1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional 86 * exit_state parameter, and bails out with an error immediately when xhc_state 87 * has exit_state flag set. 88 */ 89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr, 90 u32 mask, u32 done, int usec, unsigned int exit_state) 91 { 92 u32 result; 93 int ret; 94 95 ret = readl_poll_timeout_atomic(ptr, result, 96 (result & mask) == done || 97 result == U32_MAX || 98 xhci->xhc_state & exit_state, 99 1, usec); 100 101 if (result == U32_MAX || xhci->xhc_state & exit_state) 102 return -ENODEV; 103 104 return ret; 105 } 106 107 /* 108 * Disable interrupts and begin the xHCI halting process. 109 */ 110 void xhci_quiesce(struct xhci_hcd *xhci) 111 { 112 u32 halted; 113 u32 cmd; 114 u32 mask; 115 116 mask = ~(XHCI_IRQS); 117 halted = readl(&xhci->op_regs->status) & STS_HALT; 118 if (!halted) 119 mask &= ~CMD_RUN; 120 121 cmd = readl(&xhci->op_regs->command); 122 cmd &= mask; 123 writel(cmd, &xhci->op_regs->command); 124 } 125 126 /* 127 * Force HC into halt state. 128 * 129 * Disable any IRQs and clear the run/stop bit. 130 * HC will complete any current and actively pipelined transactions, and 131 * should halt within 16 ms of the run/stop bit being cleared. 132 * Read HC Halted bit in the status register to see when the HC is finished. 133 */ 134 int xhci_halt(struct xhci_hcd *xhci) 135 { 136 int ret; 137 138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 139 xhci_quiesce(xhci); 140 141 ret = xhci_handshake(&xhci->op_regs->status, 142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 143 if (ret) { 144 xhci_warn(xhci, "Host halt failed, %d\n", ret); 145 return ret; 146 } 147 148 xhci->xhc_state |= XHCI_STATE_HALTED; 149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 150 151 return ret; 152 } 153 154 /* 155 * Set the run bit and wait for the host to be running. 156 */ 157 int xhci_start(struct xhci_hcd *xhci) 158 { 159 u32 temp; 160 int ret; 161 162 temp = readl(&xhci->op_regs->command); 163 temp |= (CMD_RUN); 164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 165 temp); 166 writel(temp, &xhci->op_regs->command); 167 168 /* 169 * Wait for the HCHalted Status bit to be 0 to indicate the host is 170 * running. 171 */ 172 ret = xhci_handshake(&xhci->op_regs->status, 173 STS_HALT, 0, XHCI_MAX_HALT_USEC); 174 if (ret == -ETIMEDOUT) 175 xhci_err(xhci, "Host took too long to start, " 176 "waited %u microseconds.\n", 177 XHCI_MAX_HALT_USEC); 178 if (!ret) { 179 /* clear state flags. Including dying, halted or removing */ 180 xhci->xhc_state = 0; 181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 182 } 183 184 return ret; 185 } 186 187 /* 188 * Reset a halted HC. 189 * 190 * This resets pipelines, timers, counters, state machines, etc. 191 * Transactions will be terminated immediately, and operational registers 192 * will be set to their defaults. 193 */ 194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 195 { 196 u32 command; 197 u32 state; 198 int ret; 199 200 state = readl(&xhci->op_regs->status); 201 202 if (state == ~(u32)0) { 203 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 204 return -ENODEV; 205 } 206 207 if ((state & STS_HALT) == 0) { 208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 209 return 0; 210 } 211 212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 213 command = readl(&xhci->op_regs->command); 214 command |= CMD_RESET; 215 writel(command, &xhci->op_regs->command); 216 217 /* Existing Intel xHCI controllers require a delay of 1 mS, 218 * after setting the CMD_RESET bit, and before accessing any 219 * HC registers. This allows the HC to complete the 220 * reset operation and be ready for HC register access. 221 * Without this delay, the subsequent HC register access, 222 * may result in a system hang very rarely. 223 */ 224 if (xhci->quirks & XHCI_INTEL_HOST) 225 udelay(1000); 226 227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command, 228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING); 229 if (ret) 230 return ret; 231 232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 234 235 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 236 "Wait for controller to be ready for doorbell rings"); 237 /* 238 * xHCI cannot write to any doorbells or operational registers other 239 * than status until the "Controller Not Ready" flag is cleared. 240 */ 241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 242 243 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 244 xhci->usb2_rhub.bus_state.suspended_ports = 0; 245 xhci->usb2_rhub.bus_state.resuming_ports = 0; 246 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 247 xhci->usb3_rhub.bus_state.suspended_ports = 0; 248 xhci->usb3_rhub.bus_state.resuming_ports = 0; 249 250 return ret; 251 } 252 253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 254 { 255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 256 struct iommu_domain *domain; 257 int err, i; 258 u64 val; 259 u32 intrs; 260 261 /* 262 * Some Renesas controllers get into a weird state if they are 263 * reset while programmed with 64bit addresses (they will preserve 264 * the top half of the address in internal, non visible 265 * registers). You end up with half the address coming from the 266 * kernel, and the other half coming from the firmware. Also, 267 * changing the programming leads to extra accesses even if the 268 * controller is supposed to be halted. The controller ends up with 269 * a fatal fault, and is then ripe for being properly reset. 270 * 271 * Special care is taken to only apply this if the device is behind 272 * an iommu. Doing anything when there is no iommu is definitely 273 * unsafe... 274 */ 275 domain = iommu_get_domain_for_dev(dev); 276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 277 domain->type == IOMMU_DOMAIN_IDENTITY) 278 return; 279 280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 281 282 /* Clear HSEIE so that faults do not get signaled */ 283 val = readl(&xhci->op_regs->command); 284 val &= ~CMD_HSEIE; 285 writel(val, &xhci->op_regs->command); 286 287 /* Clear HSE (aka FATAL) */ 288 val = readl(&xhci->op_regs->status); 289 val |= STS_FATAL; 290 writel(val, &xhci->op_regs->status); 291 292 /* Now zero the registers, and brace for impact */ 293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 294 if (upper_32_bits(val)) 295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 297 if (upper_32_bits(val)) 298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 299 300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 301 ARRAY_SIZE(xhci->run_regs->ir_set)); 302 303 for (i = 0; i < intrs; i++) { 304 struct xhci_intr_reg __iomem *ir; 305 306 ir = &xhci->run_regs->ir_set[i]; 307 val = xhci_read_64(xhci, &ir->erst_base); 308 if (upper_32_bits(val)) 309 xhci_write_64(xhci, 0, &ir->erst_base); 310 val= xhci_read_64(xhci, &ir->erst_dequeue); 311 if (upper_32_bits(val)) 312 xhci_write_64(xhci, 0, &ir->erst_dequeue); 313 } 314 315 /* Wait for the fault to appear. It will be cleared on reset */ 316 err = xhci_handshake(&xhci->op_regs->status, 317 STS_FATAL, STS_FATAL, 318 XHCI_MAX_HALT_USEC); 319 if (!err) 320 xhci_info(xhci, "Fault detected\n"); 321 } 322 323 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 324 { 325 u32 iman; 326 327 if (!ir || !ir->ir_set) 328 return -EINVAL; 329 330 iman = readl(&ir->ir_set->irq_pending); 331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 332 333 return 0; 334 } 335 336 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 337 { 338 u32 iman; 339 340 if (!ir || !ir->ir_set) 341 return -EINVAL; 342 343 iman = readl(&ir->ir_set->irq_pending); 344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 345 346 return 0; 347 } 348 349 static void compliance_mode_recovery(struct timer_list *t) 350 { 351 struct xhci_hcd *xhci; 352 struct usb_hcd *hcd; 353 struct xhci_hub *rhub; 354 u32 temp; 355 int i; 356 357 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 358 rhub = &xhci->usb3_rhub; 359 hcd = rhub->hcd; 360 361 if (!hcd) 362 return; 363 364 for (i = 0; i < rhub->num_ports; i++) { 365 temp = readl(rhub->ports[i]->addr); 366 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 367 /* 368 * Compliance Mode Detected. Letting USB Core 369 * handle the Warm Reset 370 */ 371 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 372 "Compliance mode detected->port %d", 373 i + 1); 374 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 375 "Attempting compliance mode recovery"); 376 377 if (hcd->state == HC_STATE_SUSPENDED) 378 usb_hcd_resume_root_hub(hcd); 379 380 usb_hcd_poll_rh_status(hcd); 381 } 382 } 383 384 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 385 mod_timer(&xhci->comp_mode_recovery_timer, 386 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 387 } 388 389 /* 390 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 391 * that causes ports behind that hardware to enter compliance mode sometimes. 392 * The quirk creates a timer that polls every 2 seconds the link state of 393 * each host controller's port and recovers it by issuing a Warm reset 394 * if Compliance mode is detected, otherwise the port will become "dead" (no 395 * device connections or disconnections will be detected anymore). Becasue no 396 * status event is generated when entering compliance mode (per xhci spec), 397 * this quirk is needed on systems that have the failing hardware installed. 398 */ 399 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 400 { 401 xhci->port_status_u0 = 0; 402 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 403 0); 404 xhci->comp_mode_recovery_timer.expires = jiffies + 405 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 406 407 add_timer(&xhci->comp_mode_recovery_timer); 408 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 409 "Compliance mode recovery timer initialized"); 410 } 411 412 /* 413 * This function identifies the systems that have installed the SN65LVPE502CP 414 * USB3.0 re-driver and that need the Compliance Mode Quirk. 415 * Systems: 416 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 417 */ 418 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 419 { 420 const char *dmi_product_name, *dmi_sys_vendor; 421 422 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 423 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 424 if (!dmi_product_name || !dmi_sys_vendor) 425 return false; 426 427 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 428 return false; 429 430 if (strstr(dmi_product_name, "Z420") || 431 strstr(dmi_product_name, "Z620") || 432 strstr(dmi_product_name, "Z820") || 433 strstr(dmi_product_name, "Z1 Workstation")) 434 return true; 435 436 return false; 437 } 438 439 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 440 { 441 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 442 } 443 444 445 /* 446 * Initialize memory for HCD and xHC (one-time init). 447 * 448 * Program the PAGESIZE register, initialize the device context array, create 449 * device contexts (?), set up a command ring segment (or two?), create event 450 * ring (one for now). 451 */ 452 static int xhci_init(struct usb_hcd *hcd) 453 { 454 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 455 int retval; 456 457 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 458 spin_lock_init(&xhci->lock); 459 if (xhci->hci_version == 0x95 && link_quirk) { 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "QUIRK: Not clearing Link TRB chain bits."); 462 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 463 } else { 464 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 465 "xHCI doesn't need link TRB QUIRK"); 466 } 467 retval = xhci_mem_init(xhci, GFP_KERNEL); 468 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 469 470 /* Initializing Compliance Mode Recovery Data If Needed */ 471 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 472 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 473 compliance_mode_recovery_timer_init(xhci); 474 } 475 476 return retval; 477 } 478 479 /*-------------------------------------------------------------------------*/ 480 481 static int xhci_run_finished(struct xhci_hcd *xhci) 482 { 483 struct xhci_interrupter *ir = xhci->interrupters[0]; 484 unsigned long flags; 485 u32 temp; 486 487 /* 488 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 489 * Protect the short window before host is running with a lock 490 */ 491 spin_lock_irqsave(&xhci->lock, flags); 492 493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 494 temp = readl(&xhci->op_regs->command); 495 temp |= (CMD_EIE); 496 writel(temp, &xhci->op_regs->command); 497 498 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 499 xhci_enable_interrupter(ir); 500 501 if (xhci_start(xhci)) { 502 xhci_halt(xhci); 503 spin_unlock_irqrestore(&xhci->lock, flags); 504 return -ENODEV; 505 } 506 507 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 508 509 if (xhci->quirks & XHCI_NEC_HOST) 510 xhci_ring_cmd_db(xhci); 511 512 spin_unlock_irqrestore(&xhci->lock, flags); 513 514 return 0; 515 } 516 517 /* 518 * Start the HC after it was halted. 519 * 520 * This function is called by the USB core when the HC driver is added. 521 * Its opposite is xhci_stop(). 522 * 523 * xhci_init() must be called once before this function can be called. 524 * Reset the HC, enable device slot contexts, program DCBAAP, and 525 * set command ring pointer and event ring pointer. 526 * 527 * Setup MSI-X vectors and enable interrupts. 528 */ 529 int xhci_run(struct usb_hcd *hcd) 530 { 531 u32 temp; 532 u64 temp_64; 533 int ret; 534 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 535 struct xhci_interrupter *ir = xhci->interrupters[0]; 536 /* Start the xHCI host controller running only after the USB 2.0 roothub 537 * is setup. 538 */ 539 540 hcd->uses_new_polling = 1; 541 if (!usb_hcd_is_primary_hcd(hcd)) 542 return xhci_run_finished(xhci); 543 544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 545 546 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 547 temp_64 &= ERST_PTR_MASK; 548 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 549 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 550 551 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 552 "// Set the interrupt modulation register"); 553 temp = readl(&ir->ir_set->irq_control); 554 temp &= ~ER_IRQ_INTERVAL_MASK; 555 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 556 writel(temp, &ir->ir_set->irq_control); 557 558 if (xhci->quirks & XHCI_NEC_HOST) { 559 struct xhci_command *command; 560 561 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 562 if (!command) 563 return -ENOMEM; 564 565 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 566 TRB_TYPE(TRB_NEC_GET_FW)); 567 if (ret) 568 xhci_free_command(xhci, command); 569 } 570 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 571 "Finished %s for main hcd", __func__); 572 573 xhci_create_dbc_dev(xhci); 574 575 xhci_debugfs_init(xhci); 576 577 if (xhci_has_one_roothub(xhci)) 578 return xhci_run_finished(xhci); 579 580 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 581 582 return 0; 583 } 584 EXPORT_SYMBOL_GPL(xhci_run); 585 586 /* 587 * Stop xHCI driver. 588 * 589 * This function is called by the USB core when the HC driver is removed. 590 * Its opposite is xhci_run(). 591 * 592 * Disable device contexts, disable IRQs, and quiesce the HC. 593 * Reset the HC, finish any completed transactions, and cleanup memory. 594 */ 595 void xhci_stop(struct usb_hcd *hcd) 596 { 597 u32 temp; 598 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 599 struct xhci_interrupter *ir = xhci->interrupters[0]; 600 601 mutex_lock(&xhci->mutex); 602 603 /* Only halt host and free memory after both hcds are removed */ 604 if (!usb_hcd_is_primary_hcd(hcd)) { 605 mutex_unlock(&xhci->mutex); 606 return; 607 } 608 609 xhci_remove_dbc_dev(xhci); 610 611 spin_lock_irq(&xhci->lock); 612 xhci->xhc_state |= XHCI_STATE_HALTED; 613 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 614 xhci_halt(xhci); 615 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 616 spin_unlock_irq(&xhci->lock); 617 618 /* Deleting Compliance Mode Recovery Timer */ 619 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 620 (!(xhci_all_ports_seen_u0(xhci)))) { 621 del_timer_sync(&xhci->comp_mode_recovery_timer); 622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 623 "%s: compliance mode recovery timer deleted", 624 __func__); 625 } 626 627 if (xhci->quirks & XHCI_AMD_PLL_FIX) 628 usb_amd_dev_put(); 629 630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 631 "// Disabling event ring interrupts"); 632 temp = readl(&xhci->op_regs->status); 633 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 634 xhci_disable_interrupter(ir); 635 636 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 637 xhci_mem_cleanup(xhci); 638 xhci_debugfs_exit(xhci); 639 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 640 "xhci_stop completed - status = %x", 641 readl(&xhci->op_regs->status)); 642 mutex_unlock(&xhci->mutex); 643 } 644 EXPORT_SYMBOL_GPL(xhci_stop); 645 646 /* 647 * Shutdown HC (not bus-specific) 648 * 649 * This is called when the machine is rebooting or halting. We assume that the 650 * machine will be powered off, and the HC's internal state will be reset. 651 * Don't bother to free memory. 652 * 653 * This will only ever be called with the main usb_hcd (the USB3 roothub). 654 */ 655 void xhci_shutdown(struct usb_hcd *hcd) 656 { 657 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 658 659 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 660 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 661 662 /* Don't poll the roothubs after shutdown. */ 663 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 664 __func__, hcd->self.busnum); 665 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 666 del_timer_sync(&hcd->rh_timer); 667 668 if (xhci->shared_hcd) { 669 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 670 del_timer_sync(&xhci->shared_hcd->rh_timer); 671 } 672 673 spin_lock_irq(&xhci->lock); 674 xhci_halt(xhci); 675 676 /* 677 * Workaround for spurious wakeps at shutdown with HSW, and for boot 678 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 679 */ 680 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 681 xhci->quirks & XHCI_RESET_TO_DEFAULT) 682 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 683 684 spin_unlock_irq(&xhci->lock); 685 686 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 687 "xhci_shutdown completed - status = %x", 688 readl(&xhci->op_regs->status)); 689 } 690 EXPORT_SYMBOL_GPL(xhci_shutdown); 691 692 #ifdef CONFIG_PM 693 static void xhci_save_registers(struct xhci_hcd *xhci) 694 { 695 struct xhci_interrupter *ir; 696 unsigned int i; 697 698 xhci->s3.command = readl(&xhci->op_regs->command); 699 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 700 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 701 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 702 703 /* save both primary and all secondary interrupters */ 704 /* fixme, shold we lock to prevent race with remove secondary interrupter? */ 705 for (i = 0; i < xhci->max_interrupters; i++) { 706 ir = xhci->interrupters[i]; 707 if (!ir) 708 continue; 709 710 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 711 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 712 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 713 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 714 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 715 } 716 } 717 718 static void xhci_restore_registers(struct xhci_hcd *xhci) 719 { 720 struct xhci_interrupter *ir; 721 unsigned int i; 722 723 writel(xhci->s3.command, &xhci->op_regs->command); 724 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 725 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 726 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 727 728 /* FIXME should we lock to protect against freeing of interrupters */ 729 for (i = 0; i < xhci->max_interrupters; i++) { 730 ir = xhci->interrupters[i]; 731 if (!ir) 732 continue; 733 734 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 735 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 736 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 737 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 738 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 739 } 740 } 741 742 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 743 { 744 u64 val_64; 745 746 /* step 2: initialize command ring buffer */ 747 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 748 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 749 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 750 xhci->cmd_ring->dequeue) & 751 (u64) ~CMD_RING_RSVD_BITS) | 752 xhci->cmd_ring->cycle_state; 753 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 754 "// Setting command ring address to 0x%llx", 755 (long unsigned long) val_64); 756 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 757 } 758 759 /* 760 * The whole command ring must be cleared to zero when we suspend the host. 761 * 762 * The host doesn't save the command ring pointer in the suspend well, so we 763 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 764 * aligned, because of the reserved bits in the command ring dequeue pointer 765 * register. Therefore, we can't just set the dequeue pointer back in the 766 * middle of the ring (TRBs are 16-byte aligned). 767 */ 768 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 769 { 770 struct xhci_ring *ring; 771 struct xhci_segment *seg; 772 773 ring = xhci->cmd_ring; 774 seg = ring->deq_seg; 775 do { 776 memset(seg->trbs, 0, 777 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 778 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 779 cpu_to_le32(~TRB_CYCLE); 780 seg = seg->next; 781 } while (seg != ring->deq_seg); 782 783 /* Reset the software enqueue and dequeue pointers */ 784 ring->deq_seg = ring->first_seg; 785 ring->dequeue = ring->first_seg->trbs; 786 ring->enq_seg = ring->deq_seg; 787 ring->enqueue = ring->dequeue; 788 789 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 790 /* 791 * Ring is now zeroed, so the HW should look for change of ownership 792 * when the cycle bit is set to 1. 