xref: /linux/drivers/usb/host/xhci.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	return ret;
110 }
111 
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 	u32 temp;
118 	int ret;
119 
120 	temp = xhci_readl(xhci, &xhci->op_regs->command);
121 	temp |= (CMD_RUN);
122 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 			temp);
124 	xhci_writel(xhci, temp, &xhci->op_regs->command);
125 
126 	/*
127 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 	 * running.
129 	 */
130 	ret = handshake(xhci, &xhci->op_regs->status,
131 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 	if (ret == -ETIMEDOUT)
133 		xhci_err(xhci, "Host took too long to start, "
134 				"waited %u microseconds.\n",
135 				XHCI_MAX_HALT_USEC);
136 	if (!ret)
137 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 	return ret;
139 }
140 
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 	u32 command;
151 	u32 state;
152 	int ret;
153 
154 	state = xhci_readl(xhci, &xhci->op_regs->status);
155 	if ((state & STS_HALT) == 0) {
156 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 		return 0;
158 	}
159 
160 	xhci_dbg(xhci, "// Reset the HC\n");
161 	command = xhci_readl(xhci, &xhci->op_regs->command);
162 	command |= CMD_RESET;
163 	xhci_writel(xhci, command, &xhci->op_regs->command);
164 
165 	ret = handshake(xhci, &xhci->op_regs->command,
166 			CMD_RESET, 0, 250 * 1000);
167 	if (ret)
168 		return ret;
169 
170 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 	/*
172 	 * xHCI cannot write to any doorbells or operational registers other
173 	 * than status until the "Controller Not Ready" flag is cleared.
174 	 */
175 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177 
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
180 {
181 	int i;
182 
183 	if (!xhci->msix_entries)
184 		return -EINVAL;
185 
186 	for (i = 0; i < xhci->msix_count; i++)
187 		if (xhci->msix_entries[i].vector)
188 			free_irq(xhci->msix_entries[i].vector,
189 					xhci_to_hcd(xhci));
190 	return 0;
191 }
192 
193 /*
194  * Set up MSI
195  */
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
197 {
198 	int ret;
199 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200 
201 	ret = pci_enable_msi(pdev);
202 	if (ret) {
203 		xhci_err(xhci, "failed to allocate MSI entry\n");
204 		return ret;
205 	}
206 
207 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208 				0, "xhci_hcd", xhci_to_hcd(xhci));
209 	if (ret) {
210 		xhci_err(xhci, "disable MSI interrupt\n");
211 		pci_disable_msi(pdev);
212 	}
213 
214 	return ret;
215 }
216 
217 /*
218  * Free IRQs
219  * free all IRQs request
220  */
221 static void xhci_free_irq(struct xhci_hcd *xhci)
222 {
223 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 	int ret;
225 
226 	/* return if using legacy interrupt */
227 	if (xhci_to_hcd(xhci)->irq >= 0)
228 		return;
229 
230 	ret = xhci_free_msi(xhci);
231 	if (!ret)
232 		return;
233 	if (pdev->irq >= 0)
234 		free_irq(pdev->irq, xhci_to_hcd(xhci));
235 
236 	return;
237 }
238 
239 /*
240  * Set up MSI-X
241  */
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
243 {
244 	int i, ret = 0;
245 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
246 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247 
248 	/*
249 	 * calculate number of msi-x vectors supported.
250 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
252 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 	 *   Add additional 1 vector to ensure always available interrupt.
254 	 */
255 	xhci->msix_count = min(num_online_cpus() + 1,
256 				HCS_MAX_INTRS(xhci->hcs_params1));
257 
258 	xhci->msix_entries =
259 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260 				GFP_KERNEL);
261 	if (!xhci->msix_entries) {
262 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263 		return -ENOMEM;
264 	}
265 
266 	for (i = 0; i < xhci->msix_count; i++) {
267 		xhci->msix_entries[i].entry = i;
268 		xhci->msix_entries[i].vector = 0;
269 	}
270 
271 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272 	if (ret) {
273 		xhci_err(xhci, "Failed to enable MSI-X\n");
274 		goto free_entries;
275 	}
276 
277 	for (i = 0; i < xhci->msix_count; i++) {
278 		ret = request_irq(xhci->msix_entries[i].vector,
279 				(irq_handler_t)xhci_msi_irq,
280 				0, "xhci_hcd", xhci_to_hcd(xhci));
281 		if (ret)
282 			goto disable_msix;
283 	}
284 
285 	hcd->msix_enabled = 1;
286 	return ret;
287 
288 disable_msix:
289 	xhci_err(xhci, "disable MSI-X interrupt\n");
290 	xhci_free_irq(xhci);
291 	pci_disable_msix(pdev);
292 free_entries:
293 	kfree(xhci->msix_entries);
294 	xhci->msix_entries = NULL;
295 	return ret;
296 }
297 
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303 
304 	xhci_free_irq(xhci);
305 
306 	if (xhci->msix_entries) {
307 		pci_disable_msix(pdev);
308 		kfree(xhci->msix_entries);
309 		xhci->msix_entries = NULL;
310 	} else {
311 		pci_disable_msi(pdev);
312 	}
313 
314 	hcd->msix_enabled = 0;
315 	return;
316 }
317 
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319 {
320 	int i;
321 
322 	if (xhci->msix_entries) {
323 		for (i = 0; i < xhci->msix_count; i++)
324 			synchronize_irq(xhci->msix_entries[i].vector);
325 	}
326 }
327 
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 {
330 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332 	int ret;
333 
334 	/*
335 	 * Some Fresco Logic host controllers advertise MSI, but fail to
336 	 * generate interrupts.  Don't even try to enable MSI.
337 	 */
338 	if (xhci->quirks & XHCI_BROKEN_MSI)
339 		return 0;
340 
341 	/* unregister the legacy interrupt */
342 	if (hcd->irq)
343 		free_irq(hcd->irq, hcd);
344 	hcd->irq = -1;
345 
346 	ret = xhci_setup_msix(xhci);
347 	if (ret)
348 		/* fall back to msi*/
349 		ret = xhci_setup_msi(xhci);
350 
351 	if (!ret)
352 		/* hcd->irq is -1, we have MSI */
353 		return 0;
354 
355 	/* fall back to legacy interrupt*/
356 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
357 			hcd->irq_descr, hcd);
358 	if (ret) {
359 		xhci_err(xhci, "request interrupt %d failed\n",
360 				pdev->irq);
361 		return ret;
362 	}
363 	hcd->irq = pdev->irq;
364 	return 0;
365 }
366 
367 #else
368 
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371 	return 0;
372 }
373 
374 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
375 {
376 }
377 
378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
379 {
380 }
381 
382 #endif
383 
384 /*
385  * Initialize memory for HCD and xHC (one-time init).
386  *
387  * Program the PAGESIZE register, initialize the device context array, create
388  * device contexts (?), set up a command ring segment (or two?), create event
389  * ring (one for now).
390  */
391 int xhci_init(struct usb_hcd *hcd)
392 {
393 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
394 	int retval = 0;
395 
396 	xhci_dbg(xhci, "xhci_init\n");
397 	spin_lock_init(&xhci->lock);
398 	if (xhci->hci_version == 0x95 && link_quirk) {
399 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
400 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
401 	} else {
402 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
403 	}
404 	retval = xhci_mem_init(xhci, GFP_KERNEL);
405 	xhci_dbg(xhci, "Finished xhci_init\n");
406 
407 	return retval;
408 }
409 
410 /*-------------------------------------------------------------------------*/
411 
412 
413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
414 static void xhci_event_ring_work(unsigned long arg)
415 {
416 	unsigned long flags;
417 	int temp;
418 	u64 temp_64;
419 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
420 	int i, j;
421 
422 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
423 
424 	spin_lock_irqsave(&xhci->lock, flags);
425 	temp = xhci_readl(xhci, &xhci->op_regs->status);
426 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
427 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
428 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
429 		xhci_dbg(xhci, "HW died, polling stopped.\n");
430 		spin_unlock_irqrestore(&xhci->lock, flags);
431 		return;
432 	}
433 
434 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
435 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
436 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
437 	xhci->error_bitmask = 0;
438 	xhci_dbg(xhci, "Event ring:\n");
439 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
440 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
441 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
442 	temp_64 &= ~ERST_PTR_MASK;
443 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
444 	xhci_dbg(xhci, "Command ring:\n");
445 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
446 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
447 	xhci_dbg_cmd_ptrs(xhci);
448 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
449 		if (!xhci->devs[i])
450 			continue;
451 		for (j = 0; j < 31; ++j) {
452 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
453 		}
454 	}
455 	spin_unlock_irqrestore(&xhci->lock, flags);
456 
457 	if (!xhci->zombie)
458 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
459 	else
460 		xhci_dbg(xhci, "Quit polling the event ring.\n");
461 }
462 #endif
463 
464 static int xhci_run_finished(struct xhci_hcd *xhci)
465 {
466 	if (xhci_start(xhci)) {
467 		xhci_halt(xhci);
468 		return -ENODEV;
469 	}
470 	xhci->shared_hcd->state = HC_STATE_RUNNING;
471 
472 	if (xhci->quirks & XHCI_NEC_HOST)
473 		xhci_ring_cmd_db(xhci);
474 
475 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
476 	return 0;
477 }
478 
479 /*
480  * Start the HC after it was halted.
481  *
482  * This function is called by the USB core when the HC driver is added.
483  * Its opposite is xhci_stop().
484  *
485  * xhci_init() must be called once before this function can be called.
486  * Reset the HC, enable device slot contexts, program DCBAAP, and
487  * set command ring pointer and event ring pointer.
488  *
489  * Setup MSI-X vectors and enable interrupts.
490  */
491 int xhci_run(struct usb_hcd *hcd)
492 {
493 	u32 temp;
494 	u64 temp_64;
495 	int ret;
496 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
497 
498 	/* Start the xHCI host controller running only after the USB 2.0 roothub
499 	 * is setup.
500 	 */
501 
502 	hcd->uses_new_polling = 1;
503 	if (!usb_hcd_is_primary_hcd(hcd))
504 		return xhci_run_finished(xhci);
505 
506 	xhci_dbg(xhci, "xhci_run\n");
507 
508 	ret = xhci_try_enable_msi(hcd);
509 	if (ret)
510 		return ret;
511 
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513 	init_timer(&xhci->event_ring_timer);
514 	xhci->event_ring_timer.data = (unsigned long) xhci;
515 	xhci->event_ring_timer.function = xhci_event_ring_work;
516 	/* Poll the event ring */
517 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
518 	xhci->zombie = 0;
519 	xhci_dbg(xhci, "Setting event ring polling timer\n");
520 	add_timer(&xhci->event_ring_timer);
521 #endif
522 
523 	xhci_dbg(xhci, "Command ring memory map follows:\n");
524 	xhci_debug_ring(xhci, xhci->cmd_ring);
525 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
526 	xhci_dbg_cmd_ptrs(xhci);
527 
528 	xhci_dbg(xhci, "ERST memory map follows:\n");
529 	xhci_dbg_erst(xhci, &xhci->erst);
530 	xhci_dbg(xhci, "Event ring:\n");
531 	xhci_debug_ring(xhci, xhci->event_ring);
532 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
533 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
534 	temp_64 &= ~ERST_PTR_MASK;
535 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
536 
537 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
538 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
539 	temp &= ~ER_IRQ_INTERVAL_MASK;
540 	temp |= (u32) 160;
541 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
542 
543 	/* Set the HCD state before we enable the irqs */
544 	temp = xhci_readl(xhci, &xhci->op_regs->command);
545 	temp |= (CMD_EIE);
546 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
547 			temp);
548 	xhci_writel(xhci, temp, &xhci->op_regs->command);
549 
550 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
552 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
553 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
554 			&xhci->ir_set->irq_pending);
555 	xhci_print_ir_set(xhci, 0);
556 
557 	if (xhci->quirks & XHCI_NEC_HOST)
558 		xhci_queue_vendor_command(xhci, 0, 0, 0,
559 				TRB_TYPE(TRB_NEC_GET_FW));
560 
561 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
562 	return 0;
563 }
564 
565 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
566 {
567 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
568 
569 	spin_lock_irq(&xhci->lock);
570 	xhci_halt(xhci);
571 
572 	/* The shared_hcd is going to be deallocated shortly (the USB core only
573 	 * calls this function when allocation fails in usb_add_hcd(), or
574 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
575 	 */
576 	xhci->shared_hcd = NULL;
577 	spin_unlock_irq(&xhci->lock);
578 }
579 
580 /*
581  * Stop xHCI driver.
582  *
583  * This function is called by the USB core when the HC driver is removed.
584  * Its opposite is xhci_run().
585  *
586  * Disable device contexts, disable IRQs, and quiesce the HC.
587  * Reset the HC, finish any completed transactions, and cleanup memory.
588  */
589 void xhci_stop(struct usb_hcd *hcd)
590 {
591 	u32 temp;
592 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593 
594 	if (!usb_hcd_is_primary_hcd(hcd)) {
595 		xhci_only_stop_hcd(xhci->shared_hcd);
596 		return;
597 	}
598 
599 	spin_lock_irq(&xhci->lock);
600 	/* Make sure the xHC is halted for a USB3 roothub
601 	 * (xhci_stop() could be called as part of failed init).
602 	 */
603 	xhci_halt(xhci);
604 	xhci_reset(xhci);
605 	spin_unlock_irq(&xhci->lock);
606 
607 	xhci_cleanup_msix(xhci);
608 
609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
610 	/* Tell the event ring poll function not to reschedule */
611 	xhci->zombie = 1;
612 	del_timer_sync(&xhci->event_ring_timer);
613 #endif
614 
615 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
616 		usb_amd_dev_put();
617 
618 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
619 	temp = xhci_readl(xhci, &xhci->op_regs->status);
620 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
621 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
622 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
623 			&xhci->ir_set->irq_pending);
624 	xhci_print_ir_set(xhci, 0);
625 
626 	xhci_dbg(xhci, "cleaning up memory\n");
627 	xhci_mem_cleanup(xhci);
628 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
629 		    xhci_readl(xhci, &xhci->op_regs->status));
630 }
631 
632 /*
633  * Shutdown HC (not bus-specific)
634  *
635  * This is called when the machine is rebooting or halting.  We assume that the
636  * machine will be powered off, and the HC's internal state will be reset.
637  * Don't bother to free memory.
638  *
639  * This will only ever be called with the main usb_hcd (the USB3 roothub).
640  */
641 void xhci_shutdown(struct usb_hcd *hcd)
642 {
643 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644 
645 	spin_lock_irq(&xhci->lock);
646 	xhci_halt(xhci);
647 	spin_unlock_irq(&xhci->lock);
648 
649 	xhci_cleanup_msix(xhci);
650 
651 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
652 		    xhci_readl(xhci, &xhci->op_regs->status));
653 }
654 
655 #ifdef CONFIG_PM
656 static void xhci_save_registers(struct xhci_hcd *xhci)
657 {
658 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
659 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
660 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
661 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
662 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
663 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
664 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
665 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
666 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
667 }
668 
669 static void xhci_restore_registers(struct xhci_hcd *xhci)
670 {
671 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
672 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
673 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
674 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
675 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
676 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
677 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
678 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
679 }
680 
681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
682 {
683 	u64	val_64;
684 
685 	/* step 2: initialize command ring buffer */
686 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
687 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
688 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
689 				      xhci->cmd_ring->dequeue) &
690 		 (u64) ~CMD_RING_RSVD_BITS) |
691 		xhci->cmd_ring->cycle_state;
692 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
693 			(long unsigned long) val_64);
694 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
695 }
696 
697 /*
698  * The whole command ring must be cleared to zero when we suspend the host.
