xref: /linux/drivers/usb/host/xhci.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202 			 "Wait for controller to be ready for doorbell rings");
203 	/*
204 	 * xHCI cannot write to any doorbells or operational registers other
205 	 * than status until the "Controller Not Ready" flag is cleared.
206 	 */
207 	ret = xhci_handshake(&xhci->op_regs->status,
208 			STS_CNR, 0, 10 * 1000 * 1000);
209 
210 	for (i = 0; i < 2; i++) {
211 		xhci->bus_state[i].port_c_suspend = 0;
212 		xhci->bus_state[i].suspended_ports = 0;
213 		xhci->bus_state[i].resuming_ports = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 #ifdef CONFIG_PCI
220 static int xhci_free_msi(struct xhci_hcd *xhci)
221 {
222 	int i;
223 
224 	if (!xhci->msix_entries)
225 		return -EINVAL;
226 
227 	for (i = 0; i < xhci->msix_count; i++)
228 		if (xhci->msix_entries[i].vector)
229 			free_irq(xhci->msix_entries[i].vector,
230 					xhci_to_hcd(xhci));
231 	return 0;
232 }
233 
234 /*
235  * Set up MSI
236  */
237 static int xhci_setup_msi(struct xhci_hcd *xhci)
238 {
239 	int ret;
240 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
241 
242 	ret = pci_enable_msi(pdev);
243 	if (ret) {
244 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
245 				"failed to allocate MSI entry");
246 		return ret;
247 	}
248 
249 	ret = request_irq(pdev->irq, xhci_msi_irq,
250 				0, "xhci_hcd", xhci_to_hcd(xhci));
251 	if (ret) {
252 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
253 				"disable MSI interrupt");
254 		pci_disable_msi(pdev);
255 	}
256 
257 	return ret;
258 }
259 
260 /*
261  * Free IRQs
262  * free all IRQs request
263  */
264 static void xhci_free_irq(struct xhci_hcd *xhci)
265 {
266 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
267 	int ret;
268 
269 	/* return if using legacy interrupt */
270 	if (xhci_to_hcd(xhci)->irq > 0)
271 		return;
272 
273 	ret = xhci_free_msi(xhci);
274 	if (!ret)
275 		return;
276 	if (pdev->irq > 0)
277 		free_irq(pdev->irq, xhci_to_hcd(xhci));
278 
279 	return;
280 }
281 
282 /*
283  * Set up MSI-X
284  */
285 static int xhci_setup_msix(struct xhci_hcd *xhci)
286 {
287 	int i, ret = 0;
288 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290 
291 	/*
292 	 * calculate number of msi-x vectors supported.
293 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
294 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
295 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
296 	 *   Add additional 1 vector to ensure always available interrupt.
297 	 */
298 	xhci->msix_count = min(num_online_cpus() + 1,
299 				HCS_MAX_INTRS(xhci->hcs_params1));
300 
301 	xhci->msix_entries =
302 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
303 				GFP_KERNEL);
304 	if (!xhci->msix_entries)
305 		return -ENOMEM;
306 
307 	for (i = 0; i < xhci->msix_count; i++) {
308 		xhci->msix_entries[i].entry = i;
309 		xhci->msix_entries[i].vector = 0;
310 	}
311 
312 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
313 	if (ret) {
314 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315 				"Failed to enable MSI-X");
316 		goto free_entries;
317 	}
318 
319 	for (i = 0; i < xhci->msix_count; i++) {
320 		ret = request_irq(xhci->msix_entries[i].vector,
321 				xhci_msi_irq,
322 				0, "xhci_hcd", xhci_to_hcd(xhci));
323 		if (ret)
324 			goto disable_msix;
325 	}
326 
327 	hcd->msix_enabled = 1;
328 	return ret;
329 
330 disable_msix:
331 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
332 	xhci_free_irq(xhci);
333 	pci_disable_msix(pdev);
334 free_entries:
335 	kfree(xhci->msix_entries);
336 	xhci->msix_entries = NULL;
337 	return ret;
338 }
339 
340 /* Free any IRQs and disable MSI-X */
341 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
342 {
343 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
344 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
345 
346 	if (xhci->quirks & XHCI_PLAT)
347 		return;
348 
349 	xhci_free_irq(xhci);
350 
351 	if (xhci->msix_entries) {
352 		pci_disable_msix(pdev);
353 		kfree(xhci->msix_entries);
354 		xhci->msix_entries = NULL;
355 	} else {
356 		pci_disable_msi(pdev);
357 	}
358 
359 	hcd->msix_enabled = 0;
360 	return;
361 }
362 
363 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
364 {
365 	int i;
366 
367 	if (xhci->msix_entries) {
368 		for (i = 0; i < xhci->msix_count; i++)
369 			synchronize_irq(xhci->msix_entries[i].vector);
370 	}
371 }
372 
373 static int xhci_try_enable_msi(struct usb_hcd *hcd)
374 {
375 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
376 	struct pci_dev  *pdev;
377 	int ret;
378 
379 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
380 	if (xhci->quirks & XHCI_PLAT)
381 		return 0;
382 
383 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
384 	/*
385 	 * Some Fresco Logic host controllers advertise MSI, but fail to
386 	 * generate interrupts.  Don't even try to enable MSI.
387 	 */
388 	if (xhci->quirks & XHCI_BROKEN_MSI)
389 		goto legacy_irq;
390 
391 	/* unregister the legacy interrupt */
392 	if (hcd->irq)
393 		free_irq(hcd->irq, hcd);
394 	hcd->irq = 0;
395 
396 	ret = xhci_setup_msix(xhci);
397 	if (ret)
398 		/* fall back to msi*/
399 		ret = xhci_setup_msi(xhci);
400 
401 	if (!ret)
402 		/* hcd->irq is 0, we have MSI */
403 		return 0;
404 
405 	if (!pdev->irq) {
406 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
407 		return -EINVAL;
408 	}
409 
410  legacy_irq:
411 	if (!strlen(hcd->irq_descr))
412 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
413 			 hcd->driver->description, hcd->self.busnum);
414 
415 	/* fall back to legacy interrupt*/
416 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
417 			hcd->irq_descr, hcd);
418 	if (ret) {
419 		xhci_err(xhci, "request interrupt %d failed\n",
420 				pdev->irq);
421 		return ret;
422 	}
423 	hcd->irq = pdev->irq;
424 	return 0;
425 }
426 
427 #else
428 
429 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
430 {
431 	return 0;
432 }
433 
434 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
435 {
436 }
437 
438 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
439 {
440 }
441 
442 #endif
443 
444 static void compliance_mode_recovery(unsigned long arg)
445 {
446 	struct xhci_hcd *xhci;
447 	struct usb_hcd *hcd;
448 	u32 temp;
449 	int i;
450 
451 	xhci = (struct xhci_hcd *)arg;
452 
453 	for (i = 0; i < xhci->num_usb3_ports; i++) {
454 		temp = readl(xhci->usb3_ports[i]);
455 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
456 			/*
457 			 * Compliance Mode Detected. Letting USB Core
458 			 * handle the Warm Reset
459 			 */
460 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 					"Compliance mode detected->port %d",
462 					i + 1);
463 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 					"Attempting compliance mode recovery");
465 			hcd = xhci->shared_hcd;
466 
467 			if (hcd->state == HC_STATE_SUSPENDED)
468 				usb_hcd_resume_root_hub(hcd);
469 
470 			usb_hcd_poll_rh_status(hcd);
471 		}
472 	}
473 
474 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
475 		mod_timer(&xhci->comp_mode_recovery_timer,
476 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
477 }
478 
479 /*
480  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
481  * that causes ports behind that hardware to enter compliance mode sometimes.
482  * The quirk creates a timer that polls every 2 seconds the link state of
483  * each host controller's port and recovers it by issuing a Warm reset
484  * if Compliance mode is detected, otherwise the port will become "dead" (no
485  * device connections or disconnections will be detected anymore). Becasue no
486  * status event is generated when entering compliance mode (per xhci spec),
487  * this quirk is needed on systems that have the failing hardware installed.
488  */
489 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
490 {
491 	xhci->port_status_u0 = 0;
492 	setup_timer(&xhci->comp_mode_recovery_timer,
493 		    compliance_mode_recovery, (unsigned long)xhci);
494 	xhci->comp_mode_recovery_timer.expires = jiffies +
495 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
496 
497 	add_timer(&xhci->comp_mode_recovery_timer);
498 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
499 			"Compliance mode recovery timer initialized");
500 }
501 
502 /*
503  * This function identifies the systems that have installed the SN65LVPE502CP
504  * USB3.0 re-driver and that need the Compliance Mode Quirk.
505  * Systems:
506  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
507  */
508 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
509 {
510 	const char *dmi_product_name, *dmi_sys_vendor;
511 
512 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
513 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
514 	if (!dmi_product_name || !dmi_sys_vendor)
515 		return false;
516 
517 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
518 		return false;
519 
520 	if (strstr(dmi_product_name, "Z420") ||
521 			strstr(dmi_product_name, "Z620") ||
522 			strstr(dmi_product_name, "Z820") ||
523 			strstr(dmi_product_name, "Z1 Workstation"))
524 		return true;
525 
526 	return false;
527 }
528 
529 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
530 {
531 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
532 }
533 
534 
535 /*
536  * Initialize memory for HCD and xHC (one-time init).
537  *
538  * Program the PAGESIZE register, initialize the device context array, create
539  * device contexts (?), set up a command ring segment (or two?), create event
540  * ring (one for now).
541  */
542 int xhci_init(struct usb_hcd *hcd)
543 {
544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
545 	int retval = 0;
546 
547 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
548 	spin_lock_init(&xhci->lock);
549 	if (xhci->hci_version == 0x95 && link_quirk) {
550 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
551 				"QUIRK: Not clearing Link TRB chain bits.");
552 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
553 	} else {
554 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
555 				"xHCI doesn't need link TRB QUIRK");
556 	}
557 	retval = xhci_mem_init(xhci, GFP_KERNEL);
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
559 
560 	/* Initializing Compliance Mode Recovery Data If Needed */
561 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
562 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
563 		compliance_mode_recovery_timer_init(xhci);
564 	}
565 
566 	return retval;
567 }
568 
569 /*-------------------------------------------------------------------------*/
570 
571 
572 static int xhci_run_finished(struct xhci_hcd *xhci)
573 {
574 	if (xhci_start(xhci)) {
575 		xhci_halt(xhci);
576 		return -ENODEV;
577 	}
578 	xhci->shared_hcd->state = HC_STATE_RUNNING;
579 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
580 
581 	if (xhci->quirks & XHCI_NEC_HOST)
582 		xhci_ring_cmd_db(xhci);
583 
584 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
585 			"Finished xhci_run for USB3 roothub");
586 	return 0;
587 }
588 
589 /*
590  * Start the HC after it was halted.
