1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 static int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 202 "Wait for controller to be ready for doorbell rings"); 203 /* 204 * xHCI cannot write to any doorbells or operational registers other 205 * than status until the "Controller Not Ready" flag is cleared. 206 */ 207 ret = xhci_handshake(&xhci->op_regs->status, 208 STS_CNR, 0, 10 * 1000 * 1000); 209 210 for (i = 0; i < 2; i++) { 211 xhci->bus_state[i].port_c_suspend = 0; 212 xhci->bus_state[i].suspended_ports = 0; 213 xhci->bus_state[i].resuming_ports = 0; 214 } 215 216 return ret; 217 } 218 219 #ifdef CONFIG_PCI 220 static int xhci_free_msi(struct xhci_hcd *xhci) 221 { 222 int i; 223 224 if (!xhci->msix_entries) 225 return -EINVAL; 226 227 for (i = 0; i < xhci->msix_count; i++) 228 if (xhci->msix_entries[i].vector) 229 free_irq(xhci->msix_entries[i].vector, 230 xhci_to_hcd(xhci)); 231 return 0; 232 } 233 234 /* 235 * Set up MSI 236 */ 237 static int xhci_setup_msi(struct xhci_hcd *xhci) 238 { 239 int ret; 240 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 241 242 ret = pci_enable_msi(pdev); 243 if (ret) { 244 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 245 "failed to allocate MSI entry"); 246 return ret; 247 } 248 249 ret = request_irq(pdev->irq, xhci_msi_irq, 250 0, "xhci_hcd", xhci_to_hcd(xhci)); 251 if (ret) { 252 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 253 "disable MSI interrupt"); 254 pci_disable_msi(pdev); 255 } 256 257 return ret; 258 } 259 260 /* 261 * Free IRQs 262 * free all IRQs request 263 */ 264 static void xhci_free_irq(struct xhci_hcd *xhci) 265 { 266 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 267 int ret; 268 269 /* return if using legacy interrupt */ 270 if (xhci_to_hcd(xhci)->irq > 0) 271 return; 272 273 ret = xhci_free_msi(xhci); 274 if (!ret) 275 return; 276 if (pdev->irq > 0) 277 free_irq(pdev->irq, xhci_to_hcd(xhci)); 278 279 return; 280 } 281 282 /* 283 * Set up MSI-X 284 */ 285 static int xhci_setup_msix(struct xhci_hcd *xhci) 286 { 287 int i, ret = 0; 288 struct usb_hcd *hcd = xhci_to_hcd(xhci); 289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 290 291 /* 292 * calculate number of msi-x vectors supported. 293 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 294 * with max number of interrupters based on the xhci HCSPARAMS1. 295 * - num_online_cpus: maximum msi-x vectors per CPUs core. 296 * Add additional 1 vector to ensure always available interrupt. 297 */ 298 xhci->msix_count = min(num_online_cpus() + 1, 299 HCS_MAX_INTRS(xhci->hcs_params1)); 300 301 xhci->msix_entries = 302 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 303 GFP_KERNEL); 304 if (!xhci->msix_entries) 305 return -ENOMEM; 306 307 for (i = 0; i < xhci->msix_count; i++) { 308 xhci->msix_entries[i].entry = i; 309 xhci->msix_entries[i].vector = 0; 310 } 311 312 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count); 313 if (ret) { 314 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 315 "Failed to enable MSI-X"); 316 goto free_entries; 317 } 318 319 for (i = 0; i < xhci->msix_count; i++) { 320 ret = request_irq(xhci->msix_entries[i].vector, 321 xhci_msi_irq, 322 0, "xhci_hcd", xhci_to_hcd(xhci)); 323 if (ret) 324 goto disable_msix; 325 } 326 327 hcd->msix_enabled = 1; 328 return ret; 329 330 disable_msix: 331 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 332 xhci_free_irq(xhci); 333 pci_disable_msix(pdev); 334 free_entries: 335 kfree(xhci->msix_entries); 336 xhci->msix_entries = NULL; 337 return ret; 338 } 339 340 /* Free any IRQs and disable MSI-X */ 341 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 342 { 343 struct usb_hcd *hcd = xhci_to_hcd(xhci); 344 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 345 346 if (xhci->quirks & XHCI_PLAT) 347 return; 348 349 xhci_free_irq(xhci); 350 351 if (xhci->msix_entries) { 352 pci_disable_msix(pdev); 353 kfree(xhci->msix_entries); 354 xhci->msix_entries = NULL; 355 } else { 356 pci_disable_msi(pdev); 357 } 358 359 hcd->msix_enabled = 0; 360 return; 361 } 362 363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 364 { 365 int i; 366 367 if (xhci->msix_entries) { 368 for (i = 0; i < xhci->msix_count; i++) 369 synchronize_irq(xhci->msix_entries[i].vector); 370 } 371 } 372 373 static int xhci_try_enable_msi(struct usb_hcd *hcd) 374 { 375 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 376 struct pci_dev *pdev; 377 int ret; 378 379 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 380 if (xhci->quirks & XHCI_PLAT) 381 return 0; 382 383 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 384 /* 385 * Some Fresco Logic host controllers advertise MSI, but fail to 386 * generate interrupts. Don't even try to enable MSI. 387 */ 388 if (xhci->quirks & XHCI_BROKEN_MSI) 389 goto legacy_irq; 390 391 /* unregister the legacy interrupt */ 392 if (hcd->irq) 393 free_irq(hcd->irq, hcd); 394 hcd->irq = 0; 395 396 ret = xhci_setup_msix(xhci); 397 if (ret) 398 /* fall back to msi*/ 399 ret = xhci_setup_msi(xhci); 400 401 if (!ret) 402 /* hcd->irq is 0, we have MSI */ 403 return 0; 404 405 if (!pdev->irq) { 406 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 407 return -EINVAL; 408 } 409 410 legacy_irq: 411 if (!strlen(hcd->irq_descr)) 412 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 413 hcd->driver->description, hcd->self.busnum); 414 415 /* fall back to legacy interrupt*/ 416 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 417 hcd->irq_descr, hcd); 418 if (ret) { 419 xhci_err(xhci, "request interrupt %d failed\n", 420 pdev->irq); 421 return ret; 422 } 423 hcd->irq = pdev->irq; 424 return 0; 425 } 426 427 #else 428 429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 430 { 431 return 0; 432 } 433 434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 435 { 436 } 437 438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 439 { 440 } 441 442 #endif 443 444 static void compliance_mode_recovery(unsigned long arg) 445 { 446 struct xhci_hcd *xhci; 447 struct usb_hcd *hcd; 448 u32 temp; 449 int i; 450 451 xhci = (struct xhci_hcd *)arg; 452 453 for (i = 0; i < xhci->num_usb3_ports; i++) { 454 temp = readl(xhci->usb3_ports[i]); 455 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 456 /* 457 * Compliance Mode Detected. Letting USB Core 458 * handle the Warm Reset 459 */ 460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 461 "Compliance mode detected->port %d", 462 i + 1); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 464 "Attempting compliance mode recovery"); 465 hcd = xhci->shared_hcd; 466 467 if (hcd->state == HC_STATE_SUSPENDED) 468 usb_hcd_resume_root_hub(hcd); 469 470 usb_hcd_poll_rh_status(hcd); 471 } 472 } 473 474 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 475 mod_timer(&xhci->comp_mode_recovery_timer, 476 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 477 } 478 479 /* 480 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 481 * that causes ports behind that hardware to enter compliance mode sometimes. 482 * The quirk creates a timer that polls every 2 seconds the link state of 483 * each host controller's port and recovers it by issuing a Warm reset 484 * if Compliance mode is detected, otherwise the port will become "dead" (no 485 * device connections or disconnections will be detected anymore). Becasue no 486 * status event is generated when entering compliance mode (per xhci spec), 487 * this quirk is needed on systems that have the failing hardware installed. 488 */ 489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 490 { 491 xhci->port_status_u0 = 0; 492 setup_timer(&xhci->comp_mode_recovery_timer, 493 compliance_mode_recovery, (unsigned long)xhci); 494 xhci->comp_mode_recovery_timer.expires = jiffies + 495 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 496 497 add_timer(&xhci->comp_mode_recovery_timer); 498 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 499 "Compliance mode recovery timer initialized"); 500 } 501 502 /* 503 * This function identifies the systems that have installed the SN65LVPE502CP 504 * USB3.0 re-driver and that need the Compliance Mode Quirk. 505 * Systems: 506 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 507 */ 508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 509 { 510 const char *dmi_product_name, *dmi_sys_vendor; 511 512 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 513 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 514 if (!dmi_product_name || !dmi_sys_vendor) 515 return false; 516 517 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 518 return false; 519 520 if (strstr(dmi_product_name, "Z420") || 521 strstr(dmi_product_name, "Z620") || 522 strstr(dmi_product_name, "Z820") || 523 strstr(dmi_product_name, "Z1 Workstation")) 524 return true; 525 526 return false; 527 } 528 529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 530 { 531 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 532 } 533 534 535 /* 536 * Initialize memory for HCD and xHC (one-time init). 537 * 538 * Program the PAGESIZE register, initialize the device context array, create 539 * device contexts (?), set up a command ring segment (or two?), create event 540 * ring (one for now). 541 */ 542 int xhci_init(struct usb_hcd *hcd) 543 { 544 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 545 int retval = 0; 546 547 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 548 spin_lock_init(&xhci->lock); 549 if (xhci->hci_version == 0x95 && link_quirk) { 550 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 551 "QUIRK: Not clearing Link TRB chain bits."); 552 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 553 } else { 554 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 555 "xHCI doesn't need link TRB QUIRK"); 556 } 557 retval = xhci_mem_init(xhci, GFP_KERNEL); 558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 559 560 /* Initializing Compliance Mode Recovery Data If Needed */ 561 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 562 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 563 compliance_mode_recovery_timer_init(xhci); 564 } 565 566 return retval; 567 } 568 569 /*-------------------------------------------------------------------------*/ 570 571 572 static int xhci_run_finished(struct xhci_hcd *xhci) 573 { 574 if (xhci_start(xhci)) { 575 xhci_halt(xhci); 576 return -ENODEV; 577 } 578 xhci->shared_hcd->state = HC_STATE_RUNNING; 579 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 580 581 if (xhci->quirks & XHCI_NEC_HOST) 582 xhci_ring_cmd_db(xhci); 583 584 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 585 "Finished xhci_run for USB3 roothub"); 586 return 0; 587 } 588 589 /* 590 * Start the HC after it was halted. 591 * 592 * This function is called by the USB core when the HC driver is added. 593 * Its opposite is xhci_stop(). 594 * 595 * xhci_init() must be called once before this function can be called. 596 * Reset the HC, enable device slot contexts, program DCBAAP, and 597 * set command ring pointer and event ring pointer. 598 * 599 * Setup MSI-X vectors and enable interrupts. 600 */ 601 int xhci_run(struct usb_hcd *hcd) 602 { 603 u32 temp; 604 u64 temp_64; 605 int ret; 606 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 607 608 /* Start the xHCI host controller running only after the USB 2.0 roothub 609 * is setup. 610 */ 611 612 hcd->uses_new_polling = 1; 613 if (!usb_hcd_is_primary_hcd(hcd)) 614 return xhci_run_finished(xhci); 615 616 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 617 618 ret = xhci_try_enable_msi(hcd); 619 if (ret) 620 return ret; 621 622 xhci_dbg(xhci, "Command ring memory map follows:\n"); 623 xhci_debug_ring(xhci, xhci->cmd_ring); 624 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 625 xhci_dbg_cmd_ptrs(xhci); 626 627 xhci_dbg(xhci, "ERST memory map follows:\n"); 628 xhci_dbg_erst(xhci, &xhci->erst); 629 xhci_dbg(xhci, "Event ring:\n"); 630 xhci_debug_ring(xhci, xhci->event_ring); 631 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 632 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 633 temp_64 &= ~ERST_PTR_MASK; 634 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 635 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 636 637 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 638 "// Set the interrupt modulation register"); 639 temp = readl(&xhci->ir_set->irq_control); 640 temp &= ~ER_IRQ_INTERVAL_MASK; 641 /* 642 * the increment interval is 8 times as much as that defined 643 * in xHCI spec on MTK's controller 644 */ 645 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 646 writel(temp, &xhci->ir_set->irq_control); 647 648 /* Set the HCD state before we enable the irqs */ 649 temp = readl(&xhci->op_regs->command); 650 temp |= (CMD_EIE); 651 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 652 "// Enable interrupts, cmd = 0x%x.", temp); 653 writel(temp, &xhci->op_regs->command); 654 655 temp = readl(&xhci->ir_set->irq_pending); 656 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 657 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 658 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 659 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 660 xhci_print_ir_set(xhci, 0); 661 662 if (xhci->quirks & XHCI_NEC_HOST) { 663 struct xhci_command *command; 664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 665 if (!command) 666 return -ENOMEM; 667 xhci_queue_vendor_command(xhci, command, 0, 0, 0, 668 TRB_TYPE(TRB_NEC_GET_FW)); 669 } 670 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 671 "Finished xhci_run for USB2 roothub"); 672 return 0; 673 } 674 EXPORT_SYMBOL_GPL(xhci_run); 675 676 /* 677 * Stop xHCI driver. 678 * 679 * This function is called by the USB core when the HC driver is removed. 680 * Its opposite is xhci_run(). 681 * 682 * Disable device contexts, disable IRQs, and quiesce the HC. 683 * Reset the HC, finish any completed transactions, and cleanup memory. 684 */ 685 void xhci_stop(struct usb_hcd *hcd) 686 { 687 u32 temp; 688 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 689 690 mutex_lock(&xhci->mutex); 691 692 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) { 693 spin_lock_irq(&xhci->lock); 694 695 xhci->xhc_state |= XHCI_STATE_HALTED; 696 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 697 xhci_halt(xhci); 698 xhci_reset(xhci); 699 spin_unlock_irq(&xhci->lock); 700 } 701 702 if (!usb_hcd_is_primary_hcd(hcd)) { 703 mutex_unlock(&xhci->mutex); 704 return; 705 } 706 707 xhci_cleanup_msix(xhci); 708 709 /* Deleting Compliance Mode Recovery Timer */ 710 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 711 (!(xhci_all_ports_seen_u0(xhci)))) { 712 del_timer_sync(&xhci->comp_mode_recovery_timer); 713 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 714 "%s: compliance mode recovery timer deleted", 715 __func__); 716 } 717 718 if (xhci->quirks & XHCI_AMD_PLL_FIX) 719 usb_amd_dev_put(); 720 721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 722 "// Disabling event ring interrupts"); 723 temp = readl(&xhci->op_regs->status); 724 writel(temp & ~STS_EINT, &xhci->op_regs->status); 725 temp = readl(&xhci->ir_set->irq_pending); 726 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 727 xhci_print_ir_set(xhci, 0); 728 729 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 730 xhci_mem_cleanup(xhci); 731 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 732 "xhci_stop completed - status = %x", 733 readl(&xhci->op_regs->status)); 734 mutex_unlock(&xhci->mutex); 735 } 736 737 /* 738 * Shutdown HC (not bus-specific) 739 * 740 * This is called when the machine is rebooting or halting. We assume that the 741 * machine will be powered off, and the HC's internal state will be reset. 742 * Don't bother to free memory. 743 * 744 * This will only ever be called with the main usb_hcd (the USB3 roothub). 745 */ 746 void xhci_shutdown(struct usb_hcd *hcd) 747 { 748 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 749 750 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 751 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller)); 752 753 spin_lock_irq(&xhci->lock); 754 xhci_halt(xhci); 755 /* Workaround for spurious wakeups at shutdown with HSW */ 756 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 757 xhci_reset(xhci); 758 spin_unlock_irq(&xhci->lock); 759 760 xhci_cleanup_msix(xhci); 761 762 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 763 "xhci_shutdown completed - status = %x", 764 readl(&xhci->op_regs->status)); 765 766 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 767 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 768 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot); 769 } 770 771 #ifdef CONFIG_PM 772 static void xhci_save_registers(struct xhci_hcd *xhci) 773 { 774 xhci->s3.command = readl(&xhci->op_regs->command); 775 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 776 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 777 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 778 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 779 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 780 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 781 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 782 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 783 } 784 785 static void xhci_restore_registers(struct xhci_hcd *xhci) 786 { 787 writel(xhci->s3.command, &xhci->op_regs->command); 788 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 789 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 790 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 791 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 792 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 793 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 794 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 795 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 796 } 797 798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 799 { 800 u64 val_64; 801 802 /* step 2: initialize command ring buffer */ 803 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 804 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 805 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 806 xhci->cmd_ring->dequeue) & 807 (u64) ~CMD_RING_RSVD_BITS) | 808 xhci->cmd_ring->cycle_state; 809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 810 "// Setting command ring address to 0x%llx", 811 (long unsigned long) val_64); 812 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 813 } 814 815 /* 816 * The whole command ring must be cleared to zero when we suspend the host. 817 * 818 * The host doesn't save the command ring pointer in the suspend well, so we 819 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 820 * aligned, because of the reserved bits in the command ring dequeue pointer 821 * register. Therefore, we can't just set the dequeue pointer back in the 822 * middle of the ring (TRBs are 16-byte aligned). 823 */ 824 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 825 { 826 struct xhci_ring *ring; 827 struct xhci_segment *seg; 828 829 ring = xhci->cmd_ring; 830 seg = ring->deq_seg; 831 do { 832 memset(seg->trbs, 0, 833 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 834 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 835 cpu_to_le32(~TRB_CYCLE); 836 seg = seg->next; 837 } while (seg != ring->deq_seg); 838 839 /* Reset the software enqueue and dequeue pointers */ 840 ring->deq_seg = ring->first_seg; 841 ring->dequeue = ring->first_seg->trbs; 842 ring->enq_seg = ring->deq_seg; 843 ring->enqueue = ring->dequeue; 844 845 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 846 /* 847 * Ring is now zeroed, so the HW should look for change of ownership 848 * when the cycle bit is set to 1. 849 */ 850 ring->cycle_state = 1; 851 852 /* 853 * Reset the hardware dequeue pointer. 854 * Yes, this will need to be re-written after resume, but we're paranoid 855 * and want to make sure the hardware doesn't access bogus memory 856 * because, say, the BIOS or an SMI started the host without changing 857 * the command ring pointers. 