xref: /linux/drivers/usb/host/xhci.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 	struct xhci_port **ports;
889 	int port_index;
890 	unsigned long flags;
891 	u32 t1, t2, portsc;
892 
893 	spin_lock_irqsave(&xhci->lock, flags);
894 
895 	/* disable usb3 ports Wake bits */
896 	port_index = xhci->usb3_rhub.num_ports;
897 	ports = xhci->usb3_rhub.ports;
898 	while (port_index--) {
899 		t1 = readl(ports[port_index]->addr);
900 		portsc = t1;
901 		t1 = xhci_port_state_to_neutral(t1);
902 		t2 = t1 & ~PORT_WAKE_BITS;
903 		if (t1 != t2) {
904 			writel(t2, ports[port_index]->addr);
905 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 				 xhci->usb3_rhub.hcd->self.busnum,
907 				 port_index + 1, portsc, t2);
908 		}
909 	}
910 
911 	/* disable usb2 ports Wake bits */
912 	port_index = xhci->usb2_rhub.num_ports;
913 	ports = xhci->usb2_rhub.ports;
914 	while (port_index--) {
915 		t1 = readl(ports[port_index]->addr);
916 		portsc = t1;
917 		t1 = xhci_port_state_to_neutral(t1);
918 		t2 = t1 & ~PORT_WAKE_BITS;
919 		if (t1 != t2) {
920 			writel(t2, ports[port_index]->addr);
921 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 				 xhci->usb2_rhub.hcd->self.busnum,
923 				 port_index + 1, portsc, t2);
924 		}
925 	}
926 	spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928 
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 	struct xhci_port	**ports;
932 	int			port_index;
933 	u32			status;
934 	u32			portsc;
935 
936 	status = readl(&xhci->op_regs->status);
937 	if (status & STS_EINT)
938 		return true;
939 	/*
940 	 * Checking STS_EINT is not enough as there is a lag between a change
941 	 * bit being set and the Port Status Change Event that it generated
942 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 	 */
944 
945 	port_index = xhci->usb2_rhub.num_ports;
946 	ports = xhci->usb2_rhub.ports;
947 	while (port_index--) {
948 		portsc = readl(ports[port_index]->addr);
949 		if (portsc & PORT_CHANGE_MASK ||
950 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 			return true;
952 	}
953 	port_index = xhci->usb3_rhub.num_ports;
954 	ports = xhci->usb3_rhub.ports;
955 	while (port_index--) {
956 		portsc = readl(ports[port_index]->addr);
957 		if (portsc & PORT_CHANGE_MASK ||
958 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 	int			rc = 0;
973 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
974 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
975 	u32			command;
976 	u32			res;
977 
978 	if (!hcd->state)
979 		return 0;
980 
981 	if (hcd->state != HC_STATE_SUSPENDED ||
982 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 		return -EINVAL;
984 
985 	/* Clear root port wake on bits if wakeup not allowed. */
986 	if (!do_wakeup)
987 		xhci_disable_port_wake_on_bits(xhci);
988 
989 	if (!HCD_HW_ACCESSIBLE(hcd))
990 		return 0;
991 
992 	xhci_dbc_suspend(xhci);
993 
994 	/* Don't poll the roothubs on bus suspend. */
995 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 	del_timer_sync(&hcd->rh_timer);
998 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000 
1001 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 		usleep_range(1000, 1500);
1003 
1004 	spin_lock_irq(&xhci->lock);
1005 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 	/* step 1: stop endpoint */
1008 	/* skipped assuming that port suspend has done */
1009 
1010 	/* step 2: clear Run/Stop bit */
1011 	command = readl(&xhci->op_regs->command);
1012 	command &= ~CMD_RUN;
1013 	writel(command, &xhci->op_regs->command);
1014 
1015 	/* Some chips from Fresco Logic need an extraordinary delay */
1016 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017 
1018 	if (xhci_handshake(&xhci->op_regs->status,
1019 		      STS_HALT, STS_HALT, delay)) {
1020 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 		spin_unlock_irq(&xhci->lock);
1022 		return -ETIMEDOUT;
1023 	}
1024 	xhci_clear_command_ring(xhci);
1025 
1026 	/* step 3: save registers */
1027 	xhci_save_registers(xhci);
1028 
1029 	/* step 4: set CSS flag */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_CSS;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci->broken_suspend = 0;
1034 	if (xhci_handshake(&xhci->op_regs->status,
1035 				STS_SAVE, 0, 20 * 1000)) {
1036 	/*
1037 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 	 * SSS bit of USBSTS and when driver tries to poll
1039 	 * to see if the xHC clears BIT(8) which never happens
1040 	 * and driver assumes that controller is not responding
1041 	 * and times out. To workaround this, its good to check
1042 	 * if SRE and HCE bits are not set (as per xhci
1043 	 * Section 5.4.2) and bypass the timeout.
1044 	 */
1045 		res = readl(&xhci->op_regs->status);
1046 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 		    (((res & STS_SRE) == 0) &&
1048 				((res & STS_HCE) == 0))) {
1049 			xhci->broken_suspend = 1;
1050 		} else {
1051 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 			spin_unlock_irq(&xhci->lock);
1053 			return -ETIMEDOUT;
1054 		}
1055 	}
1056 	spin_unlock_irq(&xhci->lock);
1057 
1058 	/*
1059 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 	 * is about to be suspended.
1061 	 */
1062 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 			(!(xhci_all_ports_seen_u0(xhci)))) {
1064 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 				"%s: compliance mode recovery timer deleted",
1067 				__func__);
1068 	}
1069 
1070 	/* step 5: remove core well power */
1071 	/* synchronize irq when using MSI-X */
1072 	xhci_msix_sync_irqs(xhci);
1073 
1074 	return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077 
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 	u32			command, temp = 0;
1087 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088 	struct usb_hcd		*secondary_hcd;
1089 	int			retval = 0;
1090 	bool			comp_timer_running = false;
1091 
1092 	if (!hcd->state)
1093 		return 0;
1094 
1095 	/* Wait a bit if either of the roothubs need to settle from the
1096 	 * transition into bus suspend.
1097 	 */
1098 
1099 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 		msleep(100);
1102 
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105 
1106 	spin_lock_irq(&xhci->lock);
1107 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 		hibernated = true;
1109 
1110 	if (!hibernated) {
1111 		/*
1112 		 * Some controllers might lose power during suspend, so wait
1113 		 * for controller not ready bit to clear, just as in xHC init.
1114 		 */
1115 		retval = xhci_handshake(&xhci->op_regs->status,
1116 					STS_CNR, 0, 10 * 1000 * 1000);
1117 		if (retval) {
1118 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1119 				  retval);
1120 			spin_unlock_irq(&xhci->lock);
1121 			return retval;
1122 		}
1123 		/* step 1: restore register */
1124 		xhci_restore_registers(xhci);
1125 		/* step 2: initialize command ring buffer */
1126 		xhci_set_cmd_ring_deq(xhci);
1127 		/* step 3: restore state and start state*/
1128 		/* step 3: set CRS flag */
1129 		command = readl(&xhci->op_regs->command);
1130 		command |= CMD_CRS;
1131 		writel(command, &xhci->op_regs->command);
1132 		/*
1133 		 * Some controllers take up to 55+ ms to complete the controller
1134 		 * restore so setting the timeout to 100ms. Xhci specification
1135 		 * doesn't mention any timeout value.
1136 		 */
1137 		if (xhci_handshake(&xhci->op_regs->status,
1138 			      STS_RESTORE, 0, 100 * 1000)) {
1139 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140 			spin_unlock_irq(&xhci->lock);
1141 			return -ETIMEDOUT;
1142 		}
1143 		temp = readl(&xhci->op_regs->status);
1144 	}
1145 
1146 	/* If restore operation fails, re-initialize the HC during resume */
1147 	if ((temp & STS_SRE) || hibernated) {
1148 
1149 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150 				!(xhci_all_ports_seen_u0(xhci))) {
1151 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1152 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153 				"Compliance Mode Recovery Timer deleted!");
1154 		}
1155 
1156 		/* Let the USB core know _both_ roothubs lost power. */
1157 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159 
1160 		xhci_dbg(xhci, "Stop HCD\n");
1161 		xhci_halt(xhci);
1162 		xhci_zero_64b_regs(xhci);
1163 		retval = xhci_reset(xhci);
1164 		spin_unlock_irq(&xhci->lock);
1165 		if (retval)
1166 			return retval;
1167 		xhci_cleanup_msix(xhci);
1168 
1169 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170 		temp = readl(&xhci->op_regs->status);
1171 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172 		temp = readl(&xhci->ir_set->irq_pending);
1173 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174 
1175 		xhci_dbg(xhci, "cleaning up memory\n");
1176 		xhci_mem_cleanup(xhci);
1177 		xhci_debugfs_exit(xhci);
1178 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179 			    readl(&xhci->op_regs->status));
1180 
1181 		/* USB core calls the PCI reinit and start functions twice:
1182 		 * first with the primary HCD, and then with the secondary HCD.
1183 		 * If we don't do the same, the host will never be started.
1184 		 */
1185 		if (!usb_hcd_is_primary_hcd(hcd))
1186 			secondary_hcd = hcd;
1187 		else
1188 			secondary_hcd = xhci->shared_hcd;
1189 
1190 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191 		retval = xhci_init(hcd->primary_hcd);
1192 		if (retval)
1193 			return retval;
1194 		comp_timer_running = true;
1195 
1196 		xhci_dbg(xhci, "Start the primary HCD\n");
1197 		retval = xhci_run(hcd->primary_hcd);
1198 		if (!retval) {
1199 			xhci_dbg(xhci, "Start the secondary HCD\n");
1200 			retval = xhci_run(secondary_hcd);
1201 		}
1202 		hcd->state = HC_STATE_SUSPENDED;
1203 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204 		goto done;
1205 	}
1206 
1207 	/* step 4: set Run/Stop bit */
1208 	command = readl(&xhci->op_regs->command);
1209 	command |= CMD_RUN;
1210 	writel(command, &xhci->op_regs->command);
1211 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212 		  0, 250 * 1000);
1213 
1214 	/* step 5: walk topology and initialize portsc,
1215 	 * portpmsc and portli
1216 	 */
1217 	/* this is done in bus_resume */
1218 
1219 	/* step 6: restart each of the previously
1220 	 * Running endpoints by ringing their doorbells
1221 	 */
1222 
1223 	spin_unlock_irq(&xhci->lock);
1224 
1225 	xhci_dbc_resume(xhci);
1226 
1227  done:
1228 	if (retval == 0) {
1229 		/* Resume root hubs only when have pending events. */
1230 		if (xhci_pending_portevent(xhci)) {
1231 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1232 			usb_hcd_resume_root_hub(hcd);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1238 	 * be re-initialized Always after a system resume. Ports are subject
1239 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1240 	 * ports have entered previously to U0 before system's suspension.
1241 	 */
1242 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243 		compliance_mode_recovery_timer_init(xhci);
1244 
1245 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247 
1248 	/* Re-enable port polling. */
1249 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1252 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253 	usb_hcd_poll_rh_status(hcd);
1254 
1255 	return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif	/* CONFIG_PM */
1259 
1260 /*-------------------------------------------------------------------------*/
1261 
1262 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264 	void *temp;
1265 	int ret = 0;
1266 	unsigned int buf_len;
1267 	enum dma_data_direction dir;
1268 
1269 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1270 	buf_len = urb->transfer_buffer_length;
1271 
1272 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1273 			    dev_to_node(hcd->self.sysdev));
1274 
1275 	if (usb_urb_dir_out(urb))
1276 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1277 				   temp, buf_len, 0);
1278 
1279 	urb->transfer_buffer = temp;
1280 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1281 					   urb->transfer_buffer,
1282 					   urb->transfer_buffer_length,
1283 					   dir);
1284 
1285 	if (dma_mapping_error(hcd->self.sysdev,
1286 			      urb->transfer_dma)) {
1287 		ret = -EAGAIN;
1288 		kfree(temp);
1289 	} else {
1290 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1297 					  struct urb *urb)
1298 {
1299 	bool ret = false;
1300 	unsigned int i;
1301 	unsigned int len = 0;
1302 	unsigned int trb_size;
1303 	unsigned int max_pkt;
1304 	struct scatterlist *sg;
1305 	struct scatterlist *tail_sg;
1306 
1307 	tail_sg = urb->sg;
1308 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1309 
1310 	if (!urb->num_sgs)
1311 		return ret;
1312 
1313 	if (urb->dev->speed >= USB_SPEED_SUPER)
1314 		trb_size = TRB_CACHE_SIZE_SS;
1315 	else
1316 		trb_size = TRB_CACHE_SIZE_HS;
1317 
1318 	if (urb->transfer_buffer_length != 0 &&
1319 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1320 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1321 			len = len + sg->length;
1322 			if (i > trb_size - 2) {
1323 				len = len - tail_sg->length;
1324 				if (len < max_pkt) {
1325 					ret = true;
1326 					break;
1327 				}
1328 
1329 				tail_sg = sg_next(tail_sg);
1330 			}
1331 		}
1332 	}
1333 	return ret;
1334 }
1335 
1336 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338 	unsigned int len;
1339 	unsigned int buf_len;
1340 	enum dma_data_direction dir;
1341 
1342 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1343 
1344 	buf_len = urb->transfer_buffer_length;
1345 
1346 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1348 		dma_unmap_single(hcd->self.sysdev,
1349 				 urb->transfer_dma,
1350 				 urb->transfer_buffer_length,
1351 				 dir);
1352 
1353 	if (usb_urb_dir_in(urb))
1354 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1355 					   urb->transfer_buffer,
1356 					   buf_len,
1357 					   0);
1358 
1359 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1360 	kfree(urb->transfer_buffer);
1361 	urb->transfer_buffer = NULL;
1362 }
1363 
1364 /*
1365  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1366  * we'll copy the actual data into the TRB address register. This is limited to
1367  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1368  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1369  */
1370 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1371 				gfp_t mem_flags)
1372 {
1373 	struct xhci_hcd *xhci;
1374 
1375 	xhci = hcd_to_xhci(hcd);
1376 
1377 	if (xhci_urb_suitable_for_idt(urb))
1378 		return 0;
1379 
1380 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1381 		if (xhci_urb_temp_buffer_required(hcd, urb))
1382 			return xhci_map_temp_buffer(hcd, urb);
1383 	}
1384 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1385 }
1386 
1387 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1388 {
1389 	struct xhci_hcd *xhci;
1390 	bool unmap_temp_buf = false;
1391 
1392 	xhci = hcd_to_xhci(hcd);
1393 
1394 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1395 		unmap_temp_buf = true;
1396 
1397 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1398 		xhci_unmap_temp_buf(hcd, urb);
1399 	else
1400 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1401 }
1402 
1403 /**
1404  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1405  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1406  * value to right shift 1 for the bitmask.
1407  *
1408  * Index  = (epnum * 2) + direction - 1,
1409  * where direction = 0 for OUT, 1 for IN.
1410  * For control endpoints, the IN index is used (OUT index is unused), so
1411  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1412  */
1413 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1414 {
1415 	unsigned int index;
1416 	if (usb_endpoint_xfer_control(desc))
1417 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1418 	else
1419 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1420 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1421 	return index;
1422 }
1423 
1424 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1425  * address from the XHCI endpoint index.
1426  */
1427 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1428 {
1429 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1430 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1431 	return direction | number;
1432 }
1433 
1434 /* Find the flag for this endpoint (for use in the control context).  Use the
1435  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1436  * bit 1, etc.
1437  */
1438 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1439 {
1440 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1441 }
1442 
1443 /* Find the flag for this endpoint (for use in the control context).  Use the
1444  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1445  * bit 1, etc.
1446  */
1447 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1448 {
1449 	return 1 << (ep_index + 1);
1450 }
1451 
1452 /* Compute the last valid endpoint context index.  Basically, this is the
1453  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1454  * we find the most significant bit set in the added contexts flags.
1455  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1456  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1457  */
1458 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1459 {
1460 	return fls(added_ctxs) - 1;
1461 }
1462 
1463 /* Returns 1 if the arguments are OK;
1464  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1465  */
1466 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1467 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1468 		const char *func) {
1469 	struct xhci_hcd	*xhci;
1470 	struct xhci_virt_device	*virt_dev;
1471 
1472 	if (!hcd || (check_ep && !ep) || !udev) {
1473 		pr_debug("xHCI %s called with invalid args\n", func);
1474 		return -EINVAL;
1475 	}
1476 	if (!udev->parent) {
1477 		pr_debug("xHCI %s called for root hub\n", func);
1478 		return 0;
1479 	}
1480 
1481 	xhci = hcd_to_xhci(hcd);
1482 	if (check_virt_dev) {
1483 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1484 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1485 					func);
1486 			return -EINVAL;
1487 		}
1488 
1489 		virt_dev = xhci->devs[udev->slot_id];
1490 		if (virt_dev->udev != udev) {
1491 			xhci_dbg(xhci, "xHCI %s called with udev and "
1492 					  "virt_dev does not match\n", func);
1493 			return -EINVAL;
1494 		}
1495 	}
1496 
1497 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1498 		return -ENODEV;
1499 
1500 	return 1;
1501 }
1502 
1503 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1504 		struct usb_device *udev, struct xhci_command *command,
1505 		bool ctx_change, bool must_succeed);
1506 
1507 /*
1508  * Full speed devices may have a max packet size greater than 8 bytes, but the
1509  * USB core doesn't know that until it reads the first 8 bytes of the
1510  * descriptor.  If the usb_device's max packet size changes after that point,
1511  * we need to issue an evaluate context command and wait on it.
1512  */
1513 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1514 		unsigned int ep_index, struct urb *urb)
1515 {
1516 	struct xhci_container_ctx *out_ctx;
1517 	struct xhci_input_control_ctx *ctrl_ctx;
1518 	struct xhci_ep_ctx *ep_ctx;
1519 	struct xhci_command *command;
1520 	int max_packet_size;
1521 	int hw_max_packet_size;
1522 	int ret = 0;
1523 
1524 	out_ctx = xhci->devs[slot_id]->out_ctx;
1525 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1526 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1527 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1528 	if (hw_max_packet_size != max_packet_size) {
1529 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1530 				"Max Packet Size for ep 0 changed.");
1531 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1532 				"Max packet size in usb_device = %d",
1533 				max_packet_size);
1534 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1535 				"Max packet size in xHCI HW = %d",
1536 				hw_max_packet_size);
1537 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1538 				"Issuing evaluate context command.");
1539 
1540 		/* Set up the input context flags for the command */
1541 		/* FIXME: This won't work if a non-default control endpoint
1542 		 * changes max packet sizes.