591  *
592  * This function is called by the USB core when the HC driver is added.
593  * Its opposite is xhci_stop().
594  *
595  * xhci_init() must be called once before this function can be called.
596  * Reset the HC, enable device slot contexts, program DCBAAP, and
597  * set command ring pointer and event ring pointer.
598  *
599  * Setup MSI-X vectors and enable interrupts.
600  */
601 int xhci_run(struct usb_hcd *hcd)
602 {
603 	u32 temp;
604 	u64 temp_64;
605 	int ret;
606 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
607 
608 	/* Start the xHCI host controller running only after the USB 2.0 roothub
609 	 * is setup.
610 	 */
611 
612 	hcd->uses_new_polling = 1;
613 	if (!usb_hcd_is_primary_hcd(hcd))
614 		return xhci_run_finished(xhci);
615 
616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
617 
618 	ret = xhci_try_enable_msi(hcd);
619 	if (ret)
620 		return ret;
621 
622 	xhci_dbg(xhci, "Command ring memory map follows:\n");
623 	xhci_debug_ring(xhci, xhci->cmd_ring);
624 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
625 	xhci_dbg_cmd_ptrs(xhci);
626 
627 	xhci_dbg(xhci, "ERST memory map follows:\n");
628 	xhci_dbg_erst(xhci, &xhci->erst);
629 	xhci_dbg(xhci, "Event ring:\n");
630 	xhci_debug_ring(xhci, xhci->event_ring);
631 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
632 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
633 	temp_64 &= ~ERST_PTR_MASK;
634 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
636 
637 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 			"// Set the interrupt modulation register");
639 	temp = readl(&xhci->ir_set->irq_control);
640 	temp &= ~ER_IRQ_INTERVAL_MASK;
641 	/*
642 	 * the increment interval is 8 times as much as that defined
643 	 * in xHCI spec on MTK's controller
644 	 */
645 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
646 	writel(temp, &xhci->ir_set->irq_control);
647 
648 	/* Set the HCD state before we enable the irqs */
649 	temp = readl(&xhci->op_regs->command);
650 	temp |= (CMD_EIE);
651 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652 			"// Enable interrupts, cmd = 0x%x.", temp);
653 	writel(temp, &xhci->op_regs->command);
654 
655 	temp = readl(&xhci->ir_set->irq_pending);
656 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
658 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
659 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
660 	xhci_print_ir_set(xhci, 0);
661 
662 	if (xhci->quirks & XHCI_NEC_HOST) {
663 		struct xhci_command *command;
664 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
665 		if (!command)
666 			return -ENOMEM;
667 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
668 				TRB_TYPE(TRB_NEC_GET_FW));
669 	}
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"Finished xhci_run for USB2 roothub");
672 	return 0;
673 }
674 EXPORT_SYMBOL_GPL(xhci_run);
675 
676 /*
677  * Stop xHCI driver.
678  *
679  * This function is called by the USB core when the HC driver is removed.
680  * Its opposite is xhci_run().
681  *
682  * Disable device contexts, disable IRQs, and quiesce the HC.
683  * Reset the HC, finish any completed transactions, and cleanup memory.
684  */
685 void xhci_stop(struct usb_hcd *hcd)
686 {
687 	u32 temp;
688 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
689 
690 	mutex_lock(&xhci->mutex);
691 
692 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
693 		spin_lock_irq(&xhci->lock);
694 
695 		xhci->xhc_state |= XHCI_STATE_HALTED;
696 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
697 		xhci_halt(xhci);
698 		xhci_reset(xhci);
699 		spin_unlock_irq(&xhci->lock);
700 	}
701 
702 	if (!usb_hcd_is_primary_hcd(hcd)) {
703 		mutex_unlock(&xhci->mutex);
704 		return;
705 	}
706 
707 	xhci_cleanup_msix(xhci);
708 
709 	/* Deleting Compliance Mode Recovery Timer */
710 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
711 			(!(xhci_all_ports_seen_u0(xhci)))) {
712 		del_timer_sync(&xhci->comp_mode_recovery_timer);
713 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
714 				"%s: compliance mode recovery timer deleted",
715 				__func__);
716 	}
717 
718 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
719 		usb_amd_dev_put();
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
722 			"// Disabling event ring interrupts");
723 	temp = readl(&xhci->op_regs->status);
724 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
725 	temp = readl(&xhci->ir_set->irq_pending);
726 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
727 	xhci_print_ir_set(xhci, 0);
728 
729 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
730 	xhci_mem_cleanup(xhci);
731 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732 			"xhci_stop completed - status = %x",
733 			readl(&xhci->op_regs->status));
734 	mutex_unlock(&xhci->mutex);
735 }
736 
737 /*
738  * Shutdown HC (not bus-specific)
739  *
740  * This is called when the machine is rebooting or halting.  We assume that the
741  * machine will be powered off, and the HC's internal state will be reset.
742  * Don't bother to free memory.
743  *
744  * This will only ever be called with the main usb_hcd (the USB3 roothub).
745  */
746 void xhci_shutdown(struct usb_hcd *hcd)
747 {
748 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
749 
750 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
751 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
752 
753 	spin_lock_irq(&xhci->lock);
754 	xhci_halt(xhci);
755 	/* Workaround for spurious wakeups at shutdown with HSW */
756 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
757 		xhci_reset(xhci);
758 	spin_unlock_irq(&xhci->lock);
759 
760 	xhci_cleanup_msix(xhci);
761 
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"xhci_shutdown completed - status = %x",
764 			readl(&xhci->op_regs->status));
765 
766 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
767 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
768 		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
769 }
770 
771 #ifdef CONFIG_PM
772 static void xhci_save_registers(struct xhci_hcd *xhci)
773 {
774 	xhci->s3.command = readl(&xhci->op_regs->command);
775 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
776 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
777 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
778 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
779 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
780 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
781 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
782 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
783 }
784 
785 static void xhci_restore_registers(struct xhci_hcd *xhci)
786 {
787 	writel(xhci->s3.command, &xhci->op_regs->command);
788 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
789 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
790 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
791 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
792 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
793 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
794 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
795 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
796 }
797 
798 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
799 {
800 	u64	val_64;
801 
802 	/* step 2: initialize command ring buffer */
803 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
804 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
805 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
806 				      xhci->cmd_ring->dequeue) &
807 		 (u64) ~CMD_RING_RSVD_BITS) |
808 		xhci->cmd_ring->cycle_state;
809 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
810 			"// Setting command ring address to 0x%llx",
811 			(long unsigned long) val_64);
812 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
813 }
814 
815 /*
816  * The whole command ring must be cleared to zero when we suspend the host.
817  *
818  * The host doesn't save the command ring pointer in the suspend well, so we
819  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
820  * aligned, because of the reserved bits in the command ring dequeue pointer
821  * register.  Therefore, we can't just set the dequeue pointer back in the
822  * middle of the ring (TRBs are 16-byte aligned).
823  */
824 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
825 {
826 	struct xhci_ring *ring;
827 	struct xhci_segment *seg;
828 
829 	ring = xhci->cmd_ring;
830 	seg = ring->deq_seg;
831 	do {
832 		memset(seg->trbs, 0,
833 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
834 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
835 			cpu_to_le32(~TRB_CYCLE);
836 		seg = seg->next;
837 	} while (seg != ring->deq_seg);
838 
839 	/* Reset the software enqueue and dequeue pointers */
840 	ring->deq_seg = ring->first_seg;
841 	ring->dequeue = ring->first_seg->trbs;
842 	ring->enq_seg = ring->deq_seg;
843 	ring->enqueue = ring->dequeue;
844 
845 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
846 	/*
847 	 * Ring is now zeroed, so the HW should look for change of ownership
848 	 * when the cycle bit is set to 1.
849 	 */
850 	ring->cycle_state = 1;
851 
852 	/*
853 	 * Reset the hardware dequeue pointer.
854 	 * Yes, this will need to be re-written after resume, but we're paranoid
855 	 * and want to make sure the hardware doesn't access bogus memory
856 	 * because, say, the BIOS or an SMI started the host without changing
857 	 * the command ring pointers.
858 	 */
859 	xhci_set_cmd_ring_deq(xhci);
860 }
861 
862 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
863 {
864 	int port_index;
865 	__le32 __iomem **port_array;
866 	unsigned long flags;
867 	u32 t1, t2;
868 
869 	spin_lock_irqsave(&xhci->lock, flags);
870 
871 	/* disable usb3 ports Wake bits */
872 	port_index = xhci->num_usb3_ports;
873 	port_array = xhci->usb3_ports;
874 	while (port_index--) {
875 		t1 = readl(port_array[port_index]);
876 		t1 = xhci_port_state_to_neutral(t1);
877 		t2 = t1 & ~PORT_WAKE_BITS;
878 		if (t1 != t2)
879 			writel(t2, port_array[port_index]);
880 	}
881 
882 	/* disable usb2 ports Wake bits */
883 	port_index = xhci->num_usb2_ports;
884 	port_array = xhci->usb2_ports;
885 	while (port_index--) {
886 		t1 = readl(port_array[port_index]);
887 		t1 = xhci_port_state_to_neutral(t1);
888 		t2 = t1 & ~PORT_WAKE_BITS;
889 		if (t1 != t2)
890 			writel(t2, port_array[port_index]);
891 	}
892 
893 	spin_unlock_irqrestore(&xhci->lock, flags);
894 }
895 
896 /*
897  * Stop HC (not bus-specific)
898  *
899  * This is called when the machine transition into S3/S4 mode.
