1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/iommu.h> 13 #include <linux/iopoll.h> 14 #include <linux/irq.h> 15 #include <linux/log2.h> 16 #include <linux/module.h> 17 #include <linux/moduleparam.h> 18 #include <linux/slab.h> 19 #include <linux/dmi.h> 20 #include <linux/dma-mapping.h> 21 22 #include "xhci.h" 23 #include "xhci-trace.h" 24 #include "xhci-debugfs.h" 25 #include "xhci-dbgcap.h" 26 27 #define DRIVER_AUTHOR "Sarah Sharp" 28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 29 30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 31 32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 33 static int link_quirk; 34 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 36 37 static unsigned long long quirks; 38 module_param(quirks, ullong, S_IRUGO); 39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 40 41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring) 42 { 43 struct xhci_segment *seg = ring->first_seg; 44 45 if (!td || !td->start_seg) 46 return false; 47 do { 48 if (seg == td->start_seg) 49 return true; 50 seg = seg->next; 51 } while (seg && seg != ring->first_seg); 52 53 return false; 54 } 55 56 /* 57 * xhci_handshake - spin reading hc until handshake completes or fails 58 * @ptr: address of hc register to be read 59 * @mask: bits to look at in result of read 60 * @done: value of those bits when handshake succeeds 61 * @usec: timeout in microseconds 62 * 63 * Returns negative errno, or zero on success 64 * 65 * Success happens when the "mask" bits have the specified value (hardware 66 * handshake done). There are two failure modes: "usec" have passed (major 67 * hardware flakeout), or the register reads as all-ones (hardware removed). 68 */ 69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us) 70 { 71 u32 result; 72 int ret; 73 74 ret = readl_poll_timeout_atomic(ptr, result, 75 (result & mask) == done || 76 result == U32_MAX, 77 1, timeout_us); 78 if (result == U32_MAX) /* card removed */ 79 return -ENODEV; 80 81 return ret; 82 } 83 84 /* 85 * Disable interrupts and begin the xHCI halting process. 86 */ 87 void xhci_quiesce(struct xhci_hcd *xhci) 88 { 89 u32 halted; 90 u32 cmd; 91 u32 mask; 92 93 mask = ~(XHCI_IRQS); 94 halted = readl(&xhci->op_regs->status) & STS_HALT; 95 if (!halted) 96 mask &= ~CMD_RUN; 97 98 cmd = readl(&xhci->op_regs->command); 99 cmd &= mask; 100 writel(cmd, &xhci->op_regs->command); 101 } 102 103 /* 104 * Force HC into halt state. 105 * 106 * Disable any IRQs and clear the run/stop bit. 107 * HC will complete any current and actively pipelined transactions, and 108 * should halt within 16 ms of the run/stop bit being cleared. 109 * Read HC Halted bit in the status register to see when the HC is finished. 110 */ 111 int xhci_halt(struct xhci_hcd *xhci) 112 { 113 int ret; 114 115 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 116 xhci_quiesce(xhci); 117 118 ret = xhci_handshake(&xhci->op_regs->status, 119 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 120 if (ret) { 121 xhci_warn(xhci, "Host halt failed, %d\n", ret); 122 return ret; 123 } 124 125 xhci->xhc_state |= XHCI_STATE_HALTED; 126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 127 128 return ret; 129 } 130 131 /* 132 * Set the run bit and wait for the host to be running. 133 */ 134 int xhci_start(struct xhci_hcd *xhci) 135 { 136 u32 temp; 137 int ret; 138 139 temp = readl(&xhci->op_regs->command); 140 temp |= (CMD_RUN); 141 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 142 temp); 143 writel(temp, &xhci->op_regs->command); 144 145 /* 146 * Wait for the HCHalted Status bit to be 0 to indicate the host is 147 * running. 148 */ 149 ret = xhci_handshake(&xhci->op_regs->status, 150 STS_HALT, 0, XHCI_MAX_HALT_USEC); 151 if (ret == -ETIMEDOUT) 152 xhci_err(xhci, "Host took too long to start, " 153 "waited %u microseconds.\n", 154 XHCI_MAX_HALT_USEC); 155 if (!ret) { 156 /* clear state flags. Including dying, halted or removing */ 157 xhci->xhc_state = 0; 158 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500); 159 } 160 161 return ret; 162 } 163 164 /* 165 * Reset a halted HC. 166 * 167 * This resets pipelines, timers, counters, state machines, etc. 168 * Transactions will be terminated immediately, and operational registers 169 * will be set to their defaults. 170 */ 171 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us) 172 { 173 u32 command; 174 u32 state; 175 int ret; 176 177 state = readl(&xhci->op_regs->status); 178 179 if (state == ~(u32)0) { 180 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 181 return -ENODEV; 182 } 183 184 if ((state & STS_HALT) == 0) { 185 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 186 return 0; 187 } 188 189 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 190 command = readl(&xhci->op_regs->command); 191 command |= CMD_RESET; 192 writel(command, &xhci->op_regs->command); 193 194 /* Existing Intel xHCI controllers require a delay of 1 mS, 195 * after setting the CMD_RESET bit, and before accessing any 196 * HC registers. This allows the HC to complete the 197 * reset operation and be ready for HC register access. 198 * Without this delay, the subsequent HC register access, 199 * may result in a system hang very rarely. 200 */ 201 if (xhci->quirks & XHCI_INTEL_HOST) 202 udelay(1000); 203 204 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us); 205 if (ret) 206 return ret; 207 208 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 209 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 210 211 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 212 "Wait for controller to be ready for doorbell rings"); 213 /* 214 * xHCI cannot write to any doorbells or operational registers other 215 * than status until the "Controller Not Ready" flag is cleared. 216 */ 217 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us); 218 219 xhci->usb2_rhub.bus_state.port_c_suspend = 0; 220 xhci->usb2_rhub.bus_state.suspended_ports = 0; 221 xhci->usb2_rhub.bus_state.resuming_ports = 0; 222 xhci->usb3_rhub.bus_state.port_c_suspend = 0; 223 xhci->usb3_rhub.bus_state.suspended_ports = 0; 224 xhci->usb3_rhub.bus_state.resuming_ports = 0; 225 226 return ret; 227 } 228 229 static void xhci_zero_64b_regs(struct xhci_hcd *xhci) 230 { 231 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 232 struct iommu_domain *domain; 233 int err, i; 234 u64 val; 235 u32 intrs; 236 237 /* 238 * Some Renesas controllers get into a weird state if they are 239 * reset while programmed with 64bit addresses (they will preserve 240 * the top half of the address in internal, non visible 241 * registers). You end up with half the address coming from the 242 * kernel, and the other half coming from the firmware. Also, 243 * changing the programming leads to extra accesses even if the 244 * controller is supposed to be halted. The controller ends up with 245 * a fatal fault, and is then ripe for being properly reset. 246 * 247 * Special care is taken to only apply this if the device is behind 248 * an iommu. Doing anything when there is no iommu is definitely 249 * unsafe... 250 */ 251 domain = iommu_get_domain_for_dev(dev); 252 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain || 253 domain->type == IOMMU_DOMAIN_IDENTITY) 254 return; 255 256 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n"); 257 258 /* Clear HSEIE so that faults do not get signaled */ 259 val = readl(&xhci->op_regs->command); 260 val &= ~CMD_HSEIE; 261 writel(val, &xhci->op_regs->command); 262 263 /* Clear HSE (aka FATAL) */ 264 val = readl(&xhci->op_regs->status); 265 val |= STS_FATAL; 266 writel(val, &xhci->op_regs->status); 267 268 /* Now zero the registers, and brace for impact */ 269 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 270 if (upper_32_bits(val)) 271 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr); 272 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 273 if (upper_32_bits(val)) 274 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring); 275 276 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1), 277 ARRAY_SIZE(xhci->run_regs->ir_set)); 278 279 for (i = 0; i < intrs; i++) { 280 struct xhci_intr_reg __iomem *ir; 281 282 ir = &xhci->run_regs->ir_set[i]; 283 val = xhci_read_64(xhci, &ir->erst_base); 284 if (upper_32_bits(val)) 285 xhci_write_64(xhci, 0, &ir->erst_base); 286 val= xhci_read_64(xhci, &ir->erst_dequeue); 287 if (upper_32_bits(val)) 288 xhci_write_64(xhci, 0, &ir->erst_dequeue); 289 } 290 291 /* Wait for the fault to appear. It will be cleared on reset */ 292 err = xhci_handshake(&xhci->op_regs->status, 293 STS_FATAL, STS_FATAL, 294 XHCI_MAX_HALT_USEC); 295 if (!err) 296 xhci_info(xhci, "Fault detected\n"); 297 } 298 299 static int xhci_enable_interrupter(struct xhci_interrupter *ir) 300 { 301 u32 iman; 302 303 if (!ir || !ir->ir_set) 304 return -EINVAL; 305 306 iman = readl(&ir->ir_set->irq_pending); 307 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending); 308 309 return 0; 310 } 311 312 static int xhci_disable_interrupter(struct xhci_interrupter *ir) 313 { 314 u32 iman; 315 316 if (!ir || !ir->ir_set) 317 return -EINVAL; 318 319 iman = readl(&ir->ir_set->irq_pending); 320 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending); 321 322 return 0; 323 } 324 325 static void compliance_mode_recovery(struct timer_list *t) 326 { 327 struct xhci_hcd *xhci; 328 struct usb_hcd *hcd; 329 struct xhci_hub *rhub; 330 u32 temp; 331 int i; 332 333 xhci = from_timer(xhci, t, comp_mode_recovery_timer); 334 rhub = &xhci->usb3_rhub; 335 hcd = rhub->hcd; 336 337 if (!hcd) 338 return; 339 340 for (i = 0; i < rhub->num_ports; i++) { 341 temp = readl(rhub->ports[i]->addr); 342 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 343 /* 344 * Compliance Mode Detected. Letting USB Core 345 * handle the Warm Reset 346 */ 347 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 348 "Compliance mode detected->port %d", 349 i + 1); 350 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 351 "Attempting compliance mode recovery"); 352 353 if (hcd->state == HC_STATE_SUSPENDED) 354 usb_hcd_resume_root_hub(hcd); 355 356 usb_hcd_poll_rh_status(hcd); 357 } 358 } 359 360 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1)) 361 mod_timer(&xhci->comp_mode_recovery_timer, 362 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 363 } 364 365 /* 366 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 367 * that causes ports behind that hardware to enter compliance mode sometimes. 368 * The quirk creates a timer that polls every 2 seconds the link state of 369 * each host controller's port and recovers it by issuing a Warm reset 370 * if Compliance mode is detected, otherwise the port will become "dead" (no 371 * device connections or disconnections will be detected anymore). Becasue no 372 * status event is generated when entering compliance mode (per xhci spec), 373 * this quirk is needed on systems that have the failing hardware installed. 374 */ 375 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 376 { 377 xhci->port_status_u0 = 0; 378 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery, 379 0); 380 xhci->comp_mode_recovery_timer.expires = jiffies + 381 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 382 383 add_timer(&xhci->comp_mode_recovery_timer); 384 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 385 "Compliance mode recovery timer initialized"); 386 } 387 388 /* 389 * This function identifies the systems that have installed the SN65LVPE502CP 390 * USB3.0 re-driver and that need the Compliance Mode Quirk. 391 * Systems: 392 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 393 */ 394 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 395 { 396 const char *dmi_product_name, *dmi_sys_vendor; 397 398 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 399 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 400 if (!dmi_product_name || !dmi_sys_vendor) 401 return false; 402 403 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 404 return false; 405 406 if (strstr(dmi_product_name, "Z420") || 407 strstr(dmi_product_name, "Z620") || 408 strstr(dmi_product_name, "Z820") || 409 strstr(dmi_product_name, "Z1 Workstation")) 410 return true; 411 412 return false; 413 } 414 415 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 416 { 417 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1)); 418 } 419 420 421 /* 422 * Initialize memory for HCD and xHC (one-time init). 423 * 424 * Program the PAGESIZE register, initialize the device context array, create 425 * device contexts (?), set up a command ring segment (or two?), create event 426 * ring (one for now). 427 */ 428 static int xhci_init(struct usb_hcd *hcd) 429 { 430 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 431 int retval; 432 433 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 434 spin_lock_init(&xhci->lock); 435 if (xhci->hci_version == 0x95 && link_quirk) { 436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 437 "QUIRK: Not clearing Link TRB chain bits."); 438 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 439 } else { 440 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 441 "xHCI doesn't need link TRB QUIRK"); 442 } 443 retval = xhci_mem_init(xhci, GFP_KERNEL); 444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 445 446 /* Initializing Compliance Mode Recovery Data If Needed */ 447 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 448 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 449 compliance_mode_recovery_timer_init(xhci); 450 } 451 452 return retval; 453 } 454 455 /*-------------------------------------------------------------------------*/ 456 457 static int xhci_run_finished(struct xhci_hcd *xhci) 458 { 459 struct xhci_interrupter *ir = xhci->interrupter; 460 unsigned long flags; 461 u32 temp; 462 463 /* 464 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2). 465 * Protect the short window before host is running with a lock 466 */ 467 spin_lock_irqsave(&xhci->lock, flags); 468 469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts"); 470 temp = readl(&xhci->op_regs->command); 471 temp |= (CMD_EIE); 472 writel(temp, &xhci->op_regs->command); 473 474 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter"); 475 xhci_enable_interrupter(ir); 476 477 if (xhci_start(xhci)) { 478 xhci_halt(xhci); 479 spin_unlock_irqrestore(&xhci->lock, flags); 480 return -ENODEV; 481 } 482 483 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 484 485 if (xhci->quirks & XHCI_NEC_HOST) 486 xhci_ring_cmd_db(xhci); 487 488 spin_unlock_irqrestore(&xhci->lock, flags); 489 490 return 0; 491 } 492 493 /* 494 * Start the HC after it was halted. 495 * 496 * This function is called by the USB core when the HC driver is added. 497 * Its opposite is xhci_stop(). 498 * 499 * xhci_init() must be called once before this function can be called. 500 * Reset the HC, enable device slot contexts, program DCBAAP, and 501 * set command ring pointer and event ring pointer. 502 * 503 * Setup MSI-X vectors and enable interrupts. 504 */ 505 int xhci_run(struct usb_hcd *hcd) 506 { 507 u32 temp; 508 u64 temp_64; 509 int ret; 510 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 511 struct xhci_interrupter *ir = xhci->interrupter; 512 /* Start the xHCI host controller running only after the USB 2.0 roothub 513 * is setup. 514 */ 515 516 hcd->uses_new_polling = 1; 517 if (!usb_hcd_is_primary_hcd(hcd)) 518 return xhci_run_finished(xhci); 519 520 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 521 522 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 523 temp_64 &= ~ERST_PTR_MASK; 524 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 525 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 526 527 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 528 "// Set the interrupt modulation register"); 529 temp = readl(&ir->ir_set->irq_control); 530 temp &= ~ER_IRQ_INTERVAL_MASK; 531 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK; 532 writel(temp, &ir->ir_set->irq_control); 533 534 if (xhci->quirks & XHCI_NEC_HOST) { 535 struct xhci_command *command; 536 537 command = xhci_alloc_command(xhci, false, GFP_KERNEL); 538 if (!command) 539 return -ENOMEM; 540 541 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 542 TRB_TYPE(TRB_NEC_GET_FW)); 543 if (ret) 544 xhci_free_command(xhci, command); 545 } 546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 547 "Finished %s for main hcd", __func__); 548 549 xhci_create_dbc_dev(xhci); 550 551 xhci_debugfs_init(xhci); 552 553 if (xhci_has_one_roothub(xhci)) 554 return xhci_run_finished(xhci); 555 556 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags); 557 558 return 0; 559 } 560 EXPORT_SYMBOL_GPL(xhci_run); 561 562 /* 563 * Stop xHCI driver. 564 * 565 * This function is called by the USB core when the HC driver is removed. 566 * Its opposite is xhci_run(). 567 * 568 * Disable device contexts, disable IRQs, and quiesce the HC. 569 * Reset the HC, finish any completed transactions, and cleanup memory. 570 */ 571 void xhci_stop(struct usb_hcd *hcd) 572 { 573 u32 temp; 574 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 575 struct xhci_interrupter *ir = xhci->interrupter; 576 577 mutex_lock(&xhci->mutex); 578 579 /* Only halt host and free memory after both hcds are removed */ 580 if (!usb_hcd_is_primary_hcd(hcd)) { 581 mutex_unlock(&xhci->mutex); 582 return; 583 } 584 585 xhci_remove_dbc_dev(xhci); 586 587 spin_lock_irq(&xhci->lock); 588 xhci->xhc_state |= XHCI_STATE_HALTED; 589 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 590 xhci_halt(xhci); 591 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 592 spin_unlock_irq(&xhci->lock); 593 594 /* Deleting Compliance Mode Recovery Timer */ 595 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 596 (!(xhci_all_ports_seen_u0(xhci)))) { 597 del_timer_sync(&xhci->comp_mode_recovery_timer); 598 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 599 "%s: compliance mode recovery timer deleted", 600 __func__); 601 } 602 603 if (xhci->quirks & XHCI_AMD_PLL_FIX) 604 usb_amd_dev_put(); 605 606 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 607 "// Disabling event ring interrupts"); 608 temp = readl(&xhci->op_regs->status); 609 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 610 xhci_disable_interrupter(ir); 611 612 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 613 xhci_mem_cleanup(xhci); 614 xhci_debugfs_exit(xhci); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "xhci_stop completed - status = %x", 617 readl(&xhci->op_regs->status)); 618 mutex_unlock(&xhci->mutex); 619 } 620 EXPORT_SYMBOL_GPL(xhci_stop); 621 622 /* 623 * Shutdown HC (not bus-specific) 624 * 625 * This is called when the machine is rebooting or halting. We assume that the 626 * machine will be powered off, and the HC's internal state will be reset. 627 * Don't bother to free memory. 628 * 629 * This will only ever be called with the main usb_hcd (the USB3 roothub). 630 */ 631 void xhci_shutdown(struct usb_hcd *hcd) 632 { 633 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 634 635 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 636 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 637 638 /* Don't poll the roothubs after shutdown. */ 639 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 640 __func__, hcd->self.busnum); 641 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 642 del_timer_sync(&hcd->rh_timer); 643 644 if (xhci->shared_hcd) { 645 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 646 del_timer_sync(&xhci->shared_hcd->rh_timer); 647 } 648 649 spin_lock_irq(&xhci->lock); 650 xhci_halt(xhci); 651 652 /* 653 * Workaround for spurious wakeps at shutdown with HSW, and for boot 654 * firmware delay in ADL-P PCH if port are left in U3 at shutdown 655 */ 656 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP || 657 xhci->quirks & XHCI_RESET_TO_DEFAULT) 658 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 659 660 spin_unlock_irq(&xhci->lock); 661 662 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 663 "xhci_shutdown completed - status = %x", 664 readl(&xhci->op_regs->status)); 665 } 666 EXPORT_SYMBOL_GPL(xhci_shutdown); 667 668 #ifdef CONFIG_PM 669 static void xhci_save_registers(struct xhci_hcd *xhci) 670 { 671 struct xhci_interrupter *ir = xhci->interrupter; 672 673 xhci->s3.command = readl(&xhci->op_regs->command); 674 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 675 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 676 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 677 678 if (!ir) 679 return; 680 681 ir->s3_erst_size = readl(&ir->ir_set->erst_size); 682 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 683 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 684 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending); 685 ir->s3_irq_control = readl(&ir->ir_set->irq_control); 686 } 687 688 static void xhci_restore_registers(struct xhci_hcd *xhci) 689 { 690 struct xhci_interrupter *ir = xhci->interrupter; 691 692 writel(xhci->s3.command, &xhci->op_regs->command); 693 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 694 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 695 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 696 writel(ir->s3_erst_size, &ir->ir_set->erst_size); 697 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base); 698 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue); 699 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending); 700 writel(ir->s3_irq_control, &ir->ir_set->irq_control); 701 } 702 703 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 704 { 705 u64 val_64; 706 707 /* step 2: initialize command ring buffer */ 708 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 709 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 710 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 711 xhci->cmd_ring->dequeue) & 712 (u64) ~CMD_RING_RSVD_BITS) | 713 xhci->cmd_ring->cycle_state; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 715 "// Setting command ring address to 0x%llx", 716 (long unsigned long) val_64); 717 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 718 } 719 720 /* 721 * The whole command ring must be cleared to zero when we suspend the host. 722 * 723 * The host doesn't save the command ring pointer in the suspend well, so we 724 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 725 * aligned, because of the reserved bits in the command ring dequeue pointer 726 * register. Therefore, we can't just set the dequeue pointer back in the 727 * middle of the ring (TRBs are 16-byte aligned). 