1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 ms of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 */ 99 int xhci_halt(struct xhci_hcd *xhci) 100 { 101 int ret; 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 ret = handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 if (!ret) 108 xhci->xhc_state |= XHCI_STATE_HALTED; 109 return ret; 110 } 111 112 /* 113 * Set the run bit and wait for the host to be running. 114 */ 115 static int xhci_start(struct xhci_hcd *xhci) 116 { 117 u32 temp; 118 int ret; 119 120 temp = xhci_readl(xhci, &xhci->op_regs->command); 121 temp |= (CMD_RUN); 122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 123 temp); 124 xhci_writel(xhci, temp, &xhci->op_regs->command); 125 126 /* 127 * Wait for the HCHalted Status bit to be 0 to indicate the host is 128 * running. 129 */ 130 ret = handshake(xhci, &xhci->op_regs->status, 131 STS_HALT, 0, XHCI_MAX_HALT_USEC); 132 if (ret == -ETIMEDOUT) 133 xhci_err(xhci, "Host took too long to start, " 134 "waited %u microseconds.\n", 135 XHCI_MAX_HALT_USEC); 136 if (!ret) 137 xhci->xhc_state &= ~XHCI_STATE_HALTED; 138 return ret; 139 } 140 141 /* 142 * Reset a halted HC. 143 * 144 * This resets pipelines, timers, counters, state machines, etc. 145 * Transactions will be terminated immediately, and operational registers 146 * will be set to their defaults. 147 */ 148 int xhci_reset(struct xhci_hcd *xhci) 149 { 150 u32 command; 151 u32 state; 152 int ret; 153 154 state = xhci_readl(xhci, &xhci->op_regs->status); 155 if ((state & STS_HALT) == 0) { 156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 157 return 0; 158 } 159 160 xhci_dbg(xhci, "// Reset the HC\n"); 161 command = xhci_readl(xhci, &xhci->op_regs->command); 162 command |= CMD_RESET; 163 xhci_writel(xhci, command, &xhci->op_regs->command); 164 165 ret = handshake(xhci, &xhci->op_regs->command, 166 CMD_RESET, 0, 250 * 1000); 167 if (ret) 168 return ret; 169 170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 171 /* 172 * xHCI cannot write to any doorbells or operational registers other 173 * than status until the "Controller Not Ready" flag is cleared. 174 */ 175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); 176 } 177 178 #ifdef CONFIG_PCI 179 static int xhci_free_msi(struct xhci_hcd *xhci) 180 { 181 int i; 182 183 if (!xhci->msix_entries) 184 return -EINVAL; 185 186 for (i = 0; i < xhci->msix_count; i++) 187 if (xhci->msix_entries[i].vector) 188 free_irq(xhci->msix_entries[i].vector, 189 xhci_to_hcd(xhci)); 190 return 0; 191 } 192 193 /* 194 * Set up MSI 195 */ 196 static int xhci_setup_msi(struct xhci_hcd *xhci) 197 { 198 int ret; 199 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 200 201 ret = pci_enable_msi(pdev); 202 if (ret) { 203 xhci_err(xhci, "failed to allocate MSI entry\n"); 204 return ret; 205 } 206 207 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 208 0, "xhci_hcd", xhci_to_hcd(xhci)); 209 if (ret) { 210 xhci_err(xhci, "disable MSI interrupt\n"); 211 pci_disable_msi(pdev); 212 } 213 214 return ret; 215 } 216 217 /* 218 * Free IRQs 219 * free all IRQs request 220 */ 221 static void xhci_free_irq(struct xhci_hcd *xhci) 222 { 223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 224 int ret; 225 226 /* return if using legacy interrupt */ 227 if (xhci_to_hcd(xhci)->irq >= 0) 228 return; 229 230 ret = xhci_free_msi(xhci); 231 if (!ret) 232 return; 233 if (pdev->irq >= 0) 234 free_irq(pdev->irq, xhci_to_hcd(xhci)); 235 236 return; 237 } 238 239 /* 240 * Set up MSI-X 241 */ 242 static int xhci_setup_msix(struct xhci_hcd *xhci) 243 { 244 int i, ret = 0; 245 struct usb_hcd *hcd = xhci_to_hcd(xhci); 246 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 247 248 /* 249 * calculate number of msi-x vectors supported. 250 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 251 * with max number of interrupters based on the xhci HCSPARAMS1. 252 * - num_online_cpus: maximum msi-x vectors per CPUs core. 253 * Add additional 1 vector to ensure always available interrupt. 254 */ 255 xhci->msix_count = min(num_online_cpus() + 1, 256 HCS_MAX_INTRS(xhci->hcs_params1)); 257 258 xhci->msix_entries = 259 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 260 GFP_KERNEL); 261 if (!xhci->msix_entries) { 262 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 263 return -ENOMEM; 264 } 265 266 for (i = 0; i < xhci->msix_count; i++) { 267 xhci->msix_entries[i].entry = i; 268 xhci->msix_entries[i].vector = 0; 269 } 270 271 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 272 if (ret) { 273 xhci_err(xhci, "Failed to enable MSI-X\n"); 274 goto free_entries; 275 } 276 277 for (i = 0; i < xhci->msix_count; i++) { 278 ret = request_irq(xhci->msix_entries[i].vector, 279 (irq_handler_t)xhci_msi_irq, 280 0, "xhci_hcd", xhci_to_hcd(xhci)); 281 if (ret) 282 goto disable_msix; 283 } 284 285 hcd->msix_enabled = 1; 286 return ret; 287 288 disable_msix: 289 xhci_err(xhci, "disable MSI-X interrupt\n"); 290 xhci_free_irq(xhci); 291 pci_disable_msix(pdev); 292 free_entries: 293 kfree(xhci->msix_entries); 294 xhci->msix_entries = NULL; 295 return ret; 296 } 297 298 /* Free any IRQs and disable MSI-X */ 299 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 300 { 301 struct usb_hcd *hcd = xhci_to_hcd(xhci); 302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 303 304 xhci_free_irq(xhci); 305 306 if (xhci->msix_entries) { 307 pci_disable_msix(pdev); 308 kfree(xhci->msix_entries); 309 xhci->msix_entries = NULL; 310 } else { 311 pci_disable_msi(pdev); 312 } 313 314 hcd->msix_enabled = 0; 315 return; 316 } 317 318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 319 { 320 int i; 321 322 if (xhci->msix_entries) { 323 for (i = 0; i < xhci->msix_count; i++) 324 synchronize_irq(xhci->msix_entries[i].vector); 325 } 326 } 327 328 static int xhci_try_enable_msi(struct usb_hcd *hcd) 329 { 330 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 332 int ret; 333 334 /* 335 * Some Fresco Logic host controllers advertise MSI, but fail to 336 * generate interrupts. Don't even try to enable MSI. 337 */ 338 if (xhci->quirks & XHCI_BROKEN_MSI) 339 return 0; 340 341 /* unregister the legacy interrupt */ 342 if (hcd->irq) 343 free_irq(hcd->irq, hcd); 344 hcd->irq = -1; 345 346 ret = xhci_setup_msix(xhci); 347 if (ret) 348 /* fall back to msi*/ 349 ret = xhci_setup_msi(xhci); 350 351 if (!ret) 352 /* hcd->irq is -1, we have MSI */ 353 return 0; 354 355 /* fall back to legacy interrupt*/ 356 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 357 hcd->irq_descr, hcd); 358 if (ret) { 359 xhci_err(xhci, "request interrupt %d failed\n", 360 pdev->irq); 361 return ret; 362 } 363 hcd->irq = pdev->irq; 364 return 0; 365 } 366 367 #else 368 369 static int xhci_try_enable_msi(struct usb_hcd *hcd) 370 { 371 return 0; 372 } 373 374 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 375 { 376 } 377 378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 379 { 380 } 381 382 #endif 383 384 /* 385 * Initialize memory for HCD and xHC (one-time init). 386 * 387 * Program the PAGESIZE register, initialize the device context array, create 388 * device contexts (?), set up a command ring segment (or two?), create event 389 * ring (one for now). 390 */ 391 int xhci_init(struct usb_hcd *hcd) 392 { 393 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 394 int retval = 0; 395 396 xhci_dbg(xhci, "xhci_init\n"); 397 spin_lock_init(&xhci->lock); 398 if (xhci->hci_version == 0x95 && link_quirk) { 399 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 400 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 401 } else { 402 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 403 } 404 retval = xhci_mem_init(xhci, GFP_KERNEL); 405 xhci_dbg(xhci, "Finished xhci_init\n"); 406 407 return retval; 408 } 409 410 /*-------------------------------------------------------------------------*/ 411 412 413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 414 static void xhci_event_ring_work(unsigned long arg) 415 { 416 unsigned long flags; 417 int temp; 418 u64 temp_64; 419 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 420 int i, j; 421 422 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 423 424 spin_lock_irqsave(&xhci->lock, flags); 425 temp = xhci_readl(xhci, &xhci->op_regs->status); 426 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 427 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 428 (xhci->xhc_state & XHCI_STATE_HALTED)) { 429 xhci_dbg(xhci, "HW died, polling stopped.\n"); 430 spin_unlock_irqrestore(&xhci->lock, flags); 431 return; 432 } 433 434 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 435 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 436 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 437 xhci->error_bitmask = 0; 438 xhci_dbg(xhci, "Event ring:\n"); 439 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 440 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 441 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 442 temp_64 &= ~ERST_PTR_MASK; 443 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 444 xhci_dbg(xhci, "Command ring:\n"); 445 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 446 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 447 xhci_dbg_cmd_ptrs(xhci); 448 for (i = 0; i < MAX_HC_SLOTS; ++i) { 449 if (!xhci->devs[i]) 450 continue; 451 for (j = 0; j < 31; ++j) { 452 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 453 } 454 } 455 spin_unlock_irqrestore(&xhci->lock, flags); 456 457 if (!xhci->zombie) 458 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 459 else 460 xhci_dbg(xhci, "Quit polling the event ring.\n"); 461 } 462 #endif 463 464 static int xhci_run_finished(struct xhci_hcd *xhci) 465 { 466 if (xhci_start(xhci)) { 467 xhci_halt(xhci); 468 return -ENODEV; 469 } 470 xhci->shared_hcd->state = HC_STATE_RUNNING; 471 472 if (xhci->quirks & XHCI_NEC_HOST) 473 xhci_ring_cmd_db(xhci); 474 475 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); 476 return 0; 477 } 478 479 /* 480 * Start the HC after it was halted. 481 * 482 * This function is called by the USB core when the HC driver is added. 483 * Its opposite is xhci_stop(). 484 * 485 * xhci_init() must be called once before this function can be called. 486 * Reset the HC, enable device slot contexts, program DCBAAP, and 487 * set command ring pointer and event ring pointer. 488 * 489 * Setup MSI-X vectors and enable interrupts. 490 */ 491 int xhci_run(struct usb_hcd *hcd) 492 { 493 u32 temp; 494 u64 temp_64; 495 int ret; 496 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 497 498 /* Start the xHCI host controller running only after the USB 2.0 roothub 499 * is setup. 500 */ 501 502 hcd->uses_new_polling = 1; 503 if (!usb_hcd_is_primary_hcd(hcd)) 504 return xhci_run_finished(xhci); 505 506 xhci_dbg(xhci, "xhci_run\n"); 507 508 ret = xhci_try_enable_msi(hcd); 509 if (ret) 510 return ret; 511 512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 513 init_timer(&xhci->event_ring_timer); 514 xhci->event_ring_timer.data = (unsigned long) xhci; 515 xhci->event_ring_timer.function = xhci_event_ring_work; 516 /* Poll the event ring */ 517 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 518 xhci->zombie = 0; 519 xhci_dbg(xhci, "Setting event ring polling timer\n"); 520 add_timer(&xhci->event_ring_timer); 521 #endif 522 523 xhci_dbg(xhci, "Command ring memory map follows:\n"); 524 xhci_debug_ring(xhci, xhci->cmd_ring); 525 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 526 xhci_dbg_cmd_ptrs(xhci); 527 528 xhci_dbg(xhci, "ERST memory map follows:\n"); 529 xhci_dbg_erst(xhci, &xhci->erst); 530 xhci_dbg(xhci, "Event ring:\n"); 531 xhci_debug_ring(xhci, xhci->event_ring); 532 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 533 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 534 temp_64 &= ~ERST_PTR_MASK; 535 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 536 537 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 538 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 539 temp &= ~ER_IRQ_INTERVAL_MASK; 540 temp |= (u32) 160; 541 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 542 543 /* Set the HCD state before we enable the irqs */ 544 temp = xhci_readl(xhci, &xhci->op_regs->command); 545 temp |= (CMD_EIE); 546 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 547 temp); 548 xhci_writel(xhci, temp, &xhci->op_regs->command); 549 550 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 551 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 552 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 553 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 554 &xhci->ir_set->irq_pending); 555 xhci_print_ir_set(xhci, 0); 556 557 if (xhci->quirks & XHCI_NEC_HOST) 558 xhci_queue_vendor_command(xhci, 0, 0, 0, 559 TRB_TYPE(TRB_NEC_GET_FW)); 560 561 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); 562 return 0; 563 } 564 565 static void xhci_only_stop_hcd(struct usb_hcd *hcd) 566 { 567 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 568 569 spin_lock_irq(&xhci->lock); 570 xhci_halt(xhci); 571 572 /* The shared_hcd is going to be deallocated shortly (the USB core only 573 * calls this function when allocation fails in usb_add_hcd(), or 574 * usb_remove_hcd() is called). So we need to unset xHCI's pointer. 575 */ 576 xhci->shared_hcd = NULL; 577 spin_unlock_irq(&xhci->lock); 578 } 579 580 /* 581 * Stop xHCI driver. 582 * 583 * This function is called by the USB core when the HC driver is removed. 584 * Its opposite is xhci_run(). 585 * 586 * Disable device contexts, disable IRQs, and quiesce the HC. 587 * Reset the HC, finish any completed transactions, and cleanup memory. 588 */ 589 void xhci_stop(struct usb_hcd *hcd) 590 { 591 u32 temp; 592 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 593 594 if (!usb_hcd_is_primary_hcd(hcd)) { 595 xhci_only_stop_hcd(xhci->shared_hcd); 596 return; 597 } 598 599 spin_lock_irq(&xhci->lock); 600 /* Make sure the xHC is halted for a USB3 roothub 601 * (xhci_stop() could be called as part of failed init). 602 */ 603 xhci_halt(xhci); 604 xhci_reset(xhci); 605 spin_unlock_irq(&xhci->lock); 606 607 xhci_cleanup_msix(xhci); 608 609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 610 /* Tell the event ring poll function not to reschedule */ 611 xhci->zombie = 1; 612 del_timer_sync(&xhci->event_ring_timer); 613 #endif 614 615 if (xhci->quirks & XHCI_AMD_PLL_FIX) 616 usb_amd_dev_put(); 617 618 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 619 temp = xhci_readl(xhci, &xhci->op_regs->status); 620 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 621 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 622 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 623 &xhci->ir_set->irq_pending); 624 xhci_print_ir_set(xhci, 0); 625 626 xhci_dbg(xhci, "cleaning up memory\n"); 627 xhci_mem_cleanup(xhci); 628 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 629 xhci_readl(xhci, &xhci->op_regs->status)); 630 } 631 632 /* 633 * Shutdown HC (not bus-specific) 634 * 635 * This is called when the machine is rebooting or halting. We assume that the 636 * machine will be powered off, and the HC's internal state will be reset. 637 * Don't bother to free memory. 638 * 639 * This will only ever be called with the main usb_hcd (the USB3 roothub). 640 */ 641 void xhci_shutdown(struct usb_hcd *hcd) 642 { 643 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 644 645 spin_lock_irq(&xhci->lock); 646 xhci_halt(xhci); 647 spin_unlock_irq(&xhci->lock); 648 649 xhci_cleanup_msix(xhci); 650 651 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 652 xhci_readl(xhci, &xhci->op_regs->status)); 653 } 654 655 #ifdef CONFIG_PM 656 static void xhci_save_registers(struct xhci_hcd *xhci) 657 { 658 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); 659 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); 660 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 661 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); 662 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); 663 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); 664 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); 665 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 666 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 667 } 668 669 static void xhci_restore_registers(struct xhci_hcd *xhci) 670 { 671 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); 672 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 673 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 674 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); 675 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 676 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); 677 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); 678 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 679 } 680 681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 682 { 683 u64 val_64; 684 685 /* step 2: initialize command ring buffer */ 686 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 687 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 688 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 689 xhci->cmd_ring->dequeue) & 690 (u64) ~CMD_RING_RSVD_BITS) | 691 xhci->cmd_ring->cycle_state; 692 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", 693 (long unsigned long) val_64); 694 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 695 } 696 697 /* 698 * The whole command ring must be cleared to zero when we suspend the host. 699 * 700 * The host doesn't save the command ring pointer in the suspend well, so we 701 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 702 * aligned, because of the reserved bits in the command ring dequeue pointer 703 * register. Therefore, we can't just set the dequeue pointer back in the 704 * middle of the ring (TRBs are 16-byte aligned). 