xref: /linux/drivers/usb/host/xhci.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iommu.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/log2.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/slab.h>
19 #include <linux/dmi.h>
20 #include <linux/dma-mapping.h>
21 
22 #include "xhci.h"
23 #include "xhci-trace.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, timeout_us);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86  * exit_state parameter, and bails out with an error immediately when xhc_state
87  * has exit_state flag set.
88  */
89 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 		u32 mask, u32 done, int usec, unsigned int exit_state)
91 {
92 	u32	result;
93 	int	ret;
94 
95 	ret = readl_poll_timeout_atomic(ptr, result,
96 				(result & mask) == done ||
97 				result == U32_MAX ||
98 				xhci->xhc_state & exit_state,
99 				1, usec);
100 
101 	if (result == U32_MAX || xhci->xhc_state & exit_state)
102 		return -ENODEV;
103 
104 	return ret;
105 }
106 
107 /*
108  * Disable interrupts and begin the xHCI halting process.
109  */
110 void xhci_quiesce(struct xhci_hcd *xhci)
111 {
112 	u32 halted;
113 	u32 cmd;
114 	u32 mask;
115 
116 	mask = ~(XHCI_IRQS);
117 	halted = readl(&xhci->op_regs->status) & STS_HALT;
118 	if (!halted)
119 		mask &= ~CMD_RUN;
120 
121 	cmd = readl(&xhci->op_regs->command);
122 	cmd &= mask;
123 	writel(cmd, &xhci->op_regs->command);
124 }
125 
126 /*
127  * Force HC into halt state.
128  *
129  * Disable any IRQs and clear the run/stop bit.
130  * HC will complete any current and actively pipelined transactions, and
131  * should halt within 16 ms of the run/stop bit being cleared.
132  * Read HC Halted bit in the status register to see when the HC is finished.
133  */
134 int xhci_halt(struct xhci_hcd *xhci)
135 {
136 	int ret;
137 
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139 	xhci_quiesce(xhci);
140 
141 	ret = xhci_handshake(&xhci->op_regs->status,
142 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 	if (ret) {
144 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 		return ret;
146 	}
147 
148 	xhci->xhc_state |= XHCI_STATE_HALTED;
149 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150 
151 	return ret;
152 }
153 
154 /*
155  * Set the run bit and wait for the host to be running.
156  */
157 int xhci_start(struct xhci_hcd *xhci)
158 {
159 	u32 temp;
160 	int ret;
161 
162 	temp = readl(&xhci->op_regs->command);
163 	temp |= (CMD_RUN);
164 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165 			temp);
166 	writel(temp, &xhci->op_regs->command);
167 
168 	/*
169 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 	 * running.
171 	 */
172 	ret = xhci_handshake(&xhci->op_regs->status,
173 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
174 	if (ret == -ETIMEDOUT)
175 		xhci_err(xhci, "Host took too long to start, "
176 				"waited %u microseconds.\n",
177 				XHCI_MAX_HALT_USEC);
178 	if (!ret) {
179 		/* clear state flags. Including dying, halted or removing */
180 		xhci->xhc_state = 0;
181 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182 	}
183 
184 	return ret;
185 }
186 
187 /*
188  * Reset a halted HC.
189  *
190  * This resets pipelines, timers, counters, state machines, etc.
191  * Transactions will be terminated immediately, and operational registers
192  * will be set to their defaults.
193  */
194 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195 {
196 	u32 command;
197 	u32 state;
198 	int ret;
199 
200 	state = readl(&xhci->op_regs->status);
201 
202 	if (state == ~(u32)0) {
203 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 		return -ENODEV;
205 	}
206 
207 	if ((state & STS_HALT) == 0) {
208 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 		return 0;
210 	}
211 
212 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213 	command = readl(&xhci->op_regs->command);
214 	command |= CMD_RESET;
215 	writel(command, &xhci->op_regs->command);
216 
217 	/* Existing Intel xHCI controllers require a delay of 1 mS,
218 	 * after setting the CMD_RESET bit, and before accessing any
219 	 * HC registers. This allows the HC to complete the
220 	 * reset operation and be ready for HC register access.
221 	 * Without this delay, the subsequent HC register access,
222 	 * may result in a system hang very rarely.
223 	 */
224 	if (xhci->quirks & XHCI_INTEL_HOST)
225 		udelay(1000);
226 
227 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229 	if (ret)
230 		return ret;
231 
232 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234 
235 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 			 "Wait for controller to be ready for doorbell rings");
237 	/*
238 	 * xHCI cannot write to any doorbells or operational registers other
239 	 * than status until the "Controller Not Ready" flag is cleared.
240 	 */
241 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242 
243 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
249 
250 	return ret;
251 }
252 
253 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254 {
255 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 	struct iommu_domain *domain;
257 	int err, i;
258 	u64 val;
259 	u32 intrs;
260 
261 	/*
262 	 * Some Renesas controllers get into a weird state if they are
263 	 * reset while programmed with 64bit addresses (they will preserve
264 	 * the top half of the address in internal, non visible
265 	 * registers). You end up with half the address coming from the
266 	 * kernel, and the other half coming from the firmware. Also,
267 	 * changing the programming leads to extra accesses even if the
268 	 * controller is supposed to be halted. The controller ends up with
269 	 * a fatal fault, and is then ripe for being properly reset.
270 	 *
271 	 * Special care is taken to only apply this if the device is behind
272 	 * an iommu. Doing anything when there is no iommu is definitely
273 	 * unsafe...
274 	 */
275 	domain = iommu_get_domain_for_dev(dev);
276 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 	    domain->type == IOMMU_DOMAIN_IDENTITY)
278 		return;
279 
280 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281 
282 	/* Clear HSEIE so that faults do not get signaled */
283 	val = readl(&xhci->op_regs->command);
284 	val &= ~CMD_HSEIE;
285 	writel(val, &xhci->op_regs->command);
286 
287 	/* Clear HSE (aka FATAL) */
288 	val = readl(&xhci->op_regs->status);
289 	val |= STS_FATAL;
290 	writel(val, &xhci->op_regs->status);
291 
292 	/* Now zero the registers, and brace for impact */
293 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294 	if (upper_32_bits(val))
295 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297 	if (upper_32_bits(val))
298 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299 
300 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 		      ARRAY_SIZE(xhci->run_regs->ir_set));
302 
303 	for (i = 0; i < intrs; i++) {
304 		struct xhci_intr_reg __iomem *ir;
305 
306 		ir = &xhci->run_regs->ir_set[i];
307 		val = xhci_read_64(xhci, &ir->erst_base);
308 		if (upper_32_bits(val))
309 			xhci_write_64(xhci, 0, &ir->erst_base);
310 		val= xhci_read_64(xhci, &ir->erst_dequeue);
311 		if (upper_32_bits(val))
312 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
313 	}
314 
315 	/* Wait for the fault to appear. It will be cleared on reset */
316 	err = xhci_handshake(&xhci->op_regs->status,
317 			     STS_FATAL, STS_FATAL,
318 			     XHCI_MAX_HALT_USEC);
319 	if (!err)
320 		xhci_info(xhci, "Fault detected\n");
321 }
322 
323 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324 {
325 	u32 iman;
326 
327 	if (!ir || !ir->ir_set)
328 		return -EINVAL;
329 
330 	iman = readl(&ir->ir_set->irq_pending);
331 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332 
333 	return 0;
334 }
335 
336 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337 {
338 	u32 iman;
339 
340 	if (!ir || !ir->ir_set)
341 		return -EINVAL;
342 
343 	iman = readl(&ir->ir_set->irq_pending);
344 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345 
346 	return 0;
347 }
348 
349 static void compliance_mode_recovery(struct timer_list *t)
350 {
351 	struct xhci_hcd *xhci;
352 	struct usb_hcd *hcd;
353 	struct xhci_hub *rhub;
354 	u32 temp;
355 	int i;
356 
357 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
358 	rhub = &xhci->usb3_rhub;
359 	hcd = rhub->hcd;
360 
361 	if (!hcd)
362 		return;
363 
364 	for (i = 0; i < rhub->num_ports; i++) {
365 		temp = readl(rhub->ports[i]->addr);
366 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
367 			/*
368 			 * Compliance Mode Detected. Letting USB Core
369 			 * handle the Warm Reset
370 			 */
371 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
372 					"Compliance mode detected->port %d",
373 					i + 1);
374 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
375 					"Attempting compliance mode recovery");
376 
377 			if (hcd->state == HC_STATE_SUSPENDED)
378 				usb_hcd_resume_root_hub(hcd);
379 
380 			usb_hcd_poll_rh_status(hcd);
381 		}
382 	}
383 
384 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
385 		mod_timer(&xhci->comp_mode_recovery_timer,
386 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
387 }
388 
389 /*
390  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
391  * that causes ports behind that hardware to enter compliance mode sometimes.
392  * The quirk creates a timer that polls every 2 seconds the link state of
393  * each host controller's port and recovers it by issuing a Warm reset
394  * if Compliance mode is detected, otherwise the port will become "dead" (no
395  * device connections or disconnections will be detected anymore). Becasue no
396  * status event is generated when entering compliance mode (per xhci spec),
397  * this quirk is needed on systems that have the failing hardware installed.
398  */
399 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
400 {
401 	xhci->port_status_u0 = 0;
402 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
403 		    0);
404 	xhci->comp_mode_recovery_timer.expires = jiffies +
405 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
406 
407 	add_timer(&xhci->comp_mode_recovery_timer);
408 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
409 			"Compliance mode recovery timer initialized");
410 }
411 
412 /*
413  * This function identifies the systems that have installed the SN65LVPE502CP
414  * USB3.0 re-driver and that need the Compliance Mode Quirk.
415  * Systems:
416  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
417  */
418 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
419 {
420 	const char *dmi_product_name, *dmi_sys_vendor;
421 
422 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
423 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
424 	if (!dmi_product_name || !dmi_sys_vendor)
425 		return false;
426 
427 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
428 		return false;
429 
430 	if (strstr(dmi_product_name, "Z420") ||
431 			strstr(dmi_product_name, "Z620") ||
432 			strstr(dmi_product_name, "Z820") ||
433 			strstr(dmi_product_name, "Z1 Workstation"))
434 		return true;
435 
436 	return false;
437 }
438 
439 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
440 {
441 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
442 }
443 
444 
445 /*
446  * Initialize memory for HCD and xHC (one-time init).
447  *
448  * Program the PAGESIZE register, initialize the device context array, create
449  * device contexts (?), set up a command ring segment (or two?), create event
450  * ring (one for now).
451  */
452 static int xhci_init(struct usb_hcd *hcd)
453 {
454 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
455 	int retval;
456 
457 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
458 	spin_lock_init(&xhci->lock);
459 	if (xhci->hci_version == 0x95 && link_quirk) {
460 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 				"QUIRK: Not clearing Link TRB chain bits.");
462 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
463 	} else {
464 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
465 				"xHCI doesn't need link TRB QUIRK");
466 	}
467 	retval = xhci_mem_init(xhci, GFP_KERNEL);
468 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
469 
470 	/* Initializing Compliance Mode Recovery Data If Needed */
471 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
472 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
473 		compliance_mode_recovery_timer_init(xhci);
474 	}
475 
476 	return retval;
477 }
478 
479 /*-------------------------------------------------------------------------*/
480 
481 static int xhci_run_finished(struct xhci_hcd *xhci)
482 {
483 	struct xhci_interrupter *ir = xhci->interrupters[0];
484 	unsigned long	flags;
485 	u32		temp;
486 
487 	/*
488 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
489 	 * Protect the short window before host is running with a lock
490 	 */
491 	spin_lock_irqsave(&xhci->lock, flags);
492 
493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
494 	temp = readl(&xhci->op_regs->command);
495 	temp |= (CMD_EIE);
496 	writel(temp, &xhci->op_regs->command);
497 
498 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
499 	xhci_enable_interrupter(ir);
500 
501 	if (xhci_start(xhci)) {
502 		xhci_halt(xhci);
503 		spin_unlock_irqrestore(&xhci->lock, flags);
504 		return -ENODEV;
505 	}
506 
507 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
508 
509 	if (xhci->quirks & XHCI_NEC_HOST)
510 		xhci_ring_cmd_db(xhci);
511 
512 	spin_unlock_irqrestore(&xhci->lock, flags);
513 
514 	return 0;
515 }
516 
517 /*
518  * Start the HC after it was halted.
519  *
520  * This function is called by the USB core when the HC driver is added.
521  * Its opposite is xhci_stop().
522  *
523  * xhci_init() must be called once before this function can be called.
524  * Reset the HC, enable device slot contexts, program DCBAAP, and
525  * set command ring pointer and event ring pointer.
526  *
527  * Setup MSI-X vectors and enable interrupts.
528  */
529 int xhci_run(struct usb_hcd *hcd)
530 {
531 	u32 temp;
532 	u64 temp_64;
533 	int ret;
534 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
535 	struct xhci_interrupter *ir = xhci->interrupters[0];
536 	/* Start the xHCI host controller running only after the USB 2.0 roothub
537 	 * is setup.
538 	 */
539 
540 	hcd->uses_new_polling = 1;
541 	if (!usb_hcd_is_primary_hcd(hcd))
542 		return xhci_run_finished(xhci);
543 
544 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
545 
546 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
547 	temp_64 &= ERST_PTR_MASK;
548 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
549 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
550 
551 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 			"// Set the interrupt modulation register");
553 	temp = readl(&ir->ir_set->irq_control);
554 	temp &= ~ER_IRQ_INTERVAL_MASK;
555 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
556 	writel(temp, &ir->ir_set->irq_control);
557 
558 	if (xhci->quirks & XHCI_NEC_HOST) {
559 		struct xhci_command *command;
560 
561 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
562 		if (!command)
563 			return -ENOMEM;
564 
565 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
566 				TRB_TYPE(TRB_NEC_GET_FW));
567 		if (ret)
568 			xhci_free_command(xhci, command);
569 	}
570 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 			"Finished %s for main hcd", __func__);
572 
573 	xhci_create_dbc_dev(xhci);
574 
575 	xhci_debugfs_init(xhci);
576 
577 	if (xhci_has_one_roothub(xhci))
578 		return xhci_run_finished(xhci);
579 
580 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
581 
582 	return 0;
583 }
584 EXPORT_SYMBOL_GPL(xhci_run);
585 
586 /*
587  * Stop xHCI driver.
588  *
589  * This function is called by the USB core when the HC driver is removed.
590  * Its opposite is xhci_run().
591  *
592  * Disable device contexts, disable IRQs, and quiesce the HC.
593  * Reset the HC, finish any completed transactions, and cleanup memory.
594  */
595 void xhci_stop(struct usb_hcd *hcd)
596 {
597 	u32 temp;
598 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599 	struct xhci_interrupter *ir = xhci->interrupters[0];
600 
601 	mutex_lock(&xhci->mutex);
602 
603 	/* Only halt host and free memory after both hcds are removed */
604 	if (!usb_hcd_is_primary_hcd(hcd)) {
605 		mutex_unlock(&xhci->mutex);
606 		return;
607 	}
608 
609 	xhci_remove_dbc_dev(xhci);
610 
611 	spin_lock_irq(&xhci->lock);
612 	xhci->xhc_state |= XHCI_STATE_HALTED;
613 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
614 	xhci_halt(xhci);
615 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
616 	spin_unlock_irq(&xhci->lock);
617 
618 	/* Deleting Compliance Mode Recovery Timer */
619 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
620 			(!(xhci_all_ports_seen_u0(xhci)))) {
621 		del_timer_sync(&xhci->comp_mode_recovery_timer);
622 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
623 				"%s: compliance mode recovery timer deleted",
624 				__func__);
625 	}
626 
627 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
628 		usb_amd_dev_put();
629 
630 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631 			"// Disabling event ring interrupts");
632 	temp = readl(&xhci->op_regs->status);
633 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
634 	xhci_disable_interrupter(ir);
635 
636 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
637 	xhci_mem_cleanup(xhci);
638 	xhci_debugfs_exit(xhci);
639 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 			"xhci_stop completed - status = %x",
641 			readl(&xhci->op_regs->status));
642 	mutex_unlock(&xhci->mutex);
643 }
644 EXPORT_SYMBOL_GPL(xhci_stop);
645 
646 /*
647  * Shutdown HC (not bus-specific)
648  *
649  * This is called when the machine is rebooting or halting.  We assume that the
650  * machine will be powered off, and the HC's internal state will be reset.
651  * Don't bother to free memory.
652  *
653  * This will only ever be called with the main usb_hcd (the USB3 roothub).
654  */
655 void xhci_shutdown(struct usb_hcd *hcd)
656 {
657 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
658 
659 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
660 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
661 
662 	/* Don't poll the roothubs after shutdown. */
663 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
664 			__func__, hcd->self.busnum);
665 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
666 	del_timer_sync(&hcd->rh_timer);
667 
668 	if (xhci->shared_hcd) {
669 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
670 		del_timer_sync(&xhci->shared_hcd->rh_timer);
671 	}
672 
673 	spin_lock_irq(&xhci->lock);
674 	xhci_halt(xhci);
675 
676 	/*
677 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
678 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
679 	 */
680 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
681 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
682 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
683 
684 	spin_unlock_irq(&xhci->lock);
685 
686 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
687 			"xhci_shutdown completed - status = %x",
688 			readl(&xhci->op_regs->status));
689 }
690 EXPORT_SYMBOL_GPL(xhci_shutdown);
691 
692 #ifdef CONFIG_PM
693 static void xhci_save_registers(struct xhci_hcd *xhci)
694 {
695 	struct xhci_interrupter *ir;
696 	unsigned int i;
697 
698 	xhci->s3.command = readl(&xhci->op_regs->command);
699 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
700 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
701 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
702 
703 	/* save both primary and all secondary interrupters */
704 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
705 	for (i = 0; i < xhci->max_interrupters; i++) {
706 		ir = xhci->interrupters[i];
707 		if (!ir)
708 			continue;
709 
710 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
711 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
712 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
713 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
714 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
715 	}
716 }
717 
718 static void xhci_restore_registers(struct xhci_hcd *xhci)
719 {
720 	struct xhci_interrupter *ir;
721 	unsigned int i;
722 
723 	writel(xhci->s3.command, &xhci->op_regs->command);
724 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
725 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
726 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
727 
728 	/* FIXME should we lock to protect against freeing of interrupters */
729 	for (i = 0; i < xhci->max_interrupters; i++) {
730 		ir = xhci->interrupters[i];
731 		if (!ir)
732 			continue;
733 
734 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
735 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
736 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
737 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
738 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
739 	}
740 }
741 
742 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
743 {
744 	u64	val_64;
745 
746 	/* step 2: initialize command ring buffer */
747 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
748 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
749 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
750 				      xhci->cmd_ring->dequeue) &
751 		 (u64) ~CMD_RING_RSVD_BITS) |
752 		xhci->cmd_ring->cycle_state;
753 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 			"// Setting command ring address to 0x%llx",
755 			(long unsigned long) val_64);
756 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
757 }
758 
759 /*
760  * The whole command ring must be cleared to zero when we suspend the host.
761  *
762  * The host doesn't save the command ring pointer in the suspend well, so we
763  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
764  * aligned, because of the reserved bits in the command ring dequeue pointer
765  * register.  Therefore, we can't just set the dequeue pointer back in the
766  * middle of the ring (TRBs are 16-byte aligned).
767  */
768 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
769 {
770 	struct xhci_ring *ring;
771 	struct xhci_segment *seg;
772 
773 	ring = xhci->cmd_ring;
774 	seg = ring->deq_seg;
775 	do {
776 		memset(seg->trbs, 0,
777 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
778 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
779 			cpu_to_le32(~TRB_CYCLE);
780 		seg = seg->next;
781 	} while (seg != ring->deq_seg);
782 
783 	/* Reset the software enqueue and dequeue pointers */
784 	ring->deq_seg = ring->first_seg;
785 	ring->dequeue = ring->first_seg->trbs;
786 	ring->enq_seg = ring->deq_seg;
787 	ring->enqueue = ring->dequeue;
788 
789 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
790 	/*
791 	 * Ring is now zeroed, so the HW should look for change of ownership
792 	 * when the cycle bit is set to 1.
793 	 */
794 	ring->cycle_state = 1;
795 
796 	/*
797 	 * Reset the hardware dequeue pointer.
798 	 * Yes, this will need to be re-written after resume, but we're paranoid
799 	 * and want to make sure the hardware doesn't access bogus memory
800 	 * because, say, the BIOS or an SMI started the host without changing
801 	 * the command ring pointers.
802 	 */
803 	xhci_set_cmd_ring_deq(xhci);
804 }
805 
806 /*
807  * Disable port wake bits if do_wakeup is not set.
808  *
809  * Also clear a possible internal port wake state left hanging for ports that
810  * detected termination but never successfully enumerated (trained to 0U).