728 */ 729 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 730 { 731 struct xhci_ring *ring; 732 struct xhci_segment *seg; 733 734 ring = xhci->cmd_ring; 735 seg = ring->deq_seg; 736 do { 737 memset(seg->trbs, 0, 738 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 739 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 740 cpu_to_le32(~TRB_CYCLE); 741 seg = seg->next; 742 } while (seg != ring->deq_seg); 743 744 /* Reset the software enqueue and dequeue pointers */ 745 ring->deq_seg = ring->first_seg; 746 ring->dequeue = ring->first_seg->trbs; 747 ring->enq_seg = ring->deq_seg; 748 ring->enqueue = ring->dequeue; 749 750 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 751 /* 752 * Ring is now zeroed, so the HW should look for change of ownership 753 * when the cycle bit is set to 1. 754 */ 755 ring->cycle_state = 1; 756 757 /* 758 * Reset the hardware dequeue pointer. 759 * Yes, this will need to be re-written after resume, but we're paranoid 760 * and want to make sure the hardware doesn't access bogus memory 761 * because, say, the BIOS or an SMI started the host without changing 762 * the command ring pointers. 763 */ 764 xhci_set_cmd_ring_deq(xhci); 765 } 766 767 /* 768 * Disable port wake bits if do_wakeup is not set. 769 * 770 * Also clear a possible internal port wake state left hanging for ports that 771 * detected termination but never successfully enumerated (trained to 0U). 772 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done 773 * at enumeration clears this wake, force one here as well for unconnected ports 774 */ 775 776 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci, 777 struct xhci_hub *rhub, 778 bool do_wakeup) 779 { 780 unsigned long flags; 781 u32 t1, t2, portsc; 782 int i; 783 784 spin_lock_irqsave(&xhci->lock, flags); 785 786 for (i = 0; i < rhub->num_ports; i++) { 787 portsc = readl(rhub->ports[i]->addr); 788 t1 = xhci_port_state_to_neutral(portsc); 789 t2 = t1; 790 791 /* clear wake bits if do_wake is not set */ 792 if (!do_wakeup) 793 t2 &= ~PORT_WAKE_BITS; 794 795 /* Don't touch csc bit if connected or connect change is set */ 796 if (!(portsc & (PORT_CSC | PORT_CONNECT))) 797 t2 |= PORT_CSC; 798 799 if (t1 != t2) { 800 writel(t2, rhub->ports[i]->addr); 801 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n", 802 rhub->hcd->self.busnum, i + 1, portsc, t2); 803 } 804 } 805 spin_unlock_irqrestore(&xhci->lock, flags); 806 } 807 808 static bool xhci_pending_portevent(struct xhci_hcd *xhci) 809 { 810 struct xhci_port **ports; 811 int port_index; 812 u32 status; 813 u32 portsc; 814 815 status = readl(&xhci->op_regs->status); 816 if (status & STS_EINT) 817 return true; 818 /* 819 * Checking STS_EINT is not enough as there is a lag between a change 820 * bit being set and the Port Status Change Event that it generated 821 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2. 822 */ 823 824 port_index = xhci->usb2_rhub.num_ports; 825 ports = xhci->usb2_rhub.ports; 826 while (port_index--) { 827 portsc = readl(ports[port_index]->addr); 828 if (portsc & PORT_CHANGE_MASK || 829 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 830 return true; 831 } 832 port_index = xhci->usb3_rhub.num_ports; 833 ports = xhci->usb3_rhub.ports; 834 while (port_index--) { 835 portsc = readl(ports[port_index]->addr); 836 if (portsc & PORT_CHANGE_MASK || 837 (portsc & PORT_PLS_MASK) == XDEV_RESUME) 838 return true; 839 } 840 return false; 841 } 842 843 /* 844 * Stop HC (not bus-specific) 845 * 846 * This is called when the machine transition into S3/S4 mode. 847 * 848 */ 849 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 850 { 851 int rc = 0; 852 unsigned int delay = XHCI_MAX_HALT_USEC * 2; 853 struct usb_hcd *hcd = xhci_to_hcd(xhci); 854 u32 command; 855 u32 res; 856 857 if (!hcd->state) 858 return 0; 859 860 if (hcd->state != HC_STATE_SUSPENDED || 861 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED)) 862 return -EINVAL; 863 864 /* Clear root port wake on bits if wakeup not allowed. */ 865 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup); 866 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup); 867 868 if (!HCD_HW_ACCESSIBLE(hcd)) 869 return 0; 870 871 xhci_dbc_suspend(xhci); 872 873 /* Don't poll the roothubs on bus suspend. */ 874 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n", 875 __func__, hcd->self.busnum); 876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 877 del_timer_sync(&hcd->rh_timer); 878 if (xhci->shared_hcd) { 879 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 880 del_timer_sync(&xhci->shared_hcd->rh_timer); 881 } 882 883 if (xhci->quirks & XHCI_SUSPEND_DELAY) 884 usleep_range(1000, 1500); 885 886 spin_lock_irq(&xhci->lock); 887 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 888 if (xhci->shared_hcd) 889 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 890 /* step 1: stop endpoint */ 891 /* skipped assuming that port suspend has done */ 892 893 /* step 2: clear Run/Stop bit */ 894 command = readl(&xhci->op_regs->command); 895 command &= ~CMD_RUN; 896 writel(command, &xhci->op_regs->command); 897 898 /* Some chips from Fresco Logic need an extraordinary delay */ 899 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 900 901 if (xhci_handshake(&xhci->op_regs->status, 902 STS_HALT, STS_HALT, delay)) { 903 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 904 spin_unlock_irq(&xhci->lock); 905 return -ETIMEDOUT; 906 } 907 xhci_clear_command_ring(xhci); 908 909 /* step 3: save registers */ 910 xhci_save_registers(xhci); 911 912 /* step 4: set CSS flag */ 913 command = readl(&xhci->op_regs->command); 914 command |= CMD_CSS; 915 writel(command, &xhci->op_regs->command); 916 xhci->broken_suspend = 0; 917 if (xhci_handshake(&xhci->op_regs->status, 918 STS_SAVE, 0, 20 * 1000)) { 919 /* 920 * AMD SNPS xHC 3.0 occasionally does not clear the 921 * SSS bit of USBSTS and when driver tries to poll 922 * to see if the xHC clears BIT(8) which never happens 923 * and driver assumes that controller is not responding 924 * and times out. To workaround this, its good to check 925 * if SRE and HCE bits are not set (as per xhci 926 * Section 5.4.2) and bypass the timeout. 927 */ 928 res = readl(&xhci->op_regs->status); 929 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) && 930 (((res & STS_SRE) == 0) && 931 ((res & STS_HCE) == 0))) { 932 xhci->broken_suspend = 1; 933 } else { 934 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 935 spin_unlock_irq(&xhci->lock); 936 return -ETIMEDOUT; 937 } 938 } 939 spin_unlock_irq(&xhci->lock); 940 941 /* 942 * Deleting Compliance Mode Recovery Timer because the xHCI Host 943 * is about to be suspended. 944 */ 945 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 946 (!(xhci_all_ports_seen_u0(xhci)))) { 947 del_timer_sync(&xhci->comp_mode_recovery_timer); 948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 949 "%s: compliance mode recovery timer deleted", 950 __func__); 951 } 952 953 return rc; 954 } 955 EXPORT_SYMBOL_GPL(xhci_suspend); 956 957 /* 958 * start xHC (not bus-specific) 959 * 960 * This is called when the machine transition from S3/S4 mode. 961 * 962 */ 963 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg) 964 { 965 bool hibernated = (msg.event == PM_EVENT_RESTORE); 966 u32 command, temp = 0; 967 struct usb_hcd *hcd = xhci_to_hcd(xhci); 968 int retval = 0; 969 bool comp_timer_running = false; 970 bool pending_portevent = false; 971 bool reinit_xhc = false; 972 973 if (!hcd->state) 974 return 0; 975 976 /* Wait a bit if either of the roothubs need to settle from the 977 * transition into bus suspend. 978 */ 979 980 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) || 981 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange)) 982 msleep(100); 983 984 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 985 if (xhci->shared_hcd) 986 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 987 988 spin_lock_irq(&xhci->lock); 989 990 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend) 991 reinit_xhc = true; 992 993 if (!reinit_xhc) { 994 /* 995 * Some controllers might lose power during suspend, so wait 996 * for controller not ready bit to clear, just as in xHC init. 997 */ 998 retval = xhci_handshake(&xhci->op_regs->status, 999 STS_CNR, 0, 10 * 1000 * 1000); 1000 if (retval) { 1001 xhci_warn(xhci, "Controller not ready at resume %d\n", 1002 retval); 1003 spin_unlock_irq(&xhci->lock); 1004 return retval; 1005 } 1006 /* step 1: restore register */ 1007 xhci_restore_registers(xhci); 1008 /* step 2: initialize command ring buffer */ 1009 xhci_set_cmd_ring_deq(xhci); 1010 /* step 3: restore state and start state*/ 1011 /* step 3: set CRS flag */ 1012 command = readl(&xhci->op_regs->command); 1013 command |= CMD_CRS; 1014 writel(command, &xhci->op_regs->command); 1015 /* 1016 * Some controllers take up to 55+ ms to complete the controller 1017 * restore so setting the timeout to 100ms. Xhci specification 1018 * doesn't mention any timeout value. 1019 */ 1020 if (xhci_handshake(&xhci->op_regs->status, 1021 STS_RESTORE, 0, 100 * 1000)) { 1022 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1023 spin_unlock_irq(&xhci->lock); 1024 return -ETIMEDOUT; 1025 } 1026 } 1027 1028 temp = readl(&xhci->op_regs->status); 1029 1030 /* re-initialize the HC on Restore Error, or Host Controller Error */ 1031 if (temp & (STS_SRE | STS_HCE)) { 1032 reinit_xhc = true; 1033 if (!xhci->broken_suspend) 1034 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp); 1035 } 1036 1037 if (reinit_xhc) { 1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1039 !(xhci_all_ports_seen_u0(xhci))) { 1040 del_timer_sync(&xhci->comp_mode_recovery_timer); 1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1042 "Compliance Mode Recovery Timer deleted!"); 1043 } 1044 1045 /* Let the USB core know _both_ roothubs lost power. */ 1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1047 if (xhci->shared_hcd) 1048 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1049 1050 xhci_dbg(xhci, "Stop HCD\n"); 1051 xhci_halt(xhci); 1052 xhci_zero_64b_regs(xhci); 1053 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 1054 spin_unlock_irq(&xhci->lock); 1055 if (retval) 1056 return retval; 1057 1058 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1059 temp = readl(&xhci->op_regs->status); 1060 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1061 xhci_disable_interrupter(xhci->interrupter); 1062 1063 xhci_dbg(xhci, "cleaning up memory\n"); 1064 xhci_mem_cleanup(xhci); 1065 xhci_debugfs_exit(xhci); 1066 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1067 readl(&xhci->op_regs->status)); 1068 1069 /* USB core calls the PCI reinit and start functions twice: 1070 * first with the primary HCD, and then with the secondary HCD. 1071 * If we don't do the same, the host will never be started. 1072 */ 1073 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1074 retval = xhci_init(hcd); 1075 if (retval) 1076 return retval; 1077 comp_timer_running = true; 1078 1079 xhci_dbg(xhci, "Start the primary HCD\n"); 1080 retval = xhci_run(hcd); 1081 if (!retval && xhci->shared_hcd) { 1082 xhci_dbg(xhci, "Start the secondary HCD\n"); 1083 retval = xhci_run(xhci->shared_hcd); 1084 } 1085 1086 hcd->state = HC_STATE_SUSPENDED; 1087 if (xhci->shared_hcd) 1088 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1089 goto done; 1090 } 1091 1092 /* step 4: set Run/Stop bit */ 1093 command = readl(&xhci->op_regs->command); 1094 command |= CMD_RUN; 1095 writel(command, &xhci->op_regs->command); 1096 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1097 0, 250 * 1000); 1098 1099 /* step 5: walk topology and initialize portsc, 1100 * portpmsc and portli 1101 */ 1102 /* this is done in bus_resume */ 1103 1104 /* step 6: restart each of the previously 1105 * Running endpoints by ringing their doorbells 1106 */ 1107 1108 spin_unlock_irq(&xhci->lock); 1109 1110 xhci_dbc_resume(xhci); 1111 1112 done: 1113 if (retval == 0) { 1114 /* 1115 * Resume roothubs only if there are pending events. 1116 * USB 3 devices resend U3 LFPS wake after a 100ms delay if 1117 * the first wake signalling failed, give it that chance. 1118 */ 1119 pending_portevent = xhci_pending_portevent(xhci); 1120 if (!pending_portevent && msg.event == PM_EVENT_AUTO_RESUME) { 1121 msleep(120); 1122 pending_portevent = xhci_pending_portevent(xhci); 1123 } 1124 1125 if (pending_portevent) { 1126 if (xhci->shared_hcd) 1127 usb_hcd_resume_root_hub(xhci->shared_hcd); 1128 usb_hcd_resume_root_hub(hcd); 1129 } 1130 } 1131 /* 1132 * If system is subject to the Quirk, Compliance Mode Timer needs to 1133 * be re-initialized Always after a system resume. Ports are subject 1134 * to suffer the Compliance Mode issue again. It doesn't matter if 1135 * ports have entered previously to U0 before system's suspension. 1136 */ 1137 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1138 compliance_mode_recovery_timer_init(xhci); 1139 1140 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1141 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1142 1143 /* Re-enable port polling. */ 1144 xhci_dbg(xhci, "%s: starting usb%d port polling.\n", 1145 __func__, hcd->self.busnum); 1146 if (xhci->shared_hcd) { 1147 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1148 usb_hcd_poll_rh_status(xhci->shared_hcd); 1149 } 1150 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1151 usb_hcd_poll_rh_status(hcd); 1152 1153 return retval; 1154 } 1155 EXPORT_SYMBOL_GPL(xhci_resume); 1156 #endif /* CONFIG_PM */ 1157 1158 /*-------------------------------------------------------------------------*/ 1159 1160 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb) 1161 { 1162 void *temp; 1163 int ret = 0; 1164 unsigned int buf_len; 1165 enum dma_data_direction dir; 1166 1167 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1168 buf_len = urb->transfer_buffer_length; 1169 1170 temp = kzalloc_node(buf_len, GFP_ATOMIC, 1171 dev_to_node(hcd->self.sysdev)); 1172 1173 if (usb_urb_dir_out(urb)) 1174 sg_pcopy_to_buffer(urb->sg, urb->num_sgs, 1175 temp, buf_len, 0); 1176 1177 urb->transfer_buffer = temp; 1178 urb->transfer_dma = dma_map_single(hcd->self.sysdev, 1179 urb->transfer_buffer, 1180 urb->transfer_buffer_length, 1181 dir); 1182 1183 if (dma_mapping_error(hcd->self.sysdev, 1184 urb->transfer_dma)) { 1185 ret = -EAGAIN; 1186 kfree(temp); 1187 } else { 1188 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1189 } 1190 1191 return ret; 1192 } 1193 1194 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd, 1195 struct urb *urb) 1196 { 1197 bool ret = false; 1198 unsigned int i; 1199 unsigned int len = 0; 1200 unsigned int trb_size; 1201 unsigned int max_pkt; 1202 struct scatterlist *sg; 1203 struct scatterlist *tail_sg; 1204 1205 tail_sg = urb->sg; 1206 max_pkt = usb_endpoint_maxp(&urb->ep->desc); 1207 1208 if (!urb->num_sgs) 1209 return ret; 1210 1211 if (urb->dev->speed >= USB_SPEED_SUPER) 1212 trb_size = TRB_CACHE_SIZE_SS; 1213 else 1214 trb_size = TRB_CACHE_SIZE_HS; 1215 1216 if (urb->transfer_buffer_length != 0 && 1217 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1218 for_each_sg(urb->sg, sg, urb->num_sgs, i) { 1219 len = len + sg->length; 1220 if (i > trb_size - 2) { 1221 len = len - tail_sg->length; 1222 if (len < max_pkt) { 1223 ret = true; 1224 break; 1225 } 1226 1227 tail_sg = sg_next(tail_sg); 1228 } 1229 } 1230 } 1231 return ret; 1232 } 1233 1234 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb) 1235 { 1236 unsigned int len; 1237 unsigned int buf_len; 1238 enum dma_data_direction dir; 1239 1240 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1241 1242 buf_len = urb->transfer_buffer_length; 1243 1244 if (IS_ENABLED(CONFIG_HAS_DMA) && 1245 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1246 dma_unmap_single(hcd->self.sysdev, 1247 urb->transfer_dma, 1248 urb->transfer_buffer_length, 1249 dir); 1250 1251 if (usb_urb_dir_in(urb)) { 1252 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, 1253 urb->transfer_buffer, 1254 buf_len, 1255 0); 1256 if (len != buf_len) { 1257 xhci_dbg(hcd_to_xhci(hcd), 1258 "Copy from tmp buf to urb sg list failed\n"); 1259 urb->actual_length = len; 1260 } 1261 } 1262 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE; 1263 kfree(urb->transfer_buffer); 1264 urb->transfer_buffer = NULL; 1265 } 1266 1267 /* 1268 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT), 1269 * we'll copy the actual data into the TRB address register. This is limited to 1270 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize 1271 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed. 1272 */ 1273 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1274 gfp_t mem_flags) 1275 { 1276 struct xhci_hcd *xhci; 1277 1278 xhci = hcd_to_xhci(hcd); 1279 1280 if (xhci_urb_suitable_for_idt(urb)) 1281 return 0; 1282 1283 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) { 1284 if (xhci_urb_temp_buffer_required(hcd, urb)) 1285 return xhci_map_temp_buffer(hcd, urb); 1286 } 1287 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1288 } 1289 1290 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1291 { 1292 struct xhci_hcd *xhci; 1293 bool unmap_temp_buf = false; 1294 1295 xhci = hcd_to_xhci(hcd); 1296 1297 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1298 unmap_temp_buf = true; 1299 1300 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf) 1301 xhci_unmap_temp_buf(hcd, urb); 1302 else 1303 usb_hcd_unmap_urb_for_dma(hcd, urb); 1304 } 1305 1306 /** 1307 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1308 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1309 * value to right shift 1 for the bitmask. 1310 * 1311 * Index = (epnum * 2) + direction - 1, 1312 * where direction = 0 for OUT, 1 for IN. 1313 * For control endpoints, the IN index is used (OUT index is unused), so 1314 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1315 */ 1316 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1317 { 1318 unsigned int index; 1319 if (usb_endpoint_xfer_control(desc)) 1320 index = (unsigned int) (usb_endpoint_num(desc)*2); 1321 else 1322 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1323 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1324 return index; 1325 } 1326 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index); 1327 1328 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1329 * address from the XHCI endpoint index. 1330 */ 1331 static unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1332 { 1333 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1334 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1335 return direction | number; 1336 } 1337 1338 /* Find the flag for this endpoint (for use in the control context). Use the 1339 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1340 * bit 1, etc. 1341 */ 1342 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1343 { 1344 return 1 << (xhci_get_endpoint_index(desc) + 1); 1345 } 1346 1347 /* Compute the last valid endpoint context index. Basically, this is the 1348 * endpoint index plus one. For slot contexts with more than valid endpoint, 1349 * we find the most significant bit set in the added contexts flags. 1350 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1351 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1352 */ 1353 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1354 { 1355 return fls(added_ctxs) - 1; 1356 } 1357 1358 /* Returns 1 if the arguments are OK; 1359 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1360 */ 1361 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1362 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1363 const char *func) { 1364 struct xhci_hcd *xhci; 1365 struct xhci_virt_device *virt_dev; 1366 1367 if (!hcd || (check_ep && !ep) || !udev) { 1368 pr_debug("xHCI %s called with invalid args\n", func); 1369 return -EINVAL; 1370 } 1371 if (!udev->parent) { 1372 pr_debug("xHCI %s called for root hub\n", func); 1373 return 0; 1374 } 1375 1376 xhci = hcd_to_xhci(hcd); 1377 if (check_virt_dev) { 1378 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1379 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1380 func); 1381 return -EINVAL; 1382 } 1383 1384 virt_dev = xhci->devs[udev->slot_id]; 1385 if (virt_dev->udev != udev) { 1386 xhci_dbg(xhci, "xHCI %s called with udev and " 1387 "virt_dev does not match\n", func); 1388 return -EINVAL; 1389 } 1390 } 1391 1392 if (xhci->xhc_state & XHCI_STATE_HALTED) 1393 return -ENODEV; 1394 1395 return 1; 1396 } 1397 1398 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1399 struct usb_device *udev, struct xhci_command *command, 1400 bool ctx_change, bool must_succeed); 1401 1402 /* 1403 * Full speed devices may have a max packet size greater than 8 bytes, but the 1404 * USB core doesn't know that until it reads the first 8 bytes of the 1405 * descriptor. If the usb_device's max packet size changes after that point, 1406 * we need to issue an evaluate context command and wait on it. 1407 */ 1408 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1409 unsigned int ep_index, struct urb *urb, gfp_t mem_flags) 1410 { 1411 struct xhci_container_ctx *out_ctx; 1412 struct xhci_input_control_ctx *ctrl_ctx; 1413 struct xhci_ep_ctx *ep_ctx; 1414 struct xhci_command *command; 1415 int max_packet_size; 1416 int hw_max_packet_size; 1417 int ret = 0; 1418 1419 out_ctx = xhci->devs[slot_id]->out_ctx; 1420 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1421 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1422 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1423 if (hw_max_packet_size != max_packet_size) { 1424 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1425 "Max Packet Size for ep 0 changed."); 1426 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1427 "Max packet size in usb_device = %d", 1428 max_packet_size); 1429 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1430 "Max packet size in xHCI HW = %d", 1431 hw_max_packet_size); 1432 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1433 "Issuing evaluate context command."); 1434 1435 /* Set up the input context flags for the command */ 1436 /* FIXME: This won't work if a non-default control endpoint 1437 * changes max packet sizes. 