705 */ 706 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 707 { 708 struct xhci_ring *ring; 709 struct xhci_segment *seg; 710 711 ring = xhci->cmd_ring; 712 seg = ring->deq_seg; 713 do { 714 memset(seg->trbs, 0, SEGMENT_SIZE); 715 seg = seg->next; 716 } while (seg != ring->deq_seg); 717 718 /* Reset the software enqueue and dequeue pointers */ 719 ring->deq_seg = ring->first_seg; 720 ring->dequeue = ring->first_seg->trbs; 721 ring->enq_seg = ring->deq_seg; 722 ring->enqueue = ring->dequeue; 723 724 /* 725 * Ring is now zeroed, so the HW should look for change of ownership 726 * when the cycle bit is set to 1. 727 */ 728 ring->cycle_state = 1; 729 730 /* 731 * Reset the hardware dequeue pointer. 732 * Yes, this will need to be re-written after resume, but we're paranoid 733 * and want to make sure the hardware doesn't access bogus memory 734 * because, say, the BIOS or an SMI started the host without changing 735 * the command ring pointers. 736 */ 737 xhci_set_cmd_ring_deq(xhci); 738 } 739 740 /* 741 * Stop HC (not bus-specific) 742 * 743 * This is called when the machine transition into S3/S4 mode. 744 * 745 */ 746 int xhci_suspend(struct xhci_hcd *xhci) 747 { 748 int rc = 0; 749 struct usb_hcd *hcd = xhci_to_hcd(xhci); 750 u32 command; 751 752 spin_lock_irq(&xhci->lock); 753 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 754 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 755 /* step 1: stop endpoint */ 756 /* skipped assuming that port suspend has done */ 757 758 /* step 2: clear Run/Stop bit */ 759 command = xhci_readl(xhci, &xhci->op_regs->command); 760 command &= ~CMD_RUN; 761 xhci_writel(xhci, command, &xhci->op_regs->command); 762 if (handshake(xhci, &xhci->op_regs->status, 763 STS_HALT, STS_HALT, 100*100)) { 764 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 765 spin_unlock_irq(&xhci->lock); 766 return -ETIMEDOUT; 767 } 768 xhci_clear_command_ring(xhci); 769 770 /* step 3: save registers */ 771 xhci_save_registers(xhci); 772 773 /* step 4: set CSS flag */ 774 command = xhci_readl(xhci, &xhci->op_regs->command); 775 command |= CMD_CSS; 776 xhci_writel(xhci, command, &xhci->op_regs->command); 777 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) { 778 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n"); 779 spin_unlock_irq(&xhci->lock); 780 return -ETIMEDOUT; 781 } 782 spin_unlock_irq(&xhci->lock); 783 784 /* step 5: remove core well power */ 785 /* synchronize irq when using MSI-X */ 786 xhci_msix_sync_irqs(xhci); 787 788 return rc; 789 } 790 791 /* 792 * start xHC (not bus-specific) 793 * 794 * This is called when the machine transition from S3/S4 mode. 795 * 796 */ 797 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 798 { 799 u32 command, temp = 0; 800 struct usb_hcd *hcd = xhci_to_hcd(xhci); 801 struct usb_hcd *secondary_hcd; 802 int retval; 803 804 /* Wait a bit if either of the roothubs need to settle from the 805 * transition into bus suspend. 806 */ 807 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 808 time_before(jiffies, 809 xhci->bus_state[1].next_statechange)) 810 msleep(100); 811 812 spin_lock_irq(&xhci->lock); 813 if (xhci->quirks & XHCI_RESET_ON_RESUME) 814 hibernated = true; 815 816 if (!hibernated) { 817 /* step 1: restore register */ 818 xhci_restore_registers(xhci); 819 /* step 2: initialize command ring buffer */ 820 xhci_set_cmd_ring_deq(xhci); 821 /* step 3: restore state and start state*/ 822 /* step 3: set CRS flag */ 823 command = xhci_readl(xhci, &xhci->op_regs->command); 824 command |= CMD_CRS; 825 xhci_writel(xhci, command, &xhci->op_regs->command); 826 if (handshake(xhci, &xhci->op_regs->status, 827 STS_RESTORE, 0, 10*100)) { 828 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n"); 829 spin_unlock_irq(&xhci->lock); 830 return -ETIMEDOUT; 831 } 832 temp = xhci_readl(xhci, &xhci->op_regs->status); 833 } 834 835 /* If restore operation fails, re-initialize the HC during resume */ 836 if ((temp & STS_SRE) || hibernated) { 837 /* Let the USB core know _both_ roothubs lost power. */ 838 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 839 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 840 841 xhci_dbg(xhci, "Stop HCD\n"); 842 xhci_halt(xhci); 843 xhci_reset(xhci); 844 spin_unlock_irq(&xhci->lock); 845 xhci_cleanup_msix(xhci); 846 847 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 848 /* Tell the event ring poll function not to reschedule */ 849 xhci->zombie = 1; 850 del_timer_sync(&xhci->event_ring_timer); 851 #endif 852 853 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 854 temp = xhci_readl(xhci, &xhci->op_regs->status); 855 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 856 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 857 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 858 &xhci->ir_set->irq_pending); 859 xhci_print_ir_set(xhci, 0); 860 861 xhci_dbg(xhci, "cleaning up memory\n"); 862 xhci_mem_cleanup(xhci); 863 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 864 xhci_readl(xhci, &xhci->op_regs->status)); 865 866 /* USB core calls the PCI reinit and start functions twice: 867 * first with the primary HCD, and then with the secondary HCD. 868 * If we don't do the same, the host will never be started. 869 */ 870 if (!usb_hcd_is_primary_hcd(hcd)) 871 secondary_hcd = hcd; 872 else 873 secondary_hcd = xhci->shared_hcd; 874 875 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 876 retval = xhci_init(hcd->primary_hcd); 877 if (retval) 878 return retval; 879 xhci_dbg(xhci, "Start the primary HCD\n"); 880 retval = xhci_run(hcd->primary_hcd); 881 if (retval) 882 goto failed_restart; 883 884 xhci_dbg(xhci, "Start the secondary HCD\n"); 885 retval = xhci_run(secondary_hcd); 886 if (!retval) { 887 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 888 set_bit(HCD_FLAG_HW_ACCESSIBLE, 889 &xhci->shared_hcd->flags); 890 } 891 failed_restart: 892 hcd->state = HC_STATE_SUSPENDED; 893 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 894 return retval; 895 } 896 897 /* step 4: set Run/Stop bit */ 898 command = xhci_readl(xhci, &xhci->op_regs->command); 899 command |= CMD_RUN; 900 xhci_writel(xhci, command, &xhci->op_regs->command); 901 handshake(xhci, &xhci->op_regs->status, STS_HALT, 902 0, 250 * 1000); 903 904 /* step 5: walk topology and initialize portsc, 905 * portpmsc and portli 906 */ 907 /* this is done in bus_resume */ 908 909 /* step 6: restart each of the previously 910 * Running endpoints by ringing their doorbells 911 */ 912 913 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 914 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 915 916 spin_unlock_irq(&xhci->lock); 917 return 0; 918 } 919 #endif /* CONFIG_PM */ 920 921 /*-------------------------------------------------------------------------*/ 922 923 /** 924 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 925 * HCDs. Find the index for an endpoint given its descriptor. Use the return 926 * value to right shift 1 for the bitmask. 927 * 928 * Index = (epnum * 2) + direction - 1, 929 * where direction = 0 for OUT, 1 for IN. 930 * For control endpoints, the IN index is used (OUT index is unused), so 931 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 932 */ 933 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 934 { 935 unsigned int index; 936 if (usb_endpoint_xfer_control(desc)) 937 index = (unsigned int) (usb_endpoint_num(desc)*2); 938 else 939 index = (unsigned int) (usb_endpoint_num(desc)*2) + 940 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 941 return index; 942 } 943 944 /* Find the flag for this endpoint (for use in the control context). Use the 945 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 946 * bit 1, etc. 947 */ 948 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 949 { 950 return 1 << (xhci_get_endpoint_index(desc) + 1); 951 } 952 953 /* Find the flag for this endpoint (for use in the control context). Use the 954 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 955 * bit 1, etc. 956 */ 957 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 958 { 959 return 1 << (ep_index + 1); 960 } 961 962 /* Compute the last valid endpoint context index. Basically, this is the 963 * endpoint index plus one. For slot contexts with more than valid endpoint, 964 * we find the most significant bit set in the added contexts flags. 965 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 966 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 967 */ 968 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 969 { 970 return fls(added_ctxs) - 1; 971 } 972 973 /* Returns 1 if the arguments are OK; 974 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 975 */ 976 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 977 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 978 const char *func) { 979 struct xhci_hcd *xhci; 980 struct xhci_virt_device *virt_dev; 981 982 if (!hcd || (check_ep && !ep) || !udev) { 983 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 984 func); 985 return -EINVAL; 986 } 987 if (!udev->parent) { 988 printk(KERN_DEBUG "xHCI %s called for root hub\n", 989 func); 990 return 0; 991 } 992 993 xhci = hcd_to_xhci(hcd); 994 if (xhci->xhc_state & XHCI_STATE_HALTED) 995 return -ENODEV; 996 997 if (check_virt_dev) { 998 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 999 printk(KERN_DEBUG "xHCI %s called with unaddressed " 1000 "device\n", func); 1001 return -EINVAL; 1002 } 1003 1004 virt_dev = xhci->devs[udev->slot_id]; 1005 if (virt_dev->udev != udev) { 1006 printk(KERN_DEBUG "xHCI %s called with udev and " 1007 "virt_dev does not match\n", func); 1008 return -EINVAL; 1009 } 1010 } 1011 1012 return 1; 1013 } 1014 1015 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1016 struct usb_device *udev, struct xhci_command *command, 1017 bool ctx_change, bool must_succeed); 1018 1019 /* 1020 * Full speed devices may have a max packet size greater than 8 bytes, but the 1021 * USB core doesn't know that until it reads the first 8 bytes of the 1022 * descriptor. If the usb_device's max packet size changes after that point, 1023 * we need to issue an evaluate context command and wait on it. 1024 */ 1025 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1026 unsigned int ep_index, struct urb *urb) 1027 { 1028 struct xhci_container_ctx *in_ctx; 1029 struct xhci_container_ctx *out_ctx; 1030 struct xhci_input_control_ctx *ctrl_ctx; 1031 struct xhci_ep_ctx *ep_ctx; 1032 int max_packet_size; 1033 int hw_max_packet_size; 1034 int ret = 0; 1035 1036 out_ctx = xhci->devs[slot_id]->out_ctx; 1037 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1038 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1039 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1040 if (hw_max_packet_size != max_packet_size) { 1041 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 1042 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 1043 max_packet_size); 1044 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 1045 hw_max_packet_size); 1046 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 1047 1048 /* Set up the modified control endpoint 0 */ 1049 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1050 xhci->devs[slot_id]->out_ctx, ep_index); 1051 in_ctx = xhci->devs[slot_id]->in_ctx; 1052 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1053 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1054 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1055 1056 /* Set up the input context flags for the command */ 1057 /* FIXME: This won't work if a non-default control endpoint 1058 * changes max packet sizes. 1059 */ 1060 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1061 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1062 ctrl_ctx->drop_flags = 0; 1063 1064 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1065 xhci_dbg_ctx(xhci, in_ctx, ep_index); 1066 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1067 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1068 1069 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 1070 true, false); 1071 1072 /* Clean up the input context for later use by bandwidth 1073 * functions. 1074 */ 1075 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1076 } 1077 return ret; 1078 } 1079 1080 /* 1081 * non-error returns are a promise to giveback() the urb later 1082 * we drop ownership so next owner (or urb unlink) can get it 1083 */ 1084 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1085 { 1086 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1087 struct xhci_td *buffer; 1088 unsigned long flags; 1089 int ret = 0; 1090 unsigned int slot_id, ep_index; 1091 struct urb_priv *urb_priv; 1092 int size, i; 1093 1094 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1095 true, true, __func__) <= 0) 1096 return -EINVAL; 1097 1098 slot_id = urb->dev->slot_id; 1099 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1100 1101 if (!HCD_HW_ACCESSIBLE(hcd)) { 1102 if (!in_interrupt()) 1103 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1104 ret = -ESHUTDOWN; 1105 goto exit; 1106 } 1107 1108 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1109 size = urb->number_of_packets; 1110 else 1111 size = 1; 1112 1113 urb_priv = kzalloc(sizeof(struct urb_priv) + 1114 size * sizeof(struct xhci_td *), mem_flags); 1115 if (!urb_priv) 1116 return -ENOMEM; 1117 1118 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags); 1119 if (!buffer) { 1120 kfree(urb_priv); 1121 return -ENOMEM; 1122 } 1123 1124 for (i = 0; i < size; i++) { 1125 urb_priv->td[i] = buffer; 1126 buffer++; 1127 } 1128 1129 urb_priv->length = size; 1130 urb_priv->td_cnt = 0; 1131 urb->hcpriv = urb_priv; 1132 1133 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1134 /* Check to see if the max packet size for the default control 1135 * endpoint changed during FS device enumeration 1136 */ 1137 if (urb->dev->speed == USB_SPEED_FULL) { 1138 ret = xhci_check_maxpacket(xhci, slot_id, 1139 ep_index, urb); 1140 if (ret < 0) { 1141 xhci_urb_free_priv(xhci, urb_priv); 1142 urb->hcpriv = NULL; 1143 return ret; 1144 } 1145 } 1146 1147 /* We have a spinlock and interrupts disabled, so we must pass 1148 * atomic context to this function, which may allocate memory. 1149 */ 1150 spin_lock_irqsave(&xhci->lock, flags); 1151 if (xhci->xhc_state & XHCI_STATE_DYING) 1152 goto dying; 1153 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1154 slot_id, ep_index); 1155 if (ret) 1156 goto free_priv; 1157 spin_unlock_irqrestore(&xhci->lock, flags); 1158 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 1159 spin_lock_irqsave(&xhci->lock, flags); 1160 if (xhci->xhc_state & XHCI_STATE_DYING) 1161 goto dying; 1162 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1163 EP_GETTING_STREAMS) { 1164 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1165 "is transitioning to using streams.\n"); 1166 ret = -EINVAL; 1167 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 1168 EP_GETTING_NO_STREAMS) { 1169 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 1170 "is transitioning to " 1171 "not having streams.