858 */ 859 xhci_set_cmd_ring_deq(xhci); 860 } 861 862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 863 { 864 int port_index; 865 __le32 __iomem **port_array; 866 unsigned long flags; 867 u32 t1, t2; 868 869 spin_lock_irqsave(&xhci->lock, flags); 870 871 /* disable usb3 ports Wake bits */ 872 port_index = xhci->num_usb3_ports; 873 port_array = xhci->usb3_ports; 874 while (port_index--) { 875 t1 = readl(port_array[port_index]); 876 t1 = xhci_port_state_to_neutral(t1); 877 t2 = t1 & ~PORT_WAKE_BITS; 878 if (t1 != t2) 879 writel(t2, port_array[port_index]); 880 } 881 882 /* disable usb2 ports Wake bits */ 883 port_index = xhci->num_usb2_ports; 884 port_array = xhci->usb2_ports; 885 while (port_index--) { 886 t1 = readl(port_array[port_index]); 887 t1 = xhci_port_state_to_neutral(t1); 888 t2 = t1 & ~PORT_WAKE_BITS; 889 if (t1 != t2) 890 writel(t2, port_array[port_index]); 891 } 892 893 spin_unlock_irqrestore(&xhci->lock, flags); 894 } 895 896 /* 897 * Stop HC (not bus-specific) 898 * 899 * This is called when the machine transition into S3/S4 mode. 900 * 901 */ 902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 903 { 904 int rc = 0; 905 unsigned int delay = XHCI_MAX_HALT_USEC; 906 struct usb_hcd *hcd = xhci_to_hcd(xhci); 907 u32 command; 908 909 if (!hcd->state) 910 return 0; 911 912 if (hcd->state != HC_STATE_SUSPENDED || 913 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 914 return -EINVAL; 915 916 /* Clear root port wake on bits if wakeup not allowed. */ 917 if (!do_wakeup) 918 xhci_disable_port_wake_on_bits(xhci); 919 920 /* Don't poll the roothubs on bus suspend. */ 921 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 923 del_timer_sync(&hcd->rh_timer); 924 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 925 del_timer_sync(&xhci->shared_hcd->rh_timer); 926 927 spin_lock_irq(&xhci->lock); 928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 929 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 930 /* step 1: stop endpoint */ 931 /* skipped assuming that port suspend has done */ 932 933 /* step 2: clear Run/Stop bit */ 934 command = readl(&xhci->op_regs->command); 935 command &= ~CMD_RUN; 936 writel(command, &xhci->op_regs->command); 937 938 /* Some chips from Fresco Logic need an extraordinary delay */ 939 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 940 941 if (xhci_handshake(&xhci->op_regs->status, 942 STS_HALT, STS_HALT, delay)) { 943 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 944 spin_unlock_irq(&xhci->lock); 945 return -ETIMEDOUT; 946 } 947 xhci_clear_command_ring(xhci); 948 949 /* step 3: save registers */ 950 xhci_save_registers(xhci); 951 952 /* step 4: set CSS flag */ 953 command = readl(&xhci->op_regs->command); 954 command |= CMD_CSS; 955 writel(command, &xhci->op_regs->command); 956 if (xhci_handshake(&xhci->op_regs->status, 957 STS_SAVE, 0, 10 * 1000)) { 958 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 959 spin_unlock_irq(&xhci->lock); 960 return -ETIMEDOUT; 961 } 962 spin_unlock_irq(&xhci->lock); 963 964 /* 965 * Deleting Compliance Mode Recovery Timer because the xHCI Host 966 * is about to be suspended. 967 */ 968 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 969 (!(xhci_all_ports_seen_u0(xhci)))) { 970 del_timer_sync(&xhci->comp_mode_recovery_timer); 971 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 972 "%s: compliance mode recovery timer deleted", 973 __func__); 974 } 975 976 /* step 5: remove core well power */ 977 /* synchronize irq when using MSI-X */ 978 xhci_msix_sync_irqs(xhci); 979 980 return rc; 981 } 982 EXPORT_SYMBOL_GPL(xhci_suspend); 983 984 /* 985 * start xHC (not bus-specific) 986 * 987 * This is called when the machine transition from S3/S4 mode. 988 * 989 */ 990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 991 { 992 u32 command, temp = 0, status; 993 struct usb_hcd *hcd = xhci_to_hcd(xhci); 994 struct usb_hcd *secondary_hcd; 995 int retval = 0; 996 bool comp_timer_running = false; 997 998 if (!hcd->state) 999 return 0; 1000 1001 /* Wait a bit if either of the roothubs need to settle from the 1002 * transition into bus suspend. 1003 */ 1004 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 1005 time_before(jiffies, 1006 xhci->bus_state[1].next_statechange)) 1007 msleep(100); 1008 1009 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1010 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 1011 1012 spin_lock_irq(&xhci->lock); 1013 if (xhci->quirks & XHCI_RESET_ON_RESUME) 1014 hibernated = true; 1015 1016 if (!hibernated) { 1017 /* step 1: restore register */ 1018 xhci_restore_registers(xhci); 1019 /* step 2: initialize command ring buffer */ 1020 xhci_set_cmd_ring_deq(xhci); 1021 /* step 3: restore state and start state*/ 1022 /* step 3: set CRS flag */ 1023 command = readl(&xhci->op_regs->command); 1024 command |= CMD_CRS; 1025 writel(command, &xhci->op_regs->command); 1026 if (xhci_handshake(&xhci->op_regs->status, 1027 STS_RESTORE, 0, 10 * 1000)) { 1028 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 1029 spin_unlock_irq(&xhci->lock); 1030 return -ETIMEDOUT; 1031 } 1032 temp = readl(&xhci->op_regs->status); 1033 } 1034 1035 /* If restore operation fails, re-initialize the HC during resume */ 1036 if ((temp & STS_SRE) || hibernated) { 1037 1038 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1039 !(xhci_all_ports_seen_u0(xhci))) { 1040 del_timer_sync(&xhci->comp_mode_recovery_timer); 1041 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1042 "Compliance Mode Recovery Timer deleted!"); 1043 } 1044 1045 /* Let the USB core know _both_ roothubs lost power. */ 1046 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1047 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1048 1049 xhci_dbg(xhci, "Stop HCD\n"); 1050 xhci_halt(xhci); 1051 xhci_reset(xhci); 1052 spin_unlock_irq(&xhci->lock); 1053 xhci_cleanup_msix(xhci); 1054 1055 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1056 temp = readl(&xhci->op_regs->status); 1057 writel(temp & ~STS_EINT, &xhci->op_regs->status); 1058 temp = readl(&xhci->ir_set->irq_pending); 1059 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1060 xhci_print_ir_set(xhci, 0); 1061 1062 xhci_dbg(xhci, "cleaning up memory\n"); 1063 xhci_mem_cleanup(xhci); 1064 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1065 readl(&xhci->op_regs->status)); 1066 1067 /* USB core calls the PCI reinit and start functions twice: 1068 * first with the primary HCD, and then with the secondary HCD. 1069 * If we don't do the same, the host will never be started. 1070 */ 1071 if (!usb_hcd_is_primary_hcd(hcd)) 1072 secondary_hcd = hcd; 1073 else 1074 secondary_hcd = xhci->shared_hcd; 1075 1076 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1077 retval = xhci_init(hcd->primary_hcd); 1078 if (retval) 1079 return retval; 1080 comp_timer_running = true; 1081 1082 xhci_dbg(xhci, "Start the primary HCD\n"); 1083 retval = xhci_run(hcd->primary_hcd); 1084 if (!retval) { 1085 xhci_dbg(xhci, "Start the secondary HCD\n"); 1086 retval = xhci_run(secondary_hcd); 1087 } 1088 hcd->state = HC_STATE_SUSPENDED; 1089 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1090 goto done; 1091 } 1092 1093 /* step 4: set Run/Stop bit */ 1094 command = readl(&xhci->op_regs->command); 1095 command |= CMD_RUN; 1096 writel(command, &xhci->op_regs->command); 1097 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1098 0, 250 * 1000); 1099 1100 /* step 5: walk topology and initialize portsc, 1101 * portpmsc and portli 1102 */ 1103 /* this is done in bus_resume */ 1104 1105 /* step 6: restart each of the previously 1106 * Running endpoints by ringing their doorbells 1107 */ 1108 1109 spin_unlock_irq(&xhci->lock); 1110 1111 done: 1112 if (retval == 0) { 1113 /* Resume root hubs only when have pending events. */ 1114 status = readl(&xhci->op_regs->status); 1115 if (status & STS_EINT) { 1116 usb_hcd_resume_root_hub(xhci->shared_hcd); 1117 usb_hcd_resume_root_hub(hcd); 1118 } 1119 } 1120 1121 /* 1122 * If system is subject to the Quirk, Compliance Mode Timer needs to 1123 * be re-initialized Always after a system resume. Ports are subject 1124 * to suffer the Compliance Mode issue again. It doesn't matter if 1125 * ports have entered previously to U0 before system's suspension. 1126 */ 1127 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1128 compliance_mode_recovery_timer_init(xhci); 1129 1130 /* Re-enable port polling. */ 1131 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1132 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1133 usb_hcd_poll_rh_status(xhci->shared_hcd); 1134 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1135 usb_hcd_poll_rh_status(hcd); 1136 1137 return retval; 1138 } 1139 EXPORT_SYMBOL_GPL(xhci_resume); 1140 #endif /* CONFIG_PM */ 1141 1142 /*-------------------------------------------------------------------------*/ 1143 1144 /** 1145 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1146 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1147 * value to right shift 1 for the bitmask. 1148 * 1149 * Index = (epnum * 2) + direction - 1, 1150 * where direction = 0 for OUT, 1 for IN. 1151 * For control endpoints, the IN index is used (OUT index is unused), so 1152 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1153 */ 1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1155 { 1156 unsigned int index; 1157 if (usb_endpoint_xfer_control(desc)) 1158 index = (unsigned int) (usb_endpoint_num(desc)*2); 1159 else 1160 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1161 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1162 return index; 1163 } 1164 1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1166 * address from the XHCI endpoint index. 1167 */ 1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1169 { 1170 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1171 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1172 return direction | number; 1173 } 1174 1175 /* Find the flag for this endpoint (for use in the control context). Use the 1176 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1177 * bit 1, etc. 1178 */ 1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1180 { 1181 return 1 << (xhci_get_endpoint_index(desc) + 1); 1182 } 1183 1184 /* Find the flag for this endpoint (for use in the control context). Use the 1185 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1186 * bit 1, etc. 1187 */ 1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1189 { 1190 return 1 << (ep_index + 1); 1191 } 1192 1193 /* Compute the last valid endpoint context index. Basically, this is the 1194 * endpoint index plus one. For slot contexts with more than valid endpoint, 1195 * we find the most significant bit set in the added contexts flags. 1196 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1197 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1198 */ 1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1200 { 1201 return fls(added_ctxs) - 1; 1202 } 1203 1204 /* Returns 1 if the arguments are OK; 1205 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1206 */ 1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1208 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1209 const char *func) { 1210 struct xhci_hcd *xhci; 1211 struct xhci_virt_device *virt_dev; 1212 1213 if (!hcd || (check_ep && !ep) || !udev) { 1214 pr_debug("xHCI %s called with invalid args\n", func); 1215 return -EINVAL; 1216 } 1217 if (!udev->parent) { 1218 pr_debug("xHCI %s called for root hub\n", func); 1219 return 0; 1220 } 1221 1222 xhci = hcd_to_xhci(hcd); 1223 if (check_virt_dev) { 1224 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1225 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1226 func); 1227 return -EINVAL; 1228 } 1229 1230 virt_dev = xhci->devs[udev->slot_id]; 1231 if (virt_dev->udev != udev) { 1232 xhci_dbg(xhci, "xHCI %s called with udev and " 1233 "virt_dev does not match\n", func); 1234 return -EINVAL; 1235 } 1236 } 1237 1238 if (xhci->xhc_state & XHCI_STATE_HALTED) 1239 return -ENODEV; 1240 1241 return 1; 1242 } 1243 1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1245 struct usb_device *udev, struct xhci_command *command, 1246 bool ctx_change, bool must_succeed); 1247 1248 /* 1249 * Full speed devices may have a max packet size greater than 8 bytes, but the 1250 * USB core doesn't know that until it reads the first 8 bytes of the 1251 * descriptor. If the usb_device's max packet size changes after that point, 1252 * we need to issue an evaluate context command and wait on it. 1253 */ 1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1255 unsigned int ep_index, struct urb *urb) 1256 { 1257 struct xhci_container_ctx *out_ctx; 1258 struct xhci_input_control_ctx *ctrl_ctx; 1259 struct xhci_ep_ctx *ep_ctx; 1260 struct xhci_command *command; 1261 int max_packet_size; 1262 int hw_max_packet_size; 1263 int ret = 0; 1264 1265 out_ctx = xhci->devs[slot_id]->out_ctx; 1266 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1267 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1268 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1269 if (hw_max_packet_size != max_packet_size) { 1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1271 "Max Packet Size for ep 0 changed."); 1272 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1273 "Max packet size in usb_device = %d", 1274 max_packet_size); 1275 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1276 "Max packet size in xHCI HW = %d", 1277 hw_max_packet_size); 1278 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1279 "Issuing evaluate context command."); 1280 1281 /* Set up the input context flags for the command */ 1282 /* FIXME: This won't work if a non-default control endpoint 1283 * changes max packet sizes. 1284 */ 1285 1286 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1287 if (!command) 1288 return -ENOMEM; 1289 1290 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1291 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1292 if (!ctrl_ctx) { 1293 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1294 __func__); 1295 ret = -ENOMEM; 1296 goto command_cleanup; 1297 } 1298 /* Set up the modified control endpoint 0 */ 1299 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1300 xhci->devs[slot_id]->out_ctx, ep_index); 1301 1302 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1303 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1304 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1305 1306 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1307 ctrl_ctx->drop_flags = 0; 1308 1309 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 1310 xhci_dbg_ctx(xhci, command->in_ctx, ep_index); 1311 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 1312 xhci_dbg_ctx(xhci, out_ctx, ep_index); 1313 1314 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1315 true, false); 1316 1317 /* Clean up the input context for later use by bandwidth 1318 * functions. 1319 */ 1320 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1321 command_cleanup: 1322 kfree(command->completion); 1323 kfree(command); 1324 } 1325 return ret; 1326 } 1327 1328 /* 1329 * non-error returns are a promise to giveback() the urb later 1330 * we drop ownership so next owner (or urb unlink) can get it 1331 */ 1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1333 { 1334 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1335 unsigned long flags; 1336 int ret = 0; 1337 unsigned int slot_id, ep_index, ep_state; 1338 struct urb_priv *urb_priv; 1339 int num_tds; 1340 1341 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1342 true, true, __func__) <= 0) 1343 return -EINVAL; 1344 1345 slot_id = urb->dev->slot_id; 1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1347 1348 if (!HCD_HW_ACCESSIBLE(hcd)) { 1349 if (!in_interrupt()) 1350 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1351 return -ESHUTDOWN; 1352 } 1353 1354 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1355 num_tds = urb->number_of_packets; 1356 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1357 urb->transfer_buffer_length > 0 && 1358 urb->transfer_flags & URB_ZERO_PACKET && 1359 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1360 num_tds = 2; 1361 else 1362 num_tds = 1; 1363 1364 urb_priv = kzalloc(sizeof(struct urb_priv) + 1365 num_tds * sizeof(struct xhci_td), mem_flags); 1366 if (!urb_priv) 1367 return -ENOMEM; 1368 1369 urb_priv->num_tds = num_tds; 1370 urb_priv->num_tds_done = 0; 1371 urb->hcpriv = urb_priv; 1372 1373 trace_xhci_urb_enqueue(urb); 1374 1375 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1376 /* Check to see if the max packet size for the default control 1377 * endpoint changed during FS device enumeration 1378 */ 1379 if (urb->dev->speed == USB_SPEED_FULL) { 1380 ret = xhci_check_maxpacket(xhci, slot_id, 1381 ep_index, urb); 1382 if (ret < 0) { 1383 xhci_urb_free_priv(urb_priv); 1384 urb->hcpriv = NULL; 1385 return ret; 1386 } 1387 } 1388 } 1389 1390 spin_lock_irqsave(&xhci->lock, flags); 1391 1392 if (xhci->xhc_state & XHCI_STATE_DYING) { 1393 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1394 urb->ep->desc.bEndpointAddress, urb); 1395 ret = -ESHUTDOWN; 1396 goto free_priv; 1397 } 1398 1399 switch (usb_endpoint_type(&urb->ep->desc)) { 1400 1401 case USB_ENDPOINT_XFER_CONTROL: 1402 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1403 slot_id, ep_index); 1404 break; 1405 case USB_ENDPOINT_XFER_BULK: 1406 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1407 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1408 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1409 ep_state); 1410 ret = -EINVAL; 1411 break; 1412 } 1413 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1414 slot_id, ep_index); 1415 break; 1416 1417 1418 case USB_ENDPOINT_XFER_INT: 1419 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1420 slot_id, ep_index); 1421 break; 1422 1423 case USB_ENDPOINT_XFER_ISOC: 1424 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1425 slot_id, ep_index); 1426 } 1427 1428 if (ret) { 1429 free_priv: 1430 xhci_urb_free_priv(urb_priv); 1431 urb->hcpriv = NULL; 1432 } 1433 spin_unlock_irqrestore(&xhci->lock, flags); 1434 return ret; 1435 } 1436 1437 /* 1438 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1439 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1440 * should pick up where it left off in the TD, unless a Set Transfer Ring 1441 * Dequeue Pointer is issued. 1442 * 1443 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1444 * the ring. Since the ring is a contiguous structure, they can't be physically 1445 * removed. Instead, there are two options: 1446 * 1447 * 1) If the HC is in the middle of processing the URB to be canceled, we 1448 * simply move the ring's dequeue pointer past those TRBs using the Set 1449 * Transfer Ring Dequeue Pointer command. This will be the common case, 1450 * when drivers timeout on the last submitted URB and attempt to cancel. 1451 * 1452 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1453 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1454 * HC will need to invalidate the any TRBs it has cached after the stop 1455 * endpoint command, as noted in the xHCI 0.95 errata. 1456 * 1457 * 3) The TD may have completed by the time the Stop Endpoint Command 1458 * completes, so software needs to handle that case too. 1459 * 1460 * This function should protect against the TD enqueueing code ringing the 1461 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1462 * It also needs to account for multiple cancellations on happening at the same 1463 * time for the same endpoint. 