1438 */ 1439 1440 command = xhci_alloc_command(xhci, true, mem_flags); 1441 if (!command) 1442 return -ENOMEM; 1443 1444 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1445 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1446 if (!ctrl_ctx) { 1447 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1448 __func__); 1449 ret = -ENOMEM; 1450 goto command_cleanup; 1451 } 1452 /* Set up the modified control endpoint 0 */ 1453 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1454 xhci->devs[slot_id]->out_ctx, ep_index); 1455 1456 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1457 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */ 1458 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1459 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1460 1461 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1462 ctrl_ctx->drop_flags = 0; 1463 1464 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1465 true, false); 1466 1467 /* Clean up the input context for later use by bandwidth 1468 * functions. 1469 */ 1470 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1471 command_cleanup: 1472 kfree(command->completion); 1473 kfree(command); 1474 } 1475 return ret; 1476 } 1477 1478 /* 1479 * non-error returns are a promise to giveback() the urb later 1480 * we drop ownership so next owner (or urb unlink) can get it 1481 */ 1482 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1483 { 1484 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1485 unsigned long flags; 1486 int ret = 0; 1487 unsigned int slot_id, ep_index; 1488 unsigned int *ep_state; 1489 struct urb_priv *urb_priv; 1490 int num_tds; 1491 1492 if (!urb) 1493 return -EINVAL; 1494 ret = xhci_check_args(hcd, urb->dev, urb->ep, 1495 true, true, __func__); 1496 if (ret <= 0) 1497 return ret ? ret : -EINVAL; 1498 1499 slot_id = urb->dev->slot_id; 1500 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1501 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state; 1502 1503 if (!HCD_HW_ACCESSIBLE(hcd)) 1504 return -ESHUTDOWN; 1505 1506 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) { 1507 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n"); 1508 return -ENODEV; 1509 } 1510 1511 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1512 num_tds = urb->number_of_packets; 1513 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1514 urb->transfer_buffer_length > 0 && 1515 urb->transfer_flags & URB_ZERO_PACKET && 1516 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1517 num_tds = 2; 1518 else 1519 num_tds = 1; 1520 1521 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags); 1522 if (!urb_priv) 1523 return -ENOMEM; 1524 1525 urb_priv->num_tds = num_tds; 1526 urb_priv->num_tds_done = 0; 1527 urb->hcpriv = urb_priv; 1528 1529 trace_xhci_urb_enqueue(urb); 1530 1531 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1532 /* Check to see if the max packet size for the default control 1533 * endpoint changed during FS device enumeration 1534 */ 1535 if (urb->dev->speed == USB_SPEED_FULL) { 1536 ret = xhci_check_maxpacket(xhci, slot_id, 1537 ep_index, urb, mem_flags); 1538 if (ret < 0) { 1539 xhci_urb_free_priv(urb_priv); 1540 urb->hcpriv = NULL; 1541 return ret; 1542 } 1543 } 1544 } 1545 1546 spin_lock_irqsave(&xhci->lock, flags); 1547 1548 if (xhci->xhc_state & XHCI_STATE_DYING) { 1549 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1550 urb->ep->desc.bEndpointAddress, urb); 1551 ret = -ESHUTDOWN; 1552 goto free_priv; 1553 } 1554 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1555 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1556 *ep_state); 1557 ret = -EINVAL; 1558 goto free_priv; 1559 } 1560 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) { 1561 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n"); 1562 ret = -EINVAL; 1563 goto free_priv; 1564 } 1565 1566 switch (usb_endpoint_type(&urb->ep->desc)) { 1567 1568 case USB_ENDPOINT_XFER_CONTROL: 1569 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1570 slot_id, ep_index); 1571 break; 1572 case USB_ENDPOINT_XFER_BULK: 1573 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1574 slot_id, ep_index); 1575 break; 1576 case USB_ENDPOINT_XFER_INT: 1577 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1578 slot_id, ep_index); 1579 break; 1580 case USB_ENDPOINT_XFER_ISOC: 1581 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1582 slot_id, ep_index); 1583 } 1584 1585 if (ret) { 1586 free_priv: 1587 xhci_urb_free_priv(urb_priv); 1588 urb->hcpriv = NULL; 1589 } 1590 spin_unlock_irqrestore(&xhci->lock, flags); 1591 return ret; 1592 } 1593 1594 /* 1595 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1596 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1597 * should pick up where it left off in the TD, unless a Set Transfer Ring 1598 * Dequeue Pointer is issued. 1599 * 1600 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1601 * the ring. Since the ring is a contiguous structure, they can't be physically 1602 * removed. Instead, there are two options: 1603 * 1604 * 1) If the HC is in the middle of processing the URB to be canceled, we 1605 * simply move the ring's dequeue pointer past those TRBs using the Set 1606 * Transfer Ring Dequeue Pointer command. This will be the common case, 1607 * when drivers timeout on the last submitted URB and attempt to cancel. 1608 * 1609 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1610 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1611 * HC will need to invalidate the any TRBs it has cached after the stop 1612 * endpoint command, as noted in the xHCI 0.95 errata. 1613 * 1614 * 3) The TD may have completed by the time the Stop Endpoint Command 1615 * completes, so software needs to handle that case too. 1616 * 1617 * This function should protect against the TD enqueueing code ringing the 1618 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1619 * It also needs to account for multiple cancellations on happening at the same 1620 * time for the same endpoint. 1621 * 1622 * Note that this function can be called in any context, or so says 1623 * usb_hcd_unlink_urb() 1624 */ 1625 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1626 { 1627 unsigned long flags; 1628 int ret, i; 1629 u32 temp; 1630 struct xhci_hcd *xhci; 1631 struct urb_priv *urb_priv; 1632 struct xhci_td *td; 1633 unsigned int ep_index; 1634 struct xhci_ring *ep_ring; 1635 struct xhci_virt_ep *ep; 1636 struct xhci_command *command; 1637 struct xhci_virt_device *vdev; 1638 1639 xhci = hcd_to_xhci(hcd); 1640 spin_lock_irqsave(&xhci->lock, flags); 1641 1642 trace_xhci_urb_dequeue(urb); 1643 1644 /* Make sure the URB hasn't completed or been unlinked already */ 1645 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1646 if (ret) 1647 goto done; 1648 1649 /* give back URB now if we can't queue it for cancel */ 1650 vdev = xhci->devs[urb->dev->slot_id]; 1651 urb_priv = urb->hcpriv; 1652 if (!vdev || !urb_priv) 1653 goto err_giveback; 1654 1655 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1656 ep = &vdev->eps[ep_index]; 1657 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1658 if (!ep || !ep_ring) 1659 goto err_giveback; 1660 1661 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1662 temp = readl(&xhci->op_regs->status); 1663 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1664 xhci_hc_died(xhci); 1665 goto done; 1666 } 1667 1668 /* 1669 * check ring is not re-allocated since URB was enqueued. If it is, then 1670 * make sure none of the ring related pointers in this URB private data 1671 * are touched, such as td_list, otherwise we overwrite freed data 1672 */ 1673 if (!td_on_ring(&urb_priv->td[0], ep_ring)) { 1674 xhci_err(xhci, "Canceled URB td not found on endpoint ring"); 1675 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) { 1676 td = &urb_priv->td[i]; 1677 if (!list_empty(&td->cancelled_td_list)) 1678 list_del_init(&td->cancelled_td_list); 1679 } 1680 goto err_giveback; 1681 } 1682 1683 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1684 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1685 "HC halted, freeing TD manually."); 1686 for (i = urb_priv->num_tds_done; 1687 i < urb_priv->num_tds; 1688 i++) { 1689 td = &urb_priv->td[i]; 1690 if (!list_empty(&td->td_list)) 1691 list_del_init(&td->td_list); 1692 if (!list_empty(&td->cancelled_td_list)) 1693 list_del_init(&td->cancelled_td_list); 1694 } 1695 goto err_giveback; 1696 } 1697 1698 i = urb_priv->num_tds_done; 1699 if (i < urb_priv->num_tds) 1700 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1701 "Cancel URB %p, dev %s, ep 0x%x, " 1702 "starting at offset 0x%llx", 1703 urb, urb->dev->devpath, 1704 urb->ep->desc.bEndpointAddress, 1705 (unsigned long long) xhci_trb_virt_to_dma( 1706 urb_priv->td[i].start_seg, 1707 urb_priv->td[i].first_trb)); 1708 1709 for (; i < urb_priv->num_tds; i++) { 1710 td = &urb_priv->td[i]; 1711 /* TD can already be on cancelled list if ep halted on it */ 1712 if (list_empty(&td->cancelled_td_list)) { 1713 td->cancel_status = TD_DIRTY; 1714 list_add_tail(&td->cancelled_td_list, 1715 &ep->cancelled_td_list); 1716 } 1717 } 1718 1719 /* Queue a stop endpoint command, but only if this is 1720 * the first cancellation to be handled. 1721 */ 1722 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1723 command = xhci_alloc_command(xhci, false, GFP_ATOMIC); 1724 if (!command) { 1725 ret = -ENOMEM; 1726 goto done; 1727 } 1728 ep->ep_state |= EP_STOP_CMD_PENDING; 1729 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1730 ep_index, 0); 1731 xhci_ring_cmd_db(xhci); 1732 } 1733 done: 1734 spin_unlock_irqrestore(&xhci->lock, flags); 1735 return ret; 1736 1737 err_giveback: 1738 if (urb_priv) 1739 xhci_urb_free_priv(urb_priv); 1740 usb_hcd_unlink_urb_from_ep(hcd, urb); 1741 spin_unlock_irqrestore(&xhci->lock, flags); 1742 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1743 return ret; 1744 } 1745 1746 /* Drop an endpoint from a new bandwidth configuration for this device. 1747 * Only one call to this function is allowed per endpoint before 1748 * check_bandwidth() or reset_bandwidth() must be called. 1749 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1750 * add the endpoint to the schedule with possibly new parameters denoted by a 1751 * different endpoint descriptor in usb_host_endpoint. 1752 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1753 * not allowed. 1754 * 1755 * The USB core will not allow URBs to be queued to an endpoint that is being 1756 * disabled, so there's no need for mutual exclusion to protect 1757 * the xhci->devs[slot_id] structure. 1758 */ 1759 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1760 struct usb_host_endpoint *ep) 1761 { 1762 struct xhci_hcd *xhci; 1763 struct xhci_container_ctx *in_ctx, *out_ctx; 1764 struct xhci_input_control_ctx *ctrl_ctx; 1765 unsigned int ep_index; 1766 struct xhci_ep_ctx *ep_ctx; 1767 u32 drop_flag; 1768 u32 new_add_flags, new_drop_flags; 1769 int ret; 1770 1771 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1772 if (ret <= 0) 1773 return ret; 1774 xhci = hcd_to_xhci(hcd); 1775 if (xhci->xhc_state & XHCI_STATE_DYING) 1776 return -ENODEV; 1777 1778 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1779 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1780 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1781 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1782 __func__, drop_flag); 1783 return 0; 1784 } 1785 1786 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1787 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1788 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1789 if (!ctrl_ctx) { 1790 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1791 __func__); 1792 return 0; 1793 } 1794 1795 ep_index = xhci_get_endpoint_index(&ep->desc); 1796 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1797 /* If the HC already knows the endpoint is disabled, 1798 * or the HCD has noted it is disabled, ignore this request 1799 */ 1800 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1801 le32_to_cpu(ctrl_ctx->drop_flags) & 1802 xhci_get_endpoint_flag(&ep->desc)) { 1803 /* Do not warn when called after a usb_device_reset */ 1804 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1805 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1806 __func__, ep); 1807 return 0; 1808 } 1809 1810 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1811 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1812 1813 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1814 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1815 1816 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index); 1817 1818 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1819 1820 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1821 (unsigned int) ep->desc.bEndpointAddress, 1822 udev->slot_id, 1823 (unsigned int) new_drop_flags, 1824 (unsigned int) new_add_flags); 1825 return 0; 1826 } 1827 EXPORT_SYMBOL_GPL(xhci_drop_endpoint); 1828 1829 /* Add an endpoint to a new possible bandwidth configuration for this device. 1830 * Only one call to this function is allowed per endpoint before 1831 * check_bandwidth() or reset_bandwidth() must be called. 1832 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1833 * add the endpoint to the schedule with possibly new parameters denoted by a 1834 * different endpoint descriptor in usb_host_endpoint. 1835 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1836 * not allowed. 1837 * 1838 * The USB core will not allow URBs to be queued to an endpoint until the 1839 * configuration or alt setting is installed in the device, so there's no need 1840 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1841 */ 1842 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1843 struct usb_host_endpoint *ep) 1844 { 1845 struct xhci_hcd *xhci; 1846 struct xhci_container_ctx *in_ctx; 1847 unsigned int ep_index; 1848 struct xhci_input_control_ctx *ctrl_ctx; 1849 struct xhci_ep_ctx *ep_ctx; 1850 u32 added_ctxs; 1851 u32 new_add_flags, new_drop_flags; 1852 struct xhci_virt_device *virt_dev; 1853 int ret = 0; 1854 1855 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1856 if (ret <= 0) { 1857 /* So we won't queue a reset ep command for a root hub */ 1858 ep->hcpriv = NULL; 1859 return ret; 1860 } 1861 xhci = hcd_to_xhci(hcd); 1862 if (xhci->xhc_state & XHCI_STATE_DYING) 1863 return -ENODEV; 1864 1865 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1866 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1867 /* FIXME when we have to issue an evaluate endpoint command to 1868 * deal with ep0 max packet size changing once we get the 1869 * descriptors 1870 */ 1871 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1872 __func__, added_ctxs); 1873 return 0; 1874 } 1875 1876 virt_dev = xhci->devs[udev->slot_id]; 1877 in_ctx = virt_dev->in_ctx; 1878 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1879 if (!ctrl_ctx) { 1880 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1881 __func__); 1882 return 0; 1883 } 1884 1885 ep_index = xhci_get_endpoint_index(&ep->desc); 1886 /* If this endpoint is already in use, and the upper layers are trying 1887 * to add it again without dropping it, reject the addition. 1888 */ 1889 if (virt_dev->eps[ep_index].ring && 1890 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1891 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1892 "without dropping it.\n", 1893 (unsigned int) ep->desc.bEndpointAddress); 1894 return -EINVAL; 1895 } 1896 1897 /* If the HCD has already noted the endpoint is enabled, 1898 * ignore this request. 1899 */ 1900 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1901 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1902 __func__, ep); 1903 return 0; 1904 } 1905 1906 /* 1907 * Configuration and alternate setting changes must be done in 1908 * process context, not interrupt context (or so documenation 1909 * for usb_set_interface() and usb_set_configuration() claim). 1910 */ 1911 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1912 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1913 __func__, ep->desc.bEndpointAddress); 1914 return -ENOMEM; 1915 } 1916 1917 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1918 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1919 1920 /* If xhci_endpoint_disable() was called for this endpoint, but the 1921 * xHC hasn't been notified yet through the check_bandwidth() call, 1922 * this re-adds a new state for the endpoint from the new endpoint 1923 * descriptors. We must drop and re-add this endpoint, so we leave the 1924 * drop flags alone. 1925 */ 1926 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1927 1928 /* Store the usb_device pointer for later use */ 1929 ep->hcpriv = udev; 1930 1931 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1932 trace_xhci_add_endpoint(ep_ctx); 1933 1934 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1935 (unsigned int) ep->desc.bEndpointAddress, 1936 udev->slot_id, 1937 (unsigned int) new_drop_flags, 1938 (unsigned int) new_add_flags); 1939 return 0; 1940 } 1941 EXPORT_SYMBOL_GPL(xhci_add_endpoint); 1942 1943 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1944 { 1945 struct xhci_input_control_ctx *ctrl_ctx; 1946 struct xhci_ep_ctx *ep_ctx; 1947 struct xhci_slot_ctx *slot_ctx; 1948 int i; 1949 1950 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1951 if (!ctrl_ctx) { 1952 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1953 __func__); 1954 return; 1955 } 1956 1957 /* When a device's add flag and drop flag are zero, any subsequent 1958 * configure endpoint command will leave that endpoint's state 1959 * untouched. Make sure we don't leave any old state in the input 1960 * endpoint contexts. 1961 */ 1962 ctrl_ctx->drop_flags = 0; 1963 ctrl_ctx->add_flags = 0; 1964 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1965 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1966 /* Endpoint 0 is always valid */ 1967 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1968 for (i = 1; i < 31; i++) { 1969 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1970 ep_ctx->ep_info = 0; 1971 ep_ctx->ep_info2 = 0; 1972 ep_ctx->deq = 0; 1973 ep_ctx->tx_info = 0; 1974 } 1975 } 1976 1977 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1978 struct usb_device *udev, u32 *cmd_status) 1979 { 1980 int ret; 1981 1982 switch (*cmd_status) { 1983 case COMP_COMMAND_ABORTED: 1984 case COMP_COMMAND_RING_STOPPED: 1985 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1986 ret = -ETIME; 1987 break; 1988 case COMP_RESOURCE_ERROR: 1989 dev_warn(&udev->dev, 1990 "Not enough host controller resources for new device state.\n"); 1991 ret = -ENOMEM; 1992 /* FIXME: can we allocate more resources for the HC? */ 1993 break; 1994 case COMP_BANDWIDTH_ERROR: 1995 case COMP_SECONDARY_BANDWIDTH_ERROR: 1996 dev_warn(&udev->dev, 1997 "Not enough bandwidth for new device state.\n"); 1998 ret = -ENOSPC; 1999 /* FIXME: can we go back to the old state? */ 2000 break; 2001 case COMP_TRB_ERROR: 2002 /* the HCD set up something wrong */ 2003 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 2004 "add flag = 1, " 2005 "and endpoint is not disabled.\n"); 2006 ret = -EINVAL; 2007 break; 2008 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2009 dev_warn(&udev->dev, 2010 "ERROR: Incompatible device for endpoint configure command.\n"); 2011 ret = -ENODEV; 2012 break; 2013 case COMP_SUCCESS: 2014 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2015 "Successful Endpoint Configure command"); 2016 ret = 0; 2017 break; 2018 default: 2019 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2020 *cmd_status); 2021 ret = -EINVAL; 2022 break; 2023 } 2024 return ret; 2025 } 2026 2027 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 2028 struct usb_device *udev, u32 *cmd_status) 2029 { 2030 int ret; 2031 2032 switch (*cmd_status) { 2033 case COMP_COMMAND_ABORTED: 2034 case COMP_COMMAND_RING_STOPPED: 2035 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 2036 ret = -ETIME; 2037 break; 2038 case COMP_PARAMETER_ERROR: 2039 dev_warn(&udev->dev, 2040 "WARN: xHCI driver setup invalid evaluate context command.\n"); 2041 ret = -EINVAL; 2042 break; 2043 case COMP_SLOT_NOT_ENABLED_ERROR: 2044 dev_warn(&udev->dev, 2045 "WARN: slot not enabled for evaluate context command.\n"); 2046 ret = -EINVAL; 2047 break; 2048 case COMP_CONTEXT_STATE_ERROR: 2049 dev_warn(&udev->dev, 2050 "WARN: invalid context state for evaluate context command.\n"); 2051 ret = -EINVAL; 2052 break; 2053 case COMP_INCOMPATIBLE_DEVICE_ERROR: 2054 dev_warn(&udev->dev, 2055 "ERROR: Incompatible device for evaluate context command.\n"); 2056 ret = -ENODEV; 2057 break; 2058 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 2059 /* Max Exit Latency too large error */ 2060 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 2061 ret = -EINVAL; 2062 break; 2063 case COMP_SUCCESS: 2064 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2065 "Successful evaluate context command"); 2066 ret = 0; 2067 break; 2068 default: 2069 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 2070 *cmd_status); 2071 ret = -EINVAL; 2072 break; 2073 } 2074 return ret; 2075 } 2076 2077 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 2078 struct xhci_input_control_ctx *ctrl_ctx) 2079 { 2080 u32 valid_add_flags; 2081 u32 valid_drop_flags; 2082 2083 /* Ignore the slot flag (bit 0), and the default control endpoint flag 2084 * (bit 1). The default control endpoint is added during the Address 2085 * Device command and is never removed until the slot is disabled. 