\n"); 1172 ret = -EINVAL; 1173 } else { 1174 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1175 slot_id, ep_index); 1176 } 1177 if (ret) 1178 goto free_priv; 1179 spin_unlock_irqrestore(&xhci->lock, flags); 1180 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 1181 spin_lock_irqsave(&xhci->lock, flags); 1182 if (xhci->xhc_state & XHCI_STATE_DYING) 1183 goto dying; 1184 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1185 slot_id, ep_index); 1186 if (ret) 1187 goto free_priv; 1188 spin_unlock_irqrestore(&xhci->lock, flags); 1189 } else { 1190 spin_lock_irqsave(&xhci->lock, flags); 1191 if (xhci->xhc_state & XHCI_STATE_DYING) 1192 goto dying; 1193 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1194 slot_id, ep_index); 1195 if (ret) 1196 goto free_priv; 1197 spin_unlock_irqrestore(&xhci->lock, flags); 1198 } 1199 exit: 1200 return ret; 1201 dying: 1202 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 1203 "non-responsive xHCI host.\n", 1204 urb->ep->desc.bEndpointAddress, urb); 1205 ret = -ESHUTDOWN; 1206 free_priv: 1207 xhci_urb_free_priv(xhci, urb_priv); 1208 urb->hcpriv = NULL; 1209 spin_unlock_irqrestore(&xhci->lock, flags); 1210 return ret; 1211 } 1212 1213 /* Get the right ring for the given URB. 1214 * If the endpoint supports streams, boundary check the URB's stream ID. 1215 * If the endpoint doesn't support streams, return the singular endpoint ring. 1216 */ 1217 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 1218 struct urb *urb) 1219 { 1220 unsigned int slot_id; 1221 unsigned int ep_index; 1222 unsigned int stream_id; 1223 struct xhci_virt_ep *ep; 1224 1225 slot_id = urb->dev->slot_id; 1226 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1227 stream_id = urb->stream_id; 1228 ep = &xhci->devs[slot_id]->eps[ep_index]; 1229 /* Common case: no streams */ 1230 if (!(ep->ep_state & EP_HAS_STREAMS)) 1231 return ep->ring; 1232 1233 if (stream_id == 0) { 1234 xhci_warn(xhci, 1235 "WARN: Slot ID %u, ep index %u has streams, " 1236 "but URB has no stream ID.\n", 1237 slot_id, ep_index); 1238 return NULL; 1239 } 1240 1241 if (stream_id < ep->stream_info->num_streams) 1242 return ep->stream_info->stream_rings[stream_id]; 1243 1244 xhci_warn(xhci, 1245 "WARN: Slot ID %u, ep index %u has " 1246 "stream IDs 1 to %u allocated, " 1247 "but stream ID %u is requested.\n", 1248 slot_id, ep_index, 1249 ep->stream_info->num_streams - 1, 1250 stream_id); 1251 return NULL; 1252 } 1253 1254 /* 1255 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1256 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1257 * should pick up where it left off in the TD, unless a Set Transfer Ring 1258 * Dequeue Pointer is issued. 1259 * 1260 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1261 * the ring. Since the ring is a contiguous structure, they can't be physically 1262 * removed. Instead, there are two options: 1263 * 1264 * 1) If the HC is in the middle of processing the URB to be canceled, we 1265 * simply move the ring's dequeue pointer past those TRBs using the Set 1266 * Transfer Ring Dequeue Pointer command. This will be the common case, 1267 * when drivers timeout on the last submitted URB and attempt to cancel. 1268 * 1269 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1270 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1271 * HC will need to invalidate the any TRBs it has cached after the stop 1272 * endpoint command, as noted in the xHCI 0.95 errata. 1273 * 1274 * 3) The TD may have completed by the time the Stop Endpoint Command 1275 * completes, so software needs to handle that case too. 1276 * 1277 * This function should protect against the TD enqueueing code ringing the 1278 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1279 * It also needs to account for multiple cancellations on happening at the same 1280 * time for the same endpoint. 1281 * 1282 * Note that this function can be called in any context, or so says 1283 * usb_hcd_unlink_urb() 1284 */ 1285 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1286 { 1287 unsigned long flags; 1288 int ret, i; 1289 u32 temp; 1290 struct xhci_hcd *xhci; 1291 struct urb_priv *urb_priv; 1292 struct xhci_td *td; 1293 unsigned int ep_index; 1294 struct xhci_ring *ep_ring; 1295 struct xhci_virt_ep *ep; 1296 1297 xhci = hcd_to_xhci(hcd); 1298 spin_lock_irqsave(&xhci->lock, flags); 1299 /* Make sure the URB hasn't completed or been unlinked already */ 1300 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1301 if (ret || !urb->hcpriv) 1302 goto done; 1303 temp = xhci_readl(xhci, &xhci->op_regs->status); 1304 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1305 xhci_dbg(xhci, "HW died, freeing TD.\n"); 1306 urb_priv = urb->hcpriv; 1307 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1308 td = urb_priv->td[i]; 1309 if (!list_empty(&td->td_list)) 1310 list_del_init(&td->td_list); 1311 if (!list_empty(&td->cancelled_td_list)) 1312 list_del_init(&td->cancelled_td_list); 1313 } 1314 1315 usb_hcd_unlink_urb_from_ep(hcd, urb); 1316 spin_unlock_irqrestore(&xhci->lock, flags); 1317 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1318 xhci_urb_free_priv(xhci, urb_priv); 1319 return ret; 1320 } 1321 if ((xhci->xhc_state & XHCI_STATE_DYING) || 1322 (xhci->xhc_state & XHCI_STATE_HALTED)) { 1323 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 1324 "non-responsive xHCI host.\n", 1325 urb->ep->desc.bEndpointAddress, urb); 1326 /* Let the stop endpoint command watchdog timer (which set this 1327 * state) finish cleaning up the endpoint TD lists. We must 1328 * have caught it in the middle of dropping a lock and giving 1329 * back an URB. 1330 */ 1331 goto done; 1332 } 1333 1334 xhci_dbg(xhci, "Cancel URB %p\n", urb); 1335 xhci_dbg(xhci, "Event ring:\n"); 1336 xhci_debug_ring(xhci, xhci->event_ring); 1337 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1338 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 1339 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1340 if (!ep_ring) { 1341 ret = -EINVAL; 1342 goto done; 1343 } 1344 1345 xhci_dbg(xhci, "Endpoint ring:\n"); 1346 xhci_debug_ring(xhci, ep_ring); 1347 1348 urb_priv = urb->hcpriv; 1349 1350 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 1351 td = urb_priv->td[i]; 1352 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1353 } 1354 1355 /* Queue a stop endpoint command, but only if this is 1356 * the first cancellation to be handled. 1357 */ 1358 if (!(ep->ep_state & EP_HALT_PENDING)) { 1359 ep->ep_state |= EP_HALT_PENDING; 1360 ep->stop_cmds_pending++; 1361 ep->stop_cmd_timer.expires = jiffies + 1362 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1363 add_timer(&ep->stop_cmd_timer); 1364 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); 1365 xhci_ring_cmd_db(xhci); 1366 } 1367 done: 1368 spin_unlock_irqrestore(&xhci->lock, flags); 1369 return ret; 1370 } 1371 1372 /* Drop an endpoint from a new bandwidth configuration for this device. 1373 * Only one call to this function is allowed per endpoint before 1374 * check_bandwidth() or reset_bandwidth() must be called. 1375 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1376 * add the endpoint to the schedule with possibly new parameters denoted by a 1377 * different endpoint descriptor in usb_host_endpoint. 1378 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1379 * not allowed. 1380 * 1381 * The USB core will not allow URBs to be queued to an endpoint that is being 1382 * disabled, so there's no need for mutual exclusion to protect 1383 * the xhci->devs[slot_id] structure. 1384 */ 1385 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1386 struct usb_host_endpoint *ep) 1387 { 1388 struct xhci_hcd *xhci; 1389 struct xhci_container_ctx *in_ctx, *out_ctx; 1390 struct xhci_input_control_ctx *ctrl_ctx; 1391 struct xhci_slot_ctx *slot_ctx; 1392 unsigned int last_ctx; 1393 unsigned int ep_index; 1394 struct xhci_ep_ctx *ep_ctx; 1395 u32 drop_flag; 1396 u32 new_add_flags, new_drop_flags, new_slot_info; 1397 int ret; 1398 1399 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1400 if (ret <= 0) 1401 return ret; 1402 xhci = hcd_to_xhci(hcd); 1403 if (xhci->xhc_state & XHCI_STATE_DYING) 1404 return -ENODEV; 1405 1406 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1407 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1408 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1409 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1410 __func__, drop_flag); 1411 return 0; 1412 } 1413 1414 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1415 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1416 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1417 ep_index = xhci_get_endpoint_index(&ep->desc); 1418 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1419 /* If the HC already knows the endpoint is disabled, 1420 * or the HCD has noted it is disabled, ignore this request 1421 */ 1422 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == 1423 cpu_to_le32(EP_STATE_DISABLED)) || 1424 le32_to_cpu(ctrl_ctx->drop_flags) & 1425 xhci_get_endpoint_flag(&ep->desc)) { 1426 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1427 __func__, ep); 1428 return 0; 1429 } 1430 1431 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1432 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1433 1434 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1435 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1436 1437 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); 1438 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1439 /* Update the last valid endpoint context, if we deleted the last one */ 1440 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > 1441 LAST_CTX(last_ctx)) { 1442 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1443 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1444 } 1445 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1446 1447 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1448 1449 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1450 (unsigned int) ep->desc.bEndpointAddress, 1451 udev->slot_id, 1452 (unsigned int) new_drop_flags, 1453 (unsigned int) new_add_flags, 1454 (unsigned int) new_slot_info); 1455 return 0; 1456 } 1457 1458 /* Add an endpoint to a new possible bandwidth configuration for this device. 1459 * Only one call to this function is allowed per endpoint before 1460 * check_bandwidth() or reset_bandwidth() must be called. 1461 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1462 * add the endpoint to the schedule with possibly new parameters denoted by a 1463 * different endpoint descriptor in usb_host_endpoint. 1464 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1465 * not allowed. 1466 * 1467 * The USB core will not allow URBs to be queued to an endpoint until the 1468 * configuration or alt setting is installed in the device, so there's no need 1469 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1470 */ 1471 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1472 struct usb_host_endpoint *ep) 1473 { 1474 struct xhci_hcd *xhci; 1475 struct xhci_container_ctx *in_ctx, *out_ctx; 1476 unsigned int ep_index; 1477 struct xhci_ep_ctx *ep_ctx; 1478 struct xhci_slot_ctx *slot_ctx; 1479 struct xhci_input_control_ctx *ctrl_ctx; 1480 u32 added_ctxs; 1481 unsigned int last_ctx; 1482 u32 new_add_flags, new_drop_flags, new_slot_info; 1483 struct xhci_virt_device *virt_dev; 1484 int ret = 0; 1485 1486 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1487 if (ret <= 0) { 1488 /* So we won't queue a reset ep command for a root hub */ 1489 ep->hcpriv = NULL; 1490 return ret; 1491 } 1492 xhci = hcd_to_xhci(hcd); 1493 if (xhci->xhc_state & XHCI_STATE_DYING) 1494 return -ENODEV; 1495 1496 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1497 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1498 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1499 /* FIXME when we have to issue an evaluate endpoint command to 1500 * deal with ep0 max packet size changing once we get the 1501 * descriptors 1502 */ 1503 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1504 __func__, added_ctxs); 1505 return 0; 1506 } 1507 1508 virt_dev = xhci->devs[udev->slot_id]; 1509 in_ctx = virt_dev->in_ctx; 1510 out_ctx = virt_dev->out_ctx; 1511 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1512 ep_index = xhci_get_endpoint_index(&ep->desc); 1513 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1514 1515 /* If this endpoint is already in use, and the upper layers are trying 1516 * to add it again without dropping it, reject the addition. 1517 */ 1518 if (virt_dev->eps[ep_index].ring && 1519 !(le32_to_cpu(ctrl_ctx->drop_flags) & 1520 xhci_get_endpoint_flag(&ep->desc))) { 1521 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1522 "without dropping it.\n", 1523 (unsigned int) ep->desc.bEndpointAddress); 1524 return -EINVAL; 1525 } 1526 1527 /* If the HCD has already noted the endpoint is enabled, 1528 * ignore this request. 1529 */ 1530 if (le32_to_cpu(ctrl_ctx->add_flags) & 1531 xhci_get_endpoint_flag(&ep->desc)) { 1532 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1533 __func__, ep); 1534 return 0; 1535 } 1536 1537 /* 1538 * Configuration and alternate setting changes must be done in 1539 * process context, not interrupt context (or so documenation 1540 * for usb_set_interface() and usb_set_configuration() claim). 1541 */ 1542 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1543 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1544 __func__, ep->desc.bEndpointAddress); 1545 return -ENOMEM; 1546 } 1547 1548 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1549 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1550 1551 /* If xhci_endpoint_disable() was called for this endpoint, but the 1552 * xHC hasn't been notified yet through the check_bandwidth() call, 1553 * this re-adds a new state for the endpoint from the new endpoint 1554 * descriptors. We must drop and re-add this endpoint, so we leave the 1555 * drop flags alone. 1556 */ 1557 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1558 1559 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1560 /* Update the last valid endpoint context, if we just added one past */ 1561 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < 1562 LAST_CTX(last_ctx)) { 1563 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1564 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); 1565 } 1566 new_slot_info = le32_to_cpu(slot_ctx->dev_info); 1567 1568 /* Store the usb_device pointer for later use */ 1569 ep->hcpriv = udev; 1570 1571 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1572 (unsigned int) ep->desc.bEndpointAddress, 1573 udev->slot_id, 1574 (unsigned int) new_drop_flags, 1575 (unsigned int) new_add_flags, 1576 (unsigned int) new_slot_info); 1577 return 0; 1578 } 1579 1580 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1581 { 1582 struct xhci_input_control_ctx *ctrl_ctx; 1583 struct xhci_ep_ctx *ep_ctx; 1584 struct xhci_slot_ctx *slot_ctx; 1585 int i; 1586 1587 /* When a device's add flag and drop flag are zero, any subsequent 1588 * configure endpoint command will leave that endpoint's state 1589 * untouched. Make sure we don't leave any old state in the input 1590 * endpoint contexts. 1591 */ 1592 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1593 ctrl_ctx->drop_flags = 0; 1594 ctrl_ctx->add_flags = 0; 1595 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1596 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1597 /* Endpoint 0 is always valid */ 1598 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1599 for (i = 1; i < 31; ++i) { 1600 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1601 ep_ctx->ep_info = 0; 1602 ep_ctx->ep_info2 = 0; 1603 ep_ctx->deq = 0; 1604 ep_ctx->tx_info = 0; 1605 } 1606 } 1607 1608 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1609 struct usb_device *udev, u32 *cmd_status) 1610 { 1611 int ret; 1612 1613 switch (*cmd_status) { 1614 case COMP_ENOMEM: 1615 dev_warn(&udev->dev, "Not enough host controller resources " 1616 "for new device state.\n"); 1617 ret = -ENOMEM; 1618 /* FIXME: can we allocate more resources for the HC? */ 1619 break; 1620 case COMP_BW_ERR: 1621 dev_warn(&udev->dev, "Not enough bandwidth " 1622 "for new device state.\n"); 1623 ret = -ENOSPC; 1624 /* FIXME: can we go back to the old state? */ 1625 break; 1626 case COMP_TRB_ERR: 1627 /* the HCD set up something wrong */ 1628 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1629 "add flag = 1, " 1630 "and endpoint is not disabled.\n"); 1631 ret = -EINVAL; 1632 break; 1633 case COMP_DEV_ERR: 1634 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint " 1635 "configure command.