699  *
700  * The host doesn't save the command ring pointer in the suspend well, so we
701  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
702  * aligned, because of the reserved bits in the command ring dequeue pointer
703  * register.  Therefore, we can't just set the dequeue pointer back in the
704  * middle of the ring (TRBs are 16-byte aligned).
705  */
706 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
707 {
708 	struct xhci_ring *ring;
709 	struct xhci_segment *seg;
710 
711 	ring = xhci->cmd_ring;
712 	seg = ring->deq_seg;
713 	do {
714 		memset(seg->trbs, 0, SEGMENT_SIZE);
715 		seg = seg->next;
716 	} while (seg != ring->deq_seg);
717 
718 	/* Reset the software enqueue and dequeue pointers */
719 	ring->deq_seg = ring->first_seg;
720 	ring->dequeue = ring->first_seg->trbs;
721 	ring->enq_seg = ring->deq_seg;
722 	ring->enqueue = ring->dequeue;
723 
724 	/*
725 	 * Ring is now zeroed, so the HW should look for change of ownership
726 	 * when the cycle bit is set to 1.
727 	 */
728 	ring->cycle_state = 1;
729 
730 	/*
731 	 * Reset the hardware dequeue pointer.
732 	 * Yes, this will need to be re-written after resume, but we're paranoid
733 	 * and want to make sure the hardware doesn't access bogus memory
734 	 * because, say, the BIOS or an SMI started the host without changing
735 	 * the command ring pointers.
736 	 */
737 	xhci_set_cmd_ring_deq(xhci);
738 }
739 
740 /*
741  * Stop HC (not bus-specific)
742  *
743  * This is called when the machine transition into S3/S4 mode.
744  *
745  */
746 int xhci_suspend(struct xhci_hcd *xhci)
747 {
748 	int			rc = 0;
749 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
750 	u32			command;
751 
752 	spin_lock_irq(&xhci->lock);
753 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
754 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
755 	/* step 1: stop endpoint */
756 	/* skipped assuming that port suspend has done */
757 
758 	/* step 2: clear Run/Stop bit */
759 	command = xhci_readl(xhci, &xhci->op_regs->command);
760 	command &= ~CMD_RUN;
761 	xhci_writel(xhci, command, &xhci->op_regs->command);
762 	if (handshake(xhci, &xhci->op_regs->status,
763 		      STS_HALT, STS_HALT, 100*100)) {
764 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
765 		spin_unlock_irq(&xhci->lock);
766 		return -ETIMEDOUT;
767 	}
768 	xhci_clear_command_ring(xhci);
769 
770 	/* step 3: save registers */
771 	xhci_save_registers(xhci);
772 
773 	/* step 4: set CSS flag */
774 	command = xhci_readl(xhci, &xhci->op_regs->command);
775 	command |= CMD_CSS;
776 	xhci_writel(xhci, command, &xhci->op_regs->command);
777 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
778 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
779 		spin_unlock_irq(&xhci->lock);
780 		return -ETIMEDOUT;
781 	}
782 	spin_unlock_irq(&xhci->lock);
783 
784 	/* step 5: remove core well power */
785 	/* synchronize irq when using MSI-X */
786 	xhci_msix_sync_irqs(xhci);
787 
788 	return rc;
789 }
790 
791 /*
792  * start xHC (not bus-specific)
793  *
794  * This is called when the machine transition from S3/S4 mode.
795  *
796  */
797 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
798 {
799 	u32			command, temp = 0;
800 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
801 	struct usb_hcd		*secondary_hcd;
802 	int			retval;
803 
804 	/* Wait a bit if either of the roothubs need to settle from the
805 	 * transition into bus suspend.
806 	 */
807 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
808 			time_before(jiffies,
809 				xhci->bus_state[1].next_statechange))
810 		msleep(100);
811 
812 	spin_lock_irq(&xhci->lock);
813 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
814 		hibernated = true;
815 
816 	if (!hibernated) {
817 		/* step 1: restore register */
818 		xhci_restore_registers(xhci);
819 		/* step 2: initialize command ring buffer */
820 		xhci_set_cmd_ring_deq(xhci);
821 		/* step 3: restore state and start state*/
822 		/* step 3: set CRS flag */
823 		command = xhci_readl(xhci, &xhci->op_regs->command);
824 		command |= CMD_CRS;
825 		xhci_writel(xhci, command, &xhci->op_regs->command);
826 		if (handshake(xhci, &xhci->op_regs->status,
827 			      STS_RESTORE, 0, 10*100)) {
828 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
829 			spin_unlock_irq(&xhci->lock);
830 			return -ETIMEDOUT;
831 		}
832 		temp = xhci_readl(xhci, &xhci->op_regs->status);
833 	}
834 
835 	/* If restore operation fails, re-initialize the HC during resume */
836 	if ((temp & STS_SRE) || hibernated) {
837 		/* Let the USB core know _both_ roothubs lost power. */
838 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
839 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
840 
841 		xhci_dbg(xhci, "Stop HCD\n");
842 		xhci_halt(xhci);
843 		xhci_reset(xhci);
844 		spin_unlock_irq(&xhci->lock);
845 		xhci_cleanup_msix(xhci);
846 
847 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
848 		/* Tell the event ring poll function not to reschedule */
849 		xhci->zombie = 1;
850 		del_timer_sync(&xhci->event_ring_timer);
851 #endif
852 
853 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
854 		temp = xhci_readl(xhci, &xhci->op_regs->status);
855 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
856 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
857 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
858 				&xhci->ir_set->irq_pending);
859 		xhci_print_ir_set(xhci, 0);
860 
861 		xhci_dbg(xhci, "cleaning up memory\n");
862 		xhci_mem_cleanup(xhci);
863 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
864 			    xhci_readl(xhci, &xhci->op_regs->status));
865 
866 		/* USB core calls the PCI reinit and start functions twice:
867 		 * first with the primary HCD, and then with the secondary HCD.
868 		 * If we don't do the same, the host will never be started.
869 		 */
870 		if (!usb_hcd_is_primary_hcd(hcd))
871 			secondary_hcd = hcd;
872 		else
873 			secondary_hcd = xhci->shared_hcd;
874 
875 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
876 		retval = xhci_init(hcd->primary_hcd);
877 		if (retval)
878 			return retval;
879 		xhci_dbg(xhci, "Start the primary HCD\n");
880 		retval = xhci_run(hcd->primary_hcd);
881 		if (retval)
882 			goto failed_restart;
883 
884 		xhci_dbg(xhci, "Start the secondary HCD\n");
885 		retval = xhci_run(secondary_hcd);
886 		if (!retval) {
887 			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
888 			set_bit(HCD_FLAG_HW_ACCESSIBLE,
889 					&xhci->shared_hcd->flags);
890 		}
891 failed_restart:
892 		hcd->state = HC_STATE_SUSPENDED;
893 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
894 		return retval;
895 	}
896 
897 	/* step 4: set Run/Stop bit */
898 	command = xhci_readl(xhci, &xhci->op_regs->command);
899 	command |= CMD_RUN;
900 	xhci_writel(xhci, command, &xhci->op_regs->command);
901 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
902 		  0, 250 * 1000);
903 
904 	/* step 5: walk topology and initialize portsc,
905 	 * portpmsc and portli
906 	 */
907 	/* this is done in bus_resume */
908 
909 	/* step 6: restart each of the previously
910 	 * Running endpoints by ringing their doorbells
911 	 */
912 
913 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
914 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
915 
916 	spin_unlock_irq(&xhci->lock);
917 	return 0;
918 }
919 #endif	/* CONFIG_PM */
920 
921 /*-------------------------------------------------------------------------*/
922 
923 /**
924  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
925  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
926  * value to right shift 1 for the bitmask.
927  *
928  * Index  = (epnum * 2) + direction - 1,
929  * where direction = 0 for OUT, 1 for IN.
930  * For control endpoints, the IN index is used (OUT index is unused), so
931  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
932  */
933 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
934 {
935 	unsigned int index;
936 	if (usb_endpoint_xfer_control(desc))
937 		index = (unsigned int) (usb_endpoint_num(desc)*2);
938 	else
939 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
940 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
941 	return index;
942 }
943 
944 /* Find the flag for this endpoint (for use in the control context).  Use the
945  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
946  * bit 1, etc.
947  */
948 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
949 {
950 	return 1 << (xhci_get_endpoint_index(desc) + 1);
951 }
952 
953 /* Find the flag for this endpoint (for use in the control context).  Use the
954  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
955  * bit 1, etc.
956  */
957 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
958 {
959 	return 1 << (ep_index + 1);
960 }
961 
962 /* Compute the last valid endpoint context index.  Basically, this is the
963  * endpoint index plus one.  For slot contexts with more than valid endpoint,
964  * we find the most significant bit set in the added contexts flags.
965  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
966  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
967  */
968 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
969 {
970 	return fls(added_ctxs) - 1;
971 }
972 
973 /* Returns 1 if the arguments are OK;
974  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
975  */
976 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
977 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
978 		const char *func) {
979 	struct xhci_hcd	*xhci;
980 	struct xhci_virt_device	*virt_dev;
981 
982 	if (!hcd || (check_ep && !ep) || !udev) {
983 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
984 				func);
985 		return -EINVAL;
986 	}
987 	if (!udev->parent) {
988 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
989 				func);
990 		return 0;
991 	}
992 
993 	xhci = hcd_to_xhci(hcd);
994 	if (xhci->xhc_state & XHCI_STATE_HALTED)
995 		return -ENODEV;
996 
997 	if (check_virt_dev) {
998 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
999 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1000 						"device\n", func);
1001 			return -EINVAL;
1002 		}
1003 
1004 		virt_dev = xhci->devs[udev->slot_id];
1005 		if (virt_dev->udev != udev) {
1006 			printk(KERN_DEBUG "xHCI %s called with udev and "
1007 					  "virt_dev does not match\n", func);
1008 			return -EINVAL;
1009 		}
1010 	}
1011 
1012 	return 1;
1013 }
1014 
1015 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1016 		struct usb_device *udev, struct xhci_command *command,
1017 		bool ctx_change, bool must_succeed);
1018 
1019 /*
1020  * Full speed devices may have a max packet size greater than 8 bytes, but the
1021  * USB core doesn't know that until it reads the first 8 bytes of the
1022  * descriptor.  If the usb_device's max packet size changes after that point,
1023  * we need to issue an evaluate context command and wait on it.
1024  */
1025 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1026 		unsigned int ep_index, struct urb *urb)
1027 {
1028 	struct xhci_container_ctx *in_ctx;
1029 	struct xhci_container_ctx *out_ctx;
1030 	struct xhci_input_control_ctx *ctrl_ctx;
1031 	struct xhci_ep_ctx *ep_ctx;
1032 	int max_packet_size;
1033 	int hw_max_packet_size;
1034 	int ret = 0;
1035 
1036 	out_ctx = xhci->devs[slot_id]->out_ctx;
1037 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1038 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1039 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1040 	if (hw_max_packet_size != max_packet_size) {
1041 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1042 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1043 				max_packet_size);
1044 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1045 				hw_max_packet_size);
1046 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1047 
1048 		/* Set up the modified control endpoint 0 */
1049 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1050 				xhci->devs[slot_id]->out_ctx, ep_index);
1051 		in_ctx = xhci->devs[slot_id]->in_ctx;
1052 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1053 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1054 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1055 
1056 		/* Set up the input context flags for the command */
1057 		/* FIXME: This won't work if a non-default control endpoint
1058 		 * changes max packet sizes.
1059 		 */
1060 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1061 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1062 		ctrl_ctx->drop_flags = 0;
1063 
1064 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1065 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1066 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1067 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1068 
1069 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1070 				true, false);
1071 
1072 		/* Clean up the input context for later use by bandwidth
1073 		 * functions.
1074 		 */
1075 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1076 	}
1077 	return ret;
1078 }
1079 
1080 /*
1081  * non-error returns are a promise to giveback() the urb later
1082  * we drop ownership so next owner (or urb unlink) can get it
1083  */
1084 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1085 {
1086 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1087 	struct xhci_td *buffer;
1088 	unsigned long flags;
1089 	int ret = 0;
1090 	unsigned int slot_id, ep_index;
1091 	struct urb_priv	*urb_priv;
1092 	int size, i;
1093 
1094 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1095 					true, true, __func__) <= 0)
1096 		return -EINVAL;
1097 
1098 	slot_id = urb->dev->slot_id;
1099 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1100 
1101 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1102 		if (!in_interrupt())
1103 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1104 		ret = -ESHUTDOWN;
1105 		goto exit;
1106 	}
1107 
1108 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1109 		size = urb->number_of_packets;
1110 	else
1111 		size = 1;
1112 
1113 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1114 				  size * sizeof(struct xhci_td *), mem_flags);
1115 	if (!urb_priv)
1116 		return -ENOMEM;
1117 
1118 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1119 	if (!buffer) {
1120 		kfree(urb_priv);
1121 		return -ENOMEM;
1122 	}
1123 
1124 	for (i = 0; i < size; i++) {
1125 		urb_priv->td[i] = buffer;
1126 		buffer++;
1127 	}
1128 
1129 	urb_priv->length = size;
1130 	urb_priv->td_cnt = 0;
1131 	urb->hcpriv = urb_priv;
1132 
1133 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1134 		/* Check to see if the max packet size for the default control
1135 		 * endpoint changed during FS device enumeration
1136 		 */
1137 		if (urb->dev->speed == USB_SPEED_FULL) {
1138 			ret = xhci_check_maxpacket(xhci, slot_id,
1139 					ep_index, urb);
1140 			if (ret < 0) {
1141 				xhci_urb_free_priv(xhci, urb_priv);
1142 				urb->hcpriv = NULL;
1143 				return ret;
1144 			}
1145 		}
1146 
1147 		/* We have a spinlock and interrupts disabled, so we must pass
1148 		 * atomic context to this function, which may allocate memory.
1149 		 */
1150 		spin_lock_irqsave(&xhci->lock, flags);
1151 		if (xhci->xhc_state & XHCI_STATE_DYING)
1152 			goto dying;
1153 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1154 				slot_id, ep_index);
1155 		if (ret)
1156 			goto free_priv;
1157 		spin_unlock_irqrestore(&xhci->lock, flags);
1158 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1159 		spin_lock_irqsave(&xhci->lock, flags);
1160 		if (xhci->xhc_state & XHCI_STATE_DYING)
1161 			goto dying;
1162 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1163 				EP_GETTING_STREAMS) {
1164 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1165 					"is transitioning to using streams.\n");
1166 			ret = -EINVAL;
1167 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1168 				EP_GETTING_NO_STREAMS) {
1169 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1170 					"is transitioning to "
1171 					"not having streams.\n");
1172 			ret = -EINVAL;
1173 		} else {
1174 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1175 					slot_id, ep_index);
1176 		}
1177 		if (ret)
1178 			goto free_priv;
1179 		spin_unlock_irqrestore(&xhci->lock, flags);
1180 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1181 		spin_lock_irqsave(&xhci->lock, flags);
1182 		if (xhci->xhc_state & XHCI_STATE_DYING)
1183 			goto dying;
1184 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1185 				slot_id, ep_index);
1186 		if (ret)
1187 			goto free_priv;
1188 		spin_unlock_irqrestore(&xhci->lock, flags);
1189 	} else {
1190 		spin_lock_irqsave(&xhci->lock, flags);
1191 		if (xhci->xhc_state & XHCI_STATE_DYING)
1192 			goto dying;
1193 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1194 				slot_id, ep_index);
1195 		if (ret)
1196 			goto free_priv;
1197 		spin_unlock_irqrestore(&xhci->lock, flags);
1198 	}
1199 exit:
1200 	return ret;
1201 dying:
1202 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1203 			"non-responsive xHCI host.\n",
1204 			urb->ep->desc.bEndpointAddress, urb);
1205 	ret = -ESHUTDOWN;
1206 free_priv:
1207 	xhci_urb_free_priv(xhci, urb_priv);
1208 	urb->hcpriv = NULL;
1209 	spin_unlock_irqrestore(&xhci->lock, flags);
1210 	return ret;
1211 }
1212 
1213 /* Get the right ring for the given URB.