1543 		 */
1544 
1545 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1546 		if (!command)
1547 			return -ENOMEM;
1548 
1549 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1550 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1551 		if (!ctrl_ctx) {
1552 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1553 					__func__);
1554 			ret = -ENOMEM;
1555 			goto command_cleanup;
1556 		}
1557 		/* Set up the modified control endpoint 0 */
1558 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1559 				xhci->devs[slot_id]->out_ctx, ep_index);
1560 
1561 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1562 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1563 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1564 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1565 
1566 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1567 		ctrl_ctx->drop_flags = 0;
1568 
1569 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1570 				true, false);
1571 
1572 		/* Clean up the input context for later use by bandwidth
1573 		 * functions.
1574 		 */
1575 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1576 command_cleanup:
1577 		kfree(command->completion);
1578 		kfree(command);
1579 	}
1580 	return ret;
1581 }
1582 
1583 /*
1584  * non-error returns are a promise to giveback() the urb later
1585  * we drop ownership so next owner (or urb unlink) can get it
1586  */
1587 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1588 {
1589 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1590 	unsigned long flags;
1591 	int ret = 0;
1592 	unsigned int slot_id, ep_index;
1593 	unsigned int *ep_state;
1594 	struct urb_priv	*urb_priv;
1595 	int num_tds;
1596 
1597 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1598 					true, true, __func__) <= 0)
1599 		return -EINVAL;
1600 
1601 	slot_id = urb->dev->slot_id;
1602 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1603 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1604 
1605 	if (!HCD_HW_ACCESSIBLE(hcd))
1606 		return -ESHUTDOWN;
1607 
1608 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1609 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1610 		return -ENODEV;
1611 	}
1612 
1613 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1614 		num_tds = urb->number_of_packets;
1615 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1616 	    urb->transfer_buffer_length > 0 &&
1617 	    urb->transfer_flags & URB_ZERO_PACKET &&
1618 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1619 		num_tds = 2;
1620 	else
1621 		num_tds = 1;
1622 
1623 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1624 	if (!urb_priv)
1625 		return -ENOMEM;
1626 
1627 	urb_priv->num_tds = num_tds;
1628 	urb_priv->num_tds_done = 0;
1629 	urb->hcpriv = urb_priv;
1630 
1631 	trace_xhci_urb_enqueue(urb);
1632 
1633 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1634 		/* Check to see if the max packet size for the default control
1635 		 * endpoint changed during FS device enumeration
1636 		 */
1637 		if (urb->dev->speed == USB_SPEED_FULL) {
1638 			ret = xhci_check_maxpacket(xhci, slot_id,
1639 					ep_index, urb);
1640 			if (ret < 0) {
1641 				xhci_urb_free_priv(urb_priv);
1642 				urb->hcpriv = NULL;
1643 				return ret;
1644 			}
1645 		}
1646 	}
1647 
1648 	spin_lock_irqsave(&xhci->lock, flags);
1649 
1650 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1651 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1652 			 urb->ep->desc.bEndpointAddress, urb);
1653 		ret = -ESHUTDOWN;
1654 		goto free_priv;
1655 	}
1656 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1657 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1658 			  *ep_state);
1659 		ret = -EINVAL;
1660 		goto free_priv;
1661 	}
1662 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1663 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1664 		ret = -EINVAL;
1665 		goto free_priv;
1666 	}
1667 
1668 	switch (usb_endpoint_type(&urb->ep->desc)) {
1669 
1670 	case USB_ENDPOINT_XFER_CONTROL:
1671 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1672 					 slot_id, ep_index);
1673 		break;
1674 	case USB_ENDPOINT_XFER_BULK:
1675 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1676 					 slot_id, ep_index);
1677 		break;
1678 	case USB_ENDPOINT_XFER_INT:
1679 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1680 				slot_id, ep_index);
1681 		break;
1682 	case USB_ENDPOINT_XFER_ISOC:
1683 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1684 				slot_id, ep_index);
1685 	}
1686 
1687 	if (ret) {
1688 free_priv:
1689 		xhci_urb_free_priv(urb_priv);
1690 		urb->hcpriv = NULL;
1691 	}
1692 	spin_unlock_irqrestore(&xhci->lock, flags);
1693 	return ret;
1694 }
1695 
1696 /*
1697  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1698  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1699  * should pick up where it left off in the TD, unless a Set Transfer Ring
1700  * Dequeue Pointer is issued.
1701  *
1702  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1703  * the ring.  Since the ring is a contiguous structure, they can't be physically
1704  * removed.  Instead, there are two options:
1705  *
1706  *  1) If the HC is in the middle of processing the URB to be canceled, we
1707  *     simply move the ring's dequeue pointer past those TRBs using the Set
1708  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1709  *     when drivers timeout on the last submitted URB and attempt to cancel.
1710  *
1711  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1712  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1713  *     HC will need to invalidate the any TRBs it has cached after the stop
1714  *     endpoint command, as noted in the xHCI 0.95 errata.
1715  *
1716  *  3) The TD may have completed by the time the Stop Endpoint Command
1717  *     completes, so software needs to handle that case too.
1718  *
1719  * This function should protect against the TD enqueueing code ringing the
1720  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1721  * It also needs to account for multiple cancellations on happening at the same
1722  * time for the same endpoint.
1723  *
1724  * Note that this function can be called in any context, or so says
1725  * usb_hcd_unlink_urb()
1726  */
1727 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1728 {
1729 	unsigned long flags;
1730 	int ret, i;
1731 	u32 temp;
1732 	struct xhci_hcd *xhci;
1733 	struct urb_priv	*urb_priv;
1734 	struct xhci_td *td;
1735 	unsigned int ep_index;
1736 	struct xhci_ring *ep_ring;
1737 	struct xhci_virt_ep *ep;
1738 	struct xhci_command *command;
1739 	struct xhci_virt_device *vdev;
1740 
1741 	xhci = hcd_to_xhci(hcd);
1742 	spin_lock_irqsave(&xhci->lock, flags);
1743 
1744 	trace_xhci_urb_dequeue(urb);
1745 
1746 	/* Make sure the URB hasn't completed or been unlinked already */
1747 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1748 	if (ret)
1749 		goto done;
1750 
1751 	/* give back URB now if we can't queue it for cancel */
1752 	vdev = xhci->devs[urb->dev->slot_id];
1753 	urb_priv = urb->hcpriv;
1754 	if (!vdev || !urb_priv)
1755 		goto err_giveback;
1756 
1757 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1758 	ep = &vdev->eps[ep_index];
1759 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1760 	if (!ep || !ep_ring)
1761 		goto err_giveback;
1762 
1763 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1764 	temp = readl(&xhci->op_regs->status);
1765 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1766 		xhci_hc_died(xhci);
1767 		goto done;
1768 	}
1769 
1770 	/*
1771 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1772 	 * make sure none of the ring related pointers in this URB private data
1773 	 * are touched, such as td_list, otherwise we overwrite freed data
1774 	 */
1775 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1776 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1777 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1778 			td = &urb_priv->td[i];
1779 			if (!list_empty(&td->cancelled_td_list))
1780 				list_del_init(&td->cancelled_td_list);
1781 		}
1782 		goto err_giveback;
1783 	}
1784 
1785 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1786 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1787 				"HC halted, freeing TD manually.");
1788 		for (i = urb_priv->num_tds_done;
1789 		     i < urb_priv->num_tds;
1790 		     i++) {
1791 			td = &urb_priv->td[i];
1792 			if (!list_empty(&td->td_list))
1793 				list_del_init(&td->td_list);
1794 			if (!list_empty(&td->cancelled_td_list))
1795 				list_del_init(&td->cancelled_td_list);
1796 		}
1797 		goto err_giveback;
1798 	}
1799 
1800 	i = urb_priv->num_tds_done;
1801 	if (i < urb_priv->num_tds)
1802 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1803 				"Cancel URB %p, dev %s, ep 0x%x, "
1804 				"starting at offset 0x%llx",
1805 				urb, urb->dev->devpath,
1806 				urb->ep->desc.bEndpointAddress,
1807 				(unsigned long long) xhci_trb_virt_to_dma(
1808 					urb_priv->td[i].start_seg,
1809 					urb_priv->td[i].first_trb));
1810 
1811 	for (; i < urb_priv->num_tds; i++) {
1812 		td = &urb_priv->td[i];
1813 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1814 	}
1815 
1816 	/* Queue a stop endpoint command, but only if this is
1817 	 * the first cancellation to be handled.
1818 	 */
1819 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1820 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1821 		if (!command) {
1822 			ret = -ENOMEM;
1823 			goto done;
1824 		}
1825 		ep->ep_state |= EP_STOP_CMD_PENDING;
1826 		ep->stop_cmd_timer.expires = jiffies +
1827 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1828 		add_timer(&ep->stop_cmd_timer);
1829 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1830 					 ep_index, 0);
1831 		xhci_ring_cmd_db(xhci);
1832 	}
1833 done:
1834 	spin_unlock_irqrestore(&xhci->lock, flags);
1835 	return ret;
1836 
1837 err_giveback:
1838 	if (urb_priv)
1839 		xhci_urb_free_priv(urb_priv);
1840 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1841 	spin_unlock_irqrestore(&xhci->lock, flags);
1842 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1843 	return ret;
1844 }
1845 
1846 /* Drop an endpoint from a new bandwidth configuration for this device.
1847  * Only one call to this function is allowed per endpoint before
1848  * check_bandwidth() or reset_bandwidth() must be called.
1849  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1850  * add the endpoint to the schedule with possibly new parameters denoted by a
1851  * different endpoint descriptor in usb_host_endpoint.
1852  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1853  * not allowed.
1854  *
1855  * The USB core will not allow URBs to be queued to an endpoint that is being
1856  * disabled, so there's no need for mutual exclusion to protect
1857  * the xhci->devs[slot_id] structure.
1858  */
1859 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1860 		struct usb_host_endpoint *ep)
1861 {
1862 	struct xhci_hcd *xhci;
1863 	struct xhci_container_ctx *in_ctx, *out_ctx;
1864 	struct xhci_input_control_ctx *ctrl_ctx;
1865 	unsigned int ep_index;
1866 	struct xhci_ep_ctx *ep_ctx;
1867 	u32 drop_flag;
1868 	u32 new_add_flags, new_drop_flags;
1869 	int ret;
1870 
1871 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1872 	if (ret <= 0)
1873 		return ret;
1874 	xhci = hcd_to_xhci(hcd);
1875 	if (xhci->xhc_state & XHCI_STATE_DYING)
1876 		return -ENODEV;
1877 
1878 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1879 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1880 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1881 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1882 				__func__, drop_flag);
1883 		return 0;
1884 	}
1885 
1886 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1887 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1888 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1889 	if (!ctrl_ctx) {
1890 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1891 				__func__);
1892 		return 0;
1893 	}
1894 
1895 	ep_index = xhci_get_endpoint_index(&ep->desc);
1896 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1897 	/* If the HC already knows the endpoint is disabled,
1898 	 * or the HCD has noted it is disabled, ignore this request
1899 	 */
1900 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1901 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1902 	    xhci_get_endpoint_flag(&ep->desc)) {
1903 		/* Do not warn when called after a usb_device_reset */
1904 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1905 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1906 				  __func__, ep);
1907 		return 0;
1908 	}
1909 
1910 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1911 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1912 
1913 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1914 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1915 
1916 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1917 
1918 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1919 
1920 	if (xhci->quirks & XHCI_MTK_HOST)
1921 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1922 
1923 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1924 			(unsigned int) ep->desc.bEndpointAddress,
1925 			udev->slot_id,
1926 			(unsigned int) new_drop_flags,
1927 			(unsigned int) new_add_flags);
1928 	return 0;
1929 }
1930 
1931 /* Add an endpoint to a new possible bandwidth configuration for this device.
1932  * Only one call to this function is allowed per endpoint before
1933  * check_bandwidth() or reset_bandwidth() must be called.
1934  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1935  * add the endpoint to the schedule with possibly new parameters denoted by a
1936  * different endpoint descriptor in usb_host_endpoint.
1937  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1938  * not allowed.
1939  *
1940  * The USB core will not allow URBs to be queued to an endpoint until the
1941  * configuration or alt setting is installed in the device, so there's no need
1942  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1943  */
1944 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1945 		struct usb_host_endpoint *ep)
1946 {
1947 	struct xhci_hcd *xhci;
1948 	struct xhci_container_ctx *in_ctx;
1949 	unsigned int ep_index;
1950 	struct xhci_input_control_ctx *ctrl_ctx;
1951 	struct xhci_ep_ctx *ep_ctx;
1952 	u32 added_ctxs;
1953 	u32 new_add_flags, new_drop_flags;
1954 	struct xhci_virt_device *virt_dev;
1955 	int ret = 0;
1956 
1957 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1958 	if (ret <= 0) {
1959 		/* So we won't queue a reset ep command for a root hub */
1960 		ep->hcpriv = NULL;
1961 		return ret;
1962 	}
1963 	xhci = hcd_to_xhci(hcd);
1964 	if (xhci->xhc_state & XHCI_STATE_DYING)
1965 		return -ENODEV;
1966 
1967 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1968 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1969 		/* FIXME when we have to issue an evaluate endpoint command to
1970 		 * deal with ep0 max packet size changing once we get the
1971 		 * descriptors
1972 		 */
1973 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1974 				__func__, added_ctxs);
1975 		return 0;
1976 	}
1977 
1978 	virt_dev = xhci->devs[udev->slot_id];
1979 	in_ctx = virt_dev->in_ctx;
1980 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1981 	if (!ctrl_ctx) {
1982 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1983 				__func__);
1984 		return 0;
1985 	}
1986 
1987 	ep_index = xhci_get_endpoint_index(&ep->desc);
1988 	/* If this endpoint is already in use, and the upper layers are trying
1989 	 * to add it again without dropping it, reject the addition.
1990 	 */
1991 	if (virt_dev->eps[ep_index].ring &&
1992 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1993 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1994 				"without dropping it.\n",
1995 				(unsigned int) ep->desc.bEndpointAddress);
1996 		return -EINVAL;
1997 	}
1998 
1999 	/* If the HCD has already noted the endpoint is enabled,
2000 	 * ignore this request.
2001 	 */
2002 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2003 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2004 				__func__, ep);
2005 		return 0;
2006 	}
2007 
2008 	/*
2009 	 * Configuration and alternate setting changes must be done in
2010 	 * process context, not interrupt context (or so documenation
2011 	 * for usb_set_interface() and usb_set_configuration() claim).
2012 	 */
2013 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2014 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2015 				__func__, ep->desc.bEndpointAddress);
2016 		return -ENOMEM;
2017 	}
2018 
2019 	if (xhci->quirks & XHCI_MTK_HOST) {
2020 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
2021 		if (ret < 0) {
2022 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
2023 			virt_dev->eps[ep_index].new_ring = NULL;
2024 			return ret;
2025 		}
2026 	}
2027 
2028 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2029 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2030 
2031 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2032 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2033 	 * this re-adds a new state for the endpoint from the new endpoint
2034 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2035 	 * drop flags alone.
2036 	 */
2037 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2038 
2039 	/* Store the usb_device pointer for later use */
2040 	ep->hcpriv = udev;
2041 
2042 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2043 	trace_xhci_add_endpoint(ep_ctx);
2044 
2045 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2046 			(unsigned int) ep->desc.bEndpointAddress,
2047 			udev->slot_id,
2048 			(unsigned int) new_drop_flags,
2049 			(unsigned int) new_add_flags);
2050 	return 0;
2051 }
2052 
2053 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2054 {
2055 	struct xhci_input_control_ctx *ctrl_ctx;
2056 	struct xhci_ep_ctx *ep_ctx;
2057 	struct xhci_slot_ctx *slot_ctx;
2058 	int i;
2059 
2060 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2061 	if (!ctrl_ctx) {
2062 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2063 				__func__);
2064 		return;
2065 	}
2066 
2067 	/* When a device's add flag and drop flag are zero, any subsequent
2068 	 * configure endpoint command will leave that endpoint's state
2069 	 * untouched.  Make sure we don't leave any old state in the input
2070 	 * endpoint contexts.