1464 * 1465 * Note that this function can be called in any context, or so says 1466 * usb_hcd_unlink_urb() 1467 */ 1468 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1469 { 1470 unsigned long flags; 1471 int ret, i; 1472 u32 temp; 1473 struct xhci_hcd *xhci; 1474 struct urb_priv *urb_priv; 1475 struct xhci_td *td; 1476 unsigned int ep_index; 1477 struct xhci_ring *ep_ring; 1478 struct xhci_virt_ep *ep; 1479 struct xhci_command *command; 1480 struct xhci_virt_device *vdev; 1481 1482 xhci = hcd_to_xhci(hcd); 1483 spin_lock_irqsave(&xhci->lock, flags); 1484 1485 trace_xhci_urb_dequeue(urb); 1486 1487 /* Make sure the URB hasn't completed or been unlinked already */ 1488 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1489 if (ret) 1490 goto done; 1491 1492 /* give back URB now if we can't queue it for cancel */ 1493 vdev = xhci->devs[urb->dev->slot_id]; 1494 urb_priv = urb->hcpriv; 1495 if (!vdev || !urb_priv) 1496 goto err_giveback; 1497 1498 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1499 ep = &vdev->eps[ep_index]; 1500 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1501 if (!ep || !ep_ring) 1502 goto err_giveback; 1503 1504 temp = readl(&xhci->op_regs->status); 1505 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { 1506 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1507 "HW died, freeing TD."); 1508 for (i = urb_priv->num_tds_done; 1509 i < urb_priv->num_tds; 1510 i++) { 1511 td = &urb_priv->td[i]; 1512 if (!list_empty(&td->td_list)) 1513 list_del_init(&td->td_list); 1514 if (!list_empty(&td->cancelled_td_list)) 1515 list_del_init(&td->cancelled_td_list); 1516 } 1517 goto err_giveback; 1518 } 1519 1520 i = urb_priv->num_tds_done; 1521 if (i < urb_priv->num_tds) 1522 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1523 "Cancel URB %p, dev %s, ep 0x%x, " 1524 "starting at offset 0x%llx", 1525 urb, urb->dev->devpath, 1526 urb->ep->desc.bEndpointAddress, 1527 (unsigned long long) xhci_trb_virt_to_dma( 1528 urb_priv->td[i].start_seg, 1529 urb_priv->td[i].first_trb)); 1530 1531 for (; i < urb_priv->num_tds; i++) { 1532 td = &urb_priv->td[i]; 1533 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1534 } 1535 1536 /* Queue a stop endpoint command, but only if this is 1537 * the first cancellation to be handled. 1538 */ 1539 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1540 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1541 if (!command) { 1542 ret = -ENOMEM; 1543 goto done; 1544 } 1545 ep->ep_state |= EP_STOP_CMD_PENDING; 1546 ep->stop_cmd_timer.expires = jiffies + 1547 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1548 add_timer(&ep->stop_cmd_timer); 1549 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1550 ep_index, 0); 1551 xhci_ring_cmd_db(xhci); 1552 } 1553 done: 1554 spin_unlock_irqrestore(&xhci->lock, flags); 1555 return ret; 1556 1557 err_giveback: 1558 if (urb_priv) 1559 xhci_urb_free_priv(urb_priv); 1560 usb_hcd_unlink_urb_from_ep(hcd, urb); 1561 spin_unlock_irqrestore(&xhci->lock, flags); 1562 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1563 return ret; 1564 } 1565 1566 /* Drop an endpoint from a new bandwidth configuration for this device. 1567 * Only one call to this function is allowed per endpoint before 1568 * check_bandwidth() or reset_bandwidth() must be called. 1569 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1570 * add the endpoint to the schedule with possibly new parameters denoted by a 1571 * different endpoint descriptor in usb_host_endpoint. 1572 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1573 * not allowed. 1574 * 1575 * The USB core will not allow URBs to be queued to an endpoint that is being 1576 * disabled, so there's no need for mutual exclusion to protect 1577 * the xhci->devs[slot_id] structure. 1578 */ 1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1580 struct usb_host_endpoint *ep) 1581 { 1582 struct xhci_hcd *xhci; 1583 struct xhci_container_ctx *in_ctx, *out_ctx; 1584 struct xhci_input_control_ctx *ctrl_ctx; 1585 unsigned int ep_index; 1586 struct xhci_ep_ctx *ep_ctx; 1587 u32 drop_flag; 1588 u32 new_add_flags, new_drop_flags; 1589 int ret; 1590 1591 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1592 if (ret <= 0) 1593 return ret; 1594 xhci = hcd_to_xhci(hcd); 1595 if (xhci->xhc_state & XHCI_STATE_DYING) 1596 return -ENODEV; 1597 1598 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1599 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1600 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1601 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1602 __func__, drop_flag); 1603 return 0; 1604 } 1605 1606 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1607 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1608 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1609 if (!ctrl_ctx) { 1610 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1611 __func__); 1612 return 0; 1613 } 1614 1615 ep_index = xhci_get_endpoint_index(&ep->desc); 1616 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1617 /* If the HC already knows the endpoint is disabled, 1618 * or the HCD has noted it is disabled, ignore this request 1619 */ 1620 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1621 le32_to_cpu(ctrl_ctx->drop_flags) & 1622 xhci_get_endpoint_flag(&ep->desc)) { 1623 /* Do not warn when called after a usb_device_reset */ 1624 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1625 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1626 __func__, ep); 1627 return 0; 1628 } 1629 1630 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1631 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1632 1633 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1634 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1635 1636 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1637 1638 if (xhci->quirks & XHCI_MTK_HOST) 1639 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1640 1641 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1642 (unsigned int) ep->desc.bEndpointAddress, 1643 udev->slot_id, 1644 (unsigned int) new_drop_flags, 1645 (unsigned int) new_add_flags); 1646 return 0; 1647 } 1648 1649 /* Add an endpoint to a new possible bandwidth configuration for this device. 1650 * Only one call to this function is allowed per endpoint before 1651 * check_bandwidth() or reset_bandwidth() must be called. 1652 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1653 * add the endpoint to the schedule with possibly new parameters denoted by a 1654 * different endpoint descriptor in usb_host_endpoint. 1655 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1656 * not allowed. 1657 * 1658 * The USB core will not allow URBs to be queued to an endpoint until the 1659 * configuration or alt setting is installed in the device, so there's no need 1660 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1661 */ 1662 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1663 struct usb_host_endpoint *ep) 1664 { 1665 struct xhci_hcd *xhci; 1666 struct xhci_container_ctx *in_ctx; 1667 unsigned int ep_index; 1668 struct xhci_input_control_ctx *ctrl_ctx; 1669 u32 added_ctxs; 1670 u32 new_add_flags, new_drop_flags; 1671 struct xhci_virt_device *virt_dev; 1672 int ret = 0; 1673 1674 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1675 if (ret <= 0) { 1676 /* So we won't queue a reset ep command for a root hub */ 1677 ep->hcpriv = NULL; 1678 return ret; 1679 } 1680 xhci = hcd_to_xhci(hcd); 1681 if (xhci->xhc_state & XHCI_STATE_DYING) 1682 return -ENODEV; 1683 1684 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1685 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1686 /* FIXME when we have to issue an evaluate endpoint command to 1687 * deal with ep0 max packet size changing once we get the 1688 * descriptors 1689 */ 1690 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1691 __func__, added_ctxs); 1692 return 0; 1693 } 1694 1695 virt_dev = xhci->devs[udev->slot_id]; 1696 in_ctx = virt_dev->in_ctx; 1697 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1698 if (!ctrl_ctx) { 1699 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1700 __func__); 1701 return 0; 1702 } 1703 1704 ep_index = xhci_get_endpoint_index(&ep->desc); 1705 /* If this endpoint is already in use, and the upper layers are trying 1706 * to add it again without dropping it, reject the addition. 1707 */ 1708 if (virt_dev->eps[ep_index].ring && 1709 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1710 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1711 "without dropping it.\n", 1712 (unsigned int) ep->desc.bEndpointAddress); 1713 return -EINVAL; 1714 } 1715 1716 /* If the HCD has already noted the endpoint is enabled, 1717 * ignore this request. 1718 */ 1719 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1720 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1721 __func__, ep); 1722 return 0; 1723 } 1724 1725 /* 1726 * Configuration and alternate setting changes must be done in 1727 * process context, not interrupt context (or so documenation 1728 * for usb_set_interface() and usb_set_configuration() claim). 1729 */ 1730 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1731 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1732 __func__, ep->desc.bEndpointAddress); 1733 return -ENOMEM; 1734 } 1735 1736 if (xhci->quirks & XHCI_MTK_HOST) { 1737 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1738 if (ret < 0) { 1739 xhci_free_or_cache_endpoint_ring(xhci, 1740 virt_dev, ep_index); 1741 return ret; 1742 } 1743 } 1744 1745 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1746 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1747 1748 /* If xhci_endpoint_disable() was called for this endpoint, but the 1749 * xHC hasn't been notified yet through the check_bandwidth() call, 1750 * this re-adds a new state for the endpoint from the new endpoint 1751 * descriptors. We must drop and re-add this endpoint, so we leave the 1752 * drop flags alone. 1753 */ 1754 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1755 1756 /* Store the usb_device pointer for later use */ 1757 ep->hcpriv = udev; 1758 1759 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1760 (unsigned int) ep->desc.bEndpointAddress, 1761 udev->slot_id, 1762 (unsigned int) new_drop_flags, 1763 (unsigned int) new_add_flags); 1764 return 0; 1765 } 1766 1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1768 { 1769 struct xhci_input_control_ctx *ctrl_ctx; 1770 struct xhci_ep_ctx *ep_ctx; 1771 struct xhci_slot_ctx *slot_ctx; 1772 int i; 1773 1774 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1775 if (!ctrl_ctx) { 1776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1777 __func__); 1778 return; 1779 } 1780 1781 /* When a device's add flag and drop flag are zero, any subsequent 1782 * configure endpoint command will leave that endpoint's state 1783 * untouched. Make sure we don't leave any old state in the input 1784 * endpoint contexts. 1785 */ 1786 ctrl_ctx->drop_flags = 0; 1787 ctrl_ctx->add_flags = 0; 1788 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1789 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1790 /* Endpoint 0 is always valid */ 1791 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1792 for (i = 1; i < 31; i++) { 1793 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1794 ep_ctx->ep_info = 0; 1795 ep_ctx->ep_info2 = 0; 1796 ep_ctx->deq = 0; 1797 ep_ctx->tx_info = 0; 1798 } 1799 } 1800 1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1802 struct usb_device *udev, u32 *cmd_status) 1803 { 1804 int ret; 1805 1806 switch (*cmd_status) { 1807 case COMP_COMMAND_ABORTED: 1808 case COMP_STOPPED: 1809 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1810 ret = -ETIME; 1811 break; 1812 case COMP_RESOURCE_ERROR: 1813 dev_warn(&udev->dev, 1814 "Not enough host controller resources for new device state.\n"); 1815 ret = -ENOMEM; 1816 /* FIXME: can we allocate more resources for the HC? */ 1817 break; 1818 case COMP_BANDWIDTH_ERROR: 1819 case COMP_SECONDARY_BANDWIDTH_ERROR: 1820 dev_warn(&udev->dev, 1821 "Not enough bandwidth for new device state.\n"); 1822 ret = -ENOSPC; 1823 /* FIXME: can we go back to the old state? */ 1824 break; 1825 case COMP_TRB_ERROR: 1826 /* the HCD set up something wrong */ 1827 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1828 "add flag = 1, " 1829 "and endpoint is not disabled.\n"); 1830 ret = -EINVAL; 1831 break; 1832 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1833 dev_warn(&udev->dev, 1834 "ERROR: Incompatible device for endpoint configure command.\n"); 1835 ret = -ENODEV; 1836 break; 1837 case COMP_SUCCESS: 1838 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1839 "Successful Endpoint Configure command"); 1840 ret = 0; 1841 break; 1842 default: 1843 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1844 *cmd_status); 1845 ret = -EINVAL; 1846 break; 1847 } 1848 return ret; 1849 } 1850 1851 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1852 struct usb_device *udev, u32 *cmd_status) 1853 { 1854 int ret; 1855 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1856 1857 switch (*cmd_status) { 1858 case COMP_COMMAND_ABORTED: 1859 case COMP_STOPPED: 1860 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1861 ret = -ETIME; 1862 break; 1863 case COMP_PARAMETER_ERROR: 1864 dev_warn(&udev->dev, 1865 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1866 ret = -EINVAL; 1867 break; 1868 case COMP_SLOT_NOT_ENABLED_ERROR: 1869 dev_warn(&udev->dev, 1870 "WARN: slot not enabled for evaluate context command.\n"); 1871 ret = -EINVAL; 1872 break; 1873 case COMP_CONTEXT_STATE_ERROR: 1874 dev_warn(&udev->dev, 1875 "WARN: invalid context state for evaluate context command.\n"); 1876 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1877 ret = -EINVAL; 1878 break; 1879 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1880 dev_warn(&udev->dev, 1881 "ERROR: Incompatible device for evaluate context command.\n"); 1882 ret = -ENODEV; 1883 break; 1884 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1885 /* Max Exit Latency too large error */ 1886 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1887 ret = -EINVAL; 1888 break; 1889 case COMP_SUCCESS: 1890 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1891 "Successful evaluate context command"); 1892 ret = 0; 1893 break; 1894 default: 1895 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1896 *cmd_status); 1897 ret = -EINVAL; 1898 break; 1899 } 1900 return ret; 1901 } 1902 1903 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1904 struct xhci_input_control_ctx *ctrl_ctx) 1905 { 1906 u32 valid_add_flags; 1907 u32 valid_drop_flags; 1908 1909 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1910 * (bit 1). The default control endpoint is added during the Address 1911 * Device command and is never removed until the slot is disabled. 1912 */ 1913 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1914 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1915 1916 /* Use hweight32 to count the number of ones in the add flags, or 1917 * number of endpoints added. Don't count endpoints that are changed 1918 * (both added and dropped). 1919 */ 1920 return hweight32(valid_add_flags) - 1921 hweight32(valid_add_flags & valid_drop_flags); 1922 } 1923 1924 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1925 struct xhci_input_control_ctx *ctrl_ctx) 1926 { 1927 u32 valid_add_flags; 1928 u32 valid_drop_flags; 1929 1930 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1931 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1932 1933 return hweight32(valid_drop_flags) - 1934 hweight32(valid_add_flags & valid_drop_flags); 1935 } 1936 1937 /* 1938 * We need to reserve the new number of endpoints before the configure endpoint 1939 * command completes. We can't subtract the dropped endpoints from the number 1940 * of active endpoints until the command completes because we can oversubscribe 1941 * the host in this case: 1942 * 1943 * - the first configure endpoint command drops more endpoints than it adds 1944 * - a second configure endpoint command that adds more endpoints is queued 1945 * - the first configure endpoint command fails, so the config is unchanged 1946 * - the second command may succeed, even though there isn't enough resources 1947 * 1948 * Must be called with xhci->lock held. 1949 */ 1950 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1951 struct xhci_input_control_ctx *ctrl_ctx) 1952 { 1953 u32 added_eps; 1954 1955 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1956 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1957 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1958 "Not enough ep ctxs: " 1959 "%u active, need to add %u, limit is %u.", 1960 xhci->num_active_eps, added_eps, 1961 xhci->limit_active_eps); 1962 return -ENOMEM; 1963 } 1964 xhci->num_active_eps += added_eps; 1965 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1966 "Adding %u ep ctxs, %u now active.", added_eps, 1967 xhci->num_active_eps); 1968 return 0; 1969 } 1970 1971 /* 1972 * The configure endpoint was failed by the xHC for some other reason, so we 1973 * need to revert the resources that failed configuration would have used. 1974 * 1975 * Must be called with xhci->lock held. 1976 */ 1977 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1978 struct xhci_input_control_ctx *ctrl_ctx) 1979 { 1980 u32 num_failed_eps; 1981 1982 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1983 xhci->num_active_eps -= num_failed_eps; 1984 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1985 "Removing %u failed ep ctxs, %u now active.", 1986 num_failed_eps, 1987 xhci->num_active_eps); 1988 } 1989 1990 /* 1991 * Now that the command has completed, clean up the active endpoint count by 1992 * subtracting out the endpoints that were dropped (but not changed). 1993 * 1994 * Must be called with xhci->lock held. 1995 */ 1996 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1997 struct xhci_input_control_ctx *ctrl_ctx) 1998 { 1999 u32 num_dropped_eps; 2000 2001 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 2002 xhci->num_active_eps -= num_dropped_eps; 2003 if (num_dropped_eps) 2004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2005 "Removing %u dropped ep ctxs, %u now active.", 2006 num_dropped_eps, 2007 xhci->num_active_eps); 2008 } 2009 2010 static unsigned int xhci_get_block_size(struct usb_device *udev) 2011 { 2012 switch (udev->speed) { 2013 case USB_SPEED_LOW: 2014 case USB_SPEED_FULL: 2015 return FS_BLOCK; 2016 case USB_SPEED_HIGH: 2017 return HS_BLOCK; 2018 case USB_SPEED_SUPER: 2019 case USB_SPEED_SUPER_PLUS: 2020 return SS_BLOCK; 2021 case USB_SPEED_UNKNOWN: 2022 case USB_SPEED_WIRELESS: 2023 default: 2024 /* Should never happen */ 2025 return 1; 2026 } 2027 } 2028 2029 static unsigned int 2030 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 2031 { 2032 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 2033 return LS_OVERHEAD; 2034 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 2035 return FS_OVERHEAD; 2036 return HS_OVERHEAD; 2037 } 2038 2039 /* If we are changing a LS/FS device under a HS hub, 2040 * make sure (if we are activating a new TT) that the HS bus has enough 2041 * bandwidth for this new TT. 2042 */ 2043 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2044 struct xhci_virt_device *virt_dev, 2045 int old_active_eps) 2046 { 2047 struct xhci_interval_bw_table *bw_table; 2048 struct xhci_tt_bw_info *tt_info; 2049 2050 /* Find the bandwidth table for the root port this TT is attached to. */ 2051 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2052 tt_info = virt_dev->tt_info; 2053 /* If this TT already had active endpoints, the bandwidth for this TT 2054 * has already been added. Removing all periodic endpoints (and thus 2055 * making the TT enactive) will only decrease the bandwidth used. 2056 */ 2057 if (old_active_eps) 2058 return 0; 2059 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2060 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2061 return -ENOMEM; 2062 return 0; 2063 } 2064 /* Not sure why we would have no new active endpoints... 