1214  * If the endpoint supports streams, boundary check the URB's stream ID.
1215  * If the endpoint doesn't support streams, return the singular endpoint ring.
1216  */
1217 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1218 		struct urb *urb)
1219 {
1220 	unsigned int slot_id;
1221 	unsigned int ep_index;
1222 	unsigned int stream_id;
1223 	struct xhci_virt_ep *ep;
1224 
1225 	slot_id = urb->dev->slot_id;
1226 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1227 	stream_id = urb->stream_id;
1228 	ep = &xhci->devs[slot_id]->eps[ep_index];
1229 	/* Common case: no streams */
1230 	if (!(ep->ep_state & EP_HAS_STREAMS))
1231 		return ep->ring;
1232 
1233 	if (stream_id == 0) {
1234 		xhci_warn(xhci,
1235 				"WARN: Slot ID %u, ep index %u has streams, "
1236 				"but URB has no stream ID.\n",
1237 				slot_id, ep_index);
1238 		return NULL;
1239 	}
1240 
1241 	if (stream_id < ep->stream_info->num_streams)
1242 		return ep->stream_info->stream_rings[stream_id];
1243 
1244 	xhci_warn(xhci,
1245 			"WARN: Slot ID %u, ep index %u has "
1246 			"stream IDs 1 to %u allocated, "
1247 			"but stream ID %u is requested.\n",
1248 			slot_id, ep_index,
1249 			ep->stream_info->num_streams - 1,
1250 			stream_id);
1251 	return NULL;
1252 }
1253 
1254 /*
1255  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1256  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1257  * should pick up where it left off in the TD, unless a Set Transfer Ring
1258  * Dequeue Pointer is issued.
1259  *
1260  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1261  * the ring.  Since the ring is a contiguous structure, they can't be physically
1262  * removed.  Instead, there are two options:
1263  *
1264  *  1) If the HC is in the middle of processing the URB to be canceled, we
1265  *     simply move the ring's dequeue pointer past those TRBs using the Set
1266  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1267  *     when drivers timeout on the last submitted URB and attempt to cancel.
1268  *
1269  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1270  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1271  *     HC will need to invalidate the any TRBs it has cached after the stop
1272  *     endpoint command, as noted in the xHCI 0.95 errata.
1273  *
1274  *  3) The TD may have completed by the time the Stop Endpoint Command
1275  *     completes, so software needs to handle that case too.
1276  *
1277  * This function should protect against the TD enqueueing code ringing the
1278  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1279  * It also needs to account for multiple cancellations on happening at the same
1280  * time for the same endpoint.
1281  *
1282  * Note that this function can be called in any context, or so says
1283  * usb_hcd_unlink_urb()
1284  */
1285 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1286 {
1287 	unsigned long flags;
1288 	int ret, i;
1289 	u32 temp;
1290 	struct xhci_hcd *xhci;
1291 	struct urb_priv	*urb_priv;
1292 	struct xhci_td *td;
1293 	unsigned int ep_index;
1294 	struct xhci_ring *ep_ring;
1295 	struct xhci_virt_ep *ep;
1296 
1297 	xhci = hcd_to_xhci(hcd);
1298 	spin_lock_irqsave(&xhci->lock, flags);
1299 	/* Make sure the URB hasn't completed or been unlinked already */
1300 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1301 	if (ret || !urb->hcpriv)
1302 		goto done;
1303 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1304 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1305 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1306 		urb_priv = urb->hcpriv;
1307 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1308 			td = urb_priv->td[i];
1309 			if (!list_empty(&td->td_list))
1310 				list_del_init(&td->td_list);
1311 			if (!list_empty(&td->cancelled_td_list))
1312 				list_del_init(&td->cancelled_td_list);
1313 		}
1314 
1315 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1316 		spin_unlock_irqrestore(&xhci->lock, flags);
1317 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1318 		xhci_urb_free_priv(xhci, urb_priv);
1319 		return ret;
1320 	}
1321 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1322 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1323 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1324 				"non-responsive xHCI host.\n",
1325 				urb->ep->desc.bEndpointAddress, urb);
1326 		/* Let the stop endpoint command watchdog timer (which set this
1327 		 * state) finish cleaning up the endpoint TD lists.  We must
1328 		 * have caught it in the middle of dropping a lock and giving
1329 		 * back an URB.
1330 		 */
1331 		goto done;
1332 	}
1333 
1334 	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1335 	xhci_dbg(xhci, "Event ring:\n");
1336 	xhci_debug_ring(xhci, xhci->event_ring);
1337 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1338 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1339 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1340 	if (!ep_ring) {
1341 		ret = -EINVAL;
1342 		goto done;
1343 	}
1344 
1345 	xhci_dbg(xhci, "Endpoint ring:\n");
1346 	xhci_debug_ring(xhci, ep_ring);
1347 
1348 	urb_priv = urb->hcpriv;
1349 
1350 	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1351 		td = urb_priv->td[i];
1352 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1353 	}
1354 
1355 	/* Queue a stop endpoint command, but only if this is
1356 	 * the first cancellation to be handled.
1357 	 */
1358 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1359 		ep->ep_state |= EP_HALT_PENDING;
1360 		ep->stop_cmds_pending++;
1361 		ep->stop_cmd_timer.expires = jiffies +
1362 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1363 		add_timer(&ep->stop_cmd_timer);
1364 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1365 		xhci_ring_cmd_db(xhci);
1366 	}
1367 done:
1368 	spin_unlock_irqrestore(&xhci->lock, flags);
1369 	return ret;
1370 }
1371 
1372 /* Drop an endpoint from a new bandwidth configuration for this device.
1373  * Only one call to this function is allowed per endpoint before
1374  * check_bandwidth() or reset_bandwidth() must be called.
1375  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1376  * add the endpoint to the schedule with possibly new parameters denoted by a
1377  * different endpoint descriptor in usb_host_endpoint.
1378  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1379  * not allowed.
1380  *
1381  * The USB core will not allow URBs to be queued to an endpoint that is being
1382  * disabled, so there's no need for mutual exclusion to protect
1383  * the xhci->devs[slot_id] structure.
1384  */
1385 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1386 		struct usb_host_endpoint *ep)
1387 {
1388 	struct xhci_hcd *xhci;
1389 	struct xhci_container_ctx *in_ctx, *out_ctx;
1390 	struct xhci_input_control_ctx *ctrl_ctx;
1391 	struct xhci_slot_ctx *slot_ctx;
1392 	unsigned int last_ctx;
1393 	unsigned int ep_index;
1394 	struct xhci_ep_ctx *ep_ctx;
1395 	u32 drop_flag;
1396 	u32 new_add_flags, new_drop_flags, new_slot_info;
1397 	int ret;
1398 
1399 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1400 	if (ret <= 0)
1401 		return ret;
1402 	xhci = hcd_to_xhci(hcd);
1403 	if (xhci->xhc_state & XHCI_STATE_DYING)
1404 		return -ENODEV;
1405 
1406 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1407 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1408 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1409 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1410 				__func__, drop_flag);
1411 		return 0;
1412 	}
1413 
1414 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1415 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1416 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1417 	ep_index = xhci_get_endpoint_index(&ep->desc);
1418 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1419 	/* If the HC already knows the endpoint is disabled,
1420 	 * or the HCD has noted it is disabled, ignore this request
1421 	 */
1422 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1423 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1424 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1425 	    xhci_get_endpoint_flag(&ep->desc)) {
1426 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1427 				__func__, ep);
1428 		return 0;
1429 	}
1430 
1431 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1432 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1433 
1434 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1435 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1436 
1437 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1438 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1439 	/* Update the last valid endpoint context, if we deleted the last one */
1440 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1441 	    LAST_CTX(last_ctx)) {
1442 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1443 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1444 	}
1445 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1446 
1447 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1448 
1449 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1450 			(unsigned int) ep->desc.bEndpointAddress,
1451 			udev->slot_id,
1452 			(unsigned int) new_drop_flags,
1453 			(unsigned int) new_add_flags,
1454 			(unsigned int) new_slot_info);
1455 	return 0;
1456 }
1457 
1458 /* Add an endpoint to a new possible bandwidth configuration for this device.
1459  * Only one call to this function is allowed per endpoint before
1460  * check_bandwidth() or reset_bandwidth() must be called.
1461  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1462  * add the endpoint to the schedule with possibly new parameters denoted by a
1463  * different endpoint descriptor in usb_host_endpoint.
1464  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1465  * not allowed.
1466  *
1467  * The USB core will not allow URBs to be queued to an endpoint until the
1468  * configuration or alt setting is installed in the device, so there's no need
1469  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1470  */
1471 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1472 		struct usb_host_endpoint *ep)
1473 {
1474 	struct xhci_hcd *xhci;
1475 	struct xhci_container_ctx *in_ctx, *out_ctx;
1476 	unsigned int ep_index;
1477 	struct xhci_ep_ctx *ep_ctx;
1478 	struct xhci_slot_ctx *slot_ctx;
1479 	struct xhci_input_control_ctx *ctrl_ctx;
1480 	u32 added_ctxs;
1481 	unsigned int last_ctx;
1482 	u32 new_add_flags, new_drop_flags, new_slot_info;
1483 	struct xhci_virt_device *virt_dev;
1484 	int ret = 0;
1485 
1486 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1487 	if (ret <= 0) {
1488 		/* So we won't queue a reset ep command for a root hub */
1489 		ep->hcpriv = NULL;
1490 		return ret;
1491 	}
1492 	xhci = hcd_to_xhci(hcd);
1493 	if (xhci->xhc_state & XHCI_STATE_DYING)
1494 		return -ENODEV;
1495 
1496 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1497 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1498 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1499 		/* FIXME when we have to issue an evaluate endpoint command to
1500 		 * deal with ep0 max packet size changing once we get the
1501 		 * descriptors
1502 		 */
1503 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1504 				__func__, added_ctxs);
1505 		return 0;
1506 	}
1507 
1508 	virt_dev = xhci->devs[udev->slot_id];
1509 	in_ctx = virt_dev->in_ctx;
1510 	out_ctx = virt_dev->out_ctx;
1511 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1512 	ep_index = xhci_get_endpoint_index(&ep->desc);
1513 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1514 
1515 	/* If this endpoint is already in use, and the upper layers are trying
1516 	 * to add it again without dropping it, reject the addition.
1517 	 */
1518 	if (virt_dev->eps[ep_index].ring &&
1519 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1520 				xhci_get_endpoint_flag(&ep->desc))) {
1521 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1522 				"without dropping it.\n",
1523 				(unsigned int) ep->desc.bEndpointAddress);
1524 		return -EINVAL;
1525 	}
1526 
1527 	/* If the HCD has already noted the endpoint is enabled,
1528 	 * ignore this request.
1529 	 */
1530 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1531 	    xhci_get_endpoint_flag(&ep->desc)) {
1532 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1533 				__func__, ep);
1534 		return 0;
1535 	}
1536 
1537 	/*
1538 	 * Configuration and alternate setting changes must be done in
1539 	 * process context, not interrupt context (or so documenation
1540 	 * for usb_set_interface() and usb_set_configuration() claim).
1541 	 */
1542 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1543 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1544 				__func__, ep->desc.bEndpointAddress);
1545 		return -ENOMEM;
1546 	}
1547 
1548 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1549 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1550 
1551 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1552 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1553 	 * this re-adds a new state for the endpoint from the new endpoint
1554 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1555 	 * drop flags alone.
1556 	 */
1557 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1558 
1559 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1560 	/* Update the last valid endpoint context, if we just added one past */
1561 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1562 	    LAST_CTX(last_ctx)) {
1563 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1564 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1565 	}
1566 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1567 
1568 	/* Store the usb_device pointer for later use */
1569 	ep->hcpriv = udev;
1570 
1571 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1572 			(unsigned int) ep->desc.bEndpointAddress,
1573 			udev->slot_id,
1574 			(unsigned int) new_drop_flags,
1575 			(unsigned int) new_add_flags,
1576 			(unsigned int) new_slot_info);
1577 	return 0;
1578 }
1579 
1580 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1581 {
1582 	struct xhci_input_control_ctx *ctrl_ctx;
1583 	struct xhci_ep_ctx *ep_ctx;
1584 	struct xhci_slot_ctx *slot_ctx;
1585 	int i;
1586 
1587 	/* When a device's add flag and drop flag are zero, any subsequent
1588 	 * configure endpoint command will leave that endpoint's state
1589 	 * untouched.  Make sure we don't leave any old state in the input
1590 	 * endpoint contexts.
1591 	 */
1592 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1593 	ctrl_ctx->drop_flags = 0;
1594 	ctrl_ctx->add_flags = 0;
1595 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1596 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1597 	/* Endpoint 0 is always valid */
1598 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1599 	for (i = 1; i < 31; ++i) {
1600 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1601 		ep_ctx->ep_info = 0;
1602 		ep_ctx->ep_info2 = 0;
1603 		ep_ctx->deq = 0;
1604 		ep_ctx->tx_info = 0;
1605 	}
1606 }
1607 
1608 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1609 		struct usb_device *udev, u32 *cmd_status)
1610 {
1611 	int ret;
1612 
1613 	switch (*cmd_status) {
1614 	case COMP_ENOMEM:
1615 		dev_warn(&udev->dev, "Not enough host controller resources "
1616 				"for new device state.\n");
1617 		ret = -ENOMEM;
1618 		/* FIXME: can we allocate more resources for the HC? */
1619 		break;
1620 	case COMP_BW_ERR:
1621 		dev_warn(&udev->dev, "Not enough bandwidth "
1622 				"for new device state.\n");
1623 		ret = -ENOSPC;
1624 		/* FIXME: can we go back to the old state? */
1625 		break;
1626 	case COMP_TRB_ERR:
1627 		/* the HCD set up something wrong */
1628 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1629 				"add flag = 1, "
1630 				"and endpoint is not disabled.\n");
1631 		ret = -EINVAL;
1632 		break;
1633 	case COMP_DEV_ERR:
1634 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1635 				"configure command.\n");
1636 		ret = -ENODEV;
1637 		break;
1638 	case COMP_SUCCESS:
1639 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1640 		ret = 0;
1641 		break;
1642 	default:
1643 		xhci_err(xhci, "ERROR: unexpected command completion "
1644 				"code 0x%x.\n", *cmd_status);
1645 		ret = -EINVAL;
1646 		break;
1647 	}
1648 	return ret;
1649 }
1650 
1651 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1652 		struct usb_device *udev, u32 *cmd_status)
1653 {
1654 	int ret;
1655 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1656 
1657 	switch (*cmd_status) {
1658 	case COMP_EINVAL:
1659 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1660 				"context command.\n");
1661 		ret = -EINVAL;
1662 		break;
1663 	case COMP_EBADSLT:
1664 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1665 				"evaluate context command.\n");
1666 	case COMP_CTX_STATE:
1667 		dev_warn(&udev->dev, "WARN: invalid context state for "
1668 				"evaluate context command.\n");
1669 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1670 		ret = -EINVAL;
1671 		break;
1672 	case COMP_DEV_ERR:
1673 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1674 				"context command.\n");
1675 		ret = -ENODEV;
1676 		break;
1677 	case COMP_MEL_ERR:
1678 		/* Max Exit Latency too large error */
1679 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1680 		ret = -EINVAL;
1681 		break;
1682 	case COMP_SUCCESS:
1683 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1684 		ret = 0;
1685 		break;
1686 	default:
1687 		xhci_err(xhci, "ERROR: unexpected command completion "
1688 				"code 0x%x.\n", *cmd_status);
1689 		ret = -EINVAL;
1690 		break;
1691 	}
1692 	return ret;
1693 }
1694 
1695 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1696 		struct xhci_container_ctx *in_ctx)
1697 {
1698 	struct xhci_input_control_ctx *ctrl_ctx;
1699 	u32 valid_add_flags;
1700 	u32 valid_drop_flags;
1701 
1702 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1703 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1704 	 * (bit 1).  The default control endpoint is added during the Address
1705 	 * Device command and is never removed until the slot is disabled.
