1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (!ret) { 117 xhci->xhc_state |= XHCI_STATE_HALTED; 118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 119 } else 120 xhci_warn(xhci, "Host not halted after %u microseconds.\n", 121 XHCI_MAX_HALT_USEC); 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 if ((state & STS_HALT) == 0) { 171 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 172 return 0; 173 } 174 175 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 176 command = readl(&xhci->op_regs->command); 177 command |= CMD_RESET; 178 writel(command, &xhci->op_regs->command); 179 180 /* Existing Intel xHCI controllers require a delay of 1 mS, 181 * after setting the CMD_RESET bit, and before accessing any 182 * HC registers. This allows the HC to complete the 183 * reset operation and be ready for HC register access. 184 * Without this delay, the subsequent HC register access, 185 * may result in a system hang very rarely. 186 */ 187 if (xhci->quirks & XHCI_INTEL_HOST) 188 udelay(1000); 189 190 ret = xhci_handshake(&xhci->op_regs->command, 191 CMD_RESET, 0, 10 * 1000 * 1000); 192 if (ret) 193 return ret; 194 195 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 196 "Wait for controller to be ready for doorbell rings"); 197 /* 198 * xHCI cannot write to any doorbells or operational registers other 199 * than status until the "Controller Not Ready" flag is cleared. 200 */ 201 ret = xhci_handshake(&xhci->op_regs->status, 202 STS_CNR, 0, 10 * 1000 * 1000); 203 204 for (i = 0; i < 2; ++i) { 205 xhci->bus_state[i].port_c_suspend = 0; 206 xhci->bus_state[i].suspended_ports = 0; 207 xhci->bus_state[i].resuming_ports = 0; 208 } 209 210 return ret; 211 } 212 213 #ifdef CONFIG_PCI 214 static int xhci_free_msi(struct xhci_hcd *xhci) 215 { 216 int i; 217 218 if (!xhci->msix_entries) 219 return -EINVAL; 220 221 for (i = 0; i < xhci->msix_count; i++) 222 if (xhci->msix_entries[i].vector) 223 free_irq(xhci->msix_entries[i].vector, 224 xhci_to_hcd(xhci)); 225 return 0; 226 } 227 228 /* 229 * Set up MSI 230 */ 231 static int xhci_setup_msi(struct xhci_hcd *xhci) 232 { 233 int ret; 234 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 235 236 ret = pci_enable_msi(pdev); 237 if (ret) { 238 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 239 "failed to allocate MSI entry"); 240 return ret; 241 } 242 243 ret = request_irq(pdev->irq, xhci_msi_irq, 244 0, "xhci_hcd", xhci_to_hcd(xhci)); 245 if (ret) { 246 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 247 "disable MSI interrupt"); 248 pci_disable_msi(pdev); 249 } 250 251 return ret; 252 } 253 254 /* 255 * Free IRQs 256 * free all IRQs request 257 */ 258 static void xhci_free_irq(struct xhci_hcd *xhci) 259 { 260 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 261 int ret; 262 263 /* return if using legacy interrupt */ 264 if (xhci_to_hcd(xhci)->irq > 0) 265 return; 266 267 ret = xhci_free_msi(xhci); 268 if (!ret) 269 return; 270 if (pdev->irq > 0) 271 free_irq(pdev->irq, xhci_to_hcd(xhci)); 272 273 return; 274 } 275 276 /* 277 * Set up MSI-X 278 */ 279 static int xhci_setup_msix(struct xhci_hcd *xhci) 280 { 281 int i, ret = 0; 282 struct usb_hcd *hcd = xhci_to_hcd(xhci); 283 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 284 285 /* 286 * calculate number of msi-x vectors supported. 287 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 288 * with max number of interrupters based on the xhci HCSPARAMS1. 289 * - num_online_cpus: maximum msi-x vectors per CPUs core. 290 * Add additional 1 vector to ensure always available interrupt. 291 */ 292 xhci->msix_count = min(num_online_cpus() + 1, 293 HCS_MAX_INTRS(xhci->hcs_params1)); 294 295 xhci->msix_entries = 296 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 297 GFP_KERNEL); 298 if (!xhci->msix_entries) 299 return -ENOMEM; 300 301 for (i = 0; i < xhci->msix_count; i++) { 302 xhci->msix_entries[i].entry = i; 303 xhci->msix_entries[i].vector = 0; 304 } 305 306 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 307 if (ret) { 308 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 309 "Failed to enable MSI-X"); 310 goto free_entries; 311 } 312 313 for (i = 0; i < xhci->msix_count; i++) { 314 ret = request_irq(xhci->msix_entries[i].vector, 315 xhci_msi_irq, 316 0, "xhci_hcd", xhci_to_hcd(xhci)); 317 if (ret) 318 goto disable_msix; 319 } 320 321 hcd->msix_enabled = 1; 322 return ret; 323 324 disable_msix: 325 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 326 xhci_free_irq(xhci); 327 pci_disable_msix(pdev); 328 free_entries: 329 kfree(xhci->msix_entries); 330 xhci->msix_entries = NULL; 331 return ret; 332 } 333 334 /* Free any IRQs and disable MSI-X */ 335 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 336 { 337 struct usb_hcd *hcd = xhci_to_hcd(xhci); 338 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 339 340 if (xhci->quirks & XHCI_PLAT) 341 return; 342 343 xhci_free_irq(xhci); 344 345 if (xhci->msix_entries) { 346 pci_disable_msix(pdev); 347 kfree(xhci->msix_entries); 348 xhci->msix_entries = NULL; 349 } else { 350 pci_disable_msi(pdev); 351 } 352 353 hcd->msix_enabled = 0; 354 return; 355 } 356 357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 358 { 359 int i; 360 361 if (xhci->msix_entries) { 362 for (i = 0; i < xhci->msix_count; i++) 363 synchronize_irq(xhci->msix_entries[i].vector); 364 } 365 } 366 367 static int xhci_try_enable_msi(struct usb_hcd *hcd) 368 { 369 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 370 struct pci_dev *pdev; 371 int ret; 372 373 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 374 if (xhci->quirks & XHCI_PLAT) 375 return 0; 376 377 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 378 /* 379 * Some Fresco Logic host controllers advertise MSI, but fail to 380 * generate interrupts. Don't even try to enable MSI. 381 */ 382 if (xhci->quirks & XHCI_BROKEN_MSI) 383 goto legacy_irq; 384 385 /* unregister the legacy interrupt */ 386 if (hcd->irq) 387 free_irq(hcd->irq, hcd); 388 hcd->irq = 0; 389 390 ret = xhci_setup_msix(xhci); 391 if (ret) 392 /* fall back to msi*/ 393 ret = xhci_setup_msi(xhci); 394 395 if (!ret) 396 /* hcd->irq is 0, we have MSI */ 397 return 0; 398 399 if (!pdev->irq) { 400 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 401 return -EINVAL; 402 } 403 404 legacy_irq: 405 if (!strlen(hcd->irq_descr)) 406 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 407 hcd->driver->description, hcd->self.busnum); 408 409 /* fall back to legacy interrupt*/ 410 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 411 hcd->irq_descr, hcd); 412 if (ret) { 413 xhci_err(xhci, "request interrupt %d failed\n", 414 pdev->irq); 415 return ret; 416 } 417 hcd->irq = pdev->irq; 418 return 0; 419 } 420 421 #else 422 423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 424 { 425 return 0; 426 } 427 428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 429 { 430 } 431 432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 433 { 434 } 435 436 #endif 437 438 static void compliance_mode_recovery(unsigned long arg) 439 { 440 struct xhci_hcd *xhci; 441 struct usb_hcd *hcd; 442 u32 temp; 443 int i; 444 445 xhci = (struct xhci_hcd *)arg; 446 447 for (i = 0; i < xhci->num_usb3_ports; i++) { 448 temp = readl(xhci->usb3_ports[i]); 449 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 450 /* 451 * Compliance Mode Detected. Letting USB Core 452 * handle the Warm Reset 453 */ 454 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 455 "Compliance mode detected->port %d", 456 i + 1); 457 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 458 "Attempting compliance mode recovery"); 459 hcd = xhci->shared_hcd; 460 461 if (hcd->state == HC_STATE_SUSPENDED) 462 usb_hcd_resume_root_hub(hcd); 463 464 usb_hcd_poll_rh_status(hcd); 465 } 466 } 467 468 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 469 mod_timer(&xhci->comp_mode_recovery_timer, 470 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 471 } 472 473 /* 474 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 475 * that causes ports behind that hardware to enter compliance mode sometimes. 476 * The quirk creates a timer that polls every 2 seconds the link state of 477 * each host controller's port and recovers it by issuing a Warm reset 478 * if Compliance mode is detected, otherwise the port will become "dead" (no 479 * device connections or disconnections will be detected anymore). Becasue no 480 * status event is generated when entering compliance mode (per xhci spec), 481 * this quirk is needed on systems that have the failing hardware installed. 482 */ 483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 484 { 485 xhci->port_status_u0 = 0; 486 setup_timer(&xhci->comp_mode_recovery_timer, 487 compliance_mode_recovery, (unsigned long)xhci); 488 xhci->comp_mode_recovery_timer.expires = jiffies + 489 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 490 491 add_timer(&xhci->comp_mode_recovery_timer); 492 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 493 "Compliance mode recovery timer initialized"); 494 } 495 496 /* 497 * This function identifies the systems that have installed the SN65LVPE502CP 498 * USB3.0 re-driver and that need the Compliance Mode Quirk. 499 * Systems: 500 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 501 */ 502 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 503 { 504 const char *dmi_product_name, *dmi_sys_vendor; 505 506 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 507 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 508 if (!dmi_product_name || !dmi_sys_vendor) 509 return false; 510 511 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 512 return false; 513 514 if (strstr(dmi_product_name, "Z420") || 515 strstr(dmi_product_name, "Z620") || 516 strstr(dmi_product_name, "Z820") || 517 strstr(dmi_product_name, "Z1 Workstation")) 518 return true; 519 520 return false; 521 } 522 523 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 524 { 525 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 526 } 527 528 529 /* 530 * Initialize memory for HCD and xHC (one-time init). 531 * 532 * Program the PAGESIZE register, initialize the device context array, create 533 * device contexts (?), set up a command ring segment (or two?), create event 534 * ring (one for now). 535 */ 536 int xhci_init(struct usb_hcd *hcd) 537 { 538 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 539 int retval = 0; 540 541 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 542 spin_lock_init(&xhci->lock); 543 if (xhci->hci_version == 0x95 && link_quirk) { 544 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 545 "QUIRK: Not clearing Link TRB chain bits."); 546 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 547 } else { 548 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 549 "xHCI doesn't need link TRB QUIRK"); 550 } 551 retval = xhci_mem_init(xhci, GFP_KERNEL); 552 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 553 554 /* Initializing Compliance Mode Recovery Data If Needed */ 555 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 556 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 557 compliance_mode_recovery_timer_init(xhci); 558 } 559 560 return retval; 561 } 562 563 /*-------------------------------------------------------------------------*/ 564 565 566 static int xhci_run_finished(struct xhci_hcd *xhci) 567 { 568 if (xhci_start(xhci)) { 569 xhci_halt(xhci); 570 return -ENODEV; 571 } 572 xhci->shared_hcd->state = HC_STATE_RUNNING; 573 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 574 575 if (xhci->quirks & XHCI_NEC_HOST) 576 xhci_ring_cmd_db(xhci); 577 578 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 579 "Finished xhci_run for USB3 roothub"); 580 return 0; 581 } 582 583 /* 584 * Start the HC after it was halted. 585 * 586 * This function is called by the USB core when the HC driver is added. 587 * Its opposite is xhci_stop(). 588 * 589 * xhci_init() must be called once before this function can be called. 590 * Reset the HC, enable device slot contexts, program DCBAAP, and 591 * set command ring pointer and event ring pointer. 592 * 593 * Setup MSI-X vectors and enable interrupts. 594 */ 595 int xhci_run(struct usb_hcd *hcd) 596 { 597 u32 temp; 598 u64 temp_64; 599 int ret; 600 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 601 602 /* Start the xHCI host controller running only after the USB 2.0 roothub 603 * is setup. 604 */ 605 606 hcd->uses_new_polling = 1; 607 if (!usb_hcd_is_primary_hcd(hcd)) 608 return xhci_run_finished(xhci); 609 610 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 611 612 ret = xhci_try_enable_msi(hcd); 613 if (ret) 614 return ret; 615 616 xhci_dbg(xhci, "Command ring memory map follows:\n"); 617 xhci_debug_ring(xhci, xhci->cmd_ring); 618 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 619 xhci_dbg_cmd_ptrs(xhci); 620 621 xhci_dbg(xhci, "ERST memory map follows:\n"); 622 xhci_dbg_erst(xhci, &xhci->erst); 623 xhci_dbg(xhci, "Event ring:\n"); 624 xhci_debug_ring(xhci, xhci->event_ring); 625 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 626 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 627 temp_64 &= ~ERST_PTR_MASK; 628 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 629 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 630 631 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 632 "// Set the interrupt modulation register"); 633 temp = readl(&xhci->ir_set->irq_control); 634 temp &= ~ER_IRQ_INTERVAL_MASK; 635 /* 636 * the increment interval is 8 times as much as that defined 637 * in xHCI spec on MTK's controller 638 */ 639 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 640 writel(temp, &xhci->ir_set->irq_control); 641 642 /* Set the HCD state before we enable the irqs */ 643 temp = readl(&xhci->op_regs->command); 644 temp |= (CMD_EIE); 645 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 646 "// Enable interrupts, cmd = 0x%x.", temp); 647 writel(temp, &xhci->op_regs->command); 648 649 temp = readl(&xhci->ir_set->irq_pending); 650 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 651 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 652 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 653 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 654 xhci_print_ir_set(xhci, 0); 655 656 if (xhci->quirks & XHCI_NEC_HOST) { 657 struct xhci_command *command; 658 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 659 if (!command) 660 return -ENOMEM; 661 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 662 TRB_TYPE(TRB_NEC_GET_FW)); 663 } 664 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 665 "Finished xhci_run for USB2 roothub"); 666 return 0; 667 } 668 EXPORT_SYMBOL_GPL(xhci_run); 669 670 /* 671 * Stop xHCI driver. 672 * 673 * This function is called by the USB core when the HC driver is removed. 674 * Its opposite is xhci_run(). 675 * 676 * Disable device contexts, disable IRQs, and quiesce the HC. 677 * Reset the HC, finish any completed transactions, and cleanup memory. 678 */ 679 void xhci_stop(struct usb_hcd *hcd) 680 { 681 u32 temp; 682 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 683 684 mutex_lock(&xhci->mutex); 685 686 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 687 spin_lock_irq(&xhci->lock); 688 689 xhci->xhc_state |= XHCI_STATE_HALTED; 690 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 691 xhci_halt(xhci); 692 xhci_reset(xhci); 693 694 spin_unlock_irq(&xhci->lock); 695 } 696 697 if (!usb_hcd_is_primary_hcd(hcd)) { 698 mutex_unlock(&xhci->mutex); 699 return; 700 } 701 702 xhci_cleanup_msix(xhci); 703 704 /* Deleting Compliance Mode Recovery Timer */ 705 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 706 (!(xhci_all_ports_seen_u0(xhci)))) { 707 del_timer_sync(&xhci->comp_mode_recovery_timer); 708 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 709 "%s: compliance mode recovery timer deleted", 710 __func__); 711 } 712 713 if (xhci->quirks & XHCI_AMD_PLL_FIX) 714 usb_amd_dev_put(); 715 716 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 717 "// Disabling event ring interrupts"); 718 temp = readl(&xhci->op_regs->status); 719 writel(temp & ~STS_EINT, &xhci->op_regs->status); 720 temp = readl(&xhci->ir_set->irq_pending); 721 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 722 xhci_print_ir_set(xhci, 0); 723 724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 725 xhci_mem_cleanup(xhci); 726 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 727 "xhci_stop completed - status = %x", 728 readl(&xhci->op_regs->status)); 729 mutex_unlock(&xhci->mutex); 730 } 731 732 /* 733 * Shutdown HC (not bus-specific) 734 * 735 * This is called when the machine is rebooting or halting. We assume that the 736 * machine will be powered off, and the HC's internal state will be reset. 737 * Don't bother to free memory. 738 * 739 * This will only ever be called with the main usb_hcd (the USB3 roothub). 740 */ 741 void xhci_shutdown(struct usb_hcd *hcd) 742 { 743 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 744 745 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 746 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 747 748 spin_lock_irq(&xhci->lock); 749 xhci_halt(xhci); 750 /* Workaround for spurious wakeups at shutdown with HSW */ 751 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 752 xhci_reset(xhci); 753 spin_unlock_irq(&xhci->lock); 754 755 xhci_cleanup_msix(xhci); 756 757 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 758 "xhci_shutdown completed - status = %x", 759 readl(&xhci->op_regs->status)); 760 761 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 762 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 763 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 764 } 765 766 #ifdef CONFIG_PM 767 static void xhci_save_registers(struct xhci_hcd *xhci) 768 { 769 xhci->s3.command = readl(&xhci->op_regs->command); 770 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 771 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 772 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 773 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 774 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 775 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 776 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 777 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 778 } 779 780 static void xhci_restore_registers(struct xhci_hcd *xhci) 781 { 782 writel(xhci->s3.command, &xhci->op_regs->command); 783 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 784 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 785 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 786 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 787 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 788 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 789 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 790 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 791 } 792 793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 794 { 795 u64 val_64; 796 797 /* step 2: initialize command ring buffer */ 798 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 799 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 800 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 801 xhci->cmd_ring->dequeue) & 802 (u64) ~CMD_RING_RSVD_BITS) | 803 xhci->cmd_ring->cycle_state; 804 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 805 "// Setting command ring address to 0x%llx", 806 (long unsigned long) val_64); 807 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 808 } 809 810 /* 811 * The whole command ring must be cleared to zero when we suspend the host. 812 * 813 * The host doesn't save the command ring pointer in the suspend well, so we 814 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 815 * aligned, because of the reserved bits in the command ring dequeue pointer 816 * register. Therefore, we can't just set the dequeue pointer back in the 817 * middle of the ring (TRBs are 16-byte aligned). 