900  *
901  */
902 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
903 {
904 	int			rc = 0;
905 	unsigned int		delay = XHCI_MAX_HALT_USEC;
906 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
907 	u32			command;
908 
909 	if (!hcd->state)
910 		return 0;
911 
912 	if (hcd->state != HC_STATE_SUSPENDED ||
913 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
914 		return -EINVAL;
915 
916 	/* Clear root port wake on bits if wakeup not allowed. */
917 	if (!do_wakeup)
918 		xhci_disable_port_wake_on_bits(xhci);
919 
920 	/* Don't poll the roothubs on bus suspend. */
921 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
922 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
923 	del_timer_sync(&hcd->rh_timer);
924 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
925 	del_timer_sync(&xhci->shared_hcd->rh_timer);
926 
927 	spin_lock_irq(&xhci->lock);
928 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
929 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
930 	/* step 1: stop endpoint */
931 	/* skipped assuming that port suspend has done */
932 
933 	/* step 2: clear Run/Stop bit */
934 	command = readl(&xhci->op_regs->command);
935 	command &= ~CMD_RUN;
936 	writel(command, &xhci->op_regs->command);
937 
938 	/* Some chips from Fresco Logic need an extraordinary delay */
939 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
940 
941 	if (xhci_handshake(&xhci->op_regs->status,
942 		      STS_HALT, STS_HALT, delay)) {
943 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
944 		spin_unlock_irq(&xhci->lock);
945 		return -ETIMEDOUT;
946 	}
947 	xhci_clear_command_ring(xhci);
948 
949 	/* step 3: save registers */
950 	xhci_save_registers(xhci);
951 
952 	/* step 4: set CSS flag */
953 	command = readl(&xhci->op_regs->command);
954 	command |= CMD_CSS;
955 	writel(command, &xhci->op_regs->command);
956 	if (xhci_handshake(&xhci->op_regs->status,
957 				STS_SAVE, 0, 10 * 1000)) {
958 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
959 		spin_unlock_irq(&xhci->lock);
960 		return -ETIMEDOUT;
961 	}
962 	spin_unlock_irq(&xhci->lock);
963 
964 	/*
965 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
966 	 * is about to be suspended.
967 	 */
968 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
969 			(!(xhci_all_ports_seen_u0(xhci)))) {
970 		del_timer_sync(&xhci->comp_mode_recovery_timer);
971 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
972 				"%s: compliance mode recovery timer deleted",
973 				__func__);
974 	}
975 
976 	/* step 5: remove core well power */
977 	/* synchronize irq when using MSI-X */
978 	xhci_msix_sync_irqs(xhci);
979 
980 	return rc;
981 }
982 EXPORT_SYMBOL_GPL(xhci_suspend);
983 
984 /*
985  * start xHC (not bus-specific)
986  *
987  * This is called when the machine transition from S3/S4 mode.
988  *
989  */
990 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
991 {
992 	u32			command, temp = 0, status;
993 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
994 	struct usb_hcd		*secondary_hcd;
995 	int			retval = 0;
996 	bool			comp_timer_running = false;
997 
998 	if (!hcd->state)
999 		return 0;
1000 
1001 	/* Wait a bit if either of the roothubs need to settle from the
1002 	 * transition into bus suspend.
1003 	 */
1004 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1005 			time_before(jiffies,
1006 				xhci->bus_state[1].next_statechange))
1007 		msleep(100);
1008 
1009 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1010 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1011 
1012 	spin_lock_irq(&xhci->lock);
1013 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1014 		hibernated = true;
1015 
1016 	if (!hibernated) {
1017 		/* step 1: restore register */
1018 		xhci_restore_registers(xhci);
1019 		/* step 2: initialize command ring buffer */
1020 		xhci_set_cmd_ring_deq(xhci);
1021 		/* step 3: restore state and start state*/
1022 		/* step 3: set CRS flag */
1023 		command = readl(&xhci->op_regs->command);
1024 		command |= CMD_CRS;
1025 		writel(command, &xhci->op_regs->command);
1026 		if (xhci_handshake(&xhci->op_regs->status,
1027 			      STS_RESTORE, 0, 10 * 1000)) {
1028 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1029 			spin_unlock_irq(&xhci->lock);
1030 			return -ETIMEDOUT;
1031 		}
1032 		temp = readl(&xhci->op_regs->status);
1033 	}
1034 
1035 	/* If restore operation fails, re-initialize the HC during resume */
1036 	if ((temp & STS_SRE) || hibernated) {
1037 
1038 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039 				!(xhci_all_ports_seen_u0(xhci))) {
1040 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1041 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042 				"Compliance Mode Recovery Timer deleted!");
1043 		}
1044 
1045 		/* Let the USB core know _both_ roothubs lost power. */
1046 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1047 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1048 
1049 		xhci_dbg(xhci, "Stop HCD\n");
1050 		xhci_halt(xhci);
1051 		xhci_reset(xhci);
1052 		spin_unlock_irq(&xhci->lock);
1053 		xhci_cleanup_msix(xhci);
1054 
1055 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1056 		temp = readl(&xhci->op_regs->status);
1057 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1058 		temp = readl(&xhci->ir_set->irq_pending);
1059 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1060 		xhci_print_ir_set(xhci, 0);
1061 
1062 		xhci_dbg(xhci, "cleaning up memory\n");
1063 		xhci_mem_cleanup(xhci);
1064 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1065 			    readl(&xhci->op_regs->status));
1066 
1067 		/* USB core calls the PCI reinit and start functions twice:
1068 		 * first with the primary HCD, and then with the secondary HCD.
1069 		 * If we don't do the same, the host will never be started.
1070 		 */
1071 		if (!usb_hcd_is_primary_hcd(hcd))
1072 			secondary_hcd = hcd;
1073 		else
1074 			secondary_hcd = xhci->shared_hcd;
1075 
1076 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1077 		retval = xhci_init(hcd->primary_hcd);
1078 		if (retval)
1079 			return retval;
1080 		comp_timer_running = true;
1081 
1082 		xhci_dbg(xhci, "Start the primary HCD\n");
1083 		retval = xhci_run(hcd->primary_hcd);
1084 		if (!retval) {
1085 			xhci_dbg(xhci, "Start the secondary HCD\n");
1086 			retval = xhci_run(secondary_hcd);
1087 		}
1088 		hcd->state = HC_STATE_SUSPENDED;
1089 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1090 		goto done;
1091 	}
1092 
1093 	/* step 4: set Run/Stop bit */
1094 	command = readl(&xhci->op_regs->command);
1095 	command |= CMD_RUN;
1096 	writel(command, &xhci->op_regs->command);
1097 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1098 		  0, 250 * 1000);
1099 
1100 	/* step 5: walk topology and initialize portsc,
1101 	 * portpmsc and portli
1102 	 */
1103 	/* this is done in bus_resume */
1104 
1105 	/* step 6: restart each of the previously
1106 	 * Running endpoints by ringing their doorbells
1107 	 */
1108 
1109 	spin_unlock_irq(&xhci->lock);
1110 
1111  done:
1112 	if (retval == 0) {
1113 		/* Resume root hubs only when have pending events. */
1114 		status = readl(&xhci->op_regs->status);
1115 		if (status & STS_EINT) {
1116 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1117 			usb_hcd_resume_root_hub(hcd);
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1123 	 * be re-initialized Always after a system resume. Ports are subject
1124 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1125 	 * ports have entered previously to U0 before system's suspension.
1126 	 */
1127 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1128 		compliance_mode_recovery_timer_init(xhci);
1129 
1130 	/* Re-enable port polling. */
1131 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1132 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1133 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1134 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1135 	usb_hcd_poll_rh_status(hcd);
1136 
1137 	return retval;
1138 }
1139 EXPORT_SYMBOL_GPL(xhci_resume);
1140 #endif	/* CONFIG_PM */
1141 
1142 /*-------------------------------------------------------------------------*/
1143 
1144 /**
1145  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1146  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1147  * value to right shift 1 for the bitmask.
1148  *
1149  * Index  = (epnum * 2) + direction - 1,
1150  * where direction = 0 for OUT, 1 for IN.
1151  * For control endpoints, the IN index is used (OUT index is unused), so
1152  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1153  */
1154 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1155 {
1156 	unsigned int index;
1157 	if (usb_endpoint_xfer_control(desc))
1158 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1159 	else
1160 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1161 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1162 	return index;
1163 }
1164 
1165 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1166  * address from the XHCI endpoint index.
1167  */
1168 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1169 {
1170 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1171 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1172 	return direction | number;
1173 }
1174 
1175 /* Find the flag for this endpoint (for use in the control context).  Use the
1176  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1177  * bit 1, etc.
1178  */
1179 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1180 {
1181 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1182 }
1183 
1184 /* Find the flag for this endpoint (for use in the control context).  Use the
1185  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1186  * bit 1, etc.
1187  */
1188 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1189 {
1190 	return 1 << (ep_index + 1);
1191 }
1192 
1193 /* Compute the last valid endpoint context index.  Basically, this is the
1194  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1195  * we find the most significant bit set in the added contexts flags.
1196  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1197  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1198  */
1199 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1200 {
1201 	return fls(added_ctxs) - 1;
1202 }
1203 
1204 /* Returns 1 if the arguments are OK;
1205  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1206  */
1207 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1208 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1209 		const char *func) {
1210 	struct xhci_hcd	*xhci;
1211 	struct xhci_virt_device	*virt_dev;
1212 
1213 	if (!hcd || (check_ep && !ep) || !udev) {
1214 		pr_debug("xHCI %s called with invalid args\n", func);
1215 		return -EINVAL;
1216 	}
1217 	if (!udev->parent) {
1218 		pr_debug("xHCI %s called for root hub\n", func);
1219 		return 0;
1220 	}
1221 
1222 	xhci = hcd_to_xhci(hcd);
1223 	if (check_virt_dev) {
1224 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1225 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1226 					func);
1227 			return -EINVAL;
1228 		}
1229 
1230 		virt_dev = xhci->devs[udev->slot_id];
1231 		if (virt_dev->udev != udev) {
1232 			xhci_dbg(xhci, "xHCI %s called with udev and "
1233 					  "virt_dev does not match\n", func);
1234 			return -EINVAL;
1235 		}
1236 	}
1237 
1238 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1239 		return -ENODEV;
1240 
1241 	return 1;
1242 }
1243 
1244 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1245 		struct usb_device *udev, struct xhci_command *command,
1246 		bool ctx_change, bool must_succeed);
1247 
1248 /*
1249  * Full speed devices may have a max packet size greater than 8 bytes, but the
1250  * USB core doesn't know that until it reads the first 8 bytes of the
1251  * descriptor.  If the usb_device's max packet size changes after that point,
1252  * we need to issue an evaluate context command and wait on it.
1253  */
1254 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1255 		unsigned int ep_index, struct urb *urb)
1256 {
1257 	struct xhci_container_ctx *out_ctx;
1258 	struct xhci_input_control_ctx *ctrl_ctx;
1259 	struct xhci_ep_ctx *ep_ctx;
1260 	struct xhci_command *command;
1261 	int max_packet_size;
1262 	int hw_max_packet_size;
1263 	int ret = 0;
1264 
1265 	out_ctx = xhci->devs[slot_id]->out_ctx;
1266 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1267 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1268 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1269 	if (hw_max_packet_size != max_packet_size) {
1270 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271 				"Max Packet Size for ep 0 changed.");
1272 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1273 				"Max packet size in usb_device = %d",
1274 				max_packet_size);
1275 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1276 				"Max packet size in xHCI HW = %d",
1277 				hw_max_packet_size);
1278 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1279 				"Issuing evaluate context command.");
1280 
1281 		/* Set up the input context flags for the command */
1282 		/* FIXME: This won't work if a non-default control endpoint
1283 		 * changes max packet sizes.