1706 	 */
1707 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1708 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1709 
1710 	/* Use hweight32 to count the number of ones in the add flags, or
1711 	 * number of endpoints added.  Don't count endpoints that are changed
1712 	 * (both added and dropped).
1713 	 */
1714 	return hweight32(valid_add_flags) -
1715 		hweight32(valid_add_flags & valid_drop_flags);
1716 }
1717 
1718 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1719 		struct xhci_container_ctx *in_ctx)
1720 {
1721 	struct xhci_input_control_ctx *ctrl_ctx;
1722 	u32 valid_add_flags;
1723 	u32 valid_drop_flags;
1724 
1725 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1726 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1727 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1728 
1729 	return hweight32(valid_drop_flags) -
1730 		hweight32(valid_add_flags & valid_drop_flags);
1731 }
1732 
1733 /*
1734  * We need to reserve the new number of endpoints before the configure endpoint
1735  * command completes.  We can't subtract the dropped endpoints from the number
1736  * of active endpoints until the command completes because we can oversubscribe
1737  * the host in this case:
1738  *
1739  *  - the first configure endpoint command drops more endpoints than it adds
1740  *  - a second configure endpoint command that adds more endpoints is queued
1741  *  - the first configure endpoint command fails, so the config is unchanged
1742  *  - the second command may succeed, even though there isn't enough resources
1743  *
1744  * Must be called with xhci->lock held.
1745  */
1746 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1747 		struct xhci_container_ctx *in_ctx)
1748 {
1749 	u32 added_eps;
1750 
1751 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1752 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1753 		xhci_dbg(xhci, "Not enough ep ctxs: "
1754 				"%u active, need to add %u, limit is %u.\n",
1755 				xhci->num_active_eps, added_eps,
1756 				xhci->limit_active_eps);
1757 		return -ENOMEM;
1758 	}
1759 	xhci->num_active_eps += added_eps;
1760 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1761 			xhci->num_active_eps);
1762 	return 0;
1763 }
1764 
1765 /*
1766  * The configure endpoint was failed by the xHC for some other reason, so we
1767  * need to revert the resources that failed configuration would have used.
1768  *
1769  * Must be called with xhci->lock held.
1770  */
1771 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1772 		struct xhci_container_ctx *in_ctx)
1773 {
1774 	u32 num_failed_eps;
1775 
1776 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1777 	xhci->num_active_eps -= num_failed_eps;
1778 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1779 			num_failed_eps,
1780 			xhci->num_active_eps);
1781 }
1782 
1783 /*
1784  * Now that the command has completed, clean up the active endpoint count by
1785  * subtracting out the endpoints that were dropped (but not changed).
1786  *
1787  * Must be called with xhci->lock held.
1788  */
1789 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1790 		struct xhci_container_ctx *in_ctx)
1791 {
1792 	u32 num_dropped_eps;
1793 
1794 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1795 	xhci->num_active_eps -= num_dropped_eps;
1796 	if (num_dropped_eps)
1797 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1798 				num_dropped_eps,
1799 				xhci->num_active_eps);
1800 }
1801 
1802 unsigned int xhci_get_block_size(struct usb_device *udev)
1803 {
1804 	switch (udev->speed) {
1805 	case USB_SPEED_LOW:
1806 	case USB_SPEED_FULL:
1807 		return FS_BLOCK;
1808 	case USB_SPEED_HIGH:
1809 		return HS_BLOCK;
1810 	case USB_SPEED_SUPER:
1811 		return SS_BLOCK;
1812 	case USB_SPEED_UNKNOWN:
1813 	case USB_SPEED_WIRELESS:
1814 	default:
1815 		/* Should never happen */
1816 		return 1;
1817 	}
1818 }
1819 
1820 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1821 {
1822 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1823 		return LS_OVERHEAD;
1824 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1825 		return FS_OVERHEAD;
1826 	return HS_OVERHEAD;
1827 }
1828 
1829 /* If we are changing a LS/FS device under a HS hub,
1830  * make sure (if we are activating a new TT) that the HS bus has enough
1831  * bandwidth for this new TT.
1832  */
1833 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1834 		struct xhci_virt_device *virt_dev,
1835 		int old_active_eps)
1836 {
1837 	struct xhci_interval_bw_table *bw_table;
1838 	struct xhci_tt_bw_info *tt_info;
1839 
1840 	/* Find the bandwidth table for the root port this TT is attached to. */
1841 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1842 	tt_info = virt_dev->tt_info;
1843 	/* If this TT already had active endpoints, the bandwidth for this TT
1844 	 * has already been added.  Removing all periodic endpoints (and thus
1845 	 * making the TT enactive) will only decrease the bandwidth used.
1846 	 */
1847 	if (old_active_eps)
1848 		return 0;
1849 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
1850 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1851 			return -ENOMEM;
1852 		return 0;
1853 	}
1854 	/* Not sure why we would have no new active endpoints...
1855 	 *
1856 	 * Maybe because of an Evaluate Context change for a hub update or a
1857 	 * control endpoint 0 max packet size change?
1858 	 * FIXME: skip the bandwidth calculation in that case.
1859 	 */
1860 	return 0;
1861 }
1862 
1863 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1864 		struct xhci_virt_device *virt_dev)
1865 {
1866 	unsigned int bw_reserved;
1867 
1868 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1869 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1870 		return -ENOMEM;
1871 
1872 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1873 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1874 		return -ENOMEM;
1875 
1876 	return 0;
1877 }
1878 
1879 /*
1880  * This algorithm is a very conservative estimate of the worst-case scheduling
1881  * scenario for any one interval.  The hardware dynamically schedules the
1882  * packets, so we can't tell which microframe could be the limiting factor in
1883  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1884  *
1885  * Obviously, we can't solve an NP complete problem to find the minimum worst
1886  * case scenario.  Instead, we come up with an estimate that is no less than
1887  * the worst case bandwidth used for any one microframe, but may be an
1888  * over-estimate.
1889  *
1890  * We walk the requirements for each endpoint by interval, starting with the
1891  * smallest interval, and place packets in the schedule where there is only one
1892  * possible way to schedule packets for that interval.  In order to simplify
1893  * this algorithm, we record the largest max packet size for each interval, and
1894  * assume all packets will be that size.
1895  *
1896  * For interval 0, we obviously must schedule all packets for each interval.
1897  * The bandwidth for interval 0 is just the amount of data to be transmitted
1898  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1899  * the number of packets).
1900  *
1901  * For interval 1, we have two possible microframes to schedule those packets
1902  * in.  For this algorithm, if we can schedule the same number of packets for
1903  * each possible scheduling opportunity (each microframe), we will do so.  The
1904  * remaining number of packets will be saved to be transmitted in the gaps in
1905  * the next interval's scheduling sequence.
1906  *
1907  * As we move those remaining packets to be scheduled with interval 2 packets,
1908  * we have to double the number of remaining packets to transmit.  This is
1909  * because the intervals are actually powers of 2, and we would be transmitting
1910  * the previous interval's packets twice in this interval.  We also have to be
1911  * sure that when we look at the largest max packet size for this interval, we
1912  * also look at the largest max packet size for the remaining packets and take
1913  * the greater of the two.
1914  *
1915  * The algorithm continues to evenly distribute packets in each scheduling
1916  * opportunity, and push the remaining packets out, until we get to the last
1917  * interval.  Then those packets and their associated overhead are just added
1918  * to the bandwidth used.
1919  */
1920 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1921 		struct xhci_virt_device *virt_dev,
1922 		int old_active_eps)
1923 {
1924 	unsigned int bw_reserved;
1925 	unsigned int max_bandwidth;
1926 	unsigned int bw_used;
1927 	unsigned int block_size;
1928 	struct xhci_interval_bw_table *bw_table;
1929 	unsigned int packet_size = 0;
1930 	unsigned int overhead = 0;
1931 	unsigned int packets_transmitted = 0;
1932 	unsigned int packets_remaining = 0;
1933 	unsigned int i;
1934 
1935 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
1936 		return xhci_check_ss_bw(xhci, virt_dev);
1937 
1938 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1939 		max_bandwidth = HS_BW_LIMIT;
1940 		/* Convert percent of bus BW reserved to blocks reserved */
1941 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1942 	} else {
1943 		max_bandwidth = FS_BW_LIMIT;
1944 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1945 	}
1946 
1947 	bw_table = virt_dev->bw_table;
1948 	/* We need to translate the max packet size and max ESIT payloads into
1949 	 * the units the hardware uses.
1950 	 */
1951 	block_size = xhci_get_block_size(virt_dev->udev);
1952 
1953 	/* If we are manipulating a LS/FS device under a HS hub, double check
1954 	 * that the HS bus has enough bandwidth if we are activing a new TT.
1955 	 */
1956 	if (virt_dev->tt_info) {
1957 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1958 				virt_dev->real_port);
1959 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1960 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1961 					"newly activated TT.\n");
1962 			return -ENOMEM;
1963 		}
1964 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1965 				virt_dev->tt_info->slot_id,
1966 				virt_dev->tt_info->ttport);
1967 	} else {
1968 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1969 				virt_dev->real_port);
1970 	}
1971 
1972 	/* Add in how much bandwidth will be used for interval zero, or the
1973 	 * rounded max ESIT payload + number of packets * largest overhead.
1974 	 */
1975 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1976 		bw_table->interval_bw[0].num_packets *
1977 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1978 
1979 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1980 		unsigned int bw_added;
1981 		unsigned int largest_mps;
1982 		unsigned int interval_overhead;
1983 
1984 		/*
1985 		 * How many packets could we transmit in this interval?
1986 		 * If packets didn't fit in the previous interval, we will need
1987 		 * to transmit that many packets twice within this interval.
1988 		 */
1989 		packets_remaining = 2 * packets_remaining +
1990 			bw_table->interval_bw[i].num_packets;
1991 
1992 		/* Find the largest max packet size of this or the previous
1993 		 * interval.
1994 		 */
1995 		if (list_empty(&bw_table->interval_bw[i].endpoints))
1996 			largest_mps = 0;
1997 		else {
1998 			struct xhci_virt_ep *virt_ep;
1999 			struct list_head *ep_entry;
2000 
2001 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2002 			virt_ep = list_entry(ep_entry,
2003 					struct xhci_virt_ep, bw_endpoint_list);
2004 			/* Convert to blocks, rounding up */
2005 			largest_mps = DIV_ROUND_UP(
2006 					virt_ep->bw_info.max_packet_size,
2007 					block_size);
2008 		}
2009 		if (largest_mps > packet_size)
2010 			packet_size = largest_mps;
2011 
2012 		/* Use the larger overhead of this or the previous interval. */
2013 		interval_overhead = xhci_get_largest_overhead(
2014 				&bw_table->interval_bw[i]);
2015 		if (interval_overhead > overhead)
2016 			overhead = interval_overhead;
2017 
2018 		/* How many packets can we evenly distribute across
2019 		 * (1 << (i + 1)) possible scheduling opportunities?
2020 		 */
2021 		packets_transmitted = packets_remaining >> (i + 1);
2022 
2023 		/* Add in the bandwidth used for those scheduled packets */
2024 		bw_added = packets_transmitted * (overhead + packet_size);
2025 
2026 		/* How many packets do we have remaining to transmit? */
2027 		packets_remaining = packets_remaining % (1 << (i + 1));
2028 
2029 		/* What largest max packet size should those packets have? */
2030 		/* If we've transmitted all packets, don't carry over the
2031 		 * largest packet size.
2032 		 */
2033 		if (packets_remaining == 0) {
2034 			packet_size = 0;
2035 			overhead = 0;
2036 		} else if (packets_transmitted > 0) {
2037 			/* Otherwise if we do have remaining packets, and we've
2038 			 * scheduled some packets in this interval, take the
2039 			 * largest max packet size from endpoints with this
2040 			 * interval.
2041 			 */
2042 			packet_size = largest_mps;
2043 			overhead = interval_overhead;
2044 		}
2045 		/* Otherwise carry over packet_size and overhead from the last
2046 		 * time we had a remainder.
2047 		 */
2048 		bw_used += bw_added;
2049 		if (bw_used > max_bandwidth) {
2050 			xhci_warn(xhci, "Not enough bandwidth. "
2051 					"Proposed: %u, Max: %u\n",
2052 				bw_used, max_bandwidth);
2053 			return -ENOMEM;
2054 		}
2055 	}
2056 	/*
2057 	 * Ok, we know we have some packets left over after even-handedly
2058 	 * scheduling interval 15.  We don't know which microframes they will
2059 	 * fit into, so we over-schedule and say they will be scheduled every
2060 	 * microframe.
2061 	 */
2062 	if (packets_remaining > 0)
2063 		bw_used += overhead + packet_size;
2064 
2065 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2066 		unsigned int port_index = virt_dev->real_port - 1;
2067 
2068 		/* OK, we're manipulating a HS device attached to a
2069 		 * root port bandwidth domain.  Include the number of active TTs
2070 		 * in the bandwidth used.
2071 		 */
2072 		bw_used += TT_HS_OVERHEAD *
2073 			xhci->rh_bw[port_index].num_active_tts;
2074 	}
2075 
2076 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2077 		"Available: %u " "percent\n",
2078 		bw_used, max_bandwidth, bw_reserved,
2079 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2080 		max_bandwidth);
2081 
2082 	bw_used += bw_reserved;
2083 	if (bw_used > max_bandwidth) {
2084 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2085 				bw_used, max_bandwidth);
2086 		return -ENOMEM;
2087 	}
2088 
2089 	bw_table->bw_used = bw_used;
2090 	return 0;
2091 }
2092 
2093 static bool xhci_is_async_ep(unsigned int ep_type)
2094 {
2095 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2096 					ep_type != ISOC_IN_EP &&
2097 					ep_type != INT_IN_EP);
2098 }
2099 
2100 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2101 {
2102 	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2103 }
2104 
2105 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2106 {
2107 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2108 
2109 	if (ep_bw->ep_interval == 0)
2110 		return SS_OVERHEAD_BURST +
2111 			(ep_bw->mult * ep_bw->num_packets *
2112 					(SS_OVERHEAD + mps));
2113 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2114 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2115 				1 << ep_bw->ep_interval);
2116 
2117 }
2118 
2119 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2120 		struct xhci_bw_info *ep_bw,
2121 		struct xhci_interval_bw_table *bw_table,
2122 		struct usb_device *udev,
2123 		struct xhci_virt_ep *virt_ep,
2124 		struct xhci_tt_bw_info *tt_info)
2125 {
2126 	struct xhci_interval_bw	*interval_bw;
2127 	int normalized_interval;
2128 
2129 	if (xhci_is_async_ep(ep_bw->type))
2130 		return;
2131 
2132 	if (udev->speed == USB_SPEED_SUPER) {
2133 		if (xhci_is_sync_in_ep(ep_bw->type))
2134 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2135 				xhci_get_ss_bw_consumed(ep_bw);
2136 		else
2137 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2138 				xhci_get_ss_bw_consumed(ep_bw);
2139 		return;
2140 	}
2141 
2142 	/* SuperSpeed endpoints never get added to intervals in the table, so
2143 	 * this check is only valid for HS/FS/LS devices.