\n"); 1636 ret = -ENODEV; 1637 break; 1638 case COMP_SUCCESS: 1639 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1640 ret = 0; 1641 break; 1642 default: 1643 xhci_err(xhci, "ERROR: unexpected command completion " 1644 "code 0x%x.\n", *cmd_status); 1645 ret = -EINVAL; 1646 break; 1647 } 1648 return ret; 1649 } 1650 1651 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1652 struct usb_device *udev, u32 *cmd_status) 1653 { 1654 int ret; 1655 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1656 1657 switch (*cmd_status) { 1658 case COMP_EINVAL: 1659 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1660 "context command.\n"); 1661 ret = -EINVAL; 1662 break; 1663 case COMP_EBADSLT: 1664 dev_warn(&udev->dev, "WARN: slot not enabled for" 1665 "evaluate context command.\n"); 1666 case COMP_CTX_STATE: 1667 dev_warn(&udev->dev, "WARN: invalid context state for " 1668 "evaluate context command.\n"); 1669 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1670 ret = -EINVAL; 1671 break; 1672 case COMP_DEV_ERR: 1673 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate " 1674 "context command.\n"); 1675 ret = -ENODEV; 1676 break; 1677 case COMP_MEL_ERR: 1678 /* Max Exit Latency too large error */ 1679 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1680 ret = -EINVAL; 1681 break; 1682 case COMP_SUCCESS: 1683 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1684 ret = 0; 1685 break; 1686 default: 1687 xhci_err(xhci, "ERROR: unexpected command completion " 1688 "code 0x%x.\n", *cmd_status); 1689 ret = -EINVAL; 1690 break; 1691 } 1692 return ret; 1693 } 1694 1695 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1696 struct xhci_container_ctx *in_ctx) 1697 { 1698 struct xhci_input_control_ctx *ctrl_ctx; 1699 u32 valid_add_flags; 1700 u32 valid_drop_flags; 1701 1702 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1703 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1704 * (bit 1). The default control endpoint is added during the Address 1705 * Device command and is never removed until the slot is disabled. 1706 */ 1707 valid_add_flags = ctrl_ctx->add_flags >> 2; 1708 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1709 1710 /* Use hweight32 to count the number of ones in the add flags, or 1711 * number of endpoints added. Don't count endpoints that are changed 1712 * (both added and dropped). 1713 */ 1714 return hweight32(valid_add_flags) - 1715 hweight32(valid_add_flags & valid_drop_flags); 1716 } 1717 1718 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1719 struct xhci_container_ctx *in_ctx) 1720 { 1721 struct xhci_input_control_ctx *ctrl_ctx; 1722 u32 valid_add_flags; 1723 u32 valid_drop_flags; 1724 1725 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1726 valid_add_flags = ctrl_ctx->add_flags >> 2; 1727 valid_drop_flags = ctrl_ctx->drop_flags >> 2; 1728 1729 return hweight32(valid_drop_flags) - 1730 hweight32(valid_add_flags & valid_drop_flags); 1731 } 1732 1733 /* 1734 * We need to reserve the new number of endpoints before the configure endpoint 1735 * command completes. We can't subtract the dropped endpoints from the number 1736 * of active endpoints until the command completes because we can oversubscribe 1737 * the host in this case: 1738 * 1739 * - the first configure endpoint command drops more endpoints than it adds 1740 * - a second configure endpoint command that adds more endpoints is queued 1741 * - the first configure endpoint command fails, so the config is unchanged 1742 * - the second command may succeed, even though there isn't enough resources 1743 * 1744 * Must be called with xhci->lock held. 1745 */ 1746 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1747 struct xhci_container_ctx *in_ctx) 1748 { 1749 u32 added_eps; 1750 1751 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1752 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1753 xhci_dbg(xhci, "Not enough ep ctxs: " 1754 "%u active, need to add %u, limit is %u.\n", 1755 xhci->num_active_eps, added_eps, 1756 xhci->limit_active_eps); 1757 return -ENOMEM; 1758 } 1759 xhci->num_active_eps += added_eps; 1760 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps, 1761 xhci->num_active_eps); 1762 return 0; 1763 } 1764 1765 /* 1766 * The configure endpoint was failed by the xHC for some other reason, so we 1767 * need to revert the resources that failed configuration would have used. 1768 * 1769 * Must be called with xhci->lock held. 1770 */ 1771 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1772 struct xhci_container_ctx *in_ctx) 1773 { 1774 u32 num_failed_eps; 1775 1776 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx); 1777 xhci->num_active_eps -= num_failed_eps; 1778 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n", 1779 num_failed_eps, 1780 xhci->num_active_eps); 1781 } 1782 1783 /* 1784 * Now that the command has completed, clean up the active endpoint count by 1785 * subtracting out the endpoints that were dropped (but not changed). 1786 * 1787 * Must be called with xhci->lock held. 1788 */ 1789 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1790 struct xhci_container_ctx *in_ctx) 1791 { 1792 u32 num_dropped_eps; 1793 1794 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx); 1795 xhci->num_active_eps -= num_dropped_eps; 1796 if (num_dropped_eps) 1797 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n", 1798 num_dropped_eps, 1799 xhci->num_active_eps); 1800 } 1801 1802 unsigned int xhci_get_block_size(struct usb_device *udev) 1803 { 1804 switch (udev->speed) { 1805 case USB_SPEED_LOW: 1806 case USB_SPEED_FULL: 1807 return FS_BLOCK; 1808 case USB_SPEED_HIGH: 1809 return HS_BLOCK; 1810 case USB_SPEED_SUPER: 1811 return SS_BLOCK; 1812 case USB_SPEED_UNKNOWN: 1813 case USB_SPEED_WIRELESS: 1814 default: 1815 /* Should never happen */ 1816 return 1; 1817 } 1818 } 1819 1820 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1821 { 1822 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1823 return LS_OVERHEAD; 1824 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1825 return FS_OVERHEAD; 1826 return HS_OVERHEAD; 1827 } 1828 1829 /* If we are changing a LS/FS device under a HS hub, 1830 * make sure (if we are activating a new TT) that the HS bus has enough 1831 * bandwidth for this new TT. 1832 */ 1833 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 1834 struct xhci_virt_device *virt_dev, 1835 int old_active_eps) 1836 { 1837 struct xhci_interval_bw_table *bw_table; 1838 struct xhci_tt_bw_info *tt_info; 1839 1840 /* Find the bandwidth table for the root port this TT is attached to. */ 1841 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 1842 tt_info = virt_dev->tt_info; 1843 /* If this TT already had active endpoints, the bandwidth for this TT 1844 * has already been added. Removing all periodic endpoints (and thus 1845 * making the TT enactive) will only decrease the bandwidth used. 1846 */ 1847 if (old_active_eps) 1848 return 0; 1849 if (old_active_eps == 0 && tt_info->active_eps != 0) { 1850 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 1851 return -ENOMEM; 1852 return 0; 1853 } 1854 /* Not sure why we would have no new active endpoints... 1855 * 1856 * Maybe because of an Evaluate Context change for a hub update or a 1857 * control endpoint 0 max packet size change? 1858 * FIXME: skip the bandwidth calculation in that case. 1859 */ 1860 return 0; 1861 } 1862 1863 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 1864 struct xhci_virt_device *virt_dev) 1865 { 1866 unsigned int bw_reserved; 1867 1868 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 1869 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 1870 return -ENOMEM; 1871 1872 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 1873 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 1874 return -ENOMEM; 1875 1876 return 0; 1877 } 1878 1879 /* 1880 * This algorithm is a very conservative estimate of the worst-case scheduling 1881 * scenario for any one interval. The hardware dynamically schedules the 1882 * packets, so we can't tell which microframe could be the limiting factor in 1883 * the bandwidth scheduling. This only takes into account periodic endpoints. 1884 * 1885 * Obviously, we can't solve an NP complete problem to find the minimum worst 1886 * case scenario. Instead, we come up with an estimate that is no less than 1887 * the worst case bandwidth used for any one microframe, but may be an 1888 * over-estimate. 1889 * 1890 * We walk the requirements for each endpoint by interval, starting with the 1891 * smallest interval, and place packets in the schedule where there is only one 1892 * possible way to schedule packets for that interval. In order to simplify 1893 * this algorithm, we record the largest max packet size for each interval, and 1894 * assume all packets will be that size. 1895 * 1896 * For interval 0, we obviously must schedule all packets for each interval. 1897 * The bandwidth for interval 0 is just the amount of data to be transmitted 1898 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 1899 * the number of packets). 1900 * 1901 * For interval 1, we have two possible microframes to schedule those packets 1902 * in. For this algorithm, if we can schedule the same number of packets for 1903 * each possible scheduling opportunity (each microframe), we will do so. The 1904 * remaining number of packets will be saved to be transmitted in the gaps in 1905 * the next interval's scheduling sequence. 1906 * 1907 * As we move those remaining packets to be scheduled with interval 2 packets, 1908 * we have to double the number of remaining packets to transmit. This is 1909 * because the intervals are actually powers of 2, and we would be transmitting 1910 * the previous interval's packets twice in this interval. We also have to be 1911 * sure that when we look at the largest max packet size for this interval, we 1912 * also look at the largest max packet size for the remaining packets and take 1913 * the greater of the two. 1914 * 1915 * The algorithm continues to evenly distribute packets in each scheduling 1916 * opportunity, and push the remaining packets out, until we get to the last 1917 * interval. Then those packets and their associated overhead are just added 1918 * to the bandwidth used. 1919 */ 1920 static int xhci_check_bw_table(struct xhci_hcd *xhci, 1921 struct xhci_virt_device *virt_dev, 1922 int old_active_eps) 1923 { 1924 unsigned int bw_reserved; 1925 unsigned int max_bandwidth; 1926 unsigned int bw_used; 1927 unsigned int block_size; 1928 struct xhci_interval_bw_table *bw_table; 1929 unsigned int packet_size = 0; 1930 unsigned int overhead = 0; 1931 unsigned int packets_transmitted = 0; 1932 unsigned int packets_remaining = 0; 1933 unsigned int i; 1934 1935 if (virt_dev->udev->speed == USB_SPEED_SUPER) 1936 return xhci_check_ss_bw(xhci, virt_dev); 1937 1938 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 1939 max_bandwidth = HS_BW_LIMIT; 1940 /* Convert percent of bus BW reserved to blocks reserved */ 1941 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 1942 } else { 1943 max_bandwidth = FS_BW_LIMIT; 1944 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 1945 } 1946 1947 bw_table = virt_dev->bw_table; 1948 /* We need to translate the max packet size and max ESIT payloads into 1949 * the units the hardware uses. 1950 */ 1951 block_size = xhci_get_block_size(virt_dev->udev); 1952 1953 /* If we are manipulating a LS/FS device under a HS hub, double check 1954 * that the HS bus has enough bandwidth if we are activing a new TT. 1955 */ 1956 if (virt_dev->tt_info) { 1957 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1958 virt_dev->real_port); 1959 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 1960 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 1961 "newly activated TT.\n"); 1962 return -ENOMEM; 1963 } 1964 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n", 1965 virt_dev->tt_info->slot_id, 1966 virt_dev->tt_info->ttport); 1967 } else { 1968 xhci_dbg(xhci, "Recalculating BW for rootport %u\n", 1969 virt_dev->real_port); 1970 } 1971 1972 /* Add in how much bandwidth will be used for interval zero, or the 1973 * rounded max ESIT payload + number of packets * largest overhead. 1974 */ 1975 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 1976 bw_table->interval_bw[0].num_packets * 1977 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 1978 1979 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 1980 unsigned int bw_added; 1981 unsigned int largest_mps; 1982 unsigned int interval_overhead; 1983 1984 /* 1985 * How many packets could we transmit in this interval? 1986 * If packets didn't fit in the previous interval, we will need 1987 * to transmit that many packets twice within this interval. 1988 */ 1989 packets_remaining = 2 * packets_remaining + 1990 bw_table->interval_bw[i].num_packets; 1991 1992 /* Find the largest max packet size of this or the previous 1993 * interval. 1994 */ 1995 if (list_empty(&bw_table->interval_bw[i].endpoints)) 1996 largest_mps = 0; 1997 else { 1998 struct xhci_virt_ep *virt_ep; 1999 struct list_head *ep_entry; 2000 2001 ep_entry = bw_table->interval_bw[i].endpoints.next; 2002 virt_ep = list_entry(ep_entry, 2003 struct xhci_virt_ep, bw_endpoint_list); 2004 /* Convert to blocks, rounding up */ 2005 largest_mps = DIV_ROUND_UP( 2006 virt_ep->bw_info.max_packet_size, 2007 block_size); 2008 } 2009 if (largest_mps > packet_size) 2010 packet_size = largest_mps; 2011 2012 /* Use the larger overhead of this or the previous interval. */ 2013 interval_overhead = xhci_get_largest_overhead( 2014 &bw_table->interval_bw[i]); 2015 if (interval_overhead > overhead) 2016 overhead = interval_overhead; 2017 2018 /* How many packets can we evenly distribute across 2019 * (1 << (i + 1)) possible scheduling opportunities? 2020 */ 2021 packets_transmitted = packets_remaining >> (i + 1); 2022 2023 /* Add in the bandwidth used for those scheduled packets */ 2024 bw_added = packets_transmitted * (overhead + packet_size); 2025 2026 /* How many packets do we have remaining to transmit? */ 2027 packets_remaining = packets_remaining % (1 << (i + 1)); 2028 2029 /* What largest max packet size should those packets have? */ 2030 /* If we've transmitted all packets, don't carry over the 2031 * largest packet size. 2032 */ 2033 if (packets_remaining == 0) { 2034 packet_size = 0; 2035 overhead = 0; 2036 } else if (packets_transmitted > 0) { 2037 /* Otherwise if we do have remaining packets, and we've 2038 * scheduled some packets in this interval, take the 2039 * largest max packet size from endpoints with this 2040 * interval. 2041 */ 2042 packet_size = largest_mps; 2043 overhead = interval_overhead; 2044 } 2045 /* Otherwise carry over packet_size and overhead from the last 2046 * time we had a remainder. 2047 */ 2048 bw_used += bw_added; 2049 if (bw_used > max_bandwidth) { 2050 xhci_warn(xhci, "Not enough bandwidth. " 2051 "Proposed: %u, Max: %u\n", 2052 bw_used, max_bandwidth); 2053 return -ENOMEM; 2054 } 2055 } 2056 /* 2057 * Ok, we know we have some packets left over after even-handedly 2058 * scheduling interval 15. We don't know which microframes they will 2059 * fit into, so we over-schedule and say they will be scheduled every 2060 * microframe. 2061 */ 2062 if (packets_remaining > 0) 2063 bw_used += overhead + packet_size; 2064 2065 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2066 unsigned int port_index = virt_dev->real_port - 1; 2067 2068 /* OK, we're manipulating a HS device attached to a 2069 * root port bandwidth domain. Include the number of active TTs 2070 * in the bandwidth used. 2071 */ 2072 bw_used += TT_HS_OVERHEAD * 2073 xhci->rh_bw[port_index].num_active_tts; 2074 } 2075 2076 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2077 "Available: %u " "percent\n", 2078 bw_used, max_bandwidth, bw_reserved, 2079 (max_bandwidth - bw_used - bw_reserved) * 100 / 2080 max_bandwidth); 2081 2082 bw_used += bw_reserved; 2083 if (bw_used > max_bandwidth) { 2084 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2085 bw_used, max_bandwidth); 2086 return -ENOMEM; 2087 } 2088 2089 bw_table->bw_used = bw_used; 2090 return 0; 2091 } 2092 2093 static bool xhci_is_async_ep(unsigned int ep_type) 2094 { 2095 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2096 ep_type != ISOC_IN_EP && 2097 ep_type != INT_IN_EP); 2098 } 2099 2100 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2101 { 2102 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP); 2103 } 2104 2105 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2106 { 2107 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2108 2109 if (ep_bw->ep_interval == 0) 2110 return SS_OVERHEAD_BURST + 2111 (ep_bw->mult * ep_bw->num_packets * 2112 (SS_OVERHEAD + mps)); 2113 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2114 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2115 1 << ep_bw->ep_interval); 2116 2117 } 2118 2119 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2120 struct xhci_bw_info *ep_bw, 2121 struct xhci_interval_bw_table *bw_table, 2122 struct usb_device *udev, 2123 struct xhci_virt_ep *virt_ep, 2124 struct xhci_tt_bw_info *tt_info) 2125 { 2126 struct xhci_interval_bw *interval_bw; 2127 int normalized_interval; 2128 2129 if (xhci_is_async_ep(ep_bw->type)) 2130 return; 2131 2132 if (udev->speed == USB_SPEED_SUPER) { 2133 if (xhci_is_sync_in_ep(ep_bw->type)) 2134 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2135 xhci_get_ss_bw_consumed(ep_bw); 2136 else 2137 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2138 xhci_get_ss_bw_consumed(ep_bw); 2139 return; 2140 } 2141 2142 /* SuperSpeed endpoints never get added to intervals in the table, so 2143 * this check is only valid for HS/FS/LS devices. 