1284 		 */
1285 
1286 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1287 		if (!command)
1288 			return -ENOMEM;
1289 
1290 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1291 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1292 		if (!ctrl_ctx) {
1293 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1294 					__func__);
1295 			ret = -ENOMEM;
1296 			goto command_cleanup;
1297 		}
1298 		/* Set up the modified control endpoint 0 */
1299 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1300 				xhci->devs[slot_id]->out_ctx, ep_index);
1301 
1302 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1303 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1304 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1305 
1306 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1307 		ctrl_ctx->drop_flags = 0;
1308 
1309 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1310 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1311 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1312 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1313 
1314 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1315 				true, false);
1316 
1317 		/* Clean up the input context for later use by bandwidth
1318 		 * functions.
1319 		 */
1320 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1321 command_cleanup:
1322 		kfree(command->completion);
1323 		kfree(command);
1324 	}
1325 	return ret;
1326 }
1327 
1328 /*
1329  * non-error returns are a promise to giveback() the urb later
1330  * we drop ownership so next owner (or urb unlink) can get it
1331  */
1332 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1333 {
1334 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1335 	unsigned long flags;
1336 	int ret = 0;
1337 	unsigned int slot_id, ep_index, ep_state;
1338 	struct urb_priv	*urb_priv;
1339 	int num_tds;
1340 
1341 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1342 					true, true, __func__) <= 0)
1343 		return -EINVAL;
1344 
1345 	slot_id = urb->dev->slot_id;
1346 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347 
1348 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1349 		if (!in_interrupt())
1350 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1351 		return -ESHUTDOWN;
1352 	}
1353 
1354 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1355 		num_tds = urb->number_of_packets;
1356 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1357 	    urb->transfer_buffer_length > 0 &&
1358 	    urb->transfer_flags & URB_ZERO_PACKET &&
1359 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1360 		num_tds = 2;
1361 	else
1362 		num_tds = 1;
1363 
1364 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1365 			   num_tds * sizeof(struct xhci_td), mem_flags);
1366 	if (!urb_priv)
1367 		return -ENOMEM;
1368 
1369 	urb_priv->num_tds = num_tds;
1370 	urb_priv->num_tds_done = 0;
1371 	urb->hcpriv = urb_priv;
1372 
1373 	trace_xhci_urb_enqueue(urb);
1374 
1375 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1376 		/* Check to see if the max packet size for the default control
1377 		 * endpoint changed during FS device enumeration
1378 		 */
1379 		if (urb->dev->speed == USB_SPEED_FULL) {
1380 			ret = xhci_check_maxpacket(xhci, slot_id,
1381 					ep_index, urb);
1382 			if (ret < 0) {
1383 				xhci_urb_free_priv(urb_priv);
1384 				urb->hcpriv = NULL;
1385 				return ret;
1386 			}
1387 		}
1388 	}
1389 
1390 	spin_lock_irqsave(&xhci->lock, flags);
1391 
1392 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1393 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1394 			 urb->ep->desc.bEndpointAddress, urb);
1395 		ret = -ESHUTDOWN;
1396 		goto free_priv;
1397 	}
1398 
1399 	switch (usb_endpoint_type(&urb->ep->desc)) {
1400 
1401 	case USB_ENDPOINT_XFER_CONTROL:
1402 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403 					 slot_id, ep_index);
1404 		break;
1405 	case USB_ENDPOINT_XFER_BULK:
1406 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1407 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1408 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1409 				  ep_state);
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1414 					 slot_id, ep_index);
1415 		break;
1416 
1417 
1418 	case USB_ENDPOINT_XFER_INT:
1419 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1420 				slot_id, ep_index);
1421 		break;
1422 
1423 	case USB_ENDPOINT_XFER_ISOC:
1424 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1425 				slot_id, ep_index);
1426 	}
1427 
1428 	if (ret) {
1429 free_priv:
1430 		xhci_urb_free_priv(urb_priv);
1431 		urb->hcpriv = NULL;
1432 	}
1433 	spin_unlock_irqrestore(&xhci->lock, flags);
1434 	return ret;
1435 }
1436 
1437 /*
1438  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1439  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1440  * should pick up where it left off in the TD, unless a Set Transfer Ring
1441  * Dequeue Pointer is issued.
1442  *
1443  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1444  * the ring.  Since the ring is a contiguous structure, they can't be physically
1445  * removed.  Instead, there are two options:
1446  *
1447  *  1) If the HC is in the middle of processing the URB to be canceled, we
1448  *     simply move the ring's dequeue pointer past those TRBs using the Set
1449  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1450  *     when drivers timeout on the last submitted URB and attempt to cancel.
1451  *
1452  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1453  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1454  *     HC will need to invalidate the any TRBs it has cached after the stop
1455  *     endpoint command, as noted in the xHCI 0.95 errata.
1456  *
1457  *  3) The TD may have completed by the time the Stop Endpoint Command
1458  *     completes, so software needs to handle that case too.
1459  *
1460  * This function should protect against the TD enqueueing code ringing the
1461  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1462  * It also needs to account for multiple cancellations on happening at the same
1463  * time for the same endpoint.
1464  *
1465  * Note that this function can be called in any context, or so says
1466  * usb_hcd_unlink_urb()
1467  */
1468 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1469 {
1470 	unsigned long flags;
1471 	int ret, i;
1472 	u32 temp;
1473 	struct xhci_hcd *xhci;
1474 	struct urb_priv	*urb_priv;
1475 	struct xhci_td *td;
1476 	unsigned int ep_index;
1477 	struct xhci_ring *ep_ring;
1478 	struct xhci_virt_ep *ep;
1479 	struct xhci_command *command;
1480 	struct xhci_virt_device *vdev;
1481 
1482 	xhci = hcd_to_xhci(hcd);
1483 	spin_lock_irqsave(&xhci->lock, flags);
1484 
1485 	trace_xhci_urb_dequeue(urb);
1486 
1487 	/* Make sure the URB hasn't completed or been unlinked already */
1488 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1489 	if (ret)
1490 		goto done;
1491 
1492 	/* give back URB now if we can't queue it for cancel */
1493 	vdev = xhci->devs[urb->dev->slot_id];
1494 	urb_priv = urb->hcpriv;
1495 	if (!vdev || !urb_priv)
1496 		goto err_giveback;
1497 
1498 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1499 	ep = &vdev->eps[ep_index];
1500 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1501 	if (!ep || !ep_ring)
1502 		goto err_giveback;
1503 
1504 	temp = readl(&xhci->op_regs->status);
1505 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1506 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1507 				"HW died, freeing TD.");
1508 		for (i = urb_priv->num_tds_done;
1509 		     i < urb_priv->num_tds;
1510 		     i++) {
1511 			td = &urb_priv->td[i];
1512 			if (!list_empty(&td->td_list))
1513 				list_del_init(&td->td_list);
1514 			if (!list_empty(&td->cancelled_td_list))
1515 				list_del_init(&td->cancelled_td_list);
1516 		}
1517 		goto err_giveback;
1518 	}
1519 
1520 	i = urb_priv->num_tds_done;
1521 	if (i < urb_priv->num_tds)
1522 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1523 				"Cancel URB %p, dev %s, ep 0x%x, "
1524 				"starting at offset 0x%llx",
1525 				urb, urb->dev->devpath,
1526 				urb->ep->desc.bEndpointAddress,
1527 				(unsigned long long) xhci_trb_virt_to_dma(
1528 					urb_priv->td[i].start_seg,
1529 					urb_priv->td[i].first_trb));
1530 
1531 	for (; i < urb_priv->num_tds; i++) {
1532 		td = &urb_priv->td[i];
1533 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1534 	}
1535 
1536 	/* Queue a stop endpoint command, but only if this is
1537 	 * the first cancellation to be handled.
1538 	 */
1539 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1540 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1541 		if (!command) {
1542 			ret = -ENOMEM;
1543 			goto done;
1544 		}
1545 		ep->ep_state |= EP_STOP_CMD_PENDING;
1546 		ep->stop_cmd_timer.expires = jiffies +
1547 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1548 		add_timer(&ep->stop_cmd_timer);
1549 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1550 					 ep_index, 0);
1551 		xhci_ring_cmd_db(xhci);
1552 	}
1553 done:
1554 	spin_unlock_irqrestore(&xhci->lock, flags);
1555 	return ret;
1556 
1557 err_giveback:
1558 	if (urb_priv)
1559 		xhci_urb_free_priv(urb_priv);
1560 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1561 	spin_unlock_irqrestore(&xhci->lock, flags);
1562 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1563 	return ret;
1564 }
1565 
1566 /* Drop an endpoint from a new bandwidth configuration for this device.
1567  * Only one call to this function is allowed per endpoint before
1568  * check_bandwidth() or reset_bandwidth() must be called.
1569  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1570  * add the endpoint to the schedule with possibly new parameters denoted by a
1571  * different endpoint descriptor in usb_host_endpoint.
1572  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1573  * not allowed.
1574  *
1575  * The USB core will not allow URBs to be queued to an endpoint that is being
1576  * disabled, so there's no need for mutual exclusion to protect
1577  * the xhci->devs[slot_id] structure.
1578  */
1579 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1580 		struct usb_host_endpoint *ep)
1581 {
1582 	struct xhci_hcd *xhci;
1583 	struct xhci_container_ctx *in_ctx, *out_ctx;
1584 	struct xhci_input_control_ctx *ctrl_ctx;
1585 	unsigned int ep_index;
1586 	struct xhci_ep_ctx *ep_ctx;
1587 	u32 drop_flag;
1588 	u32 new_add_flags, new_drop_flags;
1589 	int ret;
1590 
1591 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1592 	if (ret <= 0)
1593 		return ret;
1594 	xhci = hcd_to_xhci(hcd);
1595 	if (xhci->xhc_state & XHCI_STATE_DYING)
1596 		return -ENODEV;
1597 
1598 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1599 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1600 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1601 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1602 				__func__, drop_flag);
1603 		return 0;
1604 	}
1605 
1606 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1607 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1608 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1609 	if (!ctrl_ctx) {
1610 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1611 				__func__);
1612 		return 0;
1613 	}
1614 
1615 	ep_index = xhci_get_endpoint_index(&ep->desc);
1616 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1617 	/* If the HC already knows the endpoint is disabled,
1618 	 * or the HCD has noted it is disabled, ignore this request
1619 	 */
1620 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1621 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1622 	    xhci_get_endpoint_flag(&ep->desc)) {
1623 		/* Do not warn when called after a usb_device_reset */
1624 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1625 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1626 				  __func__, ep);
1627 		return 0;
1628 	}
1629 
1630 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1631 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1632 
1633 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1634 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1635 
1636 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1637 
1638 	if (xhci->quirks & XHCI_MTK_HOST)
1639 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1640 
1641 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1642 			(unsigned int) ep->desc.bEndpointAddress,
1643 			udev->slot_id,
1644 			(unsigned int) new_drop_flags,
1645 			(unsigned int) new_add_flags);
1646 	return 0;
1647 }
1648 
1649 /* Add an endpoint to a new possible bandwidth configuration for this device.