2065 * 2066 * Maybe because of an Evaluate Context change for a hub update or a 2067 * control endpoint 0 max packet size change? 2068 * FIXME: skip the bandwidth calculation in that case. 2069 */ 2070 return 0; 2071 } 2072 2073 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2074 struct xhci_virt_device *virt_dev) 2075 { 2076 unsigned int bw_reserved; 2077 2078 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2079 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2080 return -ENOMEM; 2081 2082 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2083 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2084 return -ENOMEM; 2085 2086 return 0; 2087 } 2088 2089 /* 2090 * This algorithm is a very conservative estimate of the worst-case scheduling 2091 * scenario for any one interval. The hardware dynamically schedules the 2092 * packets, so we can't tell which microframe could be the limiting factor in 2093 * the bandwidth scheduling. This only takes into account periodic endpoints. 2094 * 2095 * Obviously, we can't solve an NP complete problem to find the minimum worst 2096 * case scenario. Instead, we come up with an estimate that is no less than 2097 * the worst case bandwidth used for any one microframe, but may be an 2098 * over-estimate. 2099 * 2100 * We walk the requirements for each endpoint by interval, starting with the 2101 * smallest interval, and place packets in the schedule where there is only one 2102 * possible way to schedule packets for that interval. In order to simplify 2103 * this algorithm, we record the largest max packet size for each interval, and 2104 * assume all packets will be that size. 2105 * 2106 * For interval 0, we obviously must schedule all packets for each interval. 2107 * The bandwidth for interval 0 is just the amount of data to be transmitted 2108 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2109 * the number of packets). 2110 * 2111 * For interval 1, we have two possible microframes to schedule those packets 2112 * in. For this algorithm, if we can schedule the same number of packets for 2113 * each possible scheduling opportunity (each microframe), we will do so. The 2114 * remaining number of packets will be saved to be transmitted in the gaps in 2115 * the next interval's scheduling sequence. 2116 * 2117 * As we move those remaining packets to be scheduled with interval 2 packets, 2118 * we have to double the number of remaining packets to transmit. This is 2119 * because the intervals are actually powers of 2, and we would be transmitting 2120 * the previous interval's packets twice in this interval. We also have to be 2121 * sure that when we look at the largest max packet size for this interval, we 2122 * also look at the largest max packet size for the remaining packets and take 2123 * the greater of the two. 2124 * 2125 * The algorithm continues to evenly distribute packets in each scheduling 2126 * opportunity, and push the remaining packets out, until we get to the last 2127 * interval. Then those packets and their associated overhead are just added 2128 * to the bandwidth used. 2129 */ 2130 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2131 struct xhci_virt_device *virt_dev, 2132 int old_active_eps) 2133 { 2134 unsigned int bw_reserved; 2135 unsigned int max_bandwidth; 2136 unsigned int bw_used; 2137 unsigned int block_size; 2138 struct xhci_interval_bw_table *bw_table; 2139 unsigned int packet_size = 0; 2140 unsigned int overhead = 0; 2141 unsigned int packets_transmitted = 0; 2142 unsigned int packets_remaining = 0; 2143 unsigned int i; 2144 2145 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2146 return xhci_check_ss_bw(xhci, virt_dev); 2147 2148 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2149 max_bandwidth = HS_BW_LIMIT; 2150 /* Convert percent of bus BW reserved to blocks reserved */ 2151 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2152 } else { 2153 max_bandwidth = FS_BW_LIMIT; 2154 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2155 } 2156 2157 bw_table = virt_dev->bw_table; 2158 /* We need to translate the max packet size and max ESIT payloads into 2159 * the units the hardware uses. 2160 */ 2161 block_size = xhci_get_block_size(virt_dev->udev); 2162 2163 /* If we are manipulating a LS/FS device under a HS hub, double check 2164 * that the HS bus has enough bandwidth if we are activing a new TT. 2165 */ 2166 if (virt_dev->tt_info) { 2167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2168 "Recalculating BW for rootport %u", 2169 virt_dev->real_port); 2170 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2171 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2172 "newly activated TT.\n"); 2173 return -ENOMEM; 2174 } 2175 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2176 "Recalculating BW for TT slot %u port %u", 2177 virt_dev->tt_info->slot_id, 2178 virt_dev->tt_info->ttport); 2179 } else { 2180 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2181 "Recalculating BW for rootport %u", 2182 virt_dev->real_port); 2183 } 2184 2185 /* Add in how much bandwidth will be used for interval zero, or the 2186 * rounded max ESIT payload + number of packets * largest overhead. 2187 */ 2188 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2189 bw_table->interval_bw[0].num_packets * 2190 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2191 2192 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2193 unsigned int bw_added; 2194 unsigned int largest_mps; 2195 unsigned int interval_overhead; 2196 2197 /* 2198 * How many packets could we transmit in this interval? 2199 * If packets didn't fit in the previous interval, we will need 2200 * to transmit that many packets twice within this interval. 2201 */ 2202 packets_remaining = 2 * packets_remaining + 2203 bw_table->interval_bw[i].num_packets; 2204 2205 /* Find the largest max packet size of this or the previous 2206 * interval. 2207 */ 2208 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2209 largest_mps = 0; 2210 else { 2211 struct xhci_virt_ep *virt_ep; 2212 struct list_head *ep_entry; 2213 2214 ep_entry = bw_table->interval_bw[i].endpoints.next; 2215 virt_ep = list_entry(ep_entry, 2216 struct xhci_virt_ep, bw_endpoint_list); 2217 /* Convert to blocks, rounding up */ 2218 largest_mps = DIV_ROUND_UP( 2219 virt_ep->bw_info.max_packet_size, 2220 block_size); 2221 } 2222 if (largest_mps > packet_size) 2223 packet_size = largest_mps; 2224 2225 /* Use the larger overhead of this or the previous interval. */ 2226 interval_overhead = xhci_get_largest_overhead( 2227 &bw_table->interval_bw[i]); 2228 if (interval_overhead > overhead) 2229 overhead = interval_overhead; 2230 2231 /* How many packets can we evenly distribute across 2232 * (1 << (i + 1)) possible scheduling opportunities? 2233 */ 2234 packets_transmitted = packets_remaining >> (i + 1); 2235 2236 /* Add in the bandwidth used for those scheduled packets */ 2237 bw_added = packets_transmitted * (overhead + packet_size); 2238 2239 /* How many packets do we have remaining to transmit? */ 2240 packets_remaining = packets_remaining % (1 << (i + 1)); 2241 2242 /* What largest max packet size should those packets have? */ 2243 /* If we've transmitted all packets, don't carry over the 2244 * largest packet size. 2245 */ 2246 if (packets_remaining == 0) { 2247 packet_size = 0; 2248 overhead = 0; 2249 } else if (packets_transmitted > 0) { 2250 /* Otherwise if we do have remaining packets, and we've 2251 * scheduled some packets in this interval, take the 2252 * largest max packet size from endpoints with this 2253 * interval. 2254 */ 2255 packet_size = largest_mps; 2256 overhead = interval_overhead; 2257 } 2258 /* Otherwise carry over packet_size and overhead from the last 2259 * time we had a remainder. 2260 */ 2261 bw_used += bw_added; 2262 if (bw_used > max_bandwidth) { 2263 xhci_warn(xhci, "Not enough bandwidth. " 2264 "Proposed: %u, Max: %u\n", 2265 bw_used, max_bandwidth); 2266 return -ENOMEM; 2267 } 2268 } 2269 /* 2270 * Ok, we know we have some packets left over after even-handedly 2271 * scheduling interval 15. We don't know which microframes they will 2272 * fit into, so we over-schedule and say they will be scheduled every 2273 * microframe. 2274 */ 2275 if (packets_remaining > 0) 2276 bw_used += overhead + packet_size; 2277 2278 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2279 unsigned int port_index = virt_dev->real_port - 1; 2280 2281 /* OK, we're manipulating a HS device attached to a 2282 * root port bandwidth domain. Include the number of active TTs 2283 * in the bandwidth used. 2284 */ 2285 bw_used += TT_HS_OVERHEAD * 2286 xhci->rh_bw[port_index].num_active_tts; 2287 } 2288 2289 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2290 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2291 "Available: %u " "percent", 2292 bw_used, max_bandwidth, bw_reserved, 2293 (max_bandwidth - bw_used - bw_reserved) * 100 / 2294 max_bandwidth); 2295 2296 bw_used += bw_reserved; 2297 if (bw_used > max_bandwidth) { 2298 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2299 bw_used, max_bandwidth); 2300 return -ENOMEM; 2301 } 2302 2303 bw_table->bw_used = bw_used; 2304 return 0; 2305 } 2306 2307 static bool xhci_is_async_ep(unsigned int ep_type) 2308 { 2309 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2310 ep_type != ISOC_IN_EP && 2311 ep_type != INT_IN_EP); 2312 } 2313 2314 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2315 { 2316 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2317 } 2318 2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2320 { 2321 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2322 2323 if (ep_bw->ep_interval == 0) 2324 return SS_OVERHEAD_BURST + 2325 (ep_bw->mult * ep_bw->num_packets * 2326 (SS_OVERHEAD + mps)); 2327 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2328 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2329 1 << ep_bw->ep_interval); 2330 2331 } 2332 2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2334 struct xhci_bw_info *ep_bw, 2335 struct xhci_interval_bw_table *bw_table, 2336 struct usb_device *udev, 2337 struct xhci_virt_ep *virt_ep, 2338 struct xhci_tt_bw_info *tt_info) 2339 { 2340 struct xhci_interval_bw *interval_bw; 2341 int normalized_interval; 2342 2343 if (xhci_is_async_ep(ep_bw->type)) 2344 return; 2345 2346 if (udev->speed >= USB_SPEED_SUPER) { 2347 if (xhci_is_sync_in_ep(ep_bw->type)) 2348 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2349 xhci_get_ss_bw_consumed(ep_bw); 2350 else 2351 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2352 xhci_get_ss_bw_consumed(ep_bw); 2353 return; 2354 } 2355 2356 /* SuperSpeed endpoints never get added to intervals in the table, so 2357 * this check is only valid for HS/FS/LS devices. 2358 */ 2359 if (list_empty(&virt_ep->bw_endpoint_list)) 2360 return; 2361 /* For LS/FS devices, we need to translate the interval expressed in 2362 * microframes to frames. 2363 */ 2364 if (udev->speed == USB_SPEED_HIGH) 2365 normalized_interval = ep_bw->ep_interval; 2366 else 2367 normalized_interval = ep_bw->ep_interval - 3; 2368 2369 if (normalized_interval == 0) 2370 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2371 interval_bw = &bw_table->interval_bw[normalized_interval]; 2372 interval_bw->num_packets -= ep_bw->num_packets; 2373 switch (udev->speed) { 2374 case USB_SPEED_LOW: 2375 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2376 break; 2377 case USB_SPEED_FULL: 2378 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2379 break; 2380 case USB_SPEED_HIGH: 2381 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2382 break; 2383 case USB_SPEED_SUPER: 2384 case USB_SPEED_SUPER_PLUS: 2385 case USB_SPEED_UNKNOWN: 2386 case USB_SPEED_WIRELESS: 2387 /* Should never happen because only LS/FS/HS endpoints will get 2388 * added to the endpoint list. 2389 */ 2390 return; 2391 } 2392 if (tt_info) 2393 tt_info->active_eps -= 1; 2394 list_del_init(&virt_ep->bw_endpoint_list); 2395 } 2396 2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2398 struct xhci_bw_info *ep_bw, 2399 struct xhci_interval_bw_table *bw_table, 2400 struct usb_device *udev, 2401 struct xhci_virt_ep *virt_ep, 2402 struct xhci_tt_bw_info *tt_info) 2403 { 2404 struct xhci_interval_bw *interval_bw; 2405 struct xhci_virt_ep *smaller_ep; 2406 int normalized_interval; 2407 2408 if (xhci_is_async_ep(ep_bw->type)) 2409 return; 2410 2411 if (udev->speed == USB_SPEED_SUPER) { 2412 if (xhci_is_sync_in_ep(ep_bw->type)) 2413 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2414 xhci_get_ss_bw_consumed(ep_bw); 2415 else 2416 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2417 xhci_get_ss_bw_consumed(ep_bw); 2418 return; 2419 } 2420 2421 /* For LS/FS devices, we need to translate the interval expressed in 2422 * microframes to frames. 2423 */ 2424 if (udev->speed == USB_SPEED_HIGH) 2425 normalized_interval = ep_bw->ep_interval; 2426 else 2427 normalized_interval = ep_bw->ep_interval - 3; 2428 2429 if (normalized_interval == 0) 2430 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2431 interval_bw = &bw_table->interval_bw[normalized_interval]; 2432 interval_bw->num_packets += ep_bw->num_packets; 2433 switch (udev->speed) { 2434 case USB_SPEED_LOW: 2435 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2436 break; 2437 case USB_SPEED_FULL: 2438 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2439 break; 2440 case USB_SPEED_HIGH: 2441 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2442 break; 2443 case USB_SPEED_SUPER: 2444 case USB_SPEED_SUPER_PLUS: 2445 case USB_SPEED_UNKNOWN: 2446 case USB_SPEED_WIRELESS: 2447 /* Should never happen because only LS/FS/HS endpoints will get 2448 * added to the endpoint list. 2449 */ 2450 return; 2451 } 2452 2453 if (tt_info) 2454 tt_info->active_eps += 1; 2455 /* Insert the endpoint into the list, largest max packet size first. */ 2456 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2457 bw_endpoint_list) { 2458 if (ep_bw->max_packet_size >= 2459 smaller_ep->bw_info.max_packet_size) { 2460 /* Add the new ep before the smaller endpoint */ 2461 list_add_tail(&virt_ep->bw_endpoint_list, 2462 &smaller_ep->bw_endpoint_list); 2463 return; 2464 } 2465 } 2466 /* Add the new endpoint at the end of the list. */ 2467 list_add_tail(&virt_ep->bw_endpoint_list, 2468 &interval_bw->endpoints); 2469 } 2470 2471 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2472 struct xhci_virt_device *virt_dev, 2473 int old_active_eps) 2474 { 2475 struct xhci_root_port_bw_info *rh_bw_info; 2476 if (!virt_dev->tt_info) 2477 return; 2478 2479 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2480 if (old_active_eps == 0 && 2481 virt_dev->tt_info->active_eps != 0) { 2482 rh_bw_info->num_active_tts += 1; 2483 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2484 } else if (old_active_eps != 0 && 2485 virt_dev->tt_info->active_eps == 0) { 2486 rh_bw_info->num_active_tts -= 1; 2487 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2488 } 2489 } 2490 2491 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2492 struct xhci_virt_device *virt_dev, 2493 struct xhci_container_ctx *in_ctx) 2494 { 2495 struct xhci_bw_info ep_bw_info[31]; 2496 int i; 2497 struct xhci_input_control_ctx *ctrl_ctx; 2498 int old_active_eps = 0; 2499 2500 if (virt_dev->tt_info) 2501 old_active_eps = virt_dev->tt_info->active_eps; 2502 2503 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2504 if (!ctrl_ctx) { 2505 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2506 __func__); 2507 return -ENOMEM; 2508 } 2509 2510 for (i = 0; i < 31; i++) { 2511 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2512 continue; 2513 2514 /* Make a copy of the BW info in case we need to revert this */ 2515 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2516 sizeof(ep_bw_info[i])); 2517 /* Drop the endpoint from the interval table if the endpoint is 2518 * being dropped or changed. 2519 */ 2520 if (EP_IS_DROPPED(ctrl_ctx, i)) 2521 xhci_drop_ep_from_interval_table(xhci, 2522 &virt_dev->eps[i].bw_info, 2523 virt_dev->bw_table, 2524 virt_dev->udev, 2525 &virt_dev->eps[i], 2526 virt_dev->tt_info); 2527 } 2528 /* Overwrite the information stored in the endpoints' bw_info */ 2529 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2530 for (i = 0; i < 31; i++) { 2531 /* Add any changed or added endpoints to the interval table */ 2532 if (EP_IS_ADDED(ctrl_ctx, i)) 2533 xhci_add_ep_to_interval_table(xhci, 2534 &virt_dev->eps[i].bw_info, 2535 virt_dev->bw_table, 2536 virt_dev->udev, 2537 &virt_dev->eps[i], 2538 virt_dev->tt_info); 2539 } 2540 2541 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2542 /* Ok, this fits in the bandwidth we have. 2543 * Update the number of active TTs. 2544 */ 2545 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2546 return 0; 2547 } 2548 2549 /* We don't have enough bandwidth for this, revert the stored info. */ 2550 for (i = 0; i < 31; i++) { 2551 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2552 continue; 2553 2554 /* Drop the new copies of any added or changed endpoints from 2555 * the interval table. 2556 */ 2557 if (EP_IS_ADDED(ctrl_ctx, i)) { 2558 xhci_drop_ep_from_interval_table(xhci, 2559 &virt_dev->eps[i].bw_info, 2560 virt_dev->bw_table, 2561 virt_dev->udev, 2562 &virt_dev->eps[i], 2563 virt_dev->tt_info); 2564 } 2565 /* Revert the endpoint back to its old information */ 2566 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2567 sizeof(ep_bw_info[i])); 2568 /* Add any changed or dropped endpoints back into the table */ 2569 if (EP_IS_DROPPED(ctrl_ctx, i)) 2570 xhci_add_ep_to_interval_table(xhci, 2571 &virt_dev->eps[i].bw_info, 2572 virt_dev->bw_table, 2573 virt_dev->udev, 2574 &virt_dev->eps[i], 2575 virt_dev->tt_info); 2576 } 2577 return -ENOMEM; 2578 } 2579 2580 2581 /* Issue a configure endpoint command or evaluate context command 2582 * and wait for it to finish. 2583 */ 2584 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2585 struct usb_device *udev, 2586 struct xhci_command *command, 2587 bool ctx_change, bool must_succeed) 2588 { 2589 int ret; 2590 unsigned long flags; 2591 struct xhci_input_control_ctx *ctrl_ctx; 2592 struct xhci_virt_device *virt_dev; 2593 2594 if (!command) 2595 return -EINVAL; 2596 2597 spin_lock_irqsave(&xhci->lock, flags); 2598 virt_dev = xhci->devs[udev->slot_id]; 2599 2600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2601 if (!ctrl_ctx) { 2602 spin_unlock_irqrestore(&xhci->lock, flags); 2603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2604 __func__); 2605 return -ENOMEM; 2606 } 2607 2608 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2609 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2610 spin_unlock_irqrestore(&xhci->lock, flags); 2611 xhci_warn(xhci, "Not enough host resources, " 2612 "active endpoint contexts = %u\n", 2613 xhci->num_active_eps); 2614 return -ENOMEM; 2615 } 2616 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2617 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2618 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2619 xhci_free_host_resources(xhci, ctrl_ctx); 2620 spin_unlock_irqrestore(&xhci->lock, flags); 2621 xhci_warn(xhci, "Not enough bandwidth\n"); 2622 return -ENOMEM; 2623 } 2624 2625 if (!ctx_change) 2626 ret = xhci_queue_configure_endpoint(xhci, command, 2627 command->in_ctx->dma, 2628 udev->slot_id, must_succeed); 2629 else 2630 ret = xhci_queue_evaluate_context(xhci, command, 2631 command->in_ctx->dma, 2632 udev->slot_id, must_succeed); 2633 if (ret < 0) { 2634 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2635 xhci_free_host_resources(xhci, ctrl_ctx); 2636 spin_unlock_irqrestore(&xhci->lock, flags); 2637 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2638 "FIXME allocate a new ring segment"); 2639 return -ENOMEM; 2640 } 2641 xhci_ring_cmd_db(xhci); 2642 spin_unlock_irqrestore(&xhci->lock, flags); 2643 2644 /* Wait for the configure endpoint command to complete */ 2645 wait_for_completion(command->completion); 2646 2647 if (!ctx_change) 2648 ret = xhci_configure_endpoint_result(xhci, udev, 2649 &command->status); 2650 else 2651 ret = xhci_evaluate_context_result(xhci, udev, 2652 &command->status); 2653 2654 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2655 spin_lock_irqsave(&xhci->lock, flags); 2656 /* If the command failed, remove the reserved resources. 