2144 */ 2145 if (list_empty(&virt_ep->bw_endpoint_list)) 2146 return; 2147 /* For LS/FS devices, we need to translate the interval expressed in 2148 * microframes to frames. 2149 */ 2150 if (udev->speed == USB_SPEED_HIGH) 2151 normalized_interval = ep_bw->ep_interval; 2152 else 2153 normalized_interval = ep_bw->ep_interval - 3; 2154 2155 if (normalized_interval == 0) 2156 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2157 interval_bw = &bw_table->interval_bw[normalized_interval]; 2158 interval_bw->num_packets -= ep_bw->num_packets; 2159 switch (udev->speed) { 2160 case USB_SPEED_LOW: 2161 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2162 break; 2163 case USB_SPEED_FULL: 2164 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2165 break; 2166 case USB_SPEED_HIGH: 2167 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2168 break; 2169 case USB_SPEED_SUPER: 2170 case USB_SPEED_UNKNOWN: 2171 case USB_SPEED_WIRELESS: 2172 /* Should never happen because only LS/FS/HS endpoints will get 2173 * added to the endpoint list. 2174 */ 2175 return; 2176 } 2177 if (tt_info) 2178 tt_info->active_eps -= 1; 2179 list_del_init(&virt_ep->bw_endpoint_list); 2180 } 2181 2182 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2183 struct xhci_bw_info *ep_bw, 2184 struct xhci_interval_bw_table *bw_table, 2185 struct usb_device *udev, 2186 struct xhci_virt_ep *virt_ep, 2187 struct xhci_tt_bw_info *tt_info) 2188 { 2189 struct xhci_interval_bw *interval_bw; 2190 struct xhci_virt_ep *smaller_ep; 2191 int normalized_interval; 2192 2193 if (xhci_is_async_ep(ep_bw->type)) 2194 return; 2195 2196 if (udev->speed == USB_SPEED_SUPER) { 2197 if (xhci_is_sync_in_ep(ep_bw->type)) 2198 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2199 xhci_get_ss_bw_consumed(ep_bw); 2200 else 2201 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2202 xhci_get_ss_bw_consumed(ep_bw); 2203 return; 2204 } 2205 2206 /* For LS/FS devices, we need to translate the interval expressed in 2207 * microframes to frames. 2208 */ 2209 if (udev->speed == USB_SPEED_HIGH) 2210 normalized_interval = ep_bw->ep_interval; 2211 else 2212 normalized_interval = ep_bw->ep_interval - 3; 2213 2214 if (normalized_interval == 0) 2215 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2216 interval_bw = &bw_table->interval_bw[normalized_interval]; 2217 interval_bw->num_packets += ep_bw->num_packets; 2218 switch (udev->speed) { 2219 case USB_SPEED_LOW: 2220 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2221 break; 2222 case USB_SPEED_FULL: 2223 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2224 break; 2225 case USB_SPEED_HIGH: 2226 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2227 break; 2228 case USB_SPEED_SUPER: 2229 case USB_SPEED_UNKNOWN: 2230 case USB_SPEED_WIRELESS: 2231 /* Should never happen because only LS/FS/HS endpoints will get 2232 * added to the endpoint list. 2233 */ 2234 return; 2235 } 2236 2237 if (tt_info) 2238 tt_info->active_eps += 1; 2239 /* Insert the endpoint into the list, largest max packet size first. */ 2240 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2241 bw_endpoint_list) { 2242 if (ep_bw->max_packet_size >= 2243 smaller_ep->bw_info.max_packet_size) { 2244 /* Add the new ep before the smaller endpoint */ 2245 list_add_tail(&virt_ep->bw_endpoint_list, 2246 &smaller_ep->bw_endpoint_list); 2247 return; 2248 } 2249 } 2250 /* Add the new endpoint at the end of the list. */ 2251 list_add_tail(&virt_ep->bw_endpoint_list, 2252 &interval_bw->endpoints); 2253 } 2254 2255 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2256 struct xhci_virt_device *virt_dev, 2257 int old_active_eps) 2258 { 2259 struct xhci_root_port_bw_info *rh_bw_info; 2260 if (!virt_dev->tt_info) 2261 return; 2262 2263 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2264 if (old_active_eps == 0 && 2265 virt_dev->tt_info->active_eps != 0) { 2266 rh_bw_info->num_active_tts += 1; 2267 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2268 } else if (old_active_eps != 0 && 2269 virt_dev->tt_info->active_eps == 0) { 2270 rh_bw_info->num_active_tts -= 1; 2271 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2272 } 2273 } 2274 2275 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2276 struct xhci_virt_device *virt_dev, 2277 struct xhci_container_ctx *in_ctx) 2278 { 2279 struct xhci_bw_info ep_bw_info[31]; 2280 int i; 2281 struct xhci_input_control_ctx *ctrl_ctx; 2282 int old_active_eps = 0; 2283 2284 if (virt_dev->tt_info) 2285 old_active_eps = virt_dev->tt_info->active_eps; 2286 2287 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2288 2289 for (i = 0; i < 31; i++) { 2290 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2291 continue; 2292 2293 /* Make a copy of the BW info in case we need to revert this */ 2294 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2295 sizeof(ep_bw_info[i])); 2296 /* Drop the endpoint from the interval table if the endpoint is 2297 * being dropped or changed. 2298 */ 2299 if (EP_IS_DROPPED(ctrl_ctx, i)) 2300 xhci_drop_ep_from_interval_table(xhci, 2301 &virt_dev->eps[i].bw_info, 2302 virt_dev->bw_table, 2303 virt_dev->udev, 2304 &virt_dev->eps[i], 2305 virt_dev->tt_info); 2306 } 2307 /* Overwrite the information stored in the endpoints' bw_info */ 2308 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2309 for (i = 0; i < 31; i++) { 2310 /* Add any changed or added endpoints to the interval table */ 2311 if (EP_IS_ADDED(ctrl_ctx, i)) 2312 xhci_add_ep_to_interval_table(xhci, 2313 &virt_dev->eps[i].bw_info, 2314 virt_dev->bw_table, 2315 virt_dev->udev, 2316 &virt_dev->eps[i], 2317 virt_dev->tt_info); 2318 } 2319 2320 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2321 /* Ok, this fits in the bandwidth we have. 2322 * Update the number of active TTs. 2323 */ 2324 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2325 return 0; 2326 } 2327 2328 /* We don't have enough bandwidth for this, revert the stored info. */ 2329 for (i = 0; i < 31; i++) { 2330 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2331 continue; 2332 2333 /* Drop the new copies of any added or changed endpoints from 2334 * the interval table. 2335 */ 2336 if (EP_IS_ADDED(ctrl_ctx, i)) { 2337 xhci_drop_ep_from_interval_table(xhci, 2338 &virt_dev->eps[i].bw_info, 2339 virt_dev->bw_table, 2340 virt_dev->udev, 2341 &virt_dev->eps[i], 2342 virt_dev->tt_info); 2343 } 2344 /* Revert the endpoint back to its old information */ 2345 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2346 sizeof(ep_bw_info[i])); 2347 /* Add any changed or dropped endpoints back into the table */ 2348 if (EP_IS_DROPPED(ctrl_ctx, i)) 2349 xhci_add_ep_to_interval_table(xhci, 2350 &virt_dev->eps[i].bw_info, 2351 virt_dev->bw_table, 2352 virt_dev->udev, 2353 &virt_dev->eps[i], 2354 virt_dev->tt_info); 2355 } 2356 return -ENOMEM; 2357 } 2358 2359 2360 /* Issue a configure endpoint command or evaluate context command 2361 * and wait for it to finish. 2362 */ 2363 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2364 struct usb_device *udev, 2365 struct xhci_command *command, 2366 bool ctx_change, bool must_succeed) 2367 { 2368 int ret; 2369 int timeleft; 2370 unsigned long flags; 2371 struct xhci_container_ctx *in_ctx; 2372 struct completion *cmd_completion; 2373 u32 *cmd_status; 2374 struct xhci_virt_device *virt_dev; 2375 2376 spin_lock_irqsave(&xhci->lock, flags); 2377 virt_dev = xhci->devs[udev->slot_id]; 2378 2379 if (command) 2380 in_ctx = command->in_ctx; 2381 else 2382 in_ctx = virt_dev->in_ctx; 2383 2384 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2385 xhci_reserve_host_resources(xhci, in_ctx)) { 2386 spin_unlock_irqrestore(&xhci->lock, flags); 2387 xhci_warn(xhci, "Not enough host resources, " 2388 "active endpoint contexts = %u\n", 2389 xhci->num_active_eps); 2390 return -ENOMEM; 2391 } 2392 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2393 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) { 2394 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2395 xhci_free_host_resources(xhci, in_ctx); 2396 spin_unlock_irqrestore(&xhci->lock, flags); 2397 xhci_warn(xhci, "Not enough bandwidth\n"); 2398 return -ENOMEM; 2399 } 2400 2401 if (command) { 2402 cmd_completion = command->completion; 2403 cmd_status = &command->status; 2404 command->command_trb = xhci->cmd_ring->enqueue; 2405 2406 /* Enqueue pointer can be left pointing to the link TRB, 2407 * we must handle that 2408 */ 2409 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control)) 2410 command->command_trb = 2411 xhci->cmd_ring->enq_seg->next->trbs; 2412 2413 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 2414 } else { 2415 cmd_completion = &virt_dev->cmd_completion; 2416 cmd_status = &virt_dev->cmd_status; 2417 } 2418 init_completion(cmd_completion); 2419 2420 if (!ctx_change) 2421 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 2422 udev->slot_id, must_succeed); 2423 else 2424 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 2425 udev->slot_id); 2426 if (ret < 0) { 2427 if (command) 2428 list_del(&command->cmd_list); 2429 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2430 xhci_free_host_resources(xhci, in_ctx); 2431 spin_unlock_irqrestore(&xhci->lock, flags); 2432 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 2433 return -ENOMEM; 2434 } 2435 xhci_ring_cmd_db(xhci); 2436 spin_unlock_irqrestore(&xhci->lock, flags); 2437 2438 /* Wait for the configure endpoint command to complete */ 2439 timeleft = wait_for_completion_interruptible_timeout( 2440 cmd_completion, 2441 USB_CTRL_SET_TIMEOUT); 2442 if (timeleft <= 0) { 2443 xhci_warn(xhci, "%s while waiting for %s command\n", 2444 timeleft == 0 ? "Timeout" : "Signal", 2445 ctx_change == 0 ? 2446 "configure endpoint" : 2447 "evaluate context"); 2448 /* FIXME cancel the configure endpoint command */ 2449 return -ETIME; 2450 } 2451 2452 if (!ctx_change) 2453 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status); 2454 else 2455 ret = xhci_evaluate_context_result(xhci, udev, cmd_status); 2456 2457 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2458 spin_lock_irqsave(&xhci->lock, flags); 2459 /* If the command failed, remove the reserved resources. 2460 * Otherwise, clean up the estimate to include dropped eps. 2461 */ 2462 if (ret) 2463 xhci_free_host_resources(xhci, in_ctx); 2464 else 2465 xhci_finish_resource_reservation(xhci, in_ctx); 2466 spin_unlock_irqrestore(&xhci->lock, flags); 2467 } 2468 return ret; 2469 } 2470 2471 /* Called after one or more calls to xhci_add_endpoint() or 2472 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2473 * to call xhci_reset_bandwidth(). 2474 * 2475 * Since we are in the middle of changing either configuration or 2476 * installing a new alt setting, the USB core won't allow URBs to be 2477 * enqueued for any endpoint on the old config or interface. Nothing 2478 * else should be touching the xhci->devs[slot_id] structure, so we 2479 * don't need to take the xhci->lock for manipulating that. 2480 */ 2481 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2482 { 2483 int i; 2484 int ret = 0; 2485 struct xhci_hcd *xhci; 2486 struct xhci_virt_device *virt_dev; 2487 struct xhci_input_control_ctx *ctrl_ctx; 2488 struct xhci_slot_ctx *slot_ctx; 2489 2490 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2491 if (ret <= 0) 2492 return ret; 2493 xhci = hcd_to_xhci(hcd); 2494 if (xhci->xhc_state & XHCI_STATE_DYING) 2495 return -ENODEV; 2496 2497 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2498 virt_dev = xhci->devs[udev->slot_id]; 2499 2500 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2501 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2502 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2503 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2504 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2505 2506 /* Don't issue the command if there's no endpoints to update. */ 2507 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2508 ctrl_ctx->drop_flags == 0) 2509 return 0; 2510 2511 xhci_dbg(xhci, "New Input Control Context:\n"); 2512 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2513 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2514 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2515 2516 ret = xhci_configure_endpoint(xhci, udev, NULL, 2517 false, false); 2518 if (ret) { 2519 /* Callee should call reset_bandwidth() */ 2520 return ret; 2521 } 2522 2523 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2524 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2525 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2526 2527 /* Free any rings that were dropped, but not changed. */ 2528 for (i = 1; i < 31; ++i) { 2529 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2530 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) 2531 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2532 } 2533 xhci_zero_in_ctx(xhci, virt_dev); 2534 /* 2535 * Install any rings for completely new endpoints or changed endpoints, 2536 * and free or cache any old rings from changed endpoints. 2537 */ 2538 for (i = 1; i < 31; ++i) { 2539 if (!virt_dev->eps[i].new_ring) 2540 continue; 2541 /* Only cache or free the old ring if it exists. 2542 * It may not if this is the first add of an endpoint. 2543 */ 2544 if (virt_dev->eps[i].ring) { 2545 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2546 } 2547 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2548 virt_dev->eps[i].new_ring = NULL; 2549 } 2550 2551 return ret; 2552 } 2553 2554 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2555 { 2556 struct xhci_hcd *xhci; 2557 struct xhci_virt_device *virt_dev; 2558 int i, ret; 2559 2560 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2561 if (ret <= 0) 2562 return; 2563 xhci = hcd_to_xhci(hcd); 2564 2565 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2566 virt_dev = xhci->devs[udev->slot_id]; 2567 /* Free any rings allocated for added endpoints */ 2568 for (i = 0; i < 31; ++i) { 2569 if (virt_dev->eps[i].new_ring) { 2570 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2571 virt_dev->eps[i].new_ring = NULL; 2572 } 2573 } 2574 xhci_zero_in_ctx(xhci, virt_dev); 2575 } 2576 2577 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2578 struct xhci_container_ctx *in_ctx, 2579 struct xhci_container_ctx *out_ctx, 2580 u32 add_flags, u32 drop_flags) 2581 { 2582 struct xhci_input_control_ctx *ctrl_ctx; 2583 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 2584 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2585 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2586 xhci_slot_copy(xhci, in_ctx, out_ctx); 2587 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2588 2589 xhci_dbg(xhci, "Input Context:\n"); 2590 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2591 } 2592 2593 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2594 unsigned int slot_id, unsigned int ep_index, 2595 struct xhci_dequeue_state *deq_state) 2596 { 2597 struct xhci_container_ctx *in_ctx; 2598 struct xhci_ep_ctx *ep_ctx; 2599 u32 added_ctxs; 2600 dma_addr_t addr; 2601 2602 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2603 xhci->devs[slot_id]->out_ctx, ep_index); 2604 in_ctx = xhci->devs[slot_id]->in_ctx; 2605 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2606 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2607 deq_state->new_deq_ptr); 2608 if (addr == 0) { 2609 xhci_warn(xhci, "WARN Cannot submit config ep after " 2610 "reset ep command\n"); 2611 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2612 deq_state->new_deq_seg, 2613 deq_state->new_deq_ptr); 2614 return; 2615 } 2616 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2617 2618 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2619 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2620 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 2621 } 2622 2623 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2624 struct usb_device *udev, unsigned int ep_index) 2625 { 2626 struct xhci_dequeue_state deq_state; 2627 struct xhci_virt_ep *ep; 2628 2629 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 2630 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2631 /* We need to move the HW's dequeue pointer past this TD, 2632 * or it will attempt to resend it on the next doorbell ring. 2633 */ 2634 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2635 ep_index, ep->stopped_stream, ep->stopped_td, 2636 &deq_state); 2637 2638 /* HW with the reset endpoint quirk will use the saved dequeue state to 2639 * issue a configure endpoint command later. 