1650  * Only one call to this function is allowed per endpoint before
1651  * check_bandwidth() or reset_bandwidth() must be called.
1652  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1653  * add the endpoint to the schedule with possibly new parameters denoted by a
1654  * different endpoint descriptor in usb_host_endpoint.
1655  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1656  * not allowed.
1657  *
1658  * The USB core will not allow URBs to be queued to an endpoint until the
1659  * configuration or alt setting is installed in the device, so there's no need
1660  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1661  */
1662 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1663 		struct usb_host_endpoint *ep)
1664 {
1665 	struct xhci_hcd *xhci;
1666 	struct xhci_container_ctx *in_ctx;
1667 	unsigned int ep_index;
1668 	struct xhci_input_control_ctx *ctrl_ctx;
1669 	u32 added_ctxs;
1670 	u32 new_add_flags, new_drop_flags;
1671 	struct xhci_virt_device *virt_dev;
1672 	int ret = 0;
1673 
1674 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1675 	if (ret <= 0) {
1676 		/* So we won't queue a reset ep command for a root hub */
1677 		ep->hcpriv = NULL;
1678 		return ret;
1679 	}
1680 	xhci = hcd_to_xhci(hcd);
1681 	if (xhci->xhc_state & XHCI_STATE_DYING)
1682 		return -ENODEV;
1683 
1684 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1685 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1686 		/* FIXME when we have to issue an evaluate endpoint command to
1687 		 * deal with ep0 max packet size changing once we get the
1688 		 * descriptors
1689 		 */
1690 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1691 				__func__, added_ctxs);
1692 		return 0;
1693 	}
1694 
1695 	virt_dev = xhci->devs[udev->slot_id];
1696 	in_ctx = virt_dev->in_ctx;
1697 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1698 	if (!ctrl_ctx) {
1699 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1700 				__func__);
1701 		return 0;
1702 	}
1703 
1704 	ep_index = xhci_get_endpoint_index(&ep->desc);
1705 	/* If this endpoint is already in use, and the upper layers are trying
1706 	 * to add it again without dropping it, reject the addition.
1707 	 */
1708 	if (virt_dev->eps[ep_index].ring &&
1709 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1710 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1711 				"without dropping it.\n",
1712 				(unsigned int) ep->desc.bEndpointAddress);
1713 		return -EINVAL;
1714 	}
1715 
1716 	/* If the HCD has already noted the endpoint is enabled,
1717 	 * ignore this request.
1718 	 */
1719 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1720 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1721 				__func__, ep);
1722 		return 0;
1723 	}
1724 
1725 	/*
1726 	 * Configuration and alternate setting changes must be done in
1727 	 * process context, not interrupt context (or so documenation
1728 	 * for usb_set_interface() and usb_set_configuration() claim).
1729 	 */
1730 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1731 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1732 				__func__, ep->desc.bEndpointAddress);
1733 		return -ENOMEM;
1734 	}
1735 
1736 	if (xhci->quirks & XHCI_MTK_HOST) {
1737 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1738 		if (ret < 0) {
1739 			xhci_free_or_cache_endpoint_ring(xhci,
1740 				virt_dev, ep_index);
1741 			return ret;
1742 		}
1743 	}
1744 
1745 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1746 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1747 
1748 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1749 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1750 	 * this re-adds a new state for the endpoint from the new endpoint
1751 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1752 	 * drop flags alone.
1753 	 */
1754 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1755 
1756 	/* Store the usb_device pointer for later use */
1757 	ep->hcpriv = udev;
1758 
1759 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1760 			(unsigned int) ep->desc.bEndpointAddress,
1761 			udev->slot_id,
1762 			(unsigned int) new_drop_flags,
1763 			(unsigned int) new_add_flags);
1764 	return 0;
1765 }
1766 
1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768 {
1769 	struct xhci_input_control_ctx *ctrl_ctx;
1770 	struct xhci_ep_ctx *ep_ctx;
1771 	struct xhci_slot_ctx *slot_ctx;
1772 	int i;
1773 
1774 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1775 	if (!ctrl_ctx) {
1776 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777 				__func__);
1778 		return;
1779 	}
1780 
1781 	/* When a device's add flag and drop flag are zero, any subsequent
1782 	 * configure endpoint command will leave that endpoint's state
1783 	 * untouched.  Make sure we don't leave any old state in the input
1784 	 * endpoint contexts.
1785 	 */
1786 	ctrl_ctx->drop_flags = 0;
1787 	ctrl_ctx->add_flags = 0;
1788 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790 	/* Endpoint 0 is always valid */
1791 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792 	for (i = 1; i < 31; i++) {
1793 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794 		ep_ctx->ep_info = 0;
1795 		ep_ctx->ep_info2 = 0;
1796 		ep_ctx->deq = 0;
1797 		ep_ctx->tx_info = 0;
1798 	}
1799 }
1800 
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802 		struct usb_device *udev, u32 *cmd_status)
1803 {
1804 	int ret;
1805 
1806 	switch (*cmd_status) {
1807 	case COMP_COMMAND_ABORTED:
1808 	case COMP_STOPPED:
1809 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1810 		ret = -ETIME;
1811 		break;
1812 	case COMP_RESOURCE_ERROR:
1813 		dev_warn(&udev->dev,
1814 			 "Not enough host controller resources for new device state.\n");
1815 		ret = -ENOMEM;
1816 		/* FIXME: can we allocate more resources for the HC? */
1817 		break;
1818 	case COMP_BANDWIDTH_ERROR:
1819 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1820 		dev_warn(&udev->dev,
1821 			 "Not enough bandwidth for new device state.\n");
1822 		ret = -ENOSPC;
1823 		/* FIXME: can we go back to the old state? */
1824 		break;
1825 	case COMP_TRB_ERROR:
1826 		/* the HCD set up something wrong */
1827 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1828 				"add flag = 1, "
1829 				"and endpoint is not disabled.\n");
1830 		ret = -EINVAL;
1831 		break;
1832 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1833 		dev_warn(&udev->dev,
1834 			 "ERROR: Incompatible device for endpoint configure command.\n");
1835 		ret = -ENODEV;
1836 		break;
1837 	case COMP_SUCCESS:
1838 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1839 				"Successful Endpoint Configure command");
1840 		ret = 0;
1841 		break;
1842 	default:
1843 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1844 				*cmd_status);
1845 		ret = -EINVAL;
1846 		break;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1852 		struct usb_device *udev, u32 *cmd_status)
1853 {
1854 	int ret;
1855 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1856 
1857 	switch (*cmd_status) {
1858 	case COMP_COMMAND_ABORTED:
1859 	case COMP_STOPPED:
1860 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1861 		ret = -ETIME;
1862 		break;
1863 	case COMP_PARAMETER_ERROR:
1864 		dev_warn(&udev->dev,
1865 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1866 		ret = -EINVAL;
1867 		break;
1868 	case COMP_SLOT_NOT_ENABLED_ERROR:
1869 		dev_warn(&udev->dev,
1870 			"WARN: slot not enabled for evaluate context command.\n");
1871 		ret = -EINVAL;
1872 		break;
1873 	case COMP_CONTEXT_STATE_ERROR:
1874 		dev_warn(&udev->dev,
1875 			"WARN: invalid context state for evaluate context command.\n");
1876 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1877 		ret = -EINVAL;
1878 		break;
1879 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1880 		dev_warn(&udev->dev,
1881 			"ERROR: Incompatible device for evaluate context command.\n");
1882 		ret = -ENODEV;
1883 		break;
1884 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1885 		/* Max Exit Latency too large error */
1886 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1887 		ret = -EINVAL;
1888 		break;
1889 	case COMP_SUCCESS:
1890 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1891 				"Successful evaluate context command");
1892 		ret = 0;
1893 		break;
1894 	default:
1895 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1896 			*cmd_status);
1897 		ret = -EINVAL;
1898 		break;
1899 	}
1900 	return ret;
1901 }
1902 
1903 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1904 		struct xhci_input_control_ctx *ctrl_ctx)
1905 {
1906 	u32 valid_add_flags;
1907 	u32 valid_drop_flags;
1908 
1909 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1910 	 * (bit 1).  The default control endpoint is added during the Address
1911 	 * Device command and is never removed until the slot is disabled.
1912 	 */
1913 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1914 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1915 
1916 	/* Use hweight32 to count the number of ones in the add flags, or
1917 	 * number of endpoints added.  Don't count endpoints that are changed
1918 	 * (both added and dropped).
1919 	 */
1920 	return hweight32(valid_add_flags) -
1921 		hweight32(valid_add_flags & valid_drop_flags);
1922 }
1923 
1924 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1925 		struct xhci_input_control_ctx *ctrl_ctx)
1926 {
1927 	u32 valid_add_flags;
1928 	u32 valid_drop_flags;
1929 
1930 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1931 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1932 
1933 	return hweight32(valid_drop_flags) -
1934 		hweight32(valid_add_flags & valid_drop_flags);
1935 }
1936 
1937 /*
1938  * We need to reserve the new number of endpoints before the configure endpoint
1939  * command completes.  We can't subtract the dropped endpoints from the number
1940  * of active endpoints until the command completes because we can oversubscribe
1941  * the host in this case:
1942  *
1943  *  - the first configure endpoint command drops more endpoints than it adds
1944  *  - a second configure endpoint command that adds more endpoints is queued
1945  *  - the first configure endpoint command fails, so the config is unchanged
1946  *  - the second command may succeed, even though there isn't enough resources
1947  *
1948  * Must be called with xhci->lock held.
1949  */
1950 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1951 		struct xhci_input_control_ctx *ctrl_ctx)
1952 {
1953 	u32 added_eps;
1954 
1955 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1956 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1957 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1958 				"Not enough ep ctxs: "
1959 				"%u active, need to add %u, limit is %u.",
1960 				xhci->num_active_eps, added_eps,
1961 				xhci->limit_active_eps);
1962 		return -ENOMEM;
1963 	}
1964 	xhci->num_active_eps += added_eps;
1965 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1966 			"Adding %u ep ctxs, %u now active.", added_eps,
1967 			xhci->num_active_eps);
1968 	return 0;
1969 }
1970 
1971 /*
1972  * The configure endpoint was failed by the xHC for some other reason, so we
1973  * need to revert the resources that failed configuration would have used.