793 */ 794 ring->cycle_state = 1; 795 796 /* 797 * Reset the hardware dequeue pointer. 798 * Yes, this will need to be re-written after resume, but we're paranoid 799 * and want to make sure the hardware doesn't access bogus memory 800 * because, say, the BIOS or an SMI started the host without changing 801 * the command ring pointers. 802 */ 803 xhci_set_cmd_ring_deq(xhci); 804 } 805 806 /* 807 * Disable port wake bits if do_wakeup is not set. 808 * 809 * Also clear a possible internal port wake state left hanging for ports that 810 * detected termination but never successfully enumerated (trained to 0U). 811 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 812 * at enumeration clears this wake, force one here as well for unconnected ports 813 */ 814 815 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 816 struct xhci_hub *rhub, 817 bool do_wakeup) 818 { 819 unsigned long flags; 820 u32 t1, t2, portsc; 821 int i; 822 823 spin_lock_irqsave(&xhci->lock, flags); 824 825 for (i = 0; i < rhub->num_ports; i++) { 826 portsc = readl(rhub->ports[i]->addr); 827 t1 = xhci_port_state_to_neutral(portsc); 828 t2 = t1; 829 830 /* clear wake bits if do_wake is not set */ 831 if (!do_wakeup) 832 t2 &= ~PORT_WAKE_BITS; 833 834 /* Don't touch csc bit if connected or connect change is set */ 835 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 836 t2 |= PORT_CSC; 837 838 if (t1 != t2) { 839 writel(t2, rhub->ports[i]->addr); 840 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 841 rhub->hcd->self.busnum, i + 1, portsc, t2); 842 } 843 } 844 spin_unlock_irqrestore(&xhci->lock, flags); 845 } 846 847 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 848 { 849 struct xhci_port **ports; 850 int port_index; 851 u32 status; 852 u32 portsc; 853 854 status = readl(&xhci->op_regs->status); 855 if (status & STS_EINT) 856 return true; 857 /* 858 * Checking STS_EINT is not enough as there is a lag between a change 859 * bit being set and the Port Status Change Event that it generated 860 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 861 */ 862 863 port_index = xhci->usb2_rhub.num_ports; 864 ports = xhci->usb2_rhub.ports; 865 while (port_index--) { 866 portsc = readl(ports[port_index]->addr); 867 if (portsc & PORT_CHANGE_MASK || 868 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 869 return true; 870 } 871 port_index = xhci->usb3_rhub.num_ports; 872 ports = xhci->usb3_rhub.ports; 873 while (port_index--) { 874 portsc = readl(ports[port_index]->addr); 875 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) || 876 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 877 return true; 878 } 879 return false; 880 } 881 882 /* 883 * Stop HC (not bus-specific) 884 * 885 * This is called when the machine transition into S3/S4 mode. 886 * 887 */ 888 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 889 { 890 int rc = 0; 891 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 892 struct usb_hcd *hcd = xhci_to_hcd(xhci); 893 u32 command; 894 u32 res; 895 896 if (!hcd->state) 897 return 0; 898 899 if (hcd->state != HC_STATE_SUSPENDED || 900 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 901 return -EINVAL; 902 903 /* Clear root port wake on bits if wakeup not allowed. */ 904 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 905 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 906 907 if (!HCD_HW_ACCESSIBLE(hcd)) 908 return 0; 909 910 xhci_dbc_suspend(xhci); 911 912 /* Don't poll the roothubs on bus suspend. */ 913 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 914 __func__, hcd->self.busnum); 915 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 916 del_timer_sync(&hcd->rh_timer); 917 if (xhci->shared_hcd) { 918 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 919 del_timer_sync(&xhci->shared_hcd->rh_timer); 920 } 921 922 if (xhci->quirks & XHCI_SUSPEND_DELAY) 923 usleep_range(1000, 1500); 924 925 spin_lock_irq(&xhci->lock); 926 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 927 if (xhci->shared_hcd) 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 929 /* step 1: stop endpoint */ 930 /* skipped assuming that port suspend has done */ 931 932 /* step 2: clear Run/Stop bit */ 933 command = readl(&xhci->op_regs->command); 934 command &= ~CMD_RUN; 935 writel(command, &xhci->op_regs->command); 936 937 /* Some chips from Fresco Logic need an extraordinary delay */ 938 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 939 940 if (xhci_handshake(&xhci->op_regs->status, 941 STS_HALT, STS_HALT, delay)) { 942 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 943 spin_unlock_irq(&xhci->lock); 944 return -ETIMEDOUT; 945 } 946 xhci_clear_command_ring(xhci); 947 948 /* step 3: save registers */ 949 xhci_save_registers(xhci); 950 951 /* step 4: set CSS flag */ 952 command = readl(&xhci->op_regs->command); 953 command |= CMD_CSS; 954 writel(command, &xhci->op_regs->command); 955 xhci->broken_suspend = 0; 956 if (xhci_handshake(&xhci->op_regs->status, 957 STS_SAVE, 0, 20 * 1000)) { 958 /* 959 * AMD SNPS xHC 3.0 occasionally does not clear the 960 * SSS bit of USBSTS and when driver tries to poll 961 * to see if the xHC clears BIT(8) which never happens 962 * and driver assumes that controller is not responding 963 * and times out. To workaround this, its good to check 964 * if SRE and HCE bits are not set (as per xhci 965 * Section 5.4.2) and bypass the timeout. 966 */ 967 res = readl(&xhci->op_regs->status); 968 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 969 (((res & STS_SRE) == 0) && 970 ((res & STS_HCE) == 0))) { 971 xhci->broken_suspend = 1; 972 } else { 973 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 974 spin_unlock_irq(&xhci->lock); 975 return -ETIMEDOUT; 976 } 977 } 978 spin_unlock_irq(&xhci->lock); 979 980 /* 981 * Deleting Compliance Mode Recovery Timer because the xHCI Host 982 * is about to be suspended. 983 */ 984 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 985 (!(xhci_all_ports_seen_u0(xhci)))) { 986 del_timer_sync(&xhci->comp_mode_recovery_timer); 987 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 988 "%s: compliance mode recovery timer deleted", 989 __func__); 990 } 991 992 return rc; 993 } 994 EXPORT_SYMBOL_GPL(xhci_suspend); 995 996 /* 997 * start xHC (not bus-specific) 998 * 999 * This is called when the machine transition from S3/S4 mode. 1000 * 1001 */ 1002 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 1003 { 1004 bool hibernated = (msg.event == PM_EVENT_RESTORE); 1005 u32 command, temp = 0; 1006 struct usb_hcd *hcd = xhci_to_hcd(xhci); 1007 int retval = 0; 1008 bool comp_timer_running = false; 1009 bool pending_portevent = false; 1010 bool suspended_usb3_devs = false; 1011 bool reinit_xhc = false; 1012 1013 if (!hcd->state) 1014 return 0; 1015 1016 /* Wait a bit if either of the roothubs need to settle from the 1017 * transition into bus suspend. 1018 */ 1019 1020 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 1021 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 1022 msleep(100); 1023 1024 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1025 if (xhci->shared_hcd) 1026 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1027 1028 spin_lock_irq(&xhci->lock); 1029 1030 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 1031 reinit_xhc = true; 1032 1033 if (!reinit_xhc) { 1034 /* 1035 * Some controllers might lose power during suspend, so wait 1036 * for controller not ready bit to clear, just as in xHC init. 1037 */ 1038 retval = xhci_handshake(&xhci->op_regs->status, 1039 STS_CNR, 0, 10 * 1000 * 1000); 1040 if (retval) { 1041 xhci_warn(xhci, "Controller not ready at resume %d\n", 1042 retval); 1043 spin_unlock_irq(&xhci->lock); 1044 return retval; 1045 } 1046 /* step 1: restore register */ 1047 xhci_restore_registers(xhci); 1048 /* step 2: initialize command ring buffer */ 1049 xhci_set_cmd_ring_deq(xhci); 1050 /* step 3: restore state and start state*/ 1051 /* step 3: set CRS flag */ 1052 command = readl(&xhci->op_regs->command); 1053 command |= CMD_CRS; 1054 writel(command, &xhci->op_regs->command); 1055 /* 1056 * Some controllers take up to 55+ ms to complete the controller 1057 * restore so setting the timeout to 100ms. Xhci specification 1058 * doesn't mention any timeout value. 1059 */ 1060 if (xhci_handshake(&xhci->op_regs->status, 1061 STS_RESTORE, 0, 100 * 1000)) { 1062 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1063 spin_unlock_irq(&xhci->lock); 1064 return -ETIMEDOUT; 1065 } 1066 } 1067 1068 temp = readl(&xhci->op_regs->status); 1069 1070 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1071 if ((temp & (STS_SRE | STS_HCE)) && 1072 !(xhci->xhc_state & XHCI_STATE_REMOVING)) { 1073 reinit_xhc = true; 1074 if (!xhci->broken_suspend) 1075 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1076 } 1077 1078 if (reinit_xhc) { 1079 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1080 !(xhci_all_ports_seen_u0(xhci))) { 1081 del_timer_sync(&xhci->comp_mode_recovery_timer); 1082 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1083 "Compliance Mode Recovery Timer deleted!"); 1084 } 1085 1086 /* Let the USB core know _both_ roothubs lost power. */ 1087 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1088 if (xhci->shared_hcd) 1089 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1090 1091 xhci_dbg(xhci, "Stop HCD\n"); 1092 xhci_halt(xhci); 1093 xhci_zero_64b_regs(xhci); 1094 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1095 spin_unlock_irq(&xhci->lock); 1096 if (retval) 1097 return retval; 1098 1099 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1100 temp = readl(&xhci->op_regs->status); 1101 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1102 xhci_disable_interrupter(xhci->interrupters[0]); 1103 1104 xhci_dbg(xhci, "cleaning up memory\n"); 1105 xhci_mem_cleanup(xhci); 1106 xhci_debugfs_exit(xhci); 1107 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1108 readl(&xhci->op_regs->status)); 1109 1110 /* USB core calls the PCI reinit and start functions twice: 1111 * first with the primary HCD, and then with the secondary HCD. 1112 * If we don't do the same, the host will never be started. 1113 */ 1114 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1115 retval = xhci_init(hcd); 1116 if (retval) 1117 return retval; 1118 comp_timer_running = true; 1119 1120 xhci_dbg(xhci, "Start the primary HCD\n"); 1121 retval = xhci_run(hcd); 1122 if (!retval && xhci->shared_hcd) { 1123 xhci_dbg(xhci, "Start the secondary HCD\n"); 1124 retval = xhci_run(xhci->shared_hcd); 1125 } 1126 1127 hcd->state = HC_STATE_SUSPENDED; 1128 if (xhci->shared_hcd) 1129 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1130 goto done; 1131 } 1132 1133 /* step 4: set Run/Stop bit */ 1134 command = readl(&xhci->op_regs->command); 1135 command |= CMD_RUN; 1136 writel(command, &xhci->op_regs->command); 1137 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1138 0, 250 * 1000); 1139 1140 /* step 5: walk topology and initialize portsc, 1141 * portpmsc and portli 1142 */ 1143 /* this is done in bus_resume */ 1144 1145 /* step 6: restart each of the previously 1146 * Running endpoints by ringing their doorbells 1147 */ 1148 1149 spin_unlock_irq(&xhci->lock); 1150 1151 xhci_dbc_resume(xhci); 1152 1153 done: 1154 if (retval == 0) { 1155 /* 1156 * Resume roothubs only if there are pending events. 1157 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1158 * the first wake signalling failed, give it that chance if 1159 * there are suspended USB 3 devices. 1160 */ 1161 if (xhci->usb3_rhub.bus_state.suspended_ports || 1162 xhci->usb3_rhub.bus_state.bus_suspended) 1163 suspended_usb3_devs = true; 1164 1165 pending_portevent = xhci_pending_portevent(xhci); 1166 1167 if (suspended_usb3_devs && !pending_portevent && 1168 msg.event == PM_EVENT_AUTO_RESUME) { 1169 msleep(120); 1170 pending_portevent = xhci_pending_portevent(xhci); 1171 } 1172 1173 if (pending_portevent) { 1174 if (xhci->shared_hcd) 1175 usb_hcd_resume_root_hub(xhci->shared_hcd); 1176 usb_hcd_resume_root_hub(hcd); 1177 } 1178 } 1179 /* 1180 * If system is subject to the Quirk, Compliance Mode Timer needs to 1181 * be re-initialized Always after a system resume. Ports are subject 1182 * to suffer the Compliance Mode issue again. It doesn't matter if 1183 * ports have entered previously to U0 before system's suspension. 1184 */ 1185 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1186 compliance_mode_recovery_timer_init(xhci); 1187 1188 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1189 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1190 1191 /* Re-enable port polling. */ 1192 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1193 __func__, hcd->self.busnum); 1194 if (xhci->shared_hcd) { 1195 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1196 usb_hcd_poll_rh_status(xhci->shared_hcd); 1197 } 1198 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1199 usb_hcd_poll_rh_status(hcd); 1200 1201 return retval; 1202 } 1203 EXPORT_SYMBOL_GPL(xhci_resume); 1204 #endif /* CONFIG_PM */ 1205 1206 /*-------------------------------------------------------------------------*/ 1207 1208 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1209 { 1210 void *temp; 1211 int ret = 0; 1212 unsigned int buf_len; 1213 enum dma_data_direction dir; 1214 1215 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1216 buf_len = urb->transfer_buffer_length; 1217 1218 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1219 dev_to_node(hcd->self.sysdev)); 1220 1221 if (usb_urb_dir_out(urb)) 1222 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1223 temp, buf_len, 0); 1224 1225 urb->transfer_buffer = temp; 1226 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1227 urb->transfer_buffer, 1228 urb->transfer_buffer_length, 1229 dir); 1230 1231 if (dma_mapping_error(hcd->self.sysdev, 1232 urb->transfer_dma)) { 1233 ret = -EAGAIN; 1234 kfree(temp); 1235 } else { 1236 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1237 } 1238 1239 return ret; 1240 } 1241 1242 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1243 struct urb *urb) 1244 { 1245 bool ret = false; 1246 unsigned int i; 1247 unsigned int len = 0; 1248 unsigned int trb_size; 1249 unsigned int max_pkt; 1250 struct scatterlist *sg; 1251 struct scatterlist *tail_sg; 1252 1253 tail_sg = urb->sg; 1254 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1255 1256 if (!urb->num_sgs) 1257 return ret; 1258 1259 if (urb->dev->speed >= USB_SPEED_SUPER) 1260 trb_size = TRB_CACHE_SIZE_SS; 1261 else 1262 trb_size = TRB_CACHE_SIZE_HS; 1263 1264 if (urb->transfer_buffer_length != 0 && 1265 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1266 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1267 len = len + sg->length; 1268 if (i > trb_size - 2) { 1269 len = len - tail_sg->length; 1270 if (len < max_pkt) { 1271 ret = true; 1272 break; 1273 } 1274 1275 tail_sg = sg_next(tail_sg); 1276 } 1277 } 1278 } 1279 return ret; 1280 } 1281 1282 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1283 { 1284 unsigned int len; 1285 unsigned int buf_len; 1286 enum dma_data_direction dir; 1287 1288 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1289 1290 buf_len = urb->transfer_buffer_length; 1291 1292 if (IS_ENABLED(CONFIG_HAS_DMA) && 1293 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1294 dma_unmap_single(hcd->self.sysdev, 1295 urb->transfer_dma, 1296 urb->transfer_buffer_length, 1297 dir); 1298 1299 if (usb_urb_dir_in(urb)) { 1300 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1301 urb->transfer_buffer, 1302 buf_len, 1303 0); 1304 if (len != buf_len) { 1305 xhci_dbg(hcd_to_xhci(hcd), 1306 "Copy from tmp buf to urb sg list failed\n"); 1307 urb->actual_length = len; 1308 } 1309 } 1310 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1311 kfree(urb->transfer_buffer); 1312 urb->transfer_buffer = NULL; 1313 } 1314 1315 /* 1316 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1317 * we'll copy the actual data into the TRB address register. This is limited to 1318 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1319 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1320 */ 1321 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1322 gfp_t mem_flags) 1323 { 1324 struct xhci_hcd *xhci; 1325 1326 xhci = hcd_to_xhci(hcd); 1327 1328 if (xhci_urb_suitable_for_idt(urb)) 1329 return 0; 1330 1331 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1332 if (xhci_urb_temp_buffer_required(hcd, urb)) 1333 return xhci_map_temp_buffer(hcd, urb); 1334 } 1335 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1336 } 1337 1338 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1339 { 1340 struct xhci_hcd *xhci; 1341 bool unmap_temp_buf = false; 1342 1343 xhci = hcd_to_xhci(hcd); 1344 1345 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1346 unmap_temp_buf = true; 1347 1348 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1349 xhci_unmap_temp_buf(hcd, urb); 1350 else 1351 usb_hcd_unmap_urb_for_dma(hcd, urb); 1352 } 1353 1354 /** 1355 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1356 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1357 * value to right shift 1 for the bitmask. 1358 * 1359 * Index = (epnum * 2) + direction - 1, 1360 * where direction = 0 for OUT, 1 for IN. 1361 * For control endpoints, the IN index is used (OUT index is unused), so 1362 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1363 */ 1364 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1365 { 1366 unsigned int index; 1367 if (usb_endpoint_xfer_control(desc)) 1368 index = (unsigned int) (usb_endpoint_num(desc)*2); 1369 else 1370 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1371 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1372 return index; 1373 } 1374 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1375 1376 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1377 * address from the XHCI endpoint index. 1378 */ 1379 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1380 { 1381 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1382 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1383 return direction | number; 1384 } 1385 1386 /* Find the flag for this endpoint (for use in the control context). Use the 1387 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1388 * bit 1, etc. 1389 */ 1390 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1391 { 1392 return 1 << (xhci_get_endpoint_index(desc) + 1); 1393 } 1394 1395 /* Compute the last valid endpoint context index. Basically, this is the 1396 * endpoint index plus one. For slot contexts with more than valid endpoint, 1397 * we find the most significant bit set in the added contexts flags. 