2640 */ 2641 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2642 xhci_dbg(xhci, "Queueing new dequeue state\n"); 2643 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2644 ep_index, ep->stopped_stream, &deq_state); 2645 } else { 2646 /* Better hope no one uses the input context between now and the 2647 * reset endpoint completion! 2648 * XXX: No idea how this hardware will react when stream rings 2649 * are enabled. 2650 */ 2651 xhci_dbg(xhci, "Setting up input context for " 2652 "configure endpoint command\n"); 2653 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2654 ep_index, &deq_state); 2655 } 2656 } 2657 2658 /* Deal with stalled endpoints. The core should have sent the control message 2659 * to clear the halt condition. However, we need to make the xHCI hardware 2660 * reset its sequence number, since a device will expect a sequence number of 2661 * zero after the halt condition is cleared. 2662 * Context: in_interrupt 2663 */ 2664 void xhci_endpoint_reset(struct usb_hcd *hcd, 2665 struct usb_host_endpoint *ep) 2666 { 2667 struct xhci_hcd *xhci; 2668 struct usb_device *udev; 2669 unsigned int ep_index; 2670 unsigned long flags; 2671 int ret; 2672 struct xhci_virt_ep *virt_ep; 2673 2674 xhci = hcd_to_xhci(hcd); 2675 udev = (struct usb_device *) ep->hcpriv; 2676 /* Called with a root hub endpoint (or an endpoint that wasn't added 2677 * with xhci_add_endpoint() 2678 */ 2679 if (!ep->hcpriv) 2680 return; 2681 ep_index = xhci_get_endpoint_index(&ep->desc); 2682 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2683 if (!virt_ep->stopped_td) { 2684 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 2685 ep->desc.bEndpointAddress); 2686 return; 2687 } 2688 if (usb_endpoint_xfer_control(&ep->desc)) { 2689 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 2690 return; 2691 } 2692 2693 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 2694 spin_lock_irqsave(&xhci->lock, flags); 2695 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 2696 /* 2697 * Can't change the ring dequeue pointer until it's transitioned to the 2698 * stopped state, which is only upon a successful reset endpoint 2699 * command. Better hope that last command worked! 2700 */ 2701 if (!ret) { 2702 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 2703 kfree(virt_ep->stopped_td); 2704 xhci_ring_cmd_db(xhci); 2705 } 2706 virt_ep->stopped_td = NULL; 2707 virt_ep->stopped_trb = NULL; 2708 virt_ep->stopped_stream = 0; 2709 spin_unlock_irqrestore(&xhci->lock, flags); 2710 2711 if (ret) 2712 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 2713 } 2714 2715 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2716 struct usb_device *udev, struct usb_host_endpoint *ep, 2717 unsigned int slot_id) 2718 { 2719 int ret; 2720 unsigned int ep_index; 2721 unsigned int ep_state; 2722 2723 if (!ep) 2724 return -EINVAL; 2725 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2726 if (ret <= 0) 2727 return -EINVAL; 2728 if (ep->ss_ep_comp.bmAttributes == 0) { 2729 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2730 " descriptor for ep 0x%x does not support streams\n", 2731 ep->desc.bEndpointAddress); 2732 return -EINVAL; 2733 } 2734 2735 ep_index = xhci_get_endpoint_index(&ep->desc); 2736 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2737 if (ep_state & EP_HAS_STREAMS || 2738 ep_state & EP_GETTING_STREAMS) { 2739 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2740 "already has streams set up.\n", 2741 ep->desc.bEndpointAddress); 2742 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2743 "dynamic stream context array reallocation.\n"); 2744 return -EINVAL; 2745 } 2746 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2747 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2748 "endpoint 0x%x; URBs are pending.\n", 2749 ep->desc.bEndpointAddress); 2750 return -EINVAL; 2751 } 2752 return 0; 2753 } 2754 2755 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2756 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2757 { 2758 unsigned int max_streams; 2759 2760 /* The stream context array size must be a power of two */ 2761 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2762 /* 2763 * Find out how many primary stream array entries the host controller 2764 * supports. Later we may use secondary stream arrays (similar to 2nd 2765 * level page entries), but that's an optional feature for xHCI host 2766 * controllers. xHCs must support at least 4 stream IDs. 2767 */ 2768 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2769 if (*num_stream_ctxs > max_streams) { 2770 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2771 max_streams); 2772 *num_stream_ctxs = max_streams; 2773 *num_streams = max_streams; 2774 } 2775 } 2776 2777 /* Returns an error code if one of the endpoint already has streams. 2778 * This does not change any data structures, it only checks and gathers 2779 * information. 2780 */ 2781 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2782 struct usb_device *udev, 2783 struct usb_host_endpoint **eps, unsigned int num_eps, 2784 unsigned int *num_streams, u32 *changed_ep_bitmask) 2785 { 2786 unsigned int max_streams; 2787 unsigned int endpoint_flag; 2788 int i; 2789 int ret; 2790 2791 for (i = 0; i < num_eps; i++) { 2792 ret = xhci_check_streams_endpoint(xhci, udev, 2793 eps[i], udev->slot_id); 2794 if (ret < 0) 2795 return ret; 2796 2797 max_streams = USB_SS_MAX_STREAMS( 2798 eps[i]->ss_ep_comp.bmAttributes); 2799 if (max_streams < (*num_streams - 1)) { 2800 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2801 eps[i]->desc.bEndpointAddress, 2802 max_streams); 2803 *num_streams = max_streams+1; 2804 } 2805 2806 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2807 if (*changed_ep_bitmask & endpoint_flag) 2808 return -EINVAL; 2809 *changed_ep_bitmask |= endpoint_flag; 2810 } 2811 return 0; 2812 } 2813 2814 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 2815 struct usb_device *udev, 2816 struct usb_host_endpoint **eps, unsigned int num_eps) 2817 { 2818 u32 changed_ep_bitmask = 0; 2819 unsigned int slot_id; 2820 unsigned int ep_index; 2821 unsigned int ep_state; 2822 int i; 2823 2824 slot_id = udev->slot_id; 2825 if (!xhci->devs[slot_id]) 2826 return 0; 2827 2828 for (i = 0; i < num_eps; i++) { 2829 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2830 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2831 /* Are streams already being freed for the endpoint? */ 2832 if (ep_state & EP_GETTING_NO_STREAMS) { 2833 xhci_warn(xhci, "WARN Can't disable streams for " 2834 "endpoint 0x%x\n, " 2835 "streams are being disabled already.", 2836 eps[i]->desc.bEndpointAddress); 2837 return 0; 2838 } 2839 /* Are there actually any streams to free? */ 2840 if (!(ep_state & EP_HAS_STREAMS) && 2841 !(ep_state & EP_GETTING_STREAMS)) { 2842 xhci_warn(xhci, "WARN Can't disable streams for " 2843 "endpoint 0x%x\n, " 2844 "streams are already disabled!", 2845 eps[i]->desc.bEndpointAddress); 2846 xhci_warn(xhci, "WARN xhci_free_streams() called " 2847 "with non-streams endpoint\n"); 2848 return 0; 2849 } 2850 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 2851 } 2852 return changed_ep_bitmask; 2853 } 2854 2855 /* 2856 * The USB device drivers use this function (though the HCD interface in USB 2857 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 2858 * coordinate mass storage command queueing across multiple endpoints (basically 2859 * a stream ID == a task ID). 2860 * 2861 * Setting up streams involves allocating the same size stream context array 2862 * for each endpoint and issuing a configure endpoint command for all endpoints. 2863 * 2864 * Don't allow the call to succeed if one endpoint only supports one stream 2865 * (which means it doesn't support streams at all). 2866 * 2867 * Drivers may get less stream IDs than they asked for, if the host controller 2868 * hardware or endpoints claim they can't support the number of requested 2869 * stream IDs. 2870 */ 2871 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 2872 struct usb_host_endpoint **eps, unsigned int num_eps, 2873 unsigned int num_streams, gfp_t mem_flags) 2874 { 2875 int i, ret; 2876 struct xhci_hcd *xhci; 2877 struct xhci_virt_device *vdev; 2878 struct xhci_command *config_cmd; 2879 unsigned int ep_index; 2880 unsigned int num_stream_ctxs; 2881 unsigned long flags; 2882 u32 changed_ep_bitmask = 0; 2883 2884 if (!eps) 2885 return -EINVAL; 2886 2887 /* Add one to the number of streams requested to account for 2888 * stream 0 that is reserved for xHCI usage. 2889 */ 2890 num_streams += 1; 2891 xhci = hcd_to_xhci(hcd); 2892 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 2893 num_streams); 2894 2895 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2896 if (!config_cmd) { 2897 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2898 return -ENOMEM; 2899 } 2900 2901 /* Check to make sure all endpoints are not already configured for 2902 * streams. While we're at it, find the maximum number of streams that 2903 * all the endpoints will support and check for duplicate endpoints. 2904 */ 2905 spin_lock_irqsave(&xhci->lock, flags); 2906 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 2907 num_eps, &num_streams, &changed_ep_bitmask); 2908 if (ret < 0) { 2909 xhci_free_command(xhci, config_cmd); 2910 spin_unlock_irqrestore(&xhci->lock, flags); 2911 return ret; 2912 } 2913 if (num_streams <= 1) { 2914 xhci_warn(xhci, "WARN: endpoints can't handle " 2915 "more than one stream.\n"); 2916 xhci_free_command(xhci, config_cmd); 2917 spin_unlock_irqrestore(&xhci->lock, flags); 2918 return -EINVAL; 2919 } 2920 vdev = xhci->devs[udev->slot_id]; 2921 /* Mark each endpoint as being in transition, so 2922 * xhci_urb_enqueue() will reject all URBs. 2923 */ 2924 for (i = 0; i < num_eps; i++) { 2925 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2926 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 2927 } 2928 spin_unlock_irqrestore(&xhci->lock, flags); 2929 2930 /* Setup internal data structures and allocate HW data structures for 2931 * streams (but don't install the HW structures in the input context 2932 * until we're sure all memory allocation succeeded). 2933 */ 2934 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 2935 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 2936 num_stream_ctxs, num_streams); 2937 2938 for (i = 0; i < num_eps; i++) { 2939 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2940 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 2941 num_stream_ctxs, 2942 num_streams, mem_flags); 2943 if (!vdev->eps[ep_index].stream_info) 2944 goto cleanup; 2945 /* Set maxPstreams in endpoint context and update deq ptr to 2946 * point to stream context array. FIXME 2947 */ 2948 } 2949 2950 /* Set up the input context for a configure endpoint command. */ 2951 for (i = 0; i < num_eps; i++) { 2952 struct xhci_ep_ctx *ep_ctx; 2953 2954 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2955 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 2956 2957 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 2958 vdev->out_ctx, ep_index); 2959 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 2960 vdev->eps[ep_index].stream_info); 2961 } 2962 /* Tell the HW to drop its old copy of the endpoint context info 2963 * and add the updated copy from the input context. 2964 */ 2965 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 2966 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 2967 2968 /* Issue and wait for the configure endpoint command */ 2969 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 2970 false, false); 2971 2972 /* xHC rejected the configure endpoint command for some reason, so we 2973 * leave the old ring intact and free our internal streams data 2974 * structure. 2975 */ 2976 if (ret < 0) 2977 goto cleanup; 2978 2979 spin_lock_irqsave(&xhci->lock, flags); 2980 for (i = 0; i < num_eps; i++) { 2981 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2982 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 2983 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 2984 udev->slot_id, ep_index); 2985 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 2986 } 2987 xhci_free_command(xhci, config_cmd); 2988 spin_unlock_irqrestore(&xhci->lock, flags); 2989 2990 /* Subtract 1 for stream 0, which drivers can't use */ 2991 return num_streams - 1; 2992 2993 cleanup: 2994 /* If it didn't work, free the streams! */ 2995 for (i = 0; i < num_eps; i++) { 2996 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 2997 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 2998 vdev->eps[ep_index].stream_info = NULL; 2999 /* FIXME Unset maxPstreams in endpoint context and 3000 * update deq ptr to point to normal string ring. 3001 */ 3002 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3003 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3004 xhci_endpoint_zero(xhci, vdev, eps[i]); 3005 } 3006 xhci_free_command(xhci, config_cmd); 3007 return -ENOMEM; 3008 } 3009 3010 /* Transition the endpoint from using streams to being a "normal" endpoint 3011 * without streams. 3012 * 3013 * Modify the endpoint context state, submit a configure endpoint command, 3014 * and free all endpoint rings for streams if that completes successfully. 3015 */ 3016 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3017 struct usb_host_endpoint **eps, unsigned int num_eps, 3018 gfp_t mem_flags) 3019 { 3020 int i, ret; 3021 struct xhci_hcd *xhci; 3022 struct xhci_virt_device *vdev; 3023 struct xhci_command *command; 3024 unsigned int ep_index; 3025 unsigned long flags; 3026 u32 changed_ep_bitmask; 3027 3028 xhci = hcd_to_xhci(hcd); 3029 vdev = xhci->devs[udev->slot_id]; 3030 3031 /* Set up a configure endpoint command to remove the streams rings */ 3032 spin_lock_irqsave(&xhci->lock, flags); 3033 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3034 udev, eps, num_eps); 3035 if (changed_ep_bitmask == 0) { 3036 spin_unlock_irqrestore(&xhci->lock, flags); 3037 return -EINVAL; 3038 } 3039 3040 /* Use the xhci_command structure from the first endpoint. We may have 3041 * allocated too many, but the driver may call xhci_free_streams() for 3042 * each endpoint it grouped into one call to xhci_alloc_streams(). 3043 */ 3044 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3045 command = vdev->eps[ep_index].stream_info->free_streams_command; 3046 for (i = 0; i < num_eps; i++) { 3047 struct xhci_ep_ctx *ep_ctx; 3048 3049 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3050 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3051 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3052 EP_GETTING_NO_STREAMS; 3053 3054 xhci_endpoint_copy(xhci, command->in_ctx, 3055 vdev->out_ctx, ep_index); 3056 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 3057 &vdev->eps[ep_index]); 3058 } 3059 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3060 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 3061 spin_unlock_irqrestore(&xhci->lock, flags); 3062 3063 /* Issue and wait for the configure endpoint command, 3064 * which must succeed. 3065 */ 3066 ret = xhci_configure_endpoint(xhci, udev, command, 3067 false, true); 3068 3069 /* xHC rejected the configure endpoint command for some reason, so we 3070 * leave the streams rings intact. 