1974  *
1975  * Must be called with xhci->lock held.
1976  */
1977 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1978 		struct xhci_input_control_ctx *ctrl_ctx)
1979 {
1980 	u32 num_failed_eps;
1981 
1982 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1983 	xhci->num_active_eps -= num_failed_eps;
1984 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1985 			"Removing %u failed ep ctxs, %u now active.",
1986 			num_failed_eps,
1987 			xhci->num_active_eps);
1988 }
1989 
1990 /*
1991  * Now that the command has completed, clean up the active endpoint count by
1992  * subtracting out the endpoints that were dropped (but not changed).
1993  *
1994  * Must be called with xhci->lock held.
1995  */
1996 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1997 		struct xhci_input_control_ctx *ctrl_ctx)
1998 {
1999 	u32 num_dropped_eps;
2000 
2001 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2002 	xhci->num_active_eps -= num_dropped_eps;
2003 	if (num_dropped_eps)
2004 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2005 				"Removing %u dropped ep ctxs, %u now active.",
2006 				num_dropped_eps,
2007 				xhci->num_active_eps);
2008 }
2009 
2010 static unsigned int xhci_get_block_size(struct usb_device *udev)
2011 {
2012 	switch (udev->speed) {
2013 	case USB_SPEED_LOW:
2014 	case USB_SPEED_FULL:
2015 		return FS_BLOCK;
2016 	case USB_SPEED_HIGH:
2017 		return HS_BLOCK;
2018 	case USB_SPEED_SUPER:
2019 	case USB_SPEED_SUPER_PLUS:
2020 		return SS_BLOCK;
2021 	case USB_SPEED_UNKNOWN:
2022 	case USB_SPEED_WIRELESS:
2023 	default:
2024 		/* Should never happen */
2025 		return 1;
2026 	}
2027 }
2028 
2029 static unsigned int
2030 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2031 {
2032 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2033 		return LS_OVERHEAD;
2034 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2035 		return FS_OVERHEAD;
2036 	return HS_OVERHEAD;
2037 }
2038 
2039 /* If we are changing a LS/FS device under a HS hub,
2040  * make sure (if we are activating a new TT) that the HS bus has enough
2041  * bandwidth for this new TT.
2042  */
2043 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2044 		struct xhci_virt_device *virt_dev,
2045 		int old_active_eps)
2046 {
2047 	struct xhci_interval_bw_table *bw_table;
2048 	struct xhci_tt_bw_info *tt_info;
2049 
2050 	/* Find the bandwidth table for the root port this TT is attached to. */
2051 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2052 	tt_info = virt_dev->tt_info;
2053 	/* If this TT already had active endpoints, the bandwidth for this TT
2054 	 * has already been added.  Removing all periodic endpoints (and thus
2055 	 * making the TT enactive) will only decrease the bandwidth used.
2056 	 */
2057 	if (old_active_eps)
2058 		return 0;
2059 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2060 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2061 			return -ENOMEM;
2062 		return 0;
2063 	}
2064 	/* Not sure why we would have no new active endpoints...
2065 	 *
2066 	 * Maybe because of an Evaluate Context change for a hub update or a
2067 	 * control endpoint 0 max packet size change?
2068 	 * FIXME: skip the bandwidth calculation in that case.
2069 	 */
2070 	return 0;
2071 }
2072 
2073 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2074 		struct xhci_virt_device *virt_dev)
2075 {
2076 	unsigned int bw_reserved;
2077 
2078 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2079 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2080 		return -ENOMEM;
2081 
2082 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2083 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2084 		return -ENOMEM;
2085 
2086 	return 0;
2087 }
2088 
2089 /*
2090  * This algorithm is a very conservative estimate of the worst-case scheduling
2091  * scenario for any one interval.  The hardware dynamically schedules the
2092  * packets, so we can't tell which microframe could be the limiting factor in
2093  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2094  *
2095  * Obviously, we can't solve an NP complete problem to find the minimum worst
2096  * case scenario.  Instead, we come up with an estimate that is no less than
2097  * the worst case bandwidth used for any one microframe, but may be an
2098  * over-estimate.
2099  *
2100  * We walk the requirements for each endpoint by interval, starting with the
2101  * smallest interval, and place packets in the schedule where there is only one
2102  * possible way to schedule packets for that interval.  In order to simplify
2103  * this algorithm, we record the largest max packet size for each interval, and
2104  * assume all packets will be that size.
2105  *
2106  * For interval 0, we obviously must schedule all packets for each interval.
2107  * The bandwidth for interval 0 is just the amount of data to be transmitted
2108  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2109  * the number of packets).
2110  *
2111  * For interval 1, we have two possible microframes to schedule those packets
2112  * in.  For this algorithm, if we can schedule the same number of packets for
2113  * each possible scheduling opportunity (each microframe), we will do so.  The
2114  * remaining number of packets will be saved to be transmitted in the gaps in
2115  * the next interval's scheduling sequence.
2116  *
2117  * As we move those remaining packets to be scheduled with interval 2 packets,
2118  * we have to double the number of remaining packets to transmit.  This is
2119  * because the intervals are actually powers of 2, and we would be transmitting
2120  * the previous interval's packets twice in this interval.  We also have to be
2121  * sure that when we look at the largest max packet size for this interval, we
2122  * also look at the largest max packet size for the remaining packets and take
2123  * the greater of the two.
2124  *
2125  * The algorithm continues to evenly distribute packets in each scheduling
2126  * opportunity, and push the remaining packets out, until we get to the last
2127  * interval.  Then those packets and their associated overhead are just added
2128  * to the bandwidth used.
2129  */
2130 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2131 		struct xhci_virt_device *virt_dev,
2132 		int old_active_eps)
2133 {
2134 	unsigned int bw_reserved;
2135 	unsigned int max_bandwidth;
2136 	unsigned int bw_used;
2137 	unsigned int block_size;
2138 	struct xhci_interval_bw_table *bw_table;
2139 	unsigned int packet_size = 0;
2140 	unsigned int overhead = 0;
2141 	unsigned int packets_transmitted = 0;
2142 	unsigned int packets_remaining = 0;
2143 	unsigned int i;
2144 
2145 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2146 		return xhci_check_ss_bw(xhci, virt_dev);
2147 
2148 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2149 		max_bandwidth = HS_BW_LIMIT;
2150 		/* Convert percent of bus BW reserved to blocks reserved */
2151 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2152 	} else {
2153 		max_bandwidth = FS_BW_LIMIT;
2154 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2155 	}
2156 
2157 	bw_table = virt_dev->bw_table;
2158 	/* We need to translate the max packet size and max ESIT payloads into
2159 	 * the units the hardware uses.
2160 	 */
2161 	block_size = xhci_get_block_size(virt_dev->udev);
2162 
2163 	/* If we are manipulating a LS/FS device under a HS hub, double check
2164 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2165 	 */
2166 	if (virt_dev->tt_info) {
2167 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2168 				"Recalculating BW for rootport %u",
2169 				virt_dev->real_port);
2170 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2171 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2172 					"newly activated TT.\n");
2173 			return -ENOMEM;
2174 		}
2175 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2176 				"Recalculating BW for TT slot %u port %u",
2177 				virt_dev->tt_info->slot_id,
2178 				virt_dev->tt_info->ttport);
2179 	} else {
2180 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2181 				"Recalculating BW for rootport %u",
2182 				virt_dev->real_port);
2183 	}
2184 
2185 	/* Add in how much bandwidth will be used for interval zero, or the
2186 	 * rounded max ESIT payload + number of packets * largest overhead.
2187 	 */
2188 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2189 		bw_table->interval_bw[0].num_packets *
2190 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2191 
2192 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2193 		unsigned int bw_added;
2194 		unsigned int largest_mps;
2195 		unsigned int interval_overhead;
2196 
2197 		/*
2198 		 * How many packets could we transmit in this interval?
2199 		 * If packets didn't fit in the previous interval, we will need
2200 		 * to transmit that many packets twice within this interval.
2201 		 */
2202 		packets_remaining = 2 * packets_remaining +
2203 			bw_table->interval_bw[i].num_packets;
2204 
2205 		/* Find the largest max packet size of this or the previous
2206 		 * interval.
2207 		 */
2208 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2209 			largest_mps = 0;
2210 		else {
2211 			struct xhci_virt_ep *virt_ep;
2212 			struct list_head *ep_entry;
2213 
2214 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2215 			virt_ep = list_entry(ep_entry,
2216 					struct xhci_virt_ep, bw_endpoint_list);
2217 			/* Convert to blocks, rounding up */
2218 			largest_mps = DIV_ROUND_UP(
2219 					virt_ep->bw_info.max_packet_size,
2220 					block_size);
2221 		}
2222 		if (largest_mps > packet_size)
2223 			packet_size = largest_mps;
2224 
2225 		/* Use the larger overhead of this or the previous interval. */
2226 		interval_overhead = xhci_get_largest_overhead(
2227 				&bw_table->interval_bw[i]);
2228 		if (interval_overhead > overhead)
2229 			overhead = interval_overhead;
2230 
2231 		/* How many packets can we evenly distribute across
2232 		 * (1 << (i + 1)) possible scheduling opportunities?
2233 		 */
2234 		packets_transmitted = packets_remaining >> (i + 1);
2235 
2236 		/* Add in the bandwidth used for those scheduled packets */
2237 		bw_added = packets_transmitted * (overhead + packet_size);
2238 
2239 		/* How many packets do we have remaining to transmit? */
2240 		packets_remaining = packets_remaining % (1 << (i + 1));
2241 
2242 		/* What largest max packet size should those packets have? */
2243 		/* If we've transmitted all packets, don't carry over the
2244 		 * largest packet size.
2245 		 */
2246 		if (packets_remaining == 0) {
2247 			packet_size = 0;
2248 			overhead = 0;
2249 		} else if (packets_transmitted > 0) {
2250 			/* Otherwise if we do have remaining packets, and we've
2251 			 * scheduled some packets in this interval, take the
2252 			 * largest max packet size from endpoints with this
2253 			 * interval.
2254 			 */
2255 			packet_size = largest_mps;
2256 			overhead = interval_overhead;
2257 		}
2258 		/* Otherwise carry over packet_size and overhead from the last
2259 		 * time we had a remainder.
2260 		 */
2261 		bw_used += bw_added;
2262 		if (bw_used > max_bandwidth) {
2263 			xhci_warn(xhci, "Not enough bandwidth. "
2264 					"Proposed: %u, Max: %u\n",
2265 				bw_used, max_bandwidth);
2266 			return -ENOMEM;
2267 		}
2268 	}
2269 	/*
2270 	 * Ok, we know we have some packets left over after even-handedly
2271 	 * scheduling interval 15.  We don't know which microframes they will
2272 	 * fit into, so we over-schedule and say they will be scheduled every
2273 	 * microframe.
