */
4971 	.start =		xhci_run,
4972 	.stop =			xhci_stop,
4973 	.shutdown =		xhci_shutdown,
4974 
4975 	/*
4976 	 * managing i/o requests and associated device resources
4977 	 */
4978 	.urb_enqueue =		xhci_urb_enqueue,
4979 	.urb_dequeue =		xhci_urb_dequeue,
4980 	.alloc_dev =		xhci_alloc_dev,
4981 	.free_dev =		xhci_free_dev,
4982 	.alloc_streams =	xhci_alloc_streams,
4983 	.free_streams =		xhci_free_streams,
4984 	.add_endpoint =		xhci_add_endpoint,
4985 	.drop_endpoint =	xhci_drop_endpoint,
4986 	.endpoint_reset =	xhci_endpoint_reset,
4987 	.check_bandwidth =	xhci_check_bandwidth,
4988 	.reset_bandwidth =	xhci_reset_bandwidth,
4989 	.address_device =	xhci_address_device,
4990 	.enable_device =	xhci_enable_device,
4991 	.update_hub_device =	xhci_update_hub_device,
4992 	.reset_device =		xhci_discover_or_reset_device,
4993 
4994 	/*
4995 	 * scheduling support
4996 	 */
4997 	.get_frame_number =	xhci_get_frame,
4998 
4999 	/*
5000 	 * root hub support
5001 	 */
5002 	.hub_control =		xhci_hub_control,
5003 	.hub_status_data =	xhci_hub_status_data,
5004 	.bus_suspend =		xhci_bus_suspend,
5005 	.bus_resume =		xhci_bus_resume,
5006 
5007 	/*
5008 	 * call back when device connected and addressed
5009 	 */
5010 	.update_device =        xhci_update_device,
5011 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5012 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5013 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5014 	.find_raw_port_number =	xhci_find_raw_port_number,
5015 };
5016 
5017 void xhci_init_driver(struct hc_driver *drv,
5018 		      const struct xhci_driver_overrides *over)
5019 {
5020 	BUG_ON(!over);
5021 
5022 	/* Copy the generic table to drv then apply the overrides */
5023 	*drv = xhci_hc_driver;
5024 
5025 	if (over) {
5026 		drv->hcd_priv_size += over->extra_priv_size;
5027 		if (over->reset)
5028 			drv->reset = over->reset;
5029 		if (over->start)
5030 			drv->start = over->start;
5031 	}
5032 }
5033 EXPORT_SYMBOL_GPL(xhci_init_driver);
5034 
5035 MODULE_DESCRIPTION(DRIVER_DESC);
5036 MODULE_AUTHOR(DRIVER_AUTHOR);
5037 MODULE_LICENSE("GPL");
5038 
5039 static int __init xhci_hcd_init(void)
5040 {
5041 	/*
5042 	 * Check the compiler generated sizes of structures that must be laid
5043 	 * out in specific ways for hardware access.
5044 	 */
5045 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5046 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5047 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5048 	/* xhci_device_control has eight fields, and also
5049 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5050 	 */
5051 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5052 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5053 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5054 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5055 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5056 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5057 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5058 
5059 	if (usb_disabled())
5060 		return -ENODEV;
5061 
5062 	return 0;
5063 }
5064 
5065 /*
5066  * If an init function is provided, an exit function must also be provided
5067  * to allow module unload.
5068  */
5069 static void __exit xhci_hcd_fini(void) { }
5070 
5071 module_init(xhci_hcd_init);
5072 module_exit(xhci_hcd_fini);
5073