811  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
812  * at enumeration clears this wake, force one here as well for unconnected ports
813  */
814 
815 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
816 				       struct xhci_hub *rhub,
817 				       bool do_wakeup)
818 {
819 	unsigned long flags;
820 	u32 t1, t2, portsc;
821 	int i;
822 
823 	spin_lock_irqsave(&xhci->lock, flags);
824 
825 	for (i = 0; i < rhub->num_ports; i++) {
826 		portsc = readl(rhub->ports[i]->addr);
827 		t1 = xhci_port_state_to_neutral(portsc);
828 		t2 = t1;
829 
830 		/* clear wake bits if do_wake is not set */
831 		if (!do_wakeup)
832 			t2 &= ~PORT_WAKE_BITS;
833 
834 		/* Don't touch csc bit if connected or connect change is set */
835 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
836 			t2 |= PORT_CSC;
837 
838 		if (t1 != t2) {
839 			writel(t2, rhub->ports[i]->addr);
840 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
841 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
842 		}
843 	}
844 	spin_unlock_irqrestore(&xhci->lock, flags);
845 }
846 
847 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
848 {
849 	struct xhci_port	**ports;
850 	int			port_index;
851 	u32			status;
852 	u32			portsc;
853 
854 	status = readl(&xhci->op_regs->status);
855 	if (status & STS_EINT)
856 		return true;
857 	/*
858 	 * Checking STS_EINT is not enough as there is a lag between a change
859 	 * bit being set and the Port Status Change Event that it generated
860 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
861 	 */
862 
863 	port_index = xhci->usb2_rhub.num_ports;
864 	ports = xhci->usb2_rhub.ports;
865 	while (port_index--) {
866 		portsc = readl(ports[port_index]->addr);
867 		if (portsc & PORT_CHANGE_MASK ||
868 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
869 			return true;
870 	}
871 	port_index = xhci->usb3_rhub.num_ports;
872 	ports = xhci->usb3_rhub.ports;
873 	while (port_index--) {
874 		portsc = readl(ports[port_index]->addr);
875 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
876 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
877 			return true;
878 	}
879 	return false;
880 }
881 
882 /*
883  * Stop HC (not bus-specific)
884  *
885  * This is called when the machine transition into S3/S4 mode.
886  *
887  */
888 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
889 {
890 	int			rc = 0;
891 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
892 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
893 	u32			command;
894 	u32			res;
895 
896 	if (!hcd->state)
897 		return 0;
898 
899 	if (hcd->state != HC_STATE_SUSPENDED ||
900 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
901 		return -EINVAL;
902 
903 	/* Clear root port wake on bits if wakeup not allowed. */
904 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
905 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
906 
907 	if (!HCD_HW_ACCESSIBLE(hcd))
908 		return 0;
909 
910 	xhci_dbc_suspend(xhci);
911 
912 	/* Don't poll the roothubs on bus suspend. */
913 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
914 		 __func__, hcd->self.busnum);
915 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
916 	del_timer_sync(&hcd->rh_timer);
917 	if (xhci->shared_hcd) {
918 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
919 		del_timer_sync(&xhci->shared_hcd->rh_timer);
920 	}
921 
922 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
923 		usleep_range(1000, 1500);
924 
925 	spin_lock_irq(&xhci->lock);
926 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
927 	if (xhci->shared_hcd)
928 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
929 	/* step 1: stop endpoint */
930 	/* skipped assuming that port suspend has done */
931 
932 	/* step 2: clear Run/Stop bit */
933 	command = readl(&xhci->op_regs->command);
934 	command &= ~CMD_RUN;
935 	writel(command, &xhci->op_regs->command);
936 
937 	/* Some chips from Fresco Logic need an extraordinary delay */
938 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
939 
940 	if (xhci_handshake(&xhci->op_regs->status,
941 		      STS_HALT, STS_HALT, delay)) {
942 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
943 		spin_unlock_irq(&xhci->lock);
944 		return -ETIMEDOUT;
945 	}
946 	xhci_clear_command_ring(xhci);
947 
948 	/* step 3: save registers */
949 	xhci_save_registers(xhci);
950 
951 	/* step 4: set CSS flag */
952 	command = readl(&xhci->op_regs->command);
953 	command |= CMD_CSS;
954 	writel(command, &xhci->op_regs->command);
955 	xhci->broken_suspend = 0;
956 	if (xhci_handshake(&xhci->op_regs->status,
957 				STS_SAVE, 0, 20 * 1000)) {
958 	/*
959 	 * AMD SNPS xHC 3.0 occasionally does not clear the
960 	 * SSS bit of USBSTS and when driver tries to poll
961 	 * to see if the xHC clears BIT(8) which never happens
962 	 * and driver assumes that controller is not responding
963 	 * and times out. To workaround this, its good to check
964 	 * if SRE and HCE bits are not set (as per xhci
965 	 * Section 5.4.2) and bypass the timeout.
966 	 */
967 		res = readl(&xhci->op_regs->status);
968 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
969 		    (((res & STS_SRE) == 0) &&
970 				((res & STS_HCE) == 0))) {
971 			xhci->broken_suspend = 1;
972 		} else {
973 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
974 			spin_unlock_irq(&xhci->lock);
975 			return -ETIMEDOUT;
976 		}
977 	}
978 	spin_unlock_irq(&xhci->lock);
979 
980 	/*
981 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
982 	 * is about to be suspended.
983 	 */
984 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
985 			(!(xhci_all_ports_seen_u0(xhci)))) {
986 		del_timer_sync(&xhci->comp_mode_recovery_timer);
987 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
988 				"%s: compliance mode recovery timer deleted",
989 				__func__);
990 	}
991 
992 	return rc;
993 }
994 EXPORT_SYMBOL_GPL(xhci_suspend);
995 
996 /*
997  * start xHC (not bus-specific)
998  *
999  * This is called when the machine transition from S3/S4 mode.
1000  *
1001  */
1002 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1003 {
1004 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1005 	u32			command, temp = 0;
1006 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1007 	int			retval = 0;
1008 	bool			comp_timer_running = false;
1009 	bool			pending_portevent = false;
1010 	bool			suspended_usb3_devs = false;
1011 	bool			reinit_xhc = false;
1012 
1013 	if (!hcd->state)
1014 		return 0;
1015 
1016 	/* Wait a bit if either of the roothubs need to settle from the
1017 	 * transition into bus suspend.
1018 	 */
1019 
1020 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1021 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1022 		msleep(100);
1023 
1024 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1025 	if (xhci->shared_hcd)
1026 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1027 
1028 	spin_lock_irq(&xhci->lock);
1029 
1030 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1031 		reinit_xhc = true;
1032 
1033 	if (!reinit_xhc) {
1034 		/*
1035 		 * Some controllers might lose power during suspend, so wait
1036 		 * for controller not ready bit to clear, just as in xHC init.
1037 		 */
1038 		retval = xhci_handshake(&xhci->op_regs->status,
1039 					STS_CNR, 0, 10 * 1000 * 1000);
1040 		if (retval) {
1041 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1042 				  retval);
1043 			spin_unlock_irq(&xhci->lock);
1044 			return retval;
1045 		}
1046 		/* step 1: restore register */
1047 		xhci_restore_registers(xhci);
1048 		/* step 2: initialize command ring buffer */
1049 		xhci_set_cmd_ring_deq(xhci);
1050 		/* step 3: restore state and start state*/
1051 		/* step 3: set CRS flag */
1052 		command = readl(&xhci->op_regs->command);
1053 		command |= CMD_CRS;
1054 		writel(command, &xhci->op_regs->command);
1055 		/*
1056 		 * Some controllers take up to 55+ ms to complete the controller
1057 		 * restore so setting the timeout to 100ms. Xhci specification
1058 		 * doesn't mention any timeout value.
1059 		 */
1060 		if (xhci_handshake(&xhci->op_regs->status,
1061 			      STS_RESTORE, 0, 100 * 1000)) {
1062 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1063 			spin_unlock_irq(&xhci->lock);
1064 			return -ETIMEDOUT;
1065 		}
1066 	}
1067 
1068 	temp = readl(&xhci->op_regs->status);
1069 
1070 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1071 	if ((temp & (STS_SRE | STS_HCE)) &&
1072 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1073 		reinit_xhc = true;
1074 		if (!xhci->broken_suspend)
1075 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1076 	}
1077 
1078 	if (reinit_xhc) {
1079 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1080 				!(xhci_all_ports_seen_u0(xhci))) {
1081 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1082 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1083 				"Compliance Mode Recovery Timer deleted!");
1084 		}
1085 
1086 		/* Let the USB core know _both_ roothubs lost power. */
1087 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1088 		if (xhci->shared_hcd)
1089 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1090 
1091 		xhci_dbg(xhci, "Stop HCD\n");
1092 		xhci_halt(xhci);
1093 		xhci_zero_64b_regs(xhci);
1094 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1095 		spin_unlock_irq(&xhci->lock);
1096 		if (retval)
1097 			return retval;
1098 
1099 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1100 		temp = readl(&xhci->op_regs->status);
1101 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1102 		xhci_disable_interrupter(xhci->interrupters[0]);
1103 
1104 		xhci_dbg(xhci, "cleaning up memory\n");
1105 		xhci_mem_cleanup(xhci);
1106 		xhci_debugfs_exit(xhci);
1107 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1108 			    readl(&xhci->op_regs->status));
1109 
1110 		/* USB core calls the PCI reinit and start functions twice:
1111 		 * first with the primary HCD, and then with the secondary HCD.
1112 		 * If we don't do the same, the host will never be started.
1113 		 */
1114 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1115 		retval = xhci_init(hcd);
1116 		if (retval)
1117 			return retval;
1118 		comp_timer_running = true;
1119 
1120 		xhci_dbg(xhci, "Start the primary HCD\n");
1121 		retval = xhci_run(hcd);
1122 		if (!retval && xhci->shared_hcd) {
1123 			xhci_dbg(xhci, "Start the secondary HCD\n");
1124 			retval = xhci_run(xhci->shared_hcd);
1125 		}
1126 
1127 		hcd->state = HC_STATE_SUSPENDED;
1128 		if (xhci->shared_hcd)
1129 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1130 		goto done;
1131 	}
1132 
1133 	/* step 4: set Run/Stop bit */
1134 	command = readl(&xhci->op_regs->command);
1135 	command |= CMD_RUN;
1136 	writel(command, &xhci->op_regs->command);
1137 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1138 		  0, 250 * 1000);
1139 
1140 	/* step 5: walk topology and initialize portsc,
1141 	 * portpmsc and portli
1142 	 */
1143 	/* this is done in bus_resume */
1144 
1145 	/* step 6: restart each of the previously
1146 	 * Running endpoints by ringing their doorbells
1147 	 */
1148 
1149 	spin_unlock_irq(&xhci->lock);
1150 
1151 	xhci_dbc_resume(xhci);
1152 
1153  done:
1154 	if (retval == 0) {
1155 		/*
1156 		 * Resume roothubs only if there are pending events.
1157 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1158 		 * the first wake signalling failed, give it that chance if
1159 		 * there are suspended USB 3 devices.
1160 		 */
1161 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1162 		    xhci->usb3_rhub.bus_state.bus_suspended)
1163 			suspended_usb3_devs = true;
1164 
1165 		pending_portevent = xhci_pending_portevent(xhci);
1166 
1167 		if (suspended_usb3_devs && !pending_portevent &&
1168 		    msg.event == PM_EVENT_AUTO_RESUME) {
1169 			msleep(120);
1170 			pending_portevent = xhci_pending_portevent(xhci);
1171 		}
1172 
1173 		if (pending_portevent) {
1174 			if (xhci->shared_hcd)
1175 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1176 			usb_hcd_resume_root_hub(hcd);
1177 		}
1178 	}
1179 	/*
1180 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1181 	 * be re-initialized Always after a system resume. Ports are subject
1182 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1183 	 * ports have entered previously to U0 before system's suspension.
1184 	 */
1185 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1186 		compliance_mode_recovery_timer_init(xhci);
1187 
1188 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1189 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1190 
1191 	/* Re-enable port polling. */
1192 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1193 		 __func__, hcd->self.busnum);
1194 	if (xhci->shared_hcd) {
1195 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1196 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1197 	}
1198 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1199 	usb_hcd_poll_rh_status(hcd);
1200 
1201 	return retval;
1202 }
1203 EXPORT_SYMBOL_GPL(xhci_resume);
1204 #endif	/* CONFIG_PM */
1205 
1206 /*-------------------------------------------------------------------------*/
1207 
1208 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1209 {
1210 	void *temp;
1211 	int ret = 0;
1212 	unsigned int buf_len;
1213 	enum dma_data_direction dir;
1214 
1215 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1216 	buf_len = urb->transfer_buffer_length;
1217 
1218 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1219 			    dev_to_node(hcd->self.sysdev));
1220 
1221 	if (usb_urb_dir_out(urb))
1222 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1223 				   temp, buf_len, 0);
1224 
1225 	urb->transfer_buffer = temp;
1226 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1227 					   urb->transfer_buffer,
1228 					   urb->transfer_buffer_length,
1229 					   dir);
1230 
1231 	if (dma_mapping_error(hcd->self.sysdev,
1232 			      urb->transfer_dma)) {
1233 		ret = -EAGAIN;
1234 		kfree(temp);
1235 	} else {
1236 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1237 	}
1238 
1239 	return ret;
1240 }
1241 
1242 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1243 					  struct urb *urb)
1244 {
1245 	bool ret = false;
1246 	unsigned int i;
1247 	unsigned int len = 0;
1248 	unsigned int trb_size;
1249 	unsigned int max_pkt;
1250 	struct scatterlist *sg;
1251 	struct scatterlist *tail_sg;
1252 
1253 	tail_sg = urb->sg;
1254 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1255 
1256 	if (!urb->num_sgs)
1257 		return ret;
1258 
1259 	if (urb->dev->speed >= USB_SPEED_SUPER)
1260 		trb_size = TRB_CACHE_SIZE_SS;
1261 	else
1262 		trb_size = TRB_CACHE_SIZE_HS;
1263 
1264 	if (urb->transfer_buffer_length != 0 &&
1265 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1266 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1267 			len = len + sg->length;
1268 			if (i > trb_size - 2) {
1269 				len = len - tail_sg->length;
1270 				if (len < max_pkt) {
1271 					ret = true;
1272 					break;
1273 				}
1274 
1275 				tail_sg = sg_next(tail_sg);
1276 			}
1277 		}
1278 	}
1279 	return ret;
1280 }
1281 
1282 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1283 {
1284 	unsigned int len;
1285 	unsigned int buf_len;
1286 	enum dma_data_direction dir;
1287 
1288 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1289 
1290 	buf_len = urb->transfer_buffer_length;
1291 
1292 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1293 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1294 		dma_unmap_single(hcd->self.sysdev,
1295 				 urb->transfer_dma,
1296 				 urb->transfer_buffer_length,
1297 				 dir);
1298 
1299 	if (usb_urb_dir_in(urb)) {
1300 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1301 					   urb->transfer_buffer,
1302 					   buf_len,
1303 					   0);
1304 		if (len != buf_len) {
1305 			xhci_dbg(hcd_to_xhci(hcd),
1306 				 "Copy from tmp buf to urb sg list failed\n");
1307 			urb->actual_length = len;
1308 		}
1309 	}
1310 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1311 	kfree(urb->transfer_buffer);
1312 	urb->transfer_buffer = NULL;
1313 }
1314 
1315 /*
1316  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1317  * we'll copy the actual data into the TRB address register. This is limited to
1318  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1319  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1320  */
1321 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1322 				gfp_t mem_flags)
1323 {
1324 	struct xhci_hcd *xhci;
1325 
1326 	xhci = hcd_to_xhci(hcd);
1327 
1328 	if (xhci_urb_suitable_for_idt(urb))
1329 		return 0;
1330 
1331 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1332 		if (xhci_urb_temp_buffer_required(hcd, urb))
1333 			return xhci_map_temp_buffer(hcd, urb);
1334 	}
1335 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1336 }
1337 
1338 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1339 {
1340 	struct xhci_hcd *xhci;
1341 	bool unmap_temp_buf = false;
1342 
1343 	xhci = hcd_to_xhci(hcd);
1344 
1345 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1346 		unmap_temp_buf = true;
1347 
1348 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1349 		xhci_unmap_temp_buf(hcd, urb);
1350 	else
1351 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1352 }
1353 
1354 /**
1355  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1356  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1357  * value to right shift 1 for the bitmask.
1358  *
1359  * Index  = (epnum * 2) + direction - 1,
1360  * where direction = 0 for OUT, 1 for IN.
1361  * For control endpoints, the IN index is used (OUT index is unused), so
1362  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1363  */
1364 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1365 {
1366 	unsigned int index;
1367 	if (usb_endpoint_xfer_control(desc))
1368 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1369 	else
1370 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1371 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1372 	return index;
1373 }
1374 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1375 
1376 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1377  * address from the XHCI endpoint index.
1378  */
1379 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1380 {
1381 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1382 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1383 	return direction | number;
1384 }
1385 
1386 /* Find the flag for this endpoint (for use in the control context).  Use the
1387  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1388  * bit 1, etc.
1389  */
1390 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1391 {
1392 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1393 }
1394 
1395 /* Compute the last valid endpoint context index.  Basically, this is the
1396  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1397  * we find the most significant bit set in the added contexts flags.
1398  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1399  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1400  */
1401 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1402 {
1403 	return fls(added_ctxs) - 1;
1404 }
1405 
1406 /* Returns 1 if the arguments are OK;
1407  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1408  */
1409 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1410 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1411 		const char *func) {
1412 	struct xhci_hcd	*xhci;
1413 	struct xhci_virt_device	*virt_dev;
1414 
1415 	if (!hcd || (check_ep && !ep) || !udev) {
1416 		pr_debug("xHCI %s called with invalid args\n", func);
1417 		return -EINVAL;
1418 	}
1419 	if (!udev->parent) {
1420 		pr_debug("xHCI %s called for root hub\n", func);
1421 		return 0;
1422 	}
1423 
1424 	xhci = hcd_to_xhci(hcd);
1425 	if (check_virt_dev) {
1426 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1427 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1428 					func);
1429 			return -EINVAL;
1430 		}
1431 
1432 		virt_dev = xhci->devs[udev->slot_id];
1433 		if (virt_dev->udev != udev) {
1434 			xhci_dbg(xhci, "xHCI %s called with udev and "
1435 					  "virt_dev does not match\n", func);
1436 			return -EINVAL;
1437 		}
1438 	}
1439 
1440 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1441 		return -ENODEV;
1442 
1443 	return 1;
1444 }
1445 
1446 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1447 		struct usb_device *udev, struct xhci_command *command,
1448 		bool ctx_change, bool must_succeed);
1449 
1450 /*
1451  * Full speed devices may have a max packet size greater than 8 bytes, but the
1452  * USB core doesn't know that until it reads the first 8 bytes of the
1453  * descriptor.  If the usb_device's max packet size changes after that point,
1454  * we need to issue an evaluate context command and wait on it.