2086 */ 2087 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2088 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2089 2090 /* Use hweight32 to count the number of ones in the add flags, or 2091 * number of endpoints added. Don't count endpoints that are changed 2092 * (both added and dropped). 2093 */ 2094 return hweight32(valid_add_flags) - 2095 hweight32(valid_add_flags & valid_drop_flags); 2096 } 2097 2098 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 2099 struct xhci_input_control_ctx *ctrl_ctx) 2100 { 2101 u32 valid_add_flags; 2102 u32 valid_drop_flags; 2103 2104 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 2105 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 2106 2107 return hweight32(valid_drop_flags) - 2108 hweight32(valid_add_flags & valid_drop_flags); 2109 } 2110 2111 /* 2112 * We need to reserve the new number of endpoints before the configure endpoint 2113 * command completes. We can't subtract the dropped endpoints from the number 2114 * of active endpoints until the command completes because we can oversubscribe 2115 * the host in this case: 2116 * 2117 * - the first configure endpoint command drops more endpoints than it adds 2118 * - a second configure endpoint command that adds more endpoints is queued 2119 * - the first configure endpoint command fails, so the config is unchanged 2120 * - the second command may succeed, even though there isn't enough resources 2121 * 2122 * Must be called with xhci->lock held. 2123 */ 2124 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 2125 struct xhci_input_control_ctx *ctrl_ctx) 2126 { 2127 u32 added_eps; 2128 2129 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2130 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 2131 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2132 "Not enough ep ctxs: " 2133 "%u active, need to add %u, limit is %u.", 2134 xhci->num_active_eps, added_eps, 2135 xhci->limit_active_eps); 2136 return -ENOMEM; 2137 } 2138 xhci->num_active_eps += added_eps; 2139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2140 "Adding %u ep ctxs, %u now active.", added_eps, 2141 xhci->num_active_eps); 2142 return 0; 2143 } 2144 2145 /* 2146 * The configure endpoint was failed by the xHC for some other reason, so we 2147 * need to revert the resources that failed configuration would have used. 2148 * 2149 * Must be called with xhci->lock held. 2150 */ 2151 static void xhci_free_host_resources(struct xhci_hcd *xhci, 2152 struct xhci_input_control_ctx *ctrl_ctx) 2153 { 2154 u32 num_failed_eps; 2155 2156 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 2157 xhci->num_active_eps -= num_failed_eps; 2158 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2159 "Removing %u failed ep ctxs, %u now active.", 2160 num_failed_eps, 2161 xhci->num_active_eps); 2162 } 2163 2164 /* 2165 * Now that the command has completed, clean up the active endpoint count by 2166 * subtracting out the endpoints that were dropped (but not changed). 2167 * 2168 * Must be called with xhci->lock held. 2169 */ 2170 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 2171 struct xhci_input_control_ctx *ctrl_ctx) 2172 { 2173 u32 num_dropped_eps; 2174 2175 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2176 xhci->num_active_eps -= num_dropped_eps; 2177 if (num_dropped_eps) 2178 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2179 "Removing %u dropped ep ctxs, %u now active.", 2180 num_dropped_eps, 2181 xhci->num_active_eps); 2182 } 2183 2184 static unsigned int xhci_get_block_size(struct usb_device *udev) 2185 { 2186 switch (udev->speed) { 2187 case USB_SPEED_LOW: 2188 case USB_SPEED_FULL: 2189 return FS_BLOCK; 2190 case USB_SPEED_HIGH: 2191 return HS_BLOCK; 2192 case USB_SPEED_SUPER: 2193 case USB_SPEED_SUPER_PLUS: 2194 return SS_BLOCK; 2195 case USB_SPEED_UNKNOWN: 2196 case USB_SPEED_WIRELESS: 2197 default: 2198 /* Should never happen */ 2199 return 1; 2200 } 2201 } 2202 2203 static unsigned int 2204 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2205 { 2206 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2207 return LS_OVERHEAD; 2208 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2209 return FS_OVERHEAD; 2210 return HS_OVERHEAD; 2211 } 2212 2213 /* If we are changing a LS/FS device under a HS hub, 2214 * make sure (if we are activating a new TT) that the HS bus has enough 2215 * bandwidth for this new TT. 2216 */ 2217 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2218 struct xhci_virt_device *virt_dev, 2219 int old_active_eps) 2220 { 2221 struct xhci_interval_bw_table *bw_table; 2222 struct xhci_tt_bw_info *tt_info; 2223 2224 /* Find the bandwidth table for the root port this TT is attached to. */ 2225 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2226 tt_info = virt_dev->tt_info; 2227 /* If this TT already had active endpoints, the bandwidth for this TT 2228 * has already been added. Removing all periodic endpoints (and thus 2229 * making the TT enactive) will only decrease the bandwidth used. 2230 */ 2231 if (old_active_eps) 2232 return 0; 2233 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2234 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2235 return -ENOMEM; 2236 return 0; 2237 } 2238 /* Not sure why we would have no new active endpoints... 2239 * 2240 * Maybe because of an Evaluate Context change for a hub update or a 2241 * control endpoint 0 max packet size change? 2242 * FIXME: skip the bandwidth calculation in that case. 2243 */ 2244 return 0; 2245 } 2246 2247 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2248 struct xhci_virt_device *virt_dev) 2249 { 2250 unsigned int bw_reserved; 2251 2252 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2253 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2254 return -ENOMEM; 2255 2256 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2257 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2258 return -ENOMEM; 2259 2260 return 0; 2261 } 2262 2263 /* 2264 * This algorithm is a very conservative estimate of the worst-case scheduling 2265 * scenario for any one interval. The hardware dynamically schedules the 2266 * packets, so we can't tell which microframe could be the limiting factor in 2267 * the bandwidth scheduling. This only takes into account periodic endpoints. 2268 * 2269 * Obviously, we can't solve an NP complete problem to find the minimum worst 2270 * case scenario. Instead, we come up with an estimate that is no less than 2271 * the worst case bandwidth used for any one microframe, but may be an 2272 * over-estimate. 2273 * 2274 * We walk the requirements for each endpoint by interval, starting with the 2275 * smallest interval, and place packets in the schedule where there is only one 2276 * possible way to schedule packets for that interval. In order to simplify 2277 * this algorithm, we record the largest max packet size for each interval, and 2278 * assume all packets will be that size. 2279 * 2280 * For interval 0, we obviously must schedule all packets for each interval. 2281 * The bandwidth for interval 0 is just the amount of data to be transmitted 2282 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2283 * the number of packets). 2284 * 2285 * For interval 1, we have two possible microframes to schedule those packets 2286 * in. For this algorithm, if we can schedule the same number of packets for 2287 * each possible scheduling opportunity (each microframe), we will do so. The 2288 * remaining number of packets will be saved to be transmitted in the gaps in 2289 * the next interval's scheduling sequence. 2290 * 2291 * As we move those remaining packets to be scheduled with interval 2 packets, 2292 * we have to double the number of remaining packets to transmit. This is 2293 * because the intervals are actually powers of 2, and we would be transmitting 2294 * the previous interval's packets twice in this interval. We also have to be 2295 * sure that when we look at the largest max packet size for this interval, we 2296 * also look at the largest max packet size for the remaining packets and take 2297 * the greater of the two. 2298 * 2299 * The algorithm continues to evenly distribute packets in each scheduling 2300 * opportunity, and push the remaining packets out, until we get to the last 2301 * interval. Then those packets and their associated overhead are just added 2302 * to the bandwidth used. 2303 */ 2304 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2305 struct xhci_virt_device *virt_dev, 2306 int old_active_eps) 2307 { 2308 unsigned int bw_reserved; 2309 unsigned int max_bandwidth; 2310 unsigned int bw_used; 2311 unsigned int block_size; 2312 struct xhci_interval_bw_table *bw_table; 2313 unsigned int packet_size = 0; 2314 unsigned int overhead = 0; 2315 unsigned int packets_transmitted = 0; 2316 unsigned int packets_remaining = 0; 2317 unsigned int i; 2318 2319 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2320 return xhci_check_ss_bw(xhci, virt_dev); 2321 2322 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2323 max_bandwidth = HS_BW_LIMIT; 2324 /* Convert percent of bus BW reserved to blocks reserved */ 2325 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2326 } else { 2327 max_bandwidth = FS_BW_LIMIT; 2328 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2329 } 2330 2331 bw_table = virt_dev->bw_table; 2332 /* We need to translate the max packet size and max ESIT payloads into 2333 * the units the hardware uses. 2334 */ 2335 block_size = xhci_get_block_size(virt_dev->udev); 2336 2337 /* If we are manipulating a LS/FS device under a HS hub, double check 2338 * that the HS bus has enough bandwidth if we are activing a new TT. 2339 */ 2340 if (virt_dev->tt_info) { 2341 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2342 "Recalculating BW for rootport %u", 2343 virt_dev->real_port); 2344 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2345 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2346 "newly activated TT.\n"); 2347 return -ENOMEM; 2348 } 2349 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2350 "Recalculating BW for TT slot %u port %u", 2351 virt_dev->tt_info->slot_id, 2352 virt_dev->tt_info->ttport); 2353 } else { 2354 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2355 "Recalculating BW for rootport %u", 2356 virt_dev->real_port); 2357 } 2358 2359 /* Add in how much bandwidth will be used for interval zero, or the 2360 * rounded max ESIT payload + number of packets * largest overhead. 2361 */ 2362 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2363 bw_table->interval_bw[0].num_packets * 2364 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2365 2366 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2367 unsigned int bw_added; 2368 unsigned int largest_mps; 2369 unsigned int interval_overhead; 2370 2371 /* 2372 * How many packets could we transmit in this interval? 2373 * If packets didn't fit in the previous interval, we will need 2374 * to transmit that many packets twice within this interval. 2375 */ 2376 packets_remaining = 2 * packets_remaining + 2377 bw_table->interval_bw[i].num_packets; 2378 2379 /* Find the largest max packet size of this or the previous 2380 * interval. 2381 */ 2382 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2383 largest_mps = 0; 2384 else { 2385 struct xhci_virt_ep *virt_ep; 2386 struct list_head *ep_entry; 2387 2388 ep_entry = bw_table->interval_bw[i].endpoints.next; 2389 virt_ep = list_entry(ep_entry, 2390 struct xhci_virt_ep, bw_endpoint_list); 2391 /* Convert to blocks, rounding up */ 2392 largest_mps = DIV_ROUND_UP( 2393 virt_ep->bw_info.max_packet_size, 2394 block_size); 2395 } 2396 if (largest_mps > packet_size) 2397 packet_size = largest_mps; 2398 2399 /* Use the larger overhead of this or the previous interval. */ 2400 interval_overhead = xhci_get_largest_overhead( 2401 &bw_table->interval_bw[i]); 2402 if (interval_overhead > overhead) 2403 overhead = interval_overhead; 2404 2405 /* How many packets can we evenly distribute across 2406 * (1 << (i + 1)) possible scheduling opportunities? 2407 */ 2408 packets_transmitted = packets_remaining >> (i + 1); 2409 2410 /* Add in the bandwidth used for those scheduled packets */ 2411 bw_added = packets_transmitted * (overhead + packet_size); 2412 2413 /* How many packets do we have remaining to transmit? */ 2414 packets_remaining = packets_remaining % (1 << (i + 1)); 2415 2416 /* What largest max packet size should those packets have? */ 2417 /* If we've transmitted all packets, don't carry over the 2418 * largest packet size. 2419 */ 2420 if (packets_remaining == 0) { 2421 packet_size = 0; 2422 overhead = 0; 2423 } else if (packets_transmitted > 0) { 2424 /* Otherwise if we do have remaining packets, and we've 2425 * scheduled some packets in this interval, take the 2426 * largest max packet size from endpoints with this 2427 * interval. 2428 */ 2429 packet_size = largest_mps; 2430 overhead = interval_overhead; 2431 } 2432 /* Otherwise carry over packet_size and overhead from the last 2433 * time we had a remainder. 2434 */ 2435 bw_used += bw_added; 2436 if (bw_used > max_bandwidth) { 2437 xhci_warn(xhci, "Not enough bandwidth. " 2438 "Proposed: %u, Max: %u\n", 2439 bw_used, max_bandwidth); 2440 return -ENOMEM; 2441 } 2442 } 2443 /* 2444 * Ok, we know we have some packets left over after even-handedly 2445 * scheduling interval 15. We don't know which microframes they will 2446 * fit into, so we over-schedule and say they will be scheduled every 2447 * microframe. 2448 */ 2449 if (packets_remaining > 0) 2450 bw_used += overhead + packet_size; 2451 2452 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2453 unsigned int port_index = virt_dev->real_port - 1; 2454 2455 /* OK, we're manipulating a HS device attached to a 2456 * root port bandwidth domain. Include the number of active TTs 2457 * in the bandwidth used. 2458 */ 2459 bw_used += TT_HS_OVERHEAD * 2460 xhci->rh_bw[port_index].num_active_tts; 2461 } 2462 2463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2464 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2465 "Available: %u " "percent", 2466 bw_used, max_bandwidth, bw_reserved, 2467 (max_bandwidth - bw_used - bw_reserved) * 100 / 2468 max_bandwidth); 2469 2470 bw_used += bw_reserved; 2471 if (bw_used > max_bandwidth) { 2472 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2473 bw_used, max_bandwidth); 2474 return -ENOMEM; 2475 } 2476 2477 bw_table->bw_used = bw_used; 2478 return 0; 2479 } 2480 2481 static bool xhci_is_async_ep(unsigned int ep_type) 2482 { 2483 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2484 ep_type != ISOC_IN_EP && 2485 ep_type != INT_IN_EP); 2486 } 2487 2488 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2489 { 2490 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2491 } 2492 2493 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2494 { 2495 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2496 2497 if (ep_bw->ep_interval == 0) 2498 return SS_OVERHEAD_BURST + 2499 (ep_bw->mult * ep_bw->num_packets * 2500 (SS_OVERHEAD + mps)); 2501 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2502 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2503 1 << ep_bw->ep_interval); 2504 2505 } 2506 2507 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2508 struct xhci_bw_info *ep_bw, 2509 struct xhci_interval_bw_table *bw_table, 2510 struct usb_device *udev, 2511 struct xhci_virt_ep *virt_ep, 2512 struct xhci_tt_bw_info *tt_info) 2513 { 2514 struct xhci_interval_bw *interval_bw; 2515 int normalized_interval; 2516 2517 if (xhci_is_async_ep(ep_bw->type)) 2518 return; 2519 2520 if (udev->speed >= USB_SPEED_SUPER) { 2521 if (xhci_is_sync_in_ep(ep_bw->type)) 2522 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2523 xhci_get_ss_bw_consumed(ep_bw); 2524 else 2525 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2526 xhci_get_ss_bw_consumed(ep_bw); 2527 return; 2528 } 2529 2530 /* SuperSpeed endpoints never get added to intervals in the table, so 2531 * this check is only valid for HS/FS/LS devices. 2532 */ 2533 if (list_empty(&virt_ep->bw_endpoint_list)) 2534 return; 2535 /* For LS/FS devices, we need to translate the interval expressed in 2536 * microframes to frames. 2537 */ 2538 if (udev->speed == USB_SPEED_HIGH) 2539 normalized_interval = ep_bw->ep_interval; 2540 else 2541 normalized_interval = ep_bw->ep_interval - 3; 2542 2543 if (normalized_interval == 0) 2544 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2545 interval_bw = &bw_table->interval_bw[normalized_interval]; 2546 interval_bw->num_packets -= ep_bw->num_packets; 2547 switch (udev->speed) { 2548 case USB_SPEED_LOW: 2549 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2550 break; 2551 case USB_SPEED_FULL: 2552 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2553 break; 2554 case USB_SPEED_HIGH: 2555 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2556 break; 2557 case USB_SPEED_SUPER: 2558 case USB_SPEED_SUPER_PLUS: 2559 case USB_SPEED_UNKNOWN: 2560 case USB_SPEED_WIRELESS: 2561 /* Should never happen because only LS/FS/HS endpoints will get 2562 * added to the endpoint list. 2563 */ 2564 return; 2565 } 2566 if (tt_info) 2567 tt_info->active_eps -= 1; 2568 list_del_init(&virt_ep->bw_endpoint_list); 2569 } 2570 2571 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2572 struct xhci_bw_info *ep_bw, 2573 struct xhci_interval_bw_table *bw_table, 2574 struct usb_device *udev, 2575 struct xhci_virt_ep *virt_ep, 2576 struct xhci_tt_bw_info *tt_info) 2577 { 2578 struct xhci_interval_bw *interval_bw; 2579 struct xhci_virt_ep *smaller_ep; 2580 int normalized_interval; 2581 2582 if (xhci_is_async_ep(ep_bw->type)) 2583 return; 2584 2585 if (udev->speed == USB_SPEED_SUPER) { 2586 if (xhci_is_sync_in_ep(ep_bw->type)) 2587 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2588 xhci_get_ss_bw_consumed(ep_bw); 2589 else 2590 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2591 xhci_get_ss_bw_consumed(ep_bw); 2592 return; 2593 } 2594 2595 /* For LS/FS devices, we need to translate the interval expressed in 2596 * microframes to frames. 2597 */ 2598 if (udev->speed == USB_SPEED_HIGH) 2599 normalized_interval = ep_bw->ep_interval; 2600 else 2601 normalized_interval = ep_bw->ep_interval - 3; 2602 2603 if (normalized_interval == 0) 2604 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2605 interval_bw = &bw_table->interval_bw[normalized_interval]; 2606 interval_bw->num_packets += ep_bw->num_packets; 2607 switch (udev->speed) { 2608 case USB_SPEED_LOW: 2609 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2610 break; 2611 case USB_SPEED_FULL: 2612 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2613 break; 2614 case USB_SPEED_HIGH: 2615 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2616 break; 2617 case USB_SPEED_SUPER: 2618 case USB_SPEED_SUPER_PLUS: 2619 case USB_SPEED_UNKNOWN: 2620 case USB_SPEED_WIRELESS: 2621 /* Should never happen because only LS/FS/HS endpoints will get 2622 * added to the endpoint list. 2623 */ 2624 return; 2625 } 2626 2627 if (tt_info) 2628 tt_info->active_eps += 1; 2629 /* Insert the endpoint into the list, largest max packet size first. */ 2630 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2631 bw_endpoint_list) { 2632 if (ep_bw->max_packet_size >= 2633 smaller_ep->bw_info.max_packet_size) { 2634 /* Add the new ep before the smaller endpoint */ 2635 list_add_tail(&virt_ep->bw_endpoint_list, 2636 &smaller_ep->bw_endpoint_list); 2637 return; 2638 } 2639 } 2640 /* Add the new endpoint at the end of the list. */ 2641 list_add_tail(&virt_ep->bw_endpoint_list, 2642 &interval_bw->endpoints); 2643 } 2644 2645 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2646 struct xhci_virt_device *virt_dev, 2647 int old_active_eps) 2648 { 2649 struct xhci_root_port_bw_info *rh_bw_info; 2650 if (!virt_dev->tt_info) 2651 return; 2652 2653 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2654 if (old_active_eps == 0 && 2655 virt_dev->tt_info->active_eps != 0) { 2656 rh_bw_info->num_active_tts += 1; 2657 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2658 } else if (old_active_eps != 0 && 2659 virt_dev->tt_info->active_eps == 0) { 2660 rh_bw_info->num_active_tts -= 1; 2661 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2662 } 2663 } 2664 2665 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2666 struct xhci_virt_device *virt_dev, 2667 struct xhci_container_ctx *in_ctx) 2668 { 2669 struct xhci_bw_info ep_bw_info[31]; 2670 int i; 2671 struct xhci_input_control_ctx *ctrl_ctx; 2672 int old_active_eps = 0; 2673 2674 if (virt_dev->tt_info) 2675 old_active_eps = virt_dev->tt_info->active_eps; 2676 2677 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2678 if (!ctrl_ctx) { 2679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2680 __func__); 2681 return -ENOMEM; 2682 } 2683 2684 for (i = 0; i < 31; i++) { 2685 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2686 continue; 2687 2688 /* Make a copy of the BW info in case we need to revert this */ 2689 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2690 sizeof(ep_bw_info[i])); 2691 /* Drop the endpoint from the interval table if the endpoint is 2692 * being dropped or changed. 2693 */ 2694 if (EP_IS_DROPPED(ctrl_ctx, i)) 2695 xhci_drop_ep_from_interval_table(xhci, 2696 &virt_dev->eps[i].bw_info, 2697 virt_dev->bw_table, 2698 virt_dev->udev, 2699 &virt_dev->eps[i], 2700 virt_dev->tt_info); 2701 } 2702 /* Overwrite the information stored in the endpoints' bw_info */ 2703 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2704 for (i = 0; i < 31; i++) { 2705 /* Add any changed or added endpoints to the interval table */ 2706 if (EP_IS_ADDED(ctrl_ctx, i)) 2707 xhci_add_ep_to_interval_table(xhci, 2708 &virt_dev->eps[i].bw_info, 2709 virt_dev->bw_table, 2710 virt_dev->udev, 2711 &virt_dev->eps[i], 2712 virt_dev->tt_info); 2713 } 2714 2715 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2716 /* Ok, this fits in the bandwidth we have. 2717 * Update the number of active TTs. 2718 */ 2719 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2720 return 0; 2721 } 2722 2723 /* We don't have enough bandwidth for this, revert the stored info. */ 2724 for (i = 0; i < 31; i++) { 2725 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2726 continue; 2727 2728 /* Drop the new copies of any added or changed endpoints from 2729 * the interval table. 