1398 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1399 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1400 */ 1401 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1402 { 1403 return fls(added_ctxs) - 1; 1404 } 1405 1406 /* Returns 1 if the arguments are OK; 1407 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1408 */ 1409 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1410 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1411 const char *func) { 1412 struct xhci_hcd *xhci; 1413 struct xhci_virt_device *virt_dev; 1414 1415 if (!hcd || (check_ep && !ep) || !udev) { 1416 pr_debug("xHCI %s called with invalid args\n", func); 1417 return -EINVAL; 1418 } 1419 if (!udev->parent) { 1420 pr_debug("xHCI %s called for root hub\n", func); 1421 return 0; 1422 } 1423 1424 xhci = hcd_to_xhci(hcd); 1425 if (check_virt_dev) { 1426 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1427 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1428 func); 1429 return -EINVAL; 1430 } 1431 1432 virt_dev = xhci->devs[udev->slot_id]; 1433 if (virt_dev->udev != udev) { 1434 xhci_dbg(xhci, "xHCI %s called with udev and " 1435 "virt_dev does not match\n", func); 1436 return -EINVAL; 1437 } 1438 } 1439 1440 if (xhci->xhc_state & XHCI_STATE_HALTED) 1441 return -ENODEV; 1442 1443 return 1; 1444 } 1445 1446 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1447 struct usb_device *udev, struct xhci_command *command, 1448 bool ctx_change, bool must_succeed); 1449 1450 /* 1451 * Full speed devices may have a max packet size greater than 8 bytes, but the 1452 * USB core doesn't know that until it reads the first 8 bytes of the 1453 * descriptor. If the usb_device's max packet size changes after that point, 1454 * we need to issue an evaluate context command and wait on it. 1455 */ 1456 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev) 1457 { 1458 struct xhci_input_control_ctx *ctrl_ctx; 1459 struct xhci_ep_ctx *ep_ctx; 1460 struct xhci_command *command; 1461 int max_packet_size; 1462 int hw_max_packet_size; 1463 int ret = 0; 1464 1465 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0); 1466 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1467 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc); 1468 1469 if (hw_max_packet_size == max_packet_size) 1470 return 0; 1471 1472 switch (max_packet_size) { 1473 case 8: case 16: case 32: case 64: case 9: 1474 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1475 "Max Packet Size for ep 0 changed."); 1476 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1477 "Max packet size in usb_device = %d", 1478 max_packet_size); 1479 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1480 "Max packet size in xHCI HW = %d", 1481 hw_max_packet_size); 1482 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1483 "Issuing evaluate context command."); 1484 1485 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 1486 if (!command) 1487 return -ENOMEM; 1488 1489 command->in_ctx = vdev->in_ctx; 1490 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1491 if (!ctrl_ctx) { 1492 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1493 __func__); 1494 ret = -ENOMEM; 1495 break; 1496 } 1497 /* Set up the modified control endpoint 0 */ 1498 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0); 1499 1500 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0); 1501 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1502 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1503 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1504 1505 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1506 ctrl_ctx->drop_flags = 0; 1507 1508 ret = xhci_configure_endpoint(xhci, vdev->udev, command, 1509 true, false); 1510 /* Clean up the input context for later use by bandwidth functions */ 1511 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1512 break; 1513 default: 1514 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n", 1515 max_packet_size); 1516 return -EINVAL; 1517 } 1518 1519 kfree(command->completion); 1520 kfree(command); 1521 1522 return ret; 1523 } 1524 1525 /* 1526 * non-error returns are a promise to giveback() the urb later 1527 * we drop ownership so next owner (or urb unlink) can get it 1528 */ 1529 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1530 { 1531 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1532 unsigned long flags; 1533 int ret = 0; 1534 unsigned int slot_id, ep_index; 1535 unsigned int *ep_state; 1536 struct urb_priv *urb_priv; 1537 int num_tds; 1538 1539 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1540 1541 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1542 num_tds = urb->number_of_packets; 1543 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1544 urb->transfer_buffer_length > 0 && 1545 urb->transfer_flags & URB_ZERO_PACKET && 1546 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1547 num_tds = 2; 1548 else 1549 num_tds = 1; 1550 1551 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1552 if (!urb_priv) 1553 return -ENOMEM; 1554 1555 urb_priv->num_tds = num_tds; 1556 urb_priv->num_tds_done = 0; 1557 urb->hcpriv = urb_priv; 1558 1559 trace_xhci_urb_enqueue(urb); 1560 1561 spin_lock_irqsave(&xhci->lock, flags); 1562 1563 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1564 true, true, __func__); 1565 if (ret <= 0) { 1566 ret = ret ? ret : -EINVAL; 1567 goto free_priv; 1568 } 1569 1570 slot_id = urb->dev->slot_id; 1571 1572 if (!HCD_HW_ACCESSIBLE(hcd)) { 1573 ret = -ESHUTDOWN; 1574 goto free_priv; 1575 } 1576 1577 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1578 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1579 ret = -ENODEV; 1580 goto free_priv; 1581 } 1582 1583 if (xhci->xhc_state & XHCI_STATE_DYING) { 1584 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1585 urb->ep->desc.bEndpointAddress, urb); 1586 ret = -ESHUTDOWN; 1587 goto free_priv; 1588 } 1589 1590 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1591 1592 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1593 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1594 *ep_state); 1595 ret = -EINVAL; 1596 goto free_priv; 1597 } 1598 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1599 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1600 ret = -EINVAL; 1601 goto free_priv; 1602 } 1603 1604 switch (usb_endpoint_type(&urb->ep->desc)) { 1605 1606 case USB_ENDPOINT_XFER_CONTROL: 1607 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1608 slot_id, ep_index); 1609 break; 1610 case USB_ENDPOINT_XFER_BULK: 1611 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1612 slot_id, ep_index); 1613 break; 1614 case USB_ENDPOINT_XFER_INT: 1615 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1616 slot_id, ep_index); 1617 break; 1618 case USB_ENDPOINT_XFER_ISOC: 1619 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1620 slot_id, ep_index); 1621 } 1622 1623 if (ret) { 1624 free_priv: 1625 xhci_urb_free_priv(urb_priv); 1626 urb->hcpriv = NULL; 1627 } 1628 spin_unlock_irqrestore(&xhci->lock, flags); 1629 return ret; 1630 } 1631 1632 /* 1633 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1634 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1635 * should pick up where it left off in the TD, unless a Set Transfer Ring 1636 * Dequeue Pointer is issued. 1637 * 1638 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1639 * the ring. Since the ring is a contiguous structure, they can't be physically 1640 * removed. Instead, there are two options: 1641 * 1642 * 1) If the HC is in the middle of processing the URB to be canceled, we 1643 * simply move the ring's dequeue pointer past those TRBs using the Set 1644 * Transfer Ring Dequeue Pointer command. This will be the common case, 1645 * when drivers timeout on the last submitted URB and attempt to cancel. 1646 * 1647 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1648 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1649 * HC will need to invalidate the any TRBs it has cached after the stop 1650 * endpoint command, as noted in the xHCI 0.95 errata. 1651 * 1652 * 3) The TD may have completed by the time the Stop Endpoint Command 1653 * completes, so software needs to handle that case too. 1654 * 1655 * This function should protect against the TD enqueueing code ringing the 1656 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1657 * It also needs to account for multiple cancellations on happening at the same 1658 * time for the same endpoint. 1659 * 1660 * Note that this function can be called in any context, or so says 1661 * usb_hcd_unlink_urb() 1662 */ 1663 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1664 { 1665 unsigned long flags; 1666 int ret, i; 1667 u32 temp; 1668 struct xhci_hcd *xhci; 1669 struct urb_priv *urb_priv; 1670 struct xhci_td *td; 1671 unsigned int ep_index; 1672 struct xhci_ring *ep_ring; 1673 struct xhci_virt_ep *ep; 1674 struct xhci_command *command; 1675 struct xhci_virt_device *vdev; 1676 1677 xhci = hcd_to_xhci(hcd); 1678 spin_lock_irqsave(&xhci->lock, flags); 1679 1680 trace_xhci_urb_dequeue(urb); 1681 1682 /* Make sure the URB hasn't completed or been unlinked already */ 1683 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1684 if (ret) 1685 goto done; 1686 1687 /* give back URB now if we can't queue it for cancel */ 1688 vdev = xhci->devs[urb->dev->slot_id]; 1689 urb_priv = urb->hcpriv; 1690 if (!vdev || !urb_priv) 1691 goto err_giveback; 1692 1693 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1694 ep = &vdev->eps[ep_index]; 1695 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1696 if (!ep || !ep_ring) 1697 goto err_giveback; 1698 1699 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1700 temp = readl(&xhci->op_regs->status); 1701 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1702 xhci_hc_died(xhci); 1703 goto done; 1704 } 1705 1706 /* 1707 * check ring is not re-allocated since URB was enqueued. If it is, then 1708 * make sure none of the ring related pointers in this URB private data 1709 * are touched, such as td_list, otherwise we overwrite freed data 1710 */ 1711 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1712 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1713 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1714 td = &urb_priv->td[i]; 1715 if (!list_empty(&td->cancelled_td_list)) 1716 list_del_init(&td->cancelled_td_list); 1717 } 1718 goto err_giveback; 1719 } 1720 1721 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1722 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1723 "HC halted, freeing TD manually."); 1724 for (i = urb_priv->num_tds_done; 1725 i < urb_priv->num_tds; 1726 i++) { 1727 td = &urb_priv->td[i]; 1728 if (!list_empty(&td->td_list)) 1729 list_del_init(&td->td_list); 1730 if (!list_empty(&td->cancelled_td_list)) 1731 list_del_init(&td->cancelled_td_list); 1732 } 1733 goto err_giveback; 1734 } 1735 1736 i = urb_priv->num_tds_done; 1737 if (i < urb_priv->num_tds) 1738 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1739 "Cancel URB %p, dev %s, ep 0x%x, " 1740 "starting at offset 0x%llx", 1741 urb, urb->dev->devpath, 1742 urb->ep->desc.bEndpointAddress, 1743 (unsigned long long) xhci_trb_virt_to_dma( 1744 urb_priv->td[i].start_seg, 1745 urb_priv->td[i].first_trb)); 1746 1747 for (; i < urb_priv->num_tds; i++) { 1748 td = &urb_priv->td[i]; 1749 /* TD can already be on cancelled list if ep halted on it */ 1750 if (list_empty(&td->cancelled_td_list)) { 1751 td->cancel_status = TD_DIRTY; 1752 list_add_tail(&td->cancelled_td_list, 1753 &ep->cancelled_td_list); 1754 } 1755 } 1756 1757 /* Queue a stop endpoint command, but only if this is 1758 * the first cancellation to be handled. 1759 */ 1760 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1761 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1762 if (!command) { 1763 ret = -ENOMEM; 1764 goto done; 1765 } 1766 ep->ep_state |= EP_STOP_CMD_PENDING; 1767 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1768 ep_index, 0); 1769 xhci_ring_cmd_db(xhci); 1770 } 1771 done: 1772 spin_unlock_irqrestore(&xhci->lock, flags); 1773 return ret; 1774 1775 err_giveback: 1776 if (urb_priv) 1777 xhci_urb_free_priv(urb_priv); 1778 usb_hcd_unlink_urb_from_ep(hcd, urb); 1779 spin_unlock_irqrestore(&xhci->lock, flags); 1780 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1781 return ret; 1782 } 1783 1784 /* Drop an endpoint from a new bandwidth configuration for this device. 1785 * Only one call to this function is allowed per endpoint before 1786 * check_bandwidth() or reset_bandwidth() must be called. 1787 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1788 * add the endpoint to the schedule with possibly new parameters denoted by a 1789 * different endpoint descriptor in usb_host_endpoint. 1790 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1791 * not allowed. 1792 * 1793 * The USB core will not allow URBs to be queued to an endpoint that is being 1794 * disabled, so there's no need for mutual exclusion to protect 1795 * the xhci->devs[slot_id] structure. 1796 */ 1797 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1798 struct usb_host_endpoint *ep) 1799 { 1800 struct xhci_hcd *xhci; 1801 struct xhci_container_ctx *in_ctx, *out_ctx; 1802 struct xhci_input_control_ctx *ctrl_ctx; 1803 unsigned int ep_index; 1804 struct xhci_ep_ctx *ep_ctx; 1805 u32 drop_flag; 1806 u32 new_add_flags, new_drop_flags; 1807 int ret; 1808 1809 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1810 if (ret <= 0) 1811 return ret; 1812 xhci = hcd_to_xhci(hcd); 1813 if (xhci->xhc_state & XHCI_STATE_DYING) 1814 return -ENODEV; 1815 1816 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1817 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1818 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1819 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1820 __func__, drop_flag); 1821 return 0; 1822 } 1823 1824 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1825 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1826 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1827 if (!ctrl_ctx) { 1828 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1829 __func__); 1830 return 0; 1831 } 1832 1833 ep_index = xhci_get_endpoint_index(&ep->desc); 1834 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1835 /* If the HC already knows the endpoint is disabled, 1836 * or the HCD has noted it is disabled, ignore this request 1837 */ 1838 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1839 le32_to_cpu(ctrl_ctx->drop_flags) & 1840 xhci_get_endpoint_flag(&ep->desc)) { 1841 /* Do not warn when called after a usb_device_reset */ 1842 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1843 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1844 __func__, ep); 1845 return 0; 1846 } 1847 1848 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1849 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1850 1851 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1852 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1853 1854 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1855 1856 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1857 1858 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1859 (unsigned int) ep->desc.bEndpointAddress, 1860 udev->slot_id, 1861 (unsigned int) new_drop_flags, 1862 (unsigned int) new_add_flags); 1863 return 0; 1864 } 1865 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1866 1867 /* Add an endpoint to a new possible bandwidth configuration for this device. 1868 * Only one call to this function is allowed per endpoint before 1869 * check_bandwidth() or reset_bandwidth() must be called. 1870 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1871 * add the endpoint to the schedule with possibly new parameters denoted by a 1872 * different endpoint descriptor in usb_host_endpoint. 1873 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1874 * not allowed. 1875 * 1876 * The USB core will not allow URBs to be queued to an endpoint until the 1877 * configuration or alt setting is installed in the device, so there's no need 1878 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1879 */ 1880 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1881 struct usb_host_endpoint *ep) 1882 { 1883 struct xhci_hcd *xhci; 1884 struct xhci_container_ctx *in_ctx; 1885 unsigned int ep_index; 1886 struct xhci_input_control_ctx *ctrl_ctx; 1887 struct xhci_ep_ctx *ep_ctx; 1888 u32 added_ctxs; 1889 u32 new_add_flags, new_drop_flags; 1890 struct xhci_virt_device *virt_dev; 1891 int ret = 0; 1892 1893 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1894 if (ret <= 0) { 1895 /* So we won't queue a reset ep command for a root hub */ 1896 ep->hcpriv = NULL; 1897 return ret; 1898 } 1899 xhci = hcd_to_xhci(hcd); 1900 if (xhci->xhc_state & XHCI_STATE_DYING) 1901 return -ENODEV; 1902 1903 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1904 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1905 /* FIXME when we have to issue an evaluate endpoint command to 1906 * deal with ep0 max packet size changing once we get the 1907 * descriptors 1908 */ 1909 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1910 __func__, added_ctxs); 1911 return 0; 1912 } 1913 1914 virt_dev = xhci->devs[udev->slot_id]; 1915 in_ctx = virt_dev->in_ctx; 1916 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1917 if (!ctrl_ctx) { 1918 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1919 __func__); 1920 return 0; 1921 } 1922 1923 ep_index = xhci_get_endpoint_index(&ep->desc); 1924 /* If this endpoint is already in use, and the upper layers are trying 1925 * to add it again without dropping it, reject the addition. 1926 */ 1927 if (virt_dev->eps[ep_index].ring && 1928 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1929 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1930 "without dropping it.\n", 1931 (unsigned int) ep->desc.bEndpointAddress); 1932 return -EINVAL; 1933 } 1934 1935 /* If the HCD has already noted the endpoint is enabled, 1936 * ignore this request. 1937 */ 1938 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1939 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1940 __func__, ep); 1941 return 0; 1942 } 1943 1944 /* 1945 * Configuration and alternate setting changes must be done in 1946 * process context, not interrupt context (or so documenation 1947 * for usb_set_interface() and usb_set_configuration() claim). 1948 */ 1949 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1950 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1951 __func__, ep->desc.bEndpointAddress); 1952 return -ENOMEM; 1953 } 1954 1955 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1956 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1957 1958 /* If xhci_endpoint_disable() was called for this endpoint, but the 1959 * xHC hasn't been notified yet through the check_bandwidth() call, 1960 * this re-adds a new state for the endpoint from the new endpoint 1961 * descriptors. We must drop and re-add this endpoint, so we leave the 1962 * drop flags alone. 1963 */ 1964 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1965 1966 /* Store the usb_device pointer for later use */ 1967 ep->hcpriv = udev; 1968 1969 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1970 trace_xhci_add_endpoint(ep_ctx); 1971 1972 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1973 (unsigned int) ep->desc.bEndpointAddress, 1974 udev->slot_id, 1975 (unsigned int) new_drop_flags, 1976 (unsigned int) new_add_flags); 1977 return 0; 1978 } 1979 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1980 1981 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1982 { 1983 struct xhci_input_control_ctx *ctrl_ctx; 1984 struct xhci_ep_ctx *ep_ctx; 1985 struct xhci_slot_ctx *slot_ctx; 1986 int i; 1987 1988 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1989 if (!ctrl_ctx) { 1990 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1991 __func__); 1992 return; 1993 } 1994 1995 /* When a device's add flag and drop flag are zero, any subsequent 1996 * configure endpoint command will leave that endpoint's state 1997 * untouched. Make sure we don't leave any old state in the input 1998 * endpoint contexts. 1999 */ 2000 ctrl_ctx->drop_flags = 0; 2001 ctrl_ctx->add_flags = 0; 2002 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2003 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2004 /* Endpoint 0 is always valid */ 2005 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 2006 for (i = 1; i < 31; i++) { 2007 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 2008 ep_ctx->ep_info = 0; 2009 ep_ctx->ep_info2 = 0; 2010 ep_ctx->deq = 0; 2011 ep_ctx->tx_info = 0; 2012 } 2013 } 2014 2015 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 2016 struct usb_device *udev, u32 *cmd_status) 2017 { 2018 int ret; 2019 2020 switch (*cmd_status) { 2021 case COMP_COMMAND_ABORTED: 2022 case COMP_COMMAND_RING_STOPPED: 2023 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 2024 ret = -ETIME; 2025 break; 2026 case COMP_RESOURCE_ERROR: 2027 dev_warn(&udev->dev, 2028 "Not enough host controller resources for new device state.\n"); 2029 ret = -ENOMEM; 2030 /* FIXME: can we allocate more resources for the HC? */ 2031 break; 2032 case COMP_BANDWIDTH_ERROR: 2033 case COMP_SECONDARY_BANDWIDTH_ERROR: 2034 dev_warn(&udev->dev, 2035 "Not enough bandwidth for new device state.\n"); 2036 ret = -ENOSPC; 2037 /* FIXME: can we go back to the old state? */ 2038 break; 2039 case COMP_TRB_ERROR: 2040 /* the HCD set up something wrong */ 2041 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2042 "add flag = 1, " 2043 "and endpoint is not disabled.\n"); 2044 ret = -EINVAL; 2045 break; 2046 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2047 dev_warn(&udev->dev, 2048 "ERROR: Incompatible device for endpoint configure command.\n"); 2049 ret = -ENODEV; 2050 break; 2051 case COMP_SUCCESS: 2052 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2053 "Successful Endpoint Configure command"); 2054 ret = 0; 2055 break; 2056 default: 2057 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2058 *cmd_status); 2059 ret = -EINVAL; 2060 break; 2061 } 2062 return ret; 2063 } 2064 2065 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2066 struct usb_device *udev, u32 *cmd_status) 2067 { 2068 int ret; 2069 2070 switch (*cmd_status) { 2071 case COMP_COMMAND_ABORTED: 2072 case COMP_COMMAND_RING_STOPPED: 2073 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2074 ret = -ETIME; 2075 break; 2076 case COMP_PARAMETER_ERROR: 2077 dev_warn(&udev->dev, 2078 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2079 ret = -EINVAL; 2080 break; 2081 case COMP_SLOT_NOT_ENABLED_ERROR: 2082 dev_warn(&udev->dev, 2083 "WARN: slot not enabled for evaluate context command.\n"); 2084 ret = -EINVAL; 2085 break; 2086 case COMP_CONTEXT_STATE_ERROR: 2087 dev_warn(&udev->dev, 2088 "WARN: invalid context state for evaluate context command.\n"); 2089 ret = -EINVAL; 2090 break; 2091 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2092 dev_warn(&udev->dev, 2093 "ERROR: Incompatible device for evaluate context command.\n"); 2094 ret = -ENODEV; 2095 break; 2096 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2097 /* Max Exit Latency too large error */ 2098 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2099 ret = -EINVAL; 2100 break; 2101 case COMP_SUCCESS: 2102 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2103 "Successful evaluate context command"); 2104 ret = 0; 2105 break; 2106 default: 2107 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2108 *cmd_status); 2109 ret = -EINVAL; 2110 break; 2111 } 2112 return ret; 2113 } 2114 2115 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2116 struct xhci_input_control_ctx *ctrl_ctx) 2117 { 2118 u32 valid_add_flags; 2119 u32 valid_drop_flags; 2120 2121 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2122 * (bit 1). The default control endpoint is added during the Address 2123 * Device command and is never removed until the slot is disabled. 2124 */ 2125 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2126 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2127 2128 /* Use hweight32 to count the number of ones in the add flags, or 2129 * number of endpoints added. Don't count endpoints that are changed 2130 * (both added and dropped). 