1455  */
1456 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1457 {
1458 	struct xhci_input_control_ctx *ctrl_ctx;
1459 	struct xhci_ep_ctx *ep_ctx;
1460 	struct xhci_command *command;
1461 	int max_packet_size;
1462 	int hw_max_packet_size;
1463 	int ret = 0;
1464 
1465 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1466 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1467 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1468 
1469 	if (hw_max_packet_size == max_packet_size)
1470 		return 0;
1471 
1472 	switch (max_packet_size) {
1473 	case 8: case 16: case 32: case 64: case 9:
1474 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1475 				"Max Packet Size for ep 0 changed.");
1476 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1477 				"Max packet size in usb_device = %d",
1478 				max_packet_size);
1479 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1480 				"Max packet size in xHCI HW = %d",
1481 				hw_max_packet_size);
1482 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1483 				"Issuing evaluate context command.");
1484 
1485 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1486 		if (!command)
1487 			return -ENOMEM;
1488 
1489 		command->in_ctx = vdev->in_ctx;
1490 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1491 		if (!ctrl_ctx) {
1492 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1493 					__func__);
1494 			ret = -ENOMEM;
1495 			break;
1496 		}
1497 		/* Set up the modified control endpoint 0 */
1498 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1499 
1500 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1501 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1502 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1503 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1504 
1505 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1506 		ctrl_ctx->drop_flags = 0;
1507 
1508 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1509 					      true, false);
1510 		/* Clean up the input context for later use by bandwidth functions */
1511 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1512 		break;
1513 	default:
1514 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1515 			max_packet_size);
1516 		return -EINVAL;
1517 	}
1518 
1519 	kfree(command->completion);
1520 	kfree(command);
1521 
1522 	return ret;
1523 }
1524 
1525 /*
1526  * non-error returns are a promise to giveback() the urb later
1527  * we drop ownership so next owner (or urb unlink) can get it
1528  */
1529 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1530 {
1531 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1532 	unsigned long flags;
1533 	int ret = 0;
1534 	unsigned int slot_id, ep_index;
1535 	unsigned int *ep_state;
1536 	struct urb_priv	*urb_priv;
1537 	int num_tds;
1538 
1539 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1540 
1541 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1542 		num_tds = urb->number_of_packets;
1543 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1544 	    urb->transfer_buffer_length > 0 &&
1545 	    urb->transfer_flags & URB_ZERO_PACKET &&
1546 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1547 		num_tds = 2;
1548 	else
1549 		num_tds = 1;
1550 
1551 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1552 	if (!urb_priv)
1553 		return -ENOMEM;
1554 
1555 	urb_priv->num_tds = num_tds;
1556 	urb_priv->num_tds_done = 0;
1557 	urb->hcpriv = urb_priv;
1558 
1559 	trace_xhci_urb_enqueue(urb);
1560 
1561 	spin_lock_irqsave(&xhci->lock, flags);
1562 
1563 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1564 			      true, true, __func__);
1565 	if (ret <= 0) {
1566 		ret = ret ? ret : -EINVAL;
1567 		goto free_priv;
1568 	}
1569 
1570 	slot_id = urb->dev->slot_id;
1571 
1572 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1573 		ret = -ESHUTDOWN;
1574 		goto free_priv;
1575 	}
1576 
1577 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1578 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1579 		ret = -ENODEV;
1580 		goto free_priv;
1581 	}
1582 
1583 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1584 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1585 			 urb->ep->desc.bEndpointAddress, urb);
1586 		ret = -ESHUTDOWN;
1587 		goto free_priv;
1588 	}
1589 
1590 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1591 
1592 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1593 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1594 			  *ep_state);
1595 		ret = -EINVAL;
1596 		goto free_priv;
1597 	}
1598 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1599 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1600 		ret = -EINVAL;
1601 		goto free_priv;
1602 	}
1603 
1604 	switch (usb_endpoint_type(&urb->ep->desc)) {
1605 
1606 	case USB_ENDPOINT_XFER_CONTROL:
1607 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1608 					 slot_id, ep_index);
1609 		break;
1610 	case USB_ENDPOINT_XFER_BULK:
1611 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1612 					 slot_id, ep_index);
1613 		break;
1614 	case USB_ENDPOINT_XFER_INT:
1615 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1616 				slot_id, ep_index);
1617 		break;
1618 	case USB_ENDPOINT_XFER_ISOC:
1619 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1620 				slot_id, ep_index);
1621 	}
1622 
1623 	if (ret) {
1624 free_priv:
1625 		xhci_urb_free_priv(urb_priv);
1626 		urb->hcpriv = NULL;
1627 	}
1628 	spin_unlock_irqrestore(&xhci->lock, flags);
1629 	return ret;
1630 }
1631 
1632 /*
1633  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1634  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1635  * should pick up where it left off in the TD, unless a Set Transfer Ring
1636  * Dequeue Pointer is issued.
1637  *
1638  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1639  * the ring.  Since the ring is a contiguous structure, they can't be physically
1640  * removed.  Instead, there are two options:
1641  *
1642  *  1) If the HC is in the middle of processing the URB to be canceled, we
1643  *     simply move the ring's dequeue pointer past those TRBs using the Set
1644  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1645  *     when drivers timeout on the last submitted URB and attempt to cancel.
1646  *
1647  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1648  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1649  *     HC will need to invalidate the any TRBs it has cached after the stop
1650  *     endpoint command, as noted in the xHCI 0.95 errata.
1651  *
1652  *  3) The TD may have completed by the time the Stop Endpoint Command
1653  *     completes, so software needs to handle that case too.
1654  *
1655  * This function should protect against the TD enqueueing code ringing the
1656  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1657  * It also needs to account for multiple cancellations on happening at the same
1658  * time for the same endpoint.
1659  *
1660  * Note that this function can be called in any context, or so says
1661  * usb_hcd_unlink_urb()
1662  */
1663 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1664 {
1665 	unsigned long flags;
1666 	int ret, i;
1667 	u32 temp;
1668 	struct xhci_hcd *xhci;
1669 	struct urb_priv	*urb_priv;
1670 	struct xhci_td *td;
1671 	unsigned int ep_index;
1672 	struct xhci_ring *ep_ring;
1673 	struct xhci_virt_ep *ep;
1674 	struct xhci_command *command;
1675 	struct xhci_virt_device *vdev;
1676 
1677 	xhci = hcd_to_xhci(hcd);
1678 	spin_lock_irqsave(&xhci->lock, flags);
1679 
1680 	trace_xhci_urb_dequeue(urb);
1681 
1682 	/* Make sure the URB hasn't completed or been unlinked already */
1683 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1684 	if (ret)
1685 		goto done;
1686 
1687 	/* give back URB now if we can't queue it for cancel */
1688 	vdev = xhci->devs[urb->dev->slot_id];
1689 	urb_priv = urb->hcpriv;
1690 	if (!vdev || !urb_priv)
1691 		goto err_giveback;
1692 
1693 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1694 	ep = &vdev->eps[ep_index];
1695 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1696 	if (!ep || !ep_ring)
1697 		goto err_giveback;
1698 
1699 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1700 	temp = readl(&xhci->op_regs->status);
1701 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1702 		xhci_hc_died(xhci);
1703 		goto done;
1704 	}
1705 
1706 	/*
1707 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1708 	 * make sure none of the ring related pointers in this URB private data
1709 	 * are touched, such as td_list, otherwise we overwrite freed data
1710 	 */
1711 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1712 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1713 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1714 			td = &urb_priv->td[i];
1715 			if (!list_empty(&td->cancelled_td_list))
1716 				list_del_init(&td->cancelled_td_list);
1717 		}
1718 		goto err_giveback;
1719 	}
1720 
1721 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1722 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1723 				"HC halted, freeing TD manually.");
1724 		for (i = urb_priv->num_tds_done;
1725 		     i < urb_priv->num_tds;
1726 		     i++) {
1727 			td = &urb_priv->td[i];
1728 			if (!list_empty(&td->td_list))
1729 				list_del_init(&td->td_list);
1730 			if (!list_empty(&td->cancelled_td_list))
1731 				list_del_init(&td->cancelled_td_list);
1732 		}
1733 		goto err_giveback;
1734 	}
1735 
1736 	i = urb_priv->num_tds_done;
1737 	if (i < urb_priv->num_tds)
1738 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1739 				"Cancel URB %p, dev %s, ep 0x%x, "
1740 				"starting at offset 0x%llx",
1741 				urb, urb->dev->devpath,
1742 				urb->ep->desc.bEndpointAddress,
1743 				(unsigned long long) xhci_trb_virt_to_dma(
1744 					urb_priv->td[i].start_seg,
1745 					urb_priv->td[i].first_trb));
1746 
1747 	for (; i < urb_priv->num_tds; i++) {
1748 		td = &urb_priv->td[i];
1749 		/* TD can already be on cancelled list if ep halted on it */
1750 		if (list_empty(&td->cancelled_td_list)) {
1751 			td->cancel_status = TD_DIRTY;
1752 			list_add_tail(&td->cancelled_td_list,
1753 				      &ep->cancelled_td_list);
1754 		}
1755 	}
1756 
1757 	/* Queue a stop endpoint command, but only if this is
1758 	 * the first cancellation to be handled.
1759 	 */
1760 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1761 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1762 		if (!command) {
1763 			ret = -ENOMEM;
1764 			goto done;
1765 		}
1766 		ep->ep_state |= EP_STOP_CMD_PENDING;
1767 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1768 					 ep_index, 0);
1769 		xhci_ring_cmd_db(xhci);
1770 	}
1771 done:
1772 	spin_unlock_irqrestore(&xhci->lock, flags);
1773 	return ret;
1774 
1775 err_giveback:
1776 	if (urb_priv)
1777 		xhci_urb_free_priv(urb_priv);
1778 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1779 	spin_unlock_irqrestore(&xhci->lock, flags);
1780 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1781 	return ret;
1782 }
1783 
1784 /* Drop an endpoint from a new bandwidth configuration for this device.
1785  * Only one call to this function is allowed per endpoint before
1786  * check_bandwidth() or reset_bandwidth() must be called.
1787  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1788  * add the endpoint to the schedule with possibly new parameters denoted by a
1789  * different endpoint descriptor in usb_host_endpoint.
1790  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1791  * not allowed.
1792  *
1793  * The USB core will not allow URBs to be queued to an endpoint that is being
1794  * disabled, so there's no need for mutual exclusion to protect
1795  * the xhci->devs[slot_id] structure.
1796  */
1797 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1798 		       struct usb_host_endpoint *ep)
1799 {
1800 	struct xhci_hcd *xhci;
1801 	struct xhci_container_ctx *in_ctx, *out_ctx;
1802 	struct xhci_input_control_ctx *ctrl_ctx;
1803 	unsigned int ep_index;
1804 	struct xhci_ep_ctx *ep_ctx;
1805 	u32 drop_flag;
1806 	u32 new_add_flags, new_drop_flags;
1807 	int ret;
1808 
1809 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1810 	if (ret <= 0)
1811 		return ret;
1812 	xhci = hcd_to_xhci(hcd);
1813 	if (xhci->xhc_state & XHCI_STATE_DYING)
1814 		return -ENODEV;
1815 
1816 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1817 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1818 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1819 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1820 				__func__, drop_flag);
1821 		return 0;
1822 	}
1823 
1824 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1825 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1826 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1827 	if (!ctrl_ctx) {
1828 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1829 				__func__);
1830 		return 0;
1831 	}
1832 
1833 	ep_index = xhci_get_endpoint_index(&ep->desc);
1834 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1835 	/* If the HC already knows the endpoint is disabled,
1836 	 * or the HCD has noted it is disabled, ignore this request
1837 	 */
1838 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1839 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1840 	    xhci_get_endpoint_flag(&ep->desc)) {
1841 		/* Do not warn when called after a usb_device_reset */
1842 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1843 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1844 				  __func__, ep);
1845 		return 0;
1846 	}
1847 
1848 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1849 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1850 
1851 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1852 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1853 
1854 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1855 
1856 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1857 
1858 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1859 			(unsigned int) ep->desc.bEndpointAddress,
1860 			udev->slot_id,
1861 			(unsigned int) new_drop_flags,
1862 			(unsigned int) new_add_flags);
1863 	return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1866 
1867 /* Add an endpoint to a new possible bandwidth configuration for this device.
1868  * Only one call to this function is allowed per endpoint before
1869  * check_bandwidth() or reset_bandwidth() must be called.
1870  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1871  * add the endpoint to the schedule with possibly new parameters denoted by a
1872  * different endpoint descriptor in usb_host_endpoint.
1873  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1874  * not allowed.
1875  *
1876  * The USB core will not allow URBs to be queued to an endpoint until the
1877  * configuration or alt setting is installed in the device, so there's no need
1878  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1879  */
1880 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1881 		      struct usb_host_endpoint *ep)
1882 {
1883 	struct xhci_hcd *xhci;
1884 	struct xhci_container_ctx *in_ctx;
1885 	unsigned int ep_index;
1886 	struct xhci_input_control_ctx *ctrl_ctx;
1887 	struct xhci_ep_ctx *ep_ctx;
1888 	u32 added_ctxs;
1889 	u32 new_add_flags, new_drop_flags;
1890 	struct xhci_virt_device *virt_dev;
1891 	int ret = 0;
1892 
1893 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1894 	if (ret <= 0) {
1895 		/* So we won't queue a reset ep command for a root hub */
1896 		ep->hcpriv = NULL;
1897 		return ret;
1898 	}
1899 	xhci = hcd_to_xhci(hcd);
1900 	if (xhci->xhc_state & XHCI_STATE_DYING)
1901 		return -ENODEV;
1902 
1903 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1904 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1905 		/* FIXME when we have to issue an evaluate endpoint command to
1906 		 * deal with ep0 max packet size changing once we get the
1907 		 * descriptors
1908 		 */
1909 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1910 				__func__, added_ctxs);
1911 		return 0;
1912 	}
1913 
1914 	virt_dev = xhci->devs[udev->slot_id];
1915 	in_ctx = virt_dev->in_ctx;
1916 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1917 	if (!ctrl_ctx) {
1918 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1919 				__func__);
1920 		return 0;
1921 	}
1922 
1923 	ep_index = xhci_get_endpoint_index(&ep->desc);
1924 	/* If this endpoint is already in use, and the upper layers are trying
1925 	 * to add it again without dropping it, reject the addition.
1926 	 */
1927 	if (virt_dev->eps[ep_index].ring &&
1928 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1929 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1930 				"without dropping it.\n",
1931 				(unsigned int) ep->desc.bEndpointAddress);
1932 		return -EINVAL;
1933 	}
1934 
1935 	/* If the HCD has already noted the endpoint is enabled,
1936 	 * ignore this request.
1937 	 */
1938 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1939 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1940 				__func__, ep);
1941 		return 0;
1942 	}
1943 
1944 	/*
1945 	 * Configuration and alternate setting changes must be done in
1946 	 * process context, not interrupt context (or so documenation
1947 	 * for usb_set_interface() and usb_set_configuration() claim).
1948 	 */
1949 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1950 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1951 				__func__, ep->desc.bEndpointAddress);
1952 		return -ENOMEM;
1953 	}
1954 
1955 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1956 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1957 
1958 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1959 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1960 	 * this re-adds a new state for the endpoint from the new endpoint
1961 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1962 	 * drop flags alone.
1963 	 */
1964 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1965 
1966 	/* Store the usb_device pointer for later use */
1967 	ep->hcpriv = udev;
1968 
1969 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1970 	trace_xhci_add_endpoint(ep_ctx);
1971 
1972 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1973 			(unsigned int) ep->desc.bEndpointAddress,
1974 			udev->slot_id,
1975 			(unsigned int) new_drop_flags,
1976 			(unsigned int) new_add_flags);
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1980 
1981 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1982 {
1983 	struct xhci_input_control_ctx *ctrl_ctx;
1984 	struct xhci_ep_ctx *ep_ctx;
1985 	struct xhci_slot_ctx *slot_ctx;
1986 	int i;
1987 
1988 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1989 	if (!ctrl_ctx) {
1990 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1991 				__func__);
1992 		return;
1993 	}
1994 
1995 	/* When a device's add flag and drop flag are zero, any subsequent
1996 	 * configure endpoint command will leave that endpoint's state
1997 	 * untouched.  Make sure we don't leave any old state in the input
1998 	 * endpoint contexts.
1999 	 */
2000 	ctrl_ctx->drop_flags = 0;
2001 	ctrl_ctx->add_flags = 0;
2002 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2003 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2004 	/* Endpoint 0 is always valid */
2005 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2006 	for (i = 1; i < 31; i++) {
2007 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2008 		ep_ctx->ep_info = 0;
2009 		ep_ctx->ep_info2 = 0;
2010 		ep_ctx->deq = 0;
2011 		ep_ctx->tx_info = 0;
2012 	}
2013 }
2014 
2015 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2016 		struct usb_device *udev, u32 *cmd_status)
2017 {
2018 	int ret;
2019 
2020 	switch (*cmd_status) {
2021 	case COMP_COMMAND_ABORTED:
2022 	case COMP_COMMAND_RING_STOPPED:
2023 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2024 		ret = -ETIME;
2025 		break;
2026 	case COMP_RESOURCE_ERROR:
2027 		dev_warn(&udev->dev,
2028 			 "Not enough host controller resources for new device state.\n");
2029 		ret = -ENOMEM;
2030 		/* FIXME: can we allocate more resources for the HC? */
2031 		break;
2032 	case COMP_BANDWIDTH_ERROR:
2033 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2034 		dev_warn(&udev->dev,
2035 			 "Not enough bandwidth for new device state.\n");
2036 		ret = -ENOSPC;
2037 		/* FIXME: can we go back to the old state? */
2038 		break;
2039 	case COMP_TRB_ERROR:
2040 		/* the HCD set up something wrong */
2041 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2042 				"add flag = 1, "
2043 				"and endpoint is not disabled.\n");
2044 		ret = -EINVAL;
2045 		break;
2046 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2047 		dev_warn(&udev->dev,
2048 			 "ERROR: Incompatible device for endpoint configure command.\n");
2049 		ret = -ENODEV;
2050 		break;
2051 	case COMP_SUCCESS:
2052 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2053 				"Successful Endpoint Configure command");
2054 		ret = 0;
2055 		break;
2056 	default:
2057 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2058 				*cmd_status);
2059 		ret = -EINVAL;
2060 		break;
2061 	}
2062 	return ret;
2063 }
2064 
2065 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2066 		struct usb_device *udev, u32 *cmd_status)
2067 {
2068 	int ret;
2069 
2070 	switch (*cmd_status) {
2071 	case COMP_COMMAND_ABORTED:
2072 	case COMP_COMMAND_RING_STOPPED:
2073 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2074 		ret = -ETIME;
2075 		break;
2076 	case COMP_PARAMETER_ERROR:
2077 		dev_warn(&udev->dev,
2078 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2079 		ret = -EINVAL;
2080 		break;
2081 	case COMP_SLOT_NOT_ENABLED_ERROR:
2082 		dev_warn(&udev->dev,
2083 			"WARN: slot not enabled for evaluate context command.\n");
2084 		ret = -EINVAL;
2085 		break;
2086 	case COMP_CONTEXT_STATE_ERROR:
2087 		dev_warn(&udev->dev,
2088 			"WARN: invalid context state for evaluate context command.\n");
2089 		ret = -EINVAL;
2090 		break;
2091 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2092 		dev_warn(&udev->dev,
2093 			"ERROR: Incompatible device for evaluate context command.\n");
2094 		ret = -ENODEV;
2095 		break;
2096 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2097 		/* Max Exit Latency too large error */
2098 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2099 		ret = -EINVAL;
2100 		break;
2101 	case COMP_SUCCESS:
2102 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2103 				"Successful evaluate context command");
2104 		ret = 0;
2105 		break;
2106 	default:
2107 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2108 			*cmd_status);
2109 		ret = -EINVAL;
2110 		break;
2111 	}
2112 	return ret;
2113 }
2114 
2115 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2116 		struct xhci_input_control_ctx *ctrl_ctx)
2117 {
2118 	u32 valid_add_flags;
2119 	u32 valid_drop_flags;
2120 
2121 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2122 	 * (bit 1).  The default control endpoint is added during the Address
2123 	 * Device command and is never removed until the slot is disabled.
2124 	 */
2125 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2126 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2127 
2128 	/* Use hweight32 to count the number of ones in the add flags, or
2129 	 * number of endpoints added.  Don't count endpoints that are changed
2130 	 * (both added and dropped).
2131 	 */
2132 	return hweight32(valid_add_flags) -
2133 		hweight32(valid_add_flags & valid_drop_flags);
2134 }
2135 
2136 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2137 		struct xhci_input_control_ctx *ctrl_ctx)
2138 {
2139 	u32 valid_add_flags;
2140 	u32 valid_drop_flags;
2141 
2142 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2143 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2144 
2145 	return hweight32(valid_drop_flags) -
2146 		hweight32(valid_add_flags & valid_drop_flags);
2147 }
2148 
2149 /*
2150  * We need to reserve the new number of endpoints before the configure endpoint
2151  * command completes.  We can't subtract the dropped endpoints from the number
2152  * of active endpoints until the command completes because we can oversubscribe
2153  * the host in this case:
2154  *
2155  *  - the first configure endpoint command drops more endpoints than it adds
2156  *  - a second configure endpoint command that adds more endpoints is queued
2157  *  - the first configure endpoint command fails, so the config is unchanged
2158  *  - the second command may succeed, even though there isn't enough resources
2159  *
2160  * Must be called with xhci->lock held.
2161  */
2162 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2163 		struct xhci_input_control_ctx *ctrl_ctx)
2164 {
2165 	u32 added_eps;
2166 
2167 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2168 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2169 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170 				"Not enough ep ctxs: "
2171 				"%u active, need to add %u, limit is %u.",
2172 				xhci->num_active_eps, added_eps,
2173 				xhci->limit_active_eps);
2174 		return -ENOMEM;
2175 	}
2176 	xhci->num_active_eps += added_eps;
2177 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2178 			"Adding %u ep ctxs, %u now active.", added_eps,
2179 			xhci->num_active_eps);
2180 	return 0;
2181 }
2182 
2183 /*
2184  * The configure endpoint was failed by the xHC for some other reason, so we
2185  * need to revert the resources that failed configuration would have used.
2186  *
2187  * Must be called with xhci->lock held.