2730 */ 2731 if (EP_IS_ADDED(ctrl_ctx, i)) { 2732 xhci_drop_ep_from_interval_table(xhci, 2733 &virt_dev->eps[i].bw_info, 2734 virt_dev->bw_table, 2735 virt_dev->udev, 2736 &virt_dev->eps[i], 2737 virt_dev->tt_info); 2738 } 2739 /* Revert the endpoint back to its old information */ 2740 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2741 sizeof(ep_bw_info[i])); 2742 /* Add any changed or dropped endpoints back into the table */ 2743 if (EP_IS_DROPPED(ctrl_ctx, i)) 2744 xhci_add_ep_to_interval_table(xhci, 2745 &virt_dev->eps[i].bw_info, 2746 virt_dev->bw_table, 2747 virt_dev->udev, 2748 &virt_dev->eps[i], 2749 virt_dev->tt_info); 2750 } 2751 return -ENOMEM; 2752 } 2753 2754 2755 /* Issue a configure endpoint command or evaluate context command 2756 * and wait for it to finish. 2757 */ 2758 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2759 struct usb_device *udev, 2760 struct xhci_command *command, 2761 bool ctx_change, bool must_succeed) 2762 { 2763 int ret; 2764 unsigned long flags; 2765 struct xhci_input_control_ctx *ctrl_ctx; 2766 struct xhci_virt_device *virt_dev; 2767 struct xhci_slot_ctx *slot_ctx; 2768 2769 if (!command) 2770 return -EINVAL; 2771 2772 spin_lock_irqsave(&xhci->lock, flags); 2773 2774 if (xhci->xhc_state & XHCI_STATE_DYING) { 2775 spin_unlock_irqrestore(&xhci->lock, flags); 2776 return -ESHUTDOWN; 2777 } 2778 2779 virt_dev = xhci->devs[udev->slot_id]; 2780 2781 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2782 if (!ctrl_ctx) { 2783 spin_unlock_irqrestore(&xhci->lock, flags); 2784 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2785 __func__); 2786 return -ENOMEM; 2787 } 2788 2789 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2790 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2791 spin_unlock_irqrestore(&xhci->lock, flags); 2792 xhci_warn(xhci, "Not enough host resources, " 2793 "active endpoint contexts = %u\n", 2794 xhci->num_active_eps); 2795 return -ENOMEM; 2796 } 2797 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2798 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2799 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2800 xhci_free_host_resources(xhci, ctrl_ctx); 2801 spin_unlock_irqrestore(&xhci->lock, flags); 2802 xhci_warn(xhci, "Not enough bandwidth\n"); 2803 return -ENOMEM; 2804 } 2805 2806 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 2807 2808 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx); 2809 trace_xhci_configure_endpoint(slot_ctx); 2810 2811 if (!ctx_change) 2812 ret = xhci_queue_configure_endpoint(xhci, command, 2813 command->in_ctx->dma, 2814 udev->slot_id, must_succeed); 2815 else 2816 ret = xhci_queue_evaluate_context(xhci, command, 2817 command->in_ctx->dma, 2818 udev->slot_id, must_succeed); 2819 if (ret < 0) { 2820 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2821 xhci_free_host_resources(xhci, ctrl_ctx); 2822 spin_unlock_irqrestore(&xhci->lock, flags); 2823 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2824 "FIXME allocate a new ring segment"); 2825 return -ENOMEM; 2826 } 2827 xhci_ring_cmd_db(xhci); 2828 spin_unlock_irqrestore(&xhci->lock, flags); 2829 2830 /* Wait for the configure endpoint command to complete */ 2831 wait_for_completion(command->completion); 2832 2833 if (!ctx_change) 2834 ret = xhci_configure_endpoint_result(xhci, udev, 2835 &command->status); 2836 else 2837 ret = xhci_evaluate_context_result(xhci, udev, 2838 &command->status); 2839 2840 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2841 spin_lock_irqsave(&xhci->lock, flags); 2842 /* If the command failed, remove the reserved resources. 2843 * Otherwise, clean up the estimate to include dropped eps. 2844 */ 2845 if (ret) 2846 xhci_free_host_resources(xhci, ctrl_ctx); 2847 else 2848 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2849 spin_unlock_irqrestore(&xhci->lock, flags); 2850 } 2851 return ret; 2852 } 2853 2854 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2855 struct xhci_virt_device *vdev, int i) 2856 { 2857 struct xhci_virt_ep *ep = &vdev->eps[i]; 2858 2859 if (ep->ep_state & EP_HAS_STREAMS) { 2860 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2861 xhci_get_endpoint_address(i)); 2862 xhci_free_stream_info(xhci, ep->stream_info); 2863 ep->stream_info = NULL; 2864 ep->ep_state &= ~EP_HAS_STREAMS; 2865 } 2866 } 2867 2868 /* Called after one or more calls to xhci_add_endpoint() or 2869 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2870 * to call xhci_reset_bandwidth(). 2871 * 2872 * Since we are in the middle of changing either configuration or 2873 * installing a new alt setting, the USB core won't allow URBs to be 2874 * enqueued for any endpoint on the old config or interface. Nothing 2875 * else should be touching the xhci->devs[slot_id] structure, so we 2876 * don't need to take the xhci->lock for manipulating that. 2877 */ 2878 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2879 { 2880 int i; 2881 int ret = 0; 2882 struct xhci_hcd *xhci; 2883 struct xhci_virt_device *virt_dev; 2884 struct xhci_input_control_ctx *ctrl_ctx; 2885 struct xhci_slot_ctx *slot_ctx; 2886 struct xhci_command *command; 2887 2888 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2889 if (ret <= 0) 2890 return ret; 2891 xhci = hcd_to_xhci(hcd); 2892 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2893 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2894 return -ENODEV; 2895 2896 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2897 virt_dev = xhci->devs[udev->slot_id]; 2898 2899 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 2900 if (!command) 2901 return -ENOMEM; 2902 2903 command->in_ctx = virt_dev->in_ctx; 2904 2905 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2906 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2907 if (!ctrl_ctx) { 2908 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2909 __func__); 2910 ret = -ENOMEM; 2911 goto command_cleanup; 2912 } 2913 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2914 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2915 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2916 2917 /* Don't issue the command if there's no endpoints to update. */ 2918 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2919 ctrl_ctx->drop_flags == 0) { 2920 ret = 0; 2921 goto command_cleanup; 2922 } 2923 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2924 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2925 for (i = 31; i >= 1; i--) { 2926 __le32 le32 = cpu_to_le32(BIT(i)); 2927 2928 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2929 || (ctrl_ctx->add_flags & le32) || i == 1) { 2930 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2931 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2932 break; 2933 } 2934 } 2935 2936 ret = xhci_configure_endpoint(xhci, udev, command, 2937 false, false); 2938 if (ret) 2939 /* Callee should call reset_bandwidth() */ 2940 goto command_cleanup; 2941 2942 /* Free any rings that were dropped, but not changed. */ 2943 for (i = 1; i < 31; i++) { 2944 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2945 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2946 xhci_free_endpoint_ring(xhci, virt_dev, i); 2947 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2948 } 2949 } 2950 xhci_zero_in_ctx(xhci, virt_dev); 2951 /* 2952 * Install any rings for completely new endpoints or changed endpoints, 2953 * and free any old rings from changed endpoints. 2954 */ 2955 for (i = 1; i < 31; i++) { 2956 if (!virt_dev->eps[i].new_ring) 2957 continue; 2958 /* Only free the old ring if it exists. 2959 * It may not if this is the first add of an endpoint. 2960 */ 2961 if (virt_dev->eps[i].ring) { 2962 xhci_free_endpoint_ring(xhci, virt_dev, i); 2963 } 2964 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2965 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2966 virt_dev->eps[i].new_ring = NULL; 2967 xhci_debugfs_create_endpoint(xhci, virt_dev, i); 2968 } 2969 command_cleanup: 2970 kfree(command->completion); 2971 kfree(command); 2972 2973 return ret; 2974 } 2975 EXPORT_SYMBOL_GPL(xhci_check_bandwidth); 2976 2977 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2978 { 2979 struct xhci_hcd *xhci; 2980 struct xhci_virt_device *virt_dev; 2981 int i, ret; 2982 2983 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2984 if (ret <= 0) 2985 return; 2986 xhci = hcd_to_xhci(hcd); 2987 2988 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2989 virt_dev = xhci->devs[udev->slot_id]; 2990 /* Free any rings allocated for added endpoints */ 2991 for (i = 0; i < 31; i++) { 2992 if (virt_dev->eps[i].new_ring) { 2993 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 2994 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2995 virt_dev->eps[i].new_ring = NULL; 2996 } 2997 } 2998 xhci_zero_in_ctx(xhci, virt_dev); 2999 } 3000 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth); 3001 3002 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 3003 struct xhci_container_ctx *in_ctx, 3004 struct xhci_container_ctx *out_ctx, 3005 struct xhci_input_control_ctx *ctrl_ctx, 3006 u32 add_flags, u32 drop_flags) 3007 { 3008 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 3009 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 3010 xhci_slot_copy(xhci, in_ctx, out_ctx); 3011 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3012 } 3013 3014 static void xhci_endpoint_disable(struct usb_hcd *hcd, 3015 struct usb_host_endpoint *host_ep) 3016 { 3017 struct xhci_hcd *xhci; 3018 struct xhci_virt_device *vdev; 3019 struct xhci_virt_ep *ep; 3020 struct usb_device *udev; 3021 unsigned long flags; 3022 unsigned int ep_index; 3023 3024 xhci = hcd_to_xhci(hcd); 3025 rescan: 3026 spin_lock_irqsave(&xhci->lock, flags); 3027 3028 udev = (struct usb_device *)host_ep->hcpriv; 3029 if (!udev || !udev->slot_id) 3030 goto done; 3031 3032 vdev = xhci->devs[udev->slot_id]; 3033 if (!vdev) 3034 goto done; 3035 3036 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3037 ep = &vdev->eps[ep_index]; 3038 3039 /* wait for hub_tt_work to finish clearing hub TT */ 3040 if (ep->ep_state & EP_CLEARING_TT) { 3041 spin_unlock_irqrestore(&xhci->lock, flags); 3042 schedule_timeout_uninterruptible(1); 3043 goto rescan; 3044 } 3045 3046 if (ep->ep_state) 3047 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n", 3048 ep->ep_state); 3049 done: 3050 host_ep->hcpriv = NULL; 3051 spin_unlock_irqrestore(&xhci->lock, flags); 3052 } 3053 3054 /* 3055 * Called after usb core issues a clear halt control message. 3056 * The host side of the halt should already be cleared by a reset endpoint 3057 * command issued when the STALL event was received. 3058 * 3059 * The reset endpoint command may only be issued to endpoints in the halted 3060 * state. For software that wishes to reset the data toggle or sequence number 3061 * of an endpoint that isn't in the halted state this function will issue a 3062 * configure endpoint command with the Drop and Add bits set for the target 3063 * endpoint. Refer to the additional note in xhci spcification section 4.6.8. 3064 */ 3065 3066 static void xhci_endpoint_reset(struct usb_hcd *hcd, 3067 struct usb_host_endpoint *host_ep) 3068 { 3069 struct xhci_hcd *xhci; 3070 struct usb_device *udev; 3071 struct xhci_virt_device *vdev; 3072 struct xhci_virt_ep *ep; 3073 struct xhci_input_control_ctx *ctrl_ctx; 3074 struct xhci_command *stop_cmd, *cfg_cmd; 3075 unsigned int ep_index; 3076 unsigned long flags; 3077 u32 ep_flag; 3078 int err; 3079 3080 xhci = hcd_to_xhci(hcd); 3081 if (!host_ep->hcpriv) 3082 return; 3083 udev = (struct usb_device *) host_ep->hcpriv; 3084 vdev = xhci->devs[udev->slot_id]; 3085 3086 /* 3087 * vdev may be lost due to xHC restore error and re-initialization 3088 * during S3/S4 resume. A new vdev will be allocated later by 3089 * xhci_discover_or_reset_device() 3090 */ 3091 if (!udev->slot_id || !vdev) 3092 return; 3093 ep_index = xhci_get_endpoint_index(&host_ep->desc); 3094 ep = &vdev->eps[ep_index]; 3095 3096 /* Bail out if toggle is already being cleared by a endpoint reset */ 3097 spin_lock_irqsave(&xhci->lock, flags); 3098 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) { 3099 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE; 3100 spin_unlock_irqrestore(&xhci->lock, flags); 3101 return; 3102 } 3103 spin_unlock_irqrestore(&xhci->lock, flags); 3104 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */ 3105 if (usb_endpoint_xfer_control(&host_ep->desc) || 3106 usb_endpoint_xfer_isoc(&host_ep->desc)) 3107 return; 3108 3109 ep_flag = xhci_get_endpoint_flag(&host_ep->desc); 3110 3111 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG) 3112 return; 3113 3114 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT); 3115 if (!stop_cmd) 3116 return; 3117 3118 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT); 3119 if (!cfg_cmd) 3120 goto cleanup; 3121 3122 spin_lock_irqsave(&xhci->lock, flags); 3123 3124 /* block queuing new trbs and ringing ep doorbell */ 3125 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE; 3126 3127 /* 3128 * Make sure endpoint ring is empty before resetting the toggle/seq. 3129 * Driver is required to synchronously cancel all transfer request. 3130 * Stop the endpoint to force xHC to update the output context 3131 */ 3132 3133 if (!list_empty(&ep->ring->td_list)) { 3134 dev_err(&udev->dev, "EP not empty, refuse reset\n"); 3135 spin_unlock_irqrestore(&xhci->lock, flags); 3136 xhci_free_command(xhci, cfg_cmd); 3137 goto cleanup; 3138 } 3139 3140 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, 3141 ep_index, 0); 3142 if (err < 0) { 3143 spin_unlock_irqrestore(&xhci->lock, flags); 3144 xhci_free_command(xhci, cfg_cmd); 3145 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ", 3146 __func__, err); 3147 goto cleanup; 3148 } 3149 3150 xhci_ring_cmd_db(xhci); 3151 spin_unlock_irqrestore(&xhci->lock, flags); 3152 3153 wait_for_completion(stop_cmd->completion); 3154 3155 spin_lock_irqsave(&xhci->lock, flags); 3156 3157 /* config ep command clears toggle if add and drop ep flags are set */ 3158 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx); 3159 if (!ctrl_ctx) { 3160 spin_unlock_irqrestore(&xhci->lock, flags); 3161 xhci_free_command(xhci, cfg_cmd); 3162 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3163 __func__); 3164 goto cleanup; 3165 } 3166 3167 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx, 3168 ctrl_ctx, ep_flag, ep_flag); 3169 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index); 3170 3171 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma, 3172 udev->slot_id, false); 3173 if (err < 0) { 3174 spin_unlock_irqrestore(&xhci->lock, flags); 3175 xhci_free_command(xhci, cfg_cmd); 3176 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ", 3177 __func__, err); 3178 goto cleanup; 3179 } 3180 3181 xhci_ring_cmd_db(xhci); 3182 spin_unlock_irqrestore(&xhci->lock, flags); 3183 3184 wait_for_completion(cfg_cmd->completion); 3185 3186 xhci_free_command(xhci, cfg_cmd); 3187 cleanup: 3188 xhci_free_command(xhci, stop_cmd); 3189 spin_lock_irqsave(&xhci->lock, flags); 3190 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE) 3191 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE; 3192 spin_unlock_irqrestore(&xhci->lock, flags); 3193 } 3194 3195 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 3196 struct usb_device *udev, struct usb_host_endpoint *ep, 3197 unsigned int slot_id) 3198 { 3199 int ret; 3200 unsigned int ep_index; 3201 unsigned int ep_state; 3202 3203 if (!ep) 3204 return -EINVAL; 3205 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 3206 if (ret <= 0) 3207 return ret ? ret : -EINVAL; 3208 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 3209 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 3210 " descriptor for ep 0x%x does not support streams\n", 3211 ep->desc.bEndpointAddress); 3212 return -EINVAL; 3213 } 3214 3215 ep_index = xhci_get_endpoint_index(&ep->desc); 3216 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3217 if (ep_state & EP_HAS_STREAMS || 3218 ep_state & EP_GETTING_STREAMS) { 3219 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 3220 "already has streams set up.\n", 3221 ep->desc.bEndpointAddress); 3222 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 3223 "dynamic stream context array reallocation.\n"); 3224 return -EINVAL; 3225 } 3226 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 3227 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 3228 "endpoint 0x%x; URBs are pending.\n", 3229 ep->desc.bEndpointAddress); 3230 return -EINVAL; 3231 } 3232 return 0; 3233 } 3234 3235 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 3236 unsigned int *num_streams, unsigned int *num_stream_ctxs) 3237 { 3238 unsigned int max_streams; 3239 3240 /* The stream context array size must be a power of two */ 3241 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 3242 /* 3243 * Find out how many primary stream array entries the host controller 3244 * supports. Later we may use secondary stream arrays (similar to 2nd 3245 * level page entries), but that's an optional feature for xHCI host 3246 * controllers. xHCs must support at least 4 stream IDs. 3247 */ 3248 max_streams = HCC_MAX_PSA(xhci->hcc_params); 3249 if (*num_stream_ctxs > max_streams) { 3250 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 3251 max_streams); 3252 *num_stream_ctxs = max_streams; 3253 *num_streams = max_streams; 3254 } 3255 } 3256 3257 /* Returns an error code if one of the endpoint already has streams. 3258 * This does not change any data structures, it only checks and gathers 3259 * information. 3260 */ 3261 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3262 struct usb_device *udev, 3263 struct usb_host_endpoint **eps, unsigned int num_eps, 3264 unsigned int *num_streams, u32 *changed_ep_bitmask) 3265 { 3266 unsigned int max_streams; 3267 unsigned int endpoint_flag; 3268 int i; 3269 int ret; 3270 3271 for (i = 0; i < num_eps; i++) { 3272 ret = xhci_check_streams_endpoint(xhci, udev, 3273 eps[i], udev->slot_id); 3274 if (ret < 0) 3275 return ret; 3276 3277 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3278 if (max_streams < (*num_streams - 1)) { 3279 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3280 eps[i]->desc.bEndpointAddress, 3281 max_streams); 3282 *num_streams = max_streams+1; 3283 } 3284 3285 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3286 if (*changed_ep_bitmask & endpoint_flag) 3287 return -EINVAL; 3288 *changed_ep_bitmask |= endpoint_flag; 3289 } 3290 return 0; 3291 } 3292 3293 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3294 struct usb_device *udev, 3295 struct usb_host_endpoint **eps, unsigned int num_eps) 3296 { 3297 u32 changed_ep_bitmask = 0; 3298 unsigned int slot_id; 3299 unsigned int ep_index; 3300 unsigned int ep_state; 3301 int i; 3302 3303 slot_id = udev->slot_id; 3304 if (!xhci->devs[slot_id]) 3305 return 0; 3306 3307 for (i = 0; i < num_eps; i++) { 3308 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3309 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3310 /* Are streams already being freed for the endpoint? */ 3311 if (ep_state & EP_GETTING_NO_STREAMS) { 3312 xhci_warn(xhci, "WARN Can't disable streams for " 3313 "endpoint 0x%x, " 3314 "streams are being disabled already\n", 3315 eps[i]->desc.bEndpointAddress); 3316 return 0; 3317 } 3318 /* Are there actually any streams to free? */ 3319 if (!(ep_state & EP_HAS_STREAMS) && 3320 !(ep_state & EP_GETTING_STREAMS)) { 3321 xhci_warn(xhci, "WARN Can't disable streams for " 3322 "endpoint 0x%x, " 3323 "streams are already disabled!\n", 3324 eps[i]->desc.bEndpointAddress); 3325 xhci_warn(xhci, "WARN xhci_free_streams() called " 3326 "with non-streams endpoint\n"); 3327 return 0; 3328 } 3329 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3330 } 3331 return changed_ep_bitmask; 3332 } 3333 3334 /* 3335 * The USB device drivers use this function (through the HCD interface in USB 3336 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3337 * coordinate mass storage command queueing across multiple endpoints (basically 3338 * a stream ID == a task ID). 3339 * 3340 * Setting up streams involves allocating the same size stream context array 3341 * for each endpoint and issuing a configure endpoint command for all endpoints. 3342 * 3343 * Don't allow the call to succeed if one endpoint only supports one stream 3344 * (which means it doesn't support streams at all). 3345 * 3346 * Drivers may get less stream IDs than they asked for, if the host controller 3347 * hardware or endpoints claim they can't support the number of requested 3348 * stream IDs. 3349 */ 3350 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3351 struct usb_host_endpoint **eps, unsigned int num_eps, 3352 unsigned int num_streams, gfp_t mem_flags) 3353 { 3354 int i, ret; 3355 struct xhci_hcd *xhci; 3356 struct xhci_virt_device *vdev; 3357 struct xhci_command *config_cmd; 3358 struct xhci_input_control_ctx *ctrl_ctx; 3359 unsigned int ep_index; 3360 unsigned int num_stream_ctxs; 3361 unsigned int max_packet; 3362 unsigned long flags; 3363 u32 changed_ep_bitmask = 0; 3364 3365 if (!eps) 3366 return -EINVAL; 3367 3368 /* Add one to the number of streams requested to account for 3369 * stream 0 that is reserved for xHCI usage. 