2274 	 */
2275 	if (packets_remaining > 0)
2276 		bw_used += overhead + packet_size;
2277 
2278 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2279 		unsigned int port_index = virt_dev->real_port - 1;
2280 
2281 		/* OK, we're manipulating a HS device attached to a
2282 		 * root port bandwidth domain.  Include the number of active TTs
2283 		 * in the bandwidth used.
2284 		 */
2285 		bw_used += TT_HS_OVERHEAD *
2286 			xhci->rh_bw[port_index].num_active_tts;
2287 	}
2288 
2289 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2290 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2291 		"Available: %u " "percent",
2292 		bw_used, max_bandwidth, bw_reserved,
2293 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2294 		max_bandwidth);
2295 
2296 	bw_used += bw_reserved;
2297 	if (bw_used > max_bandwidth) {
2298 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2299 				bw_used, max_bandwidth);
2300 		return -ENOMEM;
2301 	}
2302 
2303 	bw_table->bw_used = bw_used;
2304 	return 0;
2305 }
2306 
2307 static bool xhci_is_async_ep(unsigned int ep_type)
2308 {
2309 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2310 					ep_type != ISOC_IN_EP &&
2311 					ep_type != INT_IN_EP);
2312 }
2313 
2314 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2315 {
2316 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2317 }
2318 
2319 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2320 {
2321 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2322 
2323 	if (ep_bw->ep_interval == 0)
2324 		return SS_OVERHEAD_BURST +
2325 			(ep_bw->mult * ep_bw->num_packets *
2326 					(SS_OVERHEAD + mps));
2327 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2328 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2329 				1 << ep_bw->ep_interval);
2330 
2331 }
2332 
2333 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2334 		struct xhci_bw_info *ep_bw,
2335 		struct xhci_interval_bw_table *bw_table,
2336 		struct usb_device *udev,
2337 		struct xhci_virt_ep *virt_ep,
2338 		struct xhci_tt_bw_info *tt_info)
2339 {
2340 	struct xhci_interval_bw	*interval_bw;
2341 	int normalized_interval;
2342 
2343 	if (xhci_is_async_ep(ep_bw->type))
2344 		return;
2345 
2346 	if (udev->speed >= USB_SPEED_SUPER) {
2347 		if (xhci_is_sync_in_ep(ep_bw->type))
2348 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2349 				xhci_get_ss_bw_consumed(ep_bw);
2350 		else
2351 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2352 				xhci_get_ss_bw_consumed(ep_bw);
2353 		return;
2354 	}
2355 
2356 	/* SuperSpeed endpoints never get added to intervals in the table, so
2357 	 * this check is only valid for HS/FS/LS devices.
2358 	 */
2359 	if (list_empty(&virt_ep->bw_endpoint_list))
2360 		return;
2361 	/* For LS/FS devices, we need to translate the interval expressed in
2362 	 * microframes to frames.
2363 	 */
2364 	if (udev->speed == USB_SPEED_HIGH)
2365 		normalized_interval = ep_bw->ep_interval;
2366 	else
2367 		normalized_interval = ep_bw->ep_interval - 3;
2368 
2369 	if (normalized_interval == 0)
2370 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2371 	interval_bw = &bw_table->interval_bw[normalized_interval];
2372 	interval_bw->num_packets -= ep_bw->num_packets;
2373 	switch (udev->speed) {
2374 	case USB_SPEED_LOW:
2375 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2376 		break;
2377 	case USB_SPEED_FULL:
2378 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2379 		break;
2380 	case USB_SPEED_HIGH:
2381 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2382 		break;
2383 	case USB_SPEED_SUPER:
2384 	case USB_SPEED_SUPER_PLUS:
2385 	case USB_SPEED_UNKNOWN:
2386 	case USB_SPEED_WIRELESS:
2387 		/* Should never happen because only LS/FS/HS endpoints will get
2388 		 * added to the endpoint list.
2389 		 */
2390 		return;
2391 	}
2392 	if (tt_info)
2393 		tt_info->active_eps -= 1;
2394 	list_del_init(&virt_ep->bw_endpoint_list);
2395 }
2396 
2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2398 		struct xhci_bw_info *ep_bw,
2399 		struct xhci_interval_bw_table *bw_table,
2400 		struct usb_device *udev,
2401 		struct xhci_virt_ep *virt_ep,
2402 		struct xhci_tt_bw_info *tt_info)
2403 {
2404 	struct xhci_interval_bw	*interval_bw;
2405 	struct xhci_virt_ep *smaller_ep;
2406 	int normalized_interval;
2407 
2408 	if (xhci_is_async_ep(ep_bw->type))
2409 		return;
2410 
2411 	if (udev->speed == USB_SPEED_SUPER) {
2412 		if (xhci_is_sync_in_ep(ep_bw->type))
2413 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2414 				xhci_get_ss_bw_consumed(ep_bw);
2415 		else
2416 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2417 				xhci_get_ss_bw_consumed(ep_bw);
2418 		return;
2419 	}
2420 
2421 	/* For LS/FS devices, we need to translate the interval expressed in
2422 	 * microframes to frames.
2423 	 */
2424 	if (udev->speed == USB_SPEED_HIGH)
2425 		normalized_interval = ep_bw->ep_interval;
2426 	else
2427 		normalized_interval = ep_bw->ep_interval - 3;
2428 
2429 	if (normalized_interval == 0)
2430 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2431 	interval_bw = &bw_table->interval_bw[normalized_interval];
2432 	interval_bw->num_packets += ep_bw->num_packets;
2433 	switch (udev->speed) {
2434 	case USB_SPEED_LOW:
2435 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2436 		break;
2437 	case USB_SPEED_FULL:
2438 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2439 		break;
2440 	case USB_SPEED_HIGH:
2441 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2442 		break;
2443 	case USB_SPEED_SUPER:
2444 	case USB_SPEED_SUPER_PLUS:
2445 	case USB_SPEED_UNKNOWN:
2446 	case USB_SPEED_WIRELESS:
2447 		/* Should never happen because only LS/FS/HS endpoints will get
2448 		 * added to the endpoint list.
2449 		 */
2450 		return;
2451 	}
2452 
2453 	if (tt_info)
2454 		tt_info->active_eps += 1;
2455 	/* Insert the endpoint into the list, largest max packet size first. */
2456 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2457 			bw_endpoint_list) {
2458 		if (ep_bw->max_packet_size >=
2459 				smaller_ep->bw_info.max_packet_size) {
2460 			/* Add the new ep before the smaller endpoint */
2461 			list_add_tail(&virt_ep->bw_endpoint_list,
2462 					&smaller_ep->bw_endpoint_list);
2463 			return;
2464 		}
2465 	}
2466 	/* Add the new endpoint at the end of the list. */
2467 	list_add_tail(&virt_ep->bw_endpoint_list,
2468 			&interval_bw->endpoints);
2469 }
2470 
2471 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2472 		struct xhci_virt_device *virt_dev,
2473 		int old_active_eps)
2474 {
2475 	struct xhci_root_port_bw_info *rh_bw_info;
2476 	if (!virt_dev->tt_info)
2477 		return;
2478 
2479 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2480 	if (old_active_eps == 0 &&
2481 				virt_dev->tt_info->active_eps != 0) {
2482 		rh_bw_info->num_active_tts += 1;
2483 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2484 	} else if (old_active_eps != 0 &&
2485 				virt_dev->tt_info->active_eps == 0) {
2486 		rh_bw_info->num_active_tts -= 1;
2487 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2488 	}
2489 }
2490 
2491 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2492 		struct xhci_virt_device *virt_dev,
2493 		struct xhci_container_ctx *in_ctx)
2494 {
2495 	struct xhci_bw_info ep_bw_info[31];
2496 	int i;
2497 	struct xhci_input_control_ctx *ctrl_ctx;
2498 	int old_active_eps = 0;
2499 
2500 	if (virt_dev->tt_info)
2501 		old_active_eps = virt_dev->tt_info->active_eps;
2502 
2503 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2504 	if (!ctrl_ctx) {
2505 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2506 				__func__);
2507 		return -ENOMEM;
2508 	}
2509 
2510 	for (i = 0; i < 31; i++) {
2511 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2512 			continue;
2513 
2514 		/* Make a copy of the BW info in case we need to revert this */
2515 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2516 				sizeof(ep_bw_info[i]));
2517 		/* Drop the endpoint from the interval table if the endpoint is
2518 		 * being dropped or changed.
2519 		 */
2520 		if (EP_IS_DROPPED(ctrl_ctx, i))
2521 			xhci_drop_ep_from_interval_table(xhci,
2522 					&virt_dev->eps[i].bw_info,
2523 					virt_dev->bw_table,
2524 					virt_dev->udev,
2525 					&virt_dev->eps[i],
2526 					virt_dev->tt_info);
2527 	}
2528 	/* Overwrite the information stored in the endpoints' bw_info */
2529 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2530 	for (i = 0; i < 31; i++) {
2531 		/* Add any changed or added endpoints to the interval table */
2532 		if (EP_IS_ADDED(ctrl_ctx, i))
2533 			xhci_add_ep_to_interval_table(xhci,
2534 					&virt_dev->eps[i].bw_info,
2535 					virt_dev->bw_table,
2536 					virt_dev->udev,
2537 					&virt_dev->eps[i],
2538 					virt_dev->tt_info);
2539 	}
2540 
2541 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2542 		/* Ok, this fits in the bandwidth we have.
2543 		 * Update the number of active TTs.
2544 		 */
2545 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2546 		return 0;
2547 	}
2548 
2549 	/* We don't have enough bandwidth for this, revert the stored info. */
2550 	for (i = 0; i < 31; i++) {
2551 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2552 			continue;
2553 
2554 		/* Drop the new copies of any added or changed endpoints from
2555 		 * the interval table.
2556 		 */
2557 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2558 			xhci_drop_ep_from_interval_table(xhci,
2559 					&virt_dev->eps[i].bw_info,
2560 					virt_dev->bw_table,
2561 					virt_dev->udev,
2562 					&virt_dev->eps[i],
2563 					virt_dev->tt_info);
2564 		}
2565 		/* Revert the endpoint back to its old information */
2566 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2567 				sizeof(ep_bw_info[i]));
2568 		/* Add any changed or dropped endpoints back into the table */
2569 		if (EP_IS_DROPPED(ctrl_ctx, i))
2570 			xhci_add_ep_to_interval_table(xhci,
2571 					&virt_dev->eps[i].bw_info,
2572 					virt_dev->bw_table,
2573 					virt_dev->udev,
2574 					&virt_dev->eps[i],
2575 					virt_dev->tt_info);
2576 	}
2577 	return -ENOMEM;
2578 }
2579 
2580 
2581 /* Issue a configure endpoint command or evaluate context command
2582  * and wait for it to finish.