2131 */ 2132 return hweight32(valid_add_flags) - 2133 hweight32(valid_add_flags & valid_drop_flags); 2134 } 2135 2136 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2137 struct xhci_input_control_ctx *ctrl_ctx) 2138 { 2139 u32 valid_add_flags; 2140 u32 valid_drop_flags; 2141 2142 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2143 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2144 2145 return hweight32(valid_drop_flags) - 2146 hweight32(valid_add_flags & valid_drop_flags); 2147 } 2148 2149 /* 2150 * We need to reserve the new number of endpoints before the configure endpoint 2151 * command completes. We can't subtract the dropped endpoints from the number 2152 * of active endpoints until the command completes because we can oversubscribe 2153 * the host in this case: 2154 * 2155 * - the first configure endpoint command drops more endpoints than it adds 2156 * - a second configure endpoint command that adds more endpoints is queued 2157 * - the first configure endpoint command fails, so the config is unchanged 2158 * - the second command may succeed, even though there isn't enough resources 2159 * 2160 * Must be called with xhci->lock held. 2161 */ 2162 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2163 struct xhci_input_control_ctx *ctrl_ctx) 2164 { 2165 u32 added_eps; 2166 2167 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2168 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2170 "Not enough ep ctxs: " 2171 "%u active, need to add %u, limit is %u.", 2172 xhci->num_active_eps, added_eps, 2173 xhci->limit_active_eps); 2174 return -ENOMEM; 2175 } 2176 xhci->num_active_eps += added_eps; 2177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2178 "Adding %u ep ctxs, %u now active.", added_eps, 2179 xhci->num_active_eps); 2180 return 0; 2181 } 2182 2183 /* 2184 * The configure endpoint was failed by the xHC for some other reason, so we 2185 * need to revert the resources that failed configuration would have used. 2186 * 2187 * Must be called with xhci->lock held. 2188 */ 2189 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2190 struct xhci_input_control_ctx *ctrl_ctx) 2191 { 2192 u32 num_failed_eps; 2193 2194 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2195 xhci->num_active_eps -= num_failed_eps; 2196 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2197 "Removing %u failed ep ctxs, %u now active.", 2198 num_failed_eps, 2199 xhci->num_active_eps); 2200 } 2201 2202 /* 2203 * Now that the command has completed, clean up the active endpoint count by 2204 * subtracting out the endpoints that were dropped (but not changed). 2205 * 2206 * Must be called with xhci->lock held. 2207 */ 2208 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2209 struct xhci_input_control_ctx *ctrl_ctx) 2210 { 2211 u32 num_dropped_eps; 2212 2213 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2214 xhci->num_active_eps -= num_dropped_eps; 2215 if (num_dropped_eps) 2216 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2217 "Removing %u dropped ep ctxs, %u now active.", 2218 num_dropped_eps, 2219 xhci->num_active_eps); 2220 } 2221 2222 static unsigned int xhci_get_block_size(struct usb_device *udev) 2223 { 2224 switch (udev->speed) { 2225 case USB_SPEED_LOW: 2226 case USB_SPEED_FULL: 2227 return FS_BLOCK; 2228 case USB_SPEED_HIGH: 2229 return HS_BLOCK; 2230 case USB_SPEED_SUPER: 2231 case USB_SPEED_SUPER_PLUS: 2232 return SS_BLOCK; 2233 case USB_SPEED_UNKNOWN: 2234 default: 2235 /* Should never happen */ 2236 return 1; 2237 } 2238 } 2239 2240 static unsigned int 2241 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2242 { 2243 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2244 return LS_OVERHEAD; 2245 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2246 return FS_OVERHEAD; 2247 return HS_OVERHEAD; 2248 } 2249 2250 /* If we are changing a LS/FS device under a HS hub, 2251 * make sure (if we are activating a new TT) that the HS bus has enough 2252 * bandwidth for this new TT. 2253 */ 2254 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2255 struct xhci_virt_device *virt_dev, 2256 int old_active_eps) 2257 { 2258 struct xhci_interval_bw_table *bw_table; 2259 struct xhci_tt_bw_info *tt_info; 2260 2261 /* Find the bandwidth table for the root port this TT is attached to. */ 2262 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2263 tt_info = virt_dev->tt_info; 2264 /* If this TT already had active endpoints, the bandwidth for this TT 2265 * has already been added. Removing all periodic endpoints (and thus 2266 * making the TT enactive) will only decrease the bandwidth used. 2267 */ 2268 if (old_active_eps) 2269 return 0; 2270 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2271 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2272 return -ENOMEM; 2273 return 0; 2274 } 2275 /* Not sure why we would have no new active endpoints... 2276 * 2277 * Maybe because of an Evaluate Context change for a hub update or a 2278 * control endpoint 0 max packet size change? 2279 * FIXME: skip the bandwidth calculation in that case. 2280 */ 2281 return 0; 2282 } 2283 2284 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2285 struct xhci_virt_device *virt_dev) 2286 { 2287 unsigned int bw_reserved; 2288 2289 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2290 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2291 return -ENOMEM; 2292 2293 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2294 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2295 return -ENOMEM; 2296 2297 return 0; 2298 } 2299 2300 /* 2301 * This algorithm is a very conservative estimate of the worst-case scheduling 2302 * scenario for any one interval. The hardware dynamically schedules the 2303 * packets, so we can't tell which microframe could be the limiting factor in 2304 * the bandwidth scheduling. This only takes into account periodic endpoints. 2305 * 2306 * Obviously, we can't solve an NP complete problem to find the minimum worst 2307 * case scenario. Instead, we come up with an estimate that is no less than 2308 * the worst case bandwidth used for any one microframe, but may be an 2309 * over-estimate. 2310 * 2311 * We walk the requirements for each endpoint by interval, starting with the 2312 * smallest interval, and place packets in the schedule where there is only one 2313 * possible way to schedule packets for that interval. In order to simplify 2314 * this algorithm, we record the largest max packet size for each interval, and 2315 * assume all packets will be that size. 2316 * 2317 * For interval 0, we obviously must schedule all packets for each interval. 2318 * The bandwidth for interval 0 is just the amount of data to be transmitted 2319 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2320 * the number of packets). 2321 * 2322 * For interval 1, we have two possible microframes to schedule those packets 2323 * in. For this algorithm, if we can schedule the same number of packets for 2324 * each possible scheduling opportunity (each microframe), we will do so. The 2325 * remaining number of packets will be saved to be transmitted in the gaps in 2326 * the next interval's scheduling sequence. 2327 * 2328 * As we move those remaining packets to be scheduled with interval 2 packets, 2329 * we have to double the number of remaining packets to transmit. This is 2330 * because the intervals are actually powers of 2, and we would be transmitting 2331 * the previous interval's packets twice in this interval. We also have to be 2332 * sure that when we look at the largest max packet size for this interval, we 2333 * also look at the largest max packet size for the remaining packets and take 2334 * the greater of the two. 2335 * 2336 * The algorithm continues to evenly distribute packets in each scheduling 2337 * opportunity, and push the remaining packets out, until we get to the last 2338 * interval. Then those packets and their associated overhead are just added 2339 * to the bandwidth used. 2340 */ 2341 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2342 struct xhci_virt_device *virt_dev, 2343 int old_active_eps) 2344 { 2345 unsigned int bw_reserved; 2346 unsigned int max_bandwidth; 2347 unsigned int bw_used; 2348 unsigned int block_size; 2349 struct xhci_interval_bw_table *bw_table; 2350 unsigned int packet_size = 0; 2351 unsigned int overhead = 0; 2352 unsigned int packets_transmitted = 0; 2353 unsigned int packets_remaining = 0; 2354 unsigned int i; 2355 2356 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2357 return xhci_check_ss_bw(xhci, virt_dev); 2358 2359 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2360 max_bandwidth = HS_BW_LIMIT; 2361 /* Convert percent of bus BW reserved to blocks reserved */ 2362 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2363 } else { 2364 max_bandwidth = FS_BW_LIMIT; 2365 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2366 } 2367 2368 bw_table = virt_dev->bw_table; 2369 /* We need to translate the max packet size and max ESIT payloads into 2370 * the units the hardware uses. 2371 */ 2372 block_size = xhci_get_block_size(virt_dev->udev); 2373 2374 /* If we are manipulating a LS/FS device under a HS hub, double check 2375 * that the HS bus has enough bandwidth if we are activing a new TT. 2376 */ 2377 if (virt_dev->tt_info) { 2378 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2379 "Recalculating BW for rootport %u", 2380 virt_dev->real_port); 2381 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2382 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2383 "newly activated TT.\n"); 2384 return -ENOMEM; 2385 } 2386 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2387 "Recalculating BW for TT slot %u port %u", 2388 virt_dev->tt_info->slot_id, 2389 virt_dev->tt_info->ttport); 2390 } else { 2391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2392 "Recalculating BW for rootport %u", 2393 virt_dev->real_port); 2394 } 2395 2396 /* Add in how much bandwidth will be used for interval zero, or the 2397 * rounded max ESIT payload + number of packets * largest overhead. 2398 */ 2399 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2400 bw_table->interval_bw[0].num_packets * 2401 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2402 2403 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2404 unsigned int bw_added; 2405 unsigned int largest_mps; 2406 unsigned int interval_overhead; 2407 2408 /* 2409 * How many packets could we transmit in this interval? 2410 * If packets didn't fit in the previous interval, we will need 2411 * to transmit that many packets twice within this interval. 2412 */ 2413 packets_remaining = 2 * packets_remaining + 2414 bw_table->interval_bw[i].num_packets; 2415 2416 /* Find the largest max packet size of this or the previous 2417 * interval. 2418 */ 2419 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2420 largest_mps = 0; 2421 else { 2422 struct xhci_virt_ep *virt_ep; 2423 struct list_head *ep_entry; 2424 2425 ep_entry = bw_table->interval_bw[i].endpoints.next; 2426 virt_ep = list_entry(ep_entry, 2427 struct xhci_virt_ep, bw_endpoint_list); 2428 /* Convert to blocks, rounding up */ 2429 largest_mps = DIV_ROUND_UP( 2430 virt_ep->bw_info.max_packet_size, 2431 block_size); 2432 } 2433 if (largest_mps > packet_size) 2434 packet_size = largest_mps; 2435 2436 /* Use the larger overhead of this or the previous interval. */ 2437 interval_overhead = xhci_get_largest_overhead( 2438 &bw_table->interval_bw[i]); 2439 if (interval_overhead > overhead) 2440 overhead = interval_overhead; 2441 2442 /* How many packets can we evenly distribute across 2443 * (1 << (i + 1)) possible scheduling opportunities? 2444 */ 2445 packets_transmitted = packets_remaining >> (i + 1); 2446 2447 /* Add in the bandwidth used for those scheduled packets */ 2448 bw_added = packets_transmitted * (overhead + packet_size); 2449 2450 /* How many packets do we have remaining to transmit? */ 2451 packets_remaining = packets_remaining % (1 << (i + 1)); 2452 2453 /* What largest max packet size should those packets have? */ 2454 /* If we've transmitted all packets, don't carry over the 2455 * largest packet size. 2456 */ 2457 if (packets_remaining == 0) { 2458 packet_size = 0; 2459 overhead = 0; 2460 } else if (packets_transmitted > 0) { 2461 /* Otherwise if we do have remaining packets, and we've 2462 * scheduled some packets in this interval, take the 2463 * largest max packet size from endpoints with this 2464 * interval. 2465 */ 2466 packet_size = largest_mps; 2467 overhead = interval_overhead; 2468 } 2469 /* Otherwise carry over packet_size and overhead from the last 2470 * time we had a remainder. 2471 */ 2472 bw_used += bw_added; 2473 if (bw_used > max_bandwidth) { 2474 xhci_warn(xhci, "Not enough bandwidth. " 2475 "Proposed: %u, Max: %u\n", 2476 bw_used, max_bandwidth); 2477 return -ENOMEM; 2478 } 2479 } 2480 /* 2481 * Ok, we know we have some packets left over after even-handedly 2482 * scheduling interval 15. We don't know which microframes they will 2483 * fit into, so we over-schedule and say they will be scheduled every 2484 * microframe. 2485 */ 2486 if (packets_remaining > 0) 2487 bw_used += overhead + packet_size; 2488 2489 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2490 unsigned int port_index = virt_dev->real_port - 1; 2491 2492 /* OK, we're manipulating a HS device attached to a 2493 * root port bandwidth domain. Include the number of active TTs 2494 * in the bandwidth used. 2495 */ 2496 bw_used += TT_HS_OVERHEAD * 2497 xhci->rh_bw[port_index].num_active_tts; 2498 } 2499 2500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2501 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2502 "Available: %u " "percent", 2503 bw_used, max_bandwidth, bw_reserved, 2504 (max_bandwidth - bw_used - bw_reserved) * 100 / 2505 max_bandwidth); 2506 2507 bw_used += bw_reserved; 2508 if (bw_used > max_bandwidth) { 2509 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2510 bw_used, max_bandwidth); 2511 return -ENOMEM; 2512 } 2513 2514 bw_table->bw_used = bw_used; 2515 return 0; 2516 } 2517 2518 static bool xhci_is_async_ep(unsigned int ep_type) 2519 { 2520 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2521 ep_type != ISOC_IN_EP && 2522 ep_type != INT_IN_EP); 2523 } 2524 2525 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2526 { 2527 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2528 } 2529 2530 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2531 { 2532 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2533 2534 if (ep_bw->ep_interval == 0) 2535 return SS_OVERHEAD_BURST + 2536 (ep_bw->mult * ep_bw->num_packets * 2537 (SS_OVERHEAD + mps)); 2538 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2539 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2540 1 << ep_bw->ep_interval); 2541 2542 } 2543 2544 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2545 struct xhci_bw_info *ep_bw, 2546 struct xhci_interval_bw_table *bw_table, 2547 struct usb_device *udev, 2548 struct xhci_virt_ep *virt_ep, 2549 struct xhci_tt_bw_info *tt_info) 2550 { 2551 struct xhci_interval_bw *interval_bw; 2552 int normalized_interval; 2553 2554 if (xhci_is_async_ep(ep_bw->type)) 2555 return; 2556 2557 if (udev->speed >= USB_SPEED_SUPER) { 2558 if (xhci_is_sync_in_ep(ep_bw->type)) 2559 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2560 xhci_get_ss_bw_consumed(ep_bw); 2561 else 2562 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2563 xhci_get_ss_bw_consumed(ep_bw); 2564 return; 2565 } 2566 2567 /* SuperSpeed endpoints never get added to intervals in the table, so 2568 * this check is only valid for HS/FS/LS devices. 2569 */ 2570 if (list_empty(&virt_ep->bw_endpoint_list)) 2571 return; 2572 /* For LS/FS devices, we need to translate the interval expressed in 2573 * microframes to frames. 2574 */ 2575 if (udev->speed == USB_SPEED_HIGH) 2576 normalized_interval = ep_bw->ep_interval; 2577 else 2578 normalized_interval = ep_bw->ep_interval - 3; 2579 2580 if (normalized_interval == 0) 2581 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2582 interval_bw = &bw_table->interval_bw[normalized_interval]; 2583 interval_bw->num_packets -= ep_bw->num_packets; 2584 switch (udev->speed) { 2585 case USB_SPEED_LOW: 2586 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2587 break; 2588 case USB_SPEED_FULL: 2589 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2590 break; 2591 case USB_SPEED_HIGH: 2592 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2593 break; 2594 default: 2595 /* Should never happen because only LS/FS/HS endpoints will get 2596 * added to the endpoint list. 2597 */ 2598 return; 2599 } 2600 if (tt_info) 2601 tt_info->active_eps -= 1; 2602 list_del_init(&virt_ep->bw_endpoint_list); 2603 } 2604 2605 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2606 struct xhci_bw_info *ep_bw, 2607 struct xhci_interval_bw_table *bw_table, 2608 struct usb_device *udev, 2609 struct xhci_virt_ep *virt_ep, 2610 struct xhci_tt_bw_info *tt_info) 2611 { 2612 struct xhci_interval_bw *interval_bw; 2613 struct xhci_virt_ep *smaller_ep; 2614 int normalized_interval; 2615 2616 if (xhci_is_async_ep(ep_bw->type)) 2617 return; 2618 2619 if (udev->speed == USB_SPEED_SUPER) { 2620 if (xhci_is_sync_in_ep(ep_bw->type)) 2621 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2622 xhci_get_ss_bw_consumed(ep_bw); 2623 else 2624 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2625 xhci_get_ss_bw_consumed(ep_bw); 2626 return; 2627 } 2628 2629 /* For LS/FS devices, we need to translate the interval expressed in 2630 * microframes to frames. 2631 */ 2632 if (udev->speed == USB_SPEED_HIGH) 2633 normalized_interval = ep_bw->ep_interval; 2634 else 2635 normalized_interval = ep_bw->ep_interval - 3; 2636 2637 if (normalized_interval == 0) 2638 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2639 interval_bw = &bw_table->interval_bw[normalized_interval]; 2640 interval_bw->num_packets += ep_bw->num_packets; 2641 switch (udev->speed) { 2642 case USB_SPEED_LOW: 2643 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2644 break; 2645 case USB_SPEED_FULL: 2646 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2647 break; 2648 case USB_SPEED_HIGH: 2649 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2650 break; 2651 default: 2652 /* Should never happen because only LS/FS/HS endpoints will get 2653 * added to the endpoint list. 2654 */ 2655 return; 2656 } 2657 2658 if (tt_info) 2659 tt_info->active_eps += 1; 2660 /* Insert the endpoint into the list, largest max packet size first. */ 2661 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2662 bw_endpoint_list) { 2663 if (ep_bw->max_packet_size >= 2664 smaller_ep->bw_info.max_packet_size) { 2665 /* Add the new ep before the smaller endpoint */ 2666 list_add_tail(&virt_ep->bw_endpoint_list, 2667 &smaller_ep->bw_endpoint_list); 2668 return; 2669 } 2670 } 2671 /* Add the new endpoint at the end of the list. */ 2672 list_add_tail(&virt_ep->bw_endpoint_list, 2673 &interval_bw->endpoints); 2674 } 2675 2676 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2677 struct xhci_virt_device *virt_dev, 2678 int old_active_eps) 2679 { 2680 struct xhci_root_port_bw_info *rh_bw_info; 2681 if (!virt_dev->tt_info) 2682 return; 2683 2684 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2685 if (old_active_eps == 0 && 2686 virt_dev->tt_info->active_eps != 0) { 2687 rh_bw_info->num_active_tts += 1; 2688 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2689 } else if (old_active_eps != 0 && 2690 virt_dev->tt_info->active_eps == 0) { 2691 rh_bw_info->num_active_tts -= 1; 2692 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2693 } 2694 } 2695 2696 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2697 struct xhci_virt_device *virt_dev, 2698 struct xhci_container_ctx *in_ctx) 2699 { 2700 struct xhci_bw_info ep_bw_info[31]; 2701 int i; 2702 struct xhci_input_control_ctx *ctrl_ctx; 2703 int old_active_eps = 0; 2704 2705 if (virt_dev->tt_info) 2706 old_active_eps = virt_dev->tt_info->active_eps; 2707 2708 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2709 if (!ctrl_ctx) { 2710 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2711 __func__); 2712 return -ENOMEM; 2713 } 2714 2715 for (i = 0; i < 31; i++) { 2716 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2717 continue; 2718 2719 /* Make a copy of the BW info in case we need to revert this */ 2720 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2721 sizeof(ep_bw_info[i])); 2722 /* Drop the endpoint from the interval table if the endpoint is 2723 * being dropped or changed. 2724 */ 2725 if (EP_IS_DROPPED(ctrl_ctx, i)) 2726 xhci_drop_ep_from_interval_table(xhci, 2727 &virt_dev->eps[i].bw_info, 2728 virt_dev->bw_table, 2729 virt_dev->udev, 2730 &virt_dev->eps[i], 2731 virt_dev->tt_info); 2732 } 2733 /* Overwrite the information stored in the endpoints' bw_info */ 2734 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2735 for (i = 0; i < 31; i++) { 2736 /* Add any changed or added endpoints to the interval table */ 2737 if (EP_IS_ADDED(ctrl_ctx, i)) 2738 xhci_add_ep_to_interval_table(xhci, 2739 &virt_dev->eps[i].bw_info, 2740 virt_dev->bw_table, 2741 virt_dev->udev, 2742 &virt_dev->eps[i], 2743 virt_dev->tt_info); 2744 } 2745 2746 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2747 /* Ok, this fits in the bandwidth we have. 2748 * Update the number of active TTs. 2749 */ 2750 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2751 return 0; 2752 } 2753 2754 /* We don't have enough bandwidth for this, revert the stored info. */ 2755 for (i = 0; i < 31; i++) { 2756 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2757 continue; 2758 2759 /* Drop the new copies of any added or changed endpoints from 2760 * the interval table. 2761 */ 2762 if (EP_IS_ADDED(ctrl_ctx, i)) { 2763 xhci_drop_ep_from_interval_table(xhci, 2764 &virt_dev->eps[i].bw_info, 2765 virt_dev->bw_table, 2766 virt_dev->udev, 2767 &virt_dev->eps[i], 2768 virt_dev->tt_info); 2769 } 2770 /* Revert the endpoint back to its old information */ 2771 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2772 sizeof(ep_bw_info[i])); 2773 /* Add any changed or dropped endpoints back into the table */ 2774 if (EP_IS_DROPPED(ctrl_ctx, i)) 2775 xhci_add_ep_to_interval_table(xhci, 2776 &virt_dev->eps[i].bw_info, 2777 virt_dev->bw_table, 2778 virt_dev->udev, 2779 &virt_dev->eps[i], 2780 virt_dev->tt_info); 2781 } 2782 return -ENOMEM; 2783 } 2784 2785 2786 /* Issue a configure endpoint command or evaluate context command 2787 * and wait for it to finish. 