2071 	 */
2072 	ctrl_ctx->drop_flags = 0;
2073 	ctrl_ctx->add_flags = 0;
2074 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2075 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2076 	/* Endpoint 0 is always valid */
2077 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2078 	for (i = 1; i < 31; i++) {
2079 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2080 		ep_ctx->ep_info = 0;
2081 		ep_ctx->ep_info2 = 0;
2082 		ep_ctx->deq = 0;
2083 		ep_ctx->tx_info = 0;
2084 	}
2085 }
2086 
2087 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2088 		struct usb_device *udev, u32 *cmd_status)
2089 {
2090 	int ret;
2091 
2092 	switch (*cmd_status) {
2093 	case COMP_COMMAND_ABORTED:
2094 	case COMP_COMMAND_RING_STOPPED:
2095 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2096 		ret = -ETIME;
2097 		break;
2098 	case COMP_RESOURCE_ERROR:
2099 		dev_warn(&udev->dev,
2100 			 "Not enough host controller resources for new device state.\n");
2101 		ret = -ENOMEM;
2102 		/* FIXME: can we allocate more resources for the HC? */
2103 		break;
2104 	case COMP_BANDWIDTH_ERROR:
2105 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2106 		dev_warn(&udev->dev,
2107 			 "Not enough bandwidth for new device state.\n");
2108 		ret = -ENOSPC;
2109 		/* FIXME: can we go back to the old state? */
2110 		break;
2111 	case COMP_TRB_ERROR:
2112 		/* the HCD set up something wrong */
2113 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2114 				"add flag = 1, "
2115 				"and endpoint is not disabled.\n");
2116 		ret = -EINVAL;
2117 		break;
2118 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2119 		dev_warn(&udev->dev,
2120 			 "ERROR: Incompatible device for endpoint configure command.\n");
2121 		ret = -ENODEV;
2122 		break;
2123 	case COMP_SUCCESS:
2124 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2125 				"Successful Endpoint Configure command");
2126 		ret = 0;
2127 		break;
2128 	default:
2129 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2130 				*cmd_status);
2131 		ret = -EINVAL;
2132 		break;
2133 	}
2134 	return ret;
2135 }
2136 
2137 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2138 		struct usb_device *udev, u32 *cmd_status)
2139 {
2140 	int ret;
2141 
2142 	switch (*cmd_status) {
2143 	case COMP_COMMAND_ABORTED:
2144 	case COMP_COMMAND_RING_STOPPED:
2145 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2146 		ret = -ETIME;
2147 		break;
2148 	case COMP_PARAMETER_ERROR:
2149 		dev_warn(&udev->dev,
2150 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2151 		ret = -EINVAL;
2152 		break;
2153 	case COMP_SLOT_NOT_ENABLED_ERROR:
2154 		dev_warn(&udev->dev,
2155 			"WARN: slot not enabled for evaluate context command.\n");
2156 		ret = -EINVAL;
2157 		break;
2158 	case COMP_CONTEXT_STATE_ERROR:
2159 		dev_warn(&udev->dev,
2160 			"WARN: invalid context state for evaluate context command.\n");
2161 		ret = -EINVAL;
2162 		break;
2163 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2164 		dev_warn(&udev->dev,
2165 			"ERROR: Incompatible device for evaluate context command.\n");
2166 		ret = -ENODEV;
2167 		break;
2168 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2169 		/* Max Exit Latency too large error */
2170 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2171 		ret = -EINVAL;
2172 		break;
2173 	case COMP_SUCCESS:
2174 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2175 				"Successful evaluate context command");
2176 		ret = 0;
2177 		break;
2178 	default:
2179 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2180 			*cmd_status);
2181 		ret = -EINVAL;
2182 		break;
2183 	}
2184 	return ret;
2185 }
2186 
2187 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2188 		struct xhci_input_control_ctx *ctrl_ctx)
2189 {
2190 	u32 valid_add_flags;
2191 	u32 valid_drop_flags;
2192 
2193 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2194 	 * (bit 1).  The default control endpoint is added during the Address
2195 	 * Device command and is never removed until the slot is disabled.
2196 	 */
2197 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2198 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2199 
2200 	/* Use hweight32 to count the number of ones in the add flags, or
2201 	 * number of endpoints added.  Don't count endpoints that are changed
2202 	 * (both added and dropped).
2203 	 */
2204 	return hweight32(valid_add_flags) -
2205 		hweight32(valid_add_flags & valid_drop_flags);
2206 }
2207 
2208 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2209 		struct xhci_input_control_ctx *ctrl_ctx)
2210 {
2211 	u32 valid_add_flags;
2212 	u32 valid_drop_flags;
2213 
2214 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2215 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2216 
2217 	return hweight32(valid_drop_flags) -
2218 		hweight32(valid_add_flags & valid_drop_flags);
2219 }
2220 
2221 /*
2222  * We need to reserve the new number of endpoints before the configure endpoint
2223  * command completes.  We can't subtract the dropped endpoints from the number
2224  * of active endpoints until the command completes because we can oversubscribe
2225  * the host in this case:
2226  *
2227  *  - the first configure endpoint command drops more endpoints than it adds
2228  *  - a second configure endpoint command that adds more endpoints is queued
2229  *  - the first configure endpoint command fails, so the config is unchanged
2230  *  - the second command may succeed, even though there isn't enough resources
2231  *
2232  * Must be called with xhci->lock held.
2233  */
2234 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2235 		struct xhci_input_control_ctx *ctrl_ctx)
2236 {
2237 	u32 added_eps;
2238 
2239 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2240 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2241 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2242 				"Not enough ep ctxs: "
2243 				"%u active, need to add %u, limit is %u.",
2244 				xhci->num_active_eps, added_eps,
2245 				xhci->limit_active_eps);
2246 		return -ENOMEM;
2247 	}
2248 	xhci->num_active_eps += added_eps;
2249 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2250 			"Adding %u ep ctxs, %u now active.", added_eps,
2251 			xhci->num_active_eps);
2252 	return 0;
2253 }
2254 
2255 /*
2256  * The configure endpoint was failed by the xHC for some other reason, so we
2257  * need to revert the resources that failed configuration would have used.
2258  *
2259  * Must be called with xhci->lock held.
2260  */
2261 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2262 		struct xhci_input_control_ctx *ctrl_ctx)
2263 {
2264 	u32 num_failed_eps;
2265 
2266 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2267 	xhci->num_active_eps -= num_failed_eps;
2268 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269 			"Removing %u failed ep ctxs, %u now active.",
2270 			num_failed_eps,
2271 			xhci->num_active_eps);
2272 }
2273 
2274 /*
2275  * Now that the command has completed, clean up the active endpoint count by
2276  * subtracting out the endpoints that were dropped (but not changed).
2277  *
2278  * Must be called with xhci->lock held.
2279  */
2280 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2281 		struct xhci_input_control_ctx *ctrl_ctx)
2282 {
2283 	u32 num_dropped_eps;
2284 
2285 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2286 	xhci->num_active_eps -= num_dropped_eps;
2287 	if (num_dropped_eps)
2288 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2289 				"Removing %u dropped ep ctxs, %u now active.",
2290 				num_dropped_eps,
2291 				xhci->num_active_eps);
2292 }
2293 
2294 static unsigned int xhci_get_block_size(struct usb_device *udev)
2295 {
2296 	switch (udev->speed) {
2297 	case USB_SPEED_LOW:
2298 	case USB_SPEED_FULL:
2299 		return FS_BLOCK;
2300 	case USB_SPEED_HIGH:
2301 		return HS_BLOCK;
2302 	case USB_SPEED_SUPER:
2303 	case USB_SPEED_SUPER_PLUS:
2304 		return SS_BLOCK;
2305 	case USB_SPEED_UNKNOWN:
2306 	case USB_SPEED_WIRELESS:
2307 	default:
2308 		/* Should never happen */
2309 		return 1;
2310 	}
2311 }
2312 
2313 static unsigned int
2314 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2315 {
2316 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2317 		return LS_OVERHEAD;
2318 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2319 		return FS_OVERHEAD;
2320 	return HS_OVERHEAD;
2321 }
2322 
2323 /* If we are changing a LS/FS device under a HS hub,
2324  * make sure (if we are activating a new TT) that the HS bus has enough
2325  * bandwidth for this new TT.
2326  */
2327 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2328 		struct xhci_virt_device *virt_dev,
2329 		int old_active_eps)
2330 {
2331 	struct xhci_interval_bw_table *bw_table;
2332 	struct xhci_tt_bw_info *tt_info;
2333 
2334 	/* Find the bandwidth table for the root port this TT is attached to. */
2335 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2336 	tt_info = virt_dev->tt_info;
2337 	/* If this TT already had active endpoints, the bandwidth for this TT
2338 	 * has already been added.  Removing all periodic endpoints (and thus
2339 	 * making the TT enactive) will only decrease the bandwidth used.
2340 	 */
2341 	if (old_active_eps)
2342 		return 0;
2343 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2344 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2345 			return -ENOMEM;
2346 		return 0;
2347 	}
2348 	/* Not sure why we would have no new active endpoints...
2349 	 *
2350 	 * Maybe because of an Evaluate Context change for a hub update or a
2351 	 * control endpoint 0 max packet size change?
2352 	 * FIXME: skip the bandwidth calculation in that case.
2353 	 */
2354 	return 0;
2355 }
2356 
2357 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2358 		struct xhci_virt_device *virt_dev)
2359 {
2360 	unsigned int bw_reserved;
2361 
2362 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2363 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2364 		return -ENOMEM;
2365 
2366 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2367 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2368 		return -ENOMEM;
2369 
2370 	return 0;
2371 }
2372 
2373 /*
2374  * This algorithm is a very conservative estimate of the worst-case scheduling
2375  * scenario for any one interval.  The hardware dynamically schedules the
2376  * packets, so we can't tell which microframe could be the limiting factor in
2377  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2378  *
2379  * Obviously, we can't solve an NP complete problem to find the minimum worst
2380  * case scenario.  Instead, we come up with an estimate that is no less than
2381  * the worst case bandwidth used for any one microframe, but may be an
2382  * over-estimate.
2383  *
2384  * We walk the requirements for each endpoint by interval, starting with the
2385  * smallest interval, and place packets in the schedule where there is only one
2386  * possible way to schedule packets for that interval.  In order to simplify
2387  * this algorithm, we record the largest max packet size for each interval, and
2388  * assume all packets will be that size.
2389  *
2390  * For interval 0, we obviously must schedule all packets for each interval.
2391  * The bandwidth for interval 0 is just the amount of data to be transmitted
2392  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2393  * the number of packets).
2394  *
2395  * For interval 1, we have two possible microframes to schedule those packets
2396  * in.  For this algorithm, if we can schedule the same number of packets for
2397  * each possible scheduling opportunity (each microframe), we will do so.  The
2398  * remaining number of packets will be saved to be transmitted in the gaps in
2399  * the next interval's scheduling sequence.
2400  *
2401  * As we move those remaining packets to be scheduled with interval 2 packets,
2402  * we have to double the number of remaining packets to transmit.  This is
2403  * because the intervals are actually powers of 2, and we would be transmitting
2404  * the previous interval's packets twice in this interval.  We also have to be
2405  * sure that when we look at the largest max packet size for this interval, we
2406  * also look at the largest max packet size for the remaining packets and take
2407  * the greater of the two.
2408  *
2409  * The algorithm continues to evenly distribute packets in each scheduling
2410  * opportunity, and push the remaining packets out, until we get to the last
2411  * interval.  Then those packets and their associated overhead are just added
2412  * to the bandwidth used.
2413  */
2414 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2415 		struct xhci_virt_device *virt_dev,
2416 		int old_active_eps)
2417 {
2418 	unsigned int bw_reserved;
2419 	unsigned int max_bandwidth;
2420 	unsigned int bw_used;
2421 	unsigned int block_size;
2422 	struct xhci_interval_bw_table *bw_table;
2423 	unsigned int packet_size = 0;
2424 	unsigned int overhead = 0;
2425 	unsigned int packets_transmitted = 0;
2426 	unsigned int packets_remaining = 0;
2427 	unsigned int i;
2428 
2429 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2430 		return xhci_check_ss_bw(xhci, virt_dev);
2431 
2432 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2433 		max_bandwidth = HS_BW_LIMIT;
2434 		/* Convert percent of bus BW reserved to blocks reserved */
2435 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2436 	} else {
2437 		max_bandwidth = FS_BW_LIMIT;
2438 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2439 	}
2440 
2441 	bw_table = virt_dev->bw_table;
2442 	/* We need to translate the max packet size and max ESIT payloads into
2443 	 * the units the hardware uses.
2444 	 */
2445 	block_size = xhci_get_block_size(virt_dev->udev);
2446 
2447 	/* If we are manipulating a LS/FS device under a HS hub, double check
2448 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2449 	 */
2450 	if (virt_dev->tt_info) {
2451 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2452 				"Recalculating BW for rootport %u",
2453 				virt_dev->real_port);
2454 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2455 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2456 					"newly activated TT.\n");
2457 			return -ENOMEM;
2458 		}
2459 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2460 				"Recalculating BW for TT slot %u port %u",
2461 				virt_dev->tt_info->slot_id,
2462 				virt_dev->tt_info->ttport);
2463 	} else {
2464 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465 				"Recalculating BW for rootport %u",
2466 				virt_dev->real_port);
2467 	}
2468 
2469 	/* Add in how much bandwidth will be used for interval zero, or the
2470 	 * rounded max ESIT payload + number of packets * largest overhead.
2471 	 */
2472 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2473 		bw_table->interval_bw[0].num_packets *
2474 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2475 
2476 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2477 		unsigned int bw_added;
2478 		unsigned int largest_mps;
2479 		unsigned int interval_overhead;
2480 
2481 		/*
2482 		 * How many packets could we transmit in this interval?
2483 		 * If packets didn't fit in the previous interval, we will need
2484 		 * to transmit that many packets twice within this interval.
2485 		 */
2486 		packets_remaining = 2 * packets_remaining +
2487 			bw_table->interval_bw[i].num_packets;
2488 
2489 		/* Find the largest max packet size of this or the previous
2490 		 * interval.
2491 		 */
2492 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2493 			largest_mps = 0;
2494 		else {
2495 			struct xhci_virt_ep *virt_ep;
2496 			struct list_head *ep_entry;
2497 
2498 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2499 			virt_ep = list_entry(ep_entry,
2500 					struct xhci_virt_ep, bw_endpoint_list);
2501 			/* Convert to blocks, rounding up */
2502 			largest_mps = DIV_ROUND_UP(
2503 					virt_ep->bw_info.max_packet_size,
2504 					block_size);
2505 		}
2506 		if (largest_mps > packet_size)
2507 			packet_size = largest_mps;
2508 
2509 		/* Use the larger overhead of this or the previous interval. */
2510 		interval_overhead = xhci_get_largest_overhead(
2511 				&bw_table->interval_bw[i]);
2512 		if (interval_overhead > overhead)
2513 			overhead = interval_overhead;
2514 
2515 		/* How many packets can we evenly distribute across
2516 		 * (1 << (i + 1)) possible scheduling opportunities?
2517 		 */
2518 		packets_transmitted = packets_remaining >> (i + 1);
2519 
2520 		/* Add in the bandwidth used for those scheduled packets */
2521 		bw_added = packets_transmitted * (overhead + packet_size);
2522 
2523 		/* How many packets do we have remaining to transmit? */
2524 		packets_remaining = packets_remaining % (1 << (i + 1));
2525 
2526 		/* What largest max packet size should those packets have? */
2527 		/* If we've transmitted all packets, don't carry over the
2528 		 * largest packet size.
2529 		 */
2530 		if (packets_remaining == 0) {
2531 			packet_size = 0;
2532 			overhead = 0;
2533 		} else if (packets_transmitted > 0) {
2534 			/* Otherwise if we do have remaining packets, and we've
2535 			 * scheduled some packets in this interval, take the
2536 			 * largest max packet size from endpoints with this
2537 			 * interval.
2538 			 */
2539 			packet_size = largest_mps;
2540 			overhead = interval_overhead;
2541 		}
2542 		/* Otherwise carry over packet_size and overhead from the last
2543 		 * time we had a remainder.
2544 		 */
2545 		bw_used += bw_added;
2546 		if (bw_used > max_bandwidth) {
2547 			xhci_warn(xhci, "Not enough bandwidth. "
2548 					"Proposed: %u, Max: %u\n",
2549 				bw_used, max_bandwidth);
2550 			return -ENOMEM;
2551 		}
2552 	}
2553 	/*
2554 	 * Ok, we know we have some packets left over after even-handedly
2555 	 * scheduling interval 15.  We don't know which microframes they will
2556 	 * fit into, so we over-schedule and say they will be scheduled every
2557 	 * microframe.
2558 	 */
2559 	if (packets_remaining > 0)
2560 		bw_used += overhead + packet_size;
2561 
2562 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2563 		unsigned int port_index = virt_dev->real_port - 1;
2564 
2565 		/* OK, we're manipulating a HS device attached to a
2566 		 * root port bandwidth domain.  Include the number of active TTs
2567 		 * in the bandwidth used.
2568 		 */
2569 		bw_used += TT_HS_OVERHEAD *
2570 			xhci->rh_bw[port_index].num_active_tts;
2571 	}
2572 
2573 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2574 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2575 		"Available: %u " "percent",
2576 		bw_used, max_bandwidth, bw_reserved,
2577 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2578 		max_bandwidth);
2579 
2580 	bw_used += bw_reserved;
2581 	if (bw_used > max_bandwidth) {
2582 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2583 				bw_used, max_bandwidth);
2584 		return -ENOMEM;
2585 	}
2586 
2587 	bw_table->bw_used = bw_used;
2588 	return 0;
2589 }
2590 
2591 static bool xhci_is_async_ep(unsigned int ep_type)
2592 {
2593 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2594 					ep_type != ISOC_IN_EP &&
2595 					ep_type != INT_IN_EP);
2596 }
2597 
2598 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2599 {
2600 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2601 }
2602 
2603 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2604 {
2605 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2606 
2607 	if (ep_bw->ep_interval == 0)
2608 		return SS_OVERHEAD_BURST +
2609 			(ep_bw->mult * ep_bw->num_packets *
2610 					(SS_OVERHEAD + mps));
2611 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2612 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2613 				1 << ep_bw->ep_interval);
2614 
2615 }
2616 
2617 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2618 		struct xhci_bw_info *ep_bw,
2619 		struct xhci_interval_bw_table *bw_table,
2620 		struct usb_device *udev,
2621 		struct xhci_virt_ep *virt_ep,
2622 		struct xhci_tt_bw_info *tt_info)
2623 {
2624 	struct xhci_interval_bw	*interval_bw;
2625 	int normalized_interval;
2626 
2627 	if (xhci_is_async_ep(ep_bw->type))
2628 		return;
2629 
2630 	if (udev->speed >= USB_SPEED_SUPER) {
2631 		if (xhci_is_sync_in_ep(ep_bw->type))
2632 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2633 				xhci_get_ss_bw_consumed(ep_bw);
2634 		else
2635 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2636 				xhci_get_ss_bw_consumed(ep_bw);
2637 		return;
2638 	}
2639 
2640 	/* SuperSpeed endpoints never get added to intervals in the table, so
2641 	 * this check is only valid for HS/FS/LS devices.
2642 	 */
2643 	if (list_empty(&virt_ep->bw_endpoint_list))
2644 		return;
2645 	/* For LS/FS devices, we need to translate the interval expressed in
2646 	 * microframes to frames.
2647 	 */
2648 	if (udev->speed == USB_SPEED_HIGH)
2649 		normalized_interval = ep_bw->ep_interval;
2650 	else
2651 		normalized_interval = ep_bw->ep_interval - 3;
2652 
2653 	if (normalized_interval == 0)
2654 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2655 	interval_bw = &bw_table->interval_bw[normalized_interval];
2656 	interval_bw->num_packets -= ep_bw->num_packets;
2657 	switch (udev->speed) {
2658 	case USB_SPEED_LOW:
2659 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2660 		break;
2661 	case USB_SPEED_FULL:
2662 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2663 		break;
2664 	case USB_SPEED_HIGH:
2665 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2666 		break;
2667 	case USB_SPEED_SUPER:
2668 	case USB_SPEED_SUPER_PLUS:
2669 	case USB_SPEED_UNKNOWN:
2670 	case USB_SPEED_WIRELESS:
2671 		/* Should never happen because only LS/FS/HS endpoints will get
2672 		 * added to the endpoint list.