818 */ 819 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 820 { 821 struct xhci_ring *ring; 822 struct xhci_segment *seg; 823 824 ring = xhci->cmd_ring; 825 seg = ring->deq_seg; 826 do { 827 memset(seg->trbs, 0, 828 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 829 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 830 cpu_to_le32(~TRB_CYCLE); 831 seg = seg->next; 832 } while (seg != ring->deq_seg); 833 834 /* Reset the software enqueue and dequeue pointers */ 835 ring->deq_seg = ring->first_seg; 836 ring->dequeue = ring->first_seg->trbs; 837 ring->enq_seg = ring->deq_seg; 838 ring->enqueue = ring->dequeue; 839 840 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 841 /* 842 * Ring is now zeroed, so the HW should look for change of ownership 843 * when the cycle bit is set to 1. 844 */ 845 ring->cycle_state = 1; 846 847 /* 848 * Reset the hardware dequeue pointer. 849 * Yes, this will need to be re-written after resume, but we're paranoid 850 * and want to make sure the hardware doesn't access bogus memory 851 * because, say, the BIOS or an SMI started the host without changing 852 * the command ring pointers. 853 */ 854 xhci_set_cmd_ring_deq(xhci); 855 } 856 857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 858 { 859 int port_index; 860 __le32 __iomem **port_array; 861 unsigned long flags; 862 u32 t1, t2; 863 864 spin_lock_irqsave(&xhci->lock, flags); 865 866 /* disble usb3 ports Wake bits*/ 867 port_index = xhci->num_usb3_ports; 868 port_array = xhci->usb3_ports; 869 while (port_index--) { 870 t1 = readl(port_array[port_index]); 871 t1 = xhci_port_state_to_neutral(t1); 872 t2 = t1 & ~PORT_WAKE_BITS; 873 if (t1 != t2) 874 writel(t2, port_array[port_index]); 875 } 876 877 /* disble usb2 ports Wake bits*/ 878 port_index = xhci->num_usb2_ports; 879 port_array = xhci->usb2_ports; 880 while (port_index--) { 881 t1 = readl(port_array[port_index]); 882 t1 = xhci_port_state_to_neutral(t1); 883 t2 = t1 & ~PORT_WAKE_BITS; 884 if (t1 != t2) 885 writel(t2, port_array[port_index]); 886 } 887 888 spin_unlock_irqrestore(&xhci->lock, flags); 889 } 890 891 /* 892 * Stop HC (not bus-specific) 893 * 894 * This is called when the machine transition into S3/S4 mode. 895 * 896 */ 897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 898 { 899 int rc = 0; 900 unsigned int delay = XHCI_MAX_HALT_USEC; 901 struct usb_hcd *hcd = xhci_to_hcd(xhci); 902 u32 command; 903 904 if (!hcd->state) 905 return 0; 906 907 if (hcd->state != HC_STATE_SUSPENDED || 908 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 909 return -EINVAL; 910 911 /* Clear root port wake on bits if wakeup not allowed. */ 912 if (!do_wakeup) 913 xhci_disable_port_wake_on_bits(xhci); 914 915 /* Don't poll the roothubs on bus suspend. */ 916 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 918 del_timer_sync(&hcd->rh_timer); 919 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 920 del_timer_sync(&xhci->shared_hcd->rh_timer); 921 922 spin_lock_irq(&xhci->lock); 923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 925 /* step 1: stop endpoint */ 926 /* skipped assuming that port suspend has done */ 927 928 /* step 2: clear Run/Stop bit */ 929 command = readl(&xhci->op_regs->command); 930 command &= ~CMD_RUN; 931 writel(command, &xhci->op_regs->command); 932 933 /* Some chips from Fresco Logic need an extraordinary delay */ 934 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 935 936 if (xhci_handshake(&xhci->op_regs->status, 937 STS_HALT, STS_HALT, delay)) { 938 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 939 spin_unlock_irq(&xhci->lock); 940 return -ETIMEDOUT; 941 } 942 xhci_clear_command_ring(xhci); 943 944 /* step 3: save registers */ 945 xhci_save_registers(xhci); 946 947 /* step 4: set CSS flag */ 948 command = readl(&xhci->op_regs->command); 949 command |= CMD_CSS; 950 writel(command, &xhci->op_regs->command); 951 if (xhci_handshake(&xhci->op_regs->status, 952 STS_SAVE, 0, 10 * 1000)) { 953 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 954 spin_unlock_irq(&xhci->lock); 955 return -ETIMEDOUT; 956 } 957 spin_unlock_irq(&xhci->lock); 958 959 /* 960 * Deleting Compliance Mode Recovery Timer because the xHCI Host 961 * is about to be suspended. 962 */ 963 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 964 (!(xhci_all_ports_seen_u0(xhci)))) { 965 del_timer_sync(&xhci->comp_mode_recovery_timer); 966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 967 "%s: compliance mode recovery timer deleted", 968 __func__); 969 } 970 971 /* step 5: remove core well power */ 972 /* synchronize irq when using MSI-X */ 973 xhci_msix_sync_irqs(xhci); 974 975 return rc; 976 } 977 EXPORT_SYMBOL_GPL(xhci_suspend); 978 979 /* 980 * start xHC (not bus-specific) 981 * 982 * This is called when the machine transition from S3/S4 mode. 983 * 984 */ 985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 986 { 987 u32 command, temp = 0, status; 988 struct usb_hcd *hcd = xhci_to_hcd(xhci); 989 struct usb_hcd *secondary_hcd; 990 int retval = 0; 991 bool comp_timer_running = false; 992 993 if (!hcd->state) 994 return 0; 995 996 /* Wait a bit if either of the roothubs need to settle from the 997 * transition into bus suspend. 998 */ 999 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1000 time_before(jiffies, 1001 xhci->bus_state[1].next_statechange)) 1002 msleep(100); 1003 1004 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1006 1007 spin_lock_irq(&xhci->lock); 1008 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1009 hibernated = true; 1010 1011 if (!hibernated) { 1012 /* step 1: restore register */ 1013 xhci_restore_registers(xhci); 1014 /* step 2: initialize command ring buffer */ 1015 xhci_set_cmd_ring_deq(xhci); 1016 /* step 3: restore state and start state*/ 1017 /* step 3: set CRS flag */ 1018 command = readl(&xhci->op_regs->command); 1019 command |= CMD_CRS; 1020 writel(command, &xhci->op_regs->command); 1021 if (xhci_handshake(&xhci->op_regs->status, 1022 STS_RESTORE, 0, 10 * 1000)) { 1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1024 spin_unlock_irq(&xhci->lock); 1025 return -ETIMEDOUT; 1026 } 1027 temp = readl(&xhci->op_regs->status); 1028 } 1029 1030 /* If restore operation fails, re-initialize the HC during resume */ 1031 if ((temp & STS_SRE) || hibernated) { 1032 1033 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1034 !(xhci_all_ports_seen_u0(xhci))) { 1035 del_timer_sync(&xhci->comp_mode_recovery_timer); 1036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1037 "Compliance Mode Recovery Timer deleted!"); 1038 } 1039 1040 /* Let the USB core know _both_ roothubs lost power. */ 1041 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1042 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1043 1044 xhci_dbg(xhci, "Stop HCD\n"); 1045 xhci_halt(xhci); 1046 xhci_reset(xhci); 1047 spin_unlock_irq(&xhci->lock); 1048 xhci_cleanup_msix(xhci); 1049 1050 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1051 temp = readl(&xhci->op_regs->status); 1052 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1053 temp = readl(&xhci->ir_set->irq_pending); 1054 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1055 xhci_print_ir_set(xhci, 0); 1056 1057 xhci_dbg(xhci, "cleaning up memory\n"); 1058 xhci_mem_cleanup(xhci); 1059 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1060 readl(&xhci->op_regs->status)); 1061 1062 /* USB core calls the PCI reinit and start functions twice: 1063 * first with the primary HCD, and then with the secondary HCD. 1064 * If we don't do the same, the host will never be started. 1065 */ 1066 if (!usb_hcd_is_primary_hcd(hcd)) 1067 secondary_hcd = hcd; 1068 else 1069 secondary_hcd = xhci->shared_hcd; 1070 1071 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1072 retval = xhci_init(hcd->primary_hcd); 1073 if (retval) 1074 return retval; 1075 comp_timer_running = true; 1076 1077 xhci_dbg(xhci, "Start the primary HCD\n"); 1078 retval = xhci_run(hcd->primary_hcd); 1079 if (!retval) { 1080 xhci_dbg(xhci, "Start the secondary HCD\n"); 1081 retval = xhci_run(secondary_hcd); 1082 } 1083 hcd->state = HC_STATE_SUSPENDED; 1084 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1085 goto done; 1086 } 1087 1088 /* step 4: set Run/Stop bit */ 1089 command = readl(&xhci->op_regs->command); 1090 command |= CMD_RUN; 1091 writel(command, &xhci->op_regs->command); 1092 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1093 0, 250 * 1000); 1094 1095 /* step 5: walk topology and initialize portsc, 1096 * portpmsc and portli 1097 */ 1098 /* this is done in bus_resume */ 1099 1100 /* step 6: restart each of the previously 1101 * Running endpoints by ringing their doorbells 1102 */ 1103 1104 spin_unlock_irq(&xhci->lock); 1105 1106 done: 1107 if (retval == 0) { 1108 /* Resume root hubs only when have pending events. */ 1109 status = readl(&xhci->op_regs->status); 1110 if (status & STS_EINT) { 1111 usb_hcd_resume_root_hub(xhci->shared_hcd); 1112 usb_hcd_resume_root_hub(hcd); 1113 } 1114 } 1115 1116 /* 1117 * If system is subject to the Quirk, Compliance Mode Timer needs to 1118 * be re-initialized Always after a system resume. Ports are subject 1119 * to suffer the Compliance Mode issue again. It doesn't matter if 1120 * ports have entered previously to U0 before system's suspension. 1121 */ 1122 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1123 compliance_mode_recovery_timer_init(xhci); 1124 1125 /* Re-enable port polling. */ 1126 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1127 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1128 usb_hcd_poll_rh_status(xhci->shared_hcd); 1129 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1130 usb_hcd_poll_rh_status(hcd); 1131 1132 return retval; 1133 } 1134 EXPORT_SYMBOL_GPL(xhci_resume); 1135 #endif /* CONFIG_PM */ 1136 1137 /*-------------------------------------------------------------------------*/ 1138 1139 /** 1140 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1141 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1142 * value to right shift 1 for the bitmask. 1143 * 1144 * Index = (epnum * 2) + direction - 1, 1145 * where direction = 0 for OUT, 1 for IN. 1146 * For control endpoints, the IN index is used (OUT index is unused), so 1147 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1148 */ 1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1150 { 1151 unsigned int index; 1152 if (usb_endpoint_xfer_control(desc)) 1153 index = (unsigned int) (usb_endpoint_num(desc)*2); 1154 else 1155 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1156 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1157 return index; 1158 } 1159 1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1161 * address from the XHCI endpoint index. 1162 */ 1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1164 { 1165 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1166 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1167 return direction | number; 1168 } 1169 1170 /* Find the flag for this endpoint (for use in the control context). Use the 1171 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1172 * bit 1, etc. 1173 */ 1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1175 { 1176 return 1 << (xhci_get_endpoint_index(desc) + 1); 1177 } 1178 1179 /* Find the flag for this endpoint (for use in the control context). Use the 1180 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1181 * bit 1, etc. 1182 */ 1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1184 { 1185 return 1 << (ep_index + 1); 1186 } 1187 1188 /* Compute the last valid endpoint context index. Basically, this is the 1189 * endpoint index plus one. For slot contexts with more than valid endpoint, 1190 * we find the most significant bit set in the added contexts flags. 1191 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1192 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1193 */ 1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1195 { 1196 return fls(added_ctxs) - 1; 1197 } 1198 1199 /* Returns 1 if the arguments are OK; 1200 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1201 */ 1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1203 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1204 const char *func) { 1205 struct xhci_hcd *xhci; 1206 struct xhci_virt_device *virt_dev; 1207 1208 if (!hcd || (check_ep && !ep) || !udev) { 1209 pr_debug("xHCI %s called with invalid args\n", func); 1210 return -EINVAL; 1211 } 1212 if (!udev->parent) { 1213 pr_debug("xHCI %s called for root hub\n", func); 1214 return 0; 1215 } 1216 1217 xhci = hcd_to_xhci(hcd); 1218 if (check_virt_dev) { 1219 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1220 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1221 func); 1222 return -EINVAL; 1223 } 1224 1225 virt_dev = xhci->devs[udev->slot_id]; 1226 if (virt_dev->udev != udev) { 1227 xhci_dbg(xhci, "xHCI %s called with udev and " 1228 "virt_dev does not match\n", func); 1229 return -EINVAL; 1230 } 1231 } 1232 1233 if (xhci->xhc_state & XHCI_STATE_HALTED) 1234 return -ENODEV; 1235 1236 return 1; 1237 } 1238 1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1240 struct usb_device *udev, struct xhci_command *command, 1241 bool ctx_change, bool must_succeed); 1242 1243 /* 1244 * Full speed devices may have a max packet size greater than 8 bytes, but the 1245 * USB core doesn't know that until it reads the first 8 bytes of the 1246 * descriptor. If the usb_device's max packet size changes after that point, 1247 * we need to issue an evaluate context command and wait on it. 1248 */ 1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1250 unsigned int ep_index, struct urb *urb) 1251 { 1252 struct xhci_container_ctx *out_ctx; 1253 struct xhci_input_control_ctx *ctrl_ctx; 1254 struct xhci_ep_ctx *ep_ctx; 1255 struct xhci_command *command; 1256 int max_packet_size; 1257 int hw_max_packet_size; 1258 int ret = 0; 1259 1260 out_ctx = xhci->devs[slot_id]->out_ctx; 1261 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1262 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1263 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1264 if (hw_max_packet_size != max_packet_size) { 1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1266 "Max Packet Size for ep 0 changed."); 1267 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1268 "Max packet size in usb_device = %d", 1269 max_packet_size); 1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1271 "Max packet size in xHCI HW = %d", 1272 hw_max_packet_size); 1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1274 "Issuing evaluate context command."); 1275 1276 /* Set up the input context flags for the command */ 1277 /* FIXME: This won't work if a non-default control endpoint 1278 * changes max packet sizes. 1279 */ 1280 1281 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1282 if (!command) 1283 return -ENOMEM; 1284 1285 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1287 if (!ctrl_ctx) { 1288 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1289 __func__); 1290 ret = -ENOMEM; 1291 goto command_cleanup; 1292 } 1293 /* Set up the modified control endpoint 0 */ 1294 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1295 xhci->devs[slot_id]->out_ctx, ep_index); 1296 1297 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1298 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1299 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1300 1301 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1302 ctrl_ctx->drop_flags = 0; 1303 1304 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1305 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1306 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1307 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1308 1309 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1310 true, false); 1311 1312 /* Clean up the input context for later use by bandwidth 1313 * functions. 1314 */ 1315 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1316 command_cleanup: 1317 kfree(command->completion); 1318 kfree(command); 1319 } 1320 return ret; 1321 } 1322 1323 /* 1324 * non-error returns are a promise to giveback() the urb later 1325 * we drop ownership so next owner (or urb unlink) can get it 1326 */ 1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1328 { 1329 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1330 struct xhci_td *buffer; 1331 unsigned long flags; 1332 int ret = 0; 1333 unsigned int slot_id, ep_index; 1334 struct urb_priv *urb_priv; 1335 int size, i; 1336 1337 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1338 true, true, __func__) <= 0) 1339 return -EINVAL; 1340 1341 slot_id = urb->dev->slot_id; 1342 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1343 1344 if (!HCD_HW_ACCESSIBLE(hcd)) { 1345 if (!in_interrupt()) 1346 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1347 ret = -ESHUTDOWN; 1348 goto exit; 1349 } 1350 1351 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1352 size = urb->number_of_packets; 1353 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1354 urb->transfer_buffer_length > 0 && 1355 urb->transfer_flags & URB_ZERO_PACKET && 1356 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1357 size = 2; 1358 else 1359 size = 1; 1360 1361 urb_priv = kzalloc(sizeof(struct urb_priv) + 1362 size * sizeof(struct xhci_td *), mem_flags); 1363 if (!urb_priv) 1364 return -ENOMEM; 1365 1366 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1367 if (!buffer) { 1368 kfree(urb_priv); 1369 return -ENOMEM; 1370 } 1371 1372 for (i = 0; i < size; i++) { 1373 urb_priv->td[i] = buffer; 1374 buffer++; 1375 } 1376 1377 urb_priv->length = size; 1378 urb_priv->td_cnt = 0; 1379 urb->hcpriv = urb_priv; 1380 1381 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1382 /* Check to see if the max packet size for the default control 1383 * endpoint changed during FS device enumeration 1384 */ 1385 if (urb->dev->speed == USB_SPEED_FULL) { 1386 ret = xhci_check_maxpacket(xhci, slot_id, 1387 ep_index, urb); 1388 if (ret < 0) { 1389 xhci_urb_free_priv(urb_priv); 1390 urb->hcpriv = NULL; 1391 return ret; 1392 } 1393 } 1394 1395 /* We have a spinlock and interrupts disabled, so we must pass 1396 * atomic context to this function, which may allocate memory. 1397 */ 1398 spin_lock_irqsave(&xhci->lock, flags); 1399 if (xhci->xhc_state & XHCI_STATE_DYING) 1400 goto dying; 1401 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1402 slot_id, ep_index); 1403 if (ret) 1404 goto free_priv; 1405 spin_unlock_irqrestore(&xhci->lock, flags); 1406 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1407 spin_lock_irqsave(&xhci->lock, flags); 1408 if (xhci->xhc_state & XHCI_STATE_DYING) 1409 goto dying; 1410 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1411 EP_GETTING_STREAMS) { 1412 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1413 "is transitioning to using streams.\n"); 1414 ret = -EINVAL; 1415 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1416 EP_GETTING_NO_STREAMS) { 1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1418 "is transitioning to " 1419 "not having streams.\n"); 1420 ret = -EINVAL; 1421 } else { 1422 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1423 slot_id, ep_index); 1424 } 1425 if (ret) 1426 goto free_priv; 1427 spin_unlock_irqrestore(&xhci->lock, flags); 1428 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1429 spin_lock_irqsave(&xhci->lock, flags); 1430 if (xhci->xhc_state & XHCI_STATE_DYING) 1431 goto dying; 1432 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1433 slot_id, ep_index); 1434 if (ret) 1435 goto free_priv; 1436 spin_unlock_irqrestore(&xhci->lock, flags); 1437 } else { 1438 spin_lock_irqsave(&xhci->lock, flags); 1439 if (xhci->xhc_state & XHCI_STATE_DYING) 1440 goto dying; 1441 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1442 slot_id, ep_index); 1443 if (ret) 1444 goto free_priv; 1445 spin_unlock_irqrestore(&xhci->lock, flags); 1446 } 1447 exit: 1448 return ret; 1449 dying: 1450 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1451 "non-responsive xHCI host.\n", 1452 urb->ep->desc.bEndpointAddress, urb); 1453 ret = -ESHUTDOWN; 1454 free_priv: 1455 xhci_urb_free_priv(urb_priv); 1456 urb->hcpriv = NULL; 1457 spin_unlock_irqrestore(&xhci->lock, flags); 1458 return ret; 1459 } 1460 1461 /* 1462 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1463 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1464 * should pick up where it left off in the TD, unless a Set Transfer Ring 1465 * Dequeue Pointer is issued. 