2788 */ 2789 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2790 struct usb_device *udev, 2791 struct xhci_command *command, 2792 bool ctx_change, bool must_succeed) 2793 { 2794 int ret; 2795 unsigned long flags; 2796 struct xhci_input_control_ctx *ctrl_ctx; 2797 struct xhci_virt_device *virt_dev; 2798 struct xhci_slot_ctx *slot_ctx; 2799 2800 if (!command) 2801 return -EINVAL; 2802 2803 spin_lock_irqsave(&xhci->lock, flags); 2804 2805 if (xhci->xhc_state & XHCI_STATE_DYING) { 2806 spin_unlock_irqrestore(&xhci->lock, flags); 2807 return -ESHUTDOWN; 2808 } 2809 2810 virt_dev = xhci->devs[udev->slot_id]; 2811 2812 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2813 if (!ctrl_ctx) { 2814 spin_unlock_irqrestore(&xhci->lock, flags); 2815 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2816 __func__); 2817 return -ENOMEM; 2818 } 2819 2820 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2821 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2822 spin_unlock_irqrestore(&xhci->lock, flags); 2823 xhci_warn(xhci, "Not enough host resources, " 2824 "active endpoint contexts = %u\n", 2825 xhci->num_active_eps); 2826 return -ENOMEM; 2827 } 2828 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2829 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2830 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2831 xhci_free_host_resources(xhci, ctrl_ctx); 2832 spin_unlock_irqrestore(&xhci->lock, flags); 2833 xhci_warn(xhci, "Not enough bandwidth\n"); 2834 return -ENOMEM; 2835 } 2836 2837 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2838 2839 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2840 trace_xhci_configure_endpoint(slot_ctx); 2841 2842 if (!ctx_change) 2843 ret = xhci_queue_configure_endpoint(xhci, command, 2844 command->in_ctx->dma, 2845 udev->slot_id, must_succeed); 2846 else 2847 ret = xhci_queue_evaluate_context(xhci, command, 2848 command->in_ctx->dma, 2849 udev->slot_id, must_succeed); 2850 if (ret < 0) { 2851 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2852 xhci_free_host_resources(xhci, ctrl_ctx); 2853 spin_unlock_irqrestore(&xhci->lock, flags); 2854 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2855 "FIXME allocate a new ring segment"); 2856 return -ENOMEM; 2857 } 2858 xhci_ring_cmd_db(xhci); 2859 spin_unlock_irqrestore(&xhci->lock, flags); 2860 2861 /* Wait for the configure endpoint command to complete */ 2862 wait_for_completion(command->completion); 2863 2864 if (!ctx_change) 2865 ret = xhci_configure_endpoint_result(xhci, udev, 2866 &command->status); 2867 else 2868 ret = xhci_evaluate_context_result(xhci, udev, 2869 &command->status); 2870 2871 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2872 spin_lock_irqsave(&xhci->lock, flags); 2873 /* If the command failed, remove the reserved resources. 2874 * Otherwise, clean up the estimate to include dropped eps. 2875 */ 2876 if (ret) 2877 xhci_free_host_resources(xhci, ctrl_ctx); 2878 else 2879 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2880 spin_unlock_irqrestore(&xhci->lock, flags); 2881 } 2882 return ret; 2883 } 2884 2885 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2886 struct xhci_virt_device *vdev, int i) 2887 { 2888 struct xhci_virt_ep *ep = &vdev->eps[i]; 2889 2890 if (ep->ep_state & EP_HAS_STREAMS) { 2891 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2892 xhci_get_endpoint_address(i)); 2893 xhci_free_stream_info(xhci, ep->stream_info); 2894 ep->stream_info = NULL; 2895 ep->ep_state &= ~EP_HAS_STREAMS; 2896 } 2897 } 2898 2899 /* Called after one or more calls to xhci_add_endpoint() or 2900 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2901 * to call xhci_reset_bandwidth(). 2902 * 2903 * Since we are in the middle of changing either configuration or 2904 * installing a new alt setting, the USB core won't allow URBs to be 2905 * enqueued for any endpoint on the old config or interface. Nothing 2906 * else should be touching the xhci->devs[slot_id] structure, so we 2907 * don't need to take the xhci->lock for manipulating that. 2908 */ 2909 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2910 { 2911 int i; 2912 int ret = 0; 2913 struct xhci_hcd *xhci; 2914 struct xhci_virt_device *virt_dev; 2915 struct xhci_input_control_ctx *ctrl_ctx; 2916 struct xhci_slot_ctx *slot_ctx; 2917 struct xhci_command *command; 2918 2919 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2920 if (ret <= 0) 2921 return ret; 2922 xhci = hcd_to_xhci(hcd); 2923 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2924 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2925 return -ENODEV; 2926 2927 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2928 virt_dev = xhci->devs[udev->slot_id]; 2929 2930 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2931 if (!command) 2932 return -ENOMEM; 2933 2934 command->in_ctx = virt_dev->in_ctx; 2935 2936 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2937 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2938 if (!ctrl_ctx) { 2939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2940 __func__); 2941 ret = -ENOMEM; 2942 goto command_cleanup; 2943 } 2944 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2945 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2946 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2947 2948 /* Don't issue the command if there's no endpoints to update. */ 2949 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2950 ctrl_ctx->drop_flags == 0) { 2951 ret = 0; 2952 goto command_cleanup; 2953 } 2954 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2955 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2956 for (i = 31; i >= 1; i--) { 2957 __le32 le32 = cpu_to_le32(BIT(i)); 2958 2959 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2960 || (ctrl_ctx->add_flags & le32) || i == 1) { 2961 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2962 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2963 break; 2964 } 2965 } 2966 2967 ret = xhci_configure_endpoint(xhci, udev, command, 2968 false, false); 2969 if (ret) 2970 /* Callee should call reset_bandwidth() */ 2971 goto command_cleanup; 2972 2973 /* Free any rings that were dropped, but not changed. */ 2974 for (i = 1; i < 31; i++) { 2975 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2976 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2977 xhci_free_endpoint_ring(xhci, virt_dev, i); 2978 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2979 } 2980 } 2981 xhci_zero_in_ctx(xhci, virt_dev); 2982 /* 2983 * Install any rings for completely new endpoints or changed endpoints, 2984 * and free any old rings from changed endpoints. 2985 */ 2986 for (i = 1; i < 31; i++) { 2987 if (!virt_dev->eps[i].new_ring) 2988 continue; 2989 /* Only free the old ring if it exists. 2990 * It may not if this is the first add of an endpoint. 2991 */ 2992 if (virt_dev->eps[i].ring) { 2993 xhci_free_endpoint_ring(xhci, virt_dev, i); 2994 } 2995 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2996 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2997 virt_dev->eps[i].new_ring = NULL; 2998 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2999 } 3000 command_cleanup: 3001 kfree(command->completion); 3002 kfree(command); 3003 3004 return ret; 3005 } 3006 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 3007 3008 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 3009 { 3010 struct xhci_hcd *xhci; 3011 struct xhci_virt_device *virt_dev; 3012 int i, ret; 3013 3014 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3015 if (ret <= 0) 3016 return; 3017 xhci = hcd_to_xhci(hcd); 3018 3019 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 3020 virt_dev = xhci->devs[udev->slot_id]; 3021 /* Free any rings allocated for added endpoints */ 3022 for (i = 0; i < 31; i++) { 3023 if (virt_dev->eps[i].new_ring) { 3024 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3025 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 3026 virt_dev->eps[i].new_ring = NULL; 3027 } 3028 } 3029 xhci_zero_in_ctx(xhci, virt_dev); 3030 } 3031 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3032 3033 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3034 struct xhci_container_ctx *in_ctx, 3035 struct xhci_container_ctx *out_ctx, 3036 struct xhci_input_control_ctx *ctrl_ctx, 3037 u32 add_flags, u32 drop_flags) 3038 { 3039 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3040 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3041 xhci_slot_copy(xhci, in_ctx, out_ctx); 3042 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3043 } 3044 3045 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3046 struct usb_host_endpoint *host_ep) 3047 { 3048 struct xhci_hcd *xhci; 3049 struct xhci_virt_device *vdev; 3050 struct xhci_virt_ep *ep; 3051 struct usb_device *udev; 3052 unsigned long flags; 3053 unsigned int ep_index; 3054 3055 xhci = hcd_to_xhci(hcd); 3056 rescan: 3057 spin_lock_irqsave(&xhci->lock, flags); 3058 3059 udev = (struct usb_device *)host_ep->hcpriv; 3060 if (!udev || !udev->slot_id) 3061 goto done; 3062 3063 vdev = xhci->devs[udev->slot_id]; 3064 if (!vdev) 3065 goto done; 3066 3067 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3068 ep = &vdev->eps[ep_index]; 3069 3070 /* wait for hub_tt_work to finish clearing hub TT */ 3071 if (ep->ep_state & EP_CLEARING_TT) { 3072 spin_unlock_irqrestore(&xhci->lock, flags); 3073 schedule_timeout_uninterruptible(1); 3074 goto rescan; 3075 } 3076 3077 if (ep->ep_state) 3078 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3079 ep->ep_state); 3080 done: 3081 host_ep->hcpriv = NULL; 3082 spin_unlock_irqrestore(&xhci->lock, flags); 3083 } 3084 3085 /* 3086 * Called after usb core issues a clear halt control message. 3087 * The host side of the halt should already be cleared by a reset endpoint 3088 * command issued when the STALL event was received. 3089 * 3090 * The reset endpoint command may only be issued to endpoints in the halted 3091 * state. For software that wishes to reset the data toggle or sequence number 3092 * of an endpoint that isn't in the halted state this function will issue a 3093 * configure endpoint command with the Drop and Add bits set for the target 3094 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3095 * 3096 * vdev may be lost due to xHC restore error and re-initialization during S3/S4 3097 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device() 3098 */ 3099 3100 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3101 struct usb_host_endpoint *host_ep) 3102 { 3103 struct xhci_hcd *xhci; 3104 struct usb_device *udev; 3105 struct xhci_virt_device *vdev; 3106 struct xhci_virt_ep *ep; 3107 struct xhci_input_control_ctx *ctrl_ctx; 3108 struct xhci_command *stop_cmd, *cfg_cmd; 3109 unsigned int ep_index; 3110 unsigned long flags; 3111 u32 ep_flag; 3112 int err; 3113 3114 xhci = hcd_to_xhci(hcd); 3115 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3116 3117 /* 3118 * Usb core assumes a max packet value for ep0 on FS devices until the 3119 * real value is read from the descriptor. Core resets Ep0 if values 3120 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case 3121 */ 3122 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) { 3123 3124 udev = container_of(host_ep, struct usb_device, ep0); 3125 if (udev->speed != USB_SPEED_FULL || !udev->slot_id) 3126 return; 3127 3128 vdev = xhci->devs[udev->slot_id]; 3129 if (!vdev || vdev->udev != udev) 3130 return; 3131 3132 xhci_check_ep0_maxpacket(xhci, vdev); 3133 3134 /* Nothing else should be done here for ep0 during ep reset */ 3135 return; 3136 } 3137 3138 if (!host_ep->hcpriv) 3139 return; 3140 udev = (struct usb_device *) host_ep->hcpriv; 3141 vdev = xhci->devs[udev->slot_id]; 3142 3143 if (!udev->slot_id || !vdev) 3144 return; 3145 3146 ep = &vdev->eps[ep_index]; 3147 3148 /* Bail out if toggle is already being cleared by a endpoint reset */ 3149 spin_lock_irqsave(&xhci->lock, flags); 3150 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3151 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3152 spin_unlock_irqrestore(&xhci->lock, flags); 3153 return; 3154 } 3155 spin_unlock_irqrestore(&xhci->lock, flags); 3156 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3157 if (usb_endpoint_xfer_control(&host_ep->desc) || 3158 usb_endpoint_xfer_isoc(&host_ep->desc)) 3159 return; 3160 3161 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3162 3163 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3164 return; 3165 3166 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3167 if (!stop_cmd) 3168 return; 3169 3170 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3171 if (!cfg_cmd) 3172 goto cleanup; 3173 3174 spin_lock_irqsave(&xhci->lock, flags); 3175 3176 /* block queuing new trbs and ringing ep doorbell */ 3177 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3178 3179 /* 3180 * Make sure endpoint ring is empty before resetting the toggle/seq. 3181 * Driver is required to synchronously cancel all transfer request. 3182 * Stop the endpoint to force xHC to update the output context 3183 */ 3184 3185 if (!list_empty(&ep->ring->td_list)) { 3186 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3187 spin_unlock_irqrestore(&xhci->lock, flags); 3188 xhci_free_command(xhci, cfg_cmd); 3189 goto cleanup; 3190 } 3191 3192 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3193 ep_index, 0); 3194 if (err < 0) { 3195 spin_unlock_irqrestore(&xhci->lock, flags); 3196 xhci_free_command(xhci, cfg_cmd); 3197 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3198 __func__, err); 3199 goto cleanup; 3200 } 3201 3202 xhci_ring_cmd_db(xhci); 3203 spin_unlock_irqrestore(&xhci->lock, flags); 3204 3205 wait_for_completion(stop_cmd->completion); 3206 3207 spin_lock_irqsave(&xhci->lock, flags); 3208 3209 /* config ep command clears toggle if add and drop ep flags are set */ 3210 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3211 if (!ctrl_ctx) { 3212 spin_unlock_irqrestore(&xhci->lock, flags); 3213 xhci_free_command(xhci, cfg_cmd); 3214 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3215 __func__); 3216 goto cleanup; 3217 } 3218 3219 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3220 ctrl_ctx, ep_flag, ep_flag); 3221 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3222 3223 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3224 udev->slot_id, false); 3225 if (err < 0) { 3226 spin_unlock_irqrestore(&xhci->lock, flags); 3227 xhci_free_command(xhci, cfg_cmd); 3228 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3229 __func__, err); 3230 goto cleanup; 3231 } 3232 3233 xhci_ring_cmd_db(xhci); 3234 spin_unlock_irqrestore(&xhci->lock, flags); 3235 3236 wait_for_completion(cfg_cmd->completion); 3237 3238 xhci_free_command(xhci, cfg_cmd); 3239 cleanup: 3240 xhci_free_command(xhci, stop_cmd); 3241 spin_lock_irqsave(&xhci->lock, flags); 3242 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3243 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3244 spin_unlock_irqrestore(&xhci->lock, flags); 3245 } 3246 3247 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3248 struct usb_device *udev, struct usb_host_endpoint *ep, 3249 unsigned int slot_id) 3250 { 3251 int ret; 3252 unsigned int ep_index; 3253 unsigned int ep_state; 3254 3255 if (!ep) 3256 return -EINVAL; 3257 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3258 if (ret <= 0) 3259 return ret ? ret : -EINVAL; 3260 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3261 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3262 " descriptor for ep 0x%x does not support streams\n", 3263 ep->desc.bEndpointAddress); 3264 return -EINVAL; 3265 } 3266 3267 ep_index = xhci_get_endpoint_index(&ep->desc); 3268 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3269 if (ep_state & EP_HAS_STREAMS || 3270 ep_state & EP_GETTING_STREAMS) { 3271 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3272 "already has streams set up.\n", 3273 ep->desc.bEndpointAddress); 3274 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3275 "dynamic stream context array reallocation.\n"); 3276 return -EINVAL; 3277 } 3278 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3279 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3280 "endpoint 0x%x; URBs are pending.\n", 3281 ep->desc.bEndpointAddress); 3282 return -EINVAL; 3283 } 3284 return 0; 3285 } 3286 3287 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3288 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3289 { 3290 unsigned int max_streams; 3291 3292 /* The stream context array size must be a power of two */ 3293 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3294 /* 3295 * Find out how many primary stream array entries the host controller 3296 * supports. Later we may use secondary stream arrays (similar to 2nd 3297 * level page entries), but that's an optional feature for xHCI host 3298 * controllers. xHCs must support at least 4 stream IDs. 3299 */ 3300 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3301 if (*num_stream_ctxs > max_streams) { 3302 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3303 max_streams); 3304 *num_stream_ctxs = max_streams; 3305 *num_streams = max_streams; 3306 } 3307 } 3308 3309 /* Returns an error code if one of the endpoint already has streams. 3310 * This does not change any data structures, it only checks and gathers 3311 * information. 3312 */ 3313 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3314 struct usb_device *udev, 3315 struct usb_host_endpoint **eps, unsigned int num_eps, 3316 unsigned int *num_streams, u32 *changed_ep_bitmask) 3317 { 3318 unsigned int max_streams; 3319 unsigned int endpoint_flag; 3320 int i; 3321 int ret; 3322 3323 for (i = 0; i < num_eps; i++) { 3324 ret = xhci_check_streams_endpoint(xhci, udev, 3325 eps[i], udev->slot_id); 3326 if (ret < 0) 3327 return ret; 3328 3329 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3330 if (max_streams < (*num_streams - 1)) { 3331 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3332 eps[i]->desc.bEndpointAddress, 3333 max_streams); 3334 *num_streams = max_streams+1; 3335 } 3336 3337 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3338 if (*changed_ep_bitmask & endpoint_flag) 3339 return -EINVAL; 3340 *changed_ep_bitmask |= endpoint_flag; 3341 } 3342 return 0; 3343 } 3344 3345 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3346 struct usb_device *udev, 3347 struct usb_host_endpoint **eps, unsigned int num_eps) 3348 { 3349 u32 changed_ep_bitmask = 0; 3350 unsigned int slot_id; 3351 unsigned int ep_index; 3352 unsigned int ep_state; 3353 int i; 3354 3355 slot_id = udev->slot_id; 3356 if (!xhci->devs[slot_id]) 3357 return 0; 3358 3359 for (i = 0; i < num_eps; i++) { 3360 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3361 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3362 /* Are streams already being freed for the endpoint? */ 3363 if (ep_state & EP_GETTING_NO_STREAMS) { 3364 xhci_warn(xhci, "WARN Can't disable streams for " 3365 "endpoint 0x%x, " 3366 "streams are being disabled already\n", 3367 eps[i]->desc.bEndpointAddress); 3368 return 0; 3369 } 3370 /* Are there actually any streams to free? */ 3371 if (!(ep_state & EP_HAS_STREAMS) && 3372 !(ep_state & EP_GETTING_STREAMS)) { 3373 xhci_warn(xhci, "WARN Can't disable streams for " 3374 "endpoint 0x%x, " 3375 "streams are already disabled!\n", 3376 eps[i]->desc.bEndpointAddress); 3377 xhci_warn(xhci, "WARN xhci_free_streams() called " 3378 "with non-streams endpoint\n"); 3379 return 0; 3380 } 3381 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3382 } 3383 return changed_ep_bitmask; 3384 } 3385 3386 /* 3387 * The USB device drivers use this function (through the HCD interface in USB 3388 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3389 * coordinate mass storage command queueing across multiple endpoints (basically 3390 * a stream ID == a task ID). 3391 * 3392 * Setting up streams involves allocating the same size stream context array 3393 * for each endpoint and issuing a configure endpoint command for all endpoints. 3394 * 3395 * Don't allow the call to succeed if one endpoint only supports one stream 3396 * (which means it doesn't support streams at all). 3397 * 3398 * Drivers may get less stream IDs than they asked for, if the host controller 3399 * hardware or endpoints claim they can't support the number of requested 3400 * stream IDs. 3401 */ 3402 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3403 struct usb_host_endpoint **eps, unsigned int num_eps, 3404 unsigned int num_streams, gfp_t mem_flags) 3405 { 3406 int i, ret; 3407 struct xhci_hcd *xhci; 3408 struct xhci_virt_device *vdev; 3409 struct xhci_command *config_cmd; 3410 struct xhci_input_control_ctx *ctrl_ctx; 3411 unsigned int ep_index; 3412 unsigned int num_stream_ctxs; 3413 unsigned int max_packet; 3414 unsigned long flags; 3415 u32 changed_ep_bitmask = 0; 3416 3417 if (!eps) 3418 return -EINVAL; 3419 3420 /* Add one to the number of streams requested to account for 3421 * stream 0 that is reserved for xHCI usage. 3422 */ 3423 num_streams += 1; 3424 xhci = hcd_to_xhci(hcd); 3425 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3426 num_streams); 3427 3428 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3429 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3430 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3431 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3432 return -ENOSYS; 3433 } 3434 3435 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3436 if (!config_cmd) 3437 return -ENOMEM; 3438 3439 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3440 if (!ctrl_ctx) { 3441 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3442 __func__); 3443 xhci_free_command(xhci, config_cmd); 3444 return -ENOMEM; 3445 } 3446 3447 /* Check to make sure all endpoints are not already configured for 3448 * streams. While we're at it, find the maximum number of streams that 3449 * all the endpoints will support and check for duplicate endpoints. 