2673 		 */
2674 		return;
2675 	}
2676 	if (tt_info)
2677 		tt_info->active_eps -= 1;
2678 	list_del_init(&virt_ep->bw_endpoint_list);
2679 }
2680 
2681 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2682 		struct xhci_bw_info *ep_bw,
2683 		struct xhci_interval_bw_table *bw_table,
2684 		struct usb_device *udev,
2685 		struct xhci_virt_ep *virt_ep,
2686 		struct xhci_tt_bw_info *tt_info)
2687 {
2688 	struct xhci_interval_bw	*interval_bw;
2689 	struct xhci_virt_ep *smaller_ep;
2690 	int normalized_interval;
2691 
2692 	if (xhci_is_async_ep(ep_bw->type))
2693 		return;
2694 
2695 	if (udev->speed == USB_SPEED_SUPER) {
2696 		if (xhci_is_sync_in_ep(ep_bw->type))
2697 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2698 				xhci_get_ss_bw_consumed(ep_bw);
2699 		else
2700 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2701 				xhci_get_ss_bw_consumed(ep_bw);
2702 		return;
2703 	}
2704 
2705 	/* For LS/FS devices, we need to translate the interval expressed in
2706 	 * microframes to frames.
2707 	 */
2708 	if (udev->speed == USB_SPEED_HIGH)
2709 		normalized_interval = ep_bw->ep_interval;
2710 	else
2711 		normalized_interval = ep_bw->ep_interval - 3;
2712 
2713 	if (normalized_interval == 0)
2714 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2715 	interval_bw = &bw_table->interval_bw[normalized_interval];
2716 	interval_bw->num_packets += ep_bw->num_packets;
2717 	switch (udev->speed) {
2718 	case USB_SPEED_LOW:
2719 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2720 		break;
2721 	case USB_SPEED_FULL:
2722 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2723 		break;
2724 	case USB_SPEED_HIGH:
2725 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2726 		break;
2727 	case USB_SPEED_SUPER:
2728 	case USB_SPEED_SUPER_PLUS:
2729 	case USB_SPEED_UNKNOWN:
2730 	case USB_SPEED_WIRELESS:
2731 		/* Should never happen because only LS/FS/HS endpoints will get
2732 		 * added to the endpoint list.
2733 		 */
2734 		return;
2735 	}
2736 
2737 	if (tt_info)
2738 		tt_info->active_eps += 1;
2739 	/* Insert the endpoint into the list, largest max packet size first. */
2740 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2741 			bw_endpoint_list) {
2742 		if (ep_bw->max_packet_size >=
2743 				smaller_ep->bw_info.max_packet_size) {
2744 			/* Add the new ep before the smaller endpoint */
2745 			list_add_tail(&virt_ep->bw_endpoint_list,
2746 					&smaller_ep->bw_endpoint_list);
2747 			return;
2748 		}
2749 	}
2750 	/* Add the new endpoint at the end of the list. */
2751 	list_add_tail(&virt_ep->bw_endpoint_list,
2752 			&interval_bw->endpoints);
2753 }
2754 
2755 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2756 		struct xhci_virt_device *virt_dev,
2757 		int old_active_eps)
2758 {
2759 	struct xhci_root_port_bw_info *rh_bw_info;
2760 	if (!virt_dev->tt_info)
2761 		return;
2762 
2763 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2764 	if (old_active_eps == 0 &&
2765 				virt_dev->tt_info->active_eps != 0) {
2766 		rh_bw_info->num_active_tts += 1;
2767 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2768 	} else if (old_active_eps != 0 &&
2769 				virt_dev->tt_info->active_eps == 0) {
2770 		rh_bw_info->num_active_tts -= 1;
2771 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2772 	}
2773 }
2774 
2775 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2776 		struct xhci_virt_device *virt_dev,
2777 		struct xhci_container_ctx *in_ctx)
2778 {
2779 	struct xhci_bw_info ep_bw_info[31];
2780 	int i;
2781 	struct xhci_input_control_ctx *ctrl_ctx;
2782 	int old_active_eps = 0;
2783 
2784 	if (virt_dev->tt_info)
2785 		old_active_eps = virt_dev->tt_info->active_eps;
2786 
2787 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2788 	if (!ctrl_ctx) {
2789 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2790 				__func__);
2791 		return -ENOMEM;
2792 	}
2793 
2794 	for (i = 0; i < 31; i++) {
2795 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2796 			continue;
2797 
2798 		/* Make a copy of the BW info in case we need to revert this */
2799 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2800 				sizeof(ep_bw_info[i]));
2801 		/* Drop the endpoint from the interval table if the endpoint is
2802 		 * being dropped or changed.
2803 		 */
2804 		if (EP_IS_DROPPED(ctrl_ctx, i))
2805 			xhci_drop_ep_from_interval_table(xhci,
2806 					&virt_dev->eps[i].bw_info,
2807 					virt_dev->bw_table,
2808 					virt_dev->udev,
2809 					&virt_dev->eps[i],
2810 					virt_dev->tt_info);
2811 	}
2812 	/* Overwrite the information stored in the endpoints' bw_info */
2813 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2814 	for (i = 0; i < 31; i++) {
2815 		/* Add any changed or added endpoints to the interval table */
2816 		if (EP_IS_ADDED(ctrl_ctx, i))
2817 			xhci_add_ep_to_interval_table(xhci,
2818 					&virt_dev->eps[i].bw_info,
2819 					virt_dev->bw_table,
2820 					virt_dev->udev,
2821 					&virt_dev->eps[i],
2822 					virt_dev->tt_info);
2823 	}
2824 
2825 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2826 		/* Ok, this fits in the bandwidth we have.
2827 		 * Update the number of active TTs.
2828 		 */
2829 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2830 		return 0;
2831 	}
2832 
2833 	/* We don't have enough bandwidth for this, revert the stored info. */
2834 	for (i = 0; i < 31; i++) {
2835 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2836 			continue;
2837 
2838 		/* Drop the new copies of any added or changed endpoints from
2839 		 * the interval table.
2840 		 */
2841 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2842 			xhci_drop_ep_from_interval_table(xhci,
2843 					&virt_dev->eps[i].bw_info,
2844 					virt_dev->bw_table,
2845 					virt_dev->udev,
2846 					&virt_dev->eps[i],
2847 					virt_dev->tt_info);
2848 		}
2849 		/* Revert the endpoint back to its old information */
2850 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2851 				sizeof(ep_bw_info[i]));
2852 		/* Add any changed or dropped endpoints back into the table */
2853 		if (EP_IS_DROPPED(ctrl_ctx, i))
2854 			xhci_add_ep_to_interval_table(xhci,
2855 					&virt_dev->eps[i].bw_info,
2856 					virt_dev->bw_table,
2857 					virt_dev->udev,
2858 					&virt_dev->eps[i],
2859 					virt_dev->tt_info);
2860 	}
2861 	return -ENOMEM;
2862 }
2863 
2864 
2865 /* Issue a configure endpoint command or evaluate context command
2866  * and wait for it to finish.
2867  */
2868 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2869 		struct usb_device *udev,
2870 		struct xhci_command *command,
2871 		bool ctx_change, bool must_succeed)
2872 {
2873 	int ret;
2874 	unsigned long flags;
2875 	struct xhci_input_control_ctx *ctrl_ctx;
2876 	struct xhci_virt_device *virt_dev;
2877 	struct xhci_slot_ctx *slot_ctx;
2878 
2879 	if (!command)
2880 		return -EINVAL;
2881 
2882 	spin_lock_irqsave(&xhci->lock, flags);
2883 
2884 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2885 		spin_unlock_irqrestore(&xhci->lock, flags);
2886 		return -ESHUTDOWN;
2887 	}
2888 
2889 	virt_dev = xhci->devs[udev->slot_id];
2890 
2891 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892 	if (!ctrl_ctx) {
2893 		spin_unlock_irqrestore(&xhci->lock, flags);
2894 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2895 				__func__);
2896 		return -ENOMEM;
2897 	}
2898 
2899 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2900 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2901 		spin_unlock_irqrestore(&xhci->lock, flags);
2902 		xhci_warn(xhci, "Not enough host resources, "
2903 				"active endpoint contexts = %u\n",
2904 				xhci->num_active_eps);
2905 		return -ENOMEM;
2906 	}
2907 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2908 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2909 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2910 			xhci_free_host_resources(xhci, ctrl_ctx);
2911 		spin_unlock_irqrestore(&xhci->lock, flags);
2912 		xhci_warn(xhci, "Not enough bandwidth\n");
2913 		return -ENOMEM;
2914 	}
2915 
2916 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2917 
2918 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2919 	trace_xhci_configure_endpoint(slot_ctx);
2920 
2921 	if (!ctx_change)
2922 		ret = xhci_queue_configure_endpoint(xhci, command,
2923 				command->in_ctx->dma,
2924 				udev->slot_id, must_succeed);
2925 	else
2926 		ret = xhci_queue_evaluate_context(xhci, command,
2927 				command->in_ctx->dma,
2928 				udev->slot_id, must_succeed);
2929 	if (ret < 0) {
2930 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2931 			xhci_free_host_resources(xhci, ctrl_ctx);
2932 		spin_unlock_irqrestore(&xhci->lock, flags);
2933 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2934 				"FIXME allocate a new ring segment");
2935 		return -ENOMEM;
2936 	}
2937 	xhci_ring_cmd_db(xhci);
2938 	spin_unlock_irqrestore(&xhci->lock, flags);
2939 
2940 	/* Wait for the configure endpoint command to complete */
2941 	wait_for_completion(command->completion);
2942 
2943 	if (!ctx_change)
2944 		ret = xhci_configure_endpoint_result(xhci, udev,
2945 						     &command->status);
2946 	else
2947 		ret = xhci_evaluate_context_result(xhci, udev,
2948 						   &command->status);
2949 
2950 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2951 		spin_lock_irqsave(&xhci->lock, flags);
2952 		/* If the command failed, remove the reserved resources.
2953 		 * Otherwise, clean up the estimate to include dropped eps.
2954 		 */
2955 		if (ret)
2956 			xhci_free_host_resources(xhci, ctrl_ctx);
2957 		else
2958 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2959 		spin_unlock_irqrestore(&xhci->lock, flags);
2960 	}
2961 	return ret;
2962 }
2963 
2964 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2965 	struct xhci_virt_device *vdev, int i)
2966 {
2967 	struct xhci_virt_ep *ep = &vdev->eps[i];
2968 
2969 	if (ep->ep_state & EP_HAS_STREAMS) {
2970 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2971 				xhci_get_endpoint_address(i));
2972 		xhci_free_stream_info(xhci, ep->stream_info);
2973 		ep->stream_info = NULL;
2974 		ep->ep_state &= ~EP_HAS_STREAMS;
2975 	}
2976 }
2977 
2978 /* Called after one or more calls to xhci_add_endpoint() or
2979  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2980  * to call xhci_reset_bandwidth().
2981  *
2982  * Since we are in the middle of changing either configuration or
2983  * installing a new alt setting, the USB core won't allow URBs to be
2984  * enqueued for any endpoint on the old config or interface.  Nothing
2985  * else should be touching the xhci->devs[slot_id] structure, so we
2986  * don't need to take the xhci->lock for manipulating that.
2987  */
2988 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2989 {
2990 	int i;
2991 	int ret = 0;
2992 	struct xhci_hcd *xhci;
2993 	struct xhci_virt_device	*virt_dev;
2994 	struct xhci_input_control_ctx *ctrl_ctx;
2995 	struct xhci_slot_ctx *slot_ctx;
2996 	struct xhci_command *command;
2997 
2998 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2999 	if (ret <= 0)
3000 		return ret;
3001 	xhci = hcd_to_xhci(hcd);
3002 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3003 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3004 		return -ENODEV;
3005 
3006 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3007 	virt_dev = xhci->devs[udev->slot_id];
3008 
3009 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3010 	if (!command)
3011 		return -ENOMEM;
3012 
3013 	command->in_ctx = virt_dev->in_ctx;
3014 
3015 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3016 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3017 	if (!ctrl_ctx) {
3018 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3019 				__func__);
3020 		ret = -ENOMEM;
3021 		goto command_cleanup;
3022 	}
3023 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3024 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3025 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3026 
3027 	/* Don't issue the command if there's no endpoints to update. */
3028 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3029 	    ctrl_ctx->drop_flags == 0) {
3030 		ret = 0;
3031 		goto command_cleanup;
3032 	}
3033 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3034 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3035 	for (i = 31; i >= 1; i--) {
3036 		__le32 le32 = cpu_to_le32(BIT(i));
3037 
3038 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3039 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3040 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3041 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3042 			break;
3043 		}
3044 	}
3045 
3046 	ret = xhci_configure_endpoint(xhci, udev, command,
3047 			false, false);
3048 	if (ret)
3049 		/* Callee should call reset_bandwidth() */
3050 		goto command_cleanup;
3051 
3052 	/* Free any rings that were dropped, but not changed. */
3053 	for (i = 1; i < 31; i++) {
3054 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3055 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3056 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3057 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3058 		}
3059 	}
3060 	xhci_zero_in_ctx(xhci, virt_dev);
3061 	/*
3062 	 * Install any rings for completely new endpoints or changed endpoints,
3063 	 * and free any old rings from changed endpoints.
3064 	 */
3065 	for (i = 1; i < 31; i++) {
3066 		if (!virt_dev->eps[i].new_ring)
3067 			continue;
3068 		/* Only free the old ring if it exists.
3069 		 * It may not if this is the first add of an endpoint.
3070 		 */
3071 		if (virt_dev->eps[i].ring) {
3072 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3073 		}
3074 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3075 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3076 		virt_dev->eps[i].new_ring = NULL;
3077 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3078 	}
3079 command_cleanup:
3080 	kfree(command->completion);
3081 	kfree(command);
3082 
3083 	return ret;
3084 }
3085 
3086 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3087 {
3088 	struct xhci_hcd *xhci;
3089 	struct xhci_virt_device	*virt_dev;
3090 	int i, ret;
3091 
3092 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3093 	if (ret <= 0)
3094 		return;
3095 	xhci = hcd_to_xhci(hcd);
3096 
3097 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3098 	virt_dev = xhci->devs[udev->slot_id];
3099 	/* Free any rings allocated for added endpoints */
3100 	for (i = 0; i < 31; i++) {
3101 		if (virt_dev->eps[i].new_ring) {
3102 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3103 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3104 			virt_dev->eps[i].new_ring = NULL;
3105 		}
3106 	}
3107 	xhci_zero_in_ctx(xhci, virt_dev);
3108 }
3109 
3110 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3111 		struct xhci_container_ctx *in_ctx,
3112 		struct xhci_container_ctx *out_ctx,
3113 		struct xhci_input_control_ctx *ctrl_ctx,
3114 		u32 add_flags, u32 drop_flags)
3115 {
3116 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3117 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3118 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3119 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3120 }
3121 
3122 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3123 		unsigned int slot_id, unsigned int ep_index,
3124 		struct xhci_dequeue_state *deq_state)
3125 {
3126 	struct xhci_input_control_ctx *ctrl_ctx;
3127 	struct xhci_container_ctx *in_ctx;
3128 	struct xhci_ep_ctx *ep_ctx;
3129 	u32 added_ctxs;
3130 	dma_addr_t addr;
3131 
3132 	in_ctx = xhci->devs[slot_id]->in_ctx;
3133 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3134 	if (!ctrl_ctx) {
3135 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3136 				__func__);
3137 		return;
3138 	}
3139 
3140 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3141 			xhci->devs[slot_id]->out_ctx, ep_index);
3142 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3143 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3144 			deq_state->new_deq_ptr);
3145 	if (addr == 0) {
3146 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3147 				"reset ep command\n");
3148 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3149 				deq_state->new_deq_seg,
3150 				deq_state->new_deq_ptr);
3151 		return;
3152 	}
3153 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3154 
3155 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3156 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3157 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3158 			added_ctxs, added_ctxs);
3159 }
3160 
3161 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3162 			       unsigned int ep_index, unsigned int stream_id,
3163 			       struct xhci_td *td)
3164 {
3165 	struct xhci_dequeue_state deq_state;
3166 
3167 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3168 			"Cleaning up stalled endpoint ring");
3169 	/* We need to move the HW's dequeue pointer past this TD,
3170 	 * or it will attempt to resend it on the next doorbell ring.
3171 	 */
3172 	xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3173 				    &deq_state);
3174 
3175 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3176 		return;
3177 
3178 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3179 	 * issue a configure endpoint command later.
3180 	 */
3181 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3182 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3183 				"Queueing new dequeue state");
3184 		xhci_queue_new_dequeue_state(xhci, slot_id,
3185 				ep_index, &deq_state);
3186 	} else {
3187 		/* Better hope no one uses the input context between now and the
3188 		 * reset endpoint completion!
3189 		 * XXX: No idea how this hardware will react when stream rings
3190 		 * are enabled.
3191 		 */
3192 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3193 				"Setting up input context for "
3194 				"configure endpoint command");
3195 		xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3196 				ep_index, &deq_state);
3197 	}
3198 }
3199 
3200 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3201 				  struct usb_host_endpoint *host_ep)
3202 {
3203 	struct xhci_hcd		*xhci;
3204 	struct xhci_virt_device	*vdev;
3205 	struct xhci_virt_ep	*ep;
3206 	struct usb_device	*udev;
3207 	unsigned long		flags;
3208 	unsigned int		ep_index;
3209 
3210 	xhci = hcd_to_xhci(hcd);
3211 rescan:
3212 	spin_lock_irqsave(&xhci->lock, flags);
3213 
3214 	udev = (struct usb_device *)host_ep->hcpriv;
3215 	if (!udev || !udev->slot_id)
3216 		goto done;
3217 
3218 	vdev = xhci->devs[udev->slot_id];
3219 	if (!vdev)
3220 		goto done;
3221 
3222 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3223 	ep = &vdev->eps[ep_index];
3224 	if (!ep)
3225 		goto done;
3226 
3227 	/* wait for hub_tt_work to finish clearing hub TT */
3228 	if (ep->ep_state & EP_CLEARING_TT) {
3229 		spin_unlock_irqrestore(&xhci->lock, flags);
3230 		schedule_timeout_uninterruptible(1);
3231 		goto rescan;
3232 	}
3233 
3234 	if (ep->ep_state)
3235 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3236 			 ep->ep_state);
3237 done:
3238 	host_ep->hcpriv = NULL;
3239 	spin_unlock_irqrestore(&xhci->lock, flags);
3240 }
3241 
3242 /*
3243  * Called after usb core issues a clear halt control message.