2657 * Otherwise, clean up the estimate to include dropped eps. 2658 */ 2659 if (ret) 2660 xhci_free_host_resources(xhci, ctrl_ctx); 2661 else 2662 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2663 spin_unlock_irqrestore(&xhci->lock, flags); 2664 } 2665 return ret; 2666 } 2667 2668 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2669 struct xhci_virt_device *vdev, int i) 2670 { 2671 struct xhci_virt_ep *ep = &vdev->eps[i]; 2672 2673 if (ep->ep_state & EP_HAS_STREAMS) { 2674 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2675 xhci_get_endpoint_address(i)); 2676 xhci_free_stream_info(xhci, ep->stream_info); 2677 ep->stream_info = NULL; 2678 ep->ep_state &= ~EP_HAS_STREAMS; 2679 } 2680 } 2681 2682 /* Called after one or more calls to xhci_add_endpoint() or 2683 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2684 * to call xhci_reset_bandwidth(). 2685 * 2686 * Since we are in the middle of changing either configuration or 2687 * installing a new alt setting, the USB core won't allow URBs to be 2688 * enqueued for any endpoint on the old config or interface. Nothing 2689 * else should be touching the xhci->devs[slot_id] structure, so we 2690 * don't need to take the xhci->lock for manipulating that. 2691 */ 2692 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2693 { 2694 int i; 2695 int ret = 0; 2696 struct xhci_hcd *xhci; 2697 struct xhci_virt_device *virt_dev; 2698 struct xhci_input_control_ctx *ctrl_ctx; 2699 struct xhci_slot_ctx *slot_ctx; 2700 struct xhci_command *command; 2701 2702 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2703 if (ret <= 0) 2704 return ret; 2705 xhci = hcd_to_xhci(hcd); 2706 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2707 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2708 return -ENODEV; 2709 2710 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2711 virt_dev = xhci->devs[udev->slot_id]; 2712 2713 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2714 if (!command) 2715 return -ENOMEM; 2716 2717 command->in_ctx = virt_dev->in_ctx; 2718 2719 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2720 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2721 if (!ctrl_ctx) { 2722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2723 __func__); 2724 ret = -ENOMEM; 2725 goto command_cleanup; 2726 } 2727 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2728 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2729 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2730 2731 /* Don't issue the command if there's no endpoints to update. */ 2732 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2733 ctrl_ctx->drop_flags == 0) { 2734 ret = 0; 2735 goto command_cleanup; 2736 } 2737 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2738 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2739 for (i = 31; i >= 1; i--) { 2740 __le32 le32 = cpu_to_le32(BIT(i)); 2741 2742 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2743 || (ctrl_ctx->add_flags & le32) || i == 1) { 2744 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2745 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2746 break; 2747 } 2748 } 2749 xhci_dbg(xhci, "New Input Control Context:\n"); 2750 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2751 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2752 2753 ret = xhci_configure_endpoint(xhci, udev, command, 2754 false, false); 2755 if (ret) 2756 /* Callee should call reset_bandwidth() */ 2757 goto command_cleanup; 2758 2759 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 2760 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2761 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); 2762 2763 /* Free any rings that were dropped, but not changed. */ 2764 for (i = 1; i < 31; i++) { 2765 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2766 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2767 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2768 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2769 } 2770 } 2771 xhci_zero_in_ctx(xhci, virt_dev); 2772 /* 2773 * Install any rings for completely new endpoints or changed endpoints, 2774 * and free or cache any old rings from changed endpoints. 2775 */ 2776 for (i = 1; i < 31; i++) { 2777 if (!virt_dev->eps[i].new_ring) 2778 continue; 2779 /* Only cache or free the old ring if it exists. 2780 * It may not if this is the first add of an endpoint. 2781 */ 2782 if (virt_dev->eps[i].ring) { 2783 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2784 } 2785 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2786 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2787 virt_dev->eps[i].new_ring = NULL; 2788 } 2789 command_cleanup: 2790 kfree(command->completion); 2791 kfree(command); 2792 2793 return ret; 2794 } 2795 2796 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2797 { 2798 struct xhci_hcd *xhci; 2799 struct xhci_virt_device *virt_dev; 2800 int i, ret; 2801 2802 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2803 if (ret <= 0) 2804 return; 2805 xhci = hcd_to_xhci(hcd); 2806 2807 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2808 virt_dev = xhci->devs[udev->slot_id]; 2809 /* Free any rings allocated for added endpoints */ 2810 for (i = 0; i < 31; i++) { 2811 if (virt_dev->eps[i].new_ring) { 2812 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2813 virt_dev->eps[i].new_ring = NULL; 2814 } 2815 } 2816 xhci_zero_in_ctx(xhci, virt_dev); 2817 } 2818 2819 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2820 struct xhci_container_ctx *in_ctx, 2821 struct xhci_container_ctx *out_ctx, 2822 struct xhci_input_control_ctx *ctrl_ctx, 2823 u32 add_flags, u32 drop_flags) 2824 { 2825 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2826 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2827 xhci_slot_copy(xhci, in_ctx, out_ctx); 2828 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2829 2830 xhci_dbg(xhci, "Input Context:\n"); 2831 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 2832 } 2833 2834 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2835 unsigned int slot_id, unsigned int ep_index, 2836 struct xhci_dequeue_state *deq_state) 2837 { 2838 struct xhci_input_control_ctx *ctrl_ctx; 2839 struct xhci_container_ctx *in_ctx; 2840 struct xhci_ep_ctx *ep_ctx; 2841 u32 added_ctxs; 2842 dma_addr_t addr; 2843 2844 in_ctx = xhci->devs[slot_id]->in_ctx; 2845 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2846 if (!ctrl_ctx) { 2847 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2848 __func__); 2849 return; 2850 } 2851 2852 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2853 xhci->devs[slot_id]->out_ctx, ep_index); 2854 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2855 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2856 deq_state->new_deq_ptr); 2857 if (addr == 0) { 2858 xhci_warn(xhci, "WARN Cannot submit config ep after " 2859 "reset ep command\n"); 2860 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2861 deq_state->new_deq_seg, 2862 deq_state->new_deq_ptr); 2863 return; 2864 } 2865 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2866 2867 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2868 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2869 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2870 added_ctxs, added_ctxs); 2871 } 2872 2873 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 2874 unsigned int ep_index, struct xhci_td *td) 2875 { 2876 struct xhci_dequeue_state deq_state; 2877 struct xhci_virt_ep *ep; 2878 struct usb_device *udev = td->urb->dev; 2879 2880 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2881 "Cleaning up stalled endpoint ring"); 2882 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2883 /* We need to move the HW's dequeue pointer past this TD, 2884 * or it will attempt to resend it on the next doorbell ring. 2885 */ 2886 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2887 ep_index, ep->stopped_stream, td, &deq_state); 2888 2889 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2890 return; 2891 2892 /* HW with the reset endpoint quirk will use the saved dequeue state to 2893 * issue a configure endpoint command later. 2894 */ 2895 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2896 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2897 "Queueing new dequeue state"); 2898 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2899 ep_index, ep->stopped_stream, &deq_state); 2900 } else { 2901 /* Better hope no one uses the input context between now and the 2902 * reset endpoint completion! 2903 * XXX: No idea how this hardware will react when stream rings 2904 * are enabled. 2905 */ 2906 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2907 "Setting up input context for " 2908 "configure endpoint command"); 2909 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2910 ep_index, &deq_state); 2911 } 2912 } 2913 2914 /* Called when clearing halted device. The core should have sent the control 2915 * message to clear the device halt condition. The host side of the halt should 2916 * already be cleared with a reset endpoint command issued when the STALL tx 2917 * event was received. 2918 * 2919 * Context: in_interrupt 2920 */ 2921 2922 void xhci_endpoint_reset(struct usb_hcd *hcd, 2923 struct usb_host_endpoint *ep) 2924 { 2925 struct xhci_hcd *xhci; 2926 2927 xhci = hcd_to_xhci(hcd); 2928 2929 /* 2930 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2931 * The Reset Endpoint Command may only be issued to endpoints in the 2932 * Halted state. If software wishes reset the Data Toggle or Sequence 2933 * Number of an endpoint that isn't in the Halted state, then software 2934 * may issue a Configure Endpoint Command with the Drop and Add bits set 2935 * for the target endpoint. that is in the Stopped state. 2936 */ 2937 2938 /* For now just print debug to follow the situation */ 2939 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2940 ep->desc.bEndpointAddress); 2941 } 2942 2943 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2944 struct usb_device *udev, struct usb_host_endpoint *ep, 2945 unsigned int slot_id) 2946 { 2947 int ret; 2948 unsigned int ep_index; 2949 unsigned int ep_state; 2950 2951 if (!ep) 2952 return -EINVAL; 2953 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2954 if (ret <= 0) 2955 return -EINVAL; 2956 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2957 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2958 " descriptor for ep 0x%x does not support streams\n", 2959 ep->desc.bEndpointAddress); 2960 return -EINVAL; 2961 } 2962 2963 ep_index = xhci_get_endpoint_index(&ep->desc); 2964 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2965 if (ep_state & EP_HAS_STREAMS || 2966 ep_state & EP_GETTING_STREAMS) { 2967 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2968 "already has streams set up.\n", 2969 ep->desc.bEndpointAddress); 2970 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2971 "dynamic stream context array reallocation.\n"); 2972 return -EINVAL; 2973 } 2974 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2975 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2976 "endpoint 0x%x; URBs are pending.\n", 2977 ep->desc.bEndpointAddress); 2978 return -EINVAL; 2979 } 2980 return 0; 2981 } 2982 2983 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2984 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2985 { 2986 unsigned int max_streams; 2987 2988 /* The stream context array size must be a power of two */ 2989 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2990 /* 2991 * Find out how many primary stream array entries the host controller 2992 * supports. Later we may use secondary stream arrays (similar to 2nd 2993 * level page entries), but that's an optional feature for xHCI host 2994 * controllers. xHCs must support at least 4 stream IDs. 2995 */ 2996 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2997 if (*num_stream_ctxs > max_streams) { 2998 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2999 max_streams); 3000 *num_stream_ctxs = max_streams; 3001 *num_streams = max_streams; 3002 } 3003 } 3004 3005 /* Returns an error code if one of the endpoint already has streams. 3006 * This does not change any data structures, it only checks and gathers 3007 * information. 3008 */ 3009 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 3010 struct usb_device *udev, 3011 struct usb_host_endpoint **eps, unsigned int num_eps, 3012 unsigned int *num_streams, u32 *changed_ep_bitmask) 3013 { 3014 unsigned int max_streams; 3015 unsigned int endpoint_flag; 3016 int i; 3017 int ret; 3018 3019 for (i = 0; i < num_eps; i++) { 3020 ret = xhci_check_streams_endpoint(xhci, udev, 3021 eps[i], udev->slot_id); 3022 if (ret < 0) 3023 return ret; 3024 3025 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 3026 if (max_streams < (*num_streams - 1)) { 3027 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 3028 eps[i]->desc.bEndpointAddress, 3029 max_streams); 3030 *num_streams = max_streams+1; 3031 } 3032 3033 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 3034 if (*changed_ep_bitmask & endpoint_flag) 3035 return -EINVAL; 3036 *changed_ep_bitmask |= endpoint_flag; 3037 } 3038 return 0; 3039 } 3040 3041 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3042 struct usb_device *udev, 3043 struct usb_host_endpoint **eps, unsigned int num_eps) 3044 { 3045 u32 changed_ep_bitmask = 0; 3046 unsigned int slot_id; 3047 unsigned int ep_index; 3048 unsigned int ep_state; 3049 int i; 3050 3051 slot_id = udev->slot_id; 3052 if (!xhci->devs[slot_id]) 3053 return 0; 3054 3055 for (i = 0; i < num_eps; i++) { 3056 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3057 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3058 /* Are streams already being freed for the endpoint? */ 3059 if (ep_state & EP_GETTING_NO_STREAMS) { 3060 xhci_warn(xhci, "WARN Can't disable streams for " 3061 "endpoint 0x%x, " 3062 "streams are being disabled already\n", 3063 eps[i]->desc.bEndpointAddress); 3064 return 0; 3065 } 3066 /* Are there actually any streams to free? */ 3067 if (!(ep_state & EP_HAS_STREAMS) && 3068 !(ep_state & EP_GETTING_STREAMS)) { 3069 xhci_warn(xhci, "WARN Can't disable streams for " 3070 "endpoint 0x%x, " 3071 "streams are already disabled!\n", 3072 eps[i]->desc.bEndpointAddress); 3073 xhci_warn(xhci, "WARN xhci_free_streams() called " 3074 "with non-streams endpoint\n"); 3075 return 0; 3076 } 3077 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3078 } 3079 return changed_ep_bitmask; 3080 } 3081 3082 /* 3083 * The USB device drivers use this function (through the HCD interface in USB 3084 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3085 * coordinate mass storage command queueing across multiple endpoints (basically 3086 * a stream ID == a task ID). 3087 * 3088 * Setting up streams involves allocating the same size stream context array 3089 * for each endpoint and issuing a configure endpoint command for all endpoints. 3090 * 3091 * Don't allow the call to succeed if one endpoint only supports one stream 3092 * (which means it doesn't support streams at all). 3093 * 3094 * Drivers may get less stream IDs than they asked for, if the host controller 3095 * hardware or endpoints claim they can't support the number of requested 3096 * stream IDs. 3097 */ 3098 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3099 struct usb_host_endpoint **eps, unsigned int num_eps, 3100 unsigned int num_streams, gfp_t mem_flags) 3101 { 3102 int i, ret; 3103 struct xhci_hcd *xhci; 3104 struct xhci_virt_device *vdev; 3105 struct xhci_command *config_cmd; 3106 struct xhci_input_control_ctx *ctrl_ctx; 3107 unsigned int ep_index; 3108 unsigned int num_stream_ctxs; 3109 unsigned int max_packet; 3110 unsigned long flags; 3111 u32 changed_ep_bitmask = 0; 3112 3113 if (!eps) 3114 return -EINVAL; 3115 3116 /* Add one to the number of streams requested to account for 3117 * stream 0 that is reserved for xHCI usage. 3118 */ 3119 num_streams += 1; 3120 xhci = hcd_to_xhci(hcd); 3121 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3122 num_streams); 3123 3124 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3125 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3126 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3127 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3128 return -ENOSYS; 3129 } 3130 3131 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3132 if (!config_cmd) { 3133 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 3134 return -ENOMEM; 3135 } 3136 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3137 if (!ctrl_ctx) { 3138 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3139 __func__); 3140 xhci_free_command(xhci, config_cmd); 3141 return -ENOMEM; 3142 } 3143 3144 /* Check to make sure all endpoints are not already configured for 3145 * streams. While we're at it, find the maximum number of streams that 3146 * all the endpoints will support and check for duplicate endpoints. 3147 */ 3148 spin_lock_irqsave(&xhci->lock, flags); 3149 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3150 num_eps, &num_streams, &changed_ep_bitmask); 3151 if (ret < 0) { 3152 xhci_free_command(xhci, config_cmd); 3153 spin_unlock_irqrestore(&xhci->lock, flags); 3154 return ret; 3155 } 3156 if (num_streams <= 1) { 3157 xhci_warn(xhci, "WARN: endpoints can't handle " 3158 "more than one stream.\n"); 3159 xhci_free_command(xhci, config_cmd); 3160 spin_unlock_irqrestore(&xhci->lock, flags); 3161 return -EINVAL; 3162 } 3163 vdev = xhci->devs[udev->slot_id]; 3164 /* Mark each endpoint as being in transition, so 3165 * xhci_urb_enqueue() will reject all URBs. 3166 */ 3167 for (i = 0; i < num_eps; i++) { 3168 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3169 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3170 } 3171 spin_unlock_irqrestore(&xhci->lock, flags); 3172 3173 /* Setup internal data structures and allocate HW data structures for 3174 * streams (but don't install the HW structures in the input context 3175 * until we're sure all memory allocation succeeded). 3176 */ 3177 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3178 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3179 num_stream_ctxs, num_streams); 3180 3181 for (i = 0; i < num_eps; i++) { 3182 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3183 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3184 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3185 num_stream_ctxs, 3186 num_streams, 3187 max_packet, mem_flags); 3188 if (!vdev->eps[ep_index].stream_info) 3189 goto cleanup; 3190 /* Set maxPstreams in endpoint context and update deq ptr to 3191 * point to stream context array. FIXME 3192 */ 3193 } 3194 3195 /* Set up the input context for a configure endpoint command. */ 3196 for (i = 0; i < num_eps; i++) { 3197 struct xhci_ep_ctx *ep_ctx; 3198 3199 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3200 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3201 3202 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3203 vdev->out_ctx, ep_index); 3204 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3205 vdev->eps[ep_index].stream_info); 3206 } 3207 /* Tell the HW to drop its old copy of the endpoint context info 3208 * and add the updated copy from the input context. 3209 */ 3210 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3211 vdev->out_ctx, ctrl_ctx, 3212 changed_ep_bitmask, changed_ep_bitmask); 3213 3214 /* Issue and wait for the configure endpoint command */ 3215 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3216 false, false); 3217 3218 /* xHC rejected the configure endpoint command for some reason, so we 3219 * leave the old ring intact and free our internal streams data 3220 * structure. 