3370 */ 3371 num_streams += 1; 3372 xhci = hcd_to_xhci(hcd); 3373 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3374 num_streams); 3375 3376 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3377 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3378 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3379 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3380 return -ENOSYS; 3381 } 3382 3383 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 3384 if (!config_cmd) 3385 return -ENOMEM; 3386 3387 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3388 if (!ctrl_ctx) { 3389 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3390 __func__); 3391 xhci_free_command(xhci, config_cmd); 3392 return -ENOMEM; 3393 } 3394 3395 /* Check to make sure all endpoints are not already configured for 3396 * streams. While we're at it, find the maximum number of streams that 3397 * all the endpoints will support and check for duplicate endpoints. 3398 */ 3399 spin_lock_irqsave(&xhci->lock, flags); 3400 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3401 num_eps, &num_streams, &changed_ep_bitmask); 3402 if (ret < 0) { 3403 xhci_free_command(xhci, config_cmd); 3404 spin_unlock_irqrestore(&xhci->lock, flags); 3405 return ret; 3406 } 3407 if (num_streams <= 1) { 3408 xhci_warn(xhci, "WARN: endpoints can't handle " 3409 "more than one stream.\n"); 3410 xhci_free_command(xhci, config_cmd); 3411 spin_unlock_irqrestore(&xhci->lock, flags); 3412 return -EINVAL; 3413 } 3414 vdev = xhci->devs[udev->slot_id]; 3415 /* Mark each endpoint as being in transition, so 3416 * xhci_urb_enqueue() will reject all URBs. 3417 */ 3418 for (i = 0; i < num_eps; i++) { 3419 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3420 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3421 } 3422 spin_unlock_irqrestore(&xhci->lock, flags); 3423 3424 /* Setup internal data structures and allocate HW data structures for 3425 * streams (but don't install the HW structures in the input context 3426 * until we're sure all memory allocation succeeded). 3427 */ 3428 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3429 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3430 num_stream_ctxs, num_streams); 3431 3432 for (i = 0; i < num_eps; i++) { 3433 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3434 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3435 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3436 num_stream_ctxs, 3437 num_streams, 3438 max_packet, mem_flags); 3439 if (!vdev->eps[ep_index].stream_info) 3440 goto cleanup; 3441 /* Set maxPstreams in endpoint context and update deq ptr to 3442 * point to stream context array. FIXME 3443 */ 3444 } 3445 3446 /* Set up the input context for a configure endpoint command. */ 3447 for (i = 0; i < num_eps; i++) { 3448 struct xhci_ep_ctx *ep_ctx; 3449 3450 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3451 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3452 3453 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3454 vdev->out_ctx, ep_index); 3455 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3456 vdev->eps[ep_index].stream_info); 3457 } 3458 /* Tell the HW to drop its old copy of the endpoint context info 3459 * and add the updated copy from the input context. 3460 */ 3461 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3462 vdev->out_ctx, ctrl_ctx, 3463 changed_ep_bitmask, changed_ep_bitmask); 3464 3465 /* Issue and wait for the configure endpoint command */ 3466 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3467 false, false); 3468 3469 /* xHC rejected the configure endpoint command for some reason, so we 3470 * leave the old ring intact and free our internal streams data 3471 * structure. 3472 */ 3473 if (ret < 0) 3474 goto cleanup; 3475 3476 spin_lock_irqsave(&xhci->lock, flags); 3477 for (i = 0; i < num_eps; i++) { 3478 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3479 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3480 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3481 udev->slot_id, ep_index); 3482 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3483 } 3484 xhci_free_command(xhci, config_cmd); 3485 spin_unlock_irqrestore(&xhci->lock, flags); 3486 3487 for (i = 0; i < num_eps; i++) { 3488 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3489 xhci_debugfs_create_stream_files(xhci, vdev, ep_index); 3490 } 3491 /* Subtract 1 for stream 0, which drivers can't use */ 3492 return num_streams - 1; 3493 3494 cleanup: 3495 /* If it didn't work, free the streams! */ 3496 for (i = 0; i < num_eps; i++) { 3497 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3498 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3499 vdev->eps[ep_index].stream_info = NULL; 3500 /* FIXME Unset maxPstreams in endpoint context and 3501 * update deq ptr to point to normal string ring. 3502 */ 3503 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3504 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3505 xhci_endpoint_zero(xhci, vdev, eps[i]); 3506 } 3507 xhci_free_command(xhci, config_cmd); 3508 return -ENOMEM; 3509 } 3510 3511 /* Transition the endpoint from using streams to being a "normal" endpoint 3512 * without streams. 3513 * 3514 * Modify the endpoint context state, submit a configure endpoint command, 3515 * and free all endpoint rings for streams if that completes successfully. 3516 */ 3517 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3518 struct usb_host_endpoint **eps, unsigned int num_eps, 3519 gfp_t mem_flags) 3520 { 3521 int i, ret; 3522 struct xhci_hcd *xhci; 3523 struct xhci_virt_device *vdev; 3524 struct xhci_command *command; 3525 struct xhci_input_control_ctx *ctrl_ctx; 3526 unsigned int ep_index; 3527 unsigned long flags; 3528 u32 changed_ep_bitmask; 3529 3530 xhci = hcd_to_xhci(hcd); 3531 vdev = xhci->devs[udev->slot_id]; 3532 3533 /* Set up a configure endpoint command to remove the streams rings */ 3534 spin_lock_irqsave(&xhci->lock, flags); 3535 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3536 udev, eps, num_eps); 3537 if (changed_ep_bitmask == 0) { 3538 spin_unlock_irqrestore(&xhci->lock, flags); 3539 return -EINVAL; 3540 } 3541 3542 /* Use the xhci_command structure from the first endpoint. We may have 3543 * allocated too many, but the driver may call xhci_free_streams() for 3544 * each endpoint it grouped into one call to xhci_alloc_streams(). 3545 */ 3546 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3547 command = vdev->eps[ep_index].stream_info->free_streams_command; 3548 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3549 if (!ctrl_ctx) { 3550 spin_unlock_irqrestore(&xhci->lock, flags); 3551 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3552 __func__); 3553 return -EINVAL; 3554 } 3555 3556 for (i = 0; i < num_eps; i++) { 3557 struct xhci_ep_ctx *ep_ctx; 3558 3559 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3560 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3561 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3562 EP_GETTING_NO_STREAMS; 3563 3564 xhci_endpoint_copy(xhci, command->in_ctx, 3565 vdev->out_ctx, ep_index); 3566 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3567 &vdev->eps[ep_index]); 3568 } 3569 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3570 vdev->out_ctx, ctrl_ctx, 3571 changed_ep_bitmask, changed_ep_bitmask); 3572 spin_unlock_irqrestore(&xhci->lock, flags); 3573 3574 /* Issue and wait for the configure endpoint command, 3575 * which must succeed. 3576 */ 3577 ret = xhci_configure_endpoint(xhci, udev, command, 3578 false, true); 3579 3580 /* xHC rejected the configure endpoint command for some reason, so we 3581 * leave the streams rings intact. 3582 */ 3583 if (ret < 0) 3584 return ret; 3585 3586 spin_lock_irqsave(&xhci->lock, flags); 3587 for (i = 0; i < num_eps; i++) { 3588 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3589 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3590 vdev->eps[ep_index].stream_info = NULL; 3591 /* FIXME Unset maxPstreams in endpoint context and 3592 * update deq ptr to point to normal string ring. 3593 */ 3594 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3595 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3596 } 3597 spin_unlock_irqrestore(&xhci->lock, flags); 3598 3599 return 0; 3600 } 3601 3602 /* 3603 * Deletes endpoint resources for endpoints that were active before a Reset 3604 * Device command, or a Disable Slot command. The Reset Device command leaves 3605 * the control endpoint intact, whereas the Disable Slot command deletes it. 3606 * 3607 * Must be called with xhci->lock held. 3608 */ 3609 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3610 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3611 { 3612 int i; 3613 unsigned int num_dropped_eps = 0; 3614 unsigned int drop_flags = 0; 3615 3616 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3617 if (virt_dev->eps[i].ring) { 3618 drop_flags |= 1 << i; 3619 num_dropped_eps++; 3620 } 3621 } 3622 xhci->num_active_eps -= num_dropped_eps; 3623 if (num_dropped_eps) 3624 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3625 "Dropped %u ep ctxs, flags = 0x%x, " 3626 "%u now active.", 3627 num_dropped_eps, drop_flags, 3628 xhci->num_active_eps); 3629 } 3630 3631 /* 3632 * This submits a Reset Device Command, which will set the device state to 0, 3633 * set the device address to 0, and disable all the endpoints except the default 3634 * control endpoint. The USB core should come back and call 3635 * xhci_address_device(), and then re-set up the configuration. If this is 3636 * called because of a usb_reset_and_verify_device(), then the old alternate 3637 * settings will be re-installed through the normal bandwidth allocation 3638 * functions. 3639 * 3640 * Wait for the Reset Device command to finish. Remove all structures 3641 * associated with the endpoints that were disabled. Clear the input device 3642 * structure? Reset the control endpoint 0 max packet size? 3643 * 3644 * If the virt_dev to be reset does not exist or does not match the udev, 3645 * it means the device is lost, possibly due to the xHC restore error and 3646 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3647 * re-allocate the device. 3648 */ 3649 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3650 struct usb_device *udev) 3651 { 3652 int ret, i; 3653 unsigned long flags; 3654 struct xhci_hcd *xhci; 3655 unsigned int slot_id; 3656 struct xhci_virt_device *virt_dev; 3657 struct xhci_command *reset_device_cmd; 3658 struct xhci_slot_ctx *slot_ctx; 3659 int old_active_eps = 0; 3660 3661 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3662 if (ret <= 0) 3663 return ret; 3664 xhci = hcd_to_xhci(hcd); 3665 slot_id = udev->slot_id; 3666 virt_dev = xhci->devs[slot_id]; 3667 if (!virt_dev) { 3668 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3669 "not exist. Re-allocate the device\n", slot_id); 3670 ret = xhci_alloc_dev(hcd, udev); 3671 if (ret == 1) 3672 return 0; 3673 else 3674 return -EINVAL; 3675 } 3676 3677 if (virt_dev->tt_info) 3678 old_active_eps = virt_dev->tt_info->active_eps; 3679 3680 if (virt_dev->udev != udev) { 3681 /* If the virt_dev and the udev does not match, this virt_dev 3682 * may belong to another udev. 3683 * Re-allocate the device. 3684 */ 3685 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3686 "not match the udev. Re-allocate the device\n", 3687 slot_id); 3688 ret = xhci_alloc_dev(hcd, udev); 3689 if (ret == 1) 3690 return 0; 3691 else 3692 return -EINVAL; 3693 } 3694 3695 /* If device is not setup, there is no point in resetting it */ 3696 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3697 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3698 SLOT_STATE_DISABLED) 3699 return 0; 3700 3701 trace_xhci_discover_or_reset_device(slot_ctx); 3702 3703 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3704 /* Allocate the command structure that holds the struct completion. 3705 * Assume we're in process context, since the normal device reset 3706 * process has to wait for the device anyway. Storage devices are 3707 * reset as part of error handling, so use GFP_NOIO instead of 3708 * GFP_KERNEL. 3709 */ 3710 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO); 3711 if (!reset_device_cmd) { 3712 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3713 return -ENOMEM; 3714 } 3715 3716 /* Attempt to submit the Reset Device command to the command ring */ 3717 spin_lock_irqsave(&xhci->lock, flags); 3718 3719 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3720 if (ret) { 3721 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3722 spin_unlock_irqrestore(&xhci->lock, flags); 3723 goto command_cleanup; 3724 } 3725 xhci_ring_cmd_db(xhci); 3726 spin_unlock_irqrestore(&xhci->lock, flags); 3727 3728 /* Wait for the Reset Device command to finish */ 3729 wait_for_completion(reset_device_cmd->completion); 3730 3731 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3732 * unless we tried to reset a slot ID that wasn't enabled, 3733 * or the device wasn't in the addressed or configured state. 3734 */ 3735 ret = reset_device_cmd->status; 3736 switch (ret) { 3737 case COMP_COMMAND_ABORTED: 3738 case COMP_COMMAND_RING_STOPPED: 3739 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3740 ret = -ETIME; 3741 goto command_cleanup; 3742 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3743 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3744 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3745 slot_id, 3746 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3747 xhci_dbg(xhci, "Not freeing device rings.\n"); 3748 /* Don't treat this as an error. May change my mind later. */ 3749 ret = 0; 3750 goto command_cleanup; 3751 case COMP_SUCCESS: 3752 xhci_dbg(xhci, "Successful reset device command.\n"); 3753 break; 3754 default: 3755 if (xhci_is_vendor_info_code(xhci, ret)) 3756 break; 3757 xhci_warn(xhci, "Unknown completion code %u for " 3758 "reset device command.\n", ret); 3759 ret = -EINVAL; 3760 goto command_cleanup; 3761 } 3762 3763 /* Free up host controller endpoint resources */ 3764 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3765 spin_lock_irqsave(&xhci->lock, flags); 3766 /* Don't delete the default control endpoint resources */ 3767 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3768 spin_unlock_irqrestore(&xhci->lock, flags); 3769 } 3770 3771 /* Everything but endpoint 0 is disabled, so free the rings. */ 3772 for (i = 1; i < 31; i++) { 3773 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3774 3775 if (ep->ep_state & EP_HAS_STREAMS) { 3776 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3777 xhci_get_endpoint_address(i)); 3778 xhci_free_stream_info(xhci, ep->stream_info); 3779 ep->stream_info = NULL; 3780 ep->ep_state &= ~EP_HAS_STREAMS; 3781 } 3782 3783 if (ep->ring) { 3784 xhci_debugfs_remove_endpoint(xhci, virt_dev, i); 3785 xhci_free_endpoint_ring(xhci, virt_dev, i); 3786 } 3787 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3788 xhci_drop_ep_from_interval_table(xhci, 3789 &virt_dev->eps[i].bw_info, 3790 virt_dev->bw_table, 3791 udev, 3792 &virt_dev->eps[i], 3793 virt_dev->tt_info); 3794 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3795 } 3796 /* If necessary, update the number of active TTs on this root port */ 3797 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3798 virt_dev->flags = 0; 3799 ret = 0; 3800 3801 command_cleanup: 3802 xhci_free_command(xhci, reset_device_cmd); 3803 return ret; 3804 } 3805 3806 /* 3807 * At this point, the struct usb_device is about to go away, the device has 3808 * disconnected, and all traffic has been stopped and the endpoints have been 3809 * disabled. Free any HC data structures associated with that device. 3810 */ 3811 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3812 { 3813 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3814 struct xhci_virt_device *virt_dev; 3815 struct xhci_slot_ctx *slot_ctx; 3816 unsigned long flags; 3817 int i, ret; 3818 3819 /* 3820 * We called pm_runtime_get_noresume when the device was attached. 3821 * Decrement the counter here to allow controller to runtime suspend 3822 * if no devices remain. 3823 */ 3824 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3825 pm_runtime_put_noidle(hcd->self.controller); 3826 3827 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3828 /* If the host is halted due to driver unload, we still need to free the 3829 * device. 3830 */ 3831 if (ret <= 0 && ret != -ENODEV) 3832 return; 3833 3834 virt_dev = xhci->devs[udev->slot_id]; 3835 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3836 trace_xhci_free_dev(slot_ctx); 3837 3838 /* Stop any wayward timer functions (which may grab the lock) */ 3839 for (i = 0; i < 31; i++) 3840 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3841 virt_dev->udev = NULL; 3842 xhci_disable_slot(xhci, udev->slot_id); 3843 3844 spin_lock_irqsave(&xhci->lock, flags); 3845 xhci_free_virt_device(xhci, udev->slot_id); 3846 spin_unlock_irqrestore(&xhci->lock, flags); 3847 3848 } 3849 3850 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id) 3851 { 3852 struct xhci_command *command; 3853 unsigned long flags; 3854 u32 state; 3855 int ret; 3856 3857 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3858 if (!command) 3859 return -ENOMEM; 3860 3861 xhci_debugfs_remove_slot(xhci, slot_id); 3862 3863 spin_lock_irqsave(&xhci->lock, flags); 3864 /* Don't disable the slot if the host controller is dead. */ 3865 state = readl(&xhci->op_regs->status); 3866 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3867 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3868 spin_unlock_irqrestore(&xhci->lock, flags); 3869 kfree(command); 3870 return -ENODEV; 3871 } 3872 3873 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3874 slot_id); 3875 if (ret) { 3876 spin_unlock_irqrestore(&xhci->lock, flags); 3877 kfree(command); 3878 return ret; 3879 } 3880 xhci_ring_cmd_db(xhci); 3881 spin_unlock_irqrestore(&xhci->lock, flags); 3882 3883 wait_for_completion(command->completion); 3884 3885 if (command->status != COMP_SUCCESS) 3886 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n", 3887 slot_id, command->status); 3888 3889 xhci_free_command(xhci, command); 3890 3891 return 0; 3892 } 3893 3894 /* 3895 * Checks if we have enough host controller resources for the default control 3896 * endpoint. 3897 * 3898 * Must be called with xhci->lock held. 3899 */ 3900 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3901 { 3902 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3903 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3904 "Not enough ep ctxs: " 3905 "%u active, need to add 1, limit is %u.", 3906 xhci->num_active_eps, xhci->limit_active_eps); 3907 return -ENOMEM; 3908 } 3909 xhci->num_active_eps += 1; 3910 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3911 "Adding 1 ep ctx, %u now active.", 3912 xhci->num_active_eps); 3913 return 0; 3914 } 3915 3916 3917 /* 3918 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3919 * timed out, or allocating memory failed. Returns 1 on success. 3920 */ 3921 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3922 { 3923 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3924 struct xhci_virt_device *vdev; 3925 struct xhci_slot_ctx *slot_ctx; 3926 unsigned long flags; 3927 int ret, slot_id; 3928 struct xhci_command *command; 3929 3930 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 3931 if (!command) 3932 return 0; 3933 3934 spin_lock_irqsave(&xhci->lock, flags); 3935 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3936 if (ret) { 3937 spin_unlock_irqrestore(&xhci->lock, flags); 3938 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3939 xhci_free_command(xhci, command); 3940 return 0; 3941 } 3942 xhci_ring_cmd_db(xhci); 3943 spin_unlock_irqrestore(&xhci->lock, flags); 3944 3945 wait_for_completion(command->completion); 3946 slot_id = command->slot_id; 3947 3948 if (!slot_id || command->status != COMP_SUCCESS) { 3949 xhci_err(xhci, "Error while assigning device slot ID: %s\n", 3950 xhci_trb_comp_code_string(command->status)); 3951 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3952 HCS_MAX_SLOTS( 3953 readl(&xhci->cap_regs->hcs_params1))); 3954 xhci_free_command(xhci, command); 3955 return 0; 3956 } 3957 3958 xhci_free_command(xhci, command); 3959 3960 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3961 spin_lock_irqsave(&xhci->lock, flags); 3962 ret = xhci_reserve_host_control_ep_resources(xhci); 3963 if (ret) { 3964 spin_unlock_irqrestore(&xhci->lock, flags); 3965 xhci_warn(xhci, "Not enough host resources, " 3966 "active endpoint contexts = %u\n", 3967 xhci->num_active_eps); 3968 goto disable_slot; 3969 } 3970 spin_unlock_irqrestore(&xhci->lock, flags); 3971 } 3972 /* Use GFP_NOIO, since this function can be called from 3973 * xhci_discover_or_reset_device(), which may be called as part of 3974 * mass storage driver error handling. 3975 */ 3976 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3977 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3978 goto disable_slot; 3979 } 3980 vdev = xhci->devs[slot_id]; 3981 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3982 trace_xhci_alloc_dev(slot_ctx); 3983 3984 udev->slot_id = slot_id; 3985 3986 xhci_debugfs_create_slot(xhci, slot_id); 3987 3988 /* 3989 * If resetting upon resume, we can't put the controller into runtime 3990 * suspend if there is a device attached. 3991 */ 3992 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3993 pm_runtime_get_noresume(hcd->self.controller); 3994 3995 /* Is this a LS or FS device under a HS hub? */ 3996 /* Hub or peripherial? */ 3997 return 1; 3998 3999 disable_slot: 4000 xhci_disable_slot(xhci, udev->slot_id); 4001 xhci_free_virt_device(xhci, udev->slot_id); 4002 4003 return 0; 4004 } 4005 4006 /* 4007 * Issue an Address Device command and optionally send a corresponding 4008 * SetAddress request to the device. 4009 */ 4010 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 4011 enum xhci_setup_dev setup) 4012 { 4013 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 4014 unsigned long flags; 4015 struct xhci_virt_device *virt_dev; 4016 int ret = 0; 4017 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4018 struct xhci_slot_ctx *slot_ctx; 4019 struct xhci_input_control_ctx *ctrl_ctx; 4020 u64 temp_64; 4021 struct xhci_command *command = NULL; 4022 4023 mutex_lock(&xhci->mutex); 4024 4025 if (xhci->xhc_state) { /* dying, removing or halted */ 4026 ret = -ESHUTDOWN; 4027 goto out; 4028 } 4029 4030 if (!udev->slot_id) { 4031 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4032 "Bad Slot ID %d", udev->slot_id); 4033 ret = -EINVAL; 4034 goto out; 4035 } 4036 4037 virt_dev = xhci->devs[udev->slot_id]; 4038 4039 if (WARN_ON(!virt_dev)) { 4040 /* 4041 * In plug/unplug torture test with an NEC controller, 4042 * a zero-dereference was observed once due to virt_dev = 0. 