3244  * The host side of the halt should already be cleared by a reset endpoint
3245  * command issued when the STALL event was received.
3246  *
3247  * The reset endpoint command may only be issued to endpoints in the halted
3248  * state. For software that wishes to reset the data toggle or sequence number
3249  * of an endpoint that isn't in the halted state this function will issue a
3250  * configure endpoint command with the Drop and Add bits set for the target
3251  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3252  */
3253 
3254 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3255 		struct usb_host_endpoint *host_ep)
3256 {
3257 	struct xhci_hcd *xhci;
3258 	struct usb_device *udev;
3259 	struct xhci_virt_device *vdev;
3260 	struct xhci_virt_ep *ep;
3261 	struct xhci_input_control_ctx *ctrl_ctx;
3262 	struct xhci_command *stop_cmd, *cfg_cmd;
3263 	unsigned int ep_index;
3264 	unsigned long flags;
3265 	u32 ep_flag;
3266 	int err;
3267 
3268 	xhci = hcd_to_xhci(hcd);
3269 	if (!host_ep->hcpriv)
3270 		return;
3271 	udev = (struct usb_device *) host_ep->hcpriv;
3272 	vdev = xhci->devs[udev->slot_id];
3273 
3274 	/*
3275 	 * vdev may be lost due to xHC restore error and re-initialization
3276 	 * during S3/S4 resume. A new vdev will be allocated later by
3277 	 * xhci_discover_or_reset_device()
3278 	 */
3279 	if (!udev->slot_id || !vdev)
3280 		return;
3281 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3282 	ep = &vdev->eps[ep_index];
3283 	if (!ep)
3284 		return;
3285 
3286 	/* Bail out if toggle is already being cleared by a endpoint reset */
3287 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3288 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3289 		return;
3290 	}
3291 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3292 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3293 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3294 		return;
3295 
3296 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3297 
3298 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3299 		return;
3300 
3301 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3302 	if (!stop_cmd)
3303 		return;
3304 
3305 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3306 	if (!cfg_cmd)
3307 		goto cleanup;
3308 
3309 	spin_lock_irqsave(&xhci->lock, flags);
3310 
3311 	/* block queuing new trbs and ringing ep doorbell */
3312 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3313 
3314 	/*
3315 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3316 	 * Driver is required to synchronously cancel all transfer request.
3317 	 * Stop the endpoint to force xHC to update the output context
3318 	 */
3319 
3320 	if (!list_empty(&ep->ring->td_list)) {
3321 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3322 		spin_unlock_irqrestore(&xhci->lock, flags);
3323 		xhci_free_command(xhci, cfg_cmd);
3324 		goto cleanup;
3325 	}
3326 
3327 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3328 					ep_index, 0);
3329 	if (err < 0) {
3330 		spin_unlock_irqrestore(&xhci->lock, flags);
3331 		xhci_free_command(xhci, cfg_cmd);
3332 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3333 				__func__, err);
3334 		goto cleanup;
3335 	}
3336 
3337 	xhci_ring_cmd_db(xhci);
3338 	spin_unlock_irqrestore(&xhci->lock, flags);
3339 
3340 	wait_for_completion(stop_cmd->completion);
3341 
3342 	spin_lock_irqsave(&xhci->lock, flags);
3343 
3344 	/* config ep command clears toggle if add and drop ep flags are set */
3345 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3346 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3347 					   ctrl_ctx, ep_flag, ep_flag);
3348 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3349 
3350 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3351 				      udev->slot_id, false);
3352 	if (err < 0) {
3353 		spin_unlock_irqrestore(&xhci->lock, flags);
3354 		xhci_free_command(xhci, cfg_cmd);
3355 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3356 				__func__, err);
3357 		goto cleanup;
3358 	}
3359 
3360 	xhci_ring_cmd_db(xhci);
3361 	spin_unlock_irqrestore(&xhci->lock, flags);
3362 
3363 	wait_for_completion(cfg_cmd->completion);
3364 
3365 	xhci_free_command(xhci, cfg_cmd);
3366 cleanup:
3367 	xhci_free_command(xhci, stop_cmd);
3368 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3369 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3370 }
3371 
3372 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3373 		struct usb_device *udev, struct usb_host_endpoint *ep,
3374 		unsigned int slot_id)
3375 {
3376 	int ret;
3377 	unsigned int ep_index;
3378 	unsigned int ep_state;
3379 
3380 	if (!ep)
3381 		return -EINVAL;
3382 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3383 	if (ret <= 0)
3384 		return -EINVAL;
3385 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3386 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3387 				" descriptor for ep 0x%x does not support streams\n",
3388 				ep->desc.bEndpointAddress);
3389 		return -EINVAL;
3390 	}
3391 
3392 	ep_index = xhci_get_endpoint_index(&ep->desc);
3393 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3394 	if (ep_state & EP_HAS_STREAMS ||
3395 			ep_state & EP_GETTING_STREAMS) {
3396 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3397 				"already has streams set up.\n",
3398 				ep->desc.bEndpointAddress);
3399 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3400 				"dynamic stream context array reallocation.\n");
3401 		return -EINVAL;
3402 	}
3403 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3404 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3405 				"endpoint 0x%x; URBs are pending.\n",
3406 				ep->desc.bEndpointAddress);
3407 		return -EINVAL;
3408 	}
3409 	return 0;
3410 }
3411 
3412 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3413 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3414 {
3415 	unsigned int max_streams;
3416 
3417 	/* The stream context array size must be a power of two */
3418 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3419 	/*
3420 	 * Find out how many primary stream array entries the host controller
3421 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3422 	 * level page entries), but that's an optional feature for xHCI host
3423 	 * controllers. xHCs must support at least 4 stream IDs.
3424 	 */
3425 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3426 	if (*num_stream_ctxs > max_streams) {
3427 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3428 				max_streams);
3429 		*num_stream_ctxs = max_streams;
3430 		*num_streams = max_streams;
3431 	}
3432 }
3433 
3434 /* Returns an error code if one of the endpoint already has streams.
3435  * This does not change any data structures, it only checks and gathers
3436  * information.
3437  */
3438 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3439 		struct usb_device *udev,
3440 		struct usb_host_endpoint **eps, unsigned int num_eps,
3441 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3442 {
3443 	unsigned int max_streams;
3444 	unsigned int endpoint_flag;
3445 	int i;
3446 	int ret;
3447 
3448 	for (i = 0; i < num_eps; i++) {
3449 		ret = xhci_check_streams_endpoint(xhci, udev,
3450 				eps[i], udev->slot_id);
3451 		if (ret < 0)
3452 			return ret;
3453 
3454 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3455 		if (max_streams < (*num_streams - 1)) {
3456 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3457 					eps[i]->desc.bEndpointAddress,
3458 					max_streams);
3459 			*num_streams = max_streams+1;
3460 		}
3461 
3462 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3463 		if (*changed_ep_bitmask & endpoint_flag)
3464 			return -EINVAL;
3465 		*changed_ep_bitmask |= endpoint_flag;
3466 	}
3467 	return 0;
3468 }
3469 
3470 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3471 		struct usb_device *udev,
3472 		struct usb_host_endpoint **eps, unsigned int num_eps)
3473 {
3474 	u32 changed_ep_bitmask = 0;
3475 	unsigned int slot_id;
3476 	unsigned int ep_index;
3477 	unsigned int ep_state;
3478 	int i;
3479 
3480 	slot_id = udev->slot_id;
3481 	if (!xhci->devs[slot_id])
3482 		return 0;
3483 
3484 	for (i = 0; i < num_eps; i++) {
3485 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3486 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3487 		/* Are streams already being freed for the endpoint? */
3488 		if (ep_state & EP_GETTING_NO_STREAMS) {
3489 			xhci_warn(xhci, "WARN Can't disable streams for "
3490 					"endpoint 0x%x, "
3491 					"streams are being disabled already\n",
3492 					eps[i]->desc.bEndpointAddress);
3493 			return 0;
3494 		}
3495 		/* Are there actually any streams to free? */
3496 		if (!(ep_state & EP_HAS_STREAMS) &&
3497 				!(ep_state & EP_GETTING_STREAMS)) {
3498 			xhci_warn(xhci, "WARN Can't disable streams for "
3499 					"endpoint 0x%x, "
3500 					"streams are already disabled!\n",
3501 					eps[i]->desc.bEndpointAddress);
3502 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3503 					"with non-streams endpoint\n");
3504 			return 0;
3505 		}
3506 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3507 	}
3508 	return changed_ep_bitmask;
3509 }
3510 
3511 /*
3512  * The USB device drivers use this function (through the HCD interface in USB
3513  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3514  * coordinate mass storage command queueing across multiple endpoints (basically
3515  * a stream ID == a task ID).
3516  *
3517  * Setting up streams involves allocating the same size stream context array
3518  * for each endpoint and issuing a configure endpoint command for all endpoints.
3519  *
3520  * Don't allow the call to succeed if one endpoint only supports one stream
3521  * (which means it doesn't support streams at all).
3522  *
3523  * Drivers may get less stream IDs than they asked for, if the host controller
3524  * hardware or endpoints claim they can't support the number of requested
3525  * stream IDs.
3526  */
3527 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3528 		struct usb_host_endpoint **eps, unsigned int num_eps,
3529 		unsigned int num_streams, gfp_t mem_flags)
3530 {
3531 	int i, ret;
3532 	struct xhci_hcd *xhci;
3533 	struct xhci_virt_device *vdev;
3534 	struct xhci_command *config_cmd;
3535 	struct xhci_input_control_ctx *ctrl_ctx;
3536 	unsigned int ep_index;
3537 	unsigned int num_stream_ctxs;
3538 	unsigned int max_packet;
3539 	unsigned long flags;
3540 	u32 changed_ep_bitmask = 0;
3541 
3542 	if (!eps)
3543 		return -EINVAL;
3544 
3545 	/* Add one to the number of streams requested to account for
3546 	 * stream 0 that is reserved for xHCI usage.
3547 	 */
3548 	num_streams += 1;
3549 	xhci = hcd_to_xhci(hcd);
3550 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3551 			num_streams);
3552 
3553 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3554 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3555 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3556 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3557 		return -ENOSYS;
3558 	}
3559 
3560 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3561 	if (!config_cmd)
3562 		return -ENOMEM;
3563 
3564 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3565 	if (!ctrl_ctx) {
3566 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3567 				__func__);
3568 		xhci_free_command(xhci, config_cmd);
3569 		return -ENOMEM;
3570 	}
3571 
3572 	/* Check to make sure all endpoints are not already configured for
3573 	 * streams.  While we're at it, find the maximum number of streams that
3574 	 * all the endpoints will support and check for duplicate endpoints.
3575 	 */
3576 	spin_lock_irqsave(&xhci->lock, flags);
3577 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3578 			num_eps, &num_streams, &changed_ep_bitmask);
3579 	if (ret < 0) {
3580 		xhci_free_command(xhci, config_cmd);
3581 		spin_unlock_irqrestore(&xhci->lock, flags);
3582 		return ret;
3583 	}
3584 	if (num_streams <= 1) {
3585 		xhci_warn(xhci, "WARN: endpoints can't handle "
3586 				"more than one stream.\n");
3587 		xhci_free_command(xhci, config_cmd);
3588 		spin_unlock_irqrestore(&xhci->lock, flags);
3589 		return -EINVAL;
3590 	}
3591 	vdev = xhci->devs[udev->slot_id];
3592 	/* Mark each endpoint as being in transition, so
3593 	 * xhci_urb_enqueue() will reject all URBs.
3594 	 */
3595 	for (i = 0; i < num_eps; i++) {
3596 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3598 	}
3599 	spin_unlock_irqrestore(&xhci->lock, flags);
3600 
3601 	/* Setup internal data structures and allocate HW data structures for
3602 	 * streams (but don't install the HW structures in the input context
3603 	 * until we're sure all memory allocation succeeded).
3604 	 */
3605 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3606 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3607 			num_stream_ctxs, num_streams);
3608 
3609 	for (i = 0; i < num_eps; i++) {
3610 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3611 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3612 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3613 				num_stream_ctxs,
3614 				num_streams,
3615 				max_packet, mem_flags);
3616 		if (!vdev->eps[ep_index].stream_info)
3617 			goto cleanup;
3618 		/* Set maxPstreams in endpoint context and update deq ptr to
3619 		 * point to stream context array. FIXME
3620 		 */
3621 	}
3622 
3623 	/* Set up the input context for a configure endpoint command. */
3624 	for (i = 0; i < num_eps; i++) {
3625 		struct xhci_ep_ctx *ep_ctx;
3626 
3627 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3628 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3629 
3630 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3631 				vdev->out_ctx, ep_index);
3632 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3633 				vdev->eps[ep_index].stream_info);
3634 	}
3635 	/* Tell the HW to drop its old copy of the endpoint context info
3636 	 * and add the updated copy from the input context.
3637 	 */
3638 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3639 			vdev->out_ctx, ctrl_ctx,
3640 			changed_ep_bitmask, changed_ep_bitmask);
3641 
3642 	/* Issue and wait for the configure endpoint command */
3643 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3644 			false, false);
3645 
3646 	/* xHC rejected the configure endpoint command for some reason, so we
3647 	 * leave the old ring intact and free our internal streams data
3648 	 * structure.
3649 	 */
3650 	if (ret < 0)
3651 		goto cleanup;
3652 
3653 	spin_lock_irqsave(&xhci->lock, flags);
3654 	for (i = 0; i < num_eps; i++) {
3655 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3656 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3657 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3658 			 udev->slot_id, ep_index);
3659 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3660 	}
3661 	xhci_free_command(xhci, config_cmd);
3662 	spin_unlock_irqrestore(&xhci->lock, flags);
3663 
3664 	for (i = 0; i < num_eps; i++) {
3665 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3666 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3667 	}
3668 	/* Subtract 1 for stream 0, which drivers can't use */
3669 	return num_streams - 1;
3670 
3671 cleanup:
3672 	/* If it didn't work, free the streams! */
3673 	for (i = 0; i < num_eps; i++) {
3674 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3675 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3676 		vdev->eps[ep_index].stream_info = NULL;
3677 		/* FIXME Unset maxPstreams in endpoint context and
3678 		 * update deq ptr to point to normal string ring.
3679 		 */
3680 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3681 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3682 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3683 	}
3684 	xhci_free_command(xhci, config_cmd);
3685 	return -ENOMEM;
3686 }
3687 
3688 /* Transition the endpoint from using streams to being a "normal" endpoint
3689  * without streams.
3690  *
3691  * Modify the endpoint context state, submit a configure endpoint command,
3692  * and free all endpoint rings for streams if that completes successfully.
3693  */
3694 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3695 		struct usb_host_endpoint **eps, unsigned int num_eps,
3696 		gfp_t mem_flags)
3697 {
3698 	int i, ret;
3699 	struct xhci_hcd *xhci;
3700 	struct xhci_virt_device *vdev;
3701 	struct xhci_command *command;
3702 	struct xhci_input_control_ctx *ctrl_ctx;
3703 	unsigned int ep_index;
3704 	unsigned long flags;
3705 	u32 changed_ep_bitmask;
3706 
3707 	xhci = hcd_to_xhci(hcd);
3708 	vdev = xhci->devs[udev->slot_id];
3709 
3710 	/* Set up a configure endpoint command to remove the streams rings */
3711 	spin_lock_irqsave(&xhci->lock, flags);
3712 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3713 			udev, eps, num_eps);
3714 	if (changed_ep_bitmask == 0) {
3715 		spin_unlock_irqrestore(&xhci->lock, flags);
3716 		return -EINVAL;
3717 	}
3718 
3719 	/* Use the xhci_command structure from the first endpoint.  We may have
3720 	 * allocated too many, but the driver may call xhci_free_streams() for
3721 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3722 	 */
3723 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3724 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3725 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3726 	if (!ctrl_ctx) {
3727 		spin_unlock_irqrestore(&xhci->lock, flags);
3728 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3729 				__func__);
3730 		return -EINVAL;
3731 	}
3732 
3733 	for (i = 0; i < num_eps; i++) {
3734 		struct xhci_ep_ctx *ep_ctx;
3735 
3736 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3737 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3738 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3739 			EP_GETTING_NO_STREAMS;
3740 
3741 		xhci_endpoint_copy(xhci, command->in_ctx,
3742 				vdev->out_ctx, ep_index);
3743 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3744 				&vdev->eps[ep_index]);
3745 	}
3746 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3747 			vdev->out_ctx, ctrl_ctx,
3748 			changed_ep_bitmask, changed_ep_bitmask);
3749 	spin_unlock_irqrestore(&xhci->lock, flags);
3750 
3751 	/* Issue and wait for the configure endpoint command,
3752 	 * which must succeed.
3753 	 */
3754 	ret = xhci_configure_endpoint(xhci, udev, command,
3755 			false, true);
3756 
3757 	/* xHC rejected the configure endpoint command for some reason, so we
3758 	 * leave the streams rings intact.
3759 	 */
3760 	if (ret < 0)
3761 		return ret;
3762 
3763 	spin_lock_irqsave(&xhci->lock, flags);
3764 	for (i = 0; i < num_eps; i++) {
3765 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3766 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3767 		vdev->eps[ep_index].stream_info = NULL;
3768 		/* FIXME Unset maxPstreams in endpoint context and
3769 		 * update deq ptr to point to normal string ring.
3770 		 */
3771 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3772 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3773 	}
3774 	spin_unlock_irqrestore(&xhci->lock, flags);
3775 
3776 	return 0;
3777 }
3778 
3779 /*
3780  * Deletes endpoint resources for endpoints that were active before a Reset
3781  * Device command, or a Disable Slot command.  The Reset Device command leaves
3782  * the control endpoint intact, whereas the Disable Slot command deletes it.