2188  */
2189 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2190 		struct xhci_input_control_ctx *ctrl_ctx)
2191 {
2192 	u32 num_failed_eps;
2193 
2194 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2195 	xhci->num_active_eps -= num_failed_eps;
2196 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197 			"Removing %u failed ep ctxs, %u now active.",
2198 			num_failed_eps,
2199 			xhci->num_active_eps);
2200 }
2201 
2202 /*
2203  * Now that the command has completed, clean up the active endpoint count by
2204  * subtracting out the endpoints that were dropped (but not changed).
2205  *
2206  * Must be called with xhci->lock held.
2207  */
2208 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2209 		struct xhci_input_control_ctx *ctrl_ctx)
2210 {
2211 	u32 num_dropped_eps;
2212 
2213 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2214 	xhci->num_active_eps -= num_dropped_eps;
2215 	if (num_dropped_eps)
2216 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2217 				"Removing %u dropped ep ctxs, %u now active.",
2218 				num_dropped_eps,
2219 				xhci->num_active_eps);
2220 }
2221 
2222 static unsigned int xhci_get_block_size(struct usb_device *udev)
2223 {
2224 	switch (udev->speed) {
2225 	case USB_SPEED_LOW:
2226 	case USB_SPEED_FULL:
2227 		return FS_BLOCK;
2228 	case USB_SPEED_HIGH:
2229 		return HS_BLOCK;
2230 	case USB_SPEED_SUPER:
2231 	case USB_SPEED_SUPER_PLUS:
2232 		return SS_BLOCK;
2233 	case USB_SPEED_UNKNOWN:
2234 	default:
2235 		/* Should never happen */
2236 		return 1;
2237 	}
2238 }
2239 
2240 static unsigned int
2241 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2242 {
2243 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2244 		return LS_OVERHEAD;
2245 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2246 		return FS_OVERHEAD;
2247 	return HS_OVERHEAD;
2248 }
2249 
2250 /* If we are changing a LS/FS device under a HS hub,
2251  * make sure (if we are activating a new TT) that the HS bus has enough
2252  * bandwidth for this new TT.
2253  */
2254 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2255 		struct xhci_virt_device *virt_dev,
2256 		int old_active_eps)
2257 {
2258 	struct xhci_interval_bw_table *bw_table;
2259 	struct xhci_tt_bw_info *tt_info;
2260 
2261 	/* Find the bandwidth table for the root port this TT is attached to. */
2262 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2263 	tt_info = virt_dev->tt_info;
2264 	/* If this TT already had active endpoints, the bandwidth for this TT
2265 	 * has already been added.  Removing all periodic endpoints (and thus
2266 	 * making the TT enactive) will only decrease the bandwidth used.
2267 	 */
2268 	if (old_active_eps)
2269 		return 0;
2270 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2271 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2272 			return -ENOMEM;
2273 		return 0;
2274 	}
2275 	/* Not sure why we would have no new active endpoints...
2276 	 *
2277 	 * Maybe because of an Evaluate Context change for a hub update or a
2278 	 * control endpoint 0 max packet size change?
2279 	 * FIXME: skip the bandwidth calculation in that case.
2280 	 */
2281 	return 0;
2282 }
2283 
2284 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2285 		struct xhci_virt_device *virt_dev)
2286 {
2287 	unsigned int bw_reserved;
2288 
2289 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2290 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2291 		return -ENOMEM;
2292 
2293 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2294 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2295 		return -ENOMEM;
2296 
2297 	return 0;
2298 }
2299 
2300 /*
2301  * This algorithm is a very conservative estimate of the worst-case scheduling
2302  * scenario for any one interval.  The hardware dynamically schedules the
2303  * packets, so we can't tell which microframe could be the limiting factor in
2304  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2305  *
2306  * Obviously, we can't solve an NP complete problem to find the minimum worst
2307  * case scenario.  Instead, we come up with an estimate that is no less than
2308  * the worst case bandwidth used for any one microframe, but may be an
2309  * over-estimate.
2310  *
2311  * We walk the requirements for each endpoint by interval, starting with the
2312  * smallest interval, and place packets in the schedule where there is only one
2313  * possible way to schedule packets for that interval.  In order to simplify
2314  * this algorithm, we record the largest max packet size for each interval, and
2315  * assume all packets will be that size.
2316  *
2317  * For interval 0, we obviously must schedule all packets for each interval.
2318  * The bandwidth for interval 0 is just the amount of data to be transmitted
2319  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2320  * the number of packets).
2321  *
2322  * For interval 1, we have two possible microframes to schedule those packets
2323  * in.  For this algorithm, if we can schedule the same number of packets for
2324  * each possible scheduling opportunity (each microframe), we will do so.  The
2325  * remaining number of packets will be saved to be transmitted in the gaps in
2326  * the next interval's scheduling sequence.
2327  *
2328  * As we move those remaining packets to be scheduled with interval 2 packets,
2329  * we have to double the number of remaining packets to transmit.  This is
2330  * because the intervals are actually powers of 2, and we would be transmitting
2331  * the previous interval's packets twice in this interval.  We also have to be
2332  * sure that when we look at the largest max packet size for this interval, we
2333  * also look at the largest max packet size for the remaining packets and take
2334  * the greater of the two.
2335  *
2336  * The algorithm continues to evenly distribute packets in each scheduling
2337  * opportunity, and push the remaining packets out, until we get to the last
2338  * interval.  Then those packets and their associated overhead are just added
2339  * to the bandwidth used.
2340  */
2341 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2342 		struct xhci_virt_device *virt_dev,
2343 		int old_active_eps)
2344 {
2345 	unsigned int bw_reserved;
2346 	unsigned int max_bandwidth;
2347 	unsigned int bw_used;
2348 	unsigned int block_size;
2349 	struct xhci_interval_bw_table *bw_table;
2350 	unsigned int packet_size = 0;
2351 	unsigned int overhead = 0;
2352 	unsigned int packets_transmitted = 0;
2353 	unsigned int packets_remaining = 0;
2354 	unsigned int i;
2355 
2356 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2357 		return xhci_check_ss_bw(xhci, virt_dev);
2358 
2359 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2360 		max_bandwidth = HS_BW_LIMIT;
2361 		/* Convert percent of bus BW reserved to blocks reserved */
2362 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2363 	} else {
2364 		max_bandwidth = FS_BW_LIMIT;
2365 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2366 	}
2367 
2368 	bw_table = virt_dev->bw_table;
2369 	/* We need to translate the max packet size and max ESIT payloads into
2370 	 * the units the hardware uses.
2371 	 */
2372 	block_size = xhci_get_block_size(virt_dev->udev);
2373 
2374 	/* If we are manipulating a LS/FS device under a HS hub, double check
2375 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2376 	 */
2377 	if (virt_dev->tt_info) {
2378 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2379 				"Recalculating BW for rootport %u",
2380 				virt_dev->real_port);
2381 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2382 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2383 					"newly activated TT.\n");
2384 			return -ENOMEM;
2385 		}
2386 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2387 				"Recalculating BW for TT slot %u port %u",
2388 				virt_dev->tt_info->slot_id,
2389 				virt_dev->tt_info->ttport);
2390 	} else {
2391 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2392 				"Recalculating BW for rootport %u",
2393 				virt_dev->real_port);
2394 	}
2395 
2396 	/* Add in how much bandwidth will be used for interval zero, or the
2397 	 * rounded max ESIT payload + number of packets * largest overhead.
2398 	 */
2399 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2400 		bw_table->interval_bw[0].num_packets *
2401 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2402 
2403 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2404 		unsigned int bw_added;
2405 		unsigned int largest_mps;
2406 		unsigned int interval_overhead;
2407 
2408 		/*
2409 		 * How many packets could we transmit in this interval?
2410 		 * If packets didn't fit in the previous interval, we will need
2411 		 * to transmit that many packets twice within this interval.
2412 		 */
2413 		packets_remaining = 2 * packets_remaining +
2414 			bw_table->interval_bw[i].num_packets;
2415 
2416 		/* Find the largest max packet size of this or the previous
2417 		 * interval.
2418 		 */
2419 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2420 			largest_mps = 0;
2421 		else {
2422 			struct xhci_virt_ep *virt_ep;
2423 			struct list_head *ep_entry;
2424 
2425 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2426 			virt_ep = list_entry(ep_entry,
2427 					struct xhci_virt_ep, bw_endpoint_list);
2428 			/* Convert to blocks, rounding up */
2429 			largest_mps = DIV_ROUND_UP(
2430 					virt_ep->bw_info.max_packet_size,
2431 					block_size);
2432 		}
2433 		if (largest_mps > packet_size)
2434 			packet_size = largest_mps;
2435 
2436 		/* Use the larger overhead of this or the previous interval. */
2437 		interval_overhead = xhci_get_largest_overhead(
2438 				&bw_table->interval_bw[i]);
2439 		if (interval_overhead > overhead)
2440 			overhead = interval_overhead;
2441 
2442 		/* How many packets can we evenly distribute across
2443 		 * (1 << (i + 1)) possible scheduling opportunities?
2444 		 */
2445 		packets_transmitted = packets_remaining >> (i + 1);
2446 
2447 		/* Add in the bandwidth used for those scheduled packets */
2448 		bw_added = packets_transmitted * (overhead + packet_size);
2449 
2450 		/* How many packets do we have remaining to transmit? */
2451 		packets_remaining = packets_remaining % (1 << (i + 1));
2452 
2453 		/* What largest max packet size should those packets have? */
2454 		/* If we've transmitted all packets, don't carry over the
2455 		 * largest packet size.
2456 		 */
2457 		if (packets_remaining == 0) {
2458 			packet_size = 0;
2459 			overhead = 0;
2460 		} else if (packets_transmitted > 0) {
2461 			/* Otherwise if we do have remaining packets, and we've
2462 			 * scheduled some packets in this interval, take the
2463 			 * largest max packet size from endpoints with this
2464 			 * interval.
2465 			 */
2466 			packet_size = largest_mps;
2467 			overhead = interval_overhead;
2468 		}
2469 		/* Otherwise carry over packet_size and overhead from the last
2470 		 * time we had a remainder.
2471 		 */
2472 		bw_used += bw_added;
2473 		if (bw_used > max_bandwidth) {
2474 			xhci_warn(xhci, "Not enough bandwidth. "
2475 					"Proposed: %u, Max: %u\n",
2476 				bw_used, max_bandwidth);
2477 			return -ENOMEM;
2478 		}
2479 	}
2480 	/*
2481 	 * Ok, we know we have some packets left over after even-handedly
2482 	 * scheduling interval 15.  We don't know which microframes they will
2483 	 * fit into, so we over-schedule and say they will be scheduled every
2484 	 * microframe.
2485 	 */
2486 	if (packets_remaining > 0)
2487 		bw_used += overhead + packet_size;
2488 
2489 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2490 		unsigned int port_index = virt_dev->real_port - 1;
2491 
2492 		/* OK, we're manipulating a HS device attached to a
2493 		 * root port bandwidth domain.  Include the number of active TTs
2494 		 * in the bandwidth used.
2495 		 */
2496 		bw_used += TT_HS_OVERHEAD *
2497 			xhci->rh_bw[port_index].num_active_tts;
2498 	}
2499 
2500 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2501 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2502 		"Available: %u " "percent",
2503 		bw_used, max_bandwidth, bw_reserved,
2504 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2505 		max_bandwidth);
2506 
2507 	bw_used += bw_reserved;
2508 	if (bw_used > max_bandwidth) {
2509 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2510 				bw_used, max_bandwidth);
2511 		return -ENOMEM;
2512 	}
2513 
2514 	bw_table->bw_used = bw_used;
2515 	return 0;
2516 }
2517 
2518 static bool xhci_is_async_ep(unsigned int ep_type)
2519 {
2520 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2521 					ep_type != ISOC_IN_EP &&
2522 					ep_type != INT_IN_EP);
2523 }
2524 
2525 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2526 {
2527 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2528 }
2529 
2530 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2531 {
2532 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2533 
2534 	if (ep_bw->ep_interval == 0)
2535 		return SS_OVERHEAD_BURST +
2536 			(ep_bw->mult * ep_bw->num_packets *
2537 					(SS_OVERHEAD + mps));
2538 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2539 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2540 				1 << ep_bw->ep_interval);
2541 
2542 }
2543 
2544 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2545 		struct xhci_bw_info *ep_bw,
2546 		struct xhci_interval_bw_table *bw_table,
2547 		struct usb_device *udev,
2548 		struct xhci_virt_ep *virt_ep,
2549 		struct xhci_tt_bw_info *tt_info)
2550 {
2551 	struct xhci_interval_bw	*interval_bw;
2552 	int normalized_interval;
2553 
2554 	if (xhci_is_async_ep(ep_bw->type))
2555 		return;
2556 
2557 	if (udev->speed >= USB_SPEED_SUPER) {
2558 		if (xhci_is_sync_in_ep(ep_bw->type))
2559 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2560 				xhci_get_ss_bw_consumed(ep_bw);
2561 		else
2562 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2563 				xhci_get_ss_bw_consumed(ep_bw);
2564 		return;
2565 	}
2566 
2567 	/* SuperSpeed endpoints never get added to intervals in the table, so
2568 	 * this check is only valid for HS/FS/LS devices.
2569 	 */
2570 	if (list_empty(&virt_ep->bw_endpoint_list))
2571 		return;
2572 	/* For LS/FS devices, we need to translate the interval expressed in
2573 	 * microframes to frames.
2574 	 */
2575 	if (udev->speed == USB_SPEED_HIGH)
2576 		normalized_interval = ep_bw->ep_interval;
2577 	else
2578 		normalized_interval = ep_bw->ep_interval - 3;
2579 
2580 	if (normalized_interval == 0)
2581 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2582 	interval_bw = &bw_table->interval_bw[normalized_interval];
2583 	interval_bw->num_packets -= ep_bw->num_packets;
2584 	switch (udev->speed) {
2585 	case USB_SPEED_LOW:
2586 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2587 		break;
2588 	case USB_SPEED_FULL:
2589 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2590 		break;
2591 	case USB_SPEED_HIGH:
2592 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2593 		break;
2594 	default:
2595 		/* Should never happen because only LS/FS/HS endpoints will get
2596 		 * added to the endpoint list.
2597 		 */
2598 		return;
2599 	}
2600 	if (tt_info)
2601 		tt_info->active_eps -= 1;
2602 	list_del_init(&virt_ep->bw_endpoint_list);
2603 }
2604 
2605 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2606 		struct xhci_bw_info *ep_bw,
2607 		struct xhci_interval_bw_table *bw_table,
2608 		struct usb_device *udev,
2609 		struct xhci_virt_ep *virt_ep,
2610 		struct xhci_tt_bw_info *tt_info)
2611 {
2612 	struct xhci_interval_bw	*interval_bw;
2613 	struct xhci_virt_ep *smaller_ep;
2614 	int normalized_interval;
2615 
2616 	if (xhci_is_async_ep(ep_bw->type))
2617 		return;
2618 
2619 	if (udev->speed == USB_SPEED_SUPER) {
2620 		if (xhci_is_sync_in_ep(ep_bw->type))
2621 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2622 				xhci_get_ss_bw_consumed(ep_bw);
2623 		else
2624 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2625 				xhci_get_ss_bw_consumed(ep_bw);
2626 		return;
2627 	}
2628 
2629 	/* For LS/FS devices, we need to translate the interval expressed in
2630 	 * microframes to frames.
2631 	 */
2632 	if (udev->speed == USB_SPEED_HIGH)
2633 		normalized_interval = ep_bw->ep_interval;
2634 	else
2635 		normalized_interval = ep_bw->ep_interval - 3;
2636 
2637 	if (normalized_interval == 0)
2638 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2639 	interval_bw = &bw_table->interval_bw[normalized_interval];
2640 	interval_bw->num_packets += ep_bw->num_packets;
2641 	switch (udev->speed) {
2642 	case USB_SPEED_LOW:
2643 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2644 		break;
2645 	case USB_SPEED_FULL:
2646 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2647 		break;
2648 	case USB_SPEED_HIGH:
2649 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2650 		break;
2651 	default:
2652 		/* Should never happen because only LS/FS/HS endpoints will get
2653 		 * added to the endpoint list.
2654 		 */
2655 		return;
2656 	}
2657 
2658 	if (tt_info)
2659 		tt_info->active_eps += 1;
2660 	/* Insert the endpoint into the list, largest max packet size first. */
2661 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2662 			bw_endpoint_list) {
2663 		if (ep_bw->max_packet_size >=
2664 				smaller_ep->bw_info.max_packet_size) {
2665 			/* Add the new ep before the smaller endpoint */
2666 			list_add_tail(&virt_ep->bw_endpoint_list,
2667 					&smaller_ep->bw_endpoint_list);
2668 			return;
2669 		}
2670 	}
2671 	/* Add the new endpoint at the end of the list. */
2672 	list_add_tail(&virt_ep->bw_endpoint_list,
2673 			&interval_bw->endpoints);
2674 }
2675 
2676 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2677 		struct xhci_virt_device *virt_dev,
2678 		int old_active_eps)
2679 {
2680 	struct xhci_root_port_bw_info *rh_bw_info;
2681 	if (!virt_dev->tt_info)
2682 		return;
2683 
2684 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2685 	if (old_active_eps == 0 &&
2686 				virt_dev->tt_info->active_eps != 0) {
2687 		rh_bw_info->num_active_tts += 1;
2688 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2689 	} else if (old_active_eps != 0 &&
2690 				virt_dev->tt_info->active_eps == 0) {
2691 		rh_bw_info->num_active_tts -= 1;
2692 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2693 	}
2694 }
2695 
2696 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2697 		struct xhci_virt_device *virt_dev,
2698 		struct xhci_container_ctx *in_ctx)
2699 {
2700 	struct xhci_bw_info ep_bw_info[31];
2701 	int i;
2702 	struct xhci_input_control_ctx *ctrl_ctx;
2703 	int old_active_eps = 0;
2704 
2705 	if (virt_dev->tt_info)
2706 		old_active_eps = virt_dev->tt_info->active_eps;
2707 
2708 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2709 	if (!ctrl_ctx) {
2710 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2711 				__func__);
2712 		return -ENOMEM;
2713 	}
2714 
2715 	for (i = 0; i < 31; i++) {
2716 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2717 			continue;
2718 
2719 		/* Make a copy of the BW info in case we need to revert this */
2720 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2721 				sizeof(ep_bw_info[i]));
2722 		/* Drop the endpoint from the interval table if the endpoint is
2723 		 * being dropped or changed.
2724 		 */
2725 		if (EP_IS_DROPPED(ctrl_ctx, i))
2726 			xhci_drop_ep_from_interval_table(xhci,
2727 					&virt_dev->eps[i].bw_info,
2728 					virt_dev->bw_table,
2729 					virt_dev->udev,
2730 					&virt_dev->eps[i],
2731 					virt_dev->tt_info);
2732 	}
2733 	/* Overwrite the information stored in the endpoints' bw_info */
2734 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2735 	for (i = 0; i < 31; i++) {
2736 		/* Add any changed or added endpoints to the interval table */
2737 		if (EP_IS_ADDED(ctrl_ctx, i))
2738 			xhci_add_ep_to_interval_table(xhci,
2739 					&virt_dev->eps[i].bw_info,
2740 					virt_dev->bw_table,
2741 					virt_dev->udev,
2742 					&virt_dev->eps[i],
2743 					virt_dev->tt_info);
2744 	}
2745 
2746 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2747 		/* Ok, this fits in the bandwidth we have.
2748 		 * Update the number of active TTs.
2749 		 */
2750 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2751 		return 0;
2752 	}
2753 
2754 	/* We don't have enough bandwidth for this, revert the stored info. */
2755 	for (i = 0; i < 31; i++) {
2756 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2757 			continue;
2758 
2759 		/* Drop the new copies of any added or changed endpoints from
2760 		 * the interval table.
2761 		 */
2762 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2763 			xhci_drop_ep_from_interval_table(xhci,
2764 					&virt_dev->eps[i].bw_info,
2765 					virt_dev->bw_table,
2766 					virt_dev->udev,
2767 					&virt_dev->eps[i],
2768 					virt_dev->tt_info);
2769 		}
2770 		/* Revert the endpoint back to its old information */
2771 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2772 				sizeof(ep_bw_info[i]));
2773 		/* Add any changed or dropped endpoints back into the table */
2774 		if (EP_IS_DROPPED(ctrl_ctx, i))
2775 			xhci_add_ep_to_interval_table(xhci,
2776 					&virt_dev->eps[i].bw_info,
2777 					virt_dev->bw_table,
2778 					virt_dev->udev,
2779 					&virt_dev->eps[i],
2780 					virt_dev->tt_info);
2781 	}
2782 	return -ENOMEM;
2783 }
2784 
2785 
2786 /* Issue a configure endpoint command or evaluate context command
2787  * and wait for it to finish.