2144 	 */
2145 	if (list_empty(&virt_ep->bw_endpoint_list))
2146 		return;
2147 	/* For LS/FS devices, we need to translate the interval expressed in
2148 	 * microframes to frames.
2149 	 */
2150 	if (udev->speed == USB_SPEED_HIGH)
2151 		normalized_interval = ep_bw->ep_interval;
2152 	else
2153 		normalized_interval = ep_bw->ep_interval - 3;
2154 
2155 	if (normalized_interval == 0)
2156 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2157 	interval_bw = &bw_table->interval_bw[normalized_interval];
2158 	interval_bw->num_packets -= ep_bw->num_packets;
2159 	switch (udev->speed) {
2160 	case USB_SPEED_LOW:
2161 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2162 		break;
2163 	case USB_SPEED_FULL:
2164 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2165 		break;
2166 	case USB_SPEED_HIGH:
2167 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2168 		break;
2169 	case USB_SPEED_SUPER:
2170 	case USB_SPEED_UNKNOWN:
2171 	case USB_SPEED_WIRELESS:
2172 		/* Should never happen because only LS/FS/HS endpoints will get
2173 		 * added to the endpoint list.
2174 		 */
2175 		return;
2176 	}
2177 	if (tt_info)
2178 		tt_info->active_eps -= 1;
2179 	list_del_init(&virt_ep->bw_endpoint_list);
2180 }
2181 
2182 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2183 		struct xhci_bw_info *ep_bw,
2184 		struct xhci_interval_bw_table *bw_table,
2185 		struct usb_device *udev,
2186 		struct xhci_virt_ep *virt_ep,
2187 		struct xhci_tt_bw_info *tt_info)
2188 {
2189 	struct xhci_interval_bw	*interval_bw;
2190 	struct xhci_virt_ep *smaller_ep;
2191 	int normalized_interval;
2192 
2193 	if (xhci_is_async_ep(ep_bw->type))
2194 		return;
2195 
2196 	if (udev->speed == USB_SPEED_SUPER) {
2197 		if (xhci_is_sync_in_ep(ep_bw->type))
2198 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2199 				xhci_get_ss_bw_consumed(ep_bw);
2200 		else
2201 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2202 				xhci_get_ss_bw_consumed(ep_bw);
2203 		return;
2204 	}
2205 
2206 	/* For LS/FS devices, we need to translate the interval expressed in
2207 	 * microframes to frames.
2208 	 */
2209 	if (udev->speed == USB_SPEED_HIGH)
2210 		normalized_interval = ep_bw->ep_interval;
2211 	else
2212 		normalized_interval = ep_bw->ep_interval - 3;
2213 
2214 	if (normalized_interval == 0)
2215 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2216 	interval_bw = &bw_table->interval_bw[normalized_interval];
2217 	interval_bw->num_packets += ep_bw->num_packets;
2218 	switch (udev->speed) {
2219 	case USB_SPEED_LOW:
2220 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2221 		break;
2222 	case USB_SPEED_FULL:
2223 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2224 		break;
2225 	case USB_SPEED_HIGH:
2226 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2227 		break;
2228 	case USB_SPEED_SUPER:
2229 	case USB_SPEED_UNKNOWN:
2230 	case USB_SPEED_WIRELESS:
2231 		/* Should never happen because only LS/FS/HS endpoints will get
2232 		 * added to the endpoint list.
2233 		 */
2234 		return;
2235 	}
2236 
2237 	if (tt_info)
2238 		tt_info->active_eps += 1;
2239 	/* Insert the endpoint into the list, largest max packet size first. */
2240 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2241 			bw_endpoint_list) {
2242 		if (ep_bw->max_packet_size >=
2243 				smaller_ep->bw_info.max_packet_size) {
2244 			/* Add the new ep before the smaller endpoint */
2245 			list_add_tail(&virt_ep->bw_endpoint_list,
2246 					&smaller_ep->bw_endpoint_list);
2247 			return;
2248 		}
2249 	}
2250 	/* Add the new endpoint at the end of the list. */
2251 	list_add_tail(&virt_ep->bw_endpoint_list,
2252 			&interval_bw->endpoints);
2253 }
2254 
2255 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2256 		struct xhci_virt_device *virt_dev,
2257 		int old_active_eps)
2258 {
2259 	struct xhci_root_port_bw_info *rh_bw_info;
2260 	if (!virt_dev->tt_info)
2261 		return;
2262 
2263 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2264 	if (old_active_eps == 0 &&
2265 				virt_dev->tt_info->active_eps != 0) {
2266 		rh_bw_info->num_active_tts += 1;
2267 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2268 	} else if (old_active_eps != 0 &&
2269 				virt_dev->tt_info->active_eps == 0) {
2270 		rh_bw_info->num_active_tts -= 1;
2271 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2272 	}
2273 }
2274 
2275 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2276 		struct xhci_virt_device *virt_dev,
2277 		struct xhci_container_ctx *in_ctx)
2278 {
2279 	struct xhci_bw_info ep_bw_info[31];
2280 	int i;
2281 	struct xhci_input_control_ctx *ctrl_ctx;
2282 	int old_active_eps = 0;
2283 
2284 	if (virt_dev->tt_info)
2285 		old_active_eps = virt_dev->tt_info->active_eps;
2286 
2287 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2288 
2289 	for (i = 0; i < 31; i++) {
2290 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2291 			continue;
2292 
2293 		/* Make a copy of the BW info in case we need to revert this */
2294 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2295 				sizeof(ep_bw_info[i]));
2296 		/* Drop the endpoint from the interval table if the endpoint is
2297 		 * being dropped or changed.
2298 		 */
2299 		if (EP_IS_DROPPED(ctrl_ctx, i))
2300 			xhci_drop_ep_from_interval_table(xhci,
2301 					&virt_dev->eps[i].bw_info,
2302 					virt_dev->bw_table,
2303 					virt_dev->udev,
2304 					&virt_dev->eps[i],
2305 					virt_dev->tt_info);
2306 	}
2307 	/* Overwrite the information stored in the endpoints' bw_info */
2308 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2309 	for (i = 0; i < 31; i++) {
2310 		/* Add any changed or added endpoints to the interval table */
2311 		if (EP_IS_ADDED(ctrl_ctx, i))
2312 			xhci_add_ep_to_interval_table(xhci,
2313 					&virt_dev->eps[i].bw_info,
2314 					virt_dev->bw_table,
2315 					virt_dev->udev,
2316 					&virt_dev->eps[i],
2317 					virt_dev->tt_info);
2318 	}
2319 
2320 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2321 		/* Ok, this fits in the bandwidth we have.
2322 		 * Update the number of active TTs.
2323 		 */
2324 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2325 		return 0;
2326 	}
2327 
2328 	/* We don't have enough bandwidth for this, revert the stored info. */
2329 	for (i = 0; i < 31; i++) {
2330 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2331 			continue;
2332 
2333 		/* Drop the new copies of any added or changed endpoints from
2334 		 * the interval table.
2335 		 */
2336 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2337 			xhci_drop_ep_from_interval_table(xhci,
2338 					&virt_dev->eps[i].bw_info,
2339 					virt_dev->bw_table,
2340 					virt_dev->udev,
2341 					&virt_dev->eps[i],
2342 					virt_dev->tt_info);
2343 		}
2344 		/* Revert the endpoint back to its old information */
2345 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2346 				sizeof(ep_bw_info[i]));
2347 		/* Add any changed or dropped endpoints back into the table */
2348 		if (EP_IS_DROPPED(ctrl_ctx, i))
2349 			xhci_add_ep_to_interval_table(xhci,
2350 					&virt_dev->eps[i].bw_info,
2351 					virt_dev->bw_table,
2352 					virt_dev->udev,
2353 					&virt_dev->eps[i],
2354 					virt_dev->tt_info);
2355 	}
2356 	return -ENOMEM;
2357 }
2358 
2359 
2360 /* Issue a configure endpoint command or evaluate context command
2361  * and wait for it to finish.
2362  */
2363 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2364 		struct usb_device *udev,
2365 		struct xhci_command *command,
2366 		bool ctx_change, bool must_succeed)
2367 {
2368 	int ret;
2369 	int timeleft;
2370 	unsigned long flags;
2371 	struct xhci_container_ctx *in_ctx;
2372 	struct completion *cmd_completion;
2373 	u32 *cmd_status;
2374 	struct xhci_virt_device *virt_dev;
2375 
2376 	spin_lock_irqsave(&xhci->lock, flags);
2377 	virt_dev = xhci->devs[udev->slot_id];
2378 
2379 	if (command)
2380 		in_ctx = command->in_ctx;
2381 	else
2382 		in_ctx = virt_dev->in_ctx;
2383 
2384 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2385 			xhci_reserve_host_resources(xhci, in_ctx)) {
2386 		spin_unlock_irqrestore(&xhci->lock, flags);
2387 		xhci_warn(xhci, "Not enough host resources, "
2388 				"active endpoint contexts = %u\n",
2389 				xhci->num_active_eps);
2390 		return -ENOMEM;
2391 	}
2392 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2393 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2394 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2395 			xhci_free_host_resources(xhci, in_ctx);
2396 		spin_unlock_irqrestore(&xhci->lock, flags);
2397 		xhci_warn(xhci, "Not enough bandwidth\n");
2398 		return -ENOMEM;
2399 	}
2400 
2401 	if (command) {
2402 		cmd_completion = command->completion;
2403 		cmd_status = &command->status;
2404 		command->command_trb = xhci->cmd_ring->enqueue;
2405 
2406 		/* Enqueue pointer can be left pointing to the link TRB,
2407 		 * we must handle that
2408 		 */
2409 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2410 			command->command_trb =
2411 				xhci->cmd_ring->enq_seg->next->trbs;
2412 
2413 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2414 	} else {
2415 		cmd_completion = &virt_dev->cmd_completion;
2416 		cmd_status = &virt_dev->cmd_status;
2417 	}
2418 	init_completion(cmd_completion);
2419 
2420 	if (!ctx_change)
2421 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2422 				udev->slot_id, must_succeed);
2423 	else
2424 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2425 				udev->slot_id);
2426 	if (ret < 0) {
2427 		if (command)
2428 			list_del(&command->cmd_list);
2429 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2430 			xhci_free_host_resources(xhci, in_ctx);
2431 		spin_unlock_irqrestore(&xhci->lock, flags);
2432 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2433 		return -ENOMEM;
2434 	}
2435 	xhci_ring_cmd_db(xhci);
2436 	spin_unlock_irqrestore(&xhci->lock, flags);
2437 
2438 	/* Wait for the configure endpoint command to complete */
2439 	timeleft = wait_for_completion_interruptible_timeout(
2440 			cmd_completion,
2441 			USB_CTRL_SET_TIMEOUT);
2442 	if (timeleft <= 0) {
2443 		xhci_warn(xhci, "%s while waiting for %s command\n",
2444 				timeleft == 0 ? "Timeout" : "Signal",
2445 				ctx_change == 0 ?
2446 					"configure endpoint" :
2447 					"evaluate context");
2448 		/* FIXME cancel the configure endpoint command */
2449 		return -ETIME;
2450 	}
2451 
2452 	if (!ctx_change)
2453 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2454 	else
2455 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2456 
2457 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2458 		spin_lock_irqsave(&xhci->lock, flags);
2459 		/* If the command failed, remove the reserved resources.
2460 		 * Otherwise, clean up the estimate to include dropped eps.
2461 		 */
2462 		if (ret)
2463 			xhci_free_host_resources(xhci, in_ctx);
2464 		else
2465 			xhci_finish_resource_reservation(xhci, in_ctx);
2466 		spin_unlock_irqrestore(&xhci->lock, flags);
2467 	}
2468 	return ret;
2469 }
2470 
2471 /* Called after one or more calls to xhci_add_endpoint() or
2472  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2473  * to call xhci_reset_bandwidth().
2474  *
2475  * Since we are in the middle of changing either configuration or
2476  * installing a new alt setting, the USB core won't allow URBs to be
2477  * enqueued for any endpoint on the old config or interface.  Nothing
2478  * else should be touching the xhci->devs[slot_id] structure, so we
2479  * don't need to take the xhci->lock for manipulating that.
2480  */
2481 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2482 {
2483 	int i;
2484 	int ret = 0;
2485 	struct xhci_hcd *xhci;
2486 	struct xhci_virt_device	*virt_dev;
2487 	struct xhci_input_control_ctx *ctrl_ctx;
2488 	struct xhci_slot_ctx *slot_ctx;
2489 
2490 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2491 	if (ret <= 0)
2492 		return ret;
2493 	xhci = hcd_to_xhci(hcd);
2494 	if (xhci->xhc_state & XHCI_STATE_DYING)
2495 		return -ENODEV;
2496 
2497 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2498 	virt_dev = xhci->devs[udev->slot_id];
2499 
2500 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2501 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2502 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2503 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2504 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2505 
2506 	/* Don't issue the command if there's no endpoints to update. */
2507 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2508 			ctrl_ctx->drop_flags == 0)
2509 		return 0;
2510 
2511 	xhci_dbg(xhci, "New Input Control Context:\n");
2512 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2513 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2514 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2515 
2516 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2517 			false, false);
2518 	if (ret) {
2519 		/* Callee should call reset_bandwidth() */
2520 		return ret;
2521 	}
2522 
2523 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2524 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2525 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2526 
2527 	/* Free any rings that were dropped, but not changed. */
2528 	for (i = 1; i < 31; ++i) {
2529 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2530 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2531 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2532 	}
2533 	xhci_zero_in_ctx(xhci, virt_dev);
2534 	/*
2535 	 * Install any rings for completely new endpoints or changed endpoints,
2536 	 * and free or cache any old rings from changed endpoints.
2537 	 */
2538 	for (i = 1; i < 31; ++i) {
2539 		if (!virt_dev->eps[i].new_ring)
2540 			continue;
2541 		/* Only cache or free the old ring if it exists.
2542 		 * It may not if this is the first add of an endpoint.
2543 		 */
2544 		if (virt_dev->eps[i].ring) {
2545 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2546 		}
2547 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2548 		virt_dev->eps[i].new_ring = NULL;
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2555 {
2556 	struct xhci_hcd *xhci;
2557 	struct xhci_virt_device	*virt_dev;
2558 	int i, ret;
2559 
2560 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2561 	if (ret <= 0)
2562 		return;
2563 	xhci = hcd_to_xhci(hcd);
2564 
2565 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2566 	virt_dev = xhci->devs[udev->slot_id];
2567 	/* Free any rings allocated for added endpoints */
2568 	for (i = 0; i < 31; ++i) {
2569 		if (virt_dev->eps[i].new_ring) {
2570 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2571 			virt_dev->eps[i].new_ring = NULL;
2572 		}
2573 	}
2574 	xhci_zero_in_ctx(xhci, virt_dev);
2575 }
2576 
2577 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2578 		struct xhci_container_ctx *in_ctx,
2579 		struct xhci_container_ctx *out_ctx,
2580 		u32 add_flags, u32 drop_flags)
2581 {
2582 	struct xhci_input_control_ctx *ctrl_ctx;
2583 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2584 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2585 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2586 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2587 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2588 
2589 	xhci_dbg(xhci, "Input Context:\n");
2590 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2591 }
2592 
2593 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2594 		unsigned int slot_id, unsigned int ep_index,
2595 		struct xhci_dequeue_state *deq_state)
2596 {
2597 	struct xhci_container_ctx *in_ctx;
2598 	struct xhci_ep_ctx *ep_ctx;
2599 	u32 added_ctxs;
2600 	dma_addr_t addr;
2601 
2602 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2603 			xhci->devs[slot_id]->out_ctx, ep_index);
2604 	in_ctx = xhci->devs[slot_id]->in_ctx;
2605 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2606 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2607 			deq_state->new_deq_ptr);
2608 	if (addr == 0) {
2609 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2610 				"reset ep command\n");
2611 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2612 				deq_state->new_deq_seg,
2613 				deq_state->new_deq_ptr);
2614 		return;
2615 	}
2616 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2617 
2618 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2619 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2620 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2621 }
2622 
2623 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2624 		struct usb_device *udev, unsigned int ep_index)
2625 {
2626 	struct xhci_dequeue_state deq_state;
2627 	struct xhci_virt_ep *ep;
2628 
2629 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2630 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2631 	/* We need to move the HW's dequeue pointer past this TD,
2632 	 * or it will attempt to resend it on the next doorbell ring.