3783  *
3784  * Must be called with xhci->lock held.
3785  */
3786 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3787 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3788 {
3789 	int i;
3790 	unsigned int num_dropped_eps = 0;
3791 	unsigned int drop_flags = 0;
3792 
3793 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3794 		if (virt_dev->eps[i].ring) {
3795 			drop_flags |= 1 << i;
3796 			num_dropped_eps++;
3797 		}
3798 	}
3799 	xhci->num_active_eps -= num_dropped_eps;
3800 	if (num_dropped_eps)
3801 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3802 				"Dropped %u ep ctxs, flags = 0x%x, "
3803 				"%u now active.",
3804 				num_dropped_eps, drop_flags,
3805 				xhci->num_active_eps);
3806 }
3807 
3808 /*
3809  * This submits a Reset Device Command, which will set the device state to 0,
3810  * set the device address to 0, and disable all the endpoints except the default
3811  * control endpoint.  The USB core should come back and call
3812  * xhci_address_device(), and then re-set up the configuration.  If this is
3813  * called because of a usb_reset_and_verify_device(), then the old alternate
3814  * settings will be re-installed through the normal bandwidth allocation
3815  * functions.
3816  *
3817  * Wait for the Reset Device command to finish.  Remove all structures
3818  * associated with the endpoints that were disabled.  Clear the input device
3819  * structure? Reset the control endpoint 0 max packet size?
3820  *
3821  * If the virt_dev to be reset does not exist or does not match the udev,
3822  * it means the device is lost, possibly due to the xHC restore error and
3823  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3824  * re-allocate the device.
3825  */
3826 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3827 		struct usb_device *udev)
3828 {
3829 	int ret, i;
3830 	unsigned long flags;
3831 	struct xhci_hcd *xhci;
3832 	unsigned int slot_id;
3833 	struct xhci_virt_device *virt_dev;
3834 	struct xhci_command *reset_device_cmd;
3835 	struct xhci_slot_ctx *slot_ctx;
3836 	int old_active_eps = 0;
3837 
3838 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3839 	if (ret <= 0)
3840 		return ret;
3841 	xhci = hcd_to_xhci(hcd);
3842 	slot_id = udev->slot_id;
3843 	virt_dev = xhci->devs[slot_id];
3844 	if (!virt_dev) {
3845 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3846 				"not exist. Re-allocate the device\n", slot_id);
3847 		ret = xhci_alloc_dev(hcd, udev);
3848 		if (ret == 1)
3849 			return 0;
3850 		else
3851 			return -EINVAL;
3852 	}
3853 
3854 	if (virt_dev->tt_info)
3855 		old_active_eps = virt_dev->tt_info->active_eps;
3856 
3857 	if (virt_dev->udev != udev) {
3858 		/* If the virt_dev and the udev does not match, this virt_dev
3859 		 * may belong to another udev.
3860 		 * Re-allocate the device.
3861 		 */
3862 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3863 				"not match the udev. Re-allocate the device\n",
3864 				slot_id);
3865 		ret = xhci_alloc_dev(hcd, udev);
3866 		if (ret == 1)
3867 			return 0;
3868 		else
3869 			return -EINVAL;
3870 	}
3871 
3872 	/* If device is not setup, there is no point in resetting it */
3873 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3874 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3875 						SLOT_STATE_DISABLED)
3876 		return 0;
3877 
3878 	trace_xhci_discover_or_reset_device(slot_ctx);
3879 
3880 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3881 	/* Allocate the command structure that holds the struct completion.
3882 	 * Assume we're in process context, since the normal device reset
3883 	 * process has to wait for the device anyway.  Storage devices are
3884 	 * reset as part of error handling, so use GFP_NOIO instead of
3885 	 * GFP_KERNEL.
3886 	 */
3887 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3888 	if (!reset_device_cmd) {
3889 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3890 		return -ENOMEM;
3891 	}
3892 
3893 	/* Attempt to submit the Reset Device command to the command ring */
3894 	spin_lock_irqsave(&xhci->lock, flags);
3895 
3896 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3897 	if (ret) {
3898 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3899 		spin_unlock_irqrestore(&xhci->lock, flags);
3900 		goto command_cleanup;
3901 	}
3902 	xhci_ring_cmd_db(xhci);
3903 	spin_unlock_irqrestore(&xhci->lock, flags);
3904 
3905 	/* Wait for the Reset Device command to finish */
3906 	wait_for_completion(reset_device_cmd->completion);
3907 
3908 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3909 	 * unless we tried to reset a slot ID that wasn't enabled,
3910 	 * or the device wasn't in the addressed or configured state.
3911 	 */
3912 	ret = reset_device_cmd->status;
3913 	switch (ret) {
3914 	case COMP_COMMAND_ABORTED:
3915 	case COMP_COMMAND_RING_STOPPED:
3916 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3917 		ret = -ETIME;
3918 		goto command_cleanup;
3919 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3920 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3921 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3922 				slot_id,
3923 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3924 		xhci_dbg(xhci, "Not freeing device rings.\n");
3925 		/* Don't treat this as an error.  May change my mind later. */
3926 		ret = 0;
3927 		goto command_cleanup;
3928 	case COMP_SUCCESS:
3929 		xhci_dbg(xhci, "Successful reset device command.\n");
3930 		break;
3931 	default:
3932 		if (xhci_is_vendor_info_code(xhci, ret))
3933 			break;
3934 		xhci_warn(xhci, "Unknown completion code %u for "
3935 				"reset device command.\n", ret);
3936 		ret = -EINVAL;
3937 		goto command_cleanup;
3938 	}
3939 
3940 	/* Free up host controller endpoint resources */
3941 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3942 		spin_lock_irqsave(&xhci->lock, flags);
3943 		/* Don't delete the default control endpoint resources */
3944 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3945 		spin_unlock_irqrestore(&xhci->lock, flags);
3946 	}
3947 
3948 	/* Everything but endpoint 0 is disabled, so free the rings. */
3949 	for (i = 1; i < 31; i++) {
3950 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3951 
3952 		if (ep->ep_state & EP_HAS_STREAMS) {
3953 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3954 					xhci_get_endpoint_address(i));
3955 			xhci_free_stream_info(xhci, ep->stream_info);
3956 			ep->stream_info = NULL;
3957 			ep->ep_state &= ~EP_HAS_STREAMS;
3958 		}
3959 
3960 		if (ep->ring) {
3961 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3962 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3963 		}
3964 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3965 			xhci_drop_ep_from_interval_table(xhci,
3966 					&virt_dev->eps[i].bw_info,
3967 					virt_dev->bw_table,
3968 					udev,
3969 					&virt_dev->eps[i],
3970 					virt_dev->tt_info);
3971 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3972 	}
3973 	/* If necessary, update the number of active TTs on this root port */
3974 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3975 	virt_dev->flags = 0;
3976 	ret = 0;
3977 
3978 command_cleanup:
3979 	xhci_free_command(xhci, reset_device_cmd);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * At this point, the struct usb_device is about to go away, the device has
3985  * disconnected, and all traffic has been stopped and the endpoints have been
3986  * disabled.  Free any HC data structures associated with that device.
3987  */
3988 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3989 {
3990 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3991 	struct xhci_virt_device *virt_dev;
3992 	struct xhci_slot_ctx *slot_ctx;
3993 	int i, ret;
3994 
3995 #ifndef CONFIG_USB_DEFAULT_PERSIST
3996 	/*
3997 	 * We called pm_runtime_get_noresume when the device was attached.
3998 	 * Decrement the counter here to allow controller to runtime suspend
3999 	 * if no devices remain.
4000 	 */
4001 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4002 		pm_runtime_put_noidle(hcd->self.controller);
4003 #endif
4004 
4005 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
4006 	/* If the host is halted due to driver unload, we still need to free the
4007 	 * device.
4008 	 */
4009 	if (ret <= 0 && ret != -ENODEV)
4010 		return;
4011 
4012 	virt_dev = xhci->devs[udev->slot_id];
4013 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4014 	trace_xhci_free_dev(slot_ctx);
4015 
4016 	/* Stop any wayward timer functions (which may grab the lock) */
4017 	for (i = 0; i < 31; i++) {
4018 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4019 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
4020 	}
4021 	virt_dev->udev = NULL;
4022 	ret = xhci_disable_slot(xhci, udev->slot_id);
4023 	if (ret)
4024 		xhci_free_virt_device(xhci, udev->slot_id);
4025 }
4026 
4027 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4028 {
4029 	struct xhci_command *command;
4030 	unsigned long flags;
4031 	u32 state;
4032 	int ret = 0;
4033 
4034 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
4035 	if (!command)
4036 		return -ENOMEM;
4037 
4038 	xhci_debugfs_remove_slot(xhci, slot_id);
4039 
4040 	spin_lock_irqsave(&xhci->lock, flags);
4041 	/* Don't disable the slot if the host controller is dead. */
4042 	state = readl(&xhci->op_regs->status);
4043 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4044 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4045 		spin_unlock_irqrestore(&xhci->lock, flags);
4046 		kfree(command);
4047 		return -ENODEV;
4048 	}
4049 
4050 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4051 				slot_id);
4052 	if (ret) {
4053 		spin_unlock_irqrestore(&xhci->lock, flags);
4054 		kfree(command);
4055 		return ret;
4056 	}
4057 	xhci_ring_cmd_db(xhci);
4058 	spin_unlock_irqrestore(&xhci->lock, flags);
4059 	return ret;
4060 }
4061 
4062 /*
4063  * Checks if we have enough host controller resources for the default control
4064  * endpoint.
4065  *
4066  * Must be called with xhci->lock held.
4067  */
4068 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4069 {
4070 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4071 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072 				"Not enough ep ctxs: "
4073 				"%u active, need to add 1, limit is %u.",
4074 				xhci->num_active_eps, xhci->limit_active_eps);
4075 		return -ENOMEM;
4076 	}
4077 	xhci->num_active_eps += 1;
4078 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4079 			"Adding 1 ep ctx, %u now active.",
4080 			xhci->num_active_eps);
4081 	return 0;
4082 }
4083 
4084 
4085 /*
4086  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4087  * timed out, or allocating memory failed.  Returns 1 on success.
4088  */
4089 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4090 {
4091 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4092 	struct xhci_virt_device *vdev;
4093 	struct xhci_slot_ctx *slot_ctx;
4094 	unsigned long flags;
4095 	int ret, slot_id;
4096 	struct xhci_command *command;
4097 
4098 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4099 	if (!command)
4100 		return 0;
4101 
4102 	spin_lock_irqsave(&xhci->lock, flags);
4103 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4104 	if (ret) {
4105 		spin_unlock_irqrestore(&xhci->lock, flags);
4106 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4107 		xhci_free_command(xhci, command);
4108 		return 0;
4109 	}
4110 	xhci_ring_cmd_db(xhci);
4111 	spin_unlock_irqrestore(&xhci->lock, flags);
4112 
4113 	wait_for_completion(command->completion);
4114 	slot_id = command->slot_id;
4115 
4116 	if (!slot_id || command->status != COMP_SUCCESS) {
4117 		xhci_err(xhci, "Error while assigning device slot ID\n");
4118 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4119 				HCS_MAX_SLOTS(
4120 					readl(&xhci->cap_regs->hcs_params1)));
4121 		xhci_free_command(xhci, command);
4122 		return 0;
4123 	}
4124 
4125 	xhci_free_command(xhci, command);
4126 
4127 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4128 		spin_lock_irqsave(&xhci->lock, flags);
4129 		ret = xhci_reserve_host_control_ep_resources(xhci);
4130 		if (ret) {
4131 			spin_unlock_irqrestore(&xhci->lock, flags);
4132 			xhci_warn(xhci, "Not enough host resources, "
4133 					"active endpoint contexts = %u\n",
4134 					xhci->num_active_eps);
4135 			goto disable_slot;
4136 		}
4137 		spin_unlock_irqrestore(&xhci->lock, flags);
4138 	}
4139 	/* Use GFP_NOIO, since this function can be called from
4140 	 * xhci_discover_or_reset_device(), which may be called as part of
4141 	 * mass storage driver error handling.
4142 	 */
4143 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4144 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4145 		goto disable_slot;
4146 	}
4147 	vdev = xhci->devs[slot_id];
4148 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4149 	trace_xhci_alloc_dev(slot_ctx);
4150 
4151 	udev->slot_id = slot_id;
4152 
4153 	xhci_debugfs_create_slot(xhci, slot_id);
4154 
4155 #ifndef CONFIG_USB_DEFAULT_PERSIST
4156 	/*
4157 	 * If resetting upon resume, we can't put the controller into runtime
4158 	 * suspend if there is a device attached.
4159 	 */
4160 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4161 		pm_runtime_get_noresume(hcd->self.controller);
4162 #endif
4163 
4164 	/* Is this a LS or FS device under a HS hub? */
4165 	/* Hub or peripherial? */
4166 	return 1;
4167 
4168 disable_slot:
4169 	ret = xhci_disable_slot(xhci, udev->slot_id);
4170 	if (ret)
4171 		xhci_free_virt_device(xhci, udev->slot_id);
4172 
4173 	return 0;
4174 }
4175 
4176 /*
4177  * Issue an Address Device command and optionally send a corresponding
4178  * SetAddress request to the device.
4179  */
4180 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4181 			     enum xhci_setup_dev setup)
4182 {
4183 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4184 	unsigned long flags;
4185 	struct xhci_virt_device *virt_dev;
4186 	int ret = 0;
4187 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4188 	struct xhci_slot_ctx *slot_ctx;
4189 	struct xhci_input_control_ctx *ctrl_ctx;
4190 	u64 temp_64;
4191 	struct xhci_command *command = NULL;
4192 
4193 	mutex_lock(&xhci->mutex);
4194 
4195 	if (xhci->xhc_state) {	/* dying, removing or halted */
4196 		ret = -ESHUTDOWN;
4197 		goto out;
4198 	}
4199 
4200 	if (!udev->slot_id) {
4201 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4202 				"Bad Slot ID %d", udev->slot_id);
4203 		ret = -EINVAL;
4204 		goto out;
4205 	}
4206 
4207 	virt_dev = xhci->devs[udev->slot_id];
4208 
4209 	if (WARN_ON(!virt_dev)) {
4210 		/*
4211 		 * In plug/unplug torture test with an NEC controller,
4212 		 * a zero-dereference was observed once due to virt_dev = 0.
4213 		 * Print useful debug rather than crash if it is observed again!
4214 		 */
4215 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4216 			udev->slot_id);
4217 		ret = -EINVAL;
4218 		goto out;
4219 	}
4220 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4221 	trace_xhci_setup_device_slot(slot_ctx);
4222 
4223 	if (setup == SETUP_CONTEXT_ONLY) {
4224 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4225 		    SLOT_STATE_DEFAULT) {
4226 			xhci_dbg(xhci, "Slot already in default state\n");
4227 			goto out;
4228 		}
4229 	}
4230 
4231 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4232 	if (!command) {
4233 		ret = -ENOMEM;
4234 		goto out;
4235 	}
4236 
4237 	command->in_ctx = virt_dev->in_ctx;
4238 
4239 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4240 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4241 	if (!ctrl_ctx) {
4242 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4243 				__func__);
4244 		ret = -EINVAL;
4245 		goto out;
4246 	}
4247 	/*
4248 	 * If this is the first Set Address since device plug-in or
4249 	 * virt_device realloaction after a resume with an xHCI power loss,
4250 	 * then set up the slot context.
4251 	 */
4252 	if (!slot_ctx->dev_info)
4253 		xhci_setup_addressable_virt_dev(xhci, udev);
4254 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4255 	else
4256 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4257 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4258 	ctrl_ctx->drop_flags = 0;
4259 
4260 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4261 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4262 
4263 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4264 	spin_lock_irqsave(&xhci->lock, flags);
4265 	trace_xhci_setup_device(virt_dev);
4266 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4267 					udev->slot_id, setup);
4268 	if (ret) {
4269 		spin_unlock_irqrestore(&xhci->lock, flags);
4270 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4271 				"FIXME: allocate a command ring segment");
4272 		goto out;
4273 	}
4274 	xhci_ring_cmd_db(xhci);
4275 	spin_unlock_irqrestore(&xhci->lock, flags);
4276 
4277 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4278 	wait_for_completion(command->completion);
4279 
4280 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4281 	 * the SetAddress() "recovery interval" required by USB and aborting the
4282 	 * command on a timeout.
4283 	 */
4284 	switch (command->status) {
4285 	case COMP_COMMAND_ABORTED:
4286 	case COMP_COMMAND_RING_STOPPED:
4287 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4288 		ret = -ETIME;
4289 		break;
4290 	case COMP_CONTEXT_STATE_ERROR:
4291 	case COMP_SLOT_NOT_ENABLED_ERROR:
4292 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4293 			 act, udev->slot_id);
4294 		ret = -EINVAL;
4295 		break;
4296 	case COMP_USB_TRANSACTION_ERROR:
4297 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4298 
4299 		mutex_unlock(&xhci->mutex);
4300 		ret = xhci_disable_slot(xhci, udev->slot_id);
4301 		if (!ret)
4302 			xhci_alloc_dev(hcd, udev);
4303 		kfree(command->completion);
4304 		kfree(command);
4305 		return -EPROTO;
4306 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4307 		dev_warn(&udev->dev,
4308 			 "ERROR: Incompatible device for setup %s command\n", act);
4309 		ret = -ENODEV;
4310 		break;
4311 	case COMP_SUCCESS:
4312 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4313 			       "Successful setup %s command", act);
4314 		break;
4315 	default:
4316 		xhci_err(xhci,
4317 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4318 			 act, command->status);
4319 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4320 		ret = -EINVAL;
4321 		break;
4322 	}
4323 	if (ret)
4324 		goto out;
4325 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4326 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327 			"Op regs DCBAA ptr = %#016llx", temp_64);
4328 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4329 		"Slot ID %d dcbaa entry @%p = %#016llx",
4330 		udev->slot_id,
4331 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4332 		(unsigned long long)
4333 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4334 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4335 			"Output Context DMA address = %#08llx",
4336 			(unsigned long long)virt_dev->out_ctx->dma);
4337 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4338 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4339 	/*
4340 	 * USB core uses address 1 for the roothubs, so we add one to the
4341 	 * address given back to us by the HC.