3071 */ 3072 if (ret < 0) 3073 return ret; 3074 3075 spin_lock_irqsave(&xhci->lock, flags); 3076 for (i = 0; i < num_eps; i++) { 3077 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3078 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3079 vdev->eps[ep_index].stream_info = NULL; 3080 /* FIXME Unset maxPstreams in endpoint context and 3081 * update deq ptr to point to normal string ring. 3082 */ 3083 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3084 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3085 } 3086 spin_unlock_irqrestore(&xhci->lock, flags); 3087 3088 return 0; 3089 } 3090 3091 /* 3092 * Deletes endpoint resources for endpoints that were active before a Reset 3093 * Device command, or a Disable Slot command. The Reset Device command leaves 3094 * the control endpoint intact, whereas the Disable Slot command deletes it. 3095 * 3096 * Must be called with xhci->lock held. 3097 */ 3098 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3099 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3100 { 3101 int i; 3102 unsigned int num_dropped_eps = 0; 3103 unsigned int drop_flags = 0; 3104 3105 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3106 if (virt_dev->eps[i].ring) { 3107 drop_flags |= 1 << i; 3108 num_dropped_eps++; 3109 } 3110 } 3111 xhci->num_active_eps -= num_dropped_eps; 3112 if (num_dropped_eps) 3113 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, " 3114 "%u now active.\n", 3115 num_dropped_eps, drop_flags, 3116 xhci->num_active_eps); 3117 } 3118 3119 /* 3120 * This submits a Reset Device Command, which will set the device state to 0, 3121 * set the device address to 0, and disable all the endpoints except the default 3122 * control endpoint. The USB core should come back and call 3123 * xhci_address_device(), and then re-set up the configuration. If this is 3124 * called because of a usb_reset_and_verify_device(), then the old alternate 3125 * settings will be re-installed through the normal bandwidth allocation 3126 * functions. 3127 * 3128 * Wait for the Reset Device command to finish. Remove all structures 3129 * associated with the endpoints that were disabled. Clear the input device 3130 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3131 * 3132 * If the virt_dev to be reset does not exist or does not match the udev, 3133 * it means the device is lost, possibly due to the xHC restore error and 3134 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3135 * re-allocate the device. 3136 */ 3137 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3138 { 3139 int ret, i; 3140 unsigned long flags; 3141 struct xhci_hcd *xhci; 3142 unsigned int slot_id; 3143 struct xhci_virt_device *virt_dev; 3144 struct xhci_command *reset_device_cmd; 3145 int timeleft; 3146 int last_freed_endpoint; 3147 struct xhci_slot_ctx *slot_ctx; 3148 int old_active_eps = 0; 3149 3150 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3151 if (ret <= 0) 3152 return ret; 3153 xhci = hcd_to_xhci(hcd); 3154 slot_id = udev->slot_id; 3155 virt_dev = xhci->devs[slot_id]; 3156 if (!virt_dev) { 3157 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3158 "not exist. Re-allocate the device\n", slot_id); 3159 ret = xhci_alloc_dev(hcd, udev); 3160 if (ret == 1) 3161 return 0; 3162 else 3163 return -EINVAL; 3164 } 3165 3166 if (virt_dev->udev != udev) { 3167 /* If the virt_dev and the udev does not match, this virt_dev 3168 * may belong to another udev. 3169 * Re-allocate the device. 3170 */ 3171 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3172 "not match the udev. Re-allocate the device\n", 3173 slot_id); 3174 ret = xhci_alloc_dev(hcd, udev); 3175 if (ret == 1) 3176 return 0; 3177 else 3178 return -EINVAL; 3179 } 3180 3181 /* If device is not setup, there is no point in resetting it */ 3182 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3183 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3184 SLOT_STATE_DISABLED) 3185 return 0; 3186 3187 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3188 /* Allocate the command structure that holds the struct completion. 3189 * Assume we're in process context, since the normal device reset 3190 * process has to wait for the device anyway. Storage devices are 3191 * reset as part of error handling, so use GFP_NOIO instead of 3192 * GFP_KERNEL. 3193 */ 3194 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3195 if (!reset_device_cmd) { 3196 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3197 return -ENOMEM; 3198 } 3199 3200 /* Attempt to submit the Reset Device command to the command ring */ 3201 spin_lock_irqsave(&xhci->lock, flags); 3202 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 3203 3204 /* Enqueue pointer can be left pointing to the link TRB, 3205 * we must handle that 3206 */ 3207 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control)) 3208 reset_device_cmd->command_trb = 3209 xhci->cmd_ring->enq_seg->next->trbs; 3210 3211 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 3212 ret = xhci_queue_reset_device(xhci, slot_id); 3213 if (ret) { 3214 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3215 list_del(&reset_device_cmd->cmd_list); 3216 spin_unlock_irqrestore(&xhci->lock, flags); 3217 goto command_cleanup; 3218 } 3219 xhci_ring_cmd_db(xhci); 3220 spin_unlock_irqrestore(&xhci->lock, flags); 3221 3222 /* Wait for the Reset Device command to finish */ 3223 timeleft = wait_for_completion_interruptible_timeout( 3224 reset_device_cmd->completion, 3225 USB_CTRL_SET_TIMEOUT); 3226 if (timeleft <= 0) { 3227 xhci_warn(xhci, "%s while waiting for reset device command\n", 3228 timeleft == 0 ? "Timeout" : "Signal"); 3229 spin_lock_irqsave(&xhci->lock, flags); 3230 /* The timeout might have raced with the event ring handler, so 3231 * only delete from the list if the item isn't poisoned. 3232 */ 3233 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 3234 list_del(&reset_device_cmd->cmd_list); 3235 spin_unlock_irqrestore(&xhci->lock, flags); 3236 ret = -ETIME; 3237 goto command_cleanup; 3238 } 3239 3240 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3241 * unless we tried to reset a slot ID that wasn't enabled, 3242 * or the device wasn't in the addressed or configured state. 3243 */ 3244 ret = reset_device_cmd->status; 3245 switch (ret) { 3246 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 3247 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 3248 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 3249 slot_id, 3250 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3251 xhci_info(xhci, "Not freeing device rings.\n"); 3252 /* Don't treat this as an error. May change my mind later. */ 3253 ret = 0; 3254 goto command_cleanup; 3255 case COMP_SUCCESS: 3256 xhci_dbg(xhci, "Successful reset device command.\n"); 3257 break; 3258 default: 3259 if (xhci_is_vendor_info_code(xhci, ret)) 3260 break; 3261 xhci_warn(xhci, "Unknown completion code %u for " 3262 "reset device command.\n", ret); 3263 ret = -EINVAL; 3264 goto command_cleanup; 3265 } 3266 3267 /* Free up host controller endpoint resources */ 3268 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3269 spin_lock_irqsave(&xhci->lock, flags); 3270 /* Don't delete the default control endpoint resources */ 3271 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3272 spin_unlock_irqrestore(&xhci->lock, flags); 3273 } 3274 3275 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3276 last_freed_endpoint = 1; 3277 for (i = 1; i < 31; ++i) { 3278 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3279 3280 if (ep->ep_state & EP_HAS_STREAMS) { 3281 xhci_free_stream_info(xhci, ep->stream_info); 3282 ep->stream_info = NULL; 3283 ep->ep_state &= ~EP_HAS_STREAMS; 3284 } 3285 3286 if (ep->ring) { 3287 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3288 last_freed_endpoint = i; 3289 } 3290 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3291 xhci_drop_ep_from_interval_table(xhci, 3292 &virt_dev->eps[i].bw_info, 3293 virt_dev->bw_table, 3294 udev, 3295 &virt_dev->eps[i], 3296 virt_dev->tt_info); 3297 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3298 } 3299 /* If necessary, update the number of active TTs on this root port */ 3300 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3301 3302 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3303 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3304 ret = 0; 3305 3306 command_cleanup: 3307 xhci_free_command(xhci, reset_device_cmd); 3308 return ret; 3309 } 3310 3311 /* 3312 * At this point, the struct usb_device is about to go away, the device has 3313 * disconnected, and all traffic has been stopped and the endpoints have been 3314 * disabled. Free any HC data structures associated with that device. 3315 */ 3316 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3317 { 3318 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3319 struct xhci_virt_device *virt_dev; 3320 unsigned long flags; 3321 u32 state; 3322 int i, ret; 3323 3324 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3325 /* If the host is halted due to driver unload, we still need to free the 3326 * device. 3327 */ 3328 if (ret <= 0 && ret != -ENODEV) 3329 return; 3330 3331 virt_dev = xhci->devs[udev->slot_id]; 3332 3333 /* Stop any wayward timer functions (which may grab the lock) */ 3334 for (i = 0; i < 31; ++i) { 3335 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 3336 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3337 } 3338 3339 if (udev->usb2_hw_lpm_enabled) { 3340 xhci_set_usb2_hardware_lpm(hcd, udev, 0); 3341 udev->usb2_hw_lpm_enabled = 0; 3342 } 3343 3344 spin_lock_irqsave(&xhci->lock, flags); 3345 /* Don't disable the slot if the host controller is dead. */ 3346 state = xhci_readl(xhci, &xhci->op_regs->status); 3347 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3348 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3349 xhci_free_virt_device(xhci, udev->slot_id); 3350 spin_unlock_irqrestore(&xhci->lock, flags); 3351 return; 3352 } 3353 3354 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 3355 spin_unlock_irqrestore(&xhci->lock, flags); 3356 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3357 return; 3358 } 3359 xhci_ring_cmd_db(xhci); 3360 spin_unlock_irqrestore(&xhci->lock, flags); 3361 /* 3362 * Event command completion handler will free any data structures 3363 * associated with the slot. XXX Can free sleep? 3364 */ 3365 } 3366 3367 /* 3368 * Checks if we have enough host controller resources for the default control 3369 * endpoint. 3370 * 3371 * Must be called with xhci->lock held. 3372 */ 3373 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3374 { 3375 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3376 xhci_dbg(xhci, "Not enough ep ctxs: " 3377 "%u active, need to add 1, limit is %u.\n", 3378 xhci->num_active_eps, xhci->limit_active_eps); 3379 return -ENOMEM; 3380 } 3381 xhci->num_active_eps += 1; 3382 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n", 3383 xhci->num_active_eps); 3384 return 0; 3385 } 3386 3387 3388 /* 3389 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3390 * timed out, or allocating memory failed. Returns 1 on success. 3391 */ 3392 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3393 { 3394 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3395 unsigned long flags; 3396 int timeleft; 3397 int ret; 3398 3399 spin_lock_irqsave(&xhci->lock, flags); 3400 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 3401 if (ret) { 3402 spin_unlock_irqrestore(&xhci->lock, flags); 3403 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3404 return 0; 3405 } 3406 xhci_ring_cmd_db(xhci); 3407 spin_unlock_irqrestore(&xhci->lock, flags); 3408 3409 /* XXX: how much time for xHC slot assignment? */ 3410 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3411 USB_CTRL_SET_TIMEOUT); 3412 if (timeleft <= 0) { 3413 xhci_warn(xhci, "%s while waiting for a slot\n", 3414 timeleft == 0 ? "Timeout" : "Signal"); 3415 /* FIXME cancel the enable slot request */ 3416 return 0; 3417 } 3418 3419 if (!xhci->slot_id) { 3420 xhci_err(xhci, "Error while assigning device slot ID\n"); 3421 return 0; 3422 } 3423 3424 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3425 spin_lock_irqsave(&xhci->lock, flags); 3426 ret = xhci_reserve_host_control_ep_resources(xhci); 3427 if (ret) { 3428 spin_unlock_irqrestore(&xhci->lock, flags); 3429 xhci_warn(xhci, "Not enough host resources, " 3430 "active endpoint contexts = %u\n", 3431 xhci->num_active_eps); 3432 goto disable_slot; 3433 } 3434 spin_unlock_irqrestore(&xhci->lock, flags); 3435 } 3436 /* Use GFP_NOIO, since this function can be called from 3437 * xhci_discover_or_reset_device(), which may be called as part of 3438 * mass storage driver error handling. 3439 */ 3440 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { 3441 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3442 goto disable_slot; 3443 } 3444 udev->slot_id = xhci->slot_id; 3445 /* Is this a LS or FS device under a HS hub? */ 3446 /* Hub or peripherial? */ 3447 return 1; 3448 3449 disable_slot: 3450 /* Disable slot, if we can do it without mem alloc */ 3451 spin_lock_irqsave(&xhci->lock, flags); 3452 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 3453 xhci_ring_cmd_db(xhci); 3454 spin_unlock_irqrestore(&xhci->lock, flags); 3455 return 0; 3456 } 3457 3458 /* 3459 * Issue an Address Device command (which will issue a SetAddress request to 3460 * the device). 3461 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 3462 * we should only issue and wait on one address command at the same time. 3463 * 3464 * We add one to the device address issued by the hardware because the USB core 3465 * uses address 1 for the root hubs (even though they're not really devices). 3466 */ 3467 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3468 { 3469 unsigned long flags; 3470 int timeleft; 3471 struct xhci_virt_device *virt_dev; 3472 int ret = 0; 3473 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3474 struct xhci_slot_ctx *slot_ctx; 3475 struct xhci_input_control_ctx *ctrl_ctx; 3476 u64 temp_64; 3477 3478 if (!udev->slot_id) { 3479 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 3480 return -EINVAL; 3481 } 3482 3483 virt_dev = xhci->devs[udev->slot_id]; 3484 3485 if (WARN_ON(!virt_dev)) { 3486 /* 3487 * In plug/unplug torture test with an NEC controller, 3488 * a zero-dereference was observed once due to virt_dev = 0. 3489 * Print useful debug rather than crash if it is observed again! 3490 */ 3491 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3492 udev->slot_id); 3493 return -EINVAL; 3494 } 3495 3496 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3497 /* 3498 * If this is the first Set Address since device plug-in or 3499 * virt_device realloaction after a resume with an xHCI power loss, 3500 * then set up the slot context. 3501 */ 3502 if (!slot_ctx->dev_info) 3503 xhci_setup_addressable_virt_dev(xhci, udev); 3504 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3505 else 3506 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3507 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3508 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3509 3510 spin_lock_irqsave(&xhci->lock, flags); 3511 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 3512 udev->slot_id); 3513 if (ret) { 3514 spin_unlock_irqrestore(&xhci->lock, flags); 3515 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3516 return ret; 3517 } 3518 xhci_ring_cmd_db(xhci); 3519 spin_unlock_irqrestore(&xhci->lock, flags); 3520 3521 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3522 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 3523 USB_CTRL_SET_TIMEOUT); 3524 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3525 * the SetAddress() "recovery interval" required by USB and aborting the 3526 * command on a timeout. 3527 */ 3528 if (timeleft <= 0) { 3529 xhci_warn(xhci, "%s while waiting for address device command\n", 3530 timeleft == 0 ? "Timeout" : "Signal"); 3531 /* FIXME cancel the address device command */ 3532 return -ETIME; 3533 } 3534 3535 switch (virt_dev->cmd_status) { 3536 case COMP_CTX_STATE: 3537 case COMP_EBADSLT: 3538 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 3539 udev->slot_id); 3540 ret = -EINVAL; 3541 break; 3542 case COMP_TX_ERR: 3543 dev_warn(&udev->dev, "Device not responding to set address.\n"); 3544 ret = -EPROTO; 3545 break; 3546 case COMP_DEV_ERR: 3547 dev_warn(&udev->dev, "ERROR: Incompatible device for address " 3548 "device command.\n"); 3549 ret = -ENODEV; 3550 break; 3551 case COMP_SUCCESS: 3552 xhci_dbg(xhci, "Successful Address Device command\n"); 3553 break; 3554 default: 3555 xhci_err(xhci, "ERROR: unexpected command completion " 3556 "code 0x%x.