3450 */ 3451 spin_lock_irqsave(&xhci->lock, flags); 3452 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3453 num_eps, &num_streams, &changed_ep_bitmask); 3454 if (ret < 0) { 3455 xhci_free_command(xhci, config_cmd); 3456 spin_unlock_irqrestore(&xhci->lock, flags); 3457 return ret; 3458 } 3459 if (num_streams <= 1) { 3460 xhci_warn(xhci, "WARN: endpoints can't handle " 3461 "more than one stream.\n"); 3462 xhci_free_command(xhci, config_cmd); 3463 spin_unlock_irqrestore(&xhci->lock, flags); 3464 return -EINVAL; 3465 } 3466 vdev = xhci->devs[udev->slot_id]; 3467 /* Mark each endpoint as being in transition, so 3468 * xhci_urb_enqueue() will reject all URBs. 3469 */ 3470 for (i = 0; i < num_eps; i++) { 3471 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3472 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3473 } 3474 spin_unlock_irqrestore(&xhci->lock, flags); 3475 3476 /* Setup internal data structures and allocate HW data structures for 3477 * streams (but don't install the HW structures in the input context 3478 * until we're sure all memory allocation succeeded). 3479 */ 3480 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3481 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3482 num_stream_ctxs, num_streams); 3483 3484 for (i = 0; i < num_eps; i++) { 3485 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3486 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3487 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3488 num_stream_ctxs, 3489 num_streams, 3490 max_packet, mem_flags); 3491 if (!vdev->eps[ep_index].stream_info) 3492 goto cleanup; 3493 /* Set maxPstreams in endpoint context and update deq ptr to 3494 * point to stream context array. FIXME 3495 */ 3496 } 3497 3498 /* Set up the input context for a configure endpoint command. */ 3499 for (i = 0; i < num_eps; i++) { 3500 struct xhci_ep_ctx *ep_ctx; 3501 3502 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3503 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3504 3505 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3506 vdev->out_ctx, ep_index); 3507 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3508 vdev->eps[ep_index].stream_info); 3509 } 3510 /* Tell the HW to drop its old copy of the endpoint context info 3511 * and add the updated copy from the input context. 3512 */ 3513 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3514 vdev->out_ctx, ctrl_ctx, 3515 changed_ep_bitmask, changed_ep_bitmask); 3516 3517 /* Issue and wait for the configure endpoint command */ 3518 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3519 false, false); 3520 3521 /* xHC rejected the configure endpoint command for some reason, so we 3522 * leave the old ring intact and free our internal streams data 3523 * structure. 3524 */ 3525 if (ret < 0) 3526 goto cleanup; 3527 3528 spin_lock_irqsave(&xhci->lock, flags); 3529 for (i = 0; i < num_eps; i++) { 3530 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3531 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3532 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3533 udev->slot_id, ep_index); 3534 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3535 } 3536 xhci_free_command(xhci, config_cmd); 3537 spin_unlock_irqrestore(&xhci->lock, flags); 3538 3539 for (i = 0; i < num_eps; i++) { 3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3541 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3542 } 3543 /* Subtract 1 for stream 0, which drivers can't use */ 3544 return num_streams - 1; 3545 3546 cleanup: 3547 /* If it didn't work, free the streams! */ 3548 for (i = 0; i < num_eps; i++) { 3549 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3550 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3551 vdev->eps[ep_index].stream_info = NULL; 3552 /* FIXME Unset maxPstreams in endpoint context and 3553 * update deq ptr to point to normal string ring. 3554 */ 3555 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3556 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3557 xhci_endpoint_zero(xhci, vdev, eps[i]); 3558 } 3559 xhci_free_command(xhci, config_cmd); 3560 return -ENOMEM; 3561 } 3562 3563 /* Transition the endpoint from using streams to being a "normal" endpoint 3564 * without streams. 3565 * 3566 * Modify the endpoint context state, submit a configure endpoint command, 3567 * and free all endpoint rings for streams if that completes successfully. 3568 */ 3569 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3570 struct usb_host_endpoint **eps, unsigned int num_eps, 3571 gfp_t mem_flags) 3572 { 3573 int i, ret; 3574 struct xhci_hcd *xhci; 3575 struct xhci_virt_device *vdev; 3576 struct xhci_command *command; 3577 struct xhci_input_control_ctx *ctrl_ctx; 3578 unsigned int ep_index; 3579 unsigned long flags; 3580 u32 changed_ep_bitmask; 3581 3582 xhci = hcd_to_xhci(hcd); 3583 vdev = xhci->devs[udev->slot_id]; 3584 3585 /* Set up a configure endpoint command to remove the streams rings */ 3586 spin_lock_irqsave(&xhci->lock, flags); 3587 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3588 udev, eps, num_eps); 3589 if (changed_ep_bitmask == 0) { 3590 spin_unlock_irqrestore(&xhci->lock, flags); 3591 return -EINVAL; 3592 } 3593 3594 /* Use the xhci_command structure from the first endpoint. We may have 3595 * allocated too many, but the driver may call xhci_free_streams() for 3596 * each endpoint it grouped into one call to xhci_alloc_streams(). 3597 */ 3598 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3599 command = vdev->eps[ep_index].stream_info->free_streams_command; 3600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3601 if (!ctrl_ctx) { 3602 spin_unlock_irqrestore(&xhci->lock, flags); 3603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3604 __func__); 3605 return -EINVAL; 3606 } 3607 3608 for (i = 0; i < num_eps; i++) { 3609 struct xhci_ep_ctx *ep_ctx; 3610 3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3612 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3613 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3614 EP_GETTING_NO_STREAMS; 3615 3616 xhci_endpoint_copy(xhci, command->in_ctx, 3617 vdev->out_ctx, ep_index); 3618 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3619 &vdev->eps[ep_index]); 3620 } 3621 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3622 vdev->out_ctx, ctrl_ctx, 3623 changed_ep_bitmask, changed_ep_bitmask); 3624 spin_unlock_irqrestore(&xhci->lock, flags); 3625 3626 /* Issue and wait for the configure endpoint command, 3627 * which must succeed. 3628 */ 3629 ret = xhci_configure_endpoint(xhci, udev, command, 3630 false, true); 3631 3632 /* xHC rejected the configure endpoint command for some reason, so we 3633 * leave the streams rings intact. 3634 */ 3635 if (ret < 0) 3636 return ret; 3637 3638 spin_lock_irqsave(&xhci->lock, flags); 3639 for (i = 0; i < num_eps; i++) { 3640 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3641 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3642 vdev->eps[ep_index].stream_info = NULL; 3643 /* FIXME Unset maxPstreams in endpoint context and 3644 * update deq ptr to point to normal string ring. 3645 */ 3646 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3647 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3648 } 3649 spin_unlock_irqrestore(&xhci->lock, flags); 3650 3651 return 0; 3652 } 3653 3654 /* 3655 * Deletes endpoint resources for endpoints that were active before a Reset 3656 * Device command, or a Disable Slot command. The Reset Device command leaves 3657 * the control endpoint intact, whereas the Disable Slot command deletes it. 3658 * 3659 * Must be called with xhci->lock held. 3660 */ 3661 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3662 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3663 { 3664 int i; 3665 unsigned int num_dropped_eps = 0; 3666 unsigned int drop_flags = 0; 3667 3668 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3669 if (virt_dev->eps[i].ring) { 3670 drop_flags |= 1 << i; 3671 num_dropped_eps++; 3672 } 3673 } 3674 xhci->num_active_eps -= num_dropped_eps; 3675 if (num_dropped_eps) 3676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3677 "Dropped %u ep ctxs, flags = 0x%x, " 3678 "%u now active.", 3679 num_dropped_eps, drop_flags, 3680 xhci->num_active_eps); 3681 } 3682 3683 /* 3684 * This submits a Reset Device Command, which will set the device state to 0, 3685 * set the device address to 0, and disable all the endpoints except the default 3686 * control endpoint. The USB core should come back and call 3687 * xhci_address_device(), and then re-set up the configuration. If this is 3688 * called because of a usb_reset_and_verify_device(), then the old alternate 3689 * settings will be re-installed through the normal bandwidth allocation 3690 * functions. 3691 * 3692 * Wait for the Reset Device command to finish. Remove all structures 3693 * associated with the endpoints that were disabled. Clear the input device 3694 * structure? Reset the control endpoint 0 max packet size? 3695 * 3696 * If the virt_dev to be reset does not exist or does not match the udev, 3697 * it means the device is lost, possibly due to the xHC restore error and 3698 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3699 * re-allocate the device. 3700 */ 3701 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3702 struct usb_device *udev) 3703 { 3704 int ret, i; 3705 unsigned long flags; 3706 struct xhci_hcd *xhci; 3707 unsigned int slot_id; 3708 struct xhci_virt_device *virt_dev; 3709 struct xhci_command *reset_device_cmd; 3710 struct xhci_slot_ctx *slot_ctx; 3711 int old_active_eps = 0; 3712 3713 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3714 if (ret <= 0) 3715 return ret; 3716 xhci = hcd_to_xhci(hcd); 3717 slot_id = udev->slot_id; 3718 virt_dev = xhci->devs[slot_id]; 3719 if (!virt_dev) { 3720 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3721 "not exist. Re-allocate the device\n", slot_id); 3722 ret = xhci_alloc_dev(hcd, udev); 3723 if (ret == 1) 3724 return 0; 3725 else 3726 return -EINVAL; 3727 } 3728 3729 if (virt_dev->tt_info) 3730 old_active_eps = virt_dev->tt_info->active_eps; 3731 3732 if (virt_dev->udev != udev) { 3733 /* If the virt_dev and the udev does not match, this virt_dev 3734 * may belong to another udev. 3735 * Re-allocate the device. 3736 */ 3737 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3738 "not match the udev. Re-allocate the device\n", 3739 slot_id); 3740 ret = xhci_alloc_dev(hcd, udev); 3741 if (ret == 1) 3742 return 0; 3743 else 3744 return -EINVAL; 3745 } 3746 3747 /* If device is not setup, there is no point in resetting it */ 3748 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3749 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3750 SLOT_STATE_DISABLED) 3751 return 0; 3752 3753 trace_xhci_discover_or_reset_device(slot_ctx); 3754 3755 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3756 /* Allocate the command structure that holds the struct completion. 3757 * Assume we're in process context, since the normal device reset 3758 * process has to wait for the device anyway. Storage devices are 3759 * reset as part of error handling, so use GFP_NOIO instead of 3760 * GFP_KERNEL. 3761 */ 3762 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3763 if (!reset_device_cmd) { 3764 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3765 return -ENOMEM; 3766 } 3767 3768 /* Attempt to submit the Reset Device command to the command ring */ 3769 spin_lock_irqsave(&xhci->lock, flags); 3770 3771 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3772 if (ret) { 3773 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3774 spin_unlock_irqrestore(&xhci->lock, flags); 3775 goto command_cleanup; 3776 } 3777 xhci_ring_cmd_db(xhci); 3778 spin_unlock_irqrestore(&xhci->lock, flags); 3779 3780 /* Wait for the Reset Device command to finish */ 3781 wait_for_completion(reset_device_cmd->completion); 3782 3783 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3784 * unless we tried to reset a slot ID that wasn't enabled, 3785 * or the device wasn't in the addressed or configured state. 3786 */ 3787 ret = reset_device_cmd->status; 3788 switch (ret) { 3789 case COMP_COMMAND_ABORTED: 3790 case COMP_COMMAND_RING_STOPPED: 3791 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3792 ret = -ETIME; 3793 goto command_cleanup; 3794 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3795 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3796 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3797 slot_id, 3798 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3799 xhci_dbg(xhci, "Not freeing device rings.\n"); 3800 /* Don't treat this as an error. May change my mind later. */ 3801 ret = 0; 3802 goto command_cleanup; 3803 case COMP_SUCCESS: 3804 xhci_dbg(xhci, "Successful reset device command.\n"); 3805 break; 3806 default: 3807 if (xhci_is_vendor_info_code(xhci, ret)) 3808 break; 3809 xhci_warn(xhci, "Unknown completion code %u for " 3810 "reset device command.\n", ret); 3811 ret = -EINVAL; 3812 goto command_cleanup; 3813 } 3814 3815 /* Free up host controller endpoint resources */ 3816 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3817 spin_lock_irqsave(&xhci->lock, flags); 3818 /* Don't delete the default control endpoint resources */ 3819 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3820 spin_unlock_irqrestore(&xhci->lock, flags); 3821 } 3822 3823 /* Everything but endpoint 0 is disabled, so free the rings. */ 3824 for (i = 1; i < 31; i++) { 3825 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3826 3827 if (ep->ep_state & EP_HAS_STREAMS) { 3828 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3829 xhci_get_endpoint_address(i)); 3830 xhci_free_stream_info(xhci, ep->stream_info); 3831 ep->stream_info = NULL; 3832 ep->ep_state &= ~EP_HAS_STREAMS; 3833 } 3834 3835 if (ep->ring) { 3836 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3837 xhci_free_endpoint_ring(xhci, virt_dev, i); 3838 } 3839 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3840 xhci_drop_ep_from_interval_table(xhci, 3841 &virt_dev->eps[i].bw_info, 3842 virt_dev->bw_table, 3843 udev, 3844 &virt_dev->eps[i], 3845 virt_dev->tt_info); 3846 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3847 } 3848 /* If necessary, update the number of active TTs on this root port */ 3849 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3850 virt_dev->flags = 0; 3851 ret = 0; 3852 3853 command_cleanup: 3854 xhci_free_command(xhci, reset_device_cmd); 3855 return ret; 3856 } 3857 3858 /* 3859 * At this point, the struct usb_device is about to go away, the device has 3860 * disconnected, and all traffic has been stopped and the endpoints have been 3861 * disabled. Free any HC data structures associated with that device. 3862 */ 3863 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3864 { 3865 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3866 struct xhci_virt_device *virt_dev; 3867 struct xhci_slot_ctx *slot_ctx; 3868 unsigned long flags; 3869 int i, ret; 3870 3871 /* 3872 * We called pm_runtime_get_noresume when the device was attached. 3873 * Decrement the counter here to allow controller to runtime suspend 3874 * if no devices remain. 3875 */ 3876 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3877 pm_runtime_put_noidle(hcd->self.controller); 3878 3879 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3880 /* If the host is halted due to driver unload, we still need to free the 3881 * device. 3882 */ 3883 if (ret <= 0 && ret != -ENODEV) 3884 return; 3885 3886 virt_dev = xhci->devs[udev->slot_id]; 3887 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3888 trace_xhci_free_dev(slot_ctx); 3889 3890 /* Stop any wayward timer functions (which may grab the lock) */ 3891 for (i = 0; i < 31; i++) 3892 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3893 virt_dev->udev = NULL; 3894 xhci_disable_slot(xhci, udev->slot_id); 3895 3896 spin_lock_irqsave(&xhci->lock, flags); 3897 xhci_free_virt_device(xhci, udev->slot_id); 3898 spin_unlock_irqrestore(&xhci->lock, flags); 3899 3900 } 3901 3902 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3903 { 3904 struct xhci_command *command; 3905 unsigned long flags; 3906 u32 state; 3907 int ret; 3908 3909 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3910 if (!command) 3911 return -ENOMEM; 3912 3913 xhci_debugfs_remove_slot(xhci, slot_id); 3914 3915 spin_lock_irqsave(&xhci->lock, flags); 3916 /* Don't disable the slot if the host controller is dead. */ 3917 state = readl(&xhci->op_regs->status); 3918 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3919 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3920 spin_unlock_irqrestore(&xhci->lock, flags); 3921 kfree(command); 3922 return -ENODEV; 3923 } 3924 3925 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3926 slot_id); 3927 if (ret) { 3928 spin_unlock_irqrestore(&xhci->lock, flags); 3929 kfree(command); 3930 return ret; 3931 } 3932 xhci_ring_cmd_db(xhci); 3933 spin_unlock_irqrestore(&xhci->lock, flags); 3934 3935 wait_for_completion(command->completion); 3936 3937 if (command->status != COMP_SUCCESS) 3938 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3939 slot_id, command->status); 3940 3941 xhci_free_command(xhci, command); 3942 3943 return 0; 3944 } 3945 3946 /* 3947 * Checks if we have enough host controller resources for the default control 3948 * endpoint. 3949 * 3950 * Must be called with xhci->lock held. 3951 */ 3952 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3953 { 3954 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3956 "Not enough ep ctxs: " 3957 "%u active, need to add 1, limit is %u.", 3958 xhci->num_active_eps, xhci->limit_active_eps); 3959 return -ENOMEM; 3960 } 3961 xhci->num_active_eps += 1; 3962 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3963 "Adding 1 ep ctx, %u now active.", 3964 xhci->num_active_eps); 3965 return 0; 3966 } 3967 3968 3969 /* 3970 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3971 * timed out, or allocating memory failed. Returns 1 on success. 3972 */ 3973 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3974 { 3975 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3976 struct xhci_virt_device *vdev; 3977 struct xhci_slot_ctx *slot_ctx; 3978 unsigned long flags; 3979 int ret, slot_id; 3980 struct xhci_command *command; 3981 3982 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3983 if (!command) 3984 return 0; 3985 3986 spin_lock_irqsave(&xhci->lock, flags); 3987 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3988 if (ret) { 3989 spin_unlock_irqrestore(&xhci->lock, flags); 3990 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3991 xhci_free_command(xhci, command); 3992 return 0; 3993 } 3994 xhci_ring_cmd_db(xhci); 3995 spin_unlock_irqrestore(&xhci->lock, flags); 3996 3997 wait_for_completion(command->completion); 3998 slot_id = command->slot_id; 3999 4000 if (!slot_id || command->status != COMP_SUCCESS) { 4001 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 4002 xhci_trb_comp_code_string(command->status)); 4003 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 4004 HCS_MAX_SLOTS( 4005 readl(&xhci->cap_regs->hcs_params1))); 4006 xhci_free_command(xhci, command); 4007 return 0; 4008 } 4009 4010 xhci_free_command(xhci, command); 4011 4012 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 4013 spin_lock_irqsave(&xhci->lock, flags); 4014 ret = xhci_reserve_host_control_ep_resources(xhci); 4015 if (ret) { 4016 spin_unlock_irqrestore(&xhci->lock, flags); 4017 xhci_warn(xhci, "Not enough host resources, " 4018 "active endpoint contexts = %u\n", 4019 xhci->num_active_eps); 4020 goto disable_slot; 4021 } 4022 spin_unlock_irqrestore(&xhci->lock, flags); 4023 } 4024 /* Use GFP_NOIO, since this function can be called from 4025 * xhci_discover_or_reset_device(), which may be called as part of 4026 * mass storage driver error handling. 4027 */ 4028 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 4029 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 4030 goto disable_slot; 4031 } 4032 vdev = xhci->devs[slot_id]; 4033 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 4034 trace_xhci_alloc_dev(slot_ctx); 4035 4036 udev->slot_id = slot_id; 4037 4038 xhci_debugfs_create_slot(xhci, slot_id); 4039 4040 /* 4041 * If resetting upon resume, we can't put the controller into runtime 4042 * suspend if there is a device attached. 4043 */ 4044 if (xhci->quirks & XHCI_RESET_ON_RESUME) 4045 pm_runtime_get_noresume(hcd->self.controller); 4046 4047 /* Is this a LS or FS device under a HS hub? */ 4048 /* Hub or peripherial? */ 4049 return 1; 4050 4051 disable_slot: 4052 xhci_disable_slot(xhci, udev->slot_id); 4053 xhci_free_virt_device(xhci, udev->slot_id); 4054 4055 return 0; 4056 } 4057 4058 /** 4059 * xhci_setup_device - issues an Address Device command to assign a unique 4060 * USB bus address. 4061 * @hcd: USB host controller data structure. 4062 * @udev: USB dev structure representing the connected device. 4063 * @setup: Enum specifying setup mode: address only or with context. 4064 * @timeout_ms: Max wait time (ms) for the command operation to complete. 4065 * 4066 * Return: 0 if successful; otherwise, negative error code. 4067 */ 4068 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4069 enum xhci_setup_dev setup, unsigned int timeout_ms) 4070 { 4071 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4072 unsigned long flags; 4073 struct xhci_virt_device *virt_dev; 4074 int ret = 0; 4075 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4076 struct xhci_slot_ctx *slot_ctx; 4077 struct xhci_input_control_ctx *ctrl_ctx; 4078 u64 temp_64; 4079 struct xhci_command *command = NULL; 4080 4081 mutex_lock(&xhci->mutex); 4082 4083 if (xhci->xhc_state) { /* dying, removing or halted */ 4084 ret = -ESHUTDOWN; 4085 goto out; 4086 } 4087 4088 if (!udev->slot_id) { 4089 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4090 "Bad Slot ID %d", udev->slot_id); 4091 ret = -EINVAL; 4092 goto out; 4093 } 4094 4095 virt_dev = xhci->devs[udev->slot_id]; 4096 4097 if (WARN_ON(!virt_dev)) { 4098 /* 4099 * In plug/unplug torture test with an NEC controller, 4100 * a zero-dereference was observed once due to virt_dev = 0. 