4342 	 */
4343 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4344 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4345 	/* Zero the input context control for later use */
4346 	ctrl_ctx->add_flags = 0;
4347 	ctrl_ctx->drop_flags = 0;
4348 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4349 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4350 
4351 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4352 		       "Internal device address = %d",
4353 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4354 out:
4355 	mutex_unlock(&xhci->mutex);
4356 	if (command) {
4357 		kfree(command->completion);
4358 		kfree(command);
4359 	}
4360 	return ret;
4361 }
4362 
4363 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4364 {
4365 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4366 }
4367 
4368 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4369 {
4370 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4371 }
4372 
4373 /*
4374  * Transfer the port index into real index in the HW port status
4375  * registers. Caculate offset between the port's PORTSC register
4376  * and port status base. Divide the number of per port register
4377  * to get the real index. The raw port number bases 1.
4378  */
4379 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4380 {
4381 	struct xhci_hub *rhub;
4382 
4383 	rhub = xhci_get_rhub(hcd);
4384 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4385 }
4386 
4387 /*
4388  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4389  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4390  */
4391 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4392 			struct usb_device *udev, u16 max_exit_latency)
4393 {
4394 	struct xhci_virt_device *virt_dev;
4395 	struct xhci_command *command;
4396 	struct xhci_input_control_ctx *ctrl_ctx;
4397 	struct xhci_slot_ctx *slot_ctx;
4398 	unsigned long flags;
4399 	int ret;
4400 
4401 	spin_lock_irqsave(&xhci->lock, flags);
4402 
4403 	virt_dev = xhci->devs[udev->slot_id];
4404 
4405 	/*
4406 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4407 	 * xHC was re-initialized. Exit latency will be set later after
4408 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4409 	 */
4410 
4411 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4412 		spin_unlock_irqrestore(&xhci->lock, flags);
4413 		return 0;
4414 	}
4415 
4416 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4417 	command = xhci->lpm_command;
4418 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4419 	if (!ctrl_ctx) {
4420 		spin_unlock_irqrestore(&xhci->lock, flags);
4421 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4422 				__func__);
4423 		return -ENOMEM;
4424 	}
4425 
4426 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4427 	spin_unlock_irqrestore(&xhci->lock, flags);
4428 
4429 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4430 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4431 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4432 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4433 	slot_ctx->dev_state = 0;
4434 
4435 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4436 			"Set up evaluate context for LPM MEL change.");
4437 
4438 	/* Issue and wait for the evaluate context command. */
4439 	ret = xhci_configure_endpoint(xhci, udev, command,
4440 			true, true);
4441 
4442 	if (!ret) {
4443 		spin_lock_irqsave(&xhci->lock, flags);
4444 		virt_dev->current_mel = max_exit_latency;
4445 		spin_unlock_irqrestore(&xhci->lock, flags);
4446 	}
4447 	return ret;
4448 }
4449 
4450 #ifdef CONFIG_PM
4451 
4452 /* BESL to HIRD Encoding array for USB2 LPM */
4453 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4454 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4455 
4456 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4457 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4458 					struct usb_device *udev)
4459 {
4460 	int u2del, besl, besl_host;
4461 	int besl_device = 0;
4462 	u32 field;
4463 
4464 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4465 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4466 
4467 	if (field & USB_BESL_SUPPORT) {
4468 		for (besl_host = 0; besl_host < 16; besl_host++) {
4469 			if (xhci_besl_encoding[besl_host] >= u2del)
4470 				break;
4471 		}
4472 		/* Use baseline BESL value as default */
4473 		if (field & USB_BESL_BASELINE_VALID)
4474 			besl_device = USB_GET_BESL_BASELINE(field);
4475 		else if (field & USB_BESL_DEEP_VALID)
4476 			besl_device = USB_GET_BESL_DEEP(field);
4477 	} else {
4478 		if (u2del <= 50)
4479 			besl_host = 0;
4480 		else
4481 			besl_host = (u2del - 51) / 75 + 1;
4482 	}
4483 
4484 	besl = besl_host + besl_device;
4485 	if (besl > 15)
4486 		besl = 15;
4487 
4488 	return besl;
4489 }
4490 
4491 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4492 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4493 {
4494 	u32 field;
4495 	int l1;
4496 	int besld = 0;
4497 	int hirdm = 0;
4498 
4499 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4500 
4501 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4502 	l1 = udev->l1_params.timeout / 256;
4503 
4504 	/* device has preferred BESLD */
4505 	if (field & USB_BESL_DEEP_VALID) {
4506 		besld = USB_GET_BESL_DEEP(field);
4507 		hirdm = 1;
4508 	}
4509 
4510 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4511 }
4512 
4513 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4514 			struct usb_device *udev, int enable)
4515 {
4516 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4517 	struct xhci_port **ports;
4518 	__le32 __iomem	*pm_addr, *hlpm_addr;
4519 	u32		pm_val, hlpm_val, field;
4520 	unsigned int	port_num;
4521 	unsigned long	flags;
4522 	int		hird, exit_latency;
4523 	int		ret;
4524 
4525 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4526 		return -EPERM;
4527 
4528 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4529 			!udev->lpm_capable)
4530 		return -EPERM;
4531 
4532 	if (!udev->parent || udev->parent->parent ||
4533 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4534 		return -EPERM;
4535 
4536 	if (udev->usb2_hw_lpm_capable != 1)
4537 		return -EPERM;
4538 
4539 	spin_lock_irqsave(&xhci->lock, flags);
4540 
4541 	ports = xhci->usb2_rhub.ports;
4542 	port_num = udev->portnum - 1;
4543 	pm_addr = ports[port_num]->addr + PORTPMSC;
4544 	pm_val = readl(pm_addr);
4545 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4546 
4547 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4548 			enable ? "enable" : "disable", port_num + 1);
4549 
4550 	if (enable) {
4551 		/* Host supports BESL timeout instead of HIRD */
4552 		if (udev->usb2_hw_lpm_besl_capable) {
4553 			/* if device doesn't have a preferred BESL value use a
4554 			 * default one which works with mixed HIRD and BESL
4555 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4556 			 */
4557 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4558 			if ((field & USB_BESL_SUPPORT) &&
4559 			    (field & USB_BESL_BASELINE_VALID))
4560 				hird = USB_GET_BESL_BASELINE(field);
4561 			else
4562 				hird = udev->l1_params.besl;
4563 
4564 			exit_latency = xhci_besl_encoding[hird];
4565 			spin_unlock_irqrestore(&xhci->lock, flags);
4566 
4567 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4568 			 * input context for link powermanagement evaluate
4569 			 * context commands. It is protected by hcd->bandwidth
4570 			 * mutex and is shared by all devices. We need to set
4571 			 * the max ext latency in USB 2 BESL LPM as well, so
4572 			 * use the same mutex and xhci_change_max_exit_latency()
4573 			 */
4574 			mutex_lock(hcd->bandwidth_mutex);
4575 			ret = xhci_change_max_exit_latency(xhci, udev,
4576 							   exit_latency);
4577 			mutex_unlock(hcd->bandwidth_mutex);
4578 
4579 			if (ret < 0)
4580 				return ret;
4581 			spin_lock_irqsave(&xhci->lock, flags);
4582 
4583 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4584 			writel(hlpm_val, hlpm_addr);
4585 			/* flush write */
4586 			readl(hlpm_addr);
4587 		} else {
4588 			hird = xhci_calculate_hird_besl(xhci, udev);
4589 		}
4590 
4591 		pm_val &= ~PORT_HIRD_MASK;
4592 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4593 		writel(pm_val, pm_addr);
4594 		pm_val = readl(pm_addr);
4595 		pm_val |= PORT_HLE;
4596 		writel(pm_val, pm_addr);
4597 		/* flush write */
4598 		readl(pm_addr);
4599 	} else {
4600 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4601 		writel(pm_val, pm_addr);
4602 		/* flush write */
4603 		readl(pm_addr);
4604 		if (udev->usb2_hw_lpm_besl_capable) {
4605 			spin_unlock_irqrestore(&xhci->lock, flags);
4606 			mutex_lock(hcd->bandwidth_mutex);
4607 			xhci_change_max_exit_latency(xhci, udev, 0);
4608 			mutex_unlock(hcd->bandwidth_mutex);
4609 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4610 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4611 					   100, 10000);
4612 			return 0;
4613 		}
4614 	}
4615 
4616 	spin_unlock_irqrestore(&xhci->lock, flags);
4617 	return 0;
4618 }
4619 
4620 /* check if a usb2 port supports a given extened capability protocol
4621  * only USB2 ports extended protocol capability values are cached.
4622  * Return 1 if capability is supported
4623  */
4624 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4625 					   unsigned capability)
4626 {
4627 	u32 port_offset, port_count;
4628 	int i;
4629 
4630 	for (i = 0; i < xhci->num_ext_caps; i++) {
4631 		if (xhci->ext_caps[i] & capability) {
4632 			/* port offsets starts at 1 */
4633 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4634 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4635 			if (port >= port_offset &&
4636 			    port < port_offset + port_count)
4637 				return 1;
4638 		}
4639 	}
4640 	return 0;
4641 }
4642 
4643 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4644 {
4645 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4646 	int		portnum = udev->portnum - 1;
4647 
4648 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4649 		return 0;
4650 
4651 	/* we only support lpm for non-hub device connected to root hub yet */
4652 	if (!udev->parent || udev->parent->parent ||
4653 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4654 		return 0;
4655 
4656 	if (xhci->hw_lpm_support == 1 &&
4657 			xhci_check_usb2_port_capability(
4658 				xhci, portnum, XHCI_HLC)) {
4659 		udev->usb2_hw_lpm_capable = 1;
4660 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4661 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4662 		if (xhci_check_usb2_port_capability(xhci, portnum,
4663 					XHCI_BLC))
4664 			udev->usb2_hw_lpm_besl_capable = 1;
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4671 
4672 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4673 static unsigned long long xhci_service_interval_to_ns(
4674 		struct usb_endpoint_descriptor *desc)
4675 {
4676 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4677 }
4678 
4679 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4680 		enum usb3_link_state state)
4681 {
4682 	unsigned long long sel;
4683 	unsigned long long pel;
4684 	unsigned int max_sel_pel;
4685 	char *state_name;
4686 
4687 	switch (state) {
4688 	case USB3_LPM_U1:
4689 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4690 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4691 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4692 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4693 		state_name = "U1";
4694 		break;
4695 	case USB3_LPM_U2:
4696 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4697 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4698 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4699 		state_name = "U2";
4700 		break;
4701 	default:
4702 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4703 				__func__);
4704 		return USB3_LPM_DISABLED;
4705 	}
4706 
4707 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4708 		return USB3_LPM_DEVICE_INITIATED;
4709 
4710 	if (sel > max_sel_pel)
4711 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4712 				"due to long SEL %llu ms\n",
4713 				state_name, sel);
4714 	else
4715 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4716 				"due to long PEL %llu ms\n",
4717 				state_name, pel);
4718 	return USB3_LPM_DISABLED;
4719 }
4720 
4721 /* The U1 timeout should be the maximum of the following values:
4722  *  - For control endpoints, U1 system exit latency (SEL) * 3
4723  *  - For bulk endpoints, U1 SEL * 5
4724  *  - For interrupt endpoints:
4725  *    - Notification EPs, U1 SEL * 3
4726  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4727  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4728  */
4729 static unsigned long long xhci_calculate_intel_u1_timeout(
4730 		struct usb_device *udev,
4731 		struct usb_endpoint_descriptor *desc)
4732 {
4733 	unsigned long long timeout_ns;
4734 	int ep_type;
4735 	int intr_type;
4736 
4737 	ep_type = usb_endpoint_type(desc);
4738 	switch (ep_type) {
4739 	case USB_ENDPOINT_XFER_CONTROL:
4740 		timeout_ns = udev->u1_params.sel * 3;
4741 		break;
4742 	case USB_ENDPOINT_XFER_BULK:
4743 		timeout_ns = udev->u1_params.sel * 5;
4744 		break;
4745 	case USB_ENDPOINT_XFER_INT:
4746 		intr_type = usb_endpoint_interrupt_type(desc);
4747 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4748 			timeout_ns = udev->u1_params.sel * 3;
4749 			break;
4750 		}
4751 		/* Otherwise the calculation is the same as isoc eps */
4752 		fallthrough;
4753 	case USB_ENDPOINT_XFER_ISOC:
4754 		timeout_ns = xhci_service_interval_to_ns(desc);
4755 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4756 		if (timeout_ns < udev->u1_params.sel * 2)
4757 			timeout_ns = udev->u1_params.sel * 2;
4758 		break;
4759 	default:
4760 		return 0;
4761 	}
4762 
4763 	return timeout_ns;
4764 }
4765 
4766 /* Returns the hub-encoded U1 timeout value. */
4767 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4768 		struct usb_device *udev,
4769 		struct usb_endpoint_descriptor *desc)
4770 {
4771 	unsigned long long timeout_ns;
4772 
4773 	if (xhci->quirks & XHCI_INTEL_HOST)
4774 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4775 	else
4776 		timeout_ns = udev->u1_params.sel;
4777 
4778 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4779 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4780 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4781 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4782 			return USB3_LPM_DISABLED;
4783 		}
4784 	}
4785 
4786 	/* The U1 timeout is encoded in 1us intervals.
4787 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4788 	 */
4789 	if (timeout_ns == USB3_LPM_DISABLED)
4790 		timeout_ns = 1;
4791 	else
4792 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4793 
4794 	/* If the necessary timeout value is bigger than what we can set in the
4795 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4796 	 */
4797 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4798 		return timeout_ns;
4799 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4800 			"due to long timeout %llu ms\n", timeout_ns);
4801 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4802 }
4803 
4804 /* The U2 timeout should be the maximum of:
4805  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4806  *  - largest bInterval of any active periodic endpoint (to avoid going
4807  *    into lower power link states between intervals).
4808  *  - the U2 Exit Latency of the device
4809  */
4810 static unsigned long long xhci_calculate_intel_u2_timeout(
4811 		struct usb_device *udev,
4812 		struct usb_endpoint_descriptor *desc)
4813 {
4814 	unsigned long long timeout_ns;
4815 	unsigned long long u2_del_ns;
4816 
4817 	timeout_ns = 10 * 1000 * 1000;
4818 
4819 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4820 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4821 		timeout_ns = xhci_service_interval_to_ns(desc);
4822 
4823 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4824 	if (u2_del_ns > timeout_ns)
4825 		timeout_ns = u2_del_ns;
4826 
4827 	return timeout_ns;
4828 }
4829 
4830 /* Returns the hub-encoded U2 timeout value. */
4831 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4832 		struct usb_device *udev,
4833 		struct usb_endpoint_descriptor *desc)
4834 {
4835 	unsigned long long timeout_ns;
4836 
4837 	if (xhci->quirks & XHCI_INTEL_HOST)
4838 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4839 	else
4840 		timeout_ns = udev->u2_params.sel;
4841 
4842 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4843 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4844 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4845 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4846 			return USB3_LPM_DISABLED;
4847 		}
4848 	}
4849 
4850 	/* The U2 timeout is encoded in 256us intervals */
4851 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4852 	/* If the necessary timeout value is bigger than what we can set in the
4853 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4854 	 */
4855 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4856 		return timeout_ns;
4857 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4858 			"due to long timeout %llu ms\n", timeout_ns);
4859 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4860 }
4861 
4862 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4863 		struct usb_device *udev,
4864 		struct usb_endpoint_descriptor *desc,
4865 		enum usb3_link_state state,
4866 		u16 *timeout)
4867 {
4868 	if (state == USB3_LPM_U1)
4869 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4870 	else if (state == USB3_LPM_U2)
4871 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4872 
4873 	return USB3_LPM_DISABLED;
4874 }
4875 
4876 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4877 		struct usb_device *udev,
4878 		struct usb_endpoint_descriptor *desc,
4879 		enum usb3_link_state state,
4880 		u16 *timeout)
4881 {
4882 	u16 alt_timeout;
4883 
4884 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4885 		desc, state, timeout);
4886 
4887 	/* If we found we can't enable hub-initiated LPM, and
4888 	 * the U1 or U2 exit latency was too high to allow
4889 	 * device-initiated LPM as well, then we will disable LPM
4890 	 * for this device, so stop searching any further.
4891 	 */
4892 	if (alt_timeout == USB3_LPM_DISABLED) {
4893 		*timeout = alt_timeout;
4894 		return -E2BIG;
4895 	}
4896 	if (alt_timeout > *timeout)
4897 		*timeout = alt_timeout;
4898 	return 0;
4899 }
4900 
4901 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4902 		struct usb_device *udev,
4903 		struct usb_host_interface *alt,
4904 		enum usb3_link_state state,
4905 		u16 *timeout)
4906 {
4907 	int j;
4908 
4909 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4910 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4911 					&alt->endpoint[j].desc, state, timeout))
4912 			return -E2BIG;
4913 		continue;
4914 	}
4915 	return 0;
4916 }
4917 
4918 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4919 		enum usb3_link_state state)
4920 {
4921 	struct usb_device *parent;
4922 	unsigned int num_hubs;
4923 
4924 	if (state == USB3_LPM_U2)
4925 		return 0;
4926 
4927 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4928 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4929 			parent = parent->parent)
4930 		num_hubs++;
4931 
4932 	if (num_hubs < 2)
4933 		return 0;
4934 
4935 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4936 			" below second-tier hub.\n");
4937 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4938 			"to decrease power consumption.\n");
4939 	return -E2BIG;
4940 }
4941 
4942 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4943 		struct usb_device *udev,
4944 		enum usb3_link_state state)
4945 {
4946 	if (xhci->quirks & XHCI_INTEL_HOST)
4947 		return xhci_check_intel_tier_policy(udev, state);
4948 	else
4949 		return 0;
4950 }
4951 
4952 /* Returns the U1 or U2 timeout that should be enabled.
4953  * If the tier check or timeout setting functions return with a non-zero exit
4954  * code, that means the timeout value has been finalized and we shouldn't look
4955  * at any more endpoints.