2788  */
2789 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2790 		struct usb_device *udev,
2791 		struct xhci_command *command,
2792 		bool ctx_change, bool must_succeed)
2793 {
2794 	int ret;
2795 	unsigned long flags;
2796 	struct xhci_input_control_ctx *ctrl_ctx;
2797 	struct xhci_virt_device *virt_dev;
2798 	struct xhci_slot_ctx *slot_ctx;
2799 
2800 	if (!command)
2801 		return -EINVAL;
2802 
2803 	spin_lock_irqsave(&xhci->lock, flags);
2804 
2805 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2806 		spin_unlock_irqrestore(&xhci->lock, flags);
2807 		return -ESHUTDOWN;
2808 	}
2809 
2810 	virt_dev = xhci->devs[udev->slot_id];
2811 
2812 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2813 	if (!ctrl_ctx) {
2814 		spin_unlock_irqrestore(&xhci->lock, flags);
2815 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816 				__func__);
2817 		return -ENOMEM;
2818 	}
2819 
2820 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2821 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2822 		spin_unlock_irqrestore(&xhci->lock, flags);
2823 		xhci_warn(xhci, "Not enough host resources, "
2824 				"active endpoint contexts = %u\n",
2825 				xhci->num_active_eps);
2826 		return -ENOMEM;
2827 	}
2828 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2829 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2830 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2831 			xhci_free_host_resources(xhci, ctrl_ctx);
2832 		spin_unlock_irqrestore(&xhci->lock, flags);
2833 		xhci_warn(xhci, "Not enough bandwidth\n");
2834 		return -ENOMEM;
2835 	}
2836 
2837 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2838 
2839 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2840 	trace_xhci_configure_endpoint(slot_ctx);
2841 
2842 	if (!ctx_change)
2843 		ret = xhci_queue_configure_endpoint(xhci, command,
2844 				command->in_ctx->dma,
2845 				udev->slot_id, must_succeed);
2846 	else
2847 		ret = xhci_queue_evaluate_context(xhci, command,
2848 				command->in_ctx->dma,
2849 				udev->slot_id, must_succeed);
2850 	if (ret < 0) {
2851 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2852 			xhci_free_host_resources(xhci, ctrl_ctx);
2853 		spin_unlock_irqrestore(&xhci->lock, flags);
2854 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2855 				"FIXME allocate a new ring segment");
2856 		return -ENOMEM;
2857 	}
2858 	xhci_ring_cmd_db(xhci);
2859 	spin_unlock_irqrestore(&xhci->lock, flags);
2860 
2861 	/* Wait for the configure endpoint command to complete */
2862 	wait_for_completion(command->completion);
2863 
2864 	if (!ctx_change)
2865 		ret = xhci_configure_endpoint_result(xhci, udev,
2866 						     &command->status);
2867 	else
2868 		ret = xhci_evaluate_context_result(xhci, udev,
2869 						   &command->status);
2870 
2871 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2872 		spin_lock_irqsave(&xhci->lock, flags);
2873 		/* If the command failed, remove the reserved resources.
2874 		 * Otherwise, clean up the estimate to include dropped eps.
2875 		 */
2876 		if (ret)
2877 			xhci_free_host_resources(xhci, ctrl_ctx);
2878 		else
2879 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2880 		spin_unlock_irqrestore(&xhci->lock, flags);
2881 	}
2882 	return ret;
2883 }
2884 
2885 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2886 	struct xhci_virt_device *vdev, int i)
2887 {
2888 	struct xhci_virt_ep *ep = &vdev->eps[i];
2889 
2890 	if (ep->ep_state & EP_HAS_STREAMS) {
2891 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2892 				xhci_get_endpoint_address(i));
2893 		xhci_free_stream_info(xhci, ep->stream_info);
2894 		ep->stream_info = NULL;
2895 		ep->ep_state &= ~EP_HAS_STREAMS;
2896 	}
2897 }
2898 
2899 /* Called after one or more calls to xhci_add_endpoint() or
2900  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2901  * to call xhci_reset_bandwidth().
2902  *
2903  * Since we are in the middle of changing either configuration or
2904  * installing a new alt setting, the USB core won't allow URBs to be
2905  * enqueued for any endpoint on the old config or interface.  Nothing
2906  * else should be touching the xhci->devs[slot_id] structure, so we
2907  * don't need to take the xhci->lock for manipulating that.
2908  */
2909 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2910 {
2911 	int i;
2912 	int ret = 0;
2913 	struct xhci_hcd *xhci;
2914 	struct xhci_virt_device	*virt_dev;
2915 	struct xhci_input_control_ctx *ctrl_ctx;
2916 	struct xhci_slot_ctx *slot_ctx;
2917 	struct xhci_command *command;
2918 
2919 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2920 	if (ret <= 0)
2921 		return ret;
2922 	xhci = hcd_to_xhci(hcd);
2923 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2924 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2925 		return -ENODEV;
2926 
2927 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2928 	virt_dev = xhci->devs[udev->slot_id];
2929 
2930 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2931 	if (!command)
2932 		return -ENOMEM;
2933 
2934 	command->in_ctx = virt_dev->in_ctx;
2935 
2936 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2937 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2938 	if (!ctrl_ctx) {
2939 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2940 				__func__);
2941 		ret = -ENOMEM;
2942 		goto command_cleanup;
2943 	}
2944 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2945 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2946 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2947 
2948 	/* Don't issue the command if there's no endpoints to update. */
2949 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2950 	    ctrl_ctx->drop_flags == 0) {
2951 		ret = 0;
2952 		goto command_cleanup;
2953 	}
2954 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2955 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2956 	for (i = 31; i >= 1; i--) {
2957 		__le32 le32 = cpu_to_le32(BIT(i));
2958 
2959 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2960 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2961 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2962 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2963 			break;
2964 		}
2965 	}
2966 
2967 	ret = xhci_configure_endpoint(xhci, udev, command,
2968 			false, false);
2969 	if (ret)
2970 		/* Callee should call reset_bandwidth() */
2971 		goto command_cleanup;
2972 
2973 	/* Free any rings that were dropped, but not changed. */
2974 	for (i = 1; i < 31; i++) {
2975 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2976 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2977 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2978 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2979 		}
2980 	}
2981 	xhci_zero_in_ctx(xhci, virt_dev);
2982 	/*
2983 	 * Install any rings for completely new endpoints or changed endpoints,
2984 	 * and free any old rings from changed endpoints.
2985 	 */
2986 	for (i = 1; i < 31; i++) {
2987 		if (!virt_dev->eps[i].new_ring)
2988 			continue;
2989 		/* Only free the old ring if it exists.
2990 		 * It may not if this is the first add of an endpoint.
2991 		 */
2992 		if (virt_dev->eps[i].ring) {
2993 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2994 		}
2995 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2996 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2997 		virt_dev->eps[i].new_ring = NULL;
2998 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2999 	}
3000 command_cleanup:
3001 	kfree(command->completion);
3002 	kfree(command);
3003 
3004 	return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3007 
3008 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3009 {
3010 	struct xhci_hcd *xhci;
3011 	struct xhci_virt_device	*virt_dev;
3012 	int i, ret;
3013 
3014 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3015 	if (ret <= 0)
3016 		return;
3017 	xhci = hcd_to_xhci(hcd);
3018 
3019 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3020 	virt_dev = xhci->devs[udev->slot_id];
3021 	/* Free any rings allocated for added endpoints */
3022 	for (i = 0; i < 31; i++) {
3023 		if (virt_dev->eps[i].new_ring) {
3024 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3025 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3026 			virt_dev->eps[i].new_ring = NULL;
3027 		}
3028 	}
3029 	xhci_zero_in_ctx(xhci, virt_dev);
3030 }
3031 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3032 
3033 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3034 		struct xhci_container_ctx *in_ctx,
3035 		struct xhci_container_ctx *out_ctx,
3036 		struct xhci_input_control_ctx *ctrl_ctx,
3037 		u32 add_flags, u32 drop_flags)
3038 {
3039 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3040 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3041 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3042 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3043 }
3044 
3045 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3046 				  struct usb_host_endpoint *host_ep)
3047 {
3048 	struct xhci_hcd		*xhci;
3049 	struct xhci_virt_device	*vdev;
3050 	struct xhci_virt_ep	*ep;
3051 	struct usb_device	*udev;
3052 	unsigned long		flags;
3053 	unsigned int		ep_index;
3054 
3055 	xhci = hcd_to_xhci(hcd);
3056 rescan:
3057 	spin_lock_irqsave(&xhci->lock, flags);
3058 
3059 	udev = (struct usb_device *)host_ep->hcpriv;
3060 	if (!udev || !udev->slot_id)
3061 		goto done;
3062 
3063 	vdev = xhci->devs[udev->slot_id];
3064 	if (!vdev)
3065 		goto done;
3066 
3067 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3068 	ep = &vdev->eps[ep_index];
3069 
3070 	/* wait for hub_tt_work to finish clearing hub TT */
3071 	if (ep->ep_state & EP_CLEARING_TT) {
3072 		spin_unlock_irqrestore(&xhci->lock, flags);
3073 		schedule_timeout_uninterruptible(1);
3074 		goto rescan;
3075 	}
3076 
3077 	if (ep->ep_state)
3078 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3079 			 ep->ep_state);
3080 done:
3081 	host_ep->hcpriv = NULL;
3082 	spin_unlock_irqrestore(&xhci->lock, flags);
3083 }
3084 
3085 /*
3086  * Called after usb core issues a clear halt control message.
3087  * The host side of the halt should already be cleared by a reset endpoint
3088  * command issued when the STALL event was received.
3089  *
3090  * The reset endpoint command may only be issued to endpoints in the halted
3091  * state. For software that wishes to reset the data toggle or sequence number
3092  * of an endpoint that isn't in the halted state this function will issue a
3093  * configure endpoint command with the Drop and Add bits set for the target
3094  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3095  *
3096  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3097  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3098  */
3099 
3100 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3101 		struct usb_host_endpoint *host_ep)
3102 {
3103 	struct xhci_hcd *xhci;
3104 	struct usb_device *udev;
3105 	struct xhci_virt_device *vdev;
3106 	struct xhci_virt_ep *ep;
3107 	struct xhci_input_control_ctx *ctrl_ctx;
3108 	struct xhci_command *stop_cmd, *cfg_cmd;
3109 	unsigned int ep_index;
3110 	unsigned long flags;
3111 	u32 ep_flag;
3112 	int err;
3113 
3114 	xhci = hcd_to_xhci(hcd);
3115 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3116 
3117 	/*
3118 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3119 	 * real value is read from the descriptor. Core resets Ep0 if values
3120 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3121 	 */
3122 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3123 
3124 		udev = container_of(host_ep, struct usb_device, ep0);
3125 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3126 			return;
3127 
3128 		vdev = xhci->devs[udev->slot_id];
3129 		if (!vdev || vdev->udev != udev)
3130 			return;
3131 
3132 		xhci_check_ep0_maxpacket(xhci, vdev);
3133 
3134 		/* Nothing else should be done here for ep0 during ep reset */
3135 		return;
3136 	}
3137 
3138 	if (!host_ep->hcpriv)
3139 		return;
3140 	udev = (struct usb_device *) host_ep->hcpriv;
3141 	vdev = xhci->devs[udev->slot_id];
3142 
3143 	if (!udev->slot_id || !vdev)
3144 		return;
3145 
3146 	ep = &vdev->eps[ep_index];
3147 
3148 	/* Bail out if toggle is already being cleared by a endpoint reset */
3149 	spin_lock_irqsave(&xhci->lock, flags);
3150 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3151 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3152 		spin_unlock_irqrestore(&xhci->lock, flags);
3153 		return;
3154 	}
3155 	spin_unlock_irqrestore(&xhci->lock, flags);
3156 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3157 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3158 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3159 		return;
3160 
3161 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3162 
3163 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3164 		return;
3165 
3166 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3167 	if (!stop_cmd)
3168 		return;
3169 
3170 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3171 	if (!cfg_cmd)
3172 		goto cleanup;
3173 
3174 	spin_lock_irqsave(&xhci->lock, flags);
3175 
3176 	/* block queuing new trbs and ringing ep doorbell */
3177 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3178 
3179 	/*
3180 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3181 	 * Driver is required to synchronously cancel all transfer request.
3182 	 * Stop the endpoint to force xHC to update the output context
3183 	 */
3184 
3185 	if (!list_empty(&ep->ring->td_list)) {
3186 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3187 		spin_unlock_irqrestore(&xhci->lock, flags);
3188 		xhci_free_command(xhci, cfg_cmd);
3189 		goto cleanup;
3190 	}
3191 
3192 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3193 					ep_index, 0);
3194 	if (err < 0) {
3195 		spin_unlock_irqrestore(&xhci->lock, flags);
3196 		xhci_free_command(xhci, cfg_cmd);
3197 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3198 				__func__, err);
3199 		goto cleanup;
3200 	}
3201 
3202 	xhci_ring_cmd_db(xhci);
3203 	spin_unlock_irqrestore(&xhci->lock, flags);
3204 
3205 	wait_for_completion(stop_cmd->completion);
3206 
3207 	spin_lock_irqsave(&xhci->lock, flags);
3208 
3209 	/* config ep command clears toggle if add and drop ep flags are set */
3210 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3211 	if (!ctrl_ctx) {
3212 		spin_unlock_irqrestore(&xhci->lock, flags);
3213 		xhci_free_command(xhci, cfg_cmd);
3214 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3215 				__func__);
3216 		goto cleanup;
3217 	}
3218 
3219 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3220 					   ctrl_ctx, ep_flag, ep_flag);
3221 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3222 
3223 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3224 				      udev->slot_id, false);
3225 	if (err < 0) {
3226 		spin_unlock_irqrestore(&xhci->lock, flags);
3227 		xhci_free_command(xhci, cfg_cmd);
3228 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3229 				__func__, err);
3230 		goto cleanup;
3231 	}
3232 
3233 	xhci_ring_cmd_db(xhci);
3234 	spin_unlock_irqrestore(&xhci->lock, flags);
3235 
3236 	wait_for_completion(cfg_cmd->completion);
3237 
3238 	xhci_free_command(xhci, cfg_cmd);
3239 cleanup:
3240 	xhci_free_command(xhci, stop_cmd);
3241 	spin_lock_irqsave(&xhci->lock, flags);
3242 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3243 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3244 	spin_unlock_irqrestore(&xhci->lock, flags);
3245 }
3246 
3247 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3248 		struct usb_device *udev, struct usb_host_endpoint *ep,
3249 		unsigned int slot_id)
3250 {
3251 	int ret;
3252 	unsigned int ep_index;
3253 	unsigned int ep_state;
3254 
3255 	if (!ep)
3256 		return -EINVAL;
3257 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3258 	if (ret <= 0)
3259 		return ret ? ret : -EINVAL;
3260 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3261 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3262 				" descriptor for ep 0x%x does not support streams\n",
3263 				ep->desc.bEndpointAddress);
3264 		return -EINVAL;
3265 	}
3266 
3267 	ep_index = xhci_get_endpoint_index(&ep->desc);
3268 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3269 	if (ep_state & EP_HAS_STREAMS ||
3270 			ep_state & EP_GETTING_STREAMS) {
3271 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3272 				"already has streams set up.\n",
3273 				ep->desc.bEndpointAddress);
3274 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3275 				"dynamic stream context array reallocation.\n");
3276 		return -EINVAL;
3277 	}
3278 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3279 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3280 				"endpoint 0x%x; URBs are pending.\n",
3281 				ep->desc.bEndpointAddress);
3282 		return -EINVAL;
3283 	}
3284 	return 0;
3285 }
3286 
3287 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3288 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3289 {
3290 	unsigned int max_streams;
3291 
3292 	/* The stream context array size must be a power of two */
3293 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3294 	/*
3295 	 * Find out how many primary stream array entries the host controller
3296 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3297 	 * level page entries), but that's an optional feature for xHCI host
3298 	 * controllers. xHCs must support at least 4 stream IDs.
3299 	 */
3300 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3301 	if (*num_stream_ctxs > max_streams) {
3302 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3303 				max_streams);
3304 		*num_stream_ctxs = max_streams;
3305 		*num_streams = max_streams;
3306 	}
3307 }
3308 
3309 /* Returns an error code if one of the endpoint already has streams.
3310  * This does not change any data structures, it only checks and gathers
3311  * information.
3312  */
3313 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3314 		struct usb_device *udev,
3315 		struct usb_host_endpoint **eps, unsigned int num_eps,
3316 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3317 {
3318 	unsigned int max_streams;
3319 	unsigned int endpoint_flag;
3320 	int i;
3321 	int ret;
3322 
3323 	for (i = 0; i < num_eps; i++) {
3324 		ret = xhci_check_streams_endpoint(xhci, udev,
3325 				eps[i], udev->slot_id);
3326 		if (ret < 0)
3327 			return ret;
3328 
3329 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3330 		if (max_streams < (*num_streams - 1)) {
3331 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3332 					eps[i]->desc.bEndpointAddress,
3333 					max_streams);
3334 			*num_streams = max_streams+1;
3335 		}
3336 
3337 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3338 		if (*changed_ep_bitmask & endpoint_flag)
3339 			return -EINVAL;
3340 		*changed_ep_bitmask |= endpoint_flag;
3341 	}
3342 	return 0;
3343 }
3344 
3345 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3346 		struct usb_device *udev,
3347 		struct usb_host_endpoint **eps, unsigned int num_eps)
3348 {
3349 	u32 changed_ep_bitmask = 0;
3350 	unsigned int slot_id;
3351 	unsigned int ep_index;
3352 	unsigned int ep_state;
3353 	int i;
3354 
3355 	slot_id = udev->slot_id;
3356 	if (!xhci->devs[slot_id])
3357 		return 0;
3358 
3359 	for (i = 0; i < num_eps; i++) {
3360 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3362 		/* Are streams already being freed for the endpoint? */
3363 		if (ep_state & EP_GETTING_NO_STREAMS) {
3364 			xhci_warn(xhci, "WARN Can't disable streams for "
3365 					"endpoint 0x%x, "
3366 					"streams are being disabled already\n",
3367 					eps[i]->desc.bEndpointAddress);
3368 			return 0;
3369 		}
3370 		/* Are there actually any streams to free? */
3371 		if (!(ep_state & EP_HAS_STREAMS) &&
3372 				!(ep_state & EP_GETTING_STREAMS)) {
3373 			xhci_warn(xhci, "WARN Can't disable streams for "
3374 					"endpoint 0x%x, "
3375 					"streams are already disabled!\n",
3376 					eps[i]->desc.bEndpointAddress);
3377 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3378 					"with non-streams endpoint\n");
3379 			return 0;
3380 		}
3381 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3382 	}
3383 	return changed_ep_bitmask;
3384 }
3385 
3386 /*
3387  * The USB device drivers use this function (through the HCD interface in USB
3388  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3389  * coordinate mass storage command queueing across multiple endpoints (basically
3390  * a stream ID == a task ID).
3391  *
3392  * Setting up streams involves allocating the same size stream context array
3393  * for each endpoint and issuing a configure endpoint command for all endpoints.
3394  *
3395  * Don't allow the call to succeed if one endpoint only supports one stream
3396  * (which means it doesn't support streams at all).
3397  *
3398  * Drivers may get less stream IDs than they asked for, if the host controller
3399  * hardware or endpoints claim they can't support the number of requested
3400  * stream IDs.
3401  */
3402 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3403 		struct usb_host_endpoint **eps, unsigned int num_eps,
3404 		unsigned int num_streams, gfp_t mem_flags)
3405 {
3406 	int i, ret;
3407 	struct xhci_hcd *xhci;
3408 	struct xhci_virt_device *vdev;
3409 	struct xhci_command *config_cmd;
3410 	struct xhci_input_control_ctx *ctrl_ctx;
3411 	unsigned int ep_index;
3412 	unsigned int num_stream_ctxs;
3413 	unsigned int max_packet;
3414 	unsigned long flags;
3415 	u32 changed_ep_bitmask = 0;
3416 
3417 	if (!eps)
3418 		return -EINVAL;
3419 
3420 	/* Add one to the number of streams requested to account for
3421 	 * stream 0 that is reserved for xHCI usage.
3422 	 */
3423 	num_streams += 1;
3424 	xhci = hcd_to_xhci(hcd);
3425 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3426 			num_streams);
3427 
3428 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3429 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3430 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3431 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3432 		return -ENOSYS;
3433 	}
3434 
3435 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3436 	if (!config_cmd)
3437 		return -ENOMEM;
3438 
3439 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3440 	if (!ctrl_ctx) {
3441 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3442 				__func__);
3443 		xhci_free_command(xhci, config_cmd);
3444 		return -ENOMEM;
3445 	}
3446 
3447 	/* Check to make sure all endpoints are not already configured for
3448 	 * streams.  While we're at it, find the maximum number of streams that
3449 	 * all the endpoints will support and check for duplicate endpoints.