1466 * 1467 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1468 * the ring. Since the ring is a contiguous structure, they can't be physically 1469 * removed. Instead, there are two options: 1470 * 1471 * 1) If the HC is in the middle of processing the URB to be canceled, we 1472 * simply move the ring's dequeue pointer past those TRBs using the Set 1473 * Transfer Ring Dequeue Pointer command. This will be the common case, 1474 * when drivers timeout on the last submitted URB and attempt to cancel. 1475 * 1476 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1477 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1478 * HC will need to invalidate the any TRBs it has cached after the stop 1479 * endpoint command, as noted in the xHCI 0.95 errata. 1480 * 1481 * 3) The TD may have completed by the time the Stop Endpoint Command 1482 * completes, so software needs to handle that case too. 1483 * 1484 * This function should protect against the TD enqueueing code ringing the 1485 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1486 * It also needs to account for multiple cancellations on happening at the same 1487 * time for the same endpoint. 1488 * 1489 * Note that this function can be called in any context, or so says 1490 * usb_hcd_unlink_urb() 1491 */ 1492 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1493 { 1494 unsigned long flags; 1495 int ret, i; 1496 u32 temp; 1497 struct xhci_hcd *xhci; 1498 struct urb_priv *urb_priv; 1499 struct xhci_td *td; 1500 unsigned int ep_index; 1501 struct xhci_ring *ep_ring; 1502 struct xhci_virt_ep *ep; 1503 struct xhci_command *command; 1504 1505 xhci = hcd_to_xhci(hcd); 1506 spin_lock_irqsave(&xhci->lock, flags); 1507 /* Make sure the URB hasn't completed or been unlinked already */ 1508 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1509 if (ret || !urb->hcpriv) 1510 goto done; 1511 temp = readl(&xhci->op_regs->status); 1512 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1513 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1514 "HW died, freeing TD."); 1515 urb_priv = urb->hcpriv; 1516 for (i = urb_priv->td_cnt; 1517 i < urb_priv->length && xhci->devs[urb->dev->slot_id]; 1518 i++) { 1519 td = urb_priv->td[i]; 1520 if (!list_empty(&td->td_list)) 1521 list_del_init(&td->td_list); 1522 if (!list_empty(&td->cancelled_td_list)) 1523 list_del_init(&td->cancelled_td_list); 1524 } 1525 1526 usb_hcd_unlink_urb_from_ep(hcd, urb); 1527 spin_unlock_irqrestore(&xhci->lock, flags); 1528 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1529 xhci_urb_free_priv(urb_priv); 1530 return ret; 1531 } 1532 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1533 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1534 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1535 "Ep 0x%x: URB %p to be canceled on " 1536 "non-responsive xHCI host.", 1537 urb->ep->desc.bEndpointAddress, urb); 1538 /* Let the stop endpoint command watchdog timer (which set this 1539 * state) finish cleaning up the endpoint TD lists. We must 1540 * have caught it in the middle of dropping a lock and giving 1541 * back an URB. 1542 */ 1543 goto done; 1544 } 1545 1546 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1547 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1548 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1549 if (!ep_ring) { 1550 ret = -EINVAL; 1551 goto done; 1552 } 1553 1554 urb_priv = urb->hcpriv; 1555 i = urb_priv->td_cnt; 1556 if (i < urb_priv->length) 1557 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1558 "Cancel URB %p, dev %s, ep 0x%x, " 1559 "starting at offset 0x%llx", 1560 urb, urb->dev->devpath, 1561 urb->ep->desc.bEndpointAddress, 1562 (unsigned long long) xhci_trb_virt_to_dma( 1563 urb_priv->td[i]->start_seg, 1564 urb_priv->td[i]->first_trb)); 1565 1566 for (; i < urb_priv->length; i++) { 1567 td = urb_priv->td[i]; 1568 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1569 } 1570 1571 /* Queue a stop endpoint command, but only if this is 1572 * the first cancellation to be handled. 1573 */ 1574 if (!(ep->ep_state & EP_HALT_PENDING)) { 1575 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1576 if (!command) { 1577 ret = -ENOMEM; 1578 goto done; 1579 } 1580 ep->ep_state |= EP_HALT_PENDING; 1581 ep->stop_cmds_pending++; 1582 ep->stop_cmd_timer.expires = jiffies + 1583 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1584 add_timer(&ep->stop_cmd_timer); 1585 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1586 ep_index, 0); 1587 xhci_ring_cmd_db(xhci); 1588 } 1589 done: 1590 spin_unlock_irqrestore(&xhci->lock, flags); 1591 return ret; 1592 } 1593 1594 /* Drop an endpoint from a new bandwidth configuration for this device. 1595 * Only one call to this function is allowed per endpoint before 1596 * check_bandwidth() or reset_bandwidth() must be called. 1597 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1598 * add the endpoint to the schedule with possibly new parameters denoted by a 1599 * different endpoint descriptor in usb_host_endpoint. 1600 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1601 * not allowed. 1602 * 1603 * The USB core will not allow URBs to be queued to an endpoint that is being 1604 * disabled, so there's no need for mutual exclusion to protect 1605 * the xhci->devs[slot_id] structure. 1606 */ 1607 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1608 struct usb_host_endpoint *ep) 1609 { 1610 struct xhci_hcd *xhci; 1611 struct xhci_container_ctx *in_ctx, *out_ctx; 1612 struct xhci_input_control_ctx *ctrl_ctx; 1613 unsigned int ep_index; 1614 struct xhci_ep_ctx *ep_ctx; 1615 u32 drop_flag; 1616 u32 new_add_flags, new_drop_flags; 1617 int ret; 1618 1619 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1620 if (ret <= 0) 1621 return ret; 1622 xhci = hcd_to_xhci(hcd); 1623 if (xhci->xhc_state & XHCI_STATE_DYING) 1624 return -ENODEV; 1625 1626 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1627 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1628 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1629 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1630 __func__, drop_flag); 1631 return 0; 1632 } 1633 1634 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1635 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1636 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1637 if (!ctrl_ctx) { 1638 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1639 __func__); 1640 return 0; 1641 } 1642 1643 ep_index = xhci_get_endpoint_index(&ep->desc); 1644 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1645 /* If the HC already knows the endpoint is disabled, 1646 * or the HCD has noted it is disabled, ignore this request 1647 */ 1648 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1649 cpu_to_le32(EP_STATE_DISABLED)) || 1650 le32_to_cpu(ctrl_ctx->drop_flags) & 1651 xhci_get_endpoint_flag(&ep->desc)) { 1652 /* Do not warn when called after a usb_device_reset */ 1653 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1654 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1655 __func__, ep); 1656 return 0; 1657 } 1658 1659 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1660 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1661 1662 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1663 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1664 1665 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1666 1667 if (xhci->quirks & XHCI_MTK_HOST) 1668 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1669 1670 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1671 (unsigned int) ep->desc.bEndpointAddress, 1672 udev->slot_id, 1673 (unsigned int) new_drop_flags, 1674 (unsigned int) new_add_flags); 1675 return 0; 1676 } 1677 1678 /* Add an endpoint to a new possible bandwidth configuration for this device. 1679 * Only one call to this function is allowed per endpoint before 1680 * check_bandwidth() or reset_bandwidth() must be called. 1681 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1682 * add the endpoint to the schedule with possibly new parameters denoted by a 1683 * different endpoint descriptor in usb_host_endpoint. 1684 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1685 * not allowed. 1686 * 1687 * The USB core will not allow URBs to be queued to an endpoint until the 1688 * configuration or alt setting is installed in the device, so there's no need 1689 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1690 */ 1691 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1692 struct usb_host_endpoint *ep) 1693 { 1694 struct xhci_hcd *xhci; 1695 struct xhci_container_ctx *in_ctx; 1696 unsigned int ep_index; 1697 struct xhci_input_control_ctx *ctrl_ctx; 1698 u32 added_ctxs; 1699 u32 new_add_flags, new_drop_flags; 1700 struct xhci_virt_device *virt_dev; 1701 int ret = 0; 1702 1703 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1704 if (ret <= 0) { 1705 /* So we won't queue a reset ep command for a root hub */ 1706 ep->hcpriv = NULL; 1707 return ret; 1708 } 1709 xhci = hcd_to_xhci(hcd); 1710 if (xhci->xhc_state & XHCI_STATE_DYING) 1711 return -ENODEV; 1712 1713 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1714 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1715 /* FIXME when we have to issue an evaluate endpoint command to 1716 * deal with ep0 max packet size changing once we get the 1717 * descriptors 1718 */ 1719 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1720 __func__, added_ctxs); 1721 return 0; 1722 } 1723 1724 virt_dev = xhci->devs[udev->slot_id]; 1725 in_ctx = virt_dev->in_ctx; 1726 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1727 if (!ctrl_ctx) { 1728 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1729 __func__); 1730 return 0; 1731 } 1732 1733 ep_index = xhci_get_endpoint_index(&ep->desc); 1734 /* If this endpoint is already in use, and the upper layers are trying 1735 * to add it again without dropping it, reject the addition. 1736 */ 1737 if (virt_dev->eps[ep_index].ring && 1738 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1739 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1740 "without dropping it.\n", 1741 (unsigned int) ep->desc.bEndpointAddress); 1742 return -EINVAL; 1743 } 1744 1745 /* If the HCD has already noted the endpoint is enabled, 1746 * ignore this request. 1747 */ 1748 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1749 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1750 __func__, ep); 1751 return 0; 1752 } 1753 1754 /* 1755 * Configuration and alternate setting changes must be done in 1756 * process context, not interrupt context (or so documenation 1757 * for usb_set_interface() and usb_set_configuration() claim). 1758 */ 1759 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1760 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1761 __func__, ep->desc.bEndpointAddress); 1762 return -ENOMEM; 1763 } 1764 1765 if (xhci->quirks & XHCI_MTK_HOST) { 1766 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1767 if (ret < 0) { 1768 xhci_free_or_cache_endpoint_ring(xhci, 1769 virt_dev, ep_index); 1770 return ret; 1771 } 1772 } 1773 1774 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1775 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1776 1777 /* If xhci_endpoint_disable() was called for this endpoint, but the 1778 * xHC hasn't been notified yet through the check_bandwidth() call, 1779 * this re-adds a new state for the endpoint from the new endpoint 1780 * descriptors. We must drop and re-add this endpoint, so we leave the 1781 * drop flags alone. 1782 */ 1783 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1784 1785 /* Store the usb_device pointer for later use */ 1786 ep->hcpriv = udev; 1787 1788 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1789 (unsigned int) ep->desc.bEndpointAddress, 1790 udev->slot_id, 1791 (unsigned int) new_drop_flags, 1792 (unsigned int) new_add_flags); 1793 return 0; 1794 } 1795 1796 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1797 { 1798 struct xhci_input_control_ctx *ctrl_ctx; 1799 struct xhci_ep_ctx *ep_ctx; 1800 struct xhci_slot_ctx *slot_ctx; 1801 int i; 1802 1803 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1804 if (!ctrl_ctx) { 1805 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1806 __func__); 1807 return; 1808 } 1809 1810 /* When a device's add flag and drop flag are zero, any subsequent 1811 * configure endpoint command will leave that endpoint's state 1812 * untouched. Make sure we don't leave any old state in the input 1813 * endpoint contexts. 1814 */ 1815 ctrl_ctx->drop_flags = 0; 1816 ctrl_ctx->add_flags = 0; 1817 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1818 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1819 /* Endpoint 0 is always valid */ 1820 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1821 for (i = 1; i < 31; ++i) { 1822 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1823 ep_ctx->ep_info = 0; 1824 ep_ctx->ep_info2 = 0; 1825 ep_ctx->deq = 0; 1826 ep_ctx->tx_info = 0; 1827 } 1828 } 1829 1830 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1831 struct usb_device *udev, u32 *cmd_status) 1832 { 1833 int ret; 1834 1835 switch (*cmd_status) { 1836 case COMP_CMD_ABORT: 1837 case COMP_CMD_STOP: 1838 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1839 ret = -ETIME; 1840 break; 1841 case COMP_ENOMEM: 1842 dev_warn(&udev->dev, 1843 "Not enough host controller resources for new device state.\n"); 1844 ret = -ENOMEM; 1845 /* FIXME: can we allocate more resources for the HC? */ 1846 break; 1847 case COMP_BW_ERR: 1848 case COMP_2ND_BW_ERR: 1849 dev_warn(&udev->dev, 1850 "Not enough bandwidth for new device state.\n"); 1851 ret = -ENOSPC; 1852 /* FIXME: can we go back to the old state? */ 1853 break; 1854 case COMP_TRB_ERR: 1855 /* the HCD set up something wrong */ 1856 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1857 "add flag = 1, " 1858 "and endpoint is not disabled.\n"); 1859 ret = -EINVAL; 1860 break; 1861 case COMP_DEV_ERR: 1862 dev_warn(&udev->dev, 1863 "ERROR: Incompatible device for endpoint configure command.\n"); 1864 ret = -ENODEV; 1865 break; 1866 case COMP_SUCCESS: 1867 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1868 "Successful Endpoint Configure command"); 1869 ret = 0; 1870 break; 1871 default: 1872 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1873 *cmd_status); 1874 ret = -EINVAL; 1875 break; 1876 } 1877 return ret; 1878 } 1879 1880 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1881 struct usb_device *udev, u32 *cmd_status) 1882 { 1883 int ret; 1884 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1885 1886 switch (*cmd_status) { 1887 case COMP_CMD_ABORT: 1888 case COMP_CMD_STOP: 1889 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1890 ret = -ETIME; 1891 break; 1892 case COMP_EINVAL: 1893 dev_warn(&udev->dev, 1894 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1895 ret = -EINVAL; 1896 break; 1897 case COMP_EBADSLT: 1898 dev_warn(&udev->dev, 1899 "WARN: slot not enabled for evaluate context command.\n"); 1900 ret = -EINVAL; 1901 break; 1902 case COMP_CTX_STATE: 1903 dev_warn(&udev->dev, 1904 "WARN: invalid context state for evaluate context command.\n"); 1905 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1906 ret = -EINVAL; 1907 break; 1908 case COMP_DEV_ERR: 1909 dev_warn(&udev->dev, 1910 "ERROR: Incompatible device for evaluate context command.\n"); 1911 ret = -ENODEV; 1912 break; 1913 case COMP_MEL_ERR: 1914 /* Max Exit Latency too large error */ 1915 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1916 ret = -EINVAL; 1917 break; 1918 case COMP_SUCCESS: 1919 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1920 "Successful evaluate context command"); 1921 ret = 0; 1922 break; 1923 default: 1924 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1925 *cmd_status); 1926 ret = -EINVAL; 1927 break; 1928 } 1929 return ret; 1930 } 1931 1932 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1933 struct xhci_input_control_ctx *ctrl_ctx) 1934 { 1935 u32 valid_add_flags; 1936 u32 valid_drop_flags; 1937 1938 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1939 * (bit 1). The default control endpoint is added during the Address 1940 * Device command and is never removed until the slot is disabled. 1941 */ 1942 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1943 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1944 1945 /* Use hweight32 to count the number of ones in the add flags, or 1946 * number of endpoints added. Don't count endpoints that are changed 1947 * (both added and dropped). 1948 */ 1949 return hweight32(valid_add_flags) - 1950 hweight32(valid_add_flags & valid_drop_flags); 1951 } 1952 1953 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1954 struct xhci_input_control_ctx *ctrl_ctx) 1955 { 1956 u32 valid_add_flags; 1957 u32 valid_drop_flags; 1958 1959 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1960 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1961 1962 return hweight32(valid_drop_flags) - 1963 hweight32(valid_add_flags & valid_drop_flags); 1964 } 1965 1966 /* 1967 * We need to reserve the new number of endpoints before the configure endpoint 1968 * command completes. We can't subtract the dropped endpoints from the number 1969 * of active endpoints until the command completes because we can oversubscribe 1970 * the host in this case: 1971 * 1972 * - the first configure endpoint command drops more endpoints than it adds 1973 * - a second configure endpoint command that adds more endpoints is queued 1974 * - the first configure endpoint command fails, so the config is unchanged 1975 * - the second command may succeed, even though there isn't enough resources 1976 * 1977 * Must be called with xhci->lock held. 1978 */ 1979 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1980 struct xhci_input_control_ctx *ctrl_ctx) 1981 { 1982 u32 added_eps; 1983 1984 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1985 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1986 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1987 "Not enough ep ctxs: " 1988 "%u active, need to add %u, limit is %u.", 1989 xhci->num_active_eps, added_eps, 1990 xhci->limit_active_eps); 1991 return -ENOMEM; 1992 } 1993 xhci->num_active_eps += added_eps; 1994 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1995 "Adding %u ep ctxs, %u now active.", added_eps, 1996 xhci->num_active_eps); 1997 return 0; 1998 } 1999 2000 /* 2001 * The configure endpoint was failed by the xHC for some other reason, so we 2002 * need to revert the resources that failed configuration would have used. 2003 * 2004 * Must be called with xhci->lock held. 2005 */ 2006 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2007 struct xhci_input_control_ctx *ctrl_ctx) 2008 { 2009 u32 num_failed_eps; 2010 2011 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2012 xhci->num_active_eps -= num_failed_eps; 2013 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2014 "Removing %u failed ep ctxs, %u now active.", 2015 num_failed_eps, 2016 xhci->num_active_eps); 2017 } 2018 2019 /* 2020 * Now that the command has completed, clean up the active endpoint count by 2021 * subtracting out the endpoints that were dropped (but not changed). 