4043 * Print useful debug rather than crash if it is observed again! 4044 */ 4045 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 4046 udev->slot_id); 4047 ret = -EINVAL; 4048 goto out; 4049 } 4050 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4051 trace_xhci_setup_device_slot(slot_ctx); 4052 4053 if (setup == SETUP_CONTEXT_ONLY) { 4054 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 4055 SLOT_STATE_DEFAULT) { 4056 xhci_dbg(xhci, "Slot already in default state\n"); 4057 goto out; 4058 } 4059 } 4060 4061 command = xhci_alloc_command(xhci, true, GFP_KERNEL); 4062 if (!command) { 4063 ret = -ENOMEM; 4064 goto out; 4065 } 4066 4067 command->in_ctx = virt_dev->in_ctx; 4068 4069 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 4070 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 4071 if (!ctrl_ctx) { 4072 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4073 __func__); 4074 ret = -EINVAL; 4075 goto out; 4076 } 4077 /* 4078 * If this is the first Set Address since device plug-in or 4079 * virt_device realloaction after a resume with an xHCI power loss, 4080 * then set up the slot context. 4081 */ 4082 if (!slot_ctx->dev_info) 4083 xhci_setup_addressable_virt_dev(xhci, udev); 4084 /* Otherwise, update the control endpoint ring enqueue pointer. */ 4085 else 4086 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 4087 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 4088 ctrl_ctx->drop_flags = 0; 4089 4090 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4091 le32_to_cpu(slot_ctx->dev_info) >> 27); 4092 4093 trace_xhci_address_ctrl_ctx(ctrl_ctx); 4094 spin_lock_irqsave(&xhci->lock, flags); 4095 trace_xhci_setup_device(virt_dev); 4096 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 4097 udev->slot_id, setup); 4098 if (ret) { 4099 spin_unlock_irqrestore(&xhci->lock, flags); 4100 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4101 "FIXME: allocate a command ring segment"); 4102 goto out; 4103 } 4104 xhci_ring_cmd_db(xhci); 4105 spin_unlock_irqrestore(&xhci->lock, flags); 4106 4107 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 4108 wait_for_completion(command->completion); 4109 4110 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 4111 * the SetAddress() "recovery interval" required by USB and aborting the 4112 * command on a timeout. 4113 */ 4114 switch (command->status) { 4115 case COMP_COMMAND_ABORTED: 4116 case COMP_COMMAND_RING_STOPPED: 4117 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 4118 ret = -ETIME; 4119 break; 4120 case COMP_CONTEXT_STATE_ERROR: 4121 case COMP_SLOT_NOT_ENABLED_ERROR: 4122 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 4123 act, udev->slot_id); 4124 ret = -EINVAL; 4125 break; 4126 case COMP_USB_TRANSACTION_ERROR: 4127 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 4128 4129 mutex_unlock(&xhci->mutex); 4130 ret = xhci_disable_slot(xhci, udev->slot_id); 4131 xhci_free_virt_device(xhci, udev->slot_id); 4132 if (!ret) 4133 xhci_alloc_dev(hcd, udev); 4134 kfree(command->completion); 4135 kfree(command); 4136 return -EPROTO; 4137 case COMP_INCOMPATIBLE_DEVICE_ERROR: 4138 dev_warn(&udev->dev, 4139 "ERROR: Incompatible device for setup %s command\n", act); 4140 ret = -ENODEV; 4141 break; 4142 case COMP_SUCCESS: 4143 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4144 "Successful setup %s command", act); 4145 break; 4146 default: 4147 xhci_err(xhci, 4148 "ERROR: unexpected setup %s command completion code 0x%x.\n", 4149 act, command->status); 4150 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 4151 ret = -EINVAL; 4152 break; 4153 } 4154 if (ret) 4155 goto out; 4156 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 4157 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4158 "Op regs DCBAA ptr = %#016llx", temp_64); 4159 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4160 "Slot ID %d dcbaa entry @%p = %#016llx", 4161 udev->slot_id, 4162 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 4163 (unsigned long long) 4164 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 4165 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4166 "Output Context DMA address = %#08llx", 4167 (unsigned long long)virt_dev->out_ctx->dma); 4168 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 4169 le32_to_cpu(slot_ctx->dev_info) >> 27); 4170 /* 4171 * USB core uses address 1 for the roothubs, so we add one to the 4172 * address given back to us by the HC. 4173 */ 4174 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 4175 le32_to_cpu(slot_ctx->dev_info) >> 27); 4176 /* Zero the input context control for later use */ 4177 ctrl_ctx->add_flags = 0; 4178 ctrl_ctx->drop_flags = 0; 4179 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 4180 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4181 4182 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 4183 "Internal device address = %d", 4184 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 4185 out: 4186 mutex_unlock(&xhci->mutex); 4187 if (command) { 4188 kfree(command->completion); 4189 kfree(command); 4190 } 4191 return ret; 4192 } 4193 4194 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 4195 { 4196 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 4197 } 4198 4199 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 4200 { 4201 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 4202 } 4203 4204 /* 4205 * Transfer the port index into real index in the HW port status 4206 * registers. Caculate offset between the port's PORTSC register 4207 * and port status base. Divide the number of per port register 4208 * to get the real index. The raw port number bases 1. 4209 */ 4210 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 4211 { 4212 struct xhci_hub *rhub; 4213 4214 rhub = xhci_get_rhub(hcd); 4215 return rhub->ports[port1 - 1]->hw_portnum + 1; 4216 } 4217 4218 /* 4219 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 4220 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 4221 */ 4222 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 4223 struct usb_device *udev, u16 max_exit_latency) 4224 { 4225 struct xhci_virt_device *virt_dev; 4226 struct xhci_command *command; 4227 struct xhci_input_control_ctx *ctrl_ctx; 4228 struct xhci_slot_ctx *slot_ctx; 4229 unsigned long flags; 4230 int ret; 4231 4232 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL); 4233 if (!command) 4234 return -ENOMEM; 4235 4236 spin_lock_irqsave(&xhci->lock, flags); 4237 4238 virt_dev = xhci->devs[udev->slot_id]; 4239 4240 /* 4241 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 4242 * xHC was re-initialized. Exit latency will be set later after 4243 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 4244 */ 4245 4246 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 4247 spin_unlock_irqrestore(&xhci->lock, flags); 4248 xhci_free_command(xhci, command); 4249 return 0; 4250 } 4251 4252 /* Attempt to issue an Evaluate Context command to change the MEL. */ 4253 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 4254 if (!ctrl_ctx) { 4255 spin_unlock_irqrestore(&xhci->lock, flags); 4256 xhci_free_command(xhci, command); 4257 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4258 __func__); 4259 return -ENOMEM; 4260 } 4261 4262 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 4263 spin_unlock_irqrestore(&xhci->lock, flags); 4264 4265 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4266 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4267 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4268 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4269 slot_ctx->dev_state = 0; 4270 4271 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4272 "Set up evaluate context for LPM MEL change."); 4273 4274 /* Issue and wait for the evaluate context command. */ 4275 ret = xhci_configure_endpoint(xhci, udev, command, 4276 true, true); 4277 4278 if (!ret) { 4279 spin_lock_irqsave(&xhci->lock, flags); 4280 virt_dev->current_mel = max_exit_latency; 4281 spin_unlock_irqrestore(&xhci->lock, flags); 4282 } 4283 4284 xhci_free_command(xhci, command); 4285 4286 return ret; 4287 } 4288 4289 #ifdef CONFIG_PM 4290 4291 /* BESL to HIRD Encoding array for USB2 LPM */ 4292 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4293 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4294 4295 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4296 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4297 struct usb_device *udev) 4298 { 4299 int u2del, besl, besl_host; 4300 int besl_device = 0; 4301 u32 field; 4302 4303 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4304 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4305 4306 if (field & USB_BESL_SUPPORT) { 4307 for (besl_host = 0; besl_host < 16; besl_host++) { 4308 if (xhci_besl_encoding[besl_host] >= u2del) 4309 break; 4310 } 4311 /* Use baseline BESL value as default */ 4312 if (field & USB_BESL_BASELINE_VALID) 4313 besl_device = USB_GET_BESL_BASELINE(field); 4314 else if (field & USB_BESL_DEEP_VALID) 4315 besl_device = USB_GET_BESL_DEEP(field); 4316 } else { 4317 if (u2del <= 50) 4318 besl_host = 0; 4319 else 4320 besl_host = (u2del - 51) / 75 + 1; 4321 } 4322 4323 besl = besl_host + besl_device; 4324 if (besl > 15) 4325 besl = 15; 4326 4327 return besl; 4328 } 4329 4330 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4331 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4332 { 4333 u32 field; 4334 int l1; 4335 int besld = 0; 4336 int hirdm = 0; 4337 4338 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4339 4340 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4341 l1 = udev->l1_params.timeout / 256; 4342 4343 /* device has preferred BESLD */ 4344 if (field & USB_BESL_DEEP_VALID) { 4345 besld = USB_GET_BESL_DEEP(field); 4346 hirdm = 1; 4347 } 4348 4349 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4350 } 4351 4352 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4353 struct usb_device *udev, int enable) 4354 { 4355 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4356 struct xhci_port **ports; 4357 __le32 __iomem *pm_addr, *hlpm_addr; 4358 u32 pm_val, hlpm_val, field; 4359 unsigned int port_num; 4360 unsigned long flags; 4361 int hird, exit_latency; 4362 int ret; 4363 4364 if (xhci->quirks & XHCI_HW_LPM_DISABLE) 4365 return -EPERM; 4366 4367 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4368 !udev->lpm_capable) 4369 return -EPERM; 4370 4371 if (!udev->parent || udev->parent->parent || 4372 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4373 return -EPERM; 4374 4375 if (udev->usb2_hw_lpm_capable != 1) 4376 return -EPERM; 4377 4378 spin_lock_irqsave(&xhci->lock, flags); 4379 4380 ports = xhci->usb2_rhub.ports; 4381 port_num = udev->portnum - 1; 4382 pm_addr = ports[port_num]->addr + PORTPMSC; 4383 pm_val = readl(pm_addr); 4384 hlpm_addr = ports[port_num]->addr + PORTHLPMC; 4385 4386 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4387 enable ? "enable" : "disable", port_num + 1); 4388 4389 if (enable) { 4390 /* Host supports BESL timeout instead of HIRD */ 4391 if (udev->usb2_hw_lpm_besl_capable) { 4392 /* if device doesn't have a preferred BESL value use a 4393 * default one which works with mixed HIRD and BESL 4394 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4395 */ 4396 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4397 if ((field & USB_BESL_SUPPORT) && 4398 (field & USB_BESL_BASELINE_VALID)) 4399 hird = USB_GET_BESL_BASELINE(field); 4400 else 4401 hird = udev->l1_params.besl; 4402 4403 exit_latency = xhci_besl_encoding[hird]; 4404 spin_unlock_irqrestore(&xhci->lock, flags); 4405 4406 ret = xhci_change_max_exit_latency(xhci, udev, 4407 exit_latency); 4408 if (ret < 0) 4409 return ret; 4410 spin_lock_irqsave(&xhci->lock, flags); 4411 4412 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4413 writel(hlpm_val, hlpm_addr); 4414 /* flush write */ 4415 readl(hlpm_addr); 4416 } else { 4417 hird = xhci_calculate_hird_besl(xhci, udev); 4418 } 4419 4420 pm_val &= ~PORT_HIRD_MASK; 4421 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4422 writel(pm_val, pm_addr); 4423 pm_val = readl(pm_addr); 4424 pm_val |= PORT_HLE; 4425 writel(pm_val, pm_addr); 4426 /* flush write */ 4427 readl(pm_addr); 4428 } else { 4429 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4430 writel(pm_val, pm_addr); 4431 /* flush write */ 4432 readl(pm_addr); 4433 if (udev->usb2_hw_lpm_besl_capable) { 4434 spin_unlock_irqrestore(&xhci->lock, flags); 4435 xhci_change_max_exit_latency(xhci, udev, 0); 4436 readl_poll_timeout(ports[port_num]->addr, pm_val, 4437 (pm_val & PORT_PLS_MASK) == XDEV_U0, 4438 100, 10000); 4439 return 0; 4440 } 4441 } 4442 4443 spin_unlock_irqrestore(&xhci->lock, flags); 4444 return 0; 4445 } 4446 4447 /* check if a usb2 port supports a given extened capability protocol 4448 * only USB2 ports extended protocol capability values are cached. 4449 * Return 1 if capability is supported 4450 */ 4451 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4452 unsigned capability) 4453 { 4454 u32 port_offset, port_count; 4455 int i; 4456 4457 for (i = 0; i < xhci->num_ext_caps; i++) { 4458 if (xhci->ext_caps[i] & capability) { 4459 /* port offsets starts at 1 */ 4460 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4461 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4462 if (port >= port_offset && 4463 port < port_offset + port_count) 4464 return 1; 4465 } 4466 } 4467 return 0; 4468 } 4469 4470 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4471 { 4472 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4473 int portnum = udev->portnum - 1; 4474 4475 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable) 4476 return 0; 4477 4478 /* we only support lpm for non-hub device connected to root hub yet */ 4479 if (!udev->parent || udev->parent->parent || 4480 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4481 return 0; 4482 4483 if (xhci->hw_lpm_support == 1 && 4484 xhci_check_usb2_port_capability( 4485 xhci, portnum, XHCI_HLC)) { 4486 udev->usb2_hw_lpm_capable = 1; 4487 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4488 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4489 if (xhci_check_usb2_port_capability(xhci, portnum, 4490 XHCI_BLC)) 4491 udev->usb2_hw_lpm_besl_capable = 1; 4492 } 4493 4494 return 0; 4495 } 4496 4497 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4498 4499 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4500 static unsigned long long xhci_service_interval_to_ns( 4501 struct usb_endpoint_descriptor *desc) 4502 { 4503 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4504 } 4505 4506 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4507 enum usb3_link_state state) 4508 { 4509 unsigned long long sel; 4510 unsigned long long pel; 4511 unsigned int max_sel_pel; 4512 char *state_name; 4513 4514 switch (state) { 4515 case USB3_LPM_U1: 4516 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4517 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4518 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4519 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4520 state_name = "U1"; 4521 break; 4522 case USB3_LPM_U2: 4523 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4524 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4525 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4526 state_name = "U2"; 4527 break; 4528 default: 4529 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4530 __func__); 4531 return USB3_LPM_DISABLED; 4532 } 4533 4534 if (sel <= max_sel_pel && pel <= max_sel_pel) 4535 return USB3_LPM_DEVICE_INITIATED; 4536 4537 if (sel > max_sel_pel) 4538 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4539 "due to long SEL %llu ms\n", 4540 state_name, sel); 4541 else 4542 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4543 "due to long PEL %llu ms\n", 4544 state_name, pel); 4545 return USB3_LPM_DISABLED; 4546 } 4547 4548 /* The U1 timeout should be the maximum of the following values: 4549 * - For control endpoints, U1 system exit latency (SEL) * 3 4550 * - For bulk endpoints, U1 SEL * 5 4551 * - For interrupt endpoints: 4552 * - Notification EPs, U1 SEL * 3 4553 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4554 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4555 */ 4556 static unsigned long long xhci_calculate_intel_u1_timeout( 4557 struct usb_device *udev, 4558 struct usb_endpoint_descriptor *desc) 4559 { 4560 unsigned long long timeout_ns; 4561 int ep_type; 4562 int intr_type; 4563 4564 ep_type = usb_endpoint_type(desc); 4565 switch (ep_type) { 4566 case USB_ENDPOINT_XFER_CONTROL: 4567 timeout_ns = udev->u1_params.sel * 3; 4568 break; 4569 case USB_ENDPOINT_XFER_BULK: 4570 timeout_ns = udev->u1_params.sel * 5; 4571 break; 4572 case USB_ENDPOINT_XFER_INT: 4573 intr_type = usb_endpoint_interrupt_type(desc); 4574 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4575 timeout_ns = udev->u1_params.sel * 3; 4576 break; 4577 } 4578 /* Otherwise the calculation is the same as isoc eps */ 4579 fallthrough; 4580 case USB_ENDPOINT_XFER_ISOC: 4581 timeout_ns = xhci_service_interval_to_ns(desc); 4582 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4583 if (timeout_ns < udev->u1_params.sel * 2) 4584 timeout_ns = udev->u1_params.sel * 2; 4585 break; 4586 default: 4587 return 0; 4588 } 4589 4590 return timeout_ns; 4591 } 4592 4593 /* Returns the hub-encoded U1 timeout value. */ 4594 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4595 struct usb_device *udev, 4596 struct usb_endpoint_descriptor *desc) 4597 { 4598 unsigned long long timeout_ns; 4599 4600 /* Prevent U1 if service interval is shorter than U1 exit latency */ 4601 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4602 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) { 4603 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n"); 4604 return USB3_LPM_DISABLED; 4605 } 4606 } 4607 4608 if (xhci->quirks & XHCI_INTEL_HOST) 4609 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4610 else 4611 timeout_ns = udev->u1_params.sel; 4612 4613 /* The U1 timeout is encoded in 1us intervals. 4614 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4615 */ 4616 if (timeout_ns == USB3_LPM_DISABLED) 4617 timeout_ns = 1; 4618 else 4619 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4620 4621 /* If the necessary timeout value is bigger than what we can set in the 4622 * USB 3.0 hub, we have to disable hub-initiated U1. 4623 */ 4624 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4625 return timeout_ns; 4626 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4627 "due to long timeout %llu ms\n", timeout_ns); 4628 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4629 } 4630 4631 /* The U2 timeout should be the maximum of: 4632 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4633 * - largest bInterval of any active periodic endpoint (to avoid going 4634 * into lower power link states between intervals). 4635 * - the U2 Exit Latency of the device 4636 */ 4637 static unsigned long long xhci_calculate_intel_u2_timeout( 4638 struct usb_device *udev, 4639 struct usb_endpoint_descriptor *desc) 4640 { 4641 unsigned long long timeout_ns; 4642 unsigned long long u2_del_ns; 4643 4644 timeout_ns = 10 * 1000 * 1000; 4645 4646 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4647 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4648 timeout_ns = xhci_service_interval_to_ns(desc); 4649 4650 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4651 if (u2_del_ns > timeout_ns) 4652 timeout_ns = u2_del_ns; 4653 4654 return timeout_ns; 4655 } 4656 4657 /* Returns the hub-encoded U2 timeout value. */ 4658 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4659 struct usb_device *udev, 4660 struct usb_endpoint_descriptor *desc) 4661 { 4662 unsigned long long timeout_ns; 4663 4664 /* Prevent U2 if service interval is shorter than U2 exit latency */ 4665 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) { 4666 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) { 4667 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n"); 4668 return USB3_LPM_DISABLED; 4669 } 4670 } 4671 4672 if (xhci->quirks & XHCI_INTEL_HOST) 4673 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4674 else 4675 timeout_ns = udev->u2_params.sel; 4676 4677 /* The U2 timeout is encoded in 256us intervals */ 4678 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4679 /* If the necessary timeout value is bigger than what we can set in the 4680 * USB 3.0 hub, we have to disable hub-initiated U2. 4681 */ 4682 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4683 return timeout_ns; 4684 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4685 "due to long timeout %llu ms\n", timeout_ns); 4686 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4687 } 4688 4689 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4690 struct usb_device *udev, 4691 struct usb_endpoint_descriptor *desc, 4692 enum usb3_link_state state, 4693 u16 *timeout) 4694 { 4695 if (state == USB3_LPM_U1) 4696 return xhci_calculate_u1_timeout(xhci, udev, desc); 4697 else if (state == USB3_LPM_U2) 4698 return xhci_calculate_u2_timeout(xhci, udev, desc); 4699 4700 return USB3_LPM_DISABLED; 4701 } 4702 4703 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4704 struct usb_device *udev, 4705 struct usb_endpoint_descriptor *desc, 4706 enum usb3_link_state state, 4707 u16 *timeout) 4708 { 4709 u16 alt_timeout; 4710 4711 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4712 desc, state, timeout); 4713 4714 /* If we found we can't enable hub-initiated LPM, and 4715 * the U1 or U2 exit latency was too high to allow 4716 * device-initiated LPM as well, then we will disable LPM 4717 * for this device, so stop searching any further. 