3450 	 */
3451 	spin_lock_irqsave(&xhci->lock, flags);
3452 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3453 			num_eps, &num_streams, &changed_ep_bitmask);
3454 	if (ret < 0) {
3455 		xhci_free_command(xhci, config_cmd);
3456 		spin_unlock_irqrestore(&xhci->lock, flags);
3457 		return ret;
3458 	}
3459 	if (num_streams <= 1) {
3460 		xhci_warn(xhci, "WARN: endpoints can't handle "
3461 				"more than one stream.\n");
3462 		xhci_free_command(xhci, config_cmd);
3463 		spin_unlock_irqrestore(&xhci->lock, flags);
3464 		return -EINVAL;
3465 	}
3466 	vdev = xhci->devs[udev->slot_id];
3467 	/* Mark each endpoint as being in transition, so
3468 	 * xhci_urb_enqueue() will reject all URBs.
3469 	 */
3470 	for (i = 0; i < num_eps; i++) {
3471 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3472 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3473 	}
3474 	spin_unlock_irqrestore(&xhci->lock, flags);
3475 
3476 	/* Setup internal data structures and allocate HW data structures for
3477 	 * streams (but don't install the HW structures in the input context
3478 	 * until we're sure all memory allocation succeeded).
3479 	 */
3480 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3481 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3482 			num_stream_ctxs, num_streams);
3483 
3484 	for (i = 0; i < num_eps; i++) {
3485 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3486 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3487 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3488 				num_stream_ctxs,
3489 				num_streams,
3490 				max_packet, mem_flags);
3491 		if (!vdev->eps[ep_index].stream_info)
3492 			goto cleanup;
3493 		/* Set maxPstreams in endpoint context and update deq ptr to
3494 		 * point to stream context array. FIXME
3495 		 */
3496 	}
3497 
3498 	/* Set up the input context for a configure endpoint command. */
3499 	for (i = 0; i < num_eps; i++) {
3500 		struct xhci_ep_ctx *ep_ctx;
3501 
3502 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3503 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3504 
3505 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3506 				vdev->out_ctx, ep_index);
3507 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3508 				vdev->eps[ep_index].stream_info);
3509 	}
3510 	/* Tell the HW to drop its old copy of the endpoint context info
3511 	 * and add the updated copy from the input context.
3512 	 */
3513 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3514 			vdev->out_ctx, ctrl_ctx,
3515 			changed_ep_bitmask, changed_ep_bitmask);
3516 
3517 	/* Issue and wait for the configure endpoint command */
3518 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3519 			false, false);
3520 
3521 	/* xHC rejected the configure endpoint command for some reason, so we
3522 	 * leave the old ring intact and free our internal streams data
3523 	 * structure.
3524 	 */
3525 	if (ret < 0)
3526 		goto cleanup;
3527 
3528 	spin_lock_irqsave(&xhci->lock, flags);
3529 	for (i = 0; i < num_eps; i++) {
3530 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3531 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3532 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3533 			 udev->slot_id, ep_index);
3534 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3535 	}
3536 	xhci_free_command(xhci, config_cmd);
3537 	spin_unlock_irqrestore(&xhci->lock, flags);
3538 
3539 	for (i = 0; i < num_eps; i++) {
3540 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3542 	}
3543 	/* Subtract 1 for stream 0, which drivers can't use */
3544 	return num_streams - 1;
3545 
3546 cleanup:
3547 	/* If it didn't work, free the streams! */
3548 	for (i = 0; i < num_eps; i++) {
3549 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3550 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3551 		vdev->eps[ep_index].stream_info = NULL;
3552 		/* FIXME Unset maxPstreams in endpoint context and
3553 		 * update deq ptr to point to normal string ring.
3554 		 */
3555 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3556 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3557 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3558 	}
3559 	xhci_free_command(xhci, config_cmd);
3560 	return -ENOMEM;
3561 }
3562 
3563 /* Transition the endpoint from using streams to being a "normal" endpoint
3564  * without streams.
3565  *
3566  * Modify the endpoint context state, submit a configure endpoint command,
3567  * and free all endpoint rings for streams if that completes successfully.
3568  */
3569 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3570 		struct usb_host_endpoint **eps, unsigned int num_eps,
3571 		gfp_t mem_flags)
3572 {
3573 	int i, ret;
3574 	struct xhci_hcd *xhci;
3575 	struct xhci_virt_device *vdev;
3576 	struct xhci_command *command;
3577 	struct xhci_input_control_ctx *ctrl_ctx;
3578 	unsigned int ep_index;
3579 	unsigned long flags;
3580 	u32 changed_ep_bitmask;
3581 
3582 	xhci = hcd_to_xhci(hcd);
3583 	vdev = xhci->devs[udev->slot_id];
3584 
3585 	/* Set up a configure endpoint command to remove the streams rings */
3586 	spin_lock_irqsave(&xhci->lock, flags);
3587 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3588 			udev, eps, num_eps);
3589 	if (changed_ep_bitmask == 0) {
3590 		spin_unlock_irqrestore(&xhci->lock, flags);
3591 		return -EINVAL;
3592 	}
3593 
3594 	/* Use the xhci_command structure from the first endpoint.  We may have
3595 	 * allocated too many, but the driver may call xhci_free_streams() for
3596 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3597 	 */
3598 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3599 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3600 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3601 	if (!ctrl_ctx) {
3602 		spin_unlock_irqrestore(&xhci->lock, flags);
3603 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3604 				__func__);
3605 		return -EINVAL;
3606 	}
3607 
3608 	for (i = 0; i < num_eps; i++) {
3609 		struct xhci_ep_ctx *ep_ctx;
3610 
3611 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3613 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3614 			EP_GETTING_NO_STREAMS;
3615 
3616 		xhci_endpoint_copy(xhci, command->in_ctx,
3617 				vdev->out_ctx, ep_index);
3618 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3619 				&vdev->eps[ep_index]);
3620 	}
3621 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3622 			vdev->out_ctx, ctrl_ctx,
3623 			changed_ep_bitmask, changed_ep_bitmask);
3624 	spin_unlock_irqrestore(&xhci->lock, flags);
3625 
3626 	/* Issue and wait for the configure endpoint command,
3627 	 * which must succeed.
3628 	 */
3629 	ret = xhci_configure_endpoint(xhci, udev, command,
3630 			false, true);
3631 
3632 	/* xHC rejected the configure endpoint command for some reason, so we
3633 	 * leave the streams rings intact.
3634 	 */
3635 	if (ret < 0)
3636 		return ret;
3637 
3638 	spin_lock_irqsave(&xhci->lock, flags);
3639 	for (i = 0; i < num_eps; i++) {
3640 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3641 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3642 		vdev->eps[ep_index].stream_info = NULL;
3643 		/* FIXME Unset maxPstreams in endpoint context and
3644 		 * update deq ptr to point to normal string ring.
3645 		 */
3646 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3647 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3648 	}
3649 	spin_unlock_irqrestore(&xhci->lock, flags);
3650 
3651 	return 0;
3652 }
3653 
3654 /*
3655  * Deletes endpoint resources for endpoints that were active before a Reset
3656  * Device command, or a Disable Slot command.  The Reset Device command leaves
3657  * the control endpoint intact, whereas the Disable Slot command deletes it.
3658  *
3659  * Must be called with xhci->lock held.
3660  */
3661 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3662 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3663 {
3664 	int i;
3665 	unsigned int num_dropped_eps = 0;
3666 	unsigned int drop_flags = 0;
3667 
3668 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3669 		if (virt_dev->eps[i].ring) {
3670 			drop_flags |= 1 << i;
3671 			num_dropped_eps++;
3672 		}
3673 	}
3674 	xhci->num_active_eps -= num_dropped_eps;
3675 	if (num_dropped_eps)
3676 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677 				"Dropped %u ep ctxs, flags = 0x%x, "
3678 				"%u now active.",
3679 				num_dropped_eps, drop_flags,
3680 				xhci->num_active_eps);
3681 }
3682 
3683 /*
3684  * This submits a Reset Device Command, which will set the device state to 0,
3685  * set the device address to 0, and disable all the endpoints except the default
3686  * control endpoint.  The USB core should come back and call
3687  * xhci_address_device(), and then re-set up the configuration.  If this is
3688  * called because of a usb_reset_and_verify_device(), then the old alternate
3689  * settings will be re-installed through the normal bandwidth allocation
3690  * functions.
3691  *
3692  * Wait for the Reset Device command to finish.  Remove all structures
3693  * associated with the endpoints that were disabled.  Clear the input device
3694  * structure? Reset the control endpoint 0 max packet size?
3695  *
3696  * If the virt_dev to be reset does not exist or does not match the udev,
3697  * it means the device is lost, possibly due to the xHC restore error and
3698  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3699  * re-allocate the device.
3700  */
3701 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3702 		struct usb_device *udev)
3703 {
3704 	int ret, i;
3705 	unsigned long flags;
3706 	struct xhci_hcd *xhci;
3707 	unsigned int slot_id;
3708 	struct xhci_virt_device *virt_dev;
3709 	struct xhci_command *reset_device_cmd;
3710 	struct xhci_slot_ctx *slot_ctx;
3711 	int old_active_eps = 0;
3712 
3713 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3714 	if (ret <= 0)
3715 		return ret;
3716 	xhci = hcd_to_xhci(hcd);
3717 	slot_id = udev->slot_id;
3718 	virt_dev = xhci->devs[slot_id];
3719 	if (!virt_dev) {
3720 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3721 				"not exist. Re-allocate the device\n", slot_id);
3722 		ret = xhci_alloc_dev(hcd, udev);
3723 		if (ret == 1)
3724 			return 0;
3725 		else
3726 			return -EINVAL;
3727 	}
3728 
3729 	if (virt_dev->tt_info)
3730 		old_active_eps = virt_dev->tt_info->active_eps;
3731 
3732 	if (virt_dev->udev != udev) {
3733 		/* If the virt_dev and the udev does not match, this virt_dev
3734 		 * may belong to another udev.
3735 		 * Re-allocate the device.
3736 		 */
3737 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3738 				"not match the udev. Re-allocate the device\n",
3739 				slot_id);
3740 		ret = xhci_alloc_dev(hcd, udev);
3741 		if (ret == 1)
3742 			return 0;
3743 		else
3744 			return -EINVAL;
3745 	}
3746 
3747 	/* If device is not setup, there is no point in resetting it */
3748 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3749 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3750 						SLOT_STATE_DISABLED)
3751 		return 0;
3752 
3753 	trace_xhci_discover_or_reset_device(slot_ctx);
3754 
3755 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3756 	/* Allocate the command structure that holds the struct completion.
3757 	 * Assume we're in process context, since the normal device reset
3758 	 * process has to wait for the device anyway.  Storage devices are
3759 	 * reset as part of error handling, so use GFP_NOIO instead of
3760 	 * GFP_KERNEL.
3761 	 */
3762 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3763 	if (!reset_device_cmd) {
3764 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3765 		return -ENOMEM;
3766 	}
3767 
3768 	/* Attempt to submit the Reset Device command to the command ring */
3769 	spin_lock_irqsave(&xhci->lock, flags);
3770 
3771 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3772 	if (ret) {
3773 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3774 		spin_unlock_irqrestore(&xhci->lock, flags);
3775 		goto command_cleanup;
3776 	}
3777 	xhci_ring_cmd_db(xhci);
3778 	spin_unlock_irqrestore(&xhci->lock, flags);
3779 
3780 	/* Wait for the Reset Device command to finish */
3781 	wait_for_completion(reset_device_cmd->completion);
3782 
3783 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3784 	 * unless we tried to reset a slot ID that wasn't enabled,
3785 	 * or the device wasn't in the addressed or configured state.
3786 	 */
3787 	ret = reset_device_cmd->status;
3788 	switch (ret) {
3789 	case COMP_COMMAND_ABORTED:
3790 	case COMP_COMMAND_RING_STOPPED:
3791 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3792 		ret = -ETIME;
3793 		goto command_cleanup;
3794 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3795 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3796 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3797 				slot_id,
3798 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3799 		xhci_dbg(xhci, "Not freeing device rings.\n");
3800 		/* Don't treat this as an error.  May change my mind later. */
3801 		ret = 0;
3802 		goto command_cleanup;
3803 	case COMP_SUCCESS:
3804 		xhci_dbg(xhci, "Successful reset device command.\n");
3805 		break;
3806 	default:
3807 		if (xhci_is_vendor_info_code(xhci, ret))
3808 			break;
3809 		xhci_warn(xhci, "Unknown completion code %u for "
3810 				"reset device command.\n", ret);
3811 		ret = -EINVAL;
3812 		goto command_cleanup;
3813 	}
3814 
3815 	/* Free up host controller endpoint resources */
3816 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3817 		spin_lock_irqsave(&xhci->lock, flags);
3818 		/* Don't delete the default control endpoint resources */
3819 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3820 		spin_unlock_irqrestore(&xhci->lock, flags);
3821 	}
3822 
3823 	/* Everything but endpoint 0 is disabled, so free the rings. */
3824 	for (i = 1; i < 31; i++) {
3825 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3826 
3827 		if (ep->ep_state & EP_HAS_STREAMS) {
3828 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3829 					xhci_get_endpoint_address(i));
3830 			xhci_free_stream_info(xhci, ep->stream_info);
3831 			ep->stream_info = NULL;
3832 			ep->ep_state &= ~EP_HAS_STREAMS;
3833 		}
3834 
3835 		if (ep->ring) {
3836 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3837 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3838 		}
3839 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3840 			xhci_drop_ep_from_interval_table(xhci,
3841 					&virt_dev->eps[i].bw_info,
3842 					virt_dev->bw_table,
3843 					udev,
3844 					&virt_dev->eps[i],
3845 					virt_dev->tt_info);
3846 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3847 	}
3848 	/* If necessary, update the number of active TTs on this root port */
3849 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3850 	virt_dev->flags = 0;
3851 	ret = 0;
3852 
3853 command_cleanup:
3854 	xhci_free_command(xhci, reset_device_cmd);
3855 	return ret;
3856 }
3857 
3858 /*
3859  * At this point, the struct usb_device is about to go away, the device has
3860  * disconnected, and all traffic has been stopped and the endpoints have been
3861  * disabled.  Free any HC data structures associated with that device.
3862  */
3863 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3864 {
3865 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3866 	struct xhci_virt_device *virt_dev;
3867 	struct xhci_slot_ctx *slot_ctx;
3868 	unsigned long flags;
3869 	int i, ret;
3870 
3871 	/*
3872 	 * We called pm_runtime_get_noresume when the device was attached.
3873 	 * Decrement the counter here to allow controller to runtime suspend
3874 	 * if no devices remain.
3875 	 */
3876 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3877 		pm_runtime_put_noidle(hcd->self.controller);
3878 
3879 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3880 	/* If the host is halted due to driver unload, we still need to free the
3881 	 * device.
3882 	 */
3883 	if (ret <= 0 && ret != -ENODEV)
3884 		return;
3885 
3886 	virt_dev = xhci->devs[udev->slot_id];
3887 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3888 	trace_xhci_free_dev(slot_ctx);
3889 
3890 	/* Stop any wayward timer functions (which may grab the lock) */
3891 	for (i = 0; i < 31; i++)
3892 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3893 	virt_dev->udev = NULL;
3894 	xhci_disable_slot(xhci, udev->slot_id);
3895 
3896 	spin_lock_irqsave(&xhci->lock, flags);
3897 	xhci_free_virt_device(xhci, udev->slot_id);
3898 	spin_unlock_irqrestore(&xhci->lock, flags);
3899 
3900 }
3901 
3902 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3903 {
3904 	struct xhci_command *command;
3905 	unsigned long flags;
3906 	u32 state;
3907 	int ret;
3908 
3909 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3910 	if (!command)
3911 		return -ENOMEM;
3912 
3913 	xhci_debugfs_remove_slot(xhci, slot_id);
3914 
3915 	spin_lock_irqsave(&xhci->lock, flags);
3916 	/* Don't disable the slot if the host controller is dead. */
3917 	state = readl(&xhci->op_regs->status);
3918 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3919 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3920 		spin_unlock_irqrestore(&xhci->lock, flags);
3921 		kfree(command);
3922 		return -ENODEV;
3923 	}
3924 
3925 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3926 				slot_id);
3927 	if (ret) {
3928 		spin_unlock_irqrestore(&xhci->lock, flags);
3929 		kfree(command);
3930 		return ret;
3931 	}
3932 	xhci_ring_cmd_db(xhci);
3933 	spin_unlock_irqrestore(&xhci->lock, flags);
3934 
3935 	wait_for_completion(command->completion);
3936 
3937 	if (command->status != COMP_SUCCESS)
3938 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3939 			  slot_id, command->status);
3940 
3941 	xhci_free_command(xhci, command);
3942 
3943 	return 0;
3944 }
3945 
3946 /*
3947  * Checks if we have enough host controller resources for the default control
3948  * endpoint.
3949  *
3950  * Must be called with xhci->lock held.
3951  */
3952 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3953 {
3954 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3955 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3956 				"Not enough ep ctxs: "
3957 				"%u active, need to add 1, limit is %u.",
3958 				xhci->num_active_eps, xhci->limit_active_eps);
3959 		return -ENOMEM;
3960 	}
3961 	xhci->num_active_eps += 1;
3962 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3963 			"Adding 1 ep ctx, %u now active.",
3964 			xhci->num_active_eps);
3965 	return 0;
3966 }
3967 
3968 
3969 /*
3970  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3971  * timed out, or allocating memory failed.  Returns 1 on success.
3972  */
3973 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3974 {
3975 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3976 	struct xhci_virt_device *vdev;
3977 	struct xhci_slot_ctx *slot_ctx;
3978 	unsigned long flags;
3979 	int ret, slot_id;
3980 	struct xhci_command *command;
3981 
3982 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3983 	if (!command)
3984 		return 0;
3985 
3986 	spin_lock_irqsave(&xhci->lock, flags);
3987 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3988 	if (ret) {
3989 		spin_unlock_irqrestore(&xhci->lock, flags);
3990 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3991 		xhci_free_command(xhci, command);
3992 		return 0;
3993 	}
3994 	xhci_ring_cmd_db(xhci);
3995 	spin_unlock_irqrestore(&xhci->lock, flags);
3996 
3997 	wait_for_completion(command->completion);
3998 	slot_id = command->slot_id;
3999 
4000 	if (!slot_id || command->status != COMP_SUCCESS) {
4001 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4002 			 xhci_trb_comp_code_string(command->status));
4003 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4004 				HCS_MAX_SLOTS(
4005 					readl(&xhci->cap_regs->hcs_params1)));
4006 		xhci_free_command(xhci, command);
4007 		return 0;
4008 	}
4009 
4010 	xhci_free_command(xhci, command);
4011 
4012 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4013 		spin_lock_irqsave(&xhci->lock, flags);
4014 		ret = xhci_reserve_host_control_ep_resources(xhci);
4015 		if (ret) {
4016 			spin_unlock_irqrestore(&xhci->lock, flags);
4017 			xhci_warn(xhci, "Not enough host resources, "
4018 					"active endpoint contexts = %u\n",
4019 					xhci->num_active_eps);
4020 			goto disable_slot;
4021 		}
4022 		spin_unlock_irqrestore(&xhci->lock, flags);
4023 	}
4024 	/* Use GFP_NOIO, since this function can be called from
4025 	 * xhci_discover_or_reset_device(), which may be called as part of
4026 	 * mass storage driver error handling.
4027 	 */
4028 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4029 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4030 		goto disable_slot;
4031 	}
4032 	vdev = xhci->devs[slot_id];
4033 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4034 	trace_xhci_alloc_dev(slot_ctx);
4035 
4036 	udev->slot_id = slot_id;
4037 
4038 	xhci_debugfs_create_slot(xhci, slot_id);
4039 
4040 	/*
4041 	 * If resetting upon resume, we can't put the controller into runtime
4042 	 * suspend if there is a device attached.
4043 	 */
4044 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4045 		pm_runtime_get_noresume(hcd->self.controller);
4046 
4047 	/* Is this a LS or FS device under a HS hub? */
4048 	/* Hub or peripherial? */
4049 	return 1;
4050 
4051 disable_slot:
4052 	xhci_disable_slot(xhci, udev->slot_id);
4053 	xhci_free_virt_device(xhci, udev->slot_id);
4054 
4055 	return 0;
4056 }
4057 
4058 /**
4059  * xhci_setup_device - issues an Address Device command to assign a unique
4060  *			USB bus address.
4061  * @hcd: USB host controller data structure.
4062  * @udev: USB dev structure representing the connected device.
4063  * @setup: Enum specifying setup mode: address only or with context.
4064  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4065  *
4066  * Return: 0 if successful; otherwise, negative error code.