2022 * 2023 * Must be called with xhci->lock held. 2024 */ 2025 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2026 struct xhci_input_control_ctx *ctrl_ctx) 2027 { 2028 u32 num_dropped_eps; 2029 2030 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2031 xhci->num_active_eps -= num_dropped_eps; 2032 if (num_dropped_eps) 2033 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2034 "Removing %u dropped ep ctxs, %u now active.", 2035 num_dropped_eps, 2036 xhci->num_active_eps); 2037 } 2038 2039 static unsigned int xhci_get_block_size(struct usb_device *udev) 2040 { 2041 switch (udev->speed) { 2042 case USB_SPEED_LOW: 2043 case USB_SPEED_FULL: 2044 return FS_BLOCK; 2045 case USB_SPEED_HIGH: 2046 return HS_BLOCK; 2047 case USB_SPEED_SUPER: 2048 case USB_SPEED_SUPER_PLUS: 2049 return SS_BLOCK; 2050 case USB_SPEED_UNKNOWN: 2051 case USB_SPEED_WIRELESS: 2052 default: 2053 /* Should never happen */ 2054 return 1; 2055 } 2056 } 2057 2058 static unsigned int 2059 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2060 { 2061 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2062 return LS_OVERHEAD; 2063 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2064 return FS_OVERHEAD; 2065 return HS_OVERHEAD; 2066 } 2067 2068 /* If we are changing a LS/FS device under a HS hub, 2069 * make sure (if we are activating a new TT) that the HS bus has enough 2070 * bandwidth for this new TT. 2071 */ 2072 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2073 struct xhci_virt_device *virt_dev, 2074 int old_active_eps) 2075 { 2076 struct xhci_interval_bw_table *bw_table; 2077 struct xhci_tt_bw_info *tt_info; 2078 2079 /* Find the bandwidth table for the root port this TT is attached to. */ 2080 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2081 tt_info = virt_dev->tt_info; 2082 /* If this TT already had active endpoints, the bandwidth for this TT 2083 * has already been added. Removing all periodic endpoints (and thus 2084 * making the TT enactive) will only decrease the bandwidth used. 2085 */ 2086 if (old_active_eps) 2087 return 0; 2088 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2089 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2090 return -ENOMEM; 2091 return 0; 2092 } 2093 /* Not sure why we would have no new active endpoints... 2094 * 2095 * Maybe because of an Evaluate Context change for a hub update or a 2096 * control endpoint 0 max packet size change? 2097 * FIXME: skip the bandwidth calculation in that case. 2098 */ 2099 return 0; 2100 } 2101 2102 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2103 struct xhci_virt_device *virt_dev) 2104 { 2105 unsigned int bw_reserved; 2106 2107 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2108 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2109 return -ENOMEM; 2110 2111 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2112 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2113 return -ENOMEM; 2114 2115 return 0; 2116 } 2117 2118 /* 2119 * This algorithm is a very conservative estimate of the worst-case scheduling 2120 * scenario for any one interval. The hardware dynamically schedules the 2121 * packets, so we can't tell which microframe could be the limiting factor in 2122 * the bandwidth scheduling. This only takes into account periodic endpoints. 2123 * 2124 * Obviously, we can't solve an NP complete problem to find the minimum worst 2125 * case scenario. Instead, we come up with an estimate that is no less than 2126 * the worst case bandwidth used for any one microframe, but may be an 2127 * over-estimate. 2128 * 2129 * We walk the requirements for each endpoint by interval, starting with the 2130 * smallest interval, and place packets in the schedule where there is only one 2131 * possible way to schedule packets for that interval. In order to simplify 2132 * this algorithm, we record the largest max packet size for each interval, and 2133 * assume all packets will be that size. 2134 * 2135 * For interval 0, we obviously must schedule all packets for each interval. 2136 * The bandwidth for interval 0 is just the amount of data to be transmitted 2137 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2138 * the number of packets). 2139 * 2140 * For interval 1, we have two possible microframes to schedule those packets 2141 * in. For this algorithm, if we can schedule the same number of packets for 2142 * each possible scheduling opportunity (each microframe), we will do so. The 2143 * remaining number of packets will be saved to be transmitted in the gaps in 2144 * the next interval's scheduling sequence. 2145 * 2146 * As we move those remaining packets to be scheduled with interval 2 packets, 2147 * we have to double the number of remaining packets to transmit. This is 2148 * because the intervals are actually powers of 2, and we would be transmitting 2149 * the previous interval's packets twice in this interval. We also have to be 2150 * sure that when we look at the largest max packet size for this interval, we 2151 * also look at the largest max packet size for the remaining packets and take 2152 * the greater of the two. 2153 * 2154 * The algorithm continues to evenly distribute packets in each scheduling 2155 * opportunity, and push the remaining packets out, until we get to the last 2156 * interval. Then those packets and their associated overhead are just added 2157 * to the bandwidth used. 2158 */ 2159 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2160 struct xhci_virt_device *virt_dev, 2161 int old_active_eps) 2162 { 2163 unsigned int bw_reserved; 2164 unsigned int max_bandwidth; 2165 unsigned int bw_used; 2166 unsigned int block_size; 2167 struct xhci_interval_bw_table *bw_table; 2168 unsigned int packet_size = 0; 2169 unsigned int overhead = 0; 2170 unsigned int packets_transmitted = 0; 2171 unsigned int packets_remaining = 0; 2172 unsigned int i; 2173 2174 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2175 return xhci_check_ss_bw(xhci, virt_dev); 2176 2177 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2178 max_bandwidth = HS_BW_LIMIT; 2179 /* Convert percent of bus BW reserved to blocks reserved */ 2180 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2181 } else { 2182 max_bandwidth = FS_BW_LIMIT; 2183 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2184 } 2185 2186 bw_table = virt_dev->bw_table; 2187 /* We need to translate the max packet size and max ESIT payloads into 2188 * the units the hardware uses. 2189 */ 2190 block_size = xhci_get_block_size(virt_dev->udev); 2191 2192 /* If we are manipulating a LS/FS device under a HS hub, double check 2193 * that the HS bus has enough bandwidth if we are activing a new TT. 2194 */ 2195 if (virt_dev->tt_info) { 2196 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2197 "Recalculating BW for rootport %u", 2198 virt_dev->real_port); 2199 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2200 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2201 "newly activated TT.\n"); 2202 return -ENOMEM; 2203 } 2204 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2205 "Recalculating BW for TT slot %u port %u", 2206 virt_dev->tt_info->slot_id, 2207 virt_dev->tt_info->ttport); 2208 } else { 2209 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2210 "Recalculating BW for rootport %u", 2211 virt_dev->real_port); 2212 } 2213 2214 /* Add in how much bandwidth will be used for interval zero, or the 2215 * rounded max ESIT payload + number of packets * largest overhead. 2216 */ 2217 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2218 bw_table->interval_bw[0].num_packets * 2219 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2220 2221 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2222 unsigned int bw_added; 2223 unsigned int largest_mps; 2224 unsigned int interval_overhead; 2225 2226 /* 2227 * How many packets could we transmit in this interval? 2228 * If packets didn't fit in the previous interval, we will need 2229 * to transmit that many packets twice within this interval. 2230 */ 2231 packets_remaining = 2 * packets_remaining + 2232 bw_table->interval_bw[i].num_packets; 2233 2234 /* Find the largest max packet size of this or the previous 2235 * interval. 2236 */ 2237 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2238 largest_mps = 0; 2239 else { 2240 struct xhci_virt_ep *virt_ep; 2241 struct list_head *ep_entry; 2242 2243 ep_entry = bw_table->interval_bw[i].endpoints.next; 2244 virt_ep = list_entry(ep_entry, 2245 struct xhci_virt_ep, bw_endpoint_list); 2246 /* Convert to blocks, rounding up */ 2247 largest_mps = DIV_ROUND_UP( 2248 virt_ep->bw_info.max_packet_size, 2249 block_size); 2250 } 2251 if (largest_mps > packet_size) 2252 packet_size = largest_mps; 2253 2254 /* Use the larger overhead of this or the previous interval. */ 2255 interval_overhead = xhci_get_largest_overhead( 2256 &bw_table->interval_bw[i]); 2257 if (interval_overhead > overhead) 2258 overhead = interval_overhead; 2259 2260 /* How many packets can we evenly distribute across 2261 * (1 << (i + 1)) possible scheduling opportunities? 2262 */ 2263 packets_transmitted = packets_remaining >> (i + 1); 2264 2265 /* Add in the bandwidth used for those scheduled packets */ 2266 bw_added = packets_transmitted * (overhead + packet_size); 2267 2268 /* How many packets do we have remaining to transmit? */ 2269 packets_remaining = packets_remaining % (1 << (i + 1)); 2270 2271 /* What largest max packet size should those packets have? */ 2272 /* If we've transmitted all packets, don't carry over the 2273 * largest packet size. 2274 */ 2275 if (packets_remaining == 0) { 2276 packet_size = 0; 2277 overhead = 0; 2278 } else if (packets_transmitted > 0) { 2279 /* Otherwise if we do have remaining packets, and we've 2280 * scheduled some packets in this interval, take the 2281 * largest max packet size from endpoints with this 2282 * interval. 2283 */ 2284 packet_size = largest_mps; 2285 overhead = interval_overhead; 2286 } 2287 /* Otherwise carry over packet_size and overhead from the last 2288 * time we had a remainder. 2289 */ 2290 bw_used += bw_added; 2291 if (bw_used > max_bandwidth) { 2292 xhci_warn(xhci, "Not enough bandwidth. " 2293 "Proposed: %u, Max: %u\n", 2294 bw_used, max_bandwidth); 2295 return -ENOMEM; 2296 } 2297 } 2298 /* 2299 * Ok, we know we have some packets left over after even-handedly 2300 * scheduling interval 15. We don't know which microframes they will 2301 * fit into, so we over-schedule and say they will be scheduled every 2302 * microframe. 2303 */ 2304 if (packets_remaining > 0) 2305 bw_used += overhead + packet_size; 2306 2307 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2308 unsigned int port_index = virt_dev->real_port - 1; 2309 2310 /* OK, we're manipulating a HS device attached to a 2311 * root port bandwidth domain. Include the number of active TTs 2312 * in the bandwidth used. 2313 */ 2314 bw_used += TT_HS_OVERHEAD * 2315 xhci->rh_bw[port_index].num_active_tts; 2316 } 2317 2318 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2319 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2320 "Available: %u " "percent", 2321 bw_used, max_bandwidth, bw_reserved, 2322 (max_bandwidth - bw_used - bw_reserved) * 100 / 2323 max_bandwidth); 2324 2325 bw_used += bw_reserved; 2326 if (bw_used > max_bandwidth) { 2327 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2328 bw_used, max_bandwidth); 2329 return -ENOMEM; 2330 } 2331 2332 bw_table->bw_used = bw_used; 2333 return 0; 2334 } 2335 2336 static bool xhci_is_async_ep(unsigned int ep_type) 2337 { 2338 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2339 ep_type != ISOC_IN_EP && 2340 ep_type != INT_IN_EP); 2341 } 2342 2343 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2344 { 2345 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2346 } 2347 2348 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2349 { 2350 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2351 2352 if (ep_bw->ep_interval == 0) 2353 return SS_OVERHEAD_BURST + 2354 (ep_bw->mult * ep_bw->num_packets * 2355 (SS_OVERHEAD + mps)); 2356 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2357 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2358 1 << ep_bw->ep_interval); 2359 2360 } 2361 2362 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2363 struct xhci_bw_info *ep_bw, 2364 struct xhci_interval_bw_table *bw_table, 2365 struct usb_device *udev, 2366 struct xhci_virt_ep *virt_ep, 2367 struct xhci_tt_bw_info *tt_info) 2368 { 2369 struct xhci_interval_bw *interval_bw; 2370 int normalized_interval; 2371 2372 if (xhci_is_async_ep(ep_bw->type)) 2373 return; 2374 2375 if (udev->speed >= USB_SPEED_SUPER) { 2376 if (xhci_is_sync_in_ep(ep_bw->type)) 2377 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2378 xhci_get_ss_bw_consumed(ep_bw); 2379 else 2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2381 xhci_get_ss_bw_consumed(ep_bw); 2382 return; 2383 } 2384 2385 /* SuperSpeed endpoints never get added to intervals in the table, so 2386 * this check is only valid for HS/FS/LS devices. 2387 */ 2388 if (list_empty(&virt_ep->bw_endpoint_list)) 2389 return; 2390 /* For LS/FS devices, we need to translate the interval expressed in 2391 * microframes to frames. 2392 */ 2393 if (udev->speed == USB_SPEED_HIGH) 2394 normalized_interval = ep_bw->ep_interval; 2395 else 2396 normalized_interval = ep_bw->ep_interval - 3; 2397 2398 if (normalized_interval == 0) 2399 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2400 interval_bw = &bw_table->interval_bw[normalized_interval]; 2401 interval_bw->num_packets -= ep_bw->num_packets; 2402 switch (udev->speed) { 2403 case USB_SPEED_LOW: 2404 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2405 break; 2406 case USB_SPEED_FULL: 2407 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2408 break; 2409 case USB_SPEED_HIGH: 2410 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2411 break; 2412 case USB_SPEED_SUPER: 2413 case USB_SPEED_SUPER_PLUS: 2414 case USB_SPEED_UNKNOWN: 2415 case USB_SPEED_WIRELESS: 2416 /* Should never happen because only LS/FS/HS endpoints will get 2417 * added to the endpoint list. 2418 */ 2419 return; 2420 } 2421 if (tt_info) 2422 tt_info->active_eps -= 1; 2423 list_del_init(&virt_ep->bw_endpoint_list); 2424 } 2425 2426 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2427 struct xhci_bw_info *ep_bw, 2428 struct xhci_interval_bw_table *bw_table, 2429 struct usb_device *udev, 2430 struct xhci_virt_ep *virt_ep, 2431 struct xhci_tt_bw_info *tt_info) 2432 { 2433 struct xhci_interval_bw *interval_bw; 2434 struct xhci_virt_ep *smaller_ep; 2435 int normalized_interval; 2436 2437 if (xhci_is_async_ep(ep_bw->type)) 2438 return; 2439 2440 if (udev->speed == USB_SPEED_SUPER) { 2441 if (xhci_is_sync_in_ep(ep_bw->type)) 2442 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2443 xhci_get_ss_bw_consumed(ep_bw); 2444 else 2445 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2446 xhci_get_ss_bw_consumed(ep_bw); 2447 return; 2448 } 2449 2450 /* For LS/FS devices, we need to translate the interval expressed in 2451 * microframes to frames. 2452 */ 2453 if (udev->speed == USB_SPEED_HIGH) 2454 normalized_interval = ep_bw->ep_interval; 2455 else 2456 normalized_interval = ep_bw->ep_interval - 3; 2457 2458 if (normalized_interval == 0) 2459 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2460 interval_bw = &bw_table->interval_bw[normalized_interval]; 2461 interval_bw->num_packets += ep_bw->num_packets; 2462 switch (udev->speed) { 2463 case USB_SPEED_LOW: 2464 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2465 break; 2466 case USB_SPEED_FULL: 2467 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2468 break; 2469 case USB_SPEED_HIGH: 2470 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2471 break; 2472 case USB_SPEED_SUPER: 2473 case USB_SPEED_SUPER_PLUS: 2474 case USB_SPEED_UNKNOWN: 2475 case USB_SPEED_WIRELESS: 2476 /* Should never happen because only LS/FS/HS endpoints will get 2477 * added to the endpoint list. 2478 */ 2479 return; 2480 } 2481 2482 if (tt_info) 2483 tt_info->active_eps += 1; 2484 /* Insert the endpoint into the list, largest max packet size first. */ 2485 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2486 bw_endpoint_list) { 2487 if (ep_bw->max_packet_size >= 2488 smaller_ep->bw_info.max_packet_size) { 2489 /* Add the new ep before the smaller endpoint */ 2490 list_add_tail(&virt_ep->bw_endpoint_list, 2491 &smaller_ep->bw_endpoint_list); 2492 return; 2493 } 2494 } 2495 /* Add the new endpoint at the end of the list. */ 2496 list_add_tail(&virt_ep->bw_endpoint_list, 2497 &interval_bw->endpoints); 2498 } 2499 2500 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2501 struct xhci_virt_device *virt_dev, 2502 int old_active_eps) 2503 { 2504 struct xhci_root_port_bw_info *rh_bw_info; 2505 if (!virt_dev->tt_info) 2506 return; 2507 2508 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2509 if (old_active_eps == 0 && 2510 virt_dev->tt_info->active_eps != 0) { 2511 rh_bw_info->num_active_tts += 1; 2512 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2513 } else if (old_active_eps != 0 && 2514 virt_dev->tt_info->active_eps == 0) { 2515 rh_bw_info->num_active_tts -= 1; 2516 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2517 } 2518 } 2519 2520 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2521 struct xhci_virt_device *virt_dev, 2522 struct xhci_container_ctx *in_ctx) 2523 { 2524 struct xhci_bw_info ep_bw_info[31]; 2525 int i; 2526 struct xhci_input_control_ctx *ctrl_ctx; 2527 int old_active_eps = 0; 2528 2529 if (virt_dev->tt_info) 2530 old_active_eps = virt_dev->tt_info->active_eps; 2531 2532 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2533 if (!ctrl_ctx) { 2534 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2535 __func__); 2536 return -ENOMEM; 2537 } 2538 2539 for (i = 0; i < 31; i++) { 2540 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2541 continue; 2542 2543 /* Make a copy of the BW info in case we need to revert this */ 2544 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2545 sizeof(ep_bw_info[i])); 2546 /* Drop the endpoint from the interval table if the endpoint is 2547 * being dropped or changed. 2548 */ 2549 if (EP_IS_DROPPED(ctrl_ctx, i)) 2550 xhci_drop_ep_from_interval_table(xhci, 2551 &virt_dev->eps[i].bw_info, 2552 virt_dev->bw_table, 2553 virt_dev->udev, 2554 &virt_dev->eps[i], 2555 virt_dev->tt_info); 2556 } 2557 /* Overwrite the information stored in the endpoints' bw_info */ 2558 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2559 for (i = 0; i < 31; i++) { 2560 /* Add any changed or added endpoints to the interval table */ 2561 if (EP_IS_ADDED(ctrl_ctx, i)) 2562 xhci_add_ep_to_interval_table(xhci, 2563 &virt_dev->eps[i].bw_info, 2564 virt_dev->bw_table, 2565 virt_dev->udev, 2566 &virt_dev->eps[i], 2567 virt_dev->tt_info); 2568 } 2569 2570 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2571 /* Ok, this fits in the bandwidth we have. 2572 * Update the number of active TTs. 2573 */ 2574 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2575 return 0; 2576 } 2577 2578 /* We don't have enough bandwidth for this, revert the stored info. */ 2579 for (i = 0; i < 31; i++) { 2580 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2581 continue; 2582 2583 /* Drop the new copies of any added or changed endpoints from 2584 * the interval table. 2585 */ 2586 if (EP_IS_ADDED(ctrl_ctx, i)) { 2587 xhci_drop_ep_from_interval_table(xhci, 2588 &virt_dev->eps[i].bw_info, 2589 virt_dev->bw_table, 2590 virt_dev->udev, 2591 &virt_dev->eps[i], 2592 virt_dev->tt_info); 2593 } 2594 /* Revert the endpoint back to its old information */ 2595 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2596 sizeof(ep_bw_info[i])); 2597 /* Add any changed or dropped endpoints back into the table */ 2598 if (EP_IS_DROPPED(ctrl_ctx, i)) 2599 xhci_add_ep_to_interval_table(xhci, 2600 &virt_dev->eps[i].bw_info, 2601 virt_dev->bw_table, 2602 virt_dev->udev, 2603 &virt_dev->eps[i], 2604 virt_dev->tt_info); 2605 } 2606 return -ENOMEM; 2607 } 2608 2609 2610 /* Issue a configure endpoint command or evaluate context command 2611 * and wait for it to finish. 