2633 	 */
2634 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2635 			ep_index, ep->stopped_stream, ep->stopped_td,
2636 			&deq_state);
2637 
2638 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2639 	 * issue a configure endpoint command later.
2640 	 */
2641 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2642 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2643 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2644 				ep_index, ep->stopped_stream, &deq_state);
2645 	} else {
2646 		/* Better hope no one uses the input context between now and the
2647 		 * reset endpoint completion!
2648 		 * XXX: No idea how this hardware will react when stream rings
2649 		 * are enabled.
2650 		 */
2651 		xhci_dbg(xhci, "Setting up input context for "
2652 				"configure endpoint command\n");
2653 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2654 				ep_index, &deq_state);
2655 	}
2656 }
2657 
2658 /* Deal with stalled endpoints.  The core should have sent the control message
2659  * to clear the halt condition.  However, we need to make the xHCI hardware
2660  * reset its sequence number, since a device will expect a sequence number of
2661  * zero after the halt condition is cleared.
2662  * Context: in_interrupt
2663  */
2664 void xhci_endpoint_reset(struct usb_hcd *hcd,
2665 		struct usb_host_endpoint *ep)
2666 {
2667 	struct xhci_hcd *xhci;
2668 	struct usb_device *udev;
2669 	unsigned int ep_index;
2670 	unsigned long flags;
2671 	int ret;
2672 	struct xhci_virt_ep *virt_ep;
2673 
2674 	xhci = hcd_to_xhci(hcd);
2675 	udev = (struct usb_device *) ep->hcpriv;
2676 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2677 	 * with xhci_add_endpoint()
2678 	 */
2679 	if (!ep->hcpriv)
2680 		return;
2681 	ep_index = xhci_get_endpoint_index(&ep->desc);
2682 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2683 	if (!virt_ep->stopped_td) {
2684 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2685 				ep->desc.bEndpointAddress);
2686 		return;
2687 	}
2688 	if (usb_endpoint_xfer_control(&ep->desc)) {
2689 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2690 		return;
2691 	}
2692 
2693 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2694 	spin_lock_irqsave(&xhci->lock, flags);
2695 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2696 	/*
2697 	 * Can't change the ring dequeue pointer until it's transitioned to the
2698 	 * stopped state, which is only upon a successful reset endpoint
2699 	 * command.  Better hope that last command worked!
2700 	 */
2701 	if (!ret) {
2702 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2703 		kfree(virt_ep->stopped_td);
2704 		xhci_ring_cmd_db(xhci);
2705 	}
2706 	virt_ep->stopped_td = NULL;
2707 	virt_ep->stopped_trb = NULL;
2708 	virt_ep->stopped_stream = 0;
2709 	spin_unlock_irqrestore(&xhci->lock, flags);
2710 
2711 	if (ret)
2712 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2713 }
2714 
2715 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2716 		struct usb_device *udev, struct usb_host_endpoint *ep,
2717 		unsigned int slot_id)
2718 {
2719 	int ret;
2720 	unsigned int ep_index;
2721 	unsigned int ep_state;
2722 
2723 	if (!ep)
2724 		return -EINVAL;
2725 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2726 	if (ret <= 0)
2727 		return -EINVAL;
2728 	if (ep->ss_ep_comp.bmAttributes == 0) {
2729 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2730 				" descriptor for ep 0x%x does not support streams\n",
2731 				ep->desc.bEndpointAddress);
2732 		return -EINVAL;
2733 	}
2734 
2735 	ep_index = xhci_get_endpoint_index(&ep->desc);
2736 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2737 	if (ep_state & EP_HAS_STREAMS ||
2738 			ep_state & EP_GETTING_STREAMS) {
2739 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2740 				"already has streams set up.\n",
2741 				ep->desc.bEndpointAddress);
2742 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2743 				"dynamic stream context array reallocation.\n");
2744 		return -EINVAL;
2745 	}
2746 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2747 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2748 				"endpoint 0x%x; URBs are pending.\n",
2749 				ep->desc.bEndpointAddress);
2750 		return -EINVAL;
2751 	}
2752 	return 0;
2753 }
2754 
2755 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2756 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2757 {
2758 	unsigned int max_streams;
2759 
2760 	/* The stream context array size must be a power of two */
2761 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2762 	/*
2763 	 * Find out how many primary stream array entries the host controller
2764 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2765 	 * level page entries), but that's an optional feature for xHCI host
2766 	 * controllers. xHCs must support at least 4 stream IDs.
2767 	 */
2768 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2769 	if (*num_stream_ctxs > max_streams) {
2770 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2771 				max_streams);
2772 		*num_stream_ctxs = max_streams;
2773 		*num_streams = max_streams;
2774 	}
2775 }
2776 
2777 /* Returns an error code if one of the endpoint already has streams.
2778  * This does not change any data structures, it only checks and gathers
2779  * information.
2780  */
2781 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2782 		struct usb_device *udev,
2783 		struct usb_host_endpoint **eps, unsigned int num_eps,
2784 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2785 {
2786 	unsigned int max_streams;
2787 	unsigned int endpoint_flag;
2788 	int i;
2789 	int ret;
2790 
2791 	for (i = 0; i < num_eps; i++) {
2792 		ret = xhci_check_streams_endpoint(xhci, udev,
2793 				eps[i], udev->slot_id);
2794 		if (ret < 0)
2795 			return ret;
2796 
2797 		max_streams = USB_SS_MAX_STREAMS(
2798 				eps[i]->ss_ep_comp.bmAttributes);
2799 		if (max_streams < (*num_streams - 1)) {
2800 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2801 					eps[i]->desc.bEndpointAddress,
2802 					max_streams);
2803 			*num_streams = max_streams+1;
2804 		}
2805 
2806 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2807 		if (*changed_ep_bitmask & endpoint_flag)
2808 			return -EINVAL;
2809 		*changed_ep_bitmask |= endpoint_flag;
2810 	}
2811 	return 0;
2812 }
2813 
2814 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2815 		struct usb_device *udev,
2816 		struct usb_host_endpoint **eps, unsigned int num_eps)
2817 {
2818 	u32 changed_ep_bitmask = 0;
2819 	unsigned int slot_id;
2820 	unsigned int ep_index;
2821 	unsigned int ep_state;
2822 	int i;
2823 
2824 	slot_id = udev->slot_id;
2825 	if (!xhci->devs[slot_id])
2826 		return 0;
2827 
2828 	for (i = 0; i < num_eps; i++) {
2829 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2830 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2831 		/* Are streams already being freed for the endpoint? */
2832 		if (ep_state & EP_GETTING_NO_STREAMS) {
2833 			xhci_warn(xhci, "WARN Can't disable streams for "
2834 					"endpoint 0x%x\n, "
2835 					"streams are being disabled already.",
2836 					eps[i]->desc.bEndpointAddress);
2837 			return 0;
2838 		}
2839 		/* Are there actually any streams to free? */
2840 		if (!(ep_state & EP_HAS_STREAMS) &&
2841 				!(ep_state & EP_GETTING_STREAMS)) {
2842 			xhci_warn(xhci, "WARN Can't disable streams for "
2843 					"endpoint 0x%x\n, "
2844 					"streams are already disabled!",
2845 					eps[i]->desc.bEndpointAddress);
2846 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2847 					"with non-streams endpoint\n");
2848 			return 0;
2849 		}
2850 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2851 	}
2852 	return changed_ep_bitmask;
2853 }
2854 
2855 /*
2856  * The USB device drivers use this function (though the HCD interface in USB
2857  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2858  * coordinate mass storage command queueing across multiple endpoints (basically
2859  * a stream ID == a task ID).
2860  *
2861  * Setting up streams involves allocating the same size stream context array
2862  * for each endpoint and issuing a configure endpoint command for all endpoints.
2863  *
2864  * Don't allow the call to succeed if one endpoint only supports one stream
2865  * (which means it doesn't support streams at all).
2866  *
2867  * Drivers may get less stream IDs than they asked for, if the host controller
2868  * hardware or endpoints claim they can't support the number of requested
2869  * stream IDs.
2870  */
2871 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2872 		struct usb_host_endpoint **eps, unsigned int num_eps,
2873 		unsigned int num_streams, gfp_t mem_flags)
2874 {
2875 	int i, ret;
2876 	struct xhci_hcd *xhci;
2877 	struct xhci_virt_device *vdev;
2878 	struct xhci_command *config_cmd;
2879 	unsigned int ep_index;
2880 	unsigned int num_stream_ctxs;
2881 	unsigned long flags;
2882 	u32 changed_ep_bitmask = 0;
2883 
2884 	if (!eps)
2885 		return -EINVAL;
2886 
2887 	/* Add one to the number of streams requested to account for
2888 	 * stream 0 that is reserved for xHCI usage.
2889 	 */
2890 	num_streams += 1;
2891 	xhci = hcd_to_xhci(hcd);
2892 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2893 			num_streams);
2894 
2895 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2896 	if (!config_cmd) {
2897 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2898 		return -ENOMEM;
2899 	}
2900 
2901 	/* Check to make sure all endpoints are not already configured for
2902 	 * streams.  While we're at it, find the maximum number of streams that
2903 	 * all the endpoints will support and check for duplicate endpoints.
2904 	 */
2905 	spin_lock_irqsave(&xhci->lock, flags);
2906 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2907 			num_eps, &num_streams, &changed_ep_bitmask);
2908 	if (ret < 0) {
2909 		xhci_free_command(xhci, config_cmd);
2910 		spin_unlock_irqrestore(&xhci->lock, flags);
2911 		return ret;
2912 	}
2913 	if (num_streams <= 1) {
2914 		xhci_warn(xhci, "WARN: endpoints can't handle "
2915 				"more than one stream.\n");
2916 		xhci_free_command(xhci, config_cmd);
2917 		spin_unlock_irqrestore(&xhci->lock, flags);
2918 		return -EINVAL;
2919 	}
2920 	vdev = xhci->devs[udev->slot_id];
2921 	/* Mark each endpoint as being in transition, so
2922 	 * xhci_urb_enqueue() will reject all URBs.
2923 	 */
2924 	for (i = 0; i < num_eps; i++) {
2925 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2926 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2927 	}
2928 	spin_unlock_irqrestore(&xhci->lock, flags);
2929 
2930 	/* Setup internal data structures and allocate HW data structures for
2931 	 * streams (but don't install the HW structures in the input context
2932 	 * until we're sure all memory allocation succeeded).
2933 	 */
2934 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2935 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2936 			num_stream_ctxs, num_streams);
2937 
2938 	for (i = 0; i < num_eps; i++) {
2939 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2940 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2941 				num_stream_ctxs,
2942 				num_streams, mem_flags);
2943 		if (!vdev->eps[ep_index].stream_info)
2944 			goto cleanup;
2945 		/* Set maxPstreams in endpoint context and update deq ptr to
2946 		 * point to stream context array. FIXME
2947 		 */
2948 	}
2949 
2950 	/* Set up the input context for a configure endpoint command. */
2951 	for (i = 0; i < num_eps; i++) {
2952 		struct xhci_ep_ctx *ep_ctx;
2953 
2954 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2955 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2956 
2957 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2958 				vdev->out_ctx, ep_index);
2959 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2960 				vdev->eps[ep_index].stream_info);
2961 	}
2962 	/* Tell the HW to drop its old copy of the endpoint context info
2963 	 * and add the updated copy from the input context.
2964 	 */
2965 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2966 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2967 
2968 	/* Issue and wait for the configure endpoint command */
2969 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2970 			false, false);
2971 
2972 	/* xHC rejected the configure endpoint command for some reason, so we
2973 	 * leave the old ring intact and free our internal streams data
2974 	 * structure.
2975 	 */
2976 	if (ret < 0)
2977 		goto cleanup;
2978 
2979 	spin_lock_irqsave(&xhci->lock, flags);
2980 	for (i = 0; i < num_eps; i++) {
2981 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2982 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2983 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2984 			 udev->slot_id, ep_index);
2985 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2986 	}
2987 	xhci_free_command(xhci, config_cmd);
2988 	spin_unlock_irqrestore(&xhci->lock, flags);
2989 
2990 	/* Subtract 1 for stream 0, which drivers can't use */
2991 	return num_streams - 1;
2992 
2993 cleanup:
2994 	/* If it didn't work, free the streams! */
2995 	for (i = 0; i < num_eps; i++) {
2996 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2997 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2998 		vdev->eps[ep_index].stream_info = NULL;
2999 		/* FIXME Unset maxPstreams in endpoint context and
3000 		 * update deq ptr to point to normal string ring.
3001 		 */
3002 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3003 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3004 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3005 	}
3006 	xhci_free_command(xhci, config_cmd);
3007 	return -ENOMEM;
3008 }
3009 
3010 /* Transition the endpoint from using streams to being a "normal" endpoint
3011  * without streams.
3012  *
3013  * Modify the endpoint context state, submit a configure endpoint command,
3014  * and free all endpoint rings for streams if that completes successfully.
3015  */
3016 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3017 		struct usb_host_endpoint **eps, unsigned int num_eps,
3018 		gfp_t mem_flags)
3019 {
3020 	int i, ret;
3021 	struct xhci_hcd *xhci;
3022 	struct xhci_virt_device *vdev;
3023 	struct xhci_command *command;
3024 	unsigned int ep_index;
3025 	unsigned long flags;
3026 	u32 changed_ep_bitmask;
3027 
3028 	xhci = hcd_to_xhci(hcd);
3029 	vdev = xhci->devs[udev->slot_id];
3030 
3031 	/* Set up a configure endpoint command to remove the streams rings */
3032 	spin_lock_irqsave(&xhci->lock, flags);
3033 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3034 			udev, eps, num_eps);
3035 	if (changed_ep_bitmask == 0) {
3036 		spin_unlock_irqrestore(&xhci->lock, flags);
3037 		return -EINVAL;
3038 	}
3039 
3040 	/* Use the xhci_command structure from the first endpoint.  We may have
3041 	 * allocated too many, but the driver may call xhci_free_streams() for
3042 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3043 	 */
3044 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3045 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3046 	for (i = 0; i < num_eps; i++) {
3047 		struct xhci_ep_ctx *ep_ctx;
3048 
3049 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3050 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3051 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3052 			EP_GETTING_NO_STREAMS;
3053 
3054 		xhci_endpoint_copy(xhci, command->in_ctx,
3055 				vdev->out_ctx, ep_index);
3056 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3057 				&vdev->eps[ep_index]);
3058 	}
3059 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3060 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3061 	spin_unlock_irqrestore(&xhci->lock, flags);
3062 
3063 	/* Issue and wait for the configure endpoint command,
3064 	 * which must succeed.