4718 */ 4719 if (alt_timeout == USB3_LPM_DISABLED) { 4720 *timeout = alt_timeout; 4721 return -E2BIG; 4722 } 4723 if (alt_timeout > *timeout) 4724 *timeout = alt_timeout; 4725 return 0; 4726 } 4727 4728 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4729 struct usb_device *udev, 4730 struct usb_host_interface *alt, 4731 enum usb3_link_state state, 4732 u16 *timeout) 4733 { 4734 int j; 4735 4736 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4737 if (xhci_update_timeout_for_endpoint(xhci, udev, 4738 &alt->endpoint[j].desc, state, timeout)) 4739 return -E2BIG; 4740 } 4741 return 0; 4742 } 4743 4744 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4745 enum usb3_link_state state) 4746 { 4747 struct usb_device *parent; 4748 unsigned int num_hubs; 4749 4750 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4751 for (parent = udev->parent, num_hubs = 0; parent->parent; 4752 parent = parent->parent) 4753 num_hubs++; 4754 4755 if (num_hubs < 2) 4756 return 0; 4757 4758 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device" 4759 " below second-tier hub.\n"); 4760 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4761 "to decrease power consumption.\n"); 4762 return -E2BIG; 4763 } 4764 4765 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4766 struct usb_device *udev, 4767 enum usb3_link_state state) 4768 { 4769 if (xhci->quirks & XHCI_INTEL_HOST) 4770 return xhci_check_intel_tier_policy(udev, state); 4771 else 4772 return 0; 4773 } 4774 4775 /* Returns the U1 or U2 timeout that should be enabled. 4776 * If the tier check or timeout setting functions return with a non-zero exit 4777 * code, that means the timeout value has been finalized and we shouldn't look 4778 * at any more endpoints. 4779 */ 4780 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4781 struct usb_device *udev, enum usb3_link_state state) 4782 { 4783 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4784 struct usb_host_config *config; 4785 char *state_name; 4786 int i; 4787 u16 timeout = USB3_LPM_DISABLED; 4788 4789 if (state == USB3_LPM_U1) 4790 state_name = "U1"; 4791 else if (state == USB3_LPM_U2) 4792 state_name = "U2"; 4793 else { 4794 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4795 state); 4796 return timeout; 4797 } 4798 4799 /* Gather some information about the currently installed configuration 4800 * and alternate interface settings. 4801 */ 4802 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4803 state, &timeout)) 4804 return timeout; 4805 4806 config = udev->actconfig; 4807 if (!config) 4808 return timeout; 4809 4810 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4811 struct usb_driver *driver; 4812 struct usb_interface *intf = config->interface[i]; 4813 4814 if (!intf) 4815 continue; 4816 4817 /* Check if any currently bound drivers want hub-initiated LPM 4818 * disabled. 4819 */ 4820 if (intf->dev.driver) { 4821 driver = to_usb_driver(intf->dev.driver); 4822 if (driver && driver->disable_hub_initiated_lpm) { 4823 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n", 4824 state_name, driver->name); 4825 timeout = xhci_get_timeout_no_hub_lpm(udev, 4826 state); 4827 if (timeout == USB3_LPM_DISABLED) 4828 return timeout; 4829 } 4830 } 4831 4832 /* Not sure how this could happen... */ 4833 if (!intf->cur_altsetting) 4834 continue; 4835 4836 if (xhci_update_timeout_for_interface(xhci, udev, 4837 intf->cur_altsetting, 4838 state, &timeout)) 4839 return timeout; 4840 } 4841 return timeout; 4842 } 4843 4844 static int calculate_max_exit_latency(struct usb_device *udev, 4845 enum usb3_link_state state_changed, 4846 u16 hub_encoded_timeout) 4847 { 4848 unsigned long long u1_mel_us = 0; 4849 unsigned long long u2_mel_us = 0; 4850 unsigned long long mel_us = 0; 4851 bool disabling_u1; 4852 bool disabling_u2; 4853 bool enabling_u1; 4854 bool enabling_u2; 4855 4856 disabling_u1 = (state_changed == USB3_LPM_U1 && 4857 hub_encoded_timeout == USB3_LPM_DISABLED); 4858 disabling_u2 = (state_changed == USB3_LPM_U2 && 4859 hub_encoded_timeout == USB3_LPM_DISABLED); 4860 4861 enabling_u1 = (state_changed == USB3_LPM_U1 && 4862 hub_encoded_timeout != USB3_LPM_DISABLED); 4863 enabling_u2 = (state_changed == USB3_LPM_U2 && 4864 hub_encoded_timeout != USB3_LPM_DISABLED); 4865 4866 /* If U1 was already enabled and we're not disabling it, 4867 * or we're going to enable U1, account for the U1 max exit latency. 4868 */ 4869 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4870 enabling_u1) 4871 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4872 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4873 enabling_u2) 4874 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4875 4876 mel_us = max(u1_mel_us, u2_mel_us); 4877 4878 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4879 if (mel_us > MAX_EXIT) { 4880 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4881 "is too big.\n", mel_us); 4882 return -E2BIG; 4883 } 4884 return mel_us; 4885 } 4886 4887 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4888 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4889 struct usb_device *udev, enum usb3_link_state state) 4890 { 4891 struct xhci_hcd *xhci; 4892 struct xhci_port *port; 4893 u16 hub_encoded_timeout; 4894 int mel; 4895 int ret; 4896 4897 xhci = hcd_to_xhci(hcd); 4898 /* The LPM timeout values are pretty host-controller specific, so don't 4899 * enable hub-initiated timeouts unless the vendor has provided 4900 * information about their timeout algorithm. 4901 */ 4902 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4903 !xhci->devs[udev->slot_id]) 4904 return USB3_LPM_DISABLED; 4905 4906 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4907 return USB3_LPM_DISABLED; 4908 4909 /* If connected to root port then check port can handle lpm */ 4910 if (udev->parent && !udev->parent->parent) { 4911 port = xhci->usb3_rhub.ports[udev->portnum - 1]; 4912 if (port->lpm_incapable) 4913 return USB3_LPM_DISABLED; 4914 } 4915 4916 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4917 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4918 if (mel < 0) { 4919 /* Max Exit Latency is too big, disable LPM. */ 4920 hub_encoded_timeout = USB3_LPM_DISABLED; 4921 mel = 0; 4922 } 4923 4924 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4925 if (ret) 4926 return ret; 4927 return hub_encoded_timeout; 4928 } 4929 4930 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4931 struct usb_device *udev, enum usb3_link_state state) 4932 { 4933 struct xhci_hcd *xhci; 4934 u16 mel; 4935 4936 xhci = hcd_to_xhci(hcd); 4937 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4938 !xhci->devs[udev->slot_id]) 4939 return 0; 4940 4941 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4942 return xhci_change_max_exit_latency(xhci, udev, mel); 4943 } 4944 #else /* CONFIG_PM */ 4945 4946 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4947 struct usb_device *udev, int enable) 4948 { 4949 return 0; 4950 } 4951 4952 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4953 { 4954 return 0; 4955 } 4956 4957 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4958 struct usb_device *udev, enum usb3_link_state state) 4959 { 4960 return USB3_LPM_DISABLED; 4961 } 4962 4963 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4964 struct usb_device *udev, enum usb3_link_state state) 4965 { 4966 return 0; 4967 } 4968 #endif /* CONFIG_PM */ 4969 4970 /*-------------------------------------------------------------------------*/ 4971 4972 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4973 * internal data structures for the device. 4974 */ 4975 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4976 struct usb_tt *tt, gfp_t mem_flags) 4977 { 4978 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4979 struct xhci_virt_device *vdev; 4980 struct xhci_command *config_cmd; 4981 struct xhci_input_control_ctx *ctrl_ctx; 4982 struct xhci_slot_ctx *slot_ctx; 4983 unsigned long flags; 4984 unsigned think_time; 4985 int ret; 4986 4987 /* Ignore root hubs */ 4988 if (!hdev->parent) 4989 return 0; 4990 4991 vdev = xhci->devs[hdev->slot_id]; 4992 if (!vdev) { 4993 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4994 return -EINVAL; 4995 } 4996 4997 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags); 4998 if (!config_cmd) 4999 return -ENOMEM; 5000 5001 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 5002 if (!ctrl_ctx) { 5003 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 5004 __func__); 5005 xhci_free_command(xhci, config_cmd); 5006 return -ENOMEM; 5007 } 5008 5009 spin_lock_irqsave(&xhci->lock, flags); 5010 if (hdev->speed == USB_SPEED_HIGH && 5011 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 5012 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 5013 xhci_free_command(xhci, config_cmd); 5014 spin_unlock_irqrestore(&xhci->lock, flags); 5015 return -ENOMEM; 5016 } 5017 5018 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 5019 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 5020 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 5021 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 5022 /* 5023 * refer to section 6.2.2: MTT should be 0 for full speed hub, 5024 * but it may be already set to 1 when setup an xHCI virtual 5025 * device, so clear it anyway. 5026 */ 5027 if (tt->multi) 5028 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 5029 else if (hdev->speed == USB_SPEED_FULL) 5030 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 5031 5032 if (xhci->hci_version > 0x95) { 5033 xhci_dbg(xhci, "xHCI version %x needs hub " 5034 "TT think time and number of ports\n", 5035 (unsigned int) xhci->hci_version); 5036 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 5037 /* Set TT think time - convert from ns to FS bit times. 5038 * 0 = 8 FS bit times, 1 = 16 FS bit times, 5039 * 2 = 24 FS bit times, 3 = 32 FS bit times. 5040 * 5041 * xHCI 1.0: this field shall be 0 if the device is not a 5042 * High-spped hub. 5043 */ 5044 think_time = tt->think_time; 5045 if (think_time != 0) 5046 think_time = (think_time / 666) - 1; 5047 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 5048 slot_ctx->tt_info |= 5049 cpu_to_le32(TT_THINK_TIME(think_time)); 5050 } else { 5051 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 5052 "TT think time or number of ports\n", 5053 (unsigned int) xhci->hci_version); 5054 } 5055 slot_ctx->dev_state = 0; 5056 spin_unlock_irqrestore(&xhci->lock, flags); 5057 5058 xhci_dbg(xhci, "Set up %s for hub device.\n", 5059 (xhci->hci_version > 0x95) ? 5060 "configure endpoint" : "evaluate context"); 5061 5062 /* Issue and wait for the configure endpoint or 5063 * evaluate context command. 5064 */ 5065 if (xhci->hci_version > 0x95) 5066 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5067 false, false); 5068 else 5069 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 5070 true, false); 5071 5072 xhci_free_command(xhci, config_cmd); 5073 return ret; 5074 } 5075 EXPORT_SYMBOL_GPL(xhci_update_hub_device); 5076 5077 static int xhci_get_frame(struct usb_hcd *hcd) 5078 { 5079 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 5080 /* EHCI mods by the periodic size. Why? */ 5081 return readl(&xhci->run_regs->microframe_index) >> 3; 5082 } 5083 5084 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5085 { 5086 xhci->usb2_rhub.hcd = hcd; 5087 hcd->speed = HCD_USB2; 5088 hcd->self.root_hub->speed = USB_SPEED_HIGH; 5089 /* 5090 * USB 2.0 roothub under xHCI has an integrated TT, 5091 * (rate matching hub) as opposed to having an OHCI/UHCI 5092 * companion controller. 5093 */ 5094 hcd->has_tt = 1; 5095 } 5096 5097 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd) 5098 { 5099 unsigned int minor_rev; 5100 5101 /* 5102 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts 5103 * should return 0x31 for sbrn, or that the minor revision 5104 * is a two digit BCD containig minor and sub-minor numbers. 5105 * This was later clarified in xHCI 1.2. 5106 * 5107 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and 5108 * minor revision set to 0x1 instead of 0x10. 5109 */ 5110 if (xhci->usb3_rhub.min_rev == 0x1) 5111 minor_rev = 1; 5112 else 5113 minor_rev = xhci->usb3_rhub.min_rev / 0x10; 5114 5115 switch (minor_rev) { 5116 case 2: 5117 hcd->speed = HCD_USB32; 5118 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5119 hcd->self.root_hub->rx_lanes = 2; 5120 hcd->self.root_hub->tx_lanes = 2; 5121 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2; 5122 break; 5123 case 1: 5124 hcd->speed = HCD_USB31; 5125 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 5126 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1; 5127 break; 5128 } 5129 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n", 5130 minor_rev, minor_rev ? "Enhanced " : ""); 5131 5132 xhci->usb3_rhub.hcd = hcd; 5133 } 5134 5135 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 5136 { 5137 struct xhci_hcd *xhci; 5138 /* 5139 * TODO: Check with DWC3 clients for sysdev according to 5140 * quirks 5141 */ 5142 struct device *dev = hcd->self.sysdev; 5143 int retval; 5144 5145 /* Accept arbitrarily long scatter-gather lists */ 5146 hcd->self.sg_tablesize = ~0; 5147 5148 /* support to build packet from discontinuous buffers */ 5149 hcd->self.no_sg_constraint = 1; 5150 5151 /* XHCI controllers don't stop the ep queue on short packets :| */ 5152 hcd->self.no_stop_on_short = 1; 5153 5154 xhci = hcd_to_xhci(hcd); 5155 5156 if (!usb_hcd_is_primary_hcd(hcd)) { 5157 xhci_hcd_init_usb3_data(xhci, hcd); 5158 return 0; 5159 } 5160 5161 mutex_init(&xhci->mutex); 5162 xhci->main_hcd = hcd; 5163 xhci->cap_regs = hcd->regs; 5164 xhci->op_regs = hcd->regs + 5165 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 5166 xhci->run_regs = hcd->regs + 5167 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 5168 /* Cache read-only capability registers */ 5169 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 5170 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 5171 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 5172 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase)); 5173 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 5174 if (xhci->hci_version > 0x100) 5175 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 5176 5177 /* xhci-plat or xhci-pci might have set max_interrupters already */ 5178 if ((!xhci->max_interrupters) || 5179 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1)) 5180 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1); 5181 5182 xhci->quirks |= quirks; 5183 5184 get_quirks(dev, xhci); 5185 5186 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 5187 * success event after a short transfer. This quirk will ignore such 5188 * spurious event. 5189 */ 5190 if (xhci->hci_version > 0x96) 5191 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 5192 5193 /* Make sure the HC is halted. */ 5194 retval = xhci_halt(xhci); 5195 if (retval) 5196 return retval; 5197 5198 xhci_zero_64b_regs(xhci); 5199 5200 xhci_dbg(xhci, "Resetting HCD\n"); 5201 /* Reset the internal HC memory state and registers. */ 5202 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC); 5203 if (retval) 5204 return retval; 5205 xhci_dbg(xhci, "Reset complete\n"); 5206 5207 /* 5208 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 5209 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 5210 * address memory pointers actually. So, this driver clears the AC64 5211 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 5212 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 5213 */ 5214 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 5215 xhci->hcc_params &= ~BIT(0); 5216 5217 /* Set dma_mask and coherent_dma_mask to 64-bits, 5218 * if xHC supports 64-bit addressing */ 5219 if (HCC_64BIT_ADDR(xhci->hcc_params) && 5220 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 5221 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 5222 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 5223 } else { 5224 /* 5225 * This is to avoid error in cases where a 32-bit USB 5226 * controller is used on a 64-bit capable system. 5227 */ 5228 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 5229 if (retval) 5230 return retval; 5231 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 5232 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 5233 } 5234 5235 xhci_dbg(xhci, "Calling HCD init\n"); 5236 /* Initialize HCD and host controller data structures. */ 5237 retval = xhci_init(hcd); 5238 if (retval) 5239 return retval; 5240 xhci_dbg(xhci, "Called HCD init\n"); 5241 5242 if (xhci_hcd_is_usb3(hcd)) 5243 xhci_hcd_init_usb3_data(xhci, hcd); 5244 else 5245 xhci_hcd_init_usb2_data(xhci, hcd); 5246 5247 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n", 5248 xhci->hcc_params, xhci->hci_version, xhci->quirks); 5249 5250 return 0; 5251 } 5252 EXPORT_SYMBOL_GPL(xhci_gen_setup); 5253 5254 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd, 5255 struct usb_host_endpoint *ep) 5256 { 5257 struct xhci_hcd *xhci; 5258 struct usb_device *udev; 5259 unsigned int slot_id; 5260 unsigned int ep_index; 5261 unsigned long flags; 5262 5263 xhci = hcd_to_xhci(hcd); 5264 5265 spin_lock_irqsave(&xhci->lock, flags); 5266 udev = (struct usb_device *)ep->hcpriv; 5267 slot_id = udev->slot_id; 5268 ep_index = xhci_get_endpoint_index(&ep->desc); 5269 5270 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT; 5271 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index); 5272 spin_unlock_irqrestore(&xhci->lock, flags); 5273 } 5274 5275 static const struct hc_driver xhci_hc_driver = { 5276 .description = "xhci-hcd", 5277 .product_desc = "xHCI Host Controller", 5278 .hcd_priv_size = sizeof(struct xhci_hcd), 5279 5280 /* 5281 * generic hardware linkage 5282 */ 5283 .irq = xhci_irq, 5284 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | 5285 HCD_BH, 5286 5287 /* 5288 * basic lifecycle operations 5289 */ 5290 .reset = NULL, /* set in xhci_init_driver() */ 5291 .start = xhci_run, 5292 .stop = xhci_stop, 5293 .shutdown = xhci_shutdown, 5294 5295 /* 5296 * managing i/o requests and associated device resources 5297 */ 5298 .map_urb_for_dma = xhci_map_urb_for_dma, 5299 .unmap_urb_for_dma = xhci_unmap_urb_for_dma, 5300 .urb_enqueue = xhci_urb_enqueue, 5301 .urb_dequeue = xhci_urb_dequeue, 5302 .alloc_dev = xhci_alloc_dev, 5303 .free_dev = xhci_free_dev, 5304 .alloc_streams = xhci_alloc_streams, 5305 .free_streams = xhci_free_streams, 5306 .add_endpoint = xhci_add_endpoint, 5307 .drop_endpoint = xhci_drop_endpoint, 5308 .endpoint_disable = xhci_endpoint_disable, 5309 .endpoint_reset = xhci_endpoint_reset, 5310 .check_bandwidth = xhci_check_bandwidth, 5311 .reset_bandwidth = xhci_reset_bandwidth, 5312 .address_device = xhci_address_device, 5313 .enable_device = xhci_enable_device, 5314 .update_hub_device = xhci_update_hub_device, 5315 .reset_device = xhci_discover_or_reset_device, 5316 5317 /* 5318 * scheduling support 5319 */ 5320 .get_frame_number = xhci_get_frame, 5321 5322 /* 5323 * root hub support 5324 */ 5325 .hub_control = xhci_hub_control, 5326 .hub_status_data = xhci_hub_status_data, 5327 .bus_suspend = xhci_bus_suspend, 5328 .bus_resume = xhci_bus_resume, 5329 .get_resuming_ports = xhci_get_resuming_ports, 5330 5331 /* 5332 * call back when device connected and addressed 5333 */ 5334 .update_device = xhci_update_device, 5335 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 5336 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 5337 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 5338 .find_raw_port_number = xhci_find_raw_port_number, 5339 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete, 5340 }; 5341 5342 void xhci_init_driver(struct hc_driver *drv, 5343 const struct xhci_driver_overrides *over) 5344 { 5345 BUG_ON(!over); 5346 5347 /* Copy the generic table to drv then apply the overrides */ 5348 *drv = xhci_hc_driver; 5349 5350 if (over) { 5351 drv->hcd_priv_size += over->extra_priv_size; 5352 if (over->reset) 5353 drv->reset = over->reset; 5354 if (over->start) 5355 drv->start = over->start; 5356 if (over->add_endpoint) 5357 drv->add_endpoint = over->add_endpoint; 5358 if (over->drop_endpoint) 5359 drv->drop_endpoint = over->drop_endpoint; 5360 if (over->check_bandwidth) 5361 drv->check_bandwidth = over->check_bandwidth; 5362 if (over->reset_bandwidth) 5363 drv->reset_bandwidth = over->reset_bandwidth; 5364 if (over->update_hub_device) 5365 drv->update_hub_device = over->update_hub_device; 5366 if (over->hub_control) 5367 drv->hub_control = over->hub_control; 5368 } 5369 } 5370 EXPORT_SYMBOL_GPL(xhci_init_driver); 5371 5372 MODULE_DESCRIPTION(DRIVER_DESC); 5373 MODULE_AUTHOR(DRIVER_AUTHOR); 5374 MODULE_LICENSE("GPL"); 5375 5376 static int __init xhci_hcd_init(void) 5377 { 5378 /* 5379 * Check the compiler generated sizes of structures that must be laid 5380 * out in specific ways for hardware access. 5381 */ 5382 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5383 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5384 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5385 /* xhci_device_control has eight fields, and also 5386 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5387 */ 5388 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5389 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5390 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5391 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5392 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5393 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5394 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5395 5396 if (usb_disabled()) 5397 return -ENODEV; 5398 5399 xhci_debugfs_create_root(); 5400 xhci_dbc_init(); 5401 5402 return 0; 5403 } 5404 5405 /* 5406 * If an init function is provided, an exit function must also be provided 5407 * to allow module unload. 5408 */ 5409 static void __exit xhci_hcd_fini(void) 5410 { 5411 xhci_debugfs_remove_root(); 5412 xhci_dbc_exit(); 5413 } 5414 5415 module_init(xhci_hcd_init); 5416 module_exit(xhci_hcd_fini); 5417