2612 */ 2613 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2614 struct usb_device *udev, 2615 struct xhci_command *command, 2616 bool ctx_change, bool must_succeed) 2617 { 2618 int ret; 2619 unsigned long flags; 2620 struct xhci_input_control_ctx *ctrl_ctx; 2621 struct xhci_virt_device *virt_dev; 2622 2623 if (!command) 2624 return -EINVAL; 2625 2626 spin_lock_irqsave(&xhci->lock, flags); 2627 virt_dev = xhci->devs[udev->slot_id]; 2628 2629 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2630 if (!ctrl_ctx) { 2631 spin_unlock_irqrestore(&xhci->lock, flags); 2632 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2633 __func__); 2634 return -ENOMEM; 2635 } 2636 2637 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2638 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2639 spin_unlock_irqrestore(&xhci->lock, flags); 2640 xhci_warn(xhci, "Not enough host resources, " 2641 "active endpoint contexts = %u\n", 2642 xhci->num_active_eps); 2643 return -ENOMEM; 2644 } 2645 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2646 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2648 xhci_free_host_resources(xhci, ctrl_ctx); 2649 spin_unlock_irqrestore(&xhci->lock, flags); 2650 xhci_warn(xhci, "Not enough bandwidth\n"); 2651 return -ENOMEM; 2652 } 2653 2654 if (!ctx_change) 2655 ret = xhci_queue_configure_endpoint(xhci, command, 2656 command->in_ctx->dma, 2657 udev->slot_id, must_succeed); 2658 else 2659 ret = xhci_queue_evaluate_context(xhci, command, 2660 command->in_ctx->dma, 2661 udev->slot_id, must_succeed); 2662 if (ret < 0) { 2663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2664 xhci_free_host_resources(xhci, ctrl_ctx); 2665 spin_unlock_irqrestore(&xhci->lock, flags); 2666 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2667 "FIXME allocate a new ring segment"); 2668 return -ENOMEM; 2669 } 2670 xhci_ring_cmd_db(xhci); 2671 spin_unlock_irqrestore(&xhci->lock, flags); 2672 2673 /* Wait for the configure endpoint command to complete */ 2674 wait_for_completion(command->completion); 2675 2676 if (!ctx_change) 2677 ret = xhci_configure_endpoint_result(xhci, udev, 2678 &command->status); 2679 else 2680 ret = xhci_evaluate_context_result(xhci, udev, 2681 &command->status); 2682 2683 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2684 spin_lock_irqsave(&xhci->lock, flags); 2685 /* If the command failed, remove the reserved resources. 2686 * Otherwise, clean up the estimate to include dropped eps. 2687 */ 2688 if (ret) 2689 xhci_free_host_resources(xhci, ctrl_ctx); 2690 else 2691 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2692 spin_unlock_irqrestore(&xhci->lock, flags); 2693 } 2694 return ret; 2695 } 2696 2697 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2698 struct xhci_virt_device *vdev, int i) 2699 { 2700 struct xhci_virt_ep *ep = &vdev->eps[i]; 2701 2702 if (ep->ep_state & EP_HAS_STREAMS) { 2703 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2704 xhci_get_endpoint_address(i)); 2705 xhci_free_stream_info(xhci, ep->stream_info); 2706 ep->stream_info = NULL; 2707 ep->ep_state &= ~EP_HAS_STREAMS; 2708 } 2709 } 2710 2711 /* Called after one or more calls to xhci_add_endpoint() or 2712 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2713 * to call xhci_reset_bandwidth(). 2714 * 2715 * Since we are in the middle of changing either configuration or 2716 * installing a new alt setting, the USB core won't allow URBs to be 2717 * enqueued for any endpoint on the old config or interface. Nothing 2718 * else should be touching the xhci->devs[slot_id] structure, so we 2719 * don't need to take the xhci->lock for manipulating that. 2720 */ 2721 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2722 { 2723 int i; 2724 int ret = 0; 2725 struct xhci_hcd *xhci; 2726 struct xhci_virt_device *virt_dev; 2727 struct xhci_input_control_ctx *ctrl_ctx; 2728 struct xhci_slot_ctx *slot_ctx; 2729 struct xhci_command *command; 2730 2731 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2732 if (ret <= 0) 2733 return ret; 2734 xhci = hcd_to_xhci(hcd); 2735 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2736 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2737 return -ENODEV; 2738 2739 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2740 virt_dev = xhci->devs[udev->slot_id]; 2741 2742 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2743 if (!command) 2744 return -ENOMEM; 2745 2746 command->in_ctx = virt_dev->in_ctx; 2747 2748 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2749 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2750 if (!ctrl_ctx) { 2751 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2752 __func__); 2753 ret = -ENOMEM; 2754 goto command_cleanup; 2755 } 2756 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2757 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2758 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2759 2760 /* Don't issue the command if there's no endpoints to update. */ 2761 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2762 ctrl_ctx->drop_flags == 0) { 2763 ret = 0; 2764 goto command_cleanup; 2765 } 2766 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2767 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2768 for (i = 31; i >= 1; i--) { 2769 __le32 le32 = cpu_to_le32(BIT(i)); 2770 2771 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2772 || (ctrl_ctx->add_flags & le32) || i == 1) { 2773 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2774 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2775 break; 2776 } 2777 } 2778 xhci_dbg(xhci, "New Input Control Context:\n"); 2779 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2780 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2781 2782 ret = xhci_configure_endpoint(xhci, udev, command, 2783 false, false); 2784 if (ret) 2785 /* Callee should call reset_bandwidth() */ 2786 goto command_cleanup; 2787 2788 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2789 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2790 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2791 2792 /* Free any rings that were dropped, but not changed. */ 2793 for (i = 1; i < 31; ++i) { 2794 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2795 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2796 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2797 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2798 } 2799 } 2800 xhci_zero_in_ctx(xhci, virt_dev); 2801 /* 2802 * Install any rings for completely new endpoints or changed endpoints, 2803 * and free or cache any old rings from changed endpoints. 2804 */ 2805 for (i = 1; i < 31; ++i) { 2806 if (!virt_dev->eps[i].new_ring) 2807 continue; 2808 /* Only cache or free the old ring if it exists. 2809 * It may not if this is the first add of an endpoint. 2810 */ 2811 if (virt_dev->eps[i].ring) { 2812 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2813 } 2814 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2815 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2816 virt_dev->eps[i].new_ring = NULL; 2817 } 2818 command_cleanup: 2819 kfree(command->completion); 2820 kfree(command); 2821 2822 return ret; 2823 } 2824 2825 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2826 { 2827 struct xhci_hcd *xhci; 2828 struct xhci_virt_device *virt_dev; 2829 int i, ret; 2830 2831 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2832 if (ret <= 0) 2833 return; 2834 xhci = hcd_to_xhci(hcd); 2835 2836 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2837 virt_dev = xhci->devs[udev->slot_id]; 2838 /* Free any rings allocated for added endpoints */ 2839 for (i = 0; i < 31; ++i) { 2840 if (virt_dev->eps[i].new_ring) { 2841 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2842 virt_dev->eps[i].new_ring = NULL; 2843 } 2844 } 2845 xhci_zero_in_ctx(xhci, virt_dev); 2846 } 2847 2848 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2849 struct xhci_container_ctx *in_ctx, 2850 struct xhci_container_ctx *out_ctx, 2851 struct xhci_input_control_ctx *ctrl_ctx, 2852 u32 add_flags, u32 drop_flags) 2853 { 2854 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2855 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2856 xhci_slot_copy(xhci, in_ctx, out_ctx); 2857 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2858 2859 xhci_dbg(xhci, "Input Context:\n"); 2860 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2861 } 2862 2863 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2864 unsigned int slot_id, unsigned int ep_index, 2865 struct xhci_dequeue_state *deq_state) 2866 { 2867 struct xhci_input_control_ctx *ctrl_ctx; 2868 struct xhci_container_ctx *in_ctx; 2869 struct xhci_ep_ctx *ep_ctx; 2870 u32 added_ctxs; 2871 dma_addr_t addr; 2872 2873 in_ctx = xhci->devs[slot_id]->in_ctx; 2874 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2875 if (!ctrl_ctx) { 2876 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2877 __func__); 2878 return; 2879 } 2880 2881 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2882 xhci->devs[slot_id]->out_ctx, ep_index); 2883 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2884 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2885 deq_state->new_deq_ptr); 2886 if (addr == 0) { 2887 xhci_warn(xhci, "WARN Cannot submit config ep after " 2888 "reset ep command\n"); 2889 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2890 deq_state->new_deq_seg, 2891 deq_state->new_deq_ptr); 2892 return; 2893 } 2894 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2895 2896 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2897 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2898 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2899 added_ctxs, added_ctxs); 2900 } 2901 2902 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2903 unsigned int ep_index, struct xhci_td *td) 2904 { 2905 struct xhci_dequeue_state deq_state; 2906 struct xhci_virt_ep *ep; 2907 struct usb_device *udev = td->urb->dev; 2908 2909 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2910 "Cleaning up stalled endpoint ring"); 2911 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2912 /* We need to move the HW's dequeue pointer past this TD, 2913 * or it will attempt to resend it on the next doorbell ring. 2914 */ 2915 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2916 ep_index, ep->stopped_stream, td, &deq_state); 2917 2918 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2919 return; 2920 2921 /* HW with the reset endpoint quirk will use the saved dequeue state to 2922 * issue a configure endpoint command later. 2923 */ 2924 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2925 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2926 "Queueing new dequeue state"); 2927 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2928 ep_index, ep->stopped_stream, &deq_state); 2929 } else { 2930 /* Better hope no one uses the input context between now and the 2931 * reset endpoint completion! 2932 * XXX: No idea how this hardware will react when stream rings 2933 * are enabled. 2934 */ 2935 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2936 "Setting up input context for " 2937 "configure endpoint command"); 2938 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2939 ep_index, &deq_state); 2940 } 2941 } 2942 2943 /* Called when clearing halted device. The core should have sent the control 2944 * message to clear the device halt condition. The host side of the halt should 2945 * already be cleared with a reset endpoint command issued when the STALL tx 2946 * event was received. 2947 * 2948 * Context: in_interrupt 2949 */ 2950 2951 void xhci_endpoint_reset(struct usb_hcd *hcd, 2952 struct usb_host_endpoint *ep) 2953 { 2954 struct xhci_hcd *xhci; 2955 2956 xhci = hcd_to_xhci(hcd); 2957 2958 /* 2959 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2960 * The Reset Endpoint Command may only be issued to endpoints in the 2961 * Halted state. If software wishes reset the Data Toggle or Sequence 2962 * Number of an endpoint that isn't in the Halted state, then software 2963 * may issue a Configure Endpoint Command with the Drop and Add bits set 2964 * for the target endpoint. that is in the Stopped state. 2965 */ 2966 2967 /* For now just print debug to follow the situation */ 2968 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2969 ep->desc.bEndpointAddress); 2970 } 2971 2972 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2973 struct usb_device *udev, struct usb_host_endpoint *ep, 2974 unsigned int slot_id) 2975 { 2976 int ret; 2977 unsigned int ep_index; 2978 unsigned int ep_state; 2979 2980 if (!ep) 2981 return -EINVAL; 2982 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2983 if (ret <= 0) 2984 return -EINVAL; 2985 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2986 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2987 " descriptor for ep 0x%x does not support streams\n", 2988 ep->desc.bEndpointAddress); 2989 return -EINVAL; 2990 } 2991 2992 ep_index = xhci_get_endpoint_index(&ep->desc); 2993 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2994 if (ep_state & EP_HAS_STREAMS || 2995 ep_state & EP_GETTING_STREAMS) { 2996 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2997 "already has streams set up.\n", 2998 ep->desc.bEndpointAddress); 2999 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3000 "dynamic stream context array reallocation.\n"); 3001 return -EINVAL; 3002 } 3003 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3004 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3005 "endpoint 0x%x; URBs are pending.\n", 3006 ep->desc.bEndpointAddress); 3007 return -EINVAL; 3008 } 3009 return 0; 3010 } 3011 3012 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3013 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3014 { 3015 unsigned int max_streams; 3016 3017 /* The stream context array size must be a power of two */ 3018 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3019 /* 3020 * Find out how many primary stream array entries the host controller 3021 * supports. Later we may use secondary stream arrays (similar to 2nd 3022 * level page entries), but that's an optional feature for xHCI host 3023 * controllers. xHCs must support at least 4 stream IDs. 3024 */ 3025 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3026 if (*num_stream_ctxs > max_streams) { 3027 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3028 max_streams); 3029 *num_stream_ctxs = max_streams; 3030 *num_streams = max_streams; 3031 } 3032 } 3033 3034 /* Returns an error code if one of the endpoint already has streams. 3035 * This does not change any data structures, it only checks and gathers 3036 * information. 3037 */ 3038 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3039 struct usb_device *udev, 3040 struct usb_host_endpoint **eps, unsigned int num_eps, 3041 unsigned int *num_streams, u32 *changed_ep_bitmask) 3042 { 3043 unsigned int max_streams; 3044 unsigned int endpoint_flag; 3045 int i; 3046 int ret; 3047 3048 for (i = 0; i < num_eps; i++) { 3049 ret = xhci_check_streams_endpoint(xhci, udev, 3050 eps[i], udev->slot_id); 3051 if (ret < 0) 3052 return ret; 3053 3054 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3055 if (max_streams < (*num_streams - 1)) { 3056 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3057 eps[i]->desc.bEndpointAddress, 3058 max_streams); 3059 *num_streams = max_streams+1; 3060 } 3061 3062 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3063 if (*changed_ep_bitmask & endpoint_flag) 3064 return -EINVAL; 3065 *changed_ep_bitmask |= endpoint_flag; 3066 } 3067 return 0; 3068 } 3069 3070 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3071 struct usb_device *udev, 3072 struct usb_host_endpoint **eps, unsigned int num_eps) 3073 { 3074 u32 changed_ep_bitmask = 0; 3075 unsigned int slot_id; 3076 unsigned int ep_index; 3077 unsigned int ep_state; 3078 int i; 3079 3080 slot_id = udev->slot_id; 3081 if (!xhci->devs[slot_id]) 3082 return 0; 3083 3084 for (i = 0; i < num_eps; i++) { 3085 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3086 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3087 /* Are streams already being freed for the endpoint? */ 3088 if (ep_state & EP_GETTING_NO_STREAMS) { 3089 xhci_warn(xhci, "WARN Can't disable streams for " 3090 "endpoint 0x%x, " 3091 "streams are being disabled already\n", 3092 eps[i]->desc.bEndpointAddress); 3093 return 0; 3094 } 3095 /* Are there actually any streams to free? */ 3096 if (!(ep_state & EP_HAS_STREAMS) && 3097 !(ep_state & EP_GETTING_STREAMS)) { 3098 xhci_warn(xhci, "WARN Can't disable streams for " 3099 "endpoint 0x%x, " 3100 "streams are already disabled!\n", 3101 eps[i]->desc.bEndpointAddress); 3102 xhci_warn(xhci, "WARN xhci_free_streams() called " 3103 "with non-streams endpoint\n"); 3104 return 0; 3105 } 3106 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3107 } 3108 return changed_ep_bitmask; 3109 } 3110 3111 /* 3112 * The USB device drivers use this function (through the HCD interface in USB 3113 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3114 * coordinate mass storage command queueing across multiple endpoints (basically 3115 * a stream ID == a task ID). 3116 * 3117 * Setting up streams involves allocating the same size stream context array 3118 * for each endpoint and issuing a configure endpoint command for all endpoints. 3119 * 3120 * Don't allow the call to succeed if one endpoint only supports one stream 3121 * (which means it doesn't support streams at all). 3122 * 3123 * Drivers may get less stream IDs than they asked for, if the host controller 3124 * hardware or endpoints claim they can't support the number of requested 3125 * stream IDs. 3126 */ 3127 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3128 struct usb_host_endpoint **eps, unsigned int num_eps, 3129 unsigned int num_streams, gfp_t mem_flags) 3130 { 3131 int i, ret; 3132 struct xhci_hcd *xhci; 3133 struct xhci_virt_device *vdev; 3134 struct xhci_command *config_cmd; 3135 struct xhci_input_control_ctx *ctrl_ctx; 3136 unsigned int ep_index; 3137 unsigned int num_stream_ctxs; 3138 unsigned int max_packet; 3139 unsigned long flags; 3140 u32 changed_ep_bitmask = 0; 3141 3142 if (!eps) 3143 return -EINVAL; 3144 3145 /* Add one to the number of streams requested to account for 3146 * stream 0 that is reserved for xHCI usage. 3147 */ 3148 num_streams += 1; 3149 xhci = hcd_to_xhci(hcd); 3150 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3151 num_streams); 3152 3153 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3154 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3155 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3156 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3157 return -ENOSYS; 3158 } 3159 3160 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3161 if (!config_cmd) { 3162 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3163 return -ENOMEM; 3164 } 3165 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3166 if (!ctrl_ctx) { 3167 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3168 __func__); 3169 xhci_free_command(xhci, config_cmd); 3170 return -ENOMEM; 3171 } 3172 3173 /* Check to make sure all endpoints are not already configured for 3174 * streams. While we're at it, find the maximum number of streams that 3175 * all the endpoints will support and check for duplicate endpoints. 3176 */ 3177 spin_lock_irqsave(&xhci->lock, flags); 3178 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3179 num_eps, &num_streams, &changed_ep_bitmask); 3180 if (ret < 0) { 3181 xhci_free_command(xhci, config_cmd); 3182 spin_unlock_irqrestore(&xhci->lock, flags); 3183 return ret; 3184 } 3185 if (num_streams <= 1) { 3186 xhci_warn(xhci, "WARN: endpoints can't handle " 3187 "more than one stream.\n"); 3188 xhci_free_command(xhci, config_cmd); 3189 spin_unlock_irqrestore(&xhci->lock, flags); 3190 return -EINVAL; 3191 } 3192 vdev = xhci->devs[udev->slot_id]; 3193 /* Mark each endpoint as being in transition, so 3194 * xhci_urb_enqueue() will reject all URBs. 3195 */ 3196 for (i = 0; i < num_eps; i++) { 3197 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3198 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3199 } 3200 spin_unlock_irqrestore(&xhci->lock, flags); 3201 3202 /* Setup internal data structures and allocate HW data structures for 3203 * streams (but don't install the HW structures in the input context 3204 * until we're sure all memory allocation succeeded). 