3065 	 */
3066 	ret = xhci_configure_endpoint(xhci, udev, command,
3067 			false, true);
3068 
3069 	/* xHC rejected the configure endpoint command for some reason, so we
3070 	 * leave the streams rings intact.
3071 	 */
3072 	if (ret < 0)
3073 		return ret;
3074 
3075 	spin_lock_irqsave(&xhci->lock, flags);
3076 	for (i = 0; i < num_eps; i++) {
3077 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3079 		vdev->eps[ep_index].stream_info = NULL;
3080 		/* FIXME Unset maxPstreams in endpoint context and
3081 		 * update deq ptr to point to normal string ring.
3082 		 */
3083 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3084 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3085 	}
3086 	spin_unlock_irqrestore(&xhci->lock, flags);
3087 
3088 	return 0;
3089 }
3090 
3091 /*
3092  * Deletes endpoint resources for endpoints that were active before a Reset
3093  * Device command, or a Disable Slot command.  The Reset Device command leaves
3094  * the control endpoint intact, whereas the Disable Slot command deletes it.
3095  *
3096  * Must be called with xhci->lock held.
3097  */
3098 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3099 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3100 {
3101 	int i;
3102 	unsigned int num_dropped_eps = 0;
3103 	unsigned int drop_flags = 0;
3104 
3105 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3106 		if (virt_dev->eps[i].ring) {
3107 			drop_flags |= 1 << i;
3108 			num_dropped_eps++;
3109 		}
3110 	}
3111 	xhci->num_active_eps -= num_dropped_eps;
3112 	if (num_dropped_eps)
3113 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3114 				"%u now active.\n",
3115 				num_dropped_eps, drop_flags,
3116 				xhci->num_active_eps);
3117 }
3118 
3119 /*
3120  * This submits a Reset Device Command, which will set the device state to 0,
3121  * set the device address to 0, and disable all the endpoints except the default
3122  * control endpoint.  The USB core should come back and call
3123  * xhci_address_device(), and then re-set up the configuration.  If this is
3124  * called because of a usb_reset_and_verify_device(), then the old alternate
3125  * settings will be re-installed through the normal bandwidth allocation
3126  * functions.
3127  *
3128  * Wait for the Reset Device command to finish.  Remove all structures
3129  * associated with the endpoints that were disabled.  Clear the input device
3130  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3131  *
3132  * If the virt_dev to be reset does not exist or does not match the udev,
3133  * it means the device is lost, possibly due to the xHC restore error and
3134  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3135  * re-allocate the device.
3136  */
3137 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3138 {
3139 	int ret, i;
3140 	unsigned long flags;
3141 	struct xhci_hcd *xhci;
3142 	unsigned int slot_id;
3143 	struct xhci_virt_device *virt_dev;
3144 	struct xhci_command *reset_device_cmd;
3145 	int timeleft;
3146 	int last_freed_endpoint;
3147 	struct xhci_slot_ctx *slot_ctx;
3148 	int old_active_eps = 0;
3149 
3150 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3151 	if (ret <= 0)
3152 		return ret;
3153 	xhci = hcd_to_xhci(hcd);
3154 	slot_id = udev->slot_id;
3155 	virt_dev = xhci->devs[slot_id];
3156 	if (!virt_dev) {
3157 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3158 				"not exist. Re-allocate the device\n", slot_id);
3159 		ret = xhci_alloc_dev(hcd, udev);
3160 		if (ret == 1)
3161 			return 0;
3162 		else
3163 			return -EINVAL;
3164 	}
3165 
3166 	if (virt_dev->udev != udev) {
3167 		/* If the virt_dev and the udev does not match, this virt_dev
3168 		 * may belong to another udev.
3169 		 * Re-allocate the device.
3170 		 */
3171 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3172 				"not match the udev. Re-allocate the device\n",
3173 				slot_id);
3174 		ret = xhci_alloc_dev(hcd, udev);
3175 		if (ret == 1)
3176 			return 0;
3177 		else
3178 			return -EINVAL;
3179 	}
3180 
3181 	/* If device is not setup, there is no point in resetting it */
3182 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3183 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3184 						SLOT_STATE_DISABLED)
3185 		return 0;
3186 
3187 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3188 	/* Allocate the command structure that holds the struct completion.
3189 	 * Assume we're in process context, since the normal device reset
3190 	 * process has to wait for the device anyway.  Storage devices are
3191 	 * reset as part of error handling, so use GFP_NOIO instead of
3192 	 * GFP_KERNEL.
3193 	 */
3194 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3195 	if (!reset_device_cmd) {
3196 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3197 		return -ENOMEM;
3198 	}
3199 
3200 	/* Attempt to submit the Reset Device command to the command ring */
3201 	spin_lock_irqsave(&xhci->lock, flags);
3202 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3203 
3204 	/* Enqueue pointer can be left pointing to the link TRB,
3205 	 * we must handle that
3206 	 */
3207 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3208 		reset_device_cmd->command_trb =
3209 			xhci->cmd_ring->enq_seg->next->trbs;
3210 
3211 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3212 	ret = xhci_queue_reset_device(xhci, slot_id);
3213 	if (ret) {
3214 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3215 		list_del(&reset_device_cmd->cmd_list);
3216 		spin_unlock_irqrestore(&xhci->lock, flags);
3217 		goto command_cleanup;
3218 	}
3219 	xhci_ring_cmd_db(xhci);
3220 	spin_unlock_irqrestore(&xhci->lock, flags);
3221 
3222 	/* Wait for the Reset Device command to finish */
3223 	timeleft = wait_for_completion_interruptible_timeout(
3224 			reset_device_cmd->completion,
3225 			USB_CTRL_SET_TIMEOUT);
3226 	if (timeleft <= 0) {
3227 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3228 				timeleft == 0 ? "Timeout" : "Signal");
3229 		spin_lock_irqsave(&xhci->lock, flags);
3230 		/* The timeout might have raced with the event ring handler, so
3231 		 * only delete from the list if the item isn't poisoned.
3232 		 */
3233 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3234 			list_del(&reset_device_cmd->cmd_list);
3235 		spin_unlock_irqrestore(&xhci->lock, flags);
3236 		ret = -ETIME;
3237 		goto command_cleanup;
3238 	}
3239 
3240 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3241 	 * unless we tried to reset a slot ID that wasn't enabled,
3242 	 * or the device wasn't in the addressed or configured state.
3243 	 */
3244 	ret = reset_device_cmd->status;
3245 	switch (ret) {
3246 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3247 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3248 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3249 				slot_id,
3250 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3251 		xhci_info(xhci, "Not freeing device rings.\n");
3252 		/* Don't treat this as an error.  May change my mind later. */
3253 		ret = 0;
3254 		goto command_cleanup;
3255 	case COMP_SUCCESS:
3256 		xhci_dbg(xhci, "Successful reset device command.\n");
3257 		break;
3258 	default:
3259 		if (xhci_is_vendor_info_code(xhci, ret))
3260 			break;
3261 		xhci_warn(xhci, "Unknown completion code %u for "
3262 				"reset device command.\n", ret);
3263 		ret = -EINVAL;
3264 		goto command_cleanup;
3265 	}
3266 
3267 	/* Free up host controller endpoint resources */
3268 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3269 		spin_lock_irqsave(&xhci->lock, flags);
3270 		/* Don't delete the default control endpoint resources */
3271 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3272 		spin_unlock_irqrestore(&xhci->lock, flags);
3273 	}
3274 
3275 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3276 	last_freed_endpoint = 1;
3277 	for (i = 1; i < 31; ++i) {
3278 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3279 
3280 		if (ep->ep_state & EP_HAS_STREAMS) {
3281 			xhci_free_stream_info(xhci, ep->stream_info);
3282 			ep->stream_info = NULL;
3283 			ep->ep_state &= ~EP_HAS_STREAMS;
3284 		}
3285 
3286 		if (ep->ring) {
3287 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3288 			last_freed_endpoint = i;
3289 		}
3290 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3291 			xhci_drop_ep_from_interval_table(xhci,
3292 					&virt_dev->eps[i].bw_info,
3293 					virt_dev->bw_table,
3294 					udev,
3295 					&virt_dev->eps[i],
3296 					virt_dev->tt_info);
3297 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3298 	}
3299 	/* If necessary, update the number of active TTs on this root port */
3300 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3301 
3302 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3303 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3304 	ret = 0;
3305 
3306 command_cleanup:
3307 	xhci_free_command(xhci, reset_device_cmd);
3308 	return ret;
3309 }
3310 
3311 /*
3312  * At this point, the struct usb_device is about to go away, the device has
3313  * disconnected, and all traffic has been stopped and the endpoints have been
3314  * disabled.  Free any HC data structures associated with that device.
3315  */
3316 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3317 {
3318 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3319 	struct xhci_virt_device *virt_dev;
3320 	unsigned long flags;
3321 	u32 state;
3322 	int i, ret;
3323 
3324 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3325 	/* If the host is halted due to driver unload, we still need to free the
3326 	 * device.
3327 	 */
3328 	if (ret <= 0 && ret != -ENODEV)
3329 		return;
3330 
3331 	virt_dev = xhci->devs[udev->slot_id];
3332 
3333 	/* Stop any wayward timer functions (which may grab the lock) */
3334 	for (i = 0; i < 31; ++i) {
3335 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3336 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3337 	}
3338 
3339 	if (udev->usb2_hw_lpm_enabled) {
3340 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3341 		udev->usb2_hw_lpm_enabled = 0;
3342 	}
3343 
3344 	spin_lock_irqsave(&xhci->lock, flags);
3345 	/* Don't disable the slot if the host controller is dead. */
3346 	state = xhci_readl(xhci, &xhci->op_regs->status);
3347 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3348 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3349 		xhci_free_virt_device(xhci, udev->slot_id);
3350 		spin_unlock_irqrestore(&xhci->lock, flags);
3351 		return;
3352 	}
3353 
3354 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3355 		spin_unlock_irqrestore(&xhci->lock, flags);
3356 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3357 		return;
3358 	}
3359 	xhci_ring_cmd_db(xhci);
3360 	spin_unlock_irqrestore(&xhci->lock, flags);
3361 	/*
3362 	 * Event command completion handler will free any data structures
3363 	 * associated with the slot.  XXX Can free sleep?
3364 	 */
3365 }
3366 
3367 /*
3368  * Checks if we have enough host controller resources for the default control
3369  * endpoint.
3370  *
3371  * Must be called with xhci->lock held.
3372  */
3373 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3374 {
3375 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3376 		xhci_dbg(xhci, "Not enough ep ctxs: "
3377 				"%u active, need to add 1, limit is %u.\n",
3378 				xhci->num_active_eps, xhci->limit_active_eps);
3379 		return -ENOMEM;
3380 	}
3381 	xhci->num_active_eps += 1;
3382 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3383 			xhci->num_active_eps);
3384 	return 0;
3385 }
3386 
3387 
3388 /*
3389  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3390  * timed out, or allocating memory failed.  Returns 1 on success.
3391  */
3392 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3393 {
3394 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3395 	unsigned long flags;
3396 	int timeleft;
3397 	int ret;
3398 
3399 	spin_lock_irqsave(&xhci->lock, flags);
3400 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3401 	if (ret) {
3402 		spin_unlock_irqrestore(&xhci->lock, flags);
3403 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3404 		return 0;
3405 	}
3406 	xhci_ring_cmd_db(xhci);
3407 	spin_unlock_irqrestore(&xhci->lock, flags);
3408 
3409 	/* XXX: how much time for xHC slot assignment? */
3410 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3411 			USB_CTRL_SET_TIMEOUT);
3412 	if (timeleft <= 0) {
3413 		xhci_warn(xhci, "%s while waiting for a slot\n",
3414 				timeleft == 0 ? "Timeout" : "Signal");
3415 		/* FIXME cancel the enable slot request */
3416 		return 0;
3417 	}
3418 
3419 	if (!xhci->slot_id) {
3420 		xhci_err(xhci, "Error while assigning device slot ID\n");
3421 		return 0;
3422 	}
3423 
3424 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3425 		spin_lock_irqsave(&xhci->lock, flags);
3426 		ret = xhci_reserve_host_control_ep_resources(xhci);
3427 		if (ret) {
3428 			spin_unlock_irqrestore(&xhci->lock, flags);
3429 			xhci_warn(xhci, "Not enough host resources, "
3430 					"active endpoint contexts = %u\n",
3431 					xhci->num_active_eps);
3432 			goto disable_slot;
3433 		}
3434 		spin_unlock_irqrestore(&xhci->lock, flags);
3435 	}
3436 	/* Use GFP_NOIO, since this function can be called from
3437 	 * xhci_discover_or_reset_device(), which may be called as part of
3438 	 * mass storage driver error handling.
3439 	 */
3440 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3441 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3442 		goto disable_slot;
3443 	}
3444 	udev->slot_id = xhci->slot_id;
3445 	/* Is this a LS or FS device under a HS hub? */
3446 	/* Hub or peripherial? */
3447 	return 1;
3448 
3449 disable_slot:
3450 	/* Disable slot, if we can do it without mem alloc */
3451 	spin_lock_irqsave(&xhci->lock, flags);
3452 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3453 		xhci_ring_cmd_db(xhci);
3454 	spin_unlock_irqrestore(&xhci->lock, flags);
3455 	return 0;
3456 }
3457 
3458 /*
3459  * Issue an Address Device command (which will issue a SetAddress request to
3460  * the device).
3461  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3462  * we should only issue and wait on one address command at the same time.
3463  *
3464  * We add one to the device address issued by the hardware because the USB core
3465  * uses address 1 for the root hubs (even though they're not really devices).
3466  */
3467 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3468 {
3469 	unsigned long flags;
3470 	int timeleft;
3471 	struct xhci_virt_device *virt_dev;
3472 	int ret = 0;
3473 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3474 	struct xhci_slot_ctx *slot_ctx;
3475 	struct xhci_input_control_ctx *ctrl_ctx;
3476 	u64 temp_64;
3477 
3478 	if (!udev->slot_id) {
3479 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3480 		return -EINVAL;
3481 	}
3482 
3483 	virt_dev = xhci->devs[udev->slot_id];
3484 
3485 	if (WARN_ON(!virt_dev)) {
3486 		/*
3487 		 * In plug/unplug torture test with an NEC controller,
3488 		 * a zero-dereference was observed once due to virt_dev = 0.
3489 		 * Print useful debug rather than crash if it is observed again!
3490 		 */
3491 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3492 			udev->slot_id);
3493 		return -EINVAL;
3494 	}
3495 
3496 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3497 	/*
3498 	 * If this is the first Set Address since device plug-in or
3499 	 * virt_device realloaction after a resume with an xHCI power loss,
3500 	 * then set up the slot context.
3501 	 */
3502 	if (!slot_ctx->dev_info)
3503 		xhci_setup_addressable_virt_dev(xhci, udev);
3504 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3505 	else
3506 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3507 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3508 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3509 
3510 	spin_lock_irqsave(&xhci->lock, flags);
3511 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3512 					udev->slot_id);
3513 	if (ret) {
3514 		spin_unlock_irqrestore(&xhci->lock, flags);
3515 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3516 		return ret;
3517 	}
3518 	xhci_ring_cmd_db(xhci);
3519 	spin_unlock_irqrestore(&xhci->lock, flags);
3520 
3521 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3522 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3523 			USB_CTRL_SET_TIMEOUT);
3524 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3525 	 * the SetAddress() "recovery interval" required by USB and aborting the
3526 	 * command on a timeout.