3221 */ 3222 if (ret < 0) 3223 goto cleanup; 3224 3225 spin_lock_irqsave(&xhci->lock, flags); 3226 for (i = 0; i < num_eps; i++) { 3227 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3228 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3229 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3230 udev->slot_id, ep_index); 3231 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3232 } 3233 xhci_free_command(xhci, config_cmd); 3234 spin_unlock_irqrestore(&xhci->lock, flags); 3235 3236 /* Subtract 1 for stream 0, which drivers can't use */ 3237 return num_streams - 1; 3238 3239 cleanup: 3240 /* If it didn't work, free the streams! */ 3241 for (i = 0; i < num_eps; i++) { 3242 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3243 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3244 vdev->eps[ep_index].stream_info = NULL; 3245 /* FIXME Unset maxPstreams in endpoint context and 3246 * update deq ptr to point to normal string ring. 3247 */ 3248 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3249 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3250 xhci_endpoint_zero(xhci, vdev, eps[i]); 3251 } 3252 xhci_free_command(xhci, config_cmd); 3253 return -ENOMEM; 3254 } 3255 3256 /* Transition the endpoint from using streams to being a "normal" endpoint 3257 * without streams. 3258 * 3259 * Modify the endpoint context state, submit a configure endpoint command, 3260 * and free all endpoint rings for streams if that completes successfully. 3261 */ 3262 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3263 struct usb_host_endpoint **eps, unsigned int num_eps, 3264 gfp_t mem_flags) 3265 { 3266 int i, ret; 3267 struct xhci_hcd *xhci; 3268 struct xhci_virt_device *vdev; 3269 struct xhci_command *command; 3270 struct xhci_input_control_ctx *ctrl_ctx; 3271 unsigned int ep_index; 3272 unsigned long flags; 3273 u32 changed_ep_bitmask; 3274 3275 xhci = hcd_to_xhci(hcd); 3276 vdev = xhci->devs[udev->slot_id]; 3277 3278 /* Set up a configure endpoint command to remove the streams rings */ 3279 spin_lock_irqsave(&xhci->lock, flags); 3280 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3281 udev, eps, num_eps); 3282 if (changed_ep_bitmask == 0) { 3283 spin_unlock_irqrestore(&xhci->lock, flags); 3284 return -EINVAL; 3285 } 3286 3287 /* Use the xhci_command structure from the first endpoint. We may have 3288 * allocated too many, but the driver may call xhci_free_streams() for 3289 * each endpoint it grouped into one call to xhci_alloc_streams(). 3290 */ 3291 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3292 command = vdev->eps[ep_index].stream_info->free_streams_command; 3293 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3294 if (!ctrl_ctx) { 3295 spin_unlock_irqrestore(&xhci->lock, flags); 3296 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3297 __func__); 3298 return -EINVAL; 3299 } 3300 3301 for (i = 0; i < num_eps; i++) { 3302 struct xhci_ep_ctx *ep_ctx; 3303 3304 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3305 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3306 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3307 EP_GETTING_NO_STREAMS; 3308 3309 xhci_endpoint_copy(xhci, command->in_ctx, 3310 vdev->out_ctx, ep_index); 3311 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3312 &vdev->eps[ep_index]); 3313 } 3314 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3315 vdev->out_ctx, ctrl_ctx, 3316 changed_ep_bitmask, changed_ep_bitmask); 3317 spin_unlock_irqrestore(&xhci->lock, flags); 3318 3319 /* Issue and wait for the configure endpoint command, 3320 * which must succeed. 3321 */ 3322 ret = xhci_configure_endpoint(xhci, udev, command, 3323 false, true); 3324 3325 /* xHC rejected the configure endpoint command for some reason, so we 3326 * leave the streams rings intact. 3327 */ 3328 if (ret < 0) 3329 return ret; 3330 3331 spin_lock_irqsave(&xhci->lock, flags); 3332 for (i = 0; i < num_eps; i++) { 3333 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3334 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3335 vdev->eps[ep_index].stream_info = NULL; 3336 /* FIXME Unset maxPstreams in endpoint context and 3337 * update deq ptr to point to normal string ring. 3338 */ 3339 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3340 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3341 } 3342 spin_unlock_irqrestore(&xhci->lock, flags); 3343 3344 return 0; 3345 } 3346 3347 /* 3348 * Deletes endpoint resources for endpoints that were active before a Reset 3349 * Device command, or a Disable Slot command. The Reset Device command leaves 3350 * the control endpoint intact, whereas the Disable Slot command deletes it. 3351 * 3352 * Must be called with xhci->lock held. 3353 */ 3354 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3355 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3356 { 3357 int i; 3358 unsigned int num_dropped_eps = 0; 3359 unsigned int drop_flags = 0; 3360 3361 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3362 if (virt_dev->eps[i].ring) { 3363 drop_flags |= 1 << i; 3364 num_dropped_eps++; 3365 } 3366 } 3367 xhci->num_active_eps -= num_dropped_eps; 3368 if (num_dropped_eps) 3369 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3370 "Dropped %u ep ctxs, flags = 0x%x, " 3371 "%u now active.", 3372 num_dropped_eps, drop_flags, 3373 xhci->num_active_eps); 3374 } 3375 3376 /* 3377 * This submits a Reset Device Command, which will set the device state to 0, 3378 * set the device address to 0, and disable all the endpoints except the default 3379 * control endpoint. The USB core should come back and call 3380 * xhci_address_device(), and then re-set up the configuration. If this is 3381 * called because of a usb_reset_and_verify_device(), then the old alternate 3382 * settings will be re-installed through the normal bandwidth allocation 3383 * functions. 3384 * 3385 * Wait for the Reset Device command to finish. Remove all structures 3386 * associated with the endpoints that were disabled. Clear the input device 3387 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 3388 * 3389 * If the virt_dev to be reset does not exist or does not match the udev, 3390 * it means the device is lost, possibly due to the xHC restore error and 3391 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3392 * re-allocate the device. 3393 */ 3394 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 3395 { 3396 int ret, i; 3397 unsigned long flags; 3398 struct xhci_hcd *xhci; 3399 unsigned int slot_id; 3400 struct xhci_virt_device *virt_dev; 3401 struct xhci_command *reset_device_cmd; 3402 int last_freed_endpoint; 3403 struct xhci_slot_ctx *slot_ctx; 3404 int old_active_eps = 0; 3405 3406 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3407 if (ret <= 0) 3408 return ret; 3409 xhci = hcd_to_xhci(hcd); 3410 slot_id = udev->slot_id; 3411 virt_dev = xhci->devs[slot_id]; 3412 if (!virt_dev) { 3413 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3414 "not exist. Re-allocate the device\n", slot_id); 3415 ret = xhci_alloc_dev(hcd, udev); 3416 if (ret == 1) 3417 return 0; 3418 else 3419 return -EINVAL; 3420 } 3421 3422 if (virt_dev->tt_info) 3423 old_active_eps = virt_dev->tt_info->active_eps; 3424 3425 if (virt_dev->udev != udev) { 3426 /* If the virt_dev and the udev does not match, this virt_dev 3427 * may belong to another udev. 3428 * Re-allocate the device. 3429 */ 3430 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3431 "not match the udev. Re-allocate the device\n", 3432 slot_id); 3433 ret = xhci_alloc_dev(hcd, udev); 3434 if (ret == 1) 3435 return 0; 3436 else 3437 return -EINVAL; 3438 } 3439 3440 /* If device is not setup, there is no point in resetting it */ 3441 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3442 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3443 SLOT_STATE_DISABLED) 3444 return 0; 3445 3446 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3447 /* Allocate the command structure that holds the struct completion. 3448 * Assume we're in process context, since the normal device reset 3449 * process has to wait for the device anyway. Storage devices are 3450 * reset as part of error handling, so use GFP_NOIO instead of 3451 * GFP_KERNEL. 3452 */ 3453 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3454 if (!reset_device_cmd) { 3455 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3456 return -ENOMEM; 3457 } 3458 3459 /* Attempt to submit the Reset Device command to the command ring */ 3460 spin_lock_irqsave(&xhci->lock, flags); 3461 3462 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3463 if (ret) { 3464 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3465 spin_unlock_irqrestore(&xhci->lock, flags); 3466 goto command_cleanup; 3467 } 3468 xhci_ring_cmd_db(xhci); 3469 spin_unlock_irqrestore(&xhci->lock, flags); 3470 3471 /* Wait for the Reset Device command to finish */ 3472 wait_for_completion(reset_device_cmd->completion); 3473 3474 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3475 * unless we tried to reset a slot ID that wasn't enabled, 3476 * or the device wasn't in the addressed or configured state. 3477 */ 3478 ret = reset_device_cmd->status; 3479 switch (ret) { 3480 case COMP_COMMAND_ABORTED: 3481 case COMP_STOPPED: 3482 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3483 ret = -ETIME; 3484 goto command_cleanup; 3485 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3486 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3487 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3488 slot_id, 3489 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3490 xhci_dbg(xhci, "Not freeing device rings.\n"); 3491 /* Don't treat this as an error. May change my mind later. */ 3492 ret = 0; 3493 goto command_cleanup; 3494 case COMP_SUCCESS: 3495 xhci_dbg(xhci, "Successful reset device command.\n"); 3496 break; 3497 default: 3498 if (xhci_is_vendor_info_code(xhci, ret)) 3499 break; 3500 xhci_warn(xhci, "Unknown completion code %u for " 3501 "reset device command.\n", ret); 3502 ret = -EINVAL; 3503 goto command_cleanup; 3504 } 3505 3506 /* Free up host controller endpoint resources */ 3507 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3508 spin_lock_irqsave(&xhci->lock, flags); 3509 /* Don't delete the default control endpoint resources */ 3510 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3511 spin_unlock_irqrestore(&xhci->lock, flags); 3512 } 3513 3514 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 3515 last_freed_endpoint = 1; 3516 for (i = 1; i < 31; i++) { 3517 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3518 3519 if (ep->ep_state & EP_HAS_STREAMS) { 3520 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3521 xhci_get_endpoint_address(i)); 3522 xhci_free_stream_info(xhci, ep->stream_info); 3523 ep->stream_info = NULL; 3524 ep->ep_state &= ~EP_HAS_STREAMS; 3525 } 3526 3527 if (ep->ring) { 3528 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 3529 last_freed_endpoint = i; 3530 } 3531 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3532 xhci_drop_ep_from_interval_table(xhci, 3533 &virt_dev->eps[i].bw_info, 3534 virt_dev->bw_table, 3535 udev, 3536 &virt_dev->eps[i], 3537 virt_dev->tt_info); 3538 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3539 } 3540 /* If necessary, update the number of active TTs on this root port */ 3541 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3542 3543 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 3544 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 3545 ret = 0; 3546 3547 command_cleanup: 3548 xhci_free_command(xhci, reset_device_cmd); 3549 return ret; 3550 } 3551 3552 /* 3553 * At this point, the struct usb_device is about to go away, the device has 3554 * disconnected, and all traffic has been stopped and the endpoints have been 3555 * disabled. Free any HC data structures associated with that device. 3556 */ 3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3558 { 3559 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3560 struct xhci_virt_device *virt_dev; 3561 unsigned long flags; 3562 u32 state; 3563 int i, ret; 3564 struct xhci_command *command; 3565 3566 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3567 if (!command) 3568 return; 3569 3570 #ifndef CONFIG_USB_DEFAULT_PERSIST 3571 /* 3572 * We called pm_runtime_get_noresume when the device was attached. 3573 * Decrement the counter here to allow controller to runtime suspend 3574 * if no devices remain. 3575 */ 3576 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3577 pm_runtime_put_noidle(hcd->self.controller); 3578 #endif 3579 3580 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3581 /* If the host is halted due to driver unload, we still need to free the 3582 * device. 3583 */ 3584 if (ret <= 0 && ret != -ENODEV) { 3585 kfree(command); 3586 return; 3587 } 3588 3589 virt_dev = xhci->devs[udev->slot_id]; 3590 3591 /* Stop any wayward timer functions (which may grab the lock) */ 3592 for (i = 0; i < 31; i++) { 3593 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3594 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3595 } 3596 3597 spin_lock_irqsave(&xhci->lock, flags); 3598 /* Don't disable the slot if the host controller is dead. */ 3599 state = readl(&xhci->op_regs->status); 3600 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3601 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3602 xhci_free_virt_device(xhci, udev->slot_id); 3603 spin_unlock_irqrestore(&xhci->lock, flags); 3604 kfree(command); 3605 return; 3606 } 3607 3608 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3609 udev->slot_id)) { 3610 spin_unlock_irqrestore(&xhci->lock, flags); 3611 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3612 return; 3613 } 3614 xhci_ring_cmd_db(xhci); 3615 spin_unlock_irqrestore(&xhci->lock, flags); 3616 3617 /* 3618 * Event command completion handler will free any data structures 3619 * associated with the slot. XXX Can free sleep? 3620 */ 3621 } 3622 3623 /* 3624 * Checks if we have enough host controller resources for the default control 3625 * endpoint. 3626 * 3627 * Must be called with xhci->lock held. 3628 */ 3629 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3630 { 3631 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3632 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3633 "Not enough ep ctxs: " 3634 "%u active, need to add 1, limit is %u.", 3635 xhci->num_active_eps, xhci->limit_active_eps); 3636 return -ENOMEM; 3637 } 3638 xhci->num_active_eps += 1; 3639 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3640 "Adding 1 ep ctx, %u now active.", 3641 xhci->num_active_eps); 3642 return 0; 3643 } 3644 3645 3646 /* 3647 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3648 * timed out, or allocating memory failed. Returns 1 on success. 3649 */ 3650 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3651 { 3652 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3653 unsigned long flags; 3654 int ret, slot_id; 3655 struct xhci_command *command; 3656 3657 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3658 if (!command) 3659 return 0; 3660 3661 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3662 mutex_lock(&xhci->mutex); 3663 spin_lock_irqsave(&xhci->lock, flags); 3664 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3665 if (ret) { 3666 spin_unlock_irqrestore(&xhci->lock, flags); 3667 mutex_unlock(&xhci->mutex); 3668 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3669 xhci_free_command(xhci, command); 3670 return 0; 3671 } 3672 xhci_ring_cmd_db(xhci); 3673 spin_unlock_irqrestore(&xhci->lock, flags); 3674 3675 wait_for_completion(command->completion); 3676 slot_id = command->slot_id; 3677 mutex_unlock(&xhci->mutex); 3678 3679 if (!slot_id || command->status != COMP_SUCCESS) { 3680 xhci_err(xhci, "Error while assigning device slot ID\n"); 3681 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3682 HCS_MAX_SLOTS( 3683 readl(&xhci->cap_regs->hcs_params1))); 3684 xhci_free_command(xhci, command); 3685 return 0; 3686 } 3687 3688 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3689 spin_lock_irqsave(&xhci->lock, flags); 3690 ret = xhci_reserve_host_control_ep_resources(xhci); 3691 if (ret) { 3692 spin_unlock_irqrestore(&xhci->lock, flags); 3693 xhci_warn(xhci, "Not enough host resources, " 3694 "active endpoint contexts = %u\n", 3695 xhci->num_active_eps); 3696 goto disable_slot; 3697 } 3698 spin_unlock_irqrestore(&xhci->lock, flags); 3699 } 3700 /* Use GFP_NOIO, since this function can be called from 3701 * xhci_discover_or_reset_device(), which may be called as part of 3702 * mass storage driver error handling. 3703 */ 3704 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3705 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3706 goto disable_slot; 3707 } 3708 udev->slot_id = slot_id; 3709 3710 #ifndef CONFIG_USB_DEFAULT_PERSIST 3711 /* 3712 * If resetting upon resume, we can't put the controller into runtime 3713 * suspend if there is a device attached. 3714 */ 3715 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3716 pm_runtime_get_noresume(hcd->self.controller); 3717 #endif 3718 3719 3720 xhci_free_command(xhci, command); 3721 /* Is this a LS or FS device under a HS hub? */ 3722 /* Hub or peripherial? */ 3723 return 1; 3724 3725 disable_slot: 3726 /* Disable slot, if we can do it without mem alloc */ 3727 spin_lock_irqsave(&xhci->lock, flags); 3728 kfree(command->completion); 3729 command->completion = NULL; 3730 command->status = 0; 3731 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3732 udev->slot_id)) 3733 xhci_ring_cmd_db(xhci); 3734 spin_unlock_irqrestore(&xhci->lock, flags); 3735 return 0; 3736 } 3737 3738 /* 3739 * Issue an Address Device command and optionally send a corresponding 3740 * SetAddress request to the device. 3741 */ 3742 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3743 enum xhci_setup_dev setup) 3744 { 3745 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3746 unsigned long flags; 3747 struct xhci_virt_device *virt_dev; 3748 int ret = 0; 3749 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3750 struct xhci_slot_ctx *slot_ctx; 3751 struct xhci_input_control_ctx *ctrl_ctx; 3752 u64 temp_64; 3753 struct xhci_command *command = NULL; 3754 3755 mutex_lock(&xhci->mutex); 3756 3757 if (xhci->xhc_state) { /* dying, removing or halted */ 3758 ret = -ESHUTDOWN; 3759 goto out; 3760 } 3761 3762 if (!udev->slot_id) { 3763 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3764 "Bad Slot ID %d", udev->slot_id); 3765 ret = -EINVAL; 3766 goto out; 3767 } 3768 3769 virt_dev = xhci->devs[udev->slot_id]; 3770 3771 if (WARN_ON(!virt_dev)) { 3772 /* 3773 * In plug/unplug torture test with an NEC controller, 3774 * a zero-dereference was observed once due to virt_dev = 0. 3775 * Print useful debug rather than crash if it is observed again! 3776 */ 3777 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3778 udev->slot_id); 3779 ret = -EINVAL; 3780 goto out; 3781 } 3782 3783 if (setup == SETUP_CONTEXT_ONLY) { 3784 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3785 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3786 SLOT_STATE_DEFAULT) { 3787 xhci_dbg(xhci, "Slot already in default state\n"); 3788 goto out; 3789 } 3790 } 3791 3792 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3793 if (!command) { 3794 ret = -ENOMEM; 3795 goto out; 3796 } 3797 3798 command->in_ctx = virt_dev->in_ctx; 3799 3800 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3801 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3802 if (!ctrl_ctx) { 3803 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3804 __func__); 3805 ret = -EINVAL; 3806 goto out; 3807 } 3808 /* 3809 * If this is the first Set Address since device plug-in or 3810 * virt_device realloaction after a resume with an xHCI power loss, 3811 * then set up the slot context. 