3205 */ 3206 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3207 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3208 num_stream_ctxs, num_streams); 3209 3210 for (i = 0; i < num_eps; i++) { 3211 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3212 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc)); 3213 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3214 num_stream_ctxs, 3215 num_streams, 3216 max_packet, mem_flags); 3217 if (!vdev->eps[ep_index].stream_info) 3218 goto cleanup; 3219 /* Set maxPstreams in endpoint context and update deq ptr to 3220 * point to stream context array. FIXME 3221 */ 3222 } 3223 3224 /* Set up the input context for a configure endpoint command. */ 3225 for (i = 0; i < num_eps; i++) { 3226 struct xhci_ep_ctx *ep_ctx; 3227 3228 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3229 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3230 3231 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3232 vdev->out_ctx, ep_index); 3233 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3234 vdev->eps[ep_index].stream_info); 3235 } 3236 /* Tell the HW to drop its old copy of the endpoint context info 3237 * and add the updated copy from the input context. 3238 */ 3239 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3240 vdev->out_ctx, ctrl_ctx, 3241 changed_ep_bitmask, changed_ep_bitmask); 3242 3243 /* Issue and wait for the configure endpoint command */ 3244 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3245 false, false); 3246 3247 /* xHC rejected the configure endpoint command for some reason, so we 3248 * leave the old ring intact and free our internal streams data 3249 * structure. 3250 */ 3251 if (ret < 0) 3252 goto cleanup; 3253 3254 spin_lock_irqsave(&xhci->lock, flags); 3255 for (i = 0; i < num_eps; i++) { 3256 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3257 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3258 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3259 udev->slot_id, ep_index); 3260 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3261 } 3262 xhci_free_command(xhci, config_cmd); 3263 spin_unlock_irqrestore(&xhci->lock, flags); 3264 3265 /* Subtract 1 for stream 0, which drivers can't use */ 3266 return num_streams - 1; 3267 3268 cleanup: 3269 /* If it didn't work, free the streams! */ 3270 for (i = 0; i < num_eps; i++) { 3271 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3272 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3273 vdev->eps[ep_index].stream_info = NULL; 3274 /* FIXME Unset maxPstreams in endpoint context and 3275 * update deq ptr to point to normal string ring. 3276 */ 3277 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3278 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3279 xhci_endpoint_zero(xhci, vdev, eps[i]); 3280 } 3281 xhci_free_command(xhci, config_cmd); 3282 return -ENOMEM; 3283 } 3284 3285 /* Transition the endpoint from using streams to being a "normal" endpoint 3286 * without streams. 3287 * 3288 * Modify the endpoint context state, submit a configure endpoint command, 3289 * and free all endpoint rings for streams if that completes successfully. 3290 */ 3291 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3292 struct usb_host_endpoint **eps, unsigned int num_eps, 3293 gfp_t mem_flags) 3294 { 3295 int i, ret; 3296 struct xhci_hcd *xhci; 3297 struct xhci_virt_device *vdev; 3298 struct xhci_command *command; 3299 struct xhci_input_control_ctx *ctrl_ctx; 3300 unsigned int ep_index; 3301 unsigned long flags; 3302 u32 changed_ep_bitmask; 3303 3304 xhci = hcd_to_xhci(hcd); 3305 vdev = xhci->devs[udev->slot_id]; 3306 3307 /* Set up a configure endpoint command to remove the streams rings */ 3308 spin_lock_irqsave(&xhci->lock, flags); 3309 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3310 udev, eps, num_eps); 3311 if (changed_ep_bitmask == 0) { 3312 spin_unlock_irqrestore(&xhci->lock, flags); 3313 return -EINVAL; 3314 } 3315 3316 /* Use the xhci_command structure from the first endpoint. We may have 3317 * allocated too many, but the driver may call xhci_free_streams() for 3318 * each endpoint it grouped into one call to xhci_alloc_streams(). 3319 */ 3320 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3321 command = vdev->eps[ep_index].stream_info->free_streams_command; 3322 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3323 if (!ctrl_ctx) { 3324 spin_unlock_irqrestore(&xhci->lock, flags); 3325 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3326 __func__); 3327 return -EINVAL; 3328 } 3329 3330 for (i = 0; i < num_eps; i++) { 3331 struct xhci_ep_ctx *ep_ctx; 3332 3333 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3334 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3335 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3336 EP_GETTING_NO_STREAMS; 3337 3338 xhci_endpoint_copy(xhci, command->in_ctx, 3339 vdev->out_ctx, ep_index); 3340 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3341 &vdev->eps[ep_index]); 3342 } 3343 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3344 vdev->out_ctx, ctrl_ctx, 3345 changed_ep_bitmask, changed_ep_bitmask); 3346 spin_unlock_irqrestore(&xhci->lock, flags); 3347 3348 /* Issue and wait for the configure endpoint command, 3349 * which must succeed. 3350 */ 3351 ret = xhci_configure_endpoint(xhci, udev, command, 3352 false, true); 3353 3354 /* xHC rejected the configure endpoint command for some reason, so we 3355 * leave the streams rings intact. 3356 */ 3357 if (ret < 0) 3358 return ret; 3359 3360 spin_lock_irqsave(&xhci->lock, flags); 3361 for (i = 0; i < num_eps; i++) { 3362 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3363 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3364 vdev->eps[ep_index].stream_info = NULL; 3365 /* FIXME Unset maxPstreams in endpoint context and 3366 * update deq ptr to point to normal string ring. 3367 */ 3368 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3369 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3370 } 3371 spin_unlock_irqrestore(&xhci->lock, flags); 3372 3373 return 0; 3374 } 3375 3376 /* 3377 * Deletes endpoint resources for endpoints that were active before a Reset 3378 * Device command, or a Disable Slot command. The Reset Device command leaves 3379 * the control endpoint intact, whereas the Disable Slot command deletes it. 3380 * 3381 * Must be called with xhci->lock held. 3382 */ 3383 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3384 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3385 { 3386 int i; 3387 unsigned int num_dropped_eps = 0; 3388 unsigned int drop_flags = 0; 3389 3390 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3391 if (virt_dev->eps[i].ring) { 3392 drop_flags |= 1 << i; 3393 num_dropped_eps++; 3394 } 3395 } 3396 xhci->num_active_eps -= num_dropped_eps; 3397 if (num_dropped_eps) 3398 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3399 "Dropped %u ep ctxs, flags = 0x%x, " 3400 "%u now active.", 3401 num_dropped_eps, drop_flags, 3402 xhci->num_active_eps); 3403 } 3404 3405 /* 3406 * This submits a Reset Device Command, which will set the device state to 0, 3407 * set the device address to 0, and disable all the endpoints except the default 3408 * control endpoint. The USB core should come back and call 3409 * xhci_address_device(), and then re-set up the configuration. If this is 3410 * called because of a usb_reset_and_verify_device(), then the old alternate 3411 * settings will be re-installed through the normal bandwidth allocation 3412 * functions. 3413 * 3414 * Wait for the Reset Device command to finish. Remove all structures 3415 * associated with the endpoints that were disabled. Clear the input device 3416 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3417 * 3418 * If the virt_dev to be reset does not exist or does not match the udev, 3419 * it means the device is lost, possibly due to the xHC restore error and 3420 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3421 * re-allocate the device. 3422 */ 3423 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3424 { 3425 int ret, i; 3426 unsigned long flags; 3427 struct xhci_hcd *xhci; 3428 unsigned int slot_id; 3429 struct xhci_virt_device *virt_dev; 3430 struct xhci_command *reset_device_cmd; 3431 int last_freed_endpoint; 3432 struct xhci_slot_ctx *slot_ctx; 3433 int old_active_eps = 0; 3434 3435 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3436 if (ret <= 0) 3437 return ret; 3438 xhci = hcd_to_xhci(hcd); 3439 slot_id = udev->slot_id; 3440 virt_dev = xhci->devs[slot_id]; 3441 if (!virt_dev) { 3442 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3443 "not exist. Re-allocate the device\n", slot_id); 3444 ret = xhci_alloc_dev(hcd, udev); 3445 if (ret == 1) 3446 return 0; 3447 else 3448 return -EINVAL; 3449 } 3450 3451 if (virt_dev->tt_info) 3452 old_active_eps = virt_dev->tt_info->active_eps; 3453 3454 if (virt_dev->udev != udev) { 3455 /* If the virt_dev and the udev does not match, this virt_dev 3456 * may belong to another udev. 3457 * Re-allocate the device. 3458 */ 3459 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3460 "not match the udev. Re-allocate the device\n", 3461 slot_id); 3462 ret = xhci_alloc_dev(hcd, udev); 3463 if (ret == 1) 3464 return 0; 3465 else 3466 return -EINVAL; 3467 } 3468 3469 /* If device is not setup, there is no point in resetting it */ 3470 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3471 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3472 SLOT_STATE_DISABLED) 3473 return 0; 3474 3475 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3476 /* Allocate the command structure that holds the struct completion. 3477 * Assume we're in process context, since the normal device reset 3478 * process has to wait for the device anyway. Storage devices are 3479 * reset as part of error handling, so use GFP_NOIO instead of 3480 * GFP_KERNEL. 3481 */ 3482 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3483 if (!reset_device_cmd) { 3484 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3485 return -ENOMEM; 3486 } 3487 3488 /* Attempt to submit the Reset Device command to the command ring */ 3489 spin_lock_irqsave(&xhci->lock, flags); 3490 3491 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3492 if (ret) { 3493 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3494 spin_unlock_irqrestore(&xhci->lock, flags); 3495 goto command_cleanup; 3496 } 3497 xhci_ring_cmd_db(xhci); 3498 spin_unlock_irqrestore(&xhci->lock, flags); 3499 3500 /* Wait for the Reset Device command to finish */ 3501 wait_for_completion(reset_device_cmd->completion); 3502 3503 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3504 * unless we tried to reset a slot ID that wasn't enabled, 3505 * or the device wasn't in the addressed or configured state. 3506 */ 3507 ret = reset_device_cmd->status; 3508 switch (ret) { 3509 case COMP_CMD_ABORT: 3510 case COMP_CMD_STOP: 3511 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3512 ret = -ETIME; 3513 goto command_cleanup; 3514 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3515 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3516 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3517 slot_id, 3518 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3519 xhci_dbg(xhci, "Not freeing device rings.\n"); 3520 /* Don't treat this as an error. May change my mind later. */ 3521 ret = 0; 3522 goto command_cleanup; 3523 case COMP_SUCCESS: 3524 xhci_dbg(xhci, "Successful reset device command.\n"); 3525 break; 3526 default: 3527 if (xhci_is_vendor_info_code(xhci, ret)) 3528 break; 3529 xhci_warn(xhci, "Unknown completion code %u for " 3530 "reset device command.\n", ret); 3531 ret = -EINVAL; 3532 goto command_cleanup; 3533 } 3534 3535 /* Free up host controller endpoint resources */ 3536 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3537 spin_lock_irqsave(&xhci->lock, flags); 3538 /* Don't delete the default control endpoint resources */ 3539 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3540 spin_unlock_irqrestore(&xhci->lock, flags); 3541 } 3542 3543 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3544 last_freed_endpoint = 1; 3545 for (i = 1; i < 31; ++i) { 3546 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3547 3548 if (ep->ep_state & EP_HAS_STREAMS) { 3549 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3550 xhci_get_endpoint_address(i)); 3551 xhci_free_stream_info(xhci, ep->stream_info); 3552 ep->stream_info = NULL; 3553 ep->ep_state &= ~EP_HAS_STREAMS; 3554 } 3555 3556 if (ep->ring) { 3557 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3558 last_freed_endpoint = i; 3559 } 3560 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3561 xhci_drop_ep_from_interval_table(xhci, 3562 &virt_dev->eps[i].bw_info, 3563 virt_dev->bw_table, 3564 udev, 3565 &virt_dev->eps[i], 3566 virt_dev->tt_info); 3567 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3568 } 3569 /* If necessary, update the number of active TTs on this root port */ 3570 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3571 3572 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3573 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3574 ret = 0; 3575 3576 command_cleanup: 3577 xhci_free_command(xhci, reset_device_cmd); 3578 return ret; 3579 } 3580 3581 /* 3582 * At this point, the struct usb_device is about to go away, the device has 3583 * disconnected, and all traffic has been stopped and the endpoints have been 3584 * disabled. Free any HC data structures associated with that device. 3585 */ 3586 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3587 { 3588 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3589 struct xhci_virt_device *virt_dev; 3590 unsigned long flags; 3591 u32 state; 3592 int i, ret; 3593 struct xhci_command *command; 3594 3595 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3596 if (!command) 3597 return; 3598 3599 #ifndef CONFIG_USB_DEFAULT_PERSIST 3600 /* 3601 * We called pm_runtime_get_noresume when the device was attached. 3602 * Decrement the counter here to allow controller to runtime suspend 3603 * if no devices remain. 3604 */ 3605 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3606 pm_runtime_put_noidle(hcd->self.controller); 3607 #endif 3608 3609 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3610 /* If the host is halted due to driver unload, we still need to free the 3611 * device. 3612 */ 3613 if (ret <= 0 && ret != -ENODEV) { 3614 kfree(command); 3615 return; 3616 } 3617 3618 virt_dev = xhci->devs[udev->slot_id]; 3619 3620 /* Stop any wayward timer functions (which may grab the lock) */ 3621 for (i = 0; i < 31; ++i) { 3622 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3623 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3624 } 3625 3626 spin_lock_irqsave(&xhci->lock, flags); 3627 /* Don't disable the slot if the host controller is dead. */ 3628 state = readl(&xhci->op_regs->status); 3629 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3630 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3631 xhci_free_virt_device(xhci, udev->slot_id); 3632 spin_unlock_irqrestore(&xhci->lock, flags); 3633 kfree(command); 3634 return; 3635 } 3636 3637 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3638 udev->slot_id)) { 3639 spin_unlock_irqrestore(&xhci->lock, flags); 3640 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3641 return; 3642 } 3643 xhci_ring_cmd_db(xhci); 3644 spin_unlock_irqrestore(&xhci->lock, flags); 3645 3646 /* 3647 * Event command completion handler will free any data structures 3648 * associated with the slot. XXX Can free sleep? 3649 */ 3650 } 3651 3652 /* 3653 * Checks if we have enough host controller resources for the default control 3654 * endpoint. 3655 * 3656 * Must be called with xhci->lock held. 3657 */ 3658 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3659 { 3660 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3661 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3662 "Not enough ep ctxs: " 3663 "%u active, need to add 1, limit is %u.", 3664 xhci->num_active_eps, xhci->limit_active_eps); 3665 return -ENOMEM; 3666 } 3667 xhci->num_active_eps += 1; 3668 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3669 "Adding 1 ep ctx, %u now active.", 3670 xhci->num_active_eps); 3671 return 0; 3672 } 3673 3674 3675 /* 3676 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3677 * timed out, or allocating memory failed. Returns 1 on success. 3678 */ 3679 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3680 { 3681 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3682 unsigned long flags; 3683 int ret, slot_id; 3684 struct xhci_command *command; 3685 3686 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3687 if (!command) 3688 return 0; 3689 3690 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3691 mutex_lock(&xhci->mutex); 3692 spin_lock_irqsave(&xhci->lock, flags); 3693 command->completion = &xhci->addr_dev; 3694 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3695 if (ret) { 3696 spin_unlock_irqrestore(&xhci->lock, flags); 3697 mutex_unlock(&xhci->mutex); 3698 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3699 kfree(command); 3700 return 0; 3701 } 3702 xhci_ring_cmd_db(xhci); 3703 spin_unlock_irqrestore(&xhci->lock, flags); 3704 3705 wait_for_completion(command->completion); 3706 slot_id = xhci->slot_id; 3707 mutex_unlock(&xhci->mutex); 3708 3709 if (!slot_id || command->status != COMP_SUCCESS) { 3710 xhci_err(xhci, "Error while assigning device slot ID\n"); 3711 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3712 HCS_MAX_SLOTS( 3713 readl(&xhci->cap_regs->hcs_params1))); 3714 kfree(command); 3715 return 0; 3716 } 3717 3718 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3719 spin_lock_irqsave(&xhci->lock, flags); 3720 ret = xhci_reserve_host_control_ep_resources(xhci); 3721 if (ret) { 3722 spin_unlock_irqrestore(&xhci->lock, flags); 3723 xhci_warn(xhci, "Not enough host resources, " 3724 "active endpoint contexts = %u\n", 3725 xhci->num_active_eps); 3726 goto disable_slot; 3727 } 3728 spin_unlock_irqrestore(&xhci->lock, flags); 3729 } 3730 /* Use GFP_NOIO, since this function can be called from 3731 * xhci_discover_or_reset_device(), which may be called as part of 3732 * mass storage driver error handling. 3733 */ 3734 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3735 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3736 goto disable_slot; 3737 } 3738 udev->slot_id = slot_id; 3739 3740 #ifndef CONFIG_USB_DEFAULT_PERSIST 3741 /* 3742 * If resetting upon resume, we can't put the controller into runtime 3743 * suspend if there is a device attached. 3744 */ 3745 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3746 pm_runtime_get_noresume(hcd->self.controller); 3747 #endif 3748 3749 3750 kfree(command); 3751 /* Is this a LS or FS device under a HS hub? */ 3752 /* Hub or peripherial? */ 3753 return 1; 3754 3755 disable_slot: 3756 /* Disable slot, if we can do it without mem alloc */ 3757 spin_lock_irqsave(&xhci->lock, flags); 3758 command->completion = NULL; 3759 command->status = 0; 3760 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3761 udev->slot_id)) 3762 xhci_ring_cmd_db(xhci); 3763 spin_unlock_irqrestore(&xhci->lock, flags); 3764 return 0; 3765 } 3766 3767 /* 3768 * Issue an Address Device command and optionally send a corresponding 3769 * SetAddress request to the device. 3770 */ 3771 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3772 enum xhci_setup_dev setup) 3773 { 3774 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3775 unsigned long flags; 3776 struct xhci_virt_device *virt_dev; 3777 int ret = 0; 3778 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3779 struct xhci_slot_ctx *slot_ctx; 3780 struct xhci_input_control_ctx *ctrl_ctx; 3781 u64 temp_64; 3782 struct xhci_command *command = NULL; 3783 3784 mutex_lock(&xhci->mutex); 3785 3786 if (xhci->xhc_state) /* dying, removing or halted */ 3787 goto out; 3788 3789 if (!udev->slot_id) { 3790 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3791 "Bad Slot ID %d", udev->slot_id); 3792 ret = -EINVAL; 3793 goto out; 3794 } 3795 3796 virt_dev = xhci->devs[udev->slot_id]; 3797 3798 if (WARN_ON(!virt_dev)) { 3799 /* 3800 * In plug/unplug torture test with an NEC controller, 3801 * a zero-dereference was observed once due to virt_dev = 0. 3802 * Print useful debug rather than crash if it is observed again! 