4067  */
4068 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4069 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4070 {
4071 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4072 	unsigned long flags;
4073 	struct xhci_virt_device *virt_dev;
4074 	int ret = 0;
4075 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4076 	struct xhci_slot_ctx *slot_ctx;
4077 	struct xhci_input_control_ctx *ctrl_ctx;
4078 	u64 temp_64;
4079 	struct xhci_command *command = NULL;
4080 
4081 	mutex_lock(&xhci->mutex);
4082 
4083 	if (xhci->xhc_state) {	/* dying, removing or halted */
4084 		ret = -ESHUTDOWN;
4085 		goto out;
4086 	}
4087 
4088 	if (!udev->slot_id) {
4089 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4090 				"Bad Slot ID %d", udev->slot_id);
4091 		ret = -EINVAL;
4092 		goto out;
4093 	}
4094 
4095 	virt_dev = xhci->devs[udev->slot_id];
4096 
4097 	if (WARN_ON(!virt_dev)) {
4098 		/*
4099 		 * In plug/unplug torture test with an NEC controller,
4100 		 * a zero-dereference was observed once due to virt_dev = 0.
4101 		 * Print useful debug rather than crash if it is observed again!
4102 		 */
4103 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4104 			udev->slot_id);
4105 		ret = -EINVAL;
4106 		goto out;
4107 	}
4108 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4109 	trace_xhci_setup_device_slot(slot_ctx);
4110 
4111 	if (setup == SETUP_CONTEXT_ONLY) {
4112 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4113 		    SLOT_STATE_DEFAULT) {
4114 			xhci_dbg(xhci, "Slot already in default state\n");
4115 			goto out;
4116 		}
4117 	}
4118 
4119 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4120 	if (!command) {
4121 		ret = -ENOMEM;
4122 		goto out;
4123 	}
4124 
4125 	command->in_ctx = virt_dev->in_ctx;
4126 	command->timeout_ms = timeout_ms;
4127 
4128 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4129 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4130 	if (!ctrl_ctx) {
4131 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4132 				__func__);
4133 		ret = -EINVAL;
4134 		goto out;
4135 	}
4136 	/*
4137 	 * If this is the first Set Address since device plug-in or
4138 	 * virt_device realloaction after a resume with an xHCI power loss,
4139 	 * then set up the slot context.
4140 	 */
4141 	if (!slot_ctx->dev_info)
4142 		xhci_setup_addressable_virt_dev(xhci, udev);
4143 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4144 	else
4145 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4146 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4147 	ctrl_ctx->drop_flags = 0;
4148 
4149 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4150 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4151 
4152 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4153 	spin_lock_irqsave(&xhci->lock, flags);
4154 	trace_xhci_setup_device(virt_dev);
4155 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4156 					udev->slot_id, setup);
4157 	if (ret) {
4158 		spin_unlock_irqrestore(&xhci->lock, flags);
4159 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160 				"FIXME: allocate a command ring segment");
4161 		goto out;
4162 	}
4163 	xhci_ring_cmd_db(xhci);
4164 	spin_unlock_irqrestore(&xhci->lock, flags);
4165 
4166 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4167 	wait_for_completion(command->completion);
4168 
4169 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4170 	 * the SetAddress() "recovery interval" required by USB and aborting the
4171 	 * command on a timeout.
4172 	 */
4173 	switch (command->status) {
4174 	case COMP_COMMAND_ABORTED:
4175 	case COMP_COMMAND_RING_STOPPED:
4176 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4177 		ret = -ETIME;
4178 		break;
4179 	case COMP_CONTEXT_STATE_ERROR:
4180 	case COMP_SLOT_NOT_ENABLED_ERROR:
4181 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4182 			 act, udev->slot_id);
4183 		ret = -EINVAL;
4184 		break;
4185 	case COMP_USB_TRANSACTION_ERROR:
4186 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4187 
4188 		mutex_unlock(&xhci->mutex);
4189 		ret = xhci_disable_slot(xhci, udev->slot_id);
4190 		xhci_free_virt_device(xhci, udev->slot_id);
4191 		if (!ret)
4192 			xhci_alloc_dev(hcd, udev);
4193 		kfree(command->completion);
4194 		kfree(command);
4195 		return -EPROTO;
4196 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4197 		dev_warn(&udev->dev,
4198 			 "ERROR: Incompatible device for setup %s command\n", act);
4199 		ret = -ENODEV;
4200 		break;
4201 	case COMP_SUCCESS:
4202 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203 			       "Successful setup %s command", act);
4204 		break;
4205 	default:
4206 		xhci_err(xhci,
4207 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4208 			 act, command->status);
4209 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4210 		ret = -EINVAL;
4211 		break;
4212 	}
4213 	if (ret)
4214 		goto out;
4215 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4216 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4217 			"Op regs DCBAA ptr = %#016llx", temp_64);
4218 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219 		"Slot ID %d dcbaa entry @%p = %#016llx",
4220 		udev->slot_id,
4221 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4222 		(unsigned long long)
4223 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4224 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4225 			"Output Context DMA address = %#08llx",
4226 			(unsigned long long)virt_dev->out_ctx->dma);
4227 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4228 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4229 	/*
4230 	 * USB core uses address 1 for the roothubs, so we add one to the
4231 	 * address given back to us by the HC.
4232 	 */
4233 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4234 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4235 	/* Zero the input context control for later use */
4236 	ctrl_ctx->add_flags = 0;
4237 	ctrl_ctx->drop_flags = 0;
4238 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4239 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4240 
4241 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4242 		       "Internal device address = %d",
4243 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4244 out:
4245 	mutex_unlock(&xhci->mutex);
4246 	if (command) {
4247 		kfree(command->completion);
4248 		kfree(command);
4249 	}
4250 	return ret;
4251 }
4252 
4253 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4254 			       unsigned int timeout_ms)
4255 {
4256 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4257 }
4258 
4259 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4260 {
4261 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4262 				 XHCI_CMD_DEFAULT_TIMEOUT);
4263 }
4264 
4265 /*
4266  * Transfer the port index into real index in the HW port status
4267  * registers. Caculate offset between the port's PORTSC register
4268  * and port status base. Divide the number of per port register
4269  * to get the real index. The raw port number bases 1.
4270  */
4271 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4272 {
4273 	struct xhci_hub *rhub;
4274 
4275 	rhub = xhci_get_rhub(hcd);
4276 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4277 }
4278 
4279 /*
4280  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4281  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4282  */
4283 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4284 			struct usb_device *udev, u16 max_exit_latency)
4285 {
4286 	struct xhci_virt_device *virt_dev;
4287 	struct xhci_command *command;
4288 	struct xhci_input_control_ctx *ctrl_ctx;
4289 	struct xhci_slot_ctx *slot_ctx;
4290 	unsigned long flags;
4291 	int ret;
4292 
4293 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4294 	if (!command)
4295 		return -ENOMEM;
4296 
4297 	spin_lock_irqsave(&xhci->lock, flags);
4298 
4299 	virt_dev = xhci->devs[udev->slot_id];
4300 
4301 	/*
4302 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4303 	 * xHC was re-initialized. Exit latency will be set later after
4304 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4305 	 */
4306 
4307 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4308 		spin_unlock_irqrestore(&xhci->lock, flags);
4309 		xhci_free_command(xhci, command);
4310 		return 0;
4311 	}
4312 
4313 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4314 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4315 	if (!ctrl_ctx) {
4316 		spin_unlock_irqrestore(&xhci->lock, flags);
4317 		xhci_free_command(xhci, command);
4318 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4319 				__func__);
4320 		return -ENOMEM;
4321 	}
4322 
4323 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4324 	spin_unlock_irqrestore(&xhci->lock, flags);
4325 
4326 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4327 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4328 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4329 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4330 	slot_ctx->dev_state = 0;
4331 
4332 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4333 			"Set up evaluate context for LPM MEL change.");
4334 
4335 	/* Issue and wait for the evaluate context command. */
4336 	ret = xhci_configure_endpoint(xhci, udev, command,
4337 			true, true);
4338 
4339 	if (!ret) {
4340 		spin_lock_irqsave(&xhci->lock, flags);
4341 		virt_dev->current_mel = max_exit_latency;
4342 		spin_unlock_irqrestore(&xhci->lock, flags);
4343 	}
4344 
4345 	xhci_free_command(xhci, command);
4346 
4347 	return ret;
4348 }
4349 
4350 #ifdef CONFIG_PM
4351 
4352 /* BESL to HIRD Encoding array for USB2 LPM */
4353 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4354 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4355 
4356 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4357 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4358 					struct usb_device *udev)
4359 {
4360 	int u2del, besl, besl_host;
4361 	int besl_device = 0;
4362 	u32 field;
4363 
4364 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4365 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4366 
4367 	if (field & USB_BESL_SUPPORT) {
4368 		for (besl_host = 0; besl_host < 16; besl_host++) {
4369 			if (xhci_besl_encoding[besl_host] >= u2del)
4370 				break;
4371 		}
4372 		/* Use baseline BESL value as default */
4373 		if (field & USB_BESL_BASELINE_VALID)
4374 			besl_device = USB_GET_BESL_BASELINE(field);
4375 		else if (field & USB_BESL_DEEP_VALID)
4376 			besl_device = USB_GET_BESL_DEEP(field);
4377 	} else {
4378 		if (u2del <= 50)
4379 			besl_host = 0;
4380 		else
4381 			besl_host = (u2del - 51) / 75 + 1;
4382 	}
4383 
4384 	besl = besl_host + besl_device;
4385 	if (besl > 15)
4386 		besl = 15;
4387 
4388 	return besl;
4389 }
4390 
4391 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4392 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4393 {
4394 	u32 field;
4395 	int l1;
4396 	int besld = 0;
4397 	int hirdm = 0;
4398 
4399 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4400 
4401 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4402 	l1 = udev->l1_params.timeout / 256;
4403 
4404 	/* device has preferred BESLD */
4405 	if (field & USB_BESL_DEEP_VALID) {
4406 		besld = USB_GET_BESL_DEEP(field);
4407 		hirdm = 1;
4408 	}
4409 
4410 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4411 }
4412 
4413 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4414 			struct usb_device *udev, int enable)
4415 {
4416 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4417 	struct xhci_port **ports;
4418 	__le32 __iomem	*pm_addr, *hlpm_addr;
4419 	u32		pm_val, hlpm_val, field;
4420 	unsigned int	port_num;
4421 	unsigned long	flags;
4422 	int		hird, exit_latency;
4423 	int		ret;
4424 
4425 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4426 		return -EPERM;
4427 
4428 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4429 			!udev->lpm_capable)
4430 		return -EPERM;
4431 
4432 	if (!udev->parent || udev->parent->parent ||
4433 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4434 		return -EPERM;
4435 
4436 	if (udev->usb2_hw_lpm_capable != 1)
4437 		return -EPERM;
4438 
4439 	spin_lock_irqsave(&xhci->lock, flags);
4440 
4441 	ports = xhci->usb2_rhub.ports;
4442 	port_num = udev->portnum - 1;
4443 	pm_addr = ports[port_num]->addr + PORTPMSC;
4444 	pm_val = readl(pm_addr);
4445 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4446 
4447 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4448 			enable ? "enable" : "disable", port_num + 1);
4449 
4450 	if (enable) {
4451 		/* Host supports BESL timeout instead of HIRD */
4452 		if (udev->usb2_hw_lpm_besl_capable) {
4453 			/* if device doesn't have a preferred BESL value use a
4454 			 * default one which works with mixed HIRD and BESL
4455 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4456 			 */
4457 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4458 			if ((field & USB_BESL_SUPPORT) &&
4459 			    (field & USB_BESL_BASELINE_VALID))
4460 				hird = USB_GET_BESL_BASELINE(field);
4461 			else
4462 				hird = udev->l1_params.besl;
4463 
4464 			exit_latency = xhci_besl_encoding[hird];
4465 			spin_unlock_irqrestore(&xhci->lock, flags);
4466 
4467 			ret = xhci_change_max_exit_latency(xhci, udev,
4468 							   exit_latency);
4469 			if (ret < 0)
4470 				return ret;
4471 			spin_lock_irqsave(&xhci->lock, flags);
4472 
4473 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4474 			writel(hlpm_val, hlpm_addr);
4475 			/* flush write */
4476 			readl(hlpm_addr);
4477 		} else {
4478 			hird = xhci_calculate_hird_besl(xhci, udev);
4479 		}
4480 
4481 		pm_val &= ~PORT_HIRD_MASK;
4482 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4483 		writel(pm_val, pm_addr);
4484 		pm_val = readl(pm_addr);
4485 		pm_val |= PORT_HLE;
4486 		writel(pm_val, pm_addr);
4487 		/* flush write */
4488 		readl(pm_addr);
4489 	} else {
4490 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4491 		writel(pm_val, pm_addr);
4492 		/* flush write */
4493 		readl(pm_addr);
4494 		if (udev->usb2_hw_lpm_besl_capable) {
4495 			spin_unlock_irqrestore(&xhci->lock, flags);
4496 			xhci_change_max_exit_latency(xhci, udev, 0);
4497 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4498 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4499 					   100, 10000);
4500 			return 0;
4501 		}
4502 	}
4503 
4504 	spin_unlock_irqrestore(&xhci->lock, flags);
4505 	return 0;
4506 }
4507 
4508 /* check if a usb2 port supports a given extened capability protocol
4509  * only USB2 ports extended protocol capability values are cached.
4510  * Return 1 if capability is supported
4511  */
4512 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4513 					   unsigned capability)
4514 {
4515 	u32 port_offset, port_count;
4516 	int i;
4517 
4518 	for (i = 0; i < xhci->num_ext_caps; i++) {
4519 		if (xhci->ext_caps[i] & capability) {
4520 			/* port offsets starts at 1 */
4521 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4522 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4523 			if (port >= port_offset &&
4524 			    port < port_offset + port_count)
4525 				return 1;
4526 		}
4527 	}
4528 	return 0;
4529 }
4530 
4531 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4532 {
4533 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4534 	int		portnum = udev->portnum - 1;
4535 
4536 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4537 		return 0;
4538 
4539 	/* we only support lpm for non-hub device connected to root hub yet */
4540 	if (!udev->parent || udev->parent->parent ||
4541 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4542 		return 0;
4543 
4544 	if (xhci->hw_lpm_support == 1 &&
4545 			xhci_check_usb2_port_capability(
4546 				xhci, portnum, XHCI_HLC)) {
4547 		udev->usb2_hw_lpm_capable = 1;
4548 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4549 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4550 		if (xhci_check_usb2_port_capability(xhci, portnum,
4551 					XHCI_BLC))
4552 			udev->usb2_hw_lpm_besl_capable = 1;
4553 	}
4554 
4555 	return 0;
4556 }
4557 
4558 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4559 
4560 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4561 static unsigned long long xhci_service_interval_to_ns(
4562 		struct usb_endpoint_descriptor *desc)
4563 {
4564 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4565 }
4566 
4567 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4568 		enum usb3_link_state state)
4569 {
4570 	unsigned long long sel;
4571 	unsigned long long pel;
4572 	unsigned int max_sel_pel;
4573 	char *state_name;
4574 
4575 	switch (state) {
4576 	case USB3_LPM_U1:
4577 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4578 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4579 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4580 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4581 		state_name = "U1";
4582 		break;
4583 	case USB3_LPM_U2:
4584 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4585 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4586 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4587 		state_name = "U2";
4588 		break;
4589 	default:
4590 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4591 				__func__);
4592 		return USB3_LPM_DISABLED;
4593 	}
4594 
4595 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4596 		return USB3_LPM_DEVICE_INITIATED;
4597 
4598 	if (sel > max_sel_pel)
4599 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4600 				"due to long SEL %llu ms\n",
4601 				state_name, sel);
4602 	else
4603 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4604 				"due to long PEL %llu ms\n",
4605 				state_name, pel);
4606 	return USB3_LPM_DISABLED;
4607 }
4608 
4609 /* The U1 timeout should be the maximum of the following values:
4610  *  - For control endpoints, U1 system exit latency (SEL) * 3
4611  *  - For bulk endpoints, U1 SEL * 5
4612  *  - For interrupt endpoints:
4613  *    - Notification EPs, U1 SEL * 3
4614  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4615  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4616  */
4617 static unsigned long long xhci_calculate_intel_u1_timeout(
4618 		struct usb_device *udev,
4619 		struct usb_endpoint_descriptor *desc)
4620 {
4621 	unsigned long long timeout_ns;
4622 	int ep_type;
4623 	int intr_type;
4624 
4625 	ep_type = usb_endpoint_type(desc);
4626 	switch (ep_type) {
4627 	case USB_ENDPOINT_XFER_CONTROL:
4628 		timeout_ns = udev->u1_params.sel * 3;
4629 		break;
4630 	case USB_ENDPOINT_XFER_BULK:
4631 		timeout_ns = udev->u1_params.sel * 5;
4632 		break;
4633 	case USB_ENDPOINT_XFER_INT:
4634 		intr_type = usb_endpoint_interrupt_type(desc);
4635 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4636 			timeout_ns = udev->u1_params.sel * 3;
4637 			break;
4638 		}
4639 		/* Otherwise the calculation is the same as isoc eps */
4640 		fallthrough;
4641 	case USB_ENDPOINT_XFER_ISOC:
4642 		timeout_ns = xhci_service_interval_to_ns(desc);
4643 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4644 		if (timeout_ns < udev->u1_params.sel * 2)
4645 			timeout_ns = udev->u1_params.sel * 2;
4646 		break;
4647 	default:
4648 		return 0;
4649 	}
4650 
4651 	return timeout_ns;
4652 }
4653 
4654 /* Returns the hub-encoded U1 timeout value. */
4655 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4656 		struct usb_device *udev,
4657 		struct usb_endpoint_descriptor *desc)
4658 {
4659 	unsigned long long timeout_ns;
4660 
4661 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4662 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4663 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4664 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4665 			return USB3_LPM_DISABLED;
4666 		}
4667 	}
4668 
4669 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4670 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4671 	else
4672 		timeout_ns = udev->u1_params.sel;
4673 
4674 	/* The U1 timeout is encoded in 1us intervals.
4675 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4676 	 */
4677 	if (timeout_ns == USB3_LPM_DISABLED)
4678 		timeout_ns = 1;
4679 	else
4680 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4681 
4682 	/* If the necessary timeout value is bigger than what we can set in the
4683 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4684 	 */
4685 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4686 		return timeout_ns;
4687 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4688 			"due to long timeout %llu ms\n", timeout_ns);
4689 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4690 }
4691 
4692 /* The U2 timeout should be the maximum of:
4693  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4694  *  - largest bInterval of any active periodic endpoint (to avoid going
4695  *    into lower power link states between intervals).
4696  *  - the U2 Exit Latency of the device
4697  */
4698 static unsigned long long xhci_calculate_intel_u2_timeout(
4699 		struct usb_device *udev,
4700 		struct usb_endpoint_descriptor *desc)
4701 {
4702 	unsigned long long timeout_ns;
4703 	unsigned long long u2_del_ns;
4704 
4705 	timeout_ns = 10 * 1000 * 1000;
4706 
4707 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4708 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4709 		timeout_ns = xhci_service_interval_to_ns(desc);
4710 
4711 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4712 	if (u2_del_ns > timeout_ns)
4713 		timeout_ns = u2_del_ns;
4714 
4715 	return timeout_ns;
4716 }
4717 
4718 /* Returns the hub-encoded U2 timeout value. */
4719 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4720 		struct usb_device *udev,
4721 		struct usb_endpoint_descriptor *desc)
4722 {
4723 	unsigned long long timeout_ns;
4724 
4725 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4726 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4727 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4728 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4729 			return USB3_LPM_DISABLED;
4730 		}
4731 	}
4732 
4733 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4734 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4735 	else
4736 		timeout_ns = udev->u2_params.sel;
4737 
4738 	/* The U2 timeout is encoded in 256us intervals */
4739 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4740 	/* If the necessary timeout value is bigger than what we can set in the
4741 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4742 	 */
4743 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4744 		return timeout_ns;
4745 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4746 			"due to long timeout %llu ms\n", timeout_ns);
4747 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4748 }
4749 
4750 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4751 		struct usb_device *udev,
4752 		struct usb_endpoint_descriptor *desc,
4753 		enum usb3_link_state state,
4754 		u16 *timeout)
4755 {
4756 	if (state == USB3_LPM_U1)
4757 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4758 	else if (state == USB3_LPM_U2)
4759 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4760 
4761 	return USB3_LPM_DISABLED;
4762 }
4763 
4764 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4765 		struct usb_device *udev,
4766 		struct usb_endpoint_descriptor *desc,
4767 		enum usb3_link_state state,
4768 		u16 *timeout)
4769 {
4770 	u16 alt_timeout;
4771 
4772 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4773 		desc, state, timeout);
4774 
4775 	/* If we found we can't enable hub-initiated LPM, and
4776 	 * the U1 or U2 exit latency was too high to allow
4777 	 * device-initiated LPM as well, then we will disable LPM
4778 	 * for this device, so stop searching any further.