3812 */ 3813 if (!slot_ctx->dev_info) 3814 xhci_setup_addressable_virt_dev(xhci, udev); 3815 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3816 else 3817 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3818 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3819 ctrl_ctx->drop_flags = 0; 3820 3821 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3822 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3823 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3824 le32_to_cpu(slot_ctx->dev_info) >> 27); 3825 3826 spin_lock_irqsave(&xhci->lock, flags); 3827 trace_xhci_setup_device(virt_dev); 3828 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3829 udev->slot_id, setup); 3830 if (ret) { 3831 spin_unlock_irqrestore(&xhci->lock, flags); 3832 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3833 "FIXME: allocate a command ring segment"); 3834 goto out; 3835 } 3836 xhci_ring_cmd_db(xhci); 3837 spin_unlock_irqrestore(&xhci->lock, flags); 3838 3839 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3840 wait_for_completion(command->completion); 3841 3842 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3843 * the SetAddress() "recovery interval" required by USB and aborting the 3844 * command on a timeout. 3845 */ 3846 switch (command->status) { 3847 case COMP_COMMAND_ABORTED: 3848 case COMP_STOPPED: 3849 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3850 ret = -ETIME; 3851 break; 3852 case COMP_CONTEXT_STATE_ERROR: 3853 case COMP_SLOT_NOT_ENABLED_ERROR: 3854 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3855 act, udev->slot_id); 3856 ret = -EINVAL; 3857 break; 3858 case COMP_USB_TRANSACTION_ERROR: 3859 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3860 ret = -EPROTO; 3861 break; 3862 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3863 dev_warn(&udev->dev, 3864 "ERROR: Incompatible device for setup %s command\n", act); 3865 ret = -ENODEV; 3866 break; 3867 case COMP_SUCCESS: 3868 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3869 "Successful setup %s command", act); 3870 break; 3871 default: 3872 xhci_err(xhci, 3873 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3874 act, command->status); 3875 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3876 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3877 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3878 ret = -EINVAL; 3879 break; 3880 } 3881 if (ret) 3882 goto out; 3883 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3884 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3885 "Op regs DCBAA ptr = %#016llx", temp_64); 3886 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3887 "Slot ID %d dcbaa entry @%p = %#016llx", 3888 udev->slot_id, 3889 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3890 (unsigned long long) 3891 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3892 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3893 "Output Context DMA address = %#08llx", 3894 (unsigned long long)virt_dev->out_ctx->dma); 3895 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 3896 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 3897 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3898 le32_to_cpu(slot_ctx->dev_info) >> 27); 3899 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 3900 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 3901 /* 3902 * USB core uses address 1 for the roothubs, so we add one to the 3903 * address given back to us by the HC. 3904 */ 3905 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3906 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3907 le32_to_cpu(slot_ctx->dev_info) >> 27); 3908 /* Zero the input context control for later use */ 3909 ctrl_ctx->add_flags = 0; 3910 ctrl_ctx->drop_flags = 0; 3911 3912 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3913 "Internal device address = %d", 3914 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3915 out: 3916 mutex_unlock(&xhci->mutex); 3917 if (command) { 3918 kfree(command->completion); 3919 kfree(command); 3920 } 3921 return ret; 3922 } 3923 3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3925 { 3926 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3927 } 3928 3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3930 { 3931 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3932 } 3933 3934 /* 3935 * Transfer the port index into real index in the HW port status 3936 * registers. Caculate offset between the port's PORTSC register 3937 * and port status base. Divide the number of per port register 3938 * to get the real index. The raw port number bases 1. 3939 */ 3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3941 { 3942 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3943 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3944 __le32 __iomem *addr; 3945 int raw_port; 3946 3947 if (hcd->speed < HCD_USB3) 3948 addr = xhci->usb2_ports[port1 - 1]; 3949 else 3950 addr = xhci->usb3_ports[port1 - 1]; 3951 3952 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3953 return raw_port; 3954 } 3955 3956 /* 3957 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3958 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3959 */ 3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3961 struct usb_device *udev, u16 max_exit_latency) 3962 { 3963 struct xhci_virt_device *virt_dev; 3964 struct xhci_command *command; 3965 struct xhci_input_control_ctx *ctrl_ctx; 3966 struct xhci_slot_ctx *slot_ctx; 3967 unsigned long flags; 3968 int ret; 3969 3970 spin_lock_irqsave(&xhci->lock, flags); 3971 3972 virt_dev = xhci->devs[udev->slot_id]; 3973 3974 /* 3975 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3976 * xHC was re-initialized. Exit latency will be set later after 3977 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3978 */ 3979 3980 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3981 spin_unlock_irqrestore(&xhci->lock, flags); 3982 return 0; 3983 } 3984 3985 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3986 command = xhci->lpm_command; 3987 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3988 if (!ctrl_ctx) { 3989 spin_unlock_irqrestore(&xhci->lock, flags); 3990 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3991 __func__); 3992 return -ENOMEM; 3993 } 3994 3995 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3996 spin_unlock_irqrestore(&xhci->lock, flags); 3997 3998 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3999 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 4000 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 4001 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 4002 slot_ctx->dev_state = 0; 4003 4004 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 4005 "Set up evaluate context for LPM MEL change."); 4006 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id); 4007 xhci_dbg_ctx(xhci, command->in_ctx, 0); 4008 4009 /* Issue and wait for the evaluate context command. */ 4010 ret = xhci_configure_endpoint(xhci, udev, command, 4011 true, true); 4012 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id); 4013 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0); 4014 4015 if (!ret) { 4016 spin_lock_irqsave(&xhci->lock, flags); 4017 virt_dev->current_mel = max_exit_latency; 4018 spin_unlock_irqrestore(&xhci->lock, flags); 4019 } 4020 return ret; 4021 } 4022 4023 #ifdef CONFIG_PM 4024 4025 /* BESL to HIRD Encoding array for USB2 LPM */ 4026 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 4027 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 4028 4029 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 4030 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4031 struct usb_device *udev) 4032 { 4033 int u2del, besl, besl_host; 4034 int besl_device = 0; 4035 u32 field; 4036 4037 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4038 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4039 4040 if (field & USB_BESL_SUPPORT) { 4041 for (besl_host = 0; besl_host < 16; besl_host++) { 4042 if (xhci_besl_encoding[besl_host] >= u2del) 4043 break; 4044 } 4045 /* Use baseline BESL value as default */ 4046 if (field & USB_BESL_BASELINE_VALID) 4047 besl_device = USB_GET_BESL_BASELINE(field); 4048 else if (field & USB_BESL_DEEP_VALID) 4049 besl_device = USB_GET_BESL_DEEP(field); 4050 } else { 4051 if (u2del <= 50) 4052 besl_host = 0; 4053 else 4054 besl_host = (u2del - 51) / 75 + 1; 4055 } 4056 4057 besl = besl_host + besl_device; 4058 if (besl > 15) 4059 besl = 15; 4060 4061 return besl; 4062 } 4063 4064 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4065 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4066 { 4067 u32 field; 4068 int l1; 4069 int besld = 0; 4070 int hirdm = 0; 4071 4072 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4073 4074 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4075 l1 = udev->l1_params.timeout / 256; 4076 4077 /* device has preferred BESLD */ 4078 if (field & USB_BESL_DEEP_VALID) { 4079 besld = USB_GET_BESL_DEEP(field); 4080 hirdm = 1; 4081 } 4082 4083 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4084 } 4085 4086 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4087 struct usb_device *udev, int enable) 4088 { 4089 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4090 __le32 __iomem **port_array; 4091 __le32 __iomem *pm_addr, *hlpm_addr; 4092 u32 pm_val, hlpm_val, field; 4093 unsigned int port_num; 4094 unsigned long flags; 4095 int hird, exit_latency; 4096 int ret; 4097 4098 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4099 !udev->lpm_capable) 4100 return -EPERM; 4101 4102 if (!udev->parent || udev->parent->parent || 4103 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4104 return -EPERM; 4105 4106 if (udev->usb2_hw_lpm_capable != 1) 4107 return -EPERM; 4108 4109 spin_lock_irqsave(&xhci->lock, flags); 4110 4111 port_array = xhci->usb2_ports; 4112 port_num = udev->portnum - 1; 4113 pm_addr = port_array[port_num] + PORTPMSC; 4114 pm_val = readl(pm_addr); 4115 hlpm_addr = port_array[port_num] + PORTHLPMC; 4116 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4117 4118 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4119 enable ? "enable" : "disable", port_num + 1); 4120 4121 if (enable) { 4122 /* Host supports BESL timeout instead of HIRD */ 4123 if (udev->usb2_hw_lpm_besl_capable) { 4124 /* if device doesn't have a preferred BESL value use a 4125 * default one which works with mixed HIRD and BESL 4126 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4127 */ 4128 if ((field & USB_BESL_SUPPORT) && 4129 (field & USB_BESL_BASELINE_VALID)) 4130 hird = USB_GET_BESL_BASELINE(field); 4131 else 4132 hird = udev->l1_params.besl; 4133 4134 exit_latency = xhci_besl_encoding[hird]; 4135 spin_unlock_irqrestore(&xhci->lock, flags); 4136 4137 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4138 * input context for link powermanagement evaluate 4139 * context commands. It is protected by hcd->bandwidth 4140 * mutex and is shared by all devices. We need to set 4141 * the max ext latency in USB 2 BESL LPM as well, so 4142 * use the same mutex and xhci_change_max_exit_latency() 4143 */ 4144 mutex_lock(hcd->bandwidth_mutex); 4145 ret = xhci_change_max_exit_latency(xhci, udev, 4146 exit_latency); 4147 mutex_unlock(hcd->bandwidth_mutex); 4148 4149 if (ret < 0) 4150 return ret; 4151 spin_lock_irqsave(&xhci->lock, flags); 4152 4153 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4154 writel(hlpm_val, hlpm_addr); 4155 /* flush write */ 4156 readl(hlpm_addr); 4157 } else { 4158 hird = xhci_calculate_hird_besl(xhci, udev); 4159 } 4160 4161 pm_val &= ~PORT_HIRD_MASK; 4162 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4163 writel(pm_val, pm_addr); 4164 pm_val = readl(pm_addr); 4165 pm_val |= PORT_HLE; 4166 writel(pm_val, pm_addr); 4167 /* flush write */ 4168 readl(pm_addr); 4169 } else { 4170 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4171 writel(pm_val, pm_addr); 4172 /* flush write */ 4173 readl(pm_addr); 4174 if (udev->usb2_hw_lpm_besl_capable) { 4175 spin_unlock_irqrestore(&xhci->lock, flags); 4176 mutex_lock(hcd->bandwidth_mutex); 4177 xhci_change_max_exit_latency(xhci, udev, 0); 4178 mutex_unlock(hcd->bandwidth_mutex); 4179 return 0; 4180 } 4181 } 4182 4183 spin_unlock_irqrestore(&xhci->lock, flags); 4184 return 0; 4185 } 4186 4187 /* check if a usb2 port supports a given extened capability protocol 4188 * only USB2 ports extended protocol capability values are cached. 4189 * Return 1 if capability is supported 4190 */ 4191 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4192 unsigned capability) 4193 { 4194 u32 port_offset, port_count; 4195 int i; 4196 4197 for (i = 0; i < xhci->num_ext_caps; i++) { 4198 if (xhci->ext_caps[i] & capability) { 4199 /* port offsets starts at 1 */ 4200 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4201 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4202 if (port >= port_offset && 4203 port < port_offset + port_count) 4204 return 1; 4205 } 4206 } 4207 return 0; 4208 } 4209 4210 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4211 { 4212 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4213 int portnum = udev->portnum - 1; 4214 4215 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4216 !udev->lpm_capable) 4217 return 0; 4218 4219 /* we only support lpm for non-hub device connected to root hub yet */ 4220 if (!udev->parent || udev->parent->parent || 4221 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4222 return 0; 4223 4224 if (xhci->hw_lpm_support == 1 && 4225 xhci_check_usb2_port_capability( 4226 xhci, portnum, XHCI_HLC)) { 4227 udev->usb2_hw_lpm_capable = 1; 4228 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4229 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4230 if (xhci_check_usb2_port_capability(xhci, portnum, 4231 XHCI_BLC)) 4232 udev->usb2_hw_lpm_besl_capable = 1; 4233 } 4234 4235 return 0; 4236 } 4237 4238 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4239 4240 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4241 static unsigned long long xhci_service_interval_to_ns( 4242 struct usb_endpoint_descriptor *desc) 4243 { 4244 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4245 } 4246 4247 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4248 enum usb3_link_state state) 4249 { 4250 unsigned long long sel; 4251 unsigned long long pel; 4252 unsigned int max_sel_pel; 4253 char *state_name; 4254 4255 switch (state) { 4256 case USB3_LPM_U1: 4257 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4258 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4259 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4260 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4261 state_name = "U1"; 4262 break; 4263 case USB3_LPM_U2: 4264 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4265 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4266 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4267 state_name = "U2"; 4268 break; 4269 default: 4270 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4271 __func__); 4272 return USB3_LPM_DISABLED; 4273 } 4274 4275 if (sel <= max_sel_pel && pel <= max_sel_pel) 4276 return USB3_LPM_DEVICE_INITIATED; 4277 4278 if (sel > max_sel_pel) 4279 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4280 "due to long SEL %llu ms\n", 4281 state_name, sel); 4282 else 4283 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4284 "due to long PEL %llu ms\n", 4285 state_name, pel); 4286 return USB3_LPM_DISABLED; 4287 } 4288 4289 /* The U1 timeout should be the maximum of the following values: 4290 * - For control endpoints, U1 system exit latency (SEL) * 3 4291 * - For bulk endpoints, U1 SEL * 5 4292 * - For interrupt endpoints: 4293 * - Notification EPs, U1 SEL * 3 4294 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4295 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4296 */ 4297 static unsigned long long xhci_calculate_intel_u1_timeout( 4298 struct usb_device *udev, 4299 struct usb_endpoint_descriptor *desc) 4300 { 4301 unsigned long long timeout_ns; 4302 int ep_type; 4303 int intr_type; 4304 4305 ep_type = usb_endpoint_type(desc); 4306 switch (ep_type) { 4307 case USB_ENDPOINT_XFER_CONTROL: 4308 timeout_ns = udev->u1_params.sel * 3; 4309 break; 4310 case USB_ENDPOINT_XFER_BULK: 4311 timeout_ns = udev->u1_params.sel * 5; 4312 break; 4313 case USB_ENDPOINT_XFER_INT: 4314 intr_type = usb_endpoint_interrupt_type(desc); 4315 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4316 timeout_ns = udev->u1_params.sel * 3; 4317 break; 4318 } 4319 /* Otherwise the calculation is the same as isoc eps */ 4320 case USB_ENDPOINT_XFER_ISOC: 4321 timeout_ns = xhci_service_interval_to_ns(desc); 4322 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4323 if (timeout_ns < udev->u1_params.sel * 2) 4324 timeout_ns = udev->u1_params.sel * 2; 4325 break; 4326 default: 4327 return 0; 4328 } 4329 4330 return timeout_ns; 4331 } 4332 4333 /* Returns the hub-encoded U1 timeout value. */ 4334 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4335 struct usb_device *udev, 4336 struct usb_endpoint_descriptor *desc) 4337 { 4338 unsigned long long timeout_ns; 4339 4340 if (xhci->quirks & XHCI_INTEL_HOST) 4341 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4342 else 4343 timeout_ns = udev->u1_params.sel; 4344 4345 /* The U1 timeout is encoded in 1us intervals. 4346 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4347 */ 4348 if (timeout_ns == USB3_LPM_DISABLED) 4349 timeout_ns = 1; 4350 else 4351 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4352 4353 /* If the necessary timeout value is bigger than what we can set in the 4354 * USB 3.0 hub, we have to disable hub-initiated U1. 4355 */ 4356 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4357 return timeout_ns; 4358 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4359 "due to long timeout %llu ms\n", timeout_ns); 4360 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4361 } 4362 4363 /* The U2 timeout should be the maximum of: 4364 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4365 * - largest bInterval of any active periodic endpoint (to avoid going 4366 * into lower power link states between intervals). 4367 * - the U2 Exit Latency of the device 4368 */ 4369 static unsigned long long xhci_calculate_intel_u2_timeout( 4370 struct usb_device *udev, 4371 struct usb_endpoint_descriptor *desc) 4372 { 4373 unsigned long long timeout_ns; 4374 unsigned long long u2_del_ns; 4375 4376 timeout_ns = 10 * 1000 * 1000; 4377 4378 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4379 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4380 timeout_ns = xhci_service_interval_to_ns(desc); 4381 4382 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4383 if (u2_del_ns > timeout_ns) 4384 timeout_ns = u2_del_ns; 4385 4386 return timeout_ns; 4387 } 4388 4389 /* Returns the hub-encoded U2 timeout value. */ 4390 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4391 struct usb_device *udev, 4392 struct usb_endpoint_descriptor *desc) 4393 { 4394 unsigned long long timeout_ns; 4395 4396 if (xhci->quirks & XHCI_INTEL_HOST) 4397 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4398 else 4399 timeout_ns = udev->u2_params.sel; 4400 4401 /* The U2 timeout is encoded in 256us intervals */ 4402 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4403 /* If the necessary timeout value is bigger than what we can set in the 4404 * USB 3.0 hub, we have to disable hub-initiated U2. 