3803 */ 3804 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3805 udev->slot_id); 3806 ret = -EINVAL; 3807 goto out; 3808 } 3809 3810 if (setup == SETUP_CONTEXT_ONLY) { 3811 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3812 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3813 SLOT_STATE_DEFAULT) { 3814 xhci_dbg(xhci, "Slot already in default state\n"); 3815 goto out; 3816 } 3817 } 3818 3819 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3820 if (!command) { 3821 ret = -ENOMEM; 3822 goto out; 3823 } 3824 3825 command->in_ctx = virt_dev->in_ctx; 3826 command->completion = &xhci->addr_dev; 3827 3828 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3829 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3830 if (!ctrl_ctx) { 3831 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3832 __func__); 3833 ret = -EINVAL; 3834 goto out; 3835 } 3836 /* 3837 * If this is the first Set Address since device plug-in or 3838 * virt_device realloaction after a resume with an xHCI power loss, 3839 * then set up the slot context. 3840 */ 3841 if (!slot_ctx->dev_info) 3842 xhci_setup_addressable_virt_dev(xhci, udev); 3843 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3844 else 3845 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3846 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3847 ctrl_ctx->drop_flags = 0; 3848 3849 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3850 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3851 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3852 le32_to_cpu(slot_ctx->dev_info) >> 27); 3853 3854 spin_lock_irqsave(&xhci->lock, flags); 3855 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3856 udev->slot_id, setup); 3857 if (ret) { 3858 spin_unlock_irqrestore(&xhci->lock, flags); 3859 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3860 "FIXME: allocate a command ring segment"); 3861 goto out; 3862 } 3863 xhci_ring_cmd_db(xhci); 3864 spin_unlock_irqrestore(&xhci->lock, flags); 3865 3866 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3867 wait_for_completion(command->completion); 3868 3869 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3870 * the SetAddress() "recovery interval" required by USB and aborting the 3871 * command on a timeout. 3872 */ 3873 switch (command->status) { 3874 case COMP_CMD_ABORT: 3875 case COMP_CMD_STOP: 3876 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3877 ret = -ETIME; 3878 break; 3879 case COMP_CTX_STATE: 3880 case COMP_EBADSLT: 3881 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3882 act, udev->slot_id); 3883 ret = -EINVAL; 3884 break; 3885 case COMP_TX_ERR: 3886 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3887 ret = -EPROTO; 3888 break; 3889 case COMP_DEV_ERR: 3890 dev_warn(&udev->dev, 3891 "ERROR: Incompatible device for setup %s command\n", act); 3892 ret = -ENODEV; 3893 break; 3894 case COMP_SUCCESS: 3895 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3896 "Successful setup %s command", act); 3897 break; 3898 default: 3899 xhci_err(xhci, 3900 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3901 act, command->status); 3902 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3903 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3904 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3905 ret = -EINVAL; 3906 break; 3907 } 3908 if (ret) 3909 goto out; 3910 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3911 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3912 "Op regs DCBAA ptr = %#016llx", temp_64); 3913 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3914 "Slot ID %d dcbaa entry @%p = %#016llx", 3915 udev->slot_id, 3916 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3917 (unsigned long long) 3918 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3919 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3920 "Output Context DMA address = %#08llx", 3921 (unsigned long long)virt_dev->out_ctx->dma); 3922 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3923 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3924 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3925 le32_to_cpu(slot_ctx->dev_info) >> 27); 3926 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3927 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3928 /* 3929 * USB core uses address 1 for the roothubs, so we add one to the 3930 * address given back to us by the HC. 3931 */ 3932 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3933 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3934 le32_to_cpu(slot_ctx->dev_info) >> 27); 3935 /* Zero the input context control for later use */ 3936 ctrl_ctx->add_flags = 0; 3937 ctrl_ctx->drop_flags = 0; 3938 3939 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3940 "Internal device address = %d", 3941 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3942 out: 3943 mutex_unlock(&xhci->mutex); 3944 kfree(command); 3945 return ret; 3946 } 3947 3948 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3949 { 3950 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3951 } 3952 3953 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3954 { 3955 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3956 } 3957 3958 /* 3959 * Transfer the port index into real index in the HW port status 3960 * registers. Caculate offset between the port's PORTSC register 3961 * and port status base. Divide the number of per port register 3962 * to get the real index. The raw port number bases 1. 3963 */ 3964 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3965 { 3966 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3967 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3968 __le32 __iomem *addr; 3969 int raw_port; 3970 3971 if (hcd->speed < HCD_USB3) 3972 addr = xhci->usb2_ports[port1 - 1]; 3973 else 3974 addr = xhci->usb3_ports[port1 - 1]; 3975 3976 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3977 return raw_port; 3978 } 3979 3980 /* 3981 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3982 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3983 */ 3984 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3985 struct usb_device *udev, u16 max_exit_latency) 3986 { 3987 struct xhci_virt_device *virt_dev; 3988 struct xhci_command *command; 3989 struct xhci_input_control_ctx *ctrl_ctx; 3990 struct xhci_slot_ctx *slot_ctx; 3991 unsigned long flags; 3992 int ret; 3993 3994 spin_lock_irqsave(&xhci->lock, flags); 3995 3996 virt_dev = xhci->devs[udev->slot_id]; 3997 3998 /* 3999 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4000 * xHC was re-initialized. Exit latency will be set later after 4001 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4002 */ 4003 4004 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4005 spin_unlock_irqrestore(&xhci->lock, flags); 4006 return 0; 4007 } 4008 4009 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4010 command = xhci->lpm_command; 4011 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4012 if (!ctrl_ctx) { 4013 spin_unlock_irqrestore(&xhci->lock, flags); 4014 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4015 __func__); 4016 return -ENOMEM; 4017 } 4018 4019 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4020 spin_unlock_irqrestore(&xhci->lock, flags); 4021 4022 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4023 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4024 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4025 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4026 slot_ctx->dev_state = 0; 4027 4028 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4029 "Set up evaluate context for LPM MEL change."); 4030 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4031 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4032 4033 /* Issue and wait for the evaluate context command. */ 4034 ret = xhci_configure_endpoint(xhci, udev, command, 4035 true, true); 4036 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4037 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4038 4039 if (!ret) { 4040 spin_lock_irqsave(&xhci->lock, flags); 4041 virt_dev->current_mel = max_exit_latency; 4042 spin_unlock_irqrestore(&xhci->lock, flags); 4043 } 4044 return ret; 4045 } 4046 4047 #ifdef CONFIG_PM 4048 4049 /* BESL to HIRD Encoding array for USB2 LPM */ 4050 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4051 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4052 4053 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4054 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4055 struct usb_device *udev) 4056 { 4057 int u2del, besl, besl_host; 4058 int besl_device = 0; 4059 u32 field; 4060 4061 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4062 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4063 4064 if (field & USB_BESL_SUPPORT) { 4065 for (besl_host = 0; besl_host < 16; besl_host++) { 4066 if (xhci_besl_encoding[besl_host] >= u2del) 4067 break; 4068 } 4069 /* Use baseline BESL value as default */ 4070 if (field & USB_BESL_BASELINE_VALID) 4071 besl_device = USB_GET_BESL_BASELINE(field); 4072 else if (field & USB_BESL_DEEP_VALID) 4073 besl_device = USB_GET_BESL_DEEP(field); 4074 } else { 4075 if (u2del <= 50) 4076 besl_host = 0; 4077 else 4078 besl_host = (u2del - 51) / 75 + 1; 4079 } 4080 4081 besl = besl_host + besl_device; 4082 if (besl > 15) 4083 besl = 15; 4084 4085 return besl; 4086 } 4087 4088 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4089 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4090 { 4091 u32 field; 4092 int l1; 4093 int besld = 0; 4094 int hirdm = 0; 4095 4096 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4097 4098 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4099 l1 = udev->l1_params.timeout / 256; 4100 4101 /* device has preferred BESLD */ 4102 if (field & USB_BESL_DEEP_VALID) { 4103 besld = USB_GET_BESL_DEEP(field); 4104 hirdm = 1; 4105 } 4106 4107 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4108 } 4109 4110 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4111 struct usb_device *udev, int enable) 4112 { 4113 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4114 __le32 __iomem **port_array; 4115 __le32 __iomem *pm_addr, *hlpm_addr; 4116 u32 pm_val, hlpm_val, field; 4117 unsigned int port_num; 4118 unsigned long flags; 4119 int hird, exit_latency; 4120 int ret; 4121 4122 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4123 !udev->lpm_capable) 4124 return -EPERM; 4125 4126 if (!udev->parent || udev->parent->parent || 4127 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4128 return -EPERM; 4129 4130 if (udev->usb2_hw_lpm_capable != 1) 4131 return -EPERM; 4132 4133 spin_lock_irqsave(&xhci->lock, flags); 4134 4135 port_array = xhci->usb2_ports; 4136 port_num = udev->portnum - 1; 4137 pm_addr = port_array[port_num] + PORTPMSC; 4138 pm_val = readl(pm_addr); 4139 hlpm_addr = port_array[port_num] + PORTHLPMC; 4140 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4141 4142 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4143 enable ? "enable" : "disable", port_num + 1); 4144 4145 if (enable) { 4146 /* Host supports BESL timeout instead of HIRD */ 4147 if (udev->usb2_hw_lpm_besl_capable) { 4148 /* if device doesn't have a preferred BESL value use a 4149 * default one which works with mixed HIRD and BESL 4150 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4151 */ 4152 if ((field & USB_BESL_SUPPORT) && 4153 (field & USB_BESL_BASELINE_VALID)) 4154 hird = USB_GET_BESL_BASELINE(field); 4155 else 4156 hird = udev->l1_params.besl; 4157 4158 exit_latency = xhci_besl_encoding[hird]; 4159 spin_unlock_irqrestore(&xhci->lock, flags); 4160 4161 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4162 * input context for link powermanagement evaluate 4163 * context commands. It is protected by hcd->bandwidth 4164 * mutex and is shared by all devices. We need to set 4165 * the max ext latency in USB 2 BESL LPM as well, so 4166 * use the same mutex and xhci_change_max_exit_latency() 4167 */ 4168 mutex_lock(hcd->bandwidth_mutex); 4169 ret = xhci_change_max_exit_latency(xhci, udev, 4170 exit_latency); 4171 mutex_unlock(hcd->bandwidth_mutex); 4172 4173 if (ret < 0) 4174 return ret; 4175 spin_lock_irqsave(&xhci->lock, flags); 4176 4177 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4178 writel(hlpm_val, hlpm_addr); 4179 /* flush write */ 4180 readl(hlpm_addr); 4181 } else { 4182 hird = xhci_calculate_hird_besl(xhci, udev); 4183 } 4184 4185 pm_val &= ~PORT_HIRD_MASK; 4186 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4187 writel(pm_val, pm_addr); 4188 pm_val = readl(pm_addr); 4189 pm_val |= PORT_HLE; 4190 writel(pm_val, pm_addr); 4191 /* flush write */ 4192 readl(pm_addr); 4193 } else { 4194 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4195 writel(pm_val, pm_addr); 4196 /* flush write */ 4197 readl(pm_addr); 4198 if (udev->usb2_hw_lpm_besl_capable) { 4199 spin_unlock_irqrestore(&xhci->lock, flags); 4200 mutex_lock(hcd->bandwidth_mutex); 4201 xhci_change_max_exit_latency(xhci, udev, 0); 4202 mutex_unlock(hcd->bandwidth_mutex); 4203 return 0; 4204 } 4205 } 4206 4207 spin_unlock_irqrestore(&xhci->lock, flags); 4208 return 0; 4209 } 4210 4211 /* check if a usb2 port supports a given extened capability protocol 4212 * only USB2 ports extended protocol capability values are cached. 4213 * Return 1 if capability is supported 4214 */ 4215 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4216 unsigned capability) 4217 { 4218 u32 port_offset, port_count; 4219 int i; 4220 4221 for (i = 0; i < xhci->num_ext_caps; i++) { 4222 if (xhci->ext_caps[i] & capability) { 4223 /* port offsets starts at 1 */ 4224 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4225 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4226 if (port >= port_offset && 4227 port < port_offset + port_count) 4228 return 1; 4229 } 4230 } 4231 return 0; 4232 } 4233 4234 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4235 { 4236 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4237 int portnum = udev->portnum - 1; 4238 4239 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4240 !udev->lpm_capable) 4241 return 0; 4242 4243 /* we only support lpm for non-hub device connected to root hub yet */ 4244 if (!udev->parent || udev->parent->parent || 4245 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4246 return 0; 4247 4248 if (xhci->hw_lpm_support == 1 && 4249 xhci_check_usb2_port_capability( 4250 xhci, portnum, XHCI_HLC)) { 4251 udev->usb2_hw_lpm_capable = 1; 4252 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4253 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4254 if (xhci_check_usb2_port_capability(xhci, portnum, 4255 XHCI_BLC)) 4256 udev->usb2_hw_lpm_besl_capable = 1; 4257 } 4258 4259 return 0; 4260 } 4261 4262 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4263 4264 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4265 static unsigned long long xhci_service_interval_to_ns( 4266 struct usb_endpoint_descriptor *desc) 4267 { 4268 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4269 } 4270 4271 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4272 enum usb3_link_state state) 4273 { 4274 unsigned long long sel; 4275 unsigned long long pel; 4276 unsigned int max_sel_pel; 4277 char *state_name; 4278 4279 switch (state) { 4280 case USB3_LPM_U1: 4281 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4282 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4283 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4284 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4285 state_name = "U1"; 4286 break; 4287 case USB3_LPM_U2: 4288 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4289 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4290 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4291 state_name = "U2"; 4292 break; 4293 default: 4294 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4295 __func__); 4296 return USB3_LPM_DISABLED; 4297 } 4298 4299 if (sel <= max_sel_pel && pel <= max_sel_pel) 4300 return USB3_LPM_DEVICE_INITIATED; 4301 4302 if (sel > max_sel_pel) 4303 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4304 "due to long SEL %llu ms\n", 4305 state_name, sel); 4306 else 4307 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4308 "due to long PEL %llu ms\n", 4309 state_name, pel); 4310 return USB3_LPM_DISABLED; 4311 } 4312 4313 /* The U1 timeout should be the maximum of the following values: 4314 * - For control endpoints, U1 system exit latency (SEL) * 3 4315 * - For bulk endpoints, U1 SEL * 5 4316 * - For interrupt endpoints: 4317 * - Notification EPs, U1 SEL * 3 4318 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4319 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4320 */ 4321 static unsigned long long xhci_calculate_intel_u1_timeout( 4322 struct usb_device *udev, 4323 struct usb_endpoint_descriptor *desc) 4324 { 4325 unsigned long long timeout_ns; 4326 int ep_type; 4327 int intr_type; 4328 4329 ep_type = usb_endpoint_type(desc); 4330 switch (ep_type) { 4331 case USB_ENDPOINT_XFER_CONTROL: 4332 timeout_ns = udev->u1_params.sel * 3; 4333 break; 4334 case USB_ENDPOINT_XFER_BULK: 4335 timeout_ns = udev->u1_params.sel * 5; 4336 break; 4337 case USB_ENDPOINT_XFER_INT: 4338 intr_type = usb_endpoint_interrupt_type(desc); 4339 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4340 timeout_ns = udev->u1_params.sel * 3; 4341 break; 4342 } 4343 /* Otherwise the calculation is the same as isoc eps */ 4344 case USB_ENDPOINT_XFER_ISOC: 4345 timeout_ns = xhci_service_interval_to_ns(desc); 4346 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4347 if (timeout_ns < udev->u1_params.sel * 2) 4348 timeout_ns = udev->u1_params.sel * 2; 4349 break; 4350 default: 4351 return 0; 4352 } 4353 4354 return timeout_ns; 4355 } 4356 4357 /* Returns the hub-encoded U1 timeout value. */ 4358 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4359 struct usb_device *udev, 4360 struct usb_endpoint_descriptor *desc) 4361 { 4362 unsigned long long timeout_ns; 4363 4364 if (xhci->quirks & XHCI_INTEL_HOST) 4365 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4366 else 4367 timeout_ns = udev->u1_params.sel; 4368 4369 /* The U1 timeout is encoded in 1us intervals. 4370 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4371 */ 4372 if (timeout_ns == USB3_LPM_DISABLED) 4373 timeout_ns = 1; 4374 else 4375 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4376 4377 /* If the necessary timeout value is bigger than what we can set in the 4378 * USB 3.0 hub, we have to disable hub-initiated U1. 4379 */ 4380 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4381 return timeout_ns; 4382 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4383 "due to long timeout %llu ms\n", timeout_ns); 4384 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4385 } 4386 4387 /* The U2 timeout should be the maximum of: 4388 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4389 * - largest bInterval of any active periodic endpoint (to avoid going 4390 * into lower power link states between intervals). 4391 * - the U2 Exit Latency of the device 4392 */ 4393 static unsigned long long xhci_calculate_intel_u2_timeout( 4394 struct usb_device *udev, 4395 struct usb_endpoint_descriptor *desc) 4396 { 4397 unsigned long long timeout_ns; 4398 unsigned long long u2_del_ns; 4399 4400 timeout_ns = 10 * 1000 * 1000; 4401 4402 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4403 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4404 timeout_ns = xhci_service_interval_to_ns(desc); 4405 4406 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4407 if (u2_del_ns > timeout_ns) 4408 timeout_ns = u2_del_ns; 4409 4410 return timeout_ns; 4411 } 4412 4413 /* Returns the hub-encoded U2 timeout value. */ 4414 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4415 struct usb_device *udev, 4416 struct usb_endpoint_descriptor *desc) 4417 { 4418 unsigned long long timeout_ns; 4419 4420 if (xhci->quirks & XHCI_INTEL_HOST) 4421 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4422 else 4423 timeout_ns = udev->u2_params.sel; 4424 4425 /* The U2 timeout is encoded in 256us intervals */ 4426 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4427 /* If the necessary timeout value is bigger than what we can set in the 4428 * USB 3.0 hub, we have to disable hub-initiated U2. 