4779 	 */
4780 	if (alt_timeout == USB3_LPM_DISABLED) {
4781 		*timeout = alt_timeout;
4782 		return -E2BIG;
4783 	}
4784 	if (alt_timeout > *timeout)
4785 		*timeout = alt_timeout;
4786 	return 0;
4787 }
4788 
4789 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4790 		struct usb_device *udev,
4791 		struct usb_host_interface *alt,
4792 		enum usb3_link_state state,
4793 		u16 *timeout)
4794 {
4795 	int j;
4796 
4797 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4798 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4799 					&alt->endpoint[j].desc, state, timeout))
4800 			return -E2BIG;
4801 	}
4802 	return 0;
4803 }
4804 
4805 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806 		struct usb_device *udev,
4807 		enum usb3_link_state state)
4808 {
4809 	struct usb_device *parent = udev->parent;
4810 	int tier = 1; /* roothub is tier1 */
4811 
4812 	while (parent) {
4813 		parent = parent->parent;
4814 		tier++;
4815 	}
4816 
4817 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4818 		goto fail;
4819 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4820 		goto fail;
4821 
4822 	return 0;
4823 fail:
4824 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4825 			tier);
4826 	return -E2BIG;
4827 }
4828 
4829 /* Returns the U1 or U2 timeout that should be enabled.
4830  * If the tier check or timeout setting functions return with a non-zero exit
4831  * code, that means the timeout value has been finalized and we shouldn't look
4832  * at any more endpoints.
4833  */
4834 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4835 			struct usb_device *udev, enum usb3_link_state state)
4836 {
4837 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4838 	struct usb_host_config *config;
4839 	char *state_name;
4840 	int i;
4841 	u16 timeout = USB3_LPM_DISABLED;
4842 
4843 	if (state == USB3_LPM_U1)
4844 		state_name = "U1";
4845 	else if (state == USB3_LPM_U2)
4846 		state_name = "U2";
4847 	else {
4848 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4849 				state);
4850 		return timeout;
4851 	}
4852 
4853 	/* Gather some information about the currently installed configuration
4854 	 * and alternate interface settings.
4855 	 */
4856 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4857 			state, &timeout))
4858 		return timeout;
4859 
4860 	config = udev->actconfig;
4861 	if (!config)
4862 		return timeout;
4863 
4864 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4865 		struct usb_driver *driver;
4866 		struct usb_interface *intf = config->interface[i];
4867 
4868 		if (!intf)
4869 			continue;
4870 
4871 		/* Check if any currently bound drivers want hub-initiated LPM
4872 		 * disabled.
4873 		 */
4874 		if (intf->dev.driver) {
4875 			driver = to_usb_driver(intf->dev.driver);
4876 			if (driver && driver->disable_hub_initiated_lpm) {
4877 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4878 					state_name, driver->name);
4879 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4880 								      state);
4881 				if (timeout == USB3_LPM_DISABLED)
4882 					return timeout;
4883 			}
4884 		}
4885 
4886 		/* Not sure how this could happen... */
4887 		if (!intf->cur_altsetting)
4888 			continue;
4889 
4890 		if (xhci_update_timeout_for_interface(xhci, udev,
4891 					intf->cur_altsetting,
4892 					state, &timeout))
4893 			return timeout;
4894 	}
4895 	return timeout;
4896 }
4897 
4898 static int calculate_max_exit_latency(struct usb_device *udev,
4899 		enum usb3_link_state state_changed,
4900 		u16 hub_encoded_timeout)
4901 {
4902 	unsigned long long u1_mel_us = 0;
4903 	unsigned long long u2_mel_us = 0;
4904 	unsigned long long mel_us = 0;
4905 	bool disabling_u1;
4906 	bool disabling_u2;
4907 	bool enabling_u1;
4908 	bool enabling_u2;
4909 
4910 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4911 			hub_encoded_timeout == USB3_LPM_DISABLED);
4912 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4913 			hub_encoded_timeout == USB3_LPM_DISABLED);
4914 
4915 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4916 			hub_encoded_timeout != USB3_LPM_DISABLED);
4917 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4918 			hub_encoded_timeout != USB3_LPM_DISABLED);
4919 
4920 	/* If U1 was already enabled and we're not disabling it,
4921 	 * or we're going to enable U1, account for the U1 max exit latency.
4922 	 */
4923 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4924 			enabling_u1)
4925 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4926 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4927 			enabling_u2)
4928 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4929 
4930 	mel_us = max(u1_mel_us, u2_mel_us);
4931 
4932 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4933 	if (mel_us > MAX_EXIT) {
4934 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4935 				"is too big.\n", mel_us);
4936 		return -E2BIG;
4937 	}
4938 	return mel_us;
4939 }
4940 
4941 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4942 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4943 			struct usb_device *udev, enum usb3_link_state state)
4944 {
4945 	struct xhci_hcd	*xhci;
4946 	struct xhci_port *port;
4947 	u16 hub_encoded_timeout;
4948 	int mel;
4949 	int ret;
4950 
4951 	xhci = hcd_to_xhci(hcd);
4952 	/* The LPM timeout values are pretty host-controller specific, so don't
4953 	 * enable hub-initiated timeouts unless the vendor has provided
4954 	 * information about their timeout algorithm.
4955 	 */
4956 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957 			!xhci->devs[udev->slot_id])
4958 		return USB3_LPM_DISABLED;
4959 
4960 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4961 		return USB3_LPM_DISABLED;
4962 
4963 	/* If connected to root port then check port can handle lpm */
4964 	if (udev->parent && !udev->parent->parent) {
4965 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4966 		if (port->lpm_incapable)
4967 			return USB3_LPM_DISABLED;
4968 	}
4969 
4970 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4971 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4972 	if (mel < 0) {
4973 		/* Max Exit Latency is too big, disable LPM. */
4974 		hub_encoded_timeout = USB3_LPM_DISABLED;
4975 		mel = 0;
4976 	}
4977 
4978 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4979 	if (ret)
4980 		return ret;
4981 	return hub_encoded_timeout;
4982 }
4983 
4984 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4985 			struct usb_device *udev, enum usb3_link_state state)
4986 {
4987 	struct xhci_hcd	*xhci;
4988 	u16 mel;
4989 
4990 	xhci = hcd_to_xhci(hcd);
4991 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4992 			!xhci->devs[udev->slot_id])
4993 		return 0;
4994 
4995 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4996 	return xhci_change_max_exit_latency(xhci, udev, mel);
4997 }
4998 #else /* CONFIG_PM */
4999 
5000 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5001 				struct usb_device *udev, int enable)
5002 {
5003 	return 0;
5004 }
5005 
5006 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5007 {
5008 	return 0;
5009 }
5010 
5011 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5012 			struct usb_device *udev, enum usb3_link_state state)
5013 {
5014 	return USB3_LPM_DISABLED;
5015 }
5016 
5017 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5018 			struct usb_device *udev, enum usb3_link_state state)
5019 {
5020 	return 0;
5021 }
5022 #endif	/* CONFIG_PM */
5023 
5024 /*-------------------------------------------------------------------------*/
5025 
5026 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5027  * internal data structures for the device.
5028  */
5029 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5030 			struct usb_tt *tt, gfp_t mem_flags)
5031 {
5032 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5033 	struct xhci_virt_device *vdev;
5034 	struct xhci_command *config_cmd;
5035 	struct xhci_input_control_ctx *ctrl_ctx;
5036 	struct xhci_slot_ctx *slot_ctx;
5037 	unsigned long flags;
5038 	unsigned think_time;
5039 	int ret;
5040 
5041 	/* Ignore root hubs */
5042 	if (!hdev->parent)
5043 		return 0;
5044 
5045 	vdev = xhci->devs[hdev->slot_id];
5046 	if (!vdev) {
5047 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5048 		return -EINVAL;
5049 	}
5050 
5051 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5052 	if (!config_cmd)
5053 		return -ENOMEM;
5054 
5055 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5056 	if (!ctrl_ctx) {
5057 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5058 				__func__);
5059 		xhci_free_command(xhci, config_cmd);
5060 		return -ENOMEM;
5061 	}
5062 
5063 	spin_lock_irqsave(&xhci->lock, flags);
5064 	if (hdev->speed == USB_SPEED_HIGH &&
5065 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5066 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5067 		xhci_free_command(xhci, config_cmd);
5068 		spin_unlock_irqrestore(&xhci->lock, flags);
5069 		return -ENOMEM;
5070 	}
5071 
5072 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5073 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5074 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5075 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5076 	/*
5077 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5078 	 * but it may be already set to 1 when setup an xHCI virtual
5079 	 * device, so clear it anyway.
5080 	 */
5081 	if (tt->multi)
5082 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5083 	else if (hdev->speed == USB_SPEED_FULL)
5084 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5085 
5086 	if (xhci->hci_version > 0x95) {
5087 		xhci_dbg(xhci, "xHCI version %x needs hub "
5088 				"TT think time and number of ports\n",
5089 				(unsigned int) xhci->hci_version);
5090 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5091 		/* Set TT think time - convert from ns to FS bit times.
5092 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5093 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5094 		 *
5095 		 * xHCI 1.0: this field shall be 0 if the device is not a
5096 		 * High-spped hub.
5097 		 */
5098 		think_time = tt->think_time;
5099 		if (think_time != 0)
5100 			think_time = (think_time / 666) - 1;
5101 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5102 			slot_ctx->tt_info |=
5103 				cpu_to_le32(TT_THINK_TIME(think_time));
5104 	} else {
5105 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5106 				"TT think time or number of ports\n",
5107 				(unsigned int) xhci->hci_version);
5108 	}
5109 	slot_ctx->dev_state = 0;
5110 	spin_unlock_irqrestore(&xhci->lock, flags);
5111 
5112 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5113 			(xhci->hci_version > 0x95) ?
5114 			"configure endpoint" : "evaluate context");
5115 
5116 	/* Issue and wait for the configure endpoint or
5117 	 * evaluate context command.
5118 	 */
5119 	if (xhci->hci_version > 0x95)
5120 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5121 				false, false);
5122 	else
5123 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5124 				true, false);
5125 
5126 	xhci_free_command(xhci, config_cmd);
5127 	return ret;
5128 }
5129 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5130 
5131 static int xhci_get_frame(struct usb_hcd *hcd)
5132 {
5133 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5134 	/* EHCI mods by the periodic size.  Why? */
5135 	return readl(&xhci->run_regs->microframe_index) >> 3;
5136 }
5137 
5138 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5139 {
5140 	xhci->usb2_rhub.hcd = hcd;
5141 	hcd->speed = HCD_USB2;
5142 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5143 	/*
5144 	 * USB 2.0 roothub under xHCI has an integrated TT,
5145 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5146 	 * companion controller.
5147 	 */
5148 	hcd->has_tt = 1;
5149 }
5150 
5151 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5152 {
5153 	unsigned int minor_rev;
5154 
5155 	/*
5156 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5157 	 * should return 0x31 for sbrn, or that the minor revision
5158 	 * is a two digit BCD containig minor and sub-minor numbers.
5159 	 * This was later clarified in xHCI 1.2.
5160 	 *
5161 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5162 	 * minor revision set to 0x1 instead of 0x10.
5163 	 */
5164 	if (xhci->usb3_rhub.min_rev == 0x1)
5165 		minor_rev = 1;
5166 	else
5167 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5168 
5169 	switch (minor_rev) {
5170 	case 2:
5171 		hcd->speed = HCD_USB32;
5172 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5173 		hcd->self.root_hub->rx_lanes = 2;
5174 		hcd->self.root_hub->tx_lanes = 2;
5175 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5176 		break;
5177 	case 1:
5178 		hcd->speed = HCD_USB31;
5179 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5180 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5181 		break;
5182 	}
5183 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5184 		  minor_rev, minor_rev ? "Enhanced " : "");
5185 
5186 	xhci->usb3_rhub.hcd = hcd;
5187 }
5188 
5189 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5190 {
5191 	struct xhci_hcd		*xhci;
5192 	/*
5193 	 * TODO: Check with DWC3 clients for sysdev according to
5194 	 * quirks
5195 	 */
5196 	struct device		*dev = hcd->self.sysdev;
5197 	int			retval;
5198 
5199 	/* Accept arbitrarily long scatter-gather lists */
5200 	hcd->self.sg_tablesize = ~0;
5201 
5202 	/* support to build packet from discontinuous buffers */
5203 	hcd->self.no_sg_constraint = 1;
5204 
5205 	/* XHCI controllers don't stop the ep queue on short packets :| */
5206 	hcd->self.no_stop_on_short = 1;
5207 
5208 	xhci = hcd_to_xhci(hcd);
5209 
5210 	if (!usb_hcd_is_primary_hcd(hcd)) {
5211 		xhci_hcd_init_usb3_data(xhci, hcd);
5212 		return 0;
5213 	}
5214 
5215 	mutex_init(&xhci->mutex);
5216 	xhci->main_hcd = hcd;
5217 	xhci->cap_regs = hcd->regs;
5218 	xhci->op_regs = hcd->regs +
5219 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5220 	xhci->run_regs = hcd->regs +
5221 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5222 	/* Cache read-only capability registers */
5223 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5224 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5225 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5226 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5227 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5228 	if (xhci->hci_version > 0x100)
5229 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5230 
5231 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5232 	if ((!xhci->max_interrupters) ||
5233 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5234 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5235 
5236 	xhci->quirks |= quirks;
5237 
5238 	if (get_quirks)
5239 		get_quirks(dev, xhci);
5240 
5241 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5242 	 * success event after a short transfer. This quirk will ignore such
5243 	 * spurious event.
5244 	 */
5245 	if (xhci->hci_version > 0x96)
5246 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5247 
5248 	/* Make sure the HC is halted. */
5249 	retval = xhci_halt(xhci);
5250 	if (retval)
5251 		return retval;
5252 
5253 	xhci_zero_64b_regs(xhci);
5254 
5255 	xhci_dbg(xhci, "Resetting HCD\n");
5256 	/* Reset the internal HC memory state and registers. */
5257 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5258 	if (retval)
5259 		return retval;
5260 	xhci_dbg(xhci, "Reset complete\n");
5261 
5262 	/*
5263 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5264 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5265 	 * address memory pointers actually. So, this driver clears the AC64
5266 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5267 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5268 	 */
5269 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5270 		xhci->hcc_params &= ~BIT(0);
5271 
5272 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5273 	 * if xHC supports 64-bit addressing */
5274 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5275 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5276 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5277 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5278 	} else {
5279 		/*
5280 		 * This is to avoid error in cases where a 32-bit USB
5281 		 * controller is used on a 64-bit capable system.
5282 		 */
5283 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5284 		if (retval)
5285 			return retval;
5286 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5287 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5288 	}
5289 
5290 	xhci_dbg(xhci, "Calling HCD init\n");
5291 	/* Initialize HCD and host controller data structures. */
5292 	retval = xhci_init(hcd);
5293 	if (retval)
5294 		return retval;
5295 	xhci_dbg(xhci, "Called HCD init\n");
5296 
5297 	if (xhci_hcd_is_usb3(hcd))
5298 		xhci_hcd_init_usb3_data(xhci, hcd);
5299 	else
5300 		xhci_hcd_init_usb2_data(xhci, hcd);
5301 
5302 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5303 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5304 
5305 	return 0;
5306 }
5307 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5308 
5309 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5310 		struct usb_host_endpoint *ep)
5311 {
5312 	struct xhci_hcd *xhci;
5313 	struct usb_device *udev;
5314 	unsigned int slot_id;
5315 	unsigned int ep_index;
5316 	unsigned long flags;
5317 
5318 	xhci = hcd_to_xhci(hcd);
5319 
5320 	spin_lock_irqsave(&xhci->lock, flags);
5321 	udev = (struct usb_device *)ep->hcpriv;
5322 	slot_id = udev->slot_id;
5323 	ep_index = xhci_get_endpoint_index(&ep->desc);
5324 
5325 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5326 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5327 	spin_unlock_irqrestore(&xhci->lock, flags);
5328 }
5329 
5330 static const struct hc_driver xhci_hc_driver = {
5331 	.description =		"xhci-hcd",
5332 	.product_desc =		"xHCI Host Controller",
5333 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5334 
5335 	/*
5336 	 * generic hardware linkage
5337 	 */
5338 	.irq =			xhci_irq,
5339 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5340 				HCD_BH,
5341 
5342 	/*
5343 	 * basic lifecycle operations
5344 	 */
5345 	.reset =		NULL, /* set in xhci_init_driver() */
5346 	.start =		xhci_run,
5347 	.stop =			xhci_stop,
5348 	.shutdown =		xhci_shutdown,
5349 
5350 	/*
5351 	 * managing i/o requests and associated device resources
5352 	 */
5353 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5354 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5355 	.urb_enqueue =		xhci_urb_enqueue,
5356 	.urb_dequeue =		xhci_urb_dequeue,
5357 	.alloc_dev =		xhci_alloc_dev,
5358 	.free_dev =		xhci_free_dev,
5359 	.alloc_streams =	xhci_alloc_streams,
5360 	.free_streams =		xhci_free_streams,
5361 	.add_endpoint =		xhci_add_endpoint,
5362 	.drop_endpoint =	xhci_drop_endpoint,
5363 	.endpoint_disable =	xhci_endpoint_disable,
5364 	.endpoint_reset =	xhci_endpoint_reset,
5365 	.check_bandwidth =	xhci_check_bandwidth,
5366 	.reset_bandwidth =	xhci_reset_bandwidth,
5367 	.address_device =	xhci_address_device,
5368 	.enable_device =	xhci_enable_device,
5369 	.update_hub_device =	xhci_update_hub_device,
5370 	.reset_device =		xhci_discover_or_reset_device,
5371 
5372 	/*
5373 	 * scheduling support
5374 	 */
5375 	.get_frame_number =	xhci_get_frame,
5376 
5377 	/*
5378 	 * root hub support
5379 	 */
5380 	.hub_control =		xhci_hub_control,
5381 	.hub_status_data =	xhci_hub_status_data,
5382 	.bus_suspend =		xhci_bus_suspend,
5383 	.bus_resume =		xhci_bus_resume,
5384 	.get_resuming_ports =	xhci_get_resuming_ports,
5385 
5386 	/*
5387 	 * call back when device connected and addressed
5388 	 */
5389 	.update_device =        xhci_update_device,
5390 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5391 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5392 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5393 	.find_raw_port_number =	xhci_find_raw_port_number,
5394 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5395 };
5396 
5397 void xhci_init_driver(struct hc_driver *drv,
5398 		      const struct xhci_driver_overrides *over)
5399 {
5400 	BUG_ON(!over);
5401 
5402 	/* Copy the generic table to drv then apply the overrides */
5403 	*drv = xhci_hc_driver;
5404 
5405 	if (over) {
5406 		drv->hcd_priv_size += over->extra_priv_size;
5407 		if (over->reset)
5408 			drv->reset = over->reset;
5409 		if (over->start)
5410 			drv->start = over->start;
5411 		if (over->add_endpoint)
5412 			drv->add_endpoint = over->add_endpoint;
5413 		if (over->drop_endpoint)
5414 			drv->drop_endpoint = over->drop_endpoint;
5415 		if (over->check_bandwidth)
5416 			drv->check_bandwidth = over->check_bandwidth;
5417 		if (over->reset_bandwidth)
5418 			drv->reset_bandwidth = over->reset_bandwidth;
5419 		if (over->update_hub_device)
5420 			drv->update_hub_device = over->update_hub_device;
5421 		if (over->hub_control)
5422 			drv->hub_control = over->hub_control;
5423 	}
5424 }
5425 EXPORT_SYMBOL_GPL(xhci_init_driver);
5426 
5427 MODULE_DESCRIPTION(DRIVER_DESC);
5428 MODULE_AUTHOR(DRIVER_AUTHOR);
5429 MODULE_LICENSE("GPL");
5430 
5431 static int __init xhci_hcd_init(void)
5432 {
5433 	/*
5434 	 * Check the compiler generated sizes of structures that must be laid
5435 	 * out in specific ways for hardware access.
5436 	 */
5437 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5438 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5439 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5440 	/* xhci_device_control has eight fields, and also
5441 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5442 	 */
5443 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5444 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5445 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5446 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5447 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5448 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5449 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5450 
5451 	if (usb_disabled())
5452 		return -ENODEV;
5453 
5454 	xhci_debugfs_create_root();
5455 	xhci_dbc_init();
5456 
5457 	return 0;
5458 }
5459 
5460 /*
5461  * If an init function is provided, an exit function must also be provided
5462  * to allow module unload.
5463  */
5464 static void __exit xhci_hcd_fini(void)
5465 {
5466 	xhci_debugfs_remove_root();
5467 	xhci_dbc_exit();
5468 }
5469 
5470 module_init(xhci_hcd_init);
5471 module_exit(xhci_hcd_fini);
5472