4956  */
4957 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4958 			struct usb_device *udev, enum usb3_link_state state)
4959 {
4960 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4961 	struct usb_host_config *config;
4962 	char *state_name;
4963 	int i;
4964 	u16 timeout = USB3_LPM_DISABLED;
4965 
4966 	if (state == USB3_LPM_U1)
4967 		state_name = "U1";
4968 	else if (state == USB3_LPM_U2)
4969 		state_name = "U2";
4970 	else {
4971 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4972 				state);
4973 		return timeout;
4974 	}
4975 
4976 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4977 		return timeout;
4978 
4979 	/* Gather some information about the currently installed configuration
4980 	 * and alternate interface settings.
4981 	 */
4982 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4983 			state, &timeout))
4984 		return timeout;
4985 
4986 	config = udev->actconfig;
4987 	if (!config)
4988 		return timeout;
4989 
4990 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4991 		struct usb_driver *driver;
4992 		struct usb_interface *intf = config->interface[i];
4993 
4994 		if (!intf)
4995 			continue;
4996 
4997 		/* Check if any currently bound drivers want hub-initiated LPM
4998 		 * disabled.
4999 		 */
5000 		if (intf->dev.driver) {
5001 			driver = to_usb_driver(intf->dev.driver);
5002 			if (driver && driver->disable_hub_initiated_lpm) {
5003 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
5004 					state_name, driver->name);
5005 				timeout = xhci_get_timeout_no_hub_lpm(udev,
5006 								      state);
5007 				if (timeout == USB3_LPM_DISABLED)
5008 					return timeout;
5009 			}
5010 		}
5011 
5012 		/* Not sure how this could happen... */
5013 		if (!intf->cur_altsetting)
5014 			continue;
5015 
5016 		if (xhci_update_timeout_for_interface(xhci, udev,
5017 					intf->cur_altsetting,
5018 					state, &timeout))
5019 			return timeout;
5020 	}
5021 	return timeout;
5022 }
5023 
5024 static int calculate_max_exit_latency(struct usb_device *udev,
5025 		enum usb3_link_state state_changed,
5026 		u16 hub_encoded_timeout)
5027 {
5028 	unsigned long long u1_mel_us = 0;
5029 	unsigned long long u2_mel_us = 0;
5030 	unsigned long long mel_us = 0;
5031 	bool disabling_u1;
5032 	bool disabling_u2;
5033 	bool enabling_u1;
5034 	bool enabling_u2;
5035 
5036 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5037 			hub_encoded_timeout == USB3_LPM_DISABLED);
5038 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5039 			hub_encoded_timeout == USB3_LPM_DISABLED);
5040 
5041 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5042 			hub_encoded_timeout != USB3_LPM_DISABLED);
5043 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5044 			hub_encoded_timeout != USB3_LPM_DISABLED);
5045 
5046 	/* If U1 was already enabled and we're not disabling it,
5047 	 * or we're going to enable U1, account for the U1 max exit latency.
5048 	 */
5049 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5050 			enabling_u1)
5051 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5052 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5053 			enabling_u2)
5054 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5055 
5056 	if (u1_mel_us > u2_mel_us)
5057 		mel_us = u1_mel_us;
5058 	else
5059 		mel_us = u2_mel_us;
5060 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5061 	if (mel_us > MAX_EXIT) {
5062 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5063 				"is too big.\n", mel_us);
5064 		return -E2BIG;
5065 	}
5066 	return mel_us;
5067 }
5068 
5069 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5070 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071 			struct usb_device *udev, enum usb3_link_state state)
5072 {
5073 	struct xhci_hcd	*xhci;
5074 	u16 hub_encoded_timeout;
5075 	int mel;
5076 	int ret;
5077 
5078 	xhci = hcd_to_xhci(hcd);
5079 	/* The LPM timeout values are pretty host-controller specific, so don't
5080 	 * enable hub-initiated timeouts unless the vendor has provided
5081 	 * information about their timeout algorithm.
5082 	 */
5083 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5084 			!xhci->devs[udev->slot_id])
5085 		return USB3_LPM_DISABLED;
5086 
5087 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5088 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5089 	if (mel < 0) {
5090 		/* Max Exit Latency is too big, disable LPM. */
5091 		hub_encoded_timeout = USB3_LPM_DISABLED;
5092 		mel = 0;
5093 	}
5094 
5095 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5096 	if (ret)
5097 		return ret;
5098 	return hub_encoded_timeout;
5099 }
5100 
5101 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5102 			struct usb_device *udev, enum usb3_link_state state)
5103 {
5104 	struct xhci_hcd	*xhci;
5105 	u16 mel;
5106 
5107 	xhci = hcd_to_xhci(hcd);
5108 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5109 			!xhci->devs[udev->slot_id])
5110 		return 0;
5111 
5112 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5113 	return xhci_change_max_exit_latency(xhci, udev, mel);
5114 }
5115 #else /* CONFIG_PM */
5116 
5117 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5118 				struct usb_device *udev, int enable)
5119 {
5120 	return 0;
5121 }
5122 
5123 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5124 {
5125 	return 0;
5126 }
5127 
5128 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5129 			struct usb_device *udev, enum usb3_link_state state)
5130 {
5131 	return USB3_LPM_DISABLED;
5132 }
5133 
5134 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5135 			struct usb_device *udev, enum usb3_link_state state)
5136 {
5137 	return 0;
5138 }
5139 #endif	/* CONFIG_PM */
5140 
5141 /*-------------------------------------------------------------------------*/
5142 
5143 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5144  * internal data structures for the device.
5145  */
5146 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5147 			struct usb_tt *tt, gfp_t mem_flags)
5148 {
5149 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5150 	struct xhci_virt_device *vdev;
5151 	struct xhci_command *config_cmd;
5152 	struct xhci_input_control_ctx *ctrl_ctx;
5153 	struct xhci_slot_ctx *slot_ctx;
5154 	unsigned long flags;
5155 	unsigned think_time;
5156 	int ret;
5157 
5158 	/* Ignore root hubs */
5159 	if (!hdev->parent)
5160 		return 0;
5161 
5162 	vdev = xhci->devs[hdev->slot_id];
5163 	if (!vdev) {
5164 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5165 		return -EINVAL;
5166 	}
5167 
5168 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5169 	if (!config_cmd)
5170 		return -ENOMEM;
5171 
5172 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5173 	if (!ctrl_ctx) {
5174 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5175 				__func__);
5176 		xhci_free_command(xhci, config_cmd);
5177 		return -ENOMEM;
5178 	}
5179 
5180 	spin_lock_irqsave(&xhci->lock, flags);
5181 	if (hdev->speed == USB_SPEED_HIGH &&
5182 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5183 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5184 		xhci_free_command(xhci, config_cmd);
5185 		spin_unlock_irqrestore(&xhci->lock, flags);
5186 		return -ENOMEM;
5187 	}
5188 
5189 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5190 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5191 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5192 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5193 	/*
5194 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5195 	 * but it may be already set to 1 when setup an xHCI virtual
5196 	 * device, so clear it anyway.
5197 	 */
5198 	if (tt->multi)
5199 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5200 	else if (hdev->speed == USB_SPEED_FULL)
5201 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5202 
5203 	if (xhci->hci_version > 0x95) {
5204 		xhci_dbg(xhci, "xHCI version %x needs hub "
5205 				"TT think time and number of ports\n",
5206 				(unsigned int) xhci->hci_version);
5207 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5208 		/* Set TT think time - convert from ns to FS bit times.
5209 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5210 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5211 		 *
5212 		 * xHCI 1.0: this field shall be 0 if the device is not a
5213 		 * High-spped hub.
5214 		 */
5215 		think_time = tt->think_time;
5216 		if (think_time != 0)
5217 			think_time = (think_time / 666) - 1;
5218 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5219 			slot_ctx->tt_info |=
5220 				cpu_to_le32(TT_THINK_TIME(think_time));
5221 	} else {
5222 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5223 				"TT think time or number of ports\n",
5224 				(unsigned int) xhci->hci_version);
5225 	}
5226 	slot_ctx->dev_state = 0;
5227 	spin_unlock_irqrestore(&xhci->lock, flags);
5228 
5229 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5230 			(xhci->hci_version > 0x95) ?
5231 			"configure endpoint" : "evaluate context");
5232 
5233 	/* Issue and wait for the configure endpoint or
5234 	 * evaluate context command.
5235 	 */
5236 	if (xhci->hci_version > 0x95)
5237 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5238 				false, false);
5239 	else
5240 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5241 				true, false);
5242 
5243 	xhci_free_command(xhci, config_cmd);
5244 	return ret;
5245 }
5246 
5247 static int xhci_get_frame(struct usb_hcd *hcd)
5248 {
5249 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5250 	/* EHCI mods by the periodic size.  Why? */
5251 	return readl(&xhci->run_regs->microframe_index) >> 3;
5252 }
5253 
5254 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5255 {
5256 	struct xhci_hcd		*xhci;
5257 	/*
5258 	 * TODO: Check with DWC3 clients for sysdev according to
5259 	 * quirks
5260 	 */
5261 	struct device		*dev = hcd->self.sysdev;
5262 	unsigned int		minor_rev;
5263 	int			retval;
5264 
5265 	/* Accept arbitrarily long scatter-gather lists */
5266 	hcd->self.sg_tablesize = ~0;
5267 
5268 	/* support to build packet from discontinuous buffers */
5269 	hcd->self.no_sg_constraint = 1;
5270 
5271 	/* XHCI controllers don't stop the ep queue on short packets :| */
5272 	hcd->self.no_stop_on_short = 1;
5273 
5274 	xhci = hcd_to_xhci(hcd);
5275 
5276 	if (usb_hcd_is_primary_hcd(hcd)) {
5277 		xhci->main_hcd = hcd;
5278 		xhci->usb2_rhub.hcd = hcd;
5279 		/* Mark the first roothub as being USB 2.0.
5280 		 * The xHCI driver will register the USB 3.0 roothub.
5281 		 */
5282 		hcd->speed = HCD_USB2;
5283 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5284 		/*
5285 		 * USB 2.0 roothub under xHCI has an integrated TT,
5286 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5287 		 * companion controller.
5288 		 */
5289 		hcd->has_tt = 1;
5290 	} else {
5291 		/*
5292 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5293 		 * should return 0x31 for sbrn, or that the minor revision
5294 		 * is a two digit BCD containig minor and sub-minor numbers.
5295 		 * This was later clarified in xHCI 1.2.
5296 		 *
5297 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5298 		 * minor revision set to 0x1 instead of 0x10.
5299 		 */
5300 		if (xhci->usb3_rhub.min_rev == 0x1)
5301 			minor_rev = 1;
5302 		else
5303 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5304 
5305 		switch (minor_rev) {
5306 		case 2:
5307 			hcd->speed = HCD_USB32;
5308 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5309 			hcd->self.root_hub->rx_lanes = 2;
5310 			hcd->self.root_hub->tx_lanes = 2;
5311 			break;
5312 		case 1:
5313 			hcd->speed = HCD_USB31;
5314 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5315 			break;
5316 		}
5317 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5318 			  minor_rev,
5319 			  minor_rev ? "Enhanced " : "");
5320 
5321 		xhci->usb3_rhub.hcd = hcd;
5322 		/* xHCI private pointer was set in xhci_pci_probe for the second
5323 		 * registered roothub.
5324 		 */
5325 		return 0;
5326 	}
5327 
5328 	mutex_init(&xhci->mutex);
5329 	xhci->cap_regs = hcd->regs;
5330 	xhci->op_regs = hcd->regs +
5331 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5332 	xhci->run_regs = hcd->regs +
5333 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5334 	/* Cache read-only capability registers */
5335 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5336 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5337 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5338 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5339 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5340 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5341 	if (xhci->hci_version > 0x100)
5342 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5343 
5344 	xhci->quirks |= quirks;
5345 
5346 	get_quirks(dev, xhci);
5347 
5348 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5349 	 * success event after a short transfer. This quirk will ignore such
5350 	 * spurious event.
5351 	 */
5352 	if (xhci->hci_version > 0x96)
5353 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5354 
5355 	/* Make sure the HC is halted. */
5356 	retval = xhci_halt(xhci);
5357 	if (retval)
5358 		return retval;
5359 
5360 	xhci_zero_64b_regs(xhci);
5361 
5362 	xhci_dbg(xhci, "Resetting HCD\n");
5363 	/* Reset the internal HC memory state and registers. */
5364 	retval = xhci_reset(xhci);
5365 	if (retval)
5366 		return retval;
5367 	xhci_dbg(xhci, "Reset complete\n");
5368 
5369 	/*
5370 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5371 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5372 	 * address memory pointers actually. So, this driver clears the AC64
5373 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5374 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5375 	 */
5376 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5377 		xhci->hcc_params &= ~BIT(0);
5378 
5379 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5380 	 * if xHC supports 64-bit addressing */
5381 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5382 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5383 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5384 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5385 	} else {
5386 		/*
5387 		 * This is to avoid error in cases where a 32-bit USB
5388 		 * controller is used on a 64-bit capable system.
5389 		 */
5390 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5391 		if (retval)
5392 			return retval;
5393 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5394 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5395 	}
5396 
5397 	xhci_dbg(xhci, "Calling HCD init\n");
5398 	/* Initialize HCD and host controller data structures. */
5399 	retval = xhci_init(hcd);
5400 	if (retval)
5401 		return retval;
5402 	xhci_dbg(xhci, "Called HCD init\n");
5403 
5404 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5405 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5406 
5407 	return 0;
5408 }
5409 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5410 
5411 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5412 		struct usb_host_endpoint *ep)
5413 {
5414 	struct xhci_hcd *xhci;
5415 	struct usb_device *udev;
5416 	unsigned int slot_id;
5417 	unsigned int ep_index;
5418 	unsigned long flags;
5419 
5420 	xhci = hcd_to_xhci(hcd);
5421 
5422 	spin_lock_irqsave(&xhci->lock, flags);
5423 	udev = (struct usb_device *)ep->hcpriv;
5424 	slot_id = udev->slot_id;
5425 	ep_index = xhci_get_endpoint_index(&ep->desc);
5426 
5427 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5428 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5429 	spin_unlock_irqrestore(&xhci->lock, flags);
5430 }
5431 
5432 static const struct hc_driver xhci_hc_driver = {
5433 	.description =		"xhci-hcd",
5434 	.product_desc =		"xHCI Host Controller",
5435 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5436 
5437 	/*
5438 	 * generic hardware linkage
5439 	 */
5440 	.irq =			xhci_irq,
5441 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5442 				HCD_BH,
5443 
5444 	/*
5445 	 * basic lifecycle operations
5446 	 */
5447 	.reset =		NULL, /* set in xhci_init_driver() */
5448 	.start =		xhci_run,
5449 	.stop =			xhci_stop,
5450 	.shutdown =		xhci_shutdown,
5451 
5452 	/*
5453 	 * managing i/o requests and associated device resources
5454 	 */
5455 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5456 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5457 	.urb_enqueue =		xhci_urb_enqueue,
5458 	.urb_dequeue =		xhci_urb_dequeue,
5459 	.alloc_dev =		xhci_alloc_dev,
5460 	.free_dev =		xhci_free_dev,
5461 	.alloc_streams =	xhci_alloc_streams,
5462 	.free_streams =		xhci_free_streams,
5463 	.add_endpoint =		xhci_add_endpoint,
5464 	.drop_endpoint =	xhci_drop_endpoint,
5465 	.endpoint_disable =	xhci_endpoint_disable,
5466 	.endpoint_reset =	xhci_endpoint_reset,
5467 	.check_bandwidth =	xhci_check_bandwidth,
5468 	.reset_bandwidth =	xhci_reset_bandwidth,
5469 	.address_device =	xhci_address_device,
5470 	.enable_device =	xhci_enable_device,
5471 	.update_hub_device =	xhci_update_hub_device,
5472 	.reset_device =		xhci_discover_or_reset_device,
5473 
5474 	/*
5475 	 * scheduling support
5476 	 */
5477 	.get_frame_number =	xhci_get_frame,
5478 
5479 	/*
5480 	 * root hub support
5481 	 */
5482 	.hub_control =		xhci_hub_control,
5483 	.hub_status_data =	xhci_hub_status_data,
5484 	.bus_suspend =		xhci_bus_suspend,
5485 	.bus_resume =		xhci_bus_resume,
5486 	.get_resuming_ports =	xhci_get_resuming_ports,
5487 
5488 	/*
5489 	 * call back when device connected and addressed
5490 	 */
5491 	.update_device =        xhci_update_device,
5492 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5493 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5494 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5495 	.find_raw_port_number =	xhci_find_raw_port_number,
5496 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5497 };
5498 
5499 void xhci_init_driver(struct hc_driver *drv,
5500 		      const struct xhci_driver_overrides *over)
5501 {
5502 	BUG_ON(!over);
5503 
5504 	/* Copy the generic table to drv then apply the overrides */
5505 	*drv = xhci_hc_driver;
5506 
5507 	if (over) {
5508 		drv->hcd_priv_size += over->extra_priv_size;
5509 		if (over->reset)
5510 			drv->reset = over->reset;
5511 		if (over->start)
5512 			drv->start = over->start;
5513 		if (over->check_bandwidth)
5514 			drv->check_bandwidth = over->check_bandwidth;
5515 		if (over->reset_bandwidth)
5516 			drv->reset_bandwidth = over->reset_bandwidth;
5517 	}
5518 }
5519 EXPORT_SYMBOL_GPL(xhci_init_driver);
5520 
5521 MODULE_DESCRIPTION(DRIVER_DESC);
5522 MODULE_AUTHOR(DRIVER_AUTHOR);
5523 MODULE_LICENSE("GPL");
5524 
5525 static int __init xhci_hcd_init(void)
5526 {
5527 	/*
5528 	 * Check the compiler generated sizes of structures that must be laid
5529 	 * out in specific ways for hardware access.
5530 	 */
5531 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5532 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5533 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5534 	/* xhci_device_control has eight fields, and also
5535 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5536 	 */
5537 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5538 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5539 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5540 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5541 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5542 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5543 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5544 
5545 	if (usb_disabled())
5546 		return -ENODEV;
5547 
5548 	xhci_debugfs_create_root();
5549 
5550 	return 0;
5551 }
5552 
5553 /*
5554  * If an init function is provided, an exit function must also be provided
5555  * to allow module unload.
5556  */
5557 static void __exit xhci_hcd_fini(void)
5558 {
5559 	xhci_debugfs_remove_root();
5560 }
5561 
5562 module_init(xhci_hcd_init);
5563 module_exit(xhci_hcd_fini);
5564