\n", virt_dev->cmd_status); 3557 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3558 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3559 ret = -EINVAL; 3560 break; 3561 } 3562 if (ret) { 3563 return ret; 3564 } 3565 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3566 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 3567 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 3568 udev->slot_id, 3569 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3570 (unsigned long long) 3571 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3572 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 3573 (unsigned long long)virt_dev->out_ctx->dma); 3574 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3575 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3576 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3577 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3578 /* 3579 * USB core uses address 1 for the roothubs, so we add one to the 3580 * address given back to us by the HC. 3581 */ 3582 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3583 /* Use kernel assigned address for devices; store xHC assigned 3584 * address locally. */ 3585 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) 3586 + 1; 3587 /* Zero the input context control for later use */ 3588 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 3589 ctrl_ctx->add_flags = 0; 3590 ctrl_ctx->drop_flags = 0; 3591 3592 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); 3593 3594 return 0; 3595 } 3596 3597 #ifdef CONFIG_USB_SUSPEND 3598 3599 /* BESL to HIRD Encoding array for USB2 LPM */ 3600 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3601 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3602 3603 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3604 static int xhci_calculate_hird_besl(int u2del, bool use_besl) 3605 { 3606 int hird; 3607 3608 if (use_besl) { 3609 for (hird = 0; hird < 16; hird++) { 3610 if (xhci_besl_encoding[hird] >= u2del) 3611 break; 3612 } 3613 } else { 3614 if (u2del <= 50) 3615 hird = 0; 3616 else 3617 hird = (u2del - 51) / 75 + 1; 3618 3619 if (hird > 15) 3620 hird = 15; 3621 } 3622 3623 return hird; 3624 } 3625 3626 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd, 3627 struct usb_device *udev) 3628 { 3629 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3630 struct dev_info *dev_info; 3631 __le32 __iomem **port_array; 3632 __le32 __iomem *addr, *pm_addr; 3633 u32 temp, dev_id; 3634 unsigned int port_num; 3635 unsigned long flags; 3636 int u2del, hird; 3637 int ret; 3638 3639 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support || 3640 !udev->lpm_capable) 3641 return -EINVAL; 3642 3643 /* we only support lpm for non-hub device connected to root hub yet */ 3644 if (!udev->parent || udev->parent->parent || 3645 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3646 return -EINVAL; 3647 3648 spin_lock_irqsave(&xhci->lock, flags); 3649 3650 /* Look for devices in lpm_failed_devs list */ 3651 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 | 3652 le16_to_cpu(udev->descriptor.idProduct); 3653 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) { 3654 if (dev_info->dev_id == dev_id) { 3655 ret = -EINVAL; 3656 goto finish; 3657 } 3658 } 3659 3660 port_array = xhci->usb2_ports; 3661 port_num = udev->portnum - 1; 3662 3663 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) { 3664 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum); 3665 ret = -EINVAL; 3666 goto finish; 3667 } 3668 3669 /* 3670 * Test USB 2.0 software LPM. 3671 * FIXME: some xHCI 1.0 hosts may implement a new register to set up 3672 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1 3673 * in the June 2011 errata release. 3674 */ 3675 xhci_dbg(xhci, "test port %d software LPM\n", port_num); 3676 /* 3677 * Set L1 Device Slot and HIRD/BESL. 3678 * Check device's USB 2.0 extension descriptor to determine whether 3679 * HIRD or BESL shoule be used. See USB2.0 LPM errata. 3680 */ 3681 pm_addr = port_array[port_num] + 1; 3682 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3683 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2)) 3684 hird = xhci_calculate_hird_besl(u2del, 1); 3685 else 3686 hird = xhci_calculate_hird_besl(u2del, 0); 3687 3688 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird); 3689 xhci_writel(xhci, temp, pm_addr); 3690 3691 /* Set port link state to U2(L1) */ 3692 addr = port_array[port_num]; 3693 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2); 3694 3695 /* wait for ACK */ 3696 spin_unlock_irqrestore(&xhci->lock, flags); 3697 msleep(10); 3698 spin_lock_irqsave(&xhci->lock, flags); 3699 3700 /* Check L1 Status */ 3701 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125); 3702 if (ret != -ETIMEDOUT) { 3703 /* enter L1 successfully */ 3704 temp = xhci_readl(xhci, addr); 3705 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n", 3706 port_num, temp); 3707 ret = 0; 3708 } else { 3709 temp = xhci_readl(xhci, pm_addr); 3710 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n", 3711 port_num, temp & PORT_L1S_MASK); 3712 ret = -EINVAL; 3713 } 3714 3715 /* Resume the port */ 3716 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0); 3717 3718 spin_unlock_irqrestore(&xhci->lock, flags); 3719 msleep(10); 3720 spin_lock_irqsave(&xhci->lock, flags); 3721 3722 /* Clear PLC */ 3723 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC); 3724 3725 /* Check PORTSC to make sure the device is in the right state */ 3726 if (!ret) { 3727 temp = xhci_readl(xhci, addr); 3728 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp); 3729 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) || 3730 (temp & PORT_PLS_MASK) != XDEV_U0) { 3731 xhci_dbg(xhci, "port L1 resume fail\n"); 3732 ret = -EINVAL; 3733 } 3734 } 3735 3736 if (ret) { 3737 /* Insert dev to lpm_failed_devs list */ 3738 xhci_warn(xhci, "device LPM test failed, may disconnect and " 3739 "re-enumerate\n"); 3740 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC); 3741 if (!dev_info) { 3742 ret = -ENOMEM; 3743 goto finish; 3744 } 3745 dev_info->dev_id = dev_id; 3746 INIT_LIST_HEAD(&dev_info->list); 3747 list_add(&dev_info->list, &xhci->lpm_failed_devs); 3748 } else { 3749 xhci_ring_device(xhci, udev->slot_id); 3750 } 3751 3752 finish: 3753 spin_unlock_irqrestore(&xhci->lock, flags); 3754 return ret; 3755 } 3756 3757 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3758 struct usb_device *udev, int enable) 3759 { 3760 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3761 __le32 __iomem **port_array; 3762 __le32 __iomem *pm_addr; 3763 u32 temp; 3764 unsigned int port_num; 3765 unsigned long flags; 3766 int u2del, hird; 3767 3768 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support || 3769 !udev->lpm_capable) 3770 return -EPERM; 3771 3772 if (!udev->parent || udev->parent->parent || 3773 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 3774 return -EPERM; 3775 3776 if (udev->usb2_hw_lpm_capable != 1) 3777 return -EPERM; 3778 3779 spin_lock_irqsave(&xhci->lock, flags); 3780 3781 port_array = xhci->usb2_ports; 3782 port_num = udev->portnum - 1; 3783 pm_addr = port_array[port_num] + 1; 3784 temp = xhci_readl(xhci, pm_addr); 3785 3786 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 3787 enable ? "enable" : "disable", port_num); 3788 3789 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 3790 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2)) 3791 hird = xhci_calculate_hird_besl(u2del, 1); 3792 else 3793 hird = xhci_calculate_hird_besl(u2del, 0); 3794 3795 if (enable) { 3796 temp &= ~PORT_HIRD_MASK; 3797 temp |= PORT_HIRD(hird) | PORT_RWE; 3798 xhci_writel(xhci, temp, pm_addr); 3799 temp = xhci_readl(xhci, pm_addr); 3800 temp |= PORT_HLE; 3801 xhci_writel(xhci, temp, pm_addr); 3802 } else { 3803 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK); 3804 xhci_writel(xhci, temp, pm_addr); 3805 } 3806 3807 spin_unlock_irqrestore(&xhci->lock, flags); 3808 return 0; 3809 } 3810 3811 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3812 { 3813 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3814 int ret; 3815 3816 ret = xhci_usb2_software_lpm_test(hcd, udev); 3817 if (!ret) { 3818 xhci_dbg(xhci, "software LPM test succeed\n"); 3819 if (xhci->hw_lpm_support == 1) { 3820 udev->usb2_hw_lpm_capable = 1; 3821 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1); 3822 if (!ret) 3823 udev->usb2_hw_lpm_enabled = 1; 3824 } 3825 } 3826 3827 return 0; 3828 } 3829 3830 #else 3831 3832 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 3833 struct usb_device *udev, int enable) 3834 { 3835 return 0; 3836 } 3837 3838 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 3839 { 3840 return 0; 3841 } 3842 3843 #endif /* CONFIG_USB_SUSPEND */ 3844 3845 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 3846 * internal data structures for the device. 3847 */ 3848 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 3849 struct usb_tt *tt, gfp_t mem_flags) 3850 { 3851 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3852 struct xhci_virt_device *vdev; 3853 struct xhci_command *config_cmd; 3854 struct xhci_input_control_ctx *ctrl_ctx; 3855 struct xhci_slot_ctx *slot_ctx; 3856 unsigned long flags; 3857 unsigned think_time; 3858 int ret; 3859 3860 /* Ignore root hubs */ 3861 if (!hdev->parent) 3862 return 0; 3863 3864 vdev = xhci->devs[hdev->slot_id]; 3865 if (!vdev) { 3866 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 3867 return -EINVAL; 3868 } 3869 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3870 if (!config_cmd) { 3871 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3872 return -ENOMEM; 3873 } 3874 3875 spin_lock_irqsave(&xhci->lock, flags); 3876 if (hdev->speed == USB_SPEED_HIGH && 3877 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 3878 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 3879 xhci_free_command(xhci, config_cmd); 3880 spin_unlock_irqrestore(&xhci->lock, flags); 3881 return -ENOMEM; 3882 } 3883 3884 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 3885 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 3886 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3887 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 3888 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 3889 if (tt->multi) 3890 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 3891 if (xhci->hci_version > 0x95) { 3892 xhci_dbg(xhci, "xHCI version %x needs hub " 3893 "TT think time and number of ports\n", 3894 (unsigned int) xhci->hci_version); 3895 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 3896 /* Set TT think time - convert from ns to FS bit times. 3897 * 0 = 8 FS bit times, 1 = 16 FS bit times, 3898 * 2 = 24 FS bit times, 3 = 32 FS bit times. 3899 * 3900 * xHCI 1.0: this field shall be 0 if the device is not a 3901 * High-spped hub. 3902 */ 3903 think_time = tt->think_time; 3904 if (think_time != 0) 3905 think_time = (think_time / 666) - 1; 3906 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 3907 slot_ctx->tt_info |= 3908 cpu_to_le32(TT_THINK_TIME(think_time)); 3909 } else { 3910 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 3911 "TT think time or number of ports\n", 3912 (unsigned int) xhci->hci_version); 3913 } 3914 slot_ctx->dev_state = 0; 3915 spin_unlock_irqrestore(&xhci->lock, flags); 3916 3917 xhci_dbg(xhci, "Set up %s for hub device.\n", 3918 (xhci->hci_version > 0x95) ? 3919 "configure endpoint" : "evaluate context"); 3920 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 3921 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 3922 3923 /* Issue and wait for the configure endpoint or 3924 * evaluate context command. 3925 */ 3926 if (xhci->hci_version > 0x95) 3927 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 3928 false, false); 3929 else 3930 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 3931 true, false); 3932 3933 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 3934 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 3935 3936 xhci_free_command(xhci, config_cmd); 3937 return ret; 3938 } 3939 3940 int xhci_get_frame(struct usb_hcd *hcd) 3941 { 3942 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3943 /* EHCI mods by the periodic size. Why? */ 3944 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 3945 } 3946 3947 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 3948 { 3949 struct xhci_hcd *xhci; 3950 struct device *dev = hcd->self.controller; 3951 int retval; 3952 u32 temp; 3953 3954 hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2; 3955 3956 if (usb_hcd_is_primary_hcd(hcd)) { 3957 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL); 3958 if (!xhci) 3959 return -ENOMEM; 3960 *((struct xhci_hcd **) hcd->hcd_priv) = xhci; 3961 xhci->main_hcd = hcd; 3962 /* Mark the first roothub as being USB 2.0. 3963 * The xHCI driver will register the USB 3.0 roothub. 3964 */ 3965 hcd->speed = HCD_USB2; 3966 hcd->self.root_hub->speed = USB_SPEED_HIGH; 3967 /* 3968 * USB 2.0 roothub under xHCI has an integrated TT, 3969 * (rate matching hub) as opposed to having an OHCI/UHCI 3970 * companion controller. 3971 */ 3972 hcd->has_tt = 1; 3973 } else { 3974 /* xHCI private pointer was set in xhci_pci_probe for the second 3975 * registered roothub. 3976 */ 3977 xhci = hcd_to_xhci(hcd); 3978 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 3979 if (HCC_64BIT_ADDR(temp)) { 3980 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 3981 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 3982 } else { 3983 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 3984 } 3985 return 0; 3986 } 3987 3988 xhci->cap_regs = hcd->regs; 3989 xhci->op_regs = hcd->regs + 3990 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase)); 3991 xhci->run_regs = hcd->regs + 3992 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 3993 /* Cache read-only capability registers */ 3994 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1); 3995 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2); 3996 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3); 3997 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase); 3998 xhci->hci_version = HC_VERSION(xhci->hcc_params); 3999 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4000 xhci_print_registers(xhci); 4001 4002 get_quirks(dev, xhci); 4003 4004 /* Make sure the HC is halted. */ 4005 retval = xhci_halt(xhci); 4006 if (retval) 4007 goto error; 4008 4009 xhci_dbg(xhci, "Resetting HCD\n"); 4010 /* Reset the internal HC memory state and registers. */ 4011 retval = xhci_reset(xhci); 4012 if (retval) 4013 goto error; 4014 xhci_dbg(xhci, "Reset complete\n"); 4015 4016 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params); 4017 if (HCC_64BIT_ADDR(temp)) { 4018 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4019 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64)); 4020 } else { 4021 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32)); 4022 } 4023 4024 xhci_dbg(xhci, "Calling HCD init\n"); 4025 /* Initialize HCD and host controller data structures. */ 4026 retval = xhci_init(hcd); 4027 if (retval) 4028 goto error; 4029 xhci_dbg(xhci, "Called HCD init\n"); 4030 return 0; 4031 error: 4032 kfree(xhci); 4033 return retval; 4034 } 4035 4036 MODULE_DESCRIPTION(DRIVER_DESC); 4037 MODULE_AUTHOR(DRIVER_AUTHOR); 4038 MODULE_LICENSE("GPL"); 4039 4040 static int __init xhci_hcd_init(void) 4041 { 4042 int retval; 4043 4044 retval = xhci_register_pci(); 4045 if (retval < 0) { 4046 printk(KERN_DEBUG "Problem registering PCI driver."); 4047 return retval; 4048 } 4049 /* 4050 * Check the compiler generated sizes of structures that must be laid 4051 * out in specific ways for hardware access. 4052 */ 4053 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4054 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4055 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4056 /* xhci_device_control has eight fields, and also 4057 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4058 */ 4059 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4060 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4061 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4062 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 4063 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 4064 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 4065 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 4066 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4067 return 0; 4068 } 4069 module_init(xhci_hcd_init); 4070 4071 static void __exit xhci_hcd_cleanup(void) 4072 { 4073 xhci_unregister_pci(); 4074 } 4075 module_exit(xhci_hcd_cleanup); 4076