4405 */ 4406 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4407 return timeout_ns; 4408 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4409 "due to long timeout %llu ms\n", timeout_ns); 4410 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4411 } 4412 4413 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4414 struct usb_device *udev, 4415 struct usb_endpoint_descriptor *desc, 4416 enum usb3_link_state state, 4417 u16 *timeout) 4418 { 4419 if (state == USB3_LPM_U1) 4420 return xhci_calculate_u1_timeout(xhci, udev, desc); 4421 else if (state == USB3_LPM_U2) 4422 return xhci_calculate_u2_timeout(xhci, udev, desc); 4423 4424 return USB3_LPM_DISABLED; 4425 } 4426 4427 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4428 struct usb_device *udev, 4429 struct usb_endpoint_descriptor *desc, 4430 enum usb3_link_state state, 4431 u16 *timeout) 4432 { 4433 u16 alt_timeout; 4434 4435 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4436 desc, state, timeout); 4437 4438 /* If we found we can't enable hub-initiated LPM, or 4439 * the U1 or U2 exit latency was too high to allow 4440 * device-initiated LPM as well, just stop searching. 4441 */ 4442 if (alt_timeout == USB3_LPM_DISABLED || 4443 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4444 *timeout = alt_timeout; 4445 return -E2BIG; 4446 } 4447 if (alt_timeout > *timeout) 4448 *timeout = alt_timeout; 4449 return 0; 4450 } 4451 4452 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4453 struct usb_device *udev, 4454 struct usb_host_interface *alt, 4455 enum usb3_link_state state, 4456 u16 *timeout) 4457 { 4458 int j; 4459 4460 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4461 if (xhci_update_timeout_for_endpoint(xhci, udev, 4462 &alt->endpoint[j].desc, state, timeout)) 4463 return -E2BIG; 4464 continue; 4465 } 4466 return 0; 4467 } 4468 4469 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4470 enum usb3_link_state state) 4471 { 4472 struct usb_device *parent; 4473 unsigned int num_hubs; 4474 4475 if (state == USB3_LPM_U2) 4476 return 0; 4477 4478 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4479 for (parent = udev->parent, num_hubs = 0; parent->parent; 4480 parent = parent->parent) 4481 num_hubs++; 4482 4483 if (num_hubs < 2) 4484 return 0; 4485 4486 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4487 " below second-tier hub.\n"); 4488 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4489 "to decrease power consumption.\n"); 4490 return -E2BIG; 4491 } 4492 4493 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4494 struct usb_device *udev, 4495 enum usb3_link_state state) 4496 { 4497 if (xhci->quirks & XHCI_INTEL_HOST) 4498 return xhci_check_intel_tier_policy(udev, state); 4499 else 4500 return 0; 4501 } 4502 4503 /* Returns the U1 or U2 timeout that should be enabled. 4504 * If the tier check or timeout setting functions return with a non-zero exit 4505 * code, that means the timeout value has been finalized and we shouldn't look 4506 * at any more endpoints. 4507 */ 4508 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4509 struct usb_device *udev, enum usb3_link_state state) 4510 { 4511 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4512 struct usb_host_config *config; 4513 char *state_name; 4514 int i; 4515 u16 timeout = USB3_LPM_DISABLED; 4516 4517 if (state == USB3_LPM_U1) 4518 state_name = "U1"; 4519 else if (state == USB3_LPM_U2) 4520 state_name = "U2"; 4521 else { 4522 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4523 state); 4524 return timeout; 4525 } 4526 4527 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4528 return timeout; 4529 4530 /* Gather some information about the currently installed configuration 4531 * and alternate interface settings. 4532 */ 4533 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4534 state, &timeout)) 4535 return timeout; 4536 4537 config = udev->actconfig; 4538 if (!config) 4539 return timeout; 4540 4541 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4542 struct usb_driver *driver; 4543 struct usb_interface *intf = config->interface[i]; 4544 4545 if (!intf) 4546 continue; 4547 4548 /* Check if any currently bound drivers want hub-initiated LPM 4549 * disabled. 4550 */ 4551 if (intf->dev.driver) { 4552 driver = to_usb_driver(intf->dev.driver); 4553 if (driver && driver->disable_hub_initiated_lpm) { 4554 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4555 "at request of driver %s\n", 4556 state_name, driver->name); 4557 return xhci_get_timeout_no_hub_lpm(udev, state); 4558 } 4559 } 4560 4561 /* Not sure how this could happen... */ 4562 if (!intf->cur_altsetting) 4563 continue; 4564 4565 if (xhci_update_timeout_for_interface(xhci, udev, 4566 intf->cur_altsetting, 4567 state, &timeout)) 4568 return timeout; 4569 } 4570 return timeout; 4571 } 4572 4573 static int calculate_max_exit_latency(struct usb_device *udev, 4574 enum usb3_link_state state_changed, 4575 u16 hub_encoded_timeout) 4576 { 4577 unsigned long long u1_mel_us = 0; 4578 unsigned long long u2_mel_us = 0; 4579 unsigned long long mel_us = 0; 4580 bool disabling_u1; 4581 bool disabling_u2; 4582 bool enabling_u1; 4583 bool enabling_u2; 4584 4585 disabling_u1 = (state_changed == USB3_LPM_U1 && 4586 hub_encoded_timeout == USB3_LPM_DISABLED); 4587 disabling_u2 = (state_changed == USB3_LPM_U2 && 4588 hub_encoded_timeout == USB3_LPM_DISABLED); 4589 4590 enabling_u1 = (state_changed == USB3_LPM_U1 && 4591 hub_encoded_timeout != USB3_LPM_DISABLED); 4592 enabling_u2 = (state_changed == USB3_LPM_U2 && 4593 hub_encoded_timeout != USB3_LPM_DISABLED); 4594 4595 /* If U1 was already enabled and we're not disabling it, 4596 * or we're going to enable U1, account for the U1 max exit latency. 4597 */ 4598 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4599 enabling_u1) 4600 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4601 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4602 enabling_u2) 4603 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4604 4605 if (u1_mel_us > u2_mel_us) 4606 mel_us = u1_mel_us; 4607 else 4608 mel_us = u2_mel_us; 4609 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4610 if (mel_us > MAX_EXIT) { 4611 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4612 "is too big.\n", mel_us); 4613 return -E2BIG; 4614 } 4615 return mel_us; 4616 } 4617 4618 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4619 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4620 struct usb_device *udev, enum usb3_link_state state) 4621 { 4622 struct xhci_hcd *xhci; 4623 u16 hub_encoded_timeout; 4624 int mel; 4625 int ret; 4626 4627 xhci = hcd_to_xhci(hcd); 4628 /* The LPM timeout values are pretty host-controller specific, so don't 4629 * enable hub-initiated timeouts unless the vendor has provided 4630 * information about their timeout algorithm. 4631 */ 4632 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4633 !xhci->devs[udev->slot_id]) 4634 return USB3_LPM_DISABLED; 4635 4636 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4637 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4638 if (mel < 0) { 4639 /* Max Exit Latency is too big, disable LPM. */ 4640 hub_encoded_timeout = USB3_LPM_DISABLED; 4641 mel = 0; 4642 } 4643 4644 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4645 if (ret) 4646 return ret; 4647 return hub_encoded_timeout; 4648 } 4649 4650 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4651 struct usb_device *udev, enum usb3_link_state state) 4652 { 4653 struct xhci_hcd *xhci; 4654 u16 mel; 4655 4656 xhci = hcd_to_xhci(hcd); 4657 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4658 !xhci->devs[udev->slot_id]) 4659 return 0; 4660 4661 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4662 return xhci_change_max_exit_latency(xhci, udev, mel); 4663 } 4664 #else /* CONFIG_PM */ 4665 4666 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4667 struct usb_device *udev, int enable) 4668 { 4669 return 0; 4670 } 4671 4672 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4673 { 4674 return 0; 4675 } 4676 4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4678 struct usb_device *udev, enum usb3_link_state state) 4679 { 4680 return USB3_LPM_DISABLED; 4681 } 4682 4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4684 struct usb_device *udev, enum usb3_link_state state) 4685 { 4686 return 0; 4687 } 4688 #endif /* CONFIG_PM */ 4689 4690 /*-------------------------------------------------------------------------*/ 4691 4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4693 * internal data structures for the device. 4694 */ 4695 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4696 struct usb_tt *tt, gfp_t mem_flags) 4697 { 4698 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4699 struct xhci_virt_device *vdev; 4700 struct xhci_command *config_cmd; 4701 struct xhci_input_control_ctx *ctrl_ctx; 4702 struct xhci_slot_ctx *slot_ctx; 4703 unsigned long flags; 4704 unsigned think_time; 4705 int ret; 4706 4707 /* Ignore root hubs */ 4708 if (!hdev->parent) 4709 return 0; 4710 4711 vdev = xhci->devs[hdev->slot_id]; 4712 if (!vdev) { 4713 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4714 return -EINVAL; 4715 } 4716 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4717 if (!config_cmd) { 4718 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 4719 return -ENOMEM; 4720 } 4721 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4722 if (!ctrl_ctx) { 4723 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4724 __func__); 4725 xhci_free_command(xhci, config_cmd); 4726 return -ENOMEM; 4727 } 4728 4729 spin_lock_irqsave(&xhci->lock, flags); 4730 if (hdev->speed == USB_SPEED_HIGH && 4731 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4732 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4733 xhci_free_command(xhci, config_cmd); 4734 spin_unlock_irqrestore(&xhci->lock, flags); 4735 return -ENOMEM; 4736 } 4737 4738 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4739 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4740 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4741 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4742 /* 4743 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4744 * but it may be already set to 1 when setup an xHCI virtual 4745 * device, so clear it anyway. 4746 */ 4747 if (tt->multi) 4748 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4749 else if (hdev->speed == USB_SPEED_FULL) 4750 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4751 4752 if (xhci->hci_version > 0x95) { 4753 xhci_dbg(xhci, "xHCI version %x needs hub " 4754 "TT think time and number of ports\n", 4755 (unsigned int) xhci->hci_version); 4756 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4757 /* Set TT think time - convert from ns to FS bit times. 4758 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4759 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4760 * 4761 * xHCI 1.0: this field shall be 0 if the device is not a 4762 * High-spped hub. 4763 */ 4764 think_time = tt->think_time; 4765 if (think_time != 0) 4766 think_time = (think_time / 666) - 1; 4767 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4768 slot_ctx->tt_info |= 4769 cpu_to_le32(TT_THINK_TIME(think_time)); 4770 } else { 4771 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4772 "TT think time or number of ports\n", 4773 (unsigned int) xhci->hci_version); 4774 } 4775 slot_ctx->dev_state = 0; 4776 spin_unlock_irqrestore(&xhci->lock, flags); 4777 4778 xhci_dbg(xhci, "Set up %s for hub device.\n", 4779 (xhci->hci_version > 0x95) ? 4780 "configure endpoint" : "evaluate context"); 4781 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 4782 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 4783 4784 /* Issue and wait for the configure endpoint or 4785 * evaluate context command. 4786 */ 4787 if (xhci->hci_version > 0x95) 4788 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4789 false, false); 4790 else 4791 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4792 true, false); 4793 4794 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 4795 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 4796 4797 xhci_free_command(xhci, config_cmd); 4798 return ret; 4799 } 4800 4801 int xhci_get_frame(struct usb_hcd *hcd) 4802 { 4803 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4804 /* EHCI mods by the periodic size. Why? */ 4805 return readl(&xhci->run_regs->microframe_index) >> 3; 4806 } 4807 4808 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4809 { 4810 struct xhci_hcd *xhci; 4811 struct device *dev = hcd->self.controller; 4812 int retval; 4813 4814 /* Accept arbitrarily long scatter-gather lists */ 4815 hcd->self.sg_tablesize = ~0; 4816 4817 /* support to build packet from discontinuous buffers */ 4818 hcd->self.no_sg_constraint = 1; 4819 4820 /* XHCI controllers don't stop the ep queue on short packets :| */ 4821 hcd->self.no_stop_on_short = 1; 4822 4823 xhci = hcd_to_xhci(hcd); 4824 4825 if (usb_hcd_is_primary_hcd(hcd)) { 4826 xhci->main_hcd = hcd; 4827 /* Mark the first roothub as being USB 2.0. 4828 * The xHCI driver will register the USB 3.0 roothub. 4829 */ 4830 hcd->speed = HCD_USB2; 4831 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4832 /* 4833 * USB 2.0 roothub under xHCI has an integrated TT, 4834 * (rate matching hub) as opposed to having an OHCI/UHCI 4835 * companion controller. 4836 */ 4837 hcd->has_tt = 1; 4838 } else { 4839 if (xhci->sbrn == 0x31) { 4840 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4841 hcd->speed = HCD_USB31; 4842 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4843 } 4844 /* xHCI private pointer was set in xhci_pci_probe for the second 4845 * registered roothub. 4846 */ 4847 return 0; 4848 } 4849 4850 mutex_init(&xhci->mutex); 4851 xhci->cap_regs = hcd->regs; 4852 xhci->op_regs = hcd->regs + 4853 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4854 xhci->run_regs = hcd->regs + 4855 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4856 /* Cache read-only capability registers */ 4857 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4858 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4859 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4860 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4861 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4862 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4863 if (xhci->hci_version > 0x100) 4864 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4865 xhci_print_registers(xhci); 4866 4867 xhci->quirks |= quirks; 4868 4869 get_quirks(dev, xhci); 4870 4871 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4872 * success event after a short transfer. This quirk will ignore such 4873 * spurious event. 4874 */ 4875 if (xhci->hci_version > 0x96) 4876 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4877 4878 /* Make sure the HC is halted. */ 4879 retval = xhci_halt(xhci); 4880 if (retval) 4881 return retval; 4882 4883 xhci_dbg(xhci, "Resetting HCD\n"); 4884 /* Reset the internal HC memory state and registers. */ 4885 retval = xhci_reset(xhci); 4886 if (retval) 4887 return retval; 4888 xhci_dbg(xhci, "Reset complete\n"); 4889 4890 /* 4891 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4892 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4893 * address memory pointers actually. So, this driver clears the AC64 4894 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4895 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4896 */ 4897 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4898 xhci->hcc_params &= ~BIT(0); 4899 4900 /* Set dma_mask and coherent_dma_mask to 64-bits, 4901 * if xHC supports 64-bit addressing */ 4902 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4903 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4904 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4905 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4906 } else { 4907 /* 4908 * This is to avoid error in cases where a 32-bit USB 4909 * controller is used on a 64-bit capable system. 4910 */ 4911 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4912 if (retval) 4913 return retval; 4914 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4915 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4916 } 4917 4918 xhci_dbg(xhci, "Calling HCD init\n"); 4919 /* Initialize HCD and host controller data structures. */ 4920 retval = xhci_init(hcd); 4921 if (retval) 4922 return retval; 4923 xhci_dbg(xhci, "Called HCD init\n"); 4924 4925 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4926 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4927 4928 return 0; 4929 } 4930 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4931 4932 static const struct hc_driver xhci_hc_driver = { 4933 .description = "xhci-hcd", 4934 .product_desc = "xHCI Host Controller", 4935 .hcd_priv_size = sizeof(struct xhci_hcd), 4936 4937 /* 4938 * generic hardware linkage 4939 */ 4940 .irq = xhci_irq, 4941 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4942 4943 /* 4944 * basic lifecycle operations 4945 */ 4946 .reset = NULL, /* set in xhci_init_driver() */ 4947 .start = xhci_run, 4948 .stop = xhci_stop, 4949 .shutdown = xhci_shutdown, 4950 4951 /* 4952 * managing i/o requests and associated device resources 4953 */ 4954 .urb_enqueue = xhci_urb_enqueue, 4955 .urb_dequeue = xhci_urb_dequeue, 4956 .alloc_dev = xhci_alloc_dev, 4957 .free_dev = xhci_free_dev, 4958 .alloc_streams = xhci_alloc_streams, 4959 .free_streams = xhci_free_streams, 4960 .add_endpoint = xhci_add_endpoint, 4961 .drop_endpoint = xhci_drop_endpoint, 4962 .endpoint_reset = xhci_endpoint_reset, 4963 .check_bandwidth = xhci_check_bandwidth, 4964 .reset_bandwidth = xhci_reset_bandwidth, 4965 .address_device = xhci_address_device, 4966 .enable_device = xhci_enable_device, 4967 .update_hub_device = xhci_update_hub_device, 4968 .reset_device = xhci_discover_or_reset_device, 4969 4970 /* 4971 * scheduling support 4972 */ 4973 .get_frame_number = xhci_get_frame, 4974 4975 /* 4976 * root hub support 4977 */ 4978 .hub_control = xhci_hub_control, 4979 .hub_status_data = xhci_hub_status_data, 4980 .bus_suspend = xhci_bus_suspend, 4981 .bus_resume = xhci_bus_resume, 4982 4983 /* 4984 * call back when device connected and addressed 4985 */ 4986 .update_device = xhci_update_device, 4987 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4988 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4989 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4990 .find_raw_port_number = xhci_find_raw_port_number, 4991 }; 4992 4993 void xhci_init_driver(struct hc_driver *drv, 4994 const struct xhci_driver_overrides *over) 4995 { 4996 BUG_ON(!over); 4997 4998 /* Copy the generic table to drv then apply the overrides */ 4999 *drv = xhci_hc_driver; 5000 5001 if (over) { 5002 drv->hcd_priv_size += over->extra_priv_size; 5003 if (over->reset) 5004 drv->reset = over->reset; 5005 if (over->start) 5006 drv->start = over->start; 5007 } 5008 } 5009 EXPORT_SYMBOL_GPL(xhci_init_driver); 5010 5011 MODULE_DESCRIPTION(DRIVER_DESC); 5012 MODULE_AUTHOR(DRIVER_AUTHOR); 5013 MODULE_LICENSE("GPL"); 5014 5015 static int __init xhci_hcd_init(void) 5016 { 5017 /* 5018 * Check the compiler generated sizes of structures that must be laid 5019 * out in specific ways for hardware access. 5020 */ 5021 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 5022 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 5023 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 5024 /* xhci_device_control has eight fields, and also 5025 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 5026 */ 5027 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 5028 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 5029 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 5030 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 5031 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5032 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5033 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5034 5035 if (usb_disabled()) 5036 return -ENODEV; 5037 5038 return 0; 5039 } 5040 5041 /* 5042 * If an init function is provided, an exit function must also be provided 5043 * to allow module unload. 5044 */ 5045 static void __exit xhci_hcd_fini(void) { } 5046 5047 module_init(xhci_hcd_init); 5048 module_exit(xhci_hcd_fini); 5049