4429 */ 4430 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4431 return timeout_ns; 4432 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4433 "due to long timeout %llu ms\n", timeout_ns); 4434 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4435 } 4436 4437 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4438 struct usb_device *udev, 4439 struct usb_endpoint_descriptor *desc, 4440 enum usb3_link_state state, 4441 u16 *timeout) 4442 { 4443 if (state == USB3_LPM_U1) 4444 return xhci_calculate_u1_timeout(xhci, udev, desc); 4445 else if (state == USB3_LPM_U2) 4446 return xhci_calculate_u2_timeout(xhci, udev, desc); 4447 4448 return USB3_LPM_DISABLED; 4449 } 4450 4451 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4452 struct usb_device *udev, 4453 struct usb_endpoint_descriptor *desc, 4454 enum usb3_link_state state, 4455 u16 *timeout) 4456 { 4457 u16 alt_timeout; 4458 4459 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4460 desc, state, timeout); 4461 4462 /* If we found we can't enable hub-initiated LPM, or 4463 * the U1 or U2 exit latency was too high to allow 4464 * device-initiated LPM as well, just stop searching. 4465 */ 4466 if (alt_timeout == USB3_LPM_DISABLED || 4467 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4468 *timeout = alt_timeout; 4469 return -E2BIG; 4470 } 4471 if (alt_timeout > *timeout) 4472 *timeout = alt_timeout; 4473 return 0; 4474 } 4475 4476 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4477 struct usb_device *udev, 4478 struct usb_host_interface *alt, 4479 enum usb3_link_state state, 4480 u16 *timeout) 4481 { 4482 int j; 4483 4484 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4485 if (xhci_update_timeout_for_endpoint(xhci, udev, 4486 &alt->endpoint[j].desc, state, timeout)) 4487 return -E2BIG; 4488 continue; 4489 } 4490 return 0; 4491 } 4492 4493 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4494 enum usb3_link_state state) 4495 { 4496 struct usb_device *parent; 4497 unsigned int num_hubs; 4498 4499 if (state == USB3_LPM_U2) 4500 return 0; 4501 4502 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4503 for (parent = udev->parent, num_hubs = 0; parent->parent; 4504 parent = parent->parent) 4505 num_hubs++; 4506 4507 if (num_hubs < 2) 4508 return 0; 4509 4510 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4511 " below second-tier hub.\n"); 4512 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4513 "to decrease power consumption.\n"); 4514 return -E2BIG; 4515 } 4516 4517 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4518 struct usb_device *udev, 4519 enum usb3_link_state state) 4520 { 4521 if (xhci->quirks & XHCI_INTEL_HOST) 4522 return xhci_check_intel_tier_policy(udev, state); 4523 else 4524 return 0; 4525 } 4526 4527 /* Returns the U1 or U2 timeout that should be enabled. 4528 * If the tier check or timeout setting functions return with a non-zero exit 4529 * code, that means the timeout value has been finalized and we shouldn't look 4530 * at any more endpoints. 4531 */ 4532 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4533 struct usb_device *udev, enum usb3_link_state state) 4534 { 4535 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4536 struct usb_host_config *config; 4537 char *state_name; 4538 int i; 4539 u16 timeout = USB3_LPM_DISABLED; 4540 4541 if (state == USB3_LPM_U1) 4542 state_name = "U1"; 4543 else if (state == USB3_LPM_U2) 4544 state_name = "U2"; 4545 else { 4546 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4547 state); 4548 return timeout; 4549 } 4550 4551 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4552 return timeout; 4553 4554 /* Gather some information about the currently installed configuration 4555 * and alternate interface settings. 4556 */ 4557 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4558 state, &timeout)) 4559 return timeout; 4560 4561 config = udev->actconfig; 4562 if (!config) 4563 return timeout; 4564 4565 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4566 struct usb_driver *driver; 4567 struct usb_interface *intf = config->interface[i]; 4568 4569 if (!intf) 4570 continue; 4571 4572 /* Check if any currently bound drivers want hub-initiated LPM 4573 * disabled. 4574 */ 4575 if (intf->dev.driver) { 4576 driver = to_usb_driver(intf->dev.driver); 4577 if (driver && driver->disable_hub_initiated_lpm) { 4578 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4579 "at request of driver %s\n", 4580 state_name, driver->name); 4581 return xhci_get_timeout_no_hub_lpm(udev, state); 4582 } 4583 } 4584 4585 /* Not sure how this could happen... */ 4586 if (!intf->cur_altsetting) 4587 continue; 4588 4589 if (xhci_update_timeout_for_interface(xhci, udev, 4590 intf->cur_altsetting, 4591 state, &timeout)) 4592 return timeout; 4593 } 4594 return timeout; 4595 } 4596 4597 static int calculate_max_exit_latency(struct usb_device *udev, 4598 enum usb3_link_state state_changed, 4599 u16 hub_encoded_timeout) 4600 { 4601 unsigned long long u1_mel_us = 0; 4602 unsigned long long u2_mel_us = 0; 4603 unsigned long long mel_us = 0; 4604 bool disabling_u1; 4605 bool disabling_u2; 4606 bool enabling_u1; 4607 bool enabling_u2; 4608 4609 disabling_u1 = (state_changed == USB3_LPM_U1 && 4610 hub_encoded_timeout == USB3_LPM_DISABLED); 4611 disabling_u2 = (state_changed == USB3_LPM_U2 && 4612 hub_encoded_timeout == USB3_LPM_DISABLED); 4613 4614 enabling_u1 = (state_changed == USB3_LPM_U1 && 4615 hub_encoded_timeout != USB3_LPM_DISABLED); 4616 enabling_u2 = (state_changed == USB3_LPM_U2 && 4617 hub_encoded_timeout != USB3_LPM_DISABLED); 4618 4619 /* If U1 was already enabled and we're not disabling it, 4620 * or we're going to enable U1, account for the U1 max exit latency. 4621 */ 4622 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4623 enabling_u1) 4624 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4625 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4626 enabling_u2) 4627 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4628 4629 if (u1_mel_us > u2_mel_us) 4630 mel_us = u1_mel_us; 4631 else 4632 mel_us = u2_mel_us; 4633 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4634 if (mel_us > MAX_EXIT) { 4635 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4636 "is too big.\n", mel_us); 4637 return -E2BIG; 4638 } 4639 return mel_us; 4640 } 4641 4642 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4643 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4644 struct usb_device *udev, enum usb3_link_state state) 4645 { 4646 struct xhci_hcd *xhci; 4647 u16 hub_encoded_timeout; 4648 int mel; 4649 int ret; 4650 4651 xhci = hcd_to_xhci(hcd); 4652 /* The LPM timeout values are pretty host-controller specific, so don't 4653 * enable hub-initiated timeouts unless the vendor has provided 4654 * information about their timeout algorithm. 4655 */ 4656 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4657 !xhci->devs[udev->slot_id]) 4658 return USB3_LPM_DISABLED; 4659 4660 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4661 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4662 if (mel < 0) { 4663 /* Max Exit Latency is too big, disable LPM. */ 4664 hub_encoded_timeout = USB3_LPM_DISABLED; 4665 mel = 0; 4666 } 4667 4668 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4669 if (ret) 4670 return ret; 4671 return hub_encoded_timeout; 4672 } 4673 4674 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4675 struct usb_device *udev, enum usb3_link_state state) 4676 { 4677 struct xhci_hcd *xhci; 4678 u16 mel; 4679 4680 xhci = hcd_to_xhci(hcd); 4681 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4682 !xhci->devs[udev->slot_id]) 4683 return 0; 4684 4685 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4686 return xhci_change_max_exit_latency(xhci, udev, mel); 4687 } 4688 #else /* CONFIG_PM */ 4689 4690 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4691 struct usb_device *udev, int enable) 4692 { 4693 return 0; 4694 } 4695 4696 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4697 { 4698 return 0; 4699 } 4700 4701 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4702 struct usb_device *udev, enum usb3_link_state state) 4703 { 4704 return USB3_LPM_DISABLED; 4705 } 4706 4707 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4708 struct usb_device *udev, enum usb3_link_state state) 4709 { 4710 return 0; 4711 } 4712 #endif /* CONFIG_PM */ 4713 4714 /*-------------------------------------------------------------------------*/ 4715 4716 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4717 * internal data structures for the device. 4718 */ 4719 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4720 struct usb_tt *tt, gfp_t mem_flags) 4721 { 4722 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4723 struct xhci_virt_device *vdev; 4724 struct xhci_command *config_cmd; 4725 struct xhci_input_control_ctx *ctrl_ctx; 4726 struct xhci_slot_ctx *slot_ctx; 4727 unsigned long flags; 4728 unsigned think_time; 4729 int ret; 4730 4731 /* Ignore root hubs */ 4732 if (!hdev->parent) 4733 return 0; 4734 4735 vdev = xhci->devs[hdev->slot_id]; 4736 if (!vdev) { 4737 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4738 return -EINVAL; 4739 } 4740 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4741 if (!config_cmd) { 4742 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4743 return -ENOMEM; 4744 } 4745 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4746 if (!ctrl_ctx) { 4747 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4748 __func__); 4749 xhci_free_command(xhci, config_cmd); 4750 return -ENOMEM; 4751 } 4752 4753 spin_lock_irqsave(&xhci->lock, flags); 4754 if (hdev->speed == USB_SPEED_HIGH && 4755 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4756 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4757 xhci_free_command(xhci, config_cmd); 4758 spin_unlock_irqrestore(&xhci->lock, flags); 4759 return -ENOMEM; 4760 } 4761 4762 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4763 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4764 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4765 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4766 /* 4767 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4768 * but it may be already set to 1 when setup an xHCI virtual 4769 * device, so clear it anyway. 4770 */ 4771 if (tt->multi) 4772 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4773 else if (hdev->speed == USB_SPEED_FULL) 4774 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4775 4776 if (xhci->hci_version > 0x95) { 4777 xhci_dbg(xhci, "xHCI version %x needs hub " 4778 "TT think time and number of ports\n", 4779 (unsigned int) xhci->hci_version); 4780 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4781 /* Set TT think time - convert from ns to FS bit times. 4782 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4783 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4784 * 4785 * xHCI 1.0: this field shall be 0 if the device is not a 4786 * High-spped hub. 4787 */ 4788 think_time = tt->think_time; 4789 if (think_time != 0) 4790 think_time = (think_time / 666) - 1; 4791 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4792 slot_ctx->tt_info |= 4793 cpu_to_le32(TT_THINK_TIME(think_time)); 4794 } else { 4795 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4796 "TT think time or number of ports\n", 4797 (unsigned int) xhci->hci_version); 4798 } 4799 slot_ctx->dev_state = 0; 4800 spin_unlock_irqrestore(&xhci->lock, flags); 4801 4802 xhci_dbg(xhci, "Set up %s for hub device.\n", 4803 (xhci->hci_version > 0x95) ? 4804 "configure endpoint" : "evaluate context"); 4805 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4806 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4807 4808 /* Issue and wait for the configure endpoint or 4809 * evaluate context command. 4810 */ 4811 if (xhci->hci_version > 0x95) 4812 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4813 false, false); 4814 else 4815 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4816 true, false); 4817 4818 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4819 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4820 4821 xhci_free_command(xhci, config_cmd); 4822 return ret; 4823 } 4824 4825 int xhci_get_frame(struct usb_hcd *hcd) 4826 { 4827 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4828 /* EHCI mods by the periodic size. Why? */ 4829 return readl(&xhci->run_regs->microframe_index) >> 3; 4830 } 4831 4832 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4833 { 4834 struct xhci_hcd *xhci; 4835 struct device *dev = hcd->self.controller; 4836 int retval; 4837 4838 /* Accept arbitrarily long scatter-gather lists */ 4839 hcd->self.sg_tablesize = ~0; 4840 4841 /* support to build packet from discontinuous buffers */ 4842 hcd->self.no_sg_constraint = 1; 4843 4844 /* XHCI controllers don't stop the ep queue on short packets :| */ 4845 hcd->self.no_stop_on_short = 1; 4846 4847 xhci = hcd_to_xhci(hcd); 4848 4849 if (usb_hcd_is_primary_hcd(hcd)) { 4850 xhci->main_hcd = hcd; 4851 /* Mark the first roothub as being USB 2.0. 4852 * The xHCI driver will register the USB 3.0 roothub. 4853 */ 4854 hcd->speed = HCD_USB2; 4855 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4856 /* 4857 * USB 2.0 roothub under xHCI has an integrated TT, 4858 * (rate matching hub) as opposed to having an OHCI/UHCI 4859 * companion controller. 4860 */ 4861 hcd->has_tt = 1; 4862 } else { 4863 if (xhci->sbrn == 0x31) { 4864 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4865 hcd->speed = HCD_USB31; 4866 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4867 } 4868 /* xHCI private pointer was set in xhci_pci_probe for the second 4869 * registered roothub. 4870 */ 4871 return 0; 4872 } 4873 4874 mutex_init(&xhci->mutex); 4875 xhci->cap_regs = hcd->regs; 4876 xhci->op_regs = hcd->regs + 4877 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4878 xhci->run_regs = hcd->regs + 4879 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4880 /* Cache read-only capability registers */ 4881 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4882 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4883 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4884 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4885 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4886 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4887 if (xhci->hci_version > 0x100) 4888 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4889 xhci_print_registers(xhci); 4890 4891 xhci->quirks |= quirks; 4892 4893 get_quirks(dev, xhci); 4894 4895 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4896 * success event after a short transfer. This quirk will ignore such 4897 * spurious event. 4898 */ 4899 if (xhci->hci_version > 0x96) 4900 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4901 4902 /* Make sure the HC is halted. */ 4903 retval = xhci_halt(xhci); 4904 if (retval) 4905 return retval; 4906 4907 xhci_dbg(xhci, "Resetting HCD\n"); 4908 /* Reset the internal HC memory state and registers. */ 4909 retval = xhci_reset(xhci); 4910 if (retval) 4911 return retval; 4912 xhci_dbg(xhci, "Reset complete\n"); 4913 4914 /* 4915 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4916 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4917 * address memory pointers actually. So, this driver clears the AC64 4918 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4919 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4920 */ 4921 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4922 xhci->hcc_params &= ~BIT(0); 4923 4924 /* Set dma_mask and coherent_dma_mask to 64-bits, 4925 * if xHC supports 64-bit addressing */ 4926 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4927 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4928 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4929 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4930 } else { 4931 /* 4932 * This is to avoid error in cases where a 32-bit USB 4933 * controller is used on a 64-bit capable system. 4934 */ 4935 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4936 if (retval) 4937 return retval; 4938 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4939 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4940 } 4941 4942 xhci_dbg(xhci, "Calling HCD init\n"); 4943 /* Initialize HCD and host controller data structures. */ 4944 retval = xhci_init(hcd); 4945 if (retval) 4946 return retval; 4947 xhci_dbg(xhci, "Called HCD init\n"); 4948 4949 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4950 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4951 4952 return 0; 4953 } 4954 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4955 4956 static const struct hc_driver xhci_hc_driver = { 4957 .description = "xhci-hcd", 4958 .product_desc = "xHCI Host Controller", 4959 .hcd_priv_size = sizeof(struct xhci_hcd), 4960 4961 /* 4962 * generic hardware linkage 4963 */ 4964 .irq = xhci_irq, 4965 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4966 4967 /* 4968 * basic lifecycle operations 4969 */ 4970 .reset = NULL, /* set in xhci_init_driver() */ 4971 .start = xhci_run, 4972 .stop = xhci_stop, 4973 .shutdown = xhci_shutdown, 4974 4975 /* 4976 * managing i/o requests and associated device resources 4977 */ 4978 .urb_enqueue = xhci_urb_enqueue, 4979 .urb_dequeue = xhci_urb_dequeue, 4980 .alloc_dev = xhci_alloc_dev, 4981 .free_dev = xhci_free_dev, 4982 .alloc_streams = xhci_alloc_streams, 4983 .free_streams = xhci_free_streams, 4984 .add_endpoint = xhci_add_endpoint, 4985 .drop_endpoint = xhci_drop_endpoint, 4986 .endpoint_reset = xhci_endpoint_reset, 4987 .check_bandwidth = xhci_check_bandwidth, 4988 .reset_bandwidth = xhci_reset_bandwidth, 4989 .address_device = xhci_address_device, 4990 .enable_device = xhci_enable_device, 4991 .update_hub_device = xhci_update_hub_device, 4992 .reset_device = xhci_discover_or_reset_device, 4993 4994 /* 4995 * scheduling support 4996 */ 4997 .get_frame_number = xhci_get_frame, 4998 4999 /* 5000 * root hub support 5001 */ 5002 .hub_control = xhci_hub_control, 5003 .hub_status_data = xhci_hub_status_data, 5004 .bus_suspend = xhci_bus_suspend, 5005 .bus_resume = xhci_bus_resume, 5006 5007 /* 5008 * call back when device connected and addressed 5009 */ 5010 .update_device = xhci_update_device, 5011 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5012 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5013 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5014 .find_raw_port_number = xhci_find_raw_port_number, 5015 }; 5016 5017 void xhci_init_driver(struct hc_driver *drv, 5018 const struct xhci_driver_overrides *over) 5019 { 5020 BUG_ON(!over); 5021 5022 /* Copy the generic table to drv then apply the overrides */ 5023 *drv = xhci_hc_driver; 5024 5025 if (over) { 5026 drv->hcd_priv_size += over->extra_priv_size; 5027 if (over->reset) 5028 drv->reset = over->reset; 5029 if (over->start) 5030 drv->start = over->start; 5031 } 5032 } 5033 EXPORT_SYMBOL_GPL(xhci_init_driver); 5034 5035 MODULE_DESCRIPTION(DRIVER_DESC); 5036 MODULE_AUTHOR(DRIVER_AUTHOR); 5037 MODULE_LICENSE("GPL"); 5038 5039 static int __init xhci_hcd_init(void) 5040 { 5041 /* 5042 * Check the compiler generated sizes of structures that must be laid 5043 * out in specific ways for hardware access. 5044 */ 5045 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5046 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5047 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5048 /* xhci_device_control has eight fields, and also 5049 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5050 */ 5051 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5052 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5053 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5054 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5055 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5056 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5057 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5058 5059 if (usb_disabled()) 5060 return -ENODEV; 5061 5062 return 0; 5063 } 5064 5065 /* 5066 * If an init function is provided, an exit function must also be provided 5067 * to allow module unload. 5068 */ 5069 static void __exit xhci_hcd_fini(void) { } 5070 5071 module_init(xhci_hcd_init); 5072 module_exit(xhci_hcd_fini); 5073