4101 * Print useful debug rather than crash if it is observed again! 4102 */ 4103 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4104 udev->slot_id); 4105 ret = -EINVAL; 4106 goto out; 4107 } 4108 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4109 trace_xhci_setup_device_slot(slot_ctx); 4110 4111 if (setup == SETUP_CONTEXT_ONLY) { 4112 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4113 SLOT_STATE_DEFAULT) { 4114 xhci_dbg(xhci, "Slot already in default state\n"); 4115 goto out; 4116 } 4117 } 4118 4119 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4120 if (!command) { 4121 ret = -ENOMEM; 4122 goto out; 4123 } 4124 4125 command->in_ctx = virt_dev->in_ctx; 4126 command->timeout_ms = timeout_ms; 4127 4128 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4129 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4130 if (!ctrl_ctx) { 4131 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4132 __func__); 4133 ret = -EINVAL; 4134 goto out; 4135 } 4136 /* 4137 * If this is the first Set Address since device plug-in or 4138 * virt_device realloaction after a resume with an xHCI power loss, 4139 * then set up the slot context. 4140 */ 4141 if (!slot_ctx->dev_info) 4142 xhci_setup_addressable_virt_dev(xhci, udev); 4143 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4144 else 4145 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4146 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4147 ctrl_ctx->drop_flags = 0; 4148 4149 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4150 le32_to_cpu(slot_ctx->dev_info) >> 27); 4151 4152 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4153 spin_lock_irqsave(&xhci->lock, flags); 4154 trace_xhci_setup_device(virt_dev); 4155 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4156 udev->slot_id, setup); 4157 if (ret) { 4158 spin_unlock_irqrestore(&xhci->lock, flags); 4159 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4160 "FIXME: allocate a command ring segment"); 4161 goto out; 4162 } 4163 xhci_ring_cmd_db(xhci); 4164 spin_unlock_irqrestore(&xhci->lock, flags); 4165 4166 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4167 wait_for_completion(command->completion); 4168 4169 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4170 * the SetAddress() "recovery interval" required by USB and aborting the 4171 * command on a timeout. 4172 */ 4173 switch (command->status) { 4174 case COMP_COMMAND_ABORTED: 4175 case COMP_COMMAND_RING_STOPPED: 4176 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4177 ret = -ETIME; 4178 break; 4179 case COMP_CONTEXT_STATE_ERROR: 4180 case COMP_SLOT_NOT_ENABLED_ERROR: 4181 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4182 act, udev->slot_id); 4183 ret = -EINVAL; 4184 break; 4185 case COMP_USB_TRANSACTION_ERROR: 4186 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4187 4188 mutex_unlock(&xhci->mutex); 4189 ret = xhci_disable_slot(xhci, udev->slot_id); 4190 xhci_free_virt_device(xhci, udev->slot_id); 4191 if (!ret) 4192 xhci_alloc_dev(hcd, udev); 4193 kfree(command->completion); 4194 kfree(command); 4195 return -EPROTO; 4196 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4197 dev_warn(&udev->dev, 4198 "ERROR: Incompatible device for setup %s command\n", act); 4199 ret = -ENODEV; 4200 break; 4201 case COMP_SUCCESS: 4202 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4203 "Successful setup %s command", act); 4204 break; 4205 default: 4206 xhci_err(xhci, 4207 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4208 act, command->status); 4209 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4210 ret = -EINVAL; 4211 break; 4212 } 4213 if (ret) 4214 goto out; 4215 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4216 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4217 "Op regs DCBAA ptr = %#016llx", temp_64); 4218 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4219 "Slot ID %d dcbaa entry @%p = %#016llx", 4220 udev->slot_id, 4221 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4222 (unsigned long long) 4223 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4224 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4225 "Output Context DMA address = %#08llx", 4226 (unsigned long long)virt_dev->out_ctx->dma); 4227 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4228 le32_to_cpu(slot_ctx->dev_info) >> 27); 4229 /* 4230 * USB core uses address 1 for the roothubs, so we add one to the 4231 * address given back to us by the HC. 4232 */ 4233 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4234 le32_to_cpu(slot_ctx->dev_info) >> 27); 4235 /* Zero the input context control for later use */ 4236 ctrl_ctx->add_flags = 0; 4237 ctrl_ctx->drop_flags = 0; 4238 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4239 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4240 4241 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4242 "Internal device address = %d", 4243 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4244 out: 4245 mutex_unlock(&xhci->mutex); 4246 if (command) { 4247 kfree(command->completion); 4248 kfree(command); 4249 } 4250 return ret; 4251 } 4252 4253 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev, 4254 unsigned int timeout_ms) 4255 { 4256 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms); 4257 } 4258 4259 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4260 { 4261 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY, 4262 XHCI_CMD_DEFAULT_TIMEOUT); 4263 } 4264 4265 /* 4266 * Transfer the port index into real index in the HW port status 4267 * registers. Caculate offset between the port's PORTSC register 4268 * and port status base. Divide the number of per port register 4269 * to get the real index. The raw port number bases 1. 4270 */ 4271 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4272 { 4273 struct xhci_hub *rhub; 4274 4275 rhub = xhci_get_rhub(hcd); 4276 return rhub->ports[port1 - 1]->hw_portnum + 1; 4277 } 4278 4279 /* 4280 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4281 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4282 */ 4283 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4284 struct usb_device *udev, u16 max_exit_latency) 4285 { 4286 struct xhci_virt_device *virt_dev; 4287 struct xhci_command *command; 4288 struct xhci_input_control_ctx *ctrl_ctx; 4289 struct xhci_slot_ctx *slot_ctx; 4290 unsigned long flags; 4291 int ret; 4292 4293 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4294 if (!command) 4295 return -ENOMEM; 4296 4297 spin_lock_irqsave(&xhci->lock, flags); 4298 4299 virt_dev = xhci->devs[udev->slot_id]; 4300 4301 /* 4302 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4303 * xHC was re-initialized. Exit latency will be set later after 4304 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4305 */ 4306 4307 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4308 spin_unlock_irqrestore(&xhci->lock, flags); 4309 xhci_free_command(xhci, command); 4310 return 0; 4311 } 4312 4313 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4314 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4315 if (!ctrl_ctx) { 4316 spin_unlock_irqrestore(&xhci->lock, flags); 4317 xhci_free_command(xhci, command); 4318 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4319 __func__); 4320 return -ENOMEM; 4321 } 4322 4323 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4324 spin_unlock_irqrestore(&xhci->lock, flags); 4325 4326 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4327 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4328 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4329 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4330 slot_ctx->dev_state = 0; 4331 4332 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4333 "Set up evaluate context for LPM MEL change."); 4334 4335 /* Issue and wait for the evaluate context command. */ 4336 ret = xhci_configure_endpoint(xhci, udev, command, 4337 true, true); 4338 4339 if (!ret) { 4340 spin_lock_irqsave(&xhci->lock, flags); 4341 virt_dev->current_mel = max_exit_latency; 4342 spin_unlock_irqrestore(&xhci->lock, flags); 4343 } 4344 4345 xhci_free_command(xhci, command); 4346 4347 return ret; 4348 } 4349 4350 #ifdef CONFIG_PM 4351 4352 /* BESL to HIRD Encoding array for USB2 LPM */ 4353 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4354 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4355 4356 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4357 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4358 struct usb_device *udev) 4359 { 4360 int u2del, besl, besl_host; 4361 int besl_device = 0; 4362 u32 field; 4363 4364 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4365 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4366 4367 if (field & USB_BESL_SUPPORT) { 4368 for (besl_host = 0; besl_host < 16; besl_host++) { 4369 if (xhci_besl_encoding[besl_host] >= u2del) 4370 break; 4371 } 4372 /* Use baseline BESL value as default */ 4373 if (field & USB_BESL_BASELINE_VALID) 4374 besl_device = USB_GET_BESL_BASELINE(field); 4375 else if (field & USB_BESL_DEEP_VALID) 4376 besl_device = USB_GET_BESL_DEEP(field); 4377 } else { 4378 if (u2del <= 50) 4379 besl_host = 0; 4380 else 4381 besl_host = (u2del - 51) / 75 + 1; 4382 } 4383 4384 besl = besl_host + besl_device; 4385 if (besl > 15) 4386 besl = 15; 4387 4388 return besl; 4389 } 4390 4391 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4392 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4393 { 4394 u32 field; 4395 int l1; 4396 int besld = 0; 4397 int hirdm = 0; 4398 4399 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4400 4401 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4402 l1 = udev->l1_params.timeout / 256; 4403 4404 /* device has preferred BESLD */ 4405 if (field & USB_BESL_DEEP_VALID) { 4406 besld = USB_GET_BESL_DEEP(field); 4407 hirdm = 1; 4408 } 4409 4410 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4411 } 4412 4413 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4414 struct usb_device *udev, int enable) 4415 { 4416 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4417 struct xhci_port **ports; 4418 __le32 __iomem *pm_addr, *hlpm_addr; 4419 u32 pm_val, hlpm_val, field; 4420 unsigned int port_num; 4421 unsigned long flags; 4422 int hird, exit_latency; 4423 int ret; 4424 4425 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4426 return -EPERM; 4427 4428 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4429 !udev->lpm_capable) 4430 return -EPERM; 4431 4432 if (!udev->parent || udev->parent->parent || 4433 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4434 return -EPERM; 4435 4436 if (udev->usb2_hw_lpm_capable != 1) 4437 return -EPERM; 4438 4439 spin_lock_irqsave(&xhci->lock, flags); 4440 4441 ports = xhci->usb2_rhub.ports; 4442 port_num = udev->portnum - 1; 4443 pm_addr = ports[port_num]->addr + PORTPMSC; 4444 pm_val = readl(pm_addr); 4445 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4446 4447 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4448 enable ? "enable" : "disable", port_num + 1); 4449 4450 if (enable) { 4451 /* Host supports BESL timeout instead of HIRD */ 4452 if (udev->usb2_hw_lpm_besl_capable) { 4453 /* if device doesn't have a preferred BESL value use a 4454 * default one which works with mixed HIRD and BESL 4455 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4456 */ 4457 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4458 if ((field & USB_BESL_SUPPORT) && 4459 (field & USB_BESL_BASELINE_VALID)) 4460 hird = USB_GET_BESL_BASELINE(field); 4461 else 4462 hird = udev->l1_params.besl; 4463 4464 exit_latency = xhci_besl_encoding[hird]; 4465 spin_unlock_irqrestore(&xhci->lock, flags); 4466 4467 ret = xhci_change_max_exit_latency(xhci, udev, 4468 exit_latency); 4469 if (ret < 0) 4470 return ret; 4471 spin_lock_irqsave(&xhci->lock, flags); 4472 4473 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4474 writel(hlpm_val, hlpm_addr); 4475 /* flush write */ 4476 readl(hlpm_addr); 4477 } else { 4478 hird = xhci_calculate_hird_besl(xhci, udev); 4479 } 4480 4481 pm_val &= ~PORT_HIRD_MASK; 4482 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4483 writel(pm_val, pm_addr); 4484 pm_val = readl(pm_addr); 4485 pm_val |= PORT_HLE; 4486 writel(pm_val, pm_addr); 4487 /* flush write */ 4488 readl(pm_addr); 4489 } else { 4490 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4491 writel(pm_val, pm_addr); 4492 /* flush write */ 4493 readl(pm_addr); 4494 if (udev->usb2_hw_lpm_besl_capable) { 4495 spin_unlock_irqrestore(&xhci->lock, flags); 4496 xhci_change_max_exit_latency(xhci, udev, 0); 4497 readl_poll_timeout(ports[port_num]->addr, pm_val, 4498 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4499 100, 10000); 4500 return 0; 4501 } 4502 } 4503 4504 spin_unlock_irqrestore(&xhci->lock, flags); 4505 return 0; 4506 } 4507 4508 /* check if a usb2 port supports a given extened capability protocol 4509 * only USB2 ports extended protocol capability values are cached. 4510 * Return 1 if capability is supported 4511 */ 4512 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4513 unsigned capability) 4514 { 4515 u32 port_offset, port_count; 4516 int i; 4517 4518 for (i = 0; i < xhci->num_ext_caps; i++) { 4519 if (xhci->ext_caps[i] & capability) { 4520 /* port offsets starts at 1 */ 4521 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4522 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4523 if (port >= port_offset && 4524 port < port_offset + port_count) 4525 return 1; 4526 } 4527 } 4528 return 0; 4529 } 4530 4531 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4532 { 4533 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4534 int portnum = udev->portnum - 1; 4535 4536 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4537 return 0; 4538 4539 /* we only support lpm for non-hub device connected to root hub yet */ 4540 if (!udev->parent || udev->parent->parent || 4541 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4542 return 0; 4543 4544 if (xhci->hw_lpm_support == 1 && 4545 xhci_check_usb2_port_capability( 4546 xhci, portnum, XHCI_HLC)) { 4547 udev->usb2_hw_lpm_capable = 1; 4548 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4549 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4550 if (xhci_check_usb2_port_capability(xhci, portnum, 4551 XHCI_BLC)) 4552 udev->usb2_hw_lpm_besl_capable = 1; 4553 } 4554 4555 return 0; 4556 } 4557 4558 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4559 4560 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4561 static unsigned long long xhci_service_interval_to_ns( 4562 struct usb_endpoint_descriptor *desc) 4563 { 4564 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4565 } 4566 4567 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4568 enum usb3_link_state state) 4569 { 4570 unsigned long long sel; 4571 unsigned long long pel; 4572 unsigned int max_sel_pel; 4573 char *state_name; 4574 4575 switch (state) { 4576 case USB3_LPM_U1: 4577 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4578 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4579 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4580 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4581 state_name = "U1"; 4582 break; 4583 case USB3_LPM_U2: 4584 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4585 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4586 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4587 state_name = "U2"; 4588 break; 4589 default: 4590 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4591 __func__); 4592 return USB3_LPM_DISABLED; 4593 } 4594 4595 if (sel <= max_sel_pel && pel <= max_sel_pel) 4596 return USB3_LPM_DEVICE_INITIATED; 4597 4598 if (sel > max_sel_pel) 4599 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4600 "due to long SEL %llu ms\n", 4601 state_name, sel); 4602 else 4603 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4604 "due to long PEL %llu ms\n", 4605 state_name, pel); 4606 return USB3_LPM_DISABLED; 4607 } 4608 4609 /* The U1 timeout should be the maximum of the following values: 4610 * - For control endpoints, U1 system exit latency (SEL) * 3 4611 * - For bulk endpoints, U1 SEL * 5 4612 * - For interrupt endpoints: 4613 * - Notification EPs, U1 SEL * 3 4614 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4615 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4616 */ 4617 static unsigned long long xhci_calculate_intel_u1_timeout( 4618 struct usb_device *udev, 4619 struct usb_endpoint_descriptor *desc) 4620 { 4621 unsigned long long timeout_ns; 4622 int ep_type; 4623 int intr_type; 4624 4625 ep_type = usb_endpoint_type(desc); 4626 switch (ep_type) { 4627 case USB_ENDPOINT_XFER_CONTROL: 4628 timeout_ns = udev->u1_params.sel * 3; 4629 break; 4630 case USB_ENDPOINT_XFER_BULK: 4631 timeout_ns = udev->u1_params.sel * 5; 4632 break; 4633 case USB_ENDPOINT_XFER_INT: 4634 intr_type = usb_endpoint_interrupt_type(desc); 4635 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4636 timeout_ns = udev->u1_params.sel * 3; 4637 break; 4638 } 4639 /* Otherwise the calculation is the same as isoc eps */ 4640 fallthrough; 4641 case USB_ENDPOINT_XFER_ISOC: 4642 timeout_ns = xhci_service_interval_to_ns(desc); 4643 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4644 if (timeout_ns < udev->u1_params.sel * 2) 4645 timeout_ns = udev->u1_params.sel * 2; 4646 break; 4647 default: 4648 return 0; 4649 } 4650 4651 return timeout_ns; 4652 } 4653 4654 /* Returns the hub-encoded U1 timeout value. */ 4655 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4656 struct usb_device *udev, 4657 struct usb_endpoint_descriptor *desc) 4658 { 4659 unsigned long long timeout_ns; 4660 4661 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4662 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4663 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4664 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4665 return USB3_LPM_DISABLED; 4666 } 4667 } 4668 4669 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4670 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4671 else 4672 timeout_ns = udev->u1_params.sel; 4673 4674 /* The U1 timeout is encoded in 1us intervals. 4675 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4676 */ 4677 if (timeout_ns == USB3_LPM_DISABLED) 4678 timeout_ns = 1; 4679 else 4680 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4681 4682 /* If the necessary timeout value is bigger than what we can set in the 4683 * USB 3.0 hub, we have to disable hub-initiated U1. 4684 */ 4685 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4686 return timeout_ns; 4687 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4688 "due to long timeout %llu ms\n", timeout_ns); 4689 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4690 } 4691 4692 /* The U2 timeout should be the maximum of: 4693 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4694 * - largest bInterval of any active periodic endpoint (to avoid going 4695 * into lower power link states between intervals). 4696 * - the U2 Exit Latency of the device 4697 */ 4698 static unsigned long long xhci_calculate_intel_u2_timeout( 4699 struct usb_device *udev, 4700 struct usb_endpoint_descriptor *desc) 4701 { 4702 unsigned long long timeout_ns; 4703 unsigned long long u2_del_ns; 4704 4705 timeout_ns = 10 * 1000 * 1000; 4706 4707 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4708 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4709 timeout_ns = xhci_service_interval_to_ns(desc); 4710 4711 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4712 if (u2_del_ns > timeout_ns) 4713 timeout_ns = u2_del_ns; 4714 4715 return timeout_ns; 4716 } 4717 4718 /* Returns the hub-encoded U2 timeout value. */ 4719 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4720 struct usb_device *udev, 4721 struct usb_endpoint_descriptor *desc) 4722 { 4723 unsigned long long timeout_ns; 4724 4725 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4726 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4727 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4728 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4729 return USB3_LPM_DISABLED; 4730 } 4731 } 4732 4733 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST)) 4734 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4735 else 4736 timeout_ns = udev->u2_params.sel; 4737 4738 /* The U2 timeout is encoded in 256us intervals */ 4739 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4740 /* If the necessary timeout value is bigger than what we can set in the 4741 * USB 3.0 hub, we have to disable hub-initiated U2. 4742 */ 4743 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4744 return timeout_ns; 4745 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4746 "due to long timeout %llu ms\n", timeout_ns); 4747 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4748 } 4749 4750 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4751 struct usb_device *udev, 4752 struct usb_endpoint_descriptor *desc, 4753 enum usb3_link_state state, 4754 u16 *timeout) 4755 { 4756 if (state == USB3_LPM_U1) 4757 return xhci_calculate_u1_timeout(xhci, udev, desc); 4758 else if (state == USB3_LPM_U2) 4759 return xhci_calculate_u2_timeout(xhci, udev, desc); 4760 4761 return USB3_LPM_DISABLED; 4762 } 4763 4764 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4765 struct usb_device *udev, 4766 struct usb_endpoint_descriptor *desc, 4767 enum usb3_link_state state, 4768 u16 *timeout) 4769 { 4770 u16 alt_timeout; 4771 4772 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4773 desc, state, timeout); 4774 4775 /* If we found we can't enable hub-initiated LPM, and 4776 * the U1 or U2 exit latency was too high to allow 4777 * device-initiated LPM as well, then we will disable LPM 4778 * for this device, so stop searching any further. 