3527 	 */
3528 	if (timeleft <= 0) {
3529 		xhci_warn(xhci, "%s while waiting for address device command\n",
3530 				timeleft == 0 ? "Timeout" : "Signal");
3531 		/* FIXME cancel the address device command */
3532 		return -ETIME;
3533 	}
3534 
3535 	switch (virt_dev->cmd_status) {
3536 	case COMP_CTX_STATE:
3537 	case COMP_EBADSLT:
3538 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3539 				udev->slot_id);
3540 		ret = -EINVAL;
3541 		break;
3542 	case COMP_TX_ERR:
3543 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3544 		ret = -EPROTO;
3545 		break;
3546 	case COMP_DEV_ERR:
3547 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3548 				"device command.\n");
3549 		ret = -ENODEV;
3550 		break;
3551 	case COMP_SUCCESS:
3552 		xhci_dbg(xhci, "Successful Address Device command\n");
3553 		break;
3554 	default:
3555 		xhci_err(xhci, "ERROR: unexpected command completion "
3556 				"code 0x%x.\n", virt_dev->cmd_status);
3557 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3558 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3559 		ret = -EINVAL;
3560 		break;
3561 	}
3562 	if (ret) {
3563 		return ret;
3564 	}
3565 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3566 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3567 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3568 		 udev->slot_id,
3569 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3570 		 (unsigned long long)
3571 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3572 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3573 			(unsigned long long)virt_dev->out_ctx->dma);
3574 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3575 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3576 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3577 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3578 	/*
3579 	 * USB core uses address 1 for the roothubs, so we add one to the
3580 	 * address given back to us by the HC.
3581 	 */
3582 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3583 	/* Use kernel assigned address for devices; store xHC assigned
3584 	 * address locally. */
3585 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3586 		+ 1;
3587 	/* Zero the input context control for later use */
3588 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3589 	ctrl_ctx->add_flags = 0;
3590 	ctrl_ctx->drop_flags = 0;
3591 
3592 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3593 
3594 	return 0;
3595 }
3596 
3597 #ifdef CONFIG_USB_SUSPEND
3598 
3599 /* BESL to HIRD Encoding array for USB2 LPM */
3600 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3601 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3602 
3603 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3604 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3605 {
3606 	int hird;
3607 
3608 	if (use_besl) {
3609 		for (hird = 0; hird < 16; hird++) {
3610 			if (xhci_besl_encoding[hird] >= u2del)
3611 				break;
3612 		}
3613 	} else {
3614 		if (u2del <= 50)
3615 			hird = 0;
3616 		else
3617 			hird = (u2del - 51) / 75 + 1;
3618 
3619 		if (hird > 15)
3620 			hird = 15;
3621 	}
3622 
3623 	return hird;
3624 }
3625 
3626 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3627 					struct usb_device *udev)
3628 {
3629 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3630 	struct dev_info	*dev_info;
3631 	__le32 __iomem	**port_array;
3632 	__le32 __iomem	*addr, *pm_addr;
3633 	u32		temp, dev_id;
3634 	unsigned int	port_num;
3635 	unsigned long	flags;
3636 	int		u2del, hird;
3637 	int		ret;
3638 
3639 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3640 			!udev->lpm_capable)
3641 		return -EINVAL;
3642 
3643 	/* we only support lpm for non-hub device connected to root hub yet */
3644 	if (!udev->parent || udev->parent->parent ||
3645 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3646 		return -EINVAL;
3647 
3648 	spin_lock_irqsave(&xhci->lock, flags);
3649 
3650 	/* Look for devices in lpm_failed_devs list */
3651 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3652 			le16_to_cpu(udev->descriptor.idProduct);
3653 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3654 		if (dev_info->dev_id == dev_id) {
3655 			ret = -EINVAL;
3656 			goto finish;
3657 		}
3658 	}
3659 
3660 	port_array = xhci->usb2_ports;
3661 	port_num = udev->portnum - 1;
3662 
3663 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3664 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3665 		ret = -EINVAL;
3666 		goto finish;
3667 	}
3668 
3669 	/*
3670 	 * Test USB 2.0 software LPM.
3671 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3672 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3673 	 * in the June 2011 errata release.
3674 	 */
3675 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3676 	/*
3677 	 * Set L1 Device Slot and HIRD/BESL.
3678 	 * Check device's USB 2.0 extension descriptor to determine whether
3679 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3680 	 */
3681 	pm_addr = port_array[port_num] + 1;
3682 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3683 	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3684 		hird = xhci_calculate_hird_besl(u2del, 1);
3685 	else
3686 		hird = xhci_calculate_hird_besl(u2del, 0);
3687 
3688 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3689 	xhci_writel(xhci, temp, pm_addr);
3690 
3691 	/* Set port link state to U2(L1) */
3692 	addr = port_array[port_num];
3693 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3694 
3695 	/* wait for ACK */
3696 	spin_unlock_irqrestore(&xhci->lock, flags);
3697 	msleep(10);
3698 	spin_lock_irqsave(&xhci->lock, flags);
3699 
3700 	/* Check L1 Status */
3701 	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3702 	if (ret != -ETIMEDOUT) {
3703 		/* enter L1 successfully */
3704 		temp = xhci_readl(xhci, addr);
3705 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3706 				port_num, temp);
3707 		ret = 0;
3708 	} else {
3709 		temp = xhci_readl(xhci, pm_addr);
3710 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3711 				port_num, temp & PORT_L1S_MASK);
3712 		ret = -EINVAL;
3713 	}
3714 
3715 	/* Resume the port */
3716 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3717 
3718 	spin_unlock_irqrestore(&xhci->lock, flags);
3719 	msleep(10);
3720 	spin_lock_irqsave(&xhci->lock, flags);
3721 
3722 	/* Clear PLC */
3723 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3724 
3725 	/* Check PORTSC to make sure the device is in the right state */
3726 	if (!ret) {
3727 		temp = xhci_readl(xhci, addr);
3728 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3729 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3730 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3731 			xhci_dbg(xhci, "port L1 resume fail\n");
3732 			ret = -EINVAL;
3733 		}
3734 	}
3735 
3736 	if (ret) {
3737 		/* Insert dev to lpm_failed_devs list */
3738 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3739 				"re-enumerate\n");
3740 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3741 		if (!dev_info) {
3742 			ret = -ENOMEM;
3743 			goto finish;
3744 		}
3745 		dev_info->dev_id = dev_id;
3746 		INIT_LIST_HEAD(&dev_info->list);
3747 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3748 	} else {
3749 		xhci_ring_device(xhci, udev->slot_id);
3750 	}
3751 
3752 finish:
3753 	spin_unlock_irqrestore(&xhci->lock, flags);
3754 	return ret;
3755 }
3756 
3757 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3758 			struct usb_device *udev, int enable)
3759 {
3760 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3761 	__le32 __iomem	**port_array;
3762 	__le32 __iomem	*pm_addr;
3763 	u32		temp;
3764 	unsigned int	port_num;
3765 	unsigned long	flags;
3766 	int		u2del, hird;
3767 
3768 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3769 			!udev->lpm_capable)
3770 		return -EPERM;
3771 
3772 	if (!udev->parent || udev->parent->parent ||
3773 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3774 		return -EPERM;
3775 
3776 	if (udev->usb2_hw_lpm_capable != 1)
3777 		return -EPERM;
3778 
3779 	spin_lock_irqsave(&xhci->lock, flags);
3780 
3781 	port_array = xhci->usb2_ports;
3782 	port_num = udev->portnum - 1;
3783 	pm_addr = port_array[port_num] + 1;
3784 	temp = xhci_readl(xhci, pm_addr);
3785 
3786 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3787 			enable ? "enable" : "disable", port_num);
3788 
3789 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3790 	if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3791 		hird = xhci_calculate_hird_besl(u2del, 1);
3792 	else
3793 		hird = xhci_calculate_hird_besl(u2del, 0);
3794 
3795 	if (enable) {
3796 		temp &= ~PORT_HIRD_MASK;
3797 		temp |= PORT_HIRD(hird) | PORT_RWE;
3798 		xhci_writel(xhci, temp, pm_addr);
3799 		temp = xhci_readl(xhci, pm_addr);
3800 		temp |= PORT_HLE;
3801 		xhci_writel(xhci, temp, pm_addr);
3802 	} else {
3803 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3804 		xhci_writel(xhci, temp, pm_addr);
3805 	}
3806 
3807 	spin_unlock_irqrestore(&xhci->lock, flags);
3808 	return 0;
3809 }
3810 
3811 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3812 {
3813 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3814 	int		ret;
3815 
3816 	ret = xhci_usb2_software_lpm_test(hcd, udev);
3817 	if (!ret) {
3818 		xhci_dbg(xhci, "software LPM test succeed\n");
3819 		if (xhci->hw_lpm_support == 1) {
3820 			udev->usb2_hw_lpm_capable = 1;
3821 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3822 			if (!ret)
3823 				udev->usb2_hw_lpm_enabled = 1;
3824 		}
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 #else
3831 
3832 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3833 				struct usb_device *udev, int enable)
3834 {
3835 	return 0;
3836 }
3837 
3838 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3839 {
3840 	return 0;
3841 }
3842 
3843 #endif /* CONFIG_USB_SUSPEND */
3844 
3845 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3846  * internal data structures for the device.
3847  */
3848 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3849 			struct usb_tt *tt, gfp_t mem_flags)
3850 {
3851 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3852 	struct xhci_virt_device *vdev;
3853 	struct xhci_command *config_cmd;
3854 	struct xhci_input_control_ctx *ctrl_ctx;
3855 	struct xhci_slot_ctx *slot_ctx;
3856 	unsigned long flags;
3857 	unsigned think_time;
3858 	int ret;
3859 
3860 	/* Ignore root hubs */
3861 	if (!hdev->parent)
3862 		return 0;
3863 
3864 	vdev = xhci->devs[hdev->slot_id];
3865 	if (!vdev) {
3866 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3867 		return -EINVAL;
3868 	}
3869 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3870 	if (!config_cmd) {
3871 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3872 		return -ENOMEM;
3873 	}
3874 
3875 	spin_lock_irqsave(&xhci->lock, flags);
3876 	if (hdev->speed == USB_SPEED_HIGH &&
3877 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3878 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3879 		xhci_free_command(xhci, config_cmd);
3880 		spin_unlock_irqrestore(&xhci->lock, flags);
3881 		return -ENOMEM;
3882 	}
3883 
3884 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3885 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3886 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3887 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3888 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3889 	if (tt->multi)
3890 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3891 	if (xhci->hci_version > 0x95) {
3892 		xhci_dbg(xhci, "xHCI version %x needs hub "
3893 				"TT think time and number of ports\n",
3894 				(unsigned int) xhci->hci_version);
3895 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3896 		/* Set TT think time - convert from ns to FS bit times.
3897 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3898 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3899 		 *
3900 		 * xHCI 1.0: this field shall be 0 if the device is not a
3901 		 * High-spped hub.
3902 		 */
3903 		think_time = tt->think_time;
3904 		if (think_time != 0)
3905 			think_time = (think_time / 666) - 1;
3906 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3907 			slot_ctx->tt_info |=
3908 				cpu_to_le32(TT_THINK_TIME(think_time));
3909 	} else {
3910 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3911 				"TT think time or number of ports\n",
3912 				(unsigned int) xhci->hci_version);
3913 	}
3914 	slot_ctx->dev_state = 0;
3915 	spin_unlock_irqrestore(&xhci->lock, flags);
3916 
3917 	xhci_dbg(xhci, "Set up %s for hub device.\n",
3918 			(xhci->hci_version > 0x95) ?
3919 			"configure endpoint" : "evaluate context");
3920 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3921 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3922 
3923 	/* Issue and wait for the configure endpoint or
3924 	 * evaluate context command.
3925 	 */
3926 	if (xhci->hci_version > 0x95)
3927 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3928 				false, false);
3929 	else
3930 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3931 				true, false);
3932 
3933 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3934 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3935 
3936 	xhci_free_command(xhci, config_cmd);
3937 	return ret;
3938 }
3939 
3940 int xhci_get_frame(struct usb_hcd *hcd)
3941 {
3942 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943 	/* EHCI mods by the periodic size.  Why? */
3944 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3945 }
3946 
3947 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3948 {
3949 	struct xhci_hcd		*xhci;
3950 	struct device		*dev = hcd->self.controller;
3951 	int			retval;
3952 	u32			temp;
3953 
3954 	hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3955 
3956 	if (usb_hcd_is_primary_hcd(hcd)) {
3957 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3958 		if (!xhci)
3959 			return -ENOMEM;
3960 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3961 		xhci->main_hcd = hcd;
3962 		/* Mark the first roothub as being USB 2.0.
3963 		 * The xHCI driver will register the USB 3.0 roothub.
3964 		 */
3965 		hcd->speed = HCD_USB2;
3966 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
3967 		/*
3968 		 * USB 2.0 roothub under xHCI has an integrated TT,
3969 		 * (rate matching hub) as opposed to having an OHCI/UHCI
3970 		 * companion controller.
3971 		 */
3972 		hcd->has_tt = 1;
3973 	} else {
3974 		/* xHCI private pointer was set in xhci_pci_probe for the second
3975 		 * registered roothub.
3976 		 */
3977 		xhci = hcd_to_xhci(hcd);
3978 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3979 		if (HCC_64BIT_ADDR(temp)) {
3980 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3981 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3982 		} else {
3983 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3984 		}
3985 		return 0;
3986 	}
3987 
3988 	xhci->cap_regs = hcd->regs;
3989 	xhci->op_regs = hcd->regs +
3990 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
3991 	xhci->run_regs = hcd->regs +
3992 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
3993 	/* Cache read-only capability registers */
3994 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
3995 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
3996 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
3997 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
3998 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
3999 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4000 	xhci_print_registers(xhci);
4001 
4002 	get_quirks(dev, xhci);
4003 
4004 	/* Make sure the HC is halted. */
4005 	retval = xhci_halt(xhci);
4006 	if (retval)
4007 		goto error;
4008 
4009 	xhci_dbg(xhci, "Resetting HCD\n");
4010 	/* Reset the internal HC memory state and registers. */
4011 	retval = xhci_reset(xhci);
4012 	if (retval)
4013 		goto error;
4014 	xhci_dbg(xhci, "Reset complete\n");
4015 
4016 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4017 	if (HCC_64BIT_ADDR(temp)) {
4018 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4019 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4020 	} else {
4021 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4022 	}
4023 
4024 	xhci_dbg(xhci, "Calling HCD init\n");
4025 	/* Initialize HCD and host controller data structures. */
4026 	retval = xhci_init(hcd);
4027 	if (retval)
4028 		goto error;
4029 	xhci_dbg(xhci, "Called HCD init\n");
4030 	return 0;
4031 error:
4032 	kfree(xhci);
4033 	return retval;
4034 }
4035 
4036 MODULE_DESCRIPTION(DRIVER_DESC);
4037 MODULE_AUTHOR(DRIVER_AUTHOR);
4038 MODULE_LICENSE("GPL");
4039 
4040 static int __init xhci_hcd_init(void)
4041 {
4042 	int retval;
4043 
4044 	retval = xhci_register_pci();
4045 	if (retval < 0) {
4046 		printk(KERN_DEBUG "Problem registering PCI driver.");
4047 		return retval;
4048 	}
4049 	/*
4050 	 * Check the compiler generated sizes of structures that must be laid
4051 	 * out in specific ways for hardware access.
4052 	 */
4053 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4054 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4055 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4056 	/* xhci_device_control has eight fields, and also
4057 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4058 	 */
4059 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4060 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4061 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4062 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4063 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4064 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4065 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4066 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4067 	return 0;
4068 }
4069 module_init(xhci_hcd_init);
4070 
4071 static void __exit xhci_hcd_cleanup(void)
4072 {
4073 	xhci_unregister_pci();
4074 }
4075 module_exit(xhci_hcd_cleanup);
4076