4779 */ 4780 if (alt_timeout == USB3_LPM_DISABLED) { 4781 *timeout = alt_timeout; 4782 return -E2BIG; 4783 } 4784 if (alt_timeout > *timeout) 4785 *timeout = alt_timeout; 4786 return 0; 4787 } 4788 4789 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4790 struct usb_device *udev, 4791 struct usb_host_interface *alt, 4792 enum usb3_link_state state, 4793 u16 *timeout) 4794 { 4795 int j; 4796 4797 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4798 if (xhci_update_timeout_for_endpoint(xhci, udev, 4799 &alt->endpoint[j].desc, state, timeout)) 4800 return -E2BIG; 4801 } 4802 return 0; 4803 } 4804 4805 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4806 struct usb_device *udev, 4807 enum usb3_link_state state) 4808 { 4809 struct usb_device *parent = udev->parent; 4810 int tier = 1; /* roothub is tier1 */ 4811 4812 while (parent) { 4813 parent = parent->parent; 4814 tier++; 4815 } 4816 4817 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3) 4818 goto fail; 4819 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2) 4820 goto fail; 4821 4822 return 0; 4823 fail: 4824 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n", 4825 tier); 4826 return -E2BIG; 4827 } 4828 4829 /* Returns the U1 or U2 timeout that should be enabled. 4830 * If the tier check or timeout setting functions return with a non-zero exit 4831 * code, that means the timeout value has been finalized and we shouldn't look 4832 * at any more endpoints. 4833 */ 4834 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4835 struct usb_device *udev, enum usb3_link_state state) 4836 { 4837 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4838 struct usb_host_config *config; 4839 char *state_name; 4840 int i; 4841 u16 timeout = USB3_LPM_DISABLED; 4842 4843 if (state == USB3_LPM_U1) 4844 state_name = "U1"; 4845 else if (state == USB3_LPM_U2) 4846 state_name = "U2"; 4847 else { 4848 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4849 state); 4850 return timeout; 4851 } 4852 4853 /* Gather some information about the currently installed configuration 4854 * and alternate interface settings. 4855 */ 4856 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4857 state, &timeout)) 4858 return timeout; 4859 4860 config = udev->actconfig; 4861 if (!config) 4862 return timeout; 4863 4864 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4865 struct usb_driver *driver; 4866 struct usb_interface *intf = config->interface[i]; 4867 4868 if (!intf) 4869 continue; 4870 4871 /* Check if any currently bound drivers want hub-initiated LPM 4872 * disabled. 4873 */ 4874 if (intf->dev.driver) { 4875 driver = to_usb_driver(intf->dev.driver); 4876 if (driver && driver->disable_hub_initiated_lpm) { 4877 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4878 state_name, driver->name); 4879 timeout = xhci_get_timeout_no_hub_lpm(udev, 4880 state); 4881 if (timeout == USB3_LPM_DISABLED) 4882 return timeout; 4883 } 4884 } 4885 4886 /* Not sure how this could happen... */ 4887 if (!intf->cur_altsetting) 4888 continue; 4889 4890 if (xhci_update_timeout_for_interface(xhci, udev, 4891 intf->cur_altsetting, 4892 state, &timeout)) 4893 return timeout; 4894 } 4895 return timeout; 4896 } 4897 4898 static int calculate_max_exit_latency(struct usb_device *udev, 4899 enum usb3_link_state state_changed, 4900 u16 hub_encoded_timeout) 4901 { 4902 unsigned long long u1_mel_us = 0; 4903 unsigned long long u2_mel_us = 0; 4904 unsigned long long mel_us = 0; 4905 bool disabling_u1; 4906 bool disabling_u2; 4907 bool enabling_u1; 4908 bool enabling_u2; 4909 4910 disabling_u1 = (state_changed == USB3_LPM_U1 && 4911 hub_encoded_timeout == USB3_LPM_DISABLED); 4912 disabling_u2 = (state_changed == USB3_LPM_U2 && 4913 hub_encoded_timeout == USB3_LPM_DISABLED); 4914 4915 enabling_u1 = (state_changed == USB3_LPM_U1 && 4916 hub_encoded_timeout != USB3_LPM_DISABLED); 4917 enabling_u2 = (state_changed == USB3_LPM_U2 && 4918 hub_encoded_timeout != USB3_LPM_DISABLED); 4919 4920 /* If U1 was already enabled and we're not disabling it, 4921 * or we're going to enable U1, account for the U1 max exit latency. 4922 */ 4923 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4924 enabling_u1) 4925 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4926 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4927 enabling_u2) 4928 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4929 4930 mel_us = max(u1_mel_us, u2_mel_us); 4931 4932 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4933 if (mel_us > MAX_EXIT) { 4934 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4935 "is too big.\n", mel_us); 4936 return -E2BIG; 4937 } 4938 return mel_us; 4939 } 4940 4941 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4942 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4943 struct usb_device *udev, enum usb3_link_state state) 4944 { 4945 struct xhci_hcd *xhci; 4946 struct xhci_port *port; 4947 u16 hub_encoded_timeout; 4948 int mel; 4949 int ret; 4950 4951 xhci = hcd_to_xhci(hcd); 4952 /* The LPM timeout values are pretty host-controller specific, so don't 4953 * enable hub-initiated timeouts unless the vendor has provided 4954 * information about their timeout algorithm. 4955 */ 4956 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4957 !xhci->devs[udev->slot_id]) 4958 return USB3_LPM_DISABLED; 4959 4960 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4961 return USB3_LPM_DISABLED; 4962 4963 /* If connected to root port then check port can handle lpm */ 4964 if (udev->parent && !udev->parent->parent) { 4965 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4966 if (port->lpm_incapable) 4967 return USB3_LPM_DISABLED; 4968 } 4969 4970 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4971 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4972 if (mel < 0) { 4973 /* Max Exit Latency is too big, disable LPM. */ 4974 hub_encoded_timeout = USB3_LPM_DISABLED; 4975 mel = 0; 4976 } 4977 4978 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4979 if (ret) 4980 return ret; 4981 return hub_encoded_timeout; 4982 } 4983 4984 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4985 struct usb_device *udev, enum usb3_link_state state) 4986 { 4987 struct xhci_hcd *xhci; 4988 u16 mel; 4989 4990 xhci = hcd_to_xhci(hcd); 4991 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4992 !xhci->devs[udev->slot_id]) 4993 return 0; 4994 4995 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4996 return xhci_change_max_exit_latency(xhci, udev, mel); 4997 } 4998 #else /* CONFIG_PM */ 4999 5000 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 5001 struct usb_device *udev, int enable) 5002 { 5003 return 0; 5004 } 5005 5006 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 5007 { 5008 return 0; 5009 } 5010 5011 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 5012 struct usb_device *udev, enum usb3_link_state state) 5013 { 5014 return USB3_LPM_DISABLED; 5015 } 5016 5017 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 5018 struct usb_device *udev, enum usb3_link_state state) 5019 { 5020 return 0; 5021 } 5022 #endif /* CONFIG_PM */ 5023 5024 /*-------------------------------------------------------------------------*/ 5025 5026 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 5027 * internal data structures for the device. 5028 */ 5029 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 5030 struct usb_tt *tt, gfp_t mem_flags) 5031 { 5032 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5033 struct xhci_virt_device *vdev; 5034 struct xhci_command *config_cmd; 5035 struct xhci_input_control_ctx *ctrl_ctx; 5036 struct xhci_slot_ctx *slot_ctx; 5037 unsigned long flags; 5038 unsigned think_time; 5039 int ret; 5040 5041 /* Ignore root hubs */ 5042 if (!hdev->parent) 5043 return 0; 5044 5045 vdev = xhci->devs[hdev->slot_id]; 5046 if (!vdev) { 5047 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 5048 return -EINVAL; 5049 } 5050 5051 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 5052 if (!config_cmd) 5053 return -ENOMEM; 5054 5055 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5056 if (!ctrl_ctx) { 5057 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5058 __func__); 5059 xhci_free_command(xhci, config_cmd); 5060 return -ENOMEM; 5061 } 5062 5063 spin_lock_irqsave(&xhci->lock, flags); 5064 if (hdev->speed == USB_SPEED_HIGH && 5065 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5066 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5067 xhci_free_command(xhci, config_cmd); 5068 spin_unlock_irqrestore(&xhci->lock, flags); 5069 return -ENOMEM; 5070 } 5071 5072 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5073 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5074 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5075 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5076 /* 5077 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5078 * but it may be already set to 1 when setup an xHCI virtual 5079 * device, so clear it anyway. 5080 */ 5081 if (tt->multi) 5082 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5083 else if (hdev->speed == USB_SPEED_FULL) 5084 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5085 5086 if (xhci->hci_version > 0x95) { 5087 xhci_dbg(xhci, "xHCI version %x needs hub " 5088 "TT think time and number of ports\n", 5089 (unsigned int) xhci->hci_version); 5090 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5091 /* Set TT think time - convert from ns to FS bit times. 5092 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5093 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5094 * 5095 * xHCI 1.0: this field shall be 0 if the device is not a 5096 * High-spped hub. 5097 */ 5098 think_time = tt->think_time; 5099 if (think_time != 0) 5100 think_time = (think_time / 666) - 1; 5101 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5102 slot_ctx->tt_info |= 5103 cpu_to_le32(TT_THINK_TIME(think_time)); 5104 } else { 5105 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5106 "TT think time or number of ports\n", 5107 (unsigned int) xhci->hci_version); 5108 } 5109 slot_ctx->dev_state = 0; 5110 spin_unlock_irqrestore(&xhci->lock, flags); 5111 5112 xhci_dbg(xhci, "Set up %s for hub device.\n", 5113 (xhci->hci_version > 0x95) ? 5114 "configure endpoint" : "evaluate context"); 5115 5116 /* Issue and wait for the configure endpoint or 5117 * evaluate context command. 5118 */ 5119 if (xhci->hci_version > 0x95) 5120 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5121 false, false); 5122 else 5123 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5124 true, false); 5125 5126 xhci_free_command(xhci, config_cmd); 5127 return ret; 5128 } 5129 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5130 5131 static int xhci_get_frame(struct usb_hcd *hcd) 5132 { 5133 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5134 /* EHCI mods by the periodic size. Why? */ 5135 return readl(&xhci->run_regs->microframe_index) >> 3; 5136 } 5137 5138 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5139 { 5140 xhci->usb2_rhub.hcd = hcd; 5141 hcd->speed = HCD_USB2; 5142 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5143 /* 5144 * USB 2.0 roothub under xHCI has an integrated TT, 5145 * (rate matching hub) as opposed to having an OHCI/UHCI 5146 * companion controller. 5147 */ 5148 hcd->has_tt = 1; 5149 } 5150 5151 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5152 { 5153 unsigned int minor_rev; 5154 5155 /* 5156 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5157 * should return 0x31 for sbrn, or that the minor revision 5158 * is a two digit BCD containig minor and sub-minor numbers. 5159 * This was later clarified in xHCI 1.2. 5160 * 5161 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5162 * minor revision set to 0x1 instead of 0x10. 5163 */ 5164 if (xhci->usb3_rhub.min_rev == 0x1) 5165 minor_rev = 1; 5166 else 5167 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5168 5169 switch (minor_rev) { 5170 case 2: 5171 hcd->speed = HCD_USB32; 5172 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5173 hcd->self.root_hub->rx_lanes = 2; 5174 hcd->self.root_hub->tx_lanes = 2; 5175 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5176 break; 5177 case 1: 5178 hcd->speed = HCD_USB31; 5179 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5180 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5181 break; 5182 } 5183 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5184 minor_rev, minor_rev ? "Enhanced " : ""); 5185 5186 xhci->usb3_rhub.hcd = hcd; 5187 } 5188 5189 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5190 { 5191 struct xhci_hcd *xhci; 5192 /* 5193 * TODO: Check with DWC3 clients for sysdev according to 5194 * quirks 5195 */ 5196 struct device *dev = hcd->self.sysdev; 5197 int retval; 5198 5199 /* Accept arbitrarily long scatter-gather lists */ 5200 hcd->self.sg_tablesize = ~0; 5201 5202 /* support to build packet from discontinuous buffers */ 5203 hcd->self.no_sg_constraint = 1; 5204 5205 /* XHCI controllers don't stop the ep queue on short packets :| */ 5206 hcd->self.no_stop_on_short = 1; 5207 5208 xhci = hcd_to_xhci(hcd); 5209 5210 if (!usb_hcd_is_primary_hcd(hcd)) { 5211 xhci_hcd_init_usb3_data(xhci, hcd); 5212 return 0; 5213 } 5214 5215 mutex_init(&xhci->mutex); 5216 xhci->main_hcd = hcd; 5217 xhci->cap_regs = hcd->regs; 5218 xhci->op_regs = hcd->regs + 5219 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5220 xhci->run_regs = hcd->regs + 5221 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5222 /* Cache read-only capability registers */ 5223 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5224 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5225 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5226 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5227 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5228 if (xhci->hci_version > 0x100) 5229 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5230 5231 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5232 if ((!xhci->max_interrupters) || 5233 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5234 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5235 5236 xhci->quirks |= quirks; 5237 5238 if (get_quirks) 5239 get_quirks(dev, xhci); 5240 5241 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5242 * success event after a short transfer. This quirk will ignore such 5243 * spurious event. 5244 */ 5245 if (xhci->hci_version > 0x96) 5246 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5247 5248 /* Make sure the HC is halted. */ 5249 retval = xhci_halt(xhci); 5250 if (retval) 5251 return retval; 5252 5253 xhci_zero_64b_regs(xhci); 5254 5255 xhci_dbg(xhci, "Resetting HCD\n"); 5256 /* Reset the internal HC memory state and registers. */ 5257 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5258 if (retval) 5259 return retval; 5260 xhci_dbg(xhci, "Reset complete\n"); 5261 5262 /* 5263 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5264 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5265 * address memory pointers actually. So, this driver clears the AC64 5266 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5267 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5268 */ 5269 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5270 xhci->hcc_params &= ~BIT(0); 5271 5272 /* Set dma_mask and coherent_dma_mask to 64-bits, 5273 * if xHC supports 64-bit addressing */ 5274 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5275 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5276 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5277 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5278 } else { 5279 /* 5280 * This is to avoid error in cases where a 32-bit USB 5281 * controller is used on a 64-bit capable system. 5282 */ 5283 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5284 if (retval) 5285 return retval; 5286 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5287 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5288 } 5289 5290 xhci_dbg(xhci, "Calling HCD init\n"); 5291 /* Initialize HCD and host controller data structures. */ 5292 retval = xhci_init(hcd); 5293 if (retval) 5294 return retval; 5295 xhci_dbg(xhci, "Called HCD init\n"); 5296 5297 if (xhci_hcd_is_usb3(hcd)) 5298 xhci_hcd_init_usb3_data(xhci, hcd); 5299 else 5300 xhci_hcd_init_usb2_data(xhci, hcd); 5301 5302 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5303 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5304 5305 return 0; 5306 } 5307 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5308 5309 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5310 struct usb_host_endpoint *ep) 5311 { 5312 struct xhci_hcd *xhci; 5313 struct usb_device *udev; 5314 unsigned int slot_id; 5315 unsigned int ep_index; 5316 unsigned long flags; 5317 5318 xhci = hcd_to_xhci(hcd); 5319 5320 spin_lock_irqsave(&xhci->lock, flags); 5321 udev = (struct usb_device *)ep->hcpriv; 5322 slot_id = udev->slot_id; 5323 ep_index = xhci_get_endpoint_index(&ep->desc); 5324 5325 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5326 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5327 spin_unlock_irqrestore(&xhci->lock, flags); 5328 } 5329 5330 static const struct hc_driver xhci_hc_driver = { 5331 .description = "xhci-hcd", 5332 .product_desc = "xHCI Host Controller", 5333 .hcd_priv_size = sizeof(struct xhci_hcd), 5334 5335 /* 5336 * generic hardware linkage 5337 */ 5338 .irq = xhci_irq, 5339 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5340 HCD_BH, 5341 5342 /* 5343 * basic lifecycle operations 5344 */ 5345 .reset = NULL, /* set in xhci_init_driver() */ 5346 .start = xhci_run, 5347 .stop = xhci_stop, 5348 .shutdown = xhci_shutdown, 5349 5350 /* 5351 * managing i/o requests and associated device resources 5352 */ 5353 .map_urb_for_dma = xhci_map_urb_for_dma, 5354 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5355 .urb_enqueue = xhci_urb_enqueue, 5356 .urb_dequeue = xhci_urb_dequeue, 5357 .alloc_dev = xhci_alloc_dev, 5358 .free_dev = xhci_free_dev, 5359 .alloc_streams = xhci_alloc_streams, 5360 .free_streams = xhci_free_streams, 5361 .add_endpoint = xhci_add_endpoint, 5362 .drop_endpoint = xhci_drop_endpoint, 5363 .endpoint_disable = xhci_endpoint_disable, 5364 .endpoint_reset = xhci_endpoint_reset, 5365 .check_bandwidth = xhci_check_bandwidth, 5366 .reset_bandwidth = xhci_reset_bandwidth, 5367 .address_device = xhci_address_device, 5368 .enable_device = xhci_enable_device, 5369 .update_hub_device = xhci_update_hub_device, 5370 .reset_device = xhci_discover_or_reset_device, 5371 5372 /* 5373 * scheduling support 5374 */ 5375 .get_frame_number = xhci_get_frame, 5376 5377 /* 5378 * root hub support 5379 */ 5380 .hub_control = xhci_hub_control, 5381 .hub_status_data = xhci_hub_status_data, 5382 .bus_suspend = xhci_bus_suspend, 5383 .bus_resume = xhci_bus_resume, 5384 .get_resuming_ports = xhci_get_resuming_ports, 5385 5386 /* 5387 * call back when device connected and addressed 5388 */ 5389 .update_device = xhci_update_device, 5390 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5391 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5392 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5393 .find_raw_port_number = xhci_find_raw_port_number, 5394 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5395 }; 5396 5397 void xhci_init_driver(struct hc_driver *drv, 5398 const struct xhci_driver_overrides *over) 5399 { 5400 BUG_ON(!over); 5401 5402 /* Copy the generic table to drv then apply the overrides */ 5403 *drv = xhci_hc_driver; 5404 5405 if (over) { 5406 drv->hcd_priv_size += over->extra_priv_size; 5407 if (over->reset) 5408 drv->reset = over->reset; 5409 if (over->start) 5410 drv->start = over->start; 5411 if (over->add_endpoint) 5412 drv->add_endpoint = over->add_endpoint; 5413 if (over->drop_endpoint) 5414 drv->drop_endpoint = over->drop_endpoint; 5415 if (over->check_bandwidth) 5416 drv->check_bandwidth = over->check_bandwidth; 5417 if (over->reset_bandwidth) 5418 drv->reset_bandwidth = over->reset_bandwidth; 5419 if (over->update_hub_device) 5420 drv->update_hub_device = over->update_hub_device; 5421 if (over->hub_control) 5422 drv->hub_control = over->hub_control; 5423 } 5424 } 5425 EXPORT_SYMBOL_GPL(xhci_init_driver); 5426 5427 MODULE_DESCRIPTION(DRIVER_DESC); 5428 MODULE_AUTHOR(DRIVER_AUTHOR); 5429 MODULE_LICENSE("GPL"); 5430 5431 static int __init xhci_hcd_init(void) 5432 { 5433 /* 5434 * Check the compiler generated sizes of structures that must be laid 5435 * out in specific ways for hardware access. 5436 */ 5437 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5438 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5439 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5440 /* xhci_device_control has eight fields, and also 5441 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5442 */ 5443 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5444 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5445 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5446 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5447 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5448 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5449 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5450 5451 if (usb_disabled()) 5452 return -ENODEV; 5453 5454 xhci_debugfs_create_root(); 5455 xhci_dbc_init(); 5456 5457 return 0; 5458 } 5459 5460 /* 5461 * If an init function is provided, an exit function must also be provided 5462 * to allow module unload. 5463 */ 5464 static void __exit xhci_hcd_fini(void) 5465 { 5466 xhci_debugfs_remove_root(); 5467 xhci_dbc_exit(); 5468 } 5469 5470 module_init(xhci_hcd_init); 5471 module_exit(xhci_hcd_fini); 5472