2583  */
2584 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2585 		struct usb_device *udev,
2586 		struct xhci_command *command,
2587 		bool ctx_change, bool must_succeed)
2588 {
2589 	int ret;
2590 	unsigned long flags;
2591 	struct xhci_input_control_ctx *ctrl_ctx;
2592 	struct xhci_virt_device *virt_dev;
2593 
2594 	if (!command)
2595 		return -EINVAL;
2596 
2597 	spin_lock_irqsave(&xhci->lock, flags);
2598 	virt_dev = xhci->devs[udev->slot_id];
2599 
2600 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2601 	if (!ctrl_ctx) {
2602 		spin_unlock_irqrestore(&xhci->lock, flags);
2603 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2604 				__func__);
2605 		return -ENOMEM;
2606 	}
2607 
2608 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2609 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2610 		spin_unlock_irqrestore(&xhci->lock, flags);
2611 		xhci_warn(xhci, "Not enough host resources, "
2612 				"active endpoint contexts = %u\n",
2613 				xhci->num_active_eps);
2614 		return -ENOMEM;
2615 	}
2616 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2617 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2618 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2619 			xhci_free_host_resources(xhci, ctrl_ctx);
2620 		spin_unlock_irqrestore(&xhci->lock, flags);
2621 		xhci_warn(xhci, "Not enough bandwidth\n");
2622 		return -ENOMEM;
2623 	}
2624 
2625 	if (!ctx_change)
2626 		ret = xhci_queue_configure_endpoint(xhci, command,
2627 				command->in_ctx->dma,
2628 				udev->slot_id, must_succeed);
2629 	else
2630 		ret = xhci_queue_evaluate_context(xhci, command,
2631 				command->in_ctx->dma,
2632 				udev->slot_id, must_succeed);
2633 	if (ret < 0) {
2634 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2635 			xhci_free_host_resources(xhci, ctrl_ctx);
2636 		spin_unlock_irqrestore(&xhci->lock, flags);
2637 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2638 				"FIXME allocate a new ring segment");
2639 		return -ENOMEM;
2640 	}
2641 	xhci_ring_cmd_db(xhci);
2642 	spin_unlock_irqrestore(&xhci->lock, flags);
2643 
2644 	/* Wait for the configure endpoint command to complete */
2645 	wait_for_completion(command->completion);
2646 
2647 	if (!ctx_change)
2648 		ret = xhci_configure_endpoint_result(xhci, udev,
2649 						     &command->status);
2650 	else
2651 		ret = xhci_evaluate_context_result(xhci, udev,
2652 						   &command->status);
2653 
2654 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2655 		spin_lock_irqsave(&xhci->lock, flags);
2656 		/* If the command failed, remove the reserved resources.
2657 		 * Otherwise, clean up the estimate to include dropped eps.
2658 		 */
2659 		if (ret)
2660 			xhci_free_host_resources(xhci, ctrl_ctx);
2661 		else
2662 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2663 		spin_unlock_irqrestore(&xhci->lock, flags);
2664 	}
2665 	return ret;
2666 }
2667 
2668 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2669 	struct xhci_virt_device *vdev, int i)
2670 {
2671 	struct xhci_virt_ep *ep = &vdev->eps[i];
2672 
2673 	if (ep->ep_state & EP_HAS_STREAMS) {
2674 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2675 				xhci_get_endpoint_address(i));
2676 		xhci_free_stream_info(xhci, ep->stream_info);
2677 		ep->stream_info = NULL;
2678 		ep->ep_state &= ~EP_HAS_STREAMS;
2679 	}
2680 }
2681 
2682 /* Called after one or more calls to xhci_add_endpoint() or
2683  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2684  * to call xhci_reset_bandwidth().
2685  *
2686  * Since we are in the middle of changing either configuration or
2687  * installing a new alt setting, the USB core won't allow URBs to be
2688  * enqueued for any endpoint on the old config or interface.  Nothing
2689  * else should be touching the xhci->devs[slot_id] structure, so we
2690  * don't need to take the xhci->lock for manipulating that.
2691  */
2692 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2693 {
2694 	int i;
2695 	int ret = 0;
2696 	struct xhci_hcd *xhci;
2697 	struct xhci_virt_device	*virt_dev;
2698 	struct xhci_input_control_ctx *ctrl_ctx;
2699 	struct xhci_slot_ctx *slot_ctx;
2700 	struct xhci_command *command;
2701 
2702 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2703 	if (ret <= 0)
2704 		return ret;
2705 	xhci = hcd_to_xhci(hcd);
2706 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2707 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2708 		return -ENODEV;
2709 
2710 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2711 	virt_dev = xhci->devs[udev->slot_id];
2712 
2713 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2714 	if (!command)
2715 		return -ENOMEM;
2716 
2717 	command->in_ctx = virt_dev->in_ctx;
2718 
2719 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2720 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2721 	if (!ctrl_ctx) {
2722 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2723 				__func__);
2724 		ret = -ENOMEM;
2725 		goto command_cleanup;
2726 	}
2727 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2728 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2729 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2730 
2731 	/* Don't issue the command if there's no endpoints to update. */
2732 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2733 	    ctrl_ctx->drop_flags == 0) {
2734 		ret = 0;
2735 		goto command_cleanup;
2736 	}
2737 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2738 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2739 	for (i = 31; i >= 1; i--) {
2740 		__le32 le32 = cpu_to_le32(BIT(i));
2741 
2742 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2743 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2744 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2745 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2746 			break;
2747 		}
2748 	}
2749 	xhci_dbg(xhci, "New Input Control Context:\n");
2750 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2751 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2752 
2753 	ret = xhci_configure_endpoint(xhci, udev, command,
2754 			false, false);
2755 	if (ret)
2756 		/* Callee should call reset_bandwidth() */
2757 		goto command_cleanup;
2758 
2759 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2760 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2761 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2762 
2763 	/* Free any rings that were dropped, but not changed. */
2764 	for (i = 1; i < 31; i++) {
2765 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2766 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2767 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2768 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2769 		}
2770 	}
2771 	xhci_zero_in_ctx(xhci, virt_dev);
2772 	/*
2773 	 * Install any rings for completely new endpoints or changed endpoints,
2774 	 * and free or cache any old rings from changed endpoints.
2775 	 */
2776 	for (i = 1; i < 31; i++) {
2777 		if (!virt_dev->eps[i].new_ring)
2778 			continue;
2779 		/* Only cache or free the old ring if it exists.
2780 		 * It may not if this is the first add of an endpoint.
2781 		 */
2782 		if (virt_dev->eps[i].ring) {
2783 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2784 		}
2785 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2786 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2787 		virt_dev->eps[i].new_ring = NULL;
2788 	}
2789 command_cleanup:
2790 	kfree(command->completion);
2791 	kfree(command);
2792 
2793 	return ret;
2794 }
2795 
2796 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2797 {
2798 	struct xhci_hcd *xhci;
2799 	struct xhci_virt_device	*virt_dev;
2800 	int i, ret;
2801 
2802 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2803 	if (ret <= 0)
2804 		return;
2805 	xhci = hcd_to_xhci(hcd);
2806 
2807 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2808 	virt_dev = xhci->devs[udev->slot_id];
2809 	/* Free any rings allocated for added endpoints */
2810 	for (i = 0; i < 31; i++) {
2811 		if (virt_dev->eps[i].new_ring) {
2812 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2813 			virt_dev->eps[i].new_ring = NULL;
2814 		}
2815 	}
2816 	xhci_zero_in_ctx(xhci, virt_dev);
2817 }
2818 
2819 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2820 		struct xhci_container_ctx *in_ctx,
2821 		struct xhci_container_ctx *out_ctx,
2822 		struct xhci_input_control_ctx *ctrl_ctx,
2823 		u32 add_flags, u32 drop_flags)
2824 {
2825 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2826 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2827 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2828 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2829 
2830 	xhci_dbg(xhci, "Input Context:\n");
2831 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2832 }
2833 
2834 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2835 		unsigned int slot_id, unsigned int ep_index,
2836 		struct xhci_dequeue_state *deq_state)
2837 {
2838 	struct xhci_input_control_ctx *ctrl_ctx;
2839 	struct xhci_container_ctx *in_ctx;
2840 	struct xhci_ep_ctx *ep_ctx;
2841 	u32 added_ctxs;
2842 	dma_addr_t addr;
2843 
2844 	in_ctx = xhci->devs[slot_id]->in_ctx;
2845 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2846 	if (!ctrl_ctx) {
2847 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2848 				__func__);
2849 		return;
2850 	}
2851 
2852 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2853 			xhci->devs[slot_id]->out_ctx, ep_index);
2854 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2855 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2856 			deq_state->new_deq_ptr);
2857 	if (addr == 0) {
2858 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2859 				"reset ep command\n");
2860 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2861 				deq_state->new_deq_seg,
2862 				deq_state->new_deq_ptr);
2863 		return;
2864 	}
2865 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2866 
2867 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2868 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2869 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2870 			added_ctxs, added_ctxs);
2871 }
2872 
2873 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2874 			unsigned int ep_index, struct xhci_td *td)
2875 {
2876 	struct xhci_dequeue_state deq_state;
2877 	struct xhci_virt_ep *ep;
2878 	struct usb_device *udev = td->urb->dev;
2879 
2880 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2881 			"Cleaning up stalled endpoint ring");
2882 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2883 	/* We need to move the HW's dequeue pointer past this TD,
2884 	 * or it will attempt to resend it on the next doorbell ring.
2885 	 */
2886 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2887 			ep_index, ep->stopped_stream, td, &deq_state);
2888 
2889 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2890 		return;
2891 
2892 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2893 	 * issue a configure endpoint command later.
2894 	 */
2895 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2896 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2897 				"Queueing new dequeue state");
2898 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2899 				ep_index, ep->stopped_stream, &deq_state);
2900 	} else {
2901 		/* Better hope no one uses the input context between now and the
2902 		 * reset endpoint completion!
2903 		 * XXX: No idea how this hardware will react when stream rings
2904 		 * are enabled.
2905 		 */
2906 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2907 				"Setting up input context for "
2908 				"configure endpoint command");
2909 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2910 				ep_index, &deq_state);
2911 	}
2912 }
2913 
2914 /* Called when clearing halted device. The core should have sent the control
2915  * message to clear the device halt condition. The host side of the halt should
2916  * already be cleared with a reset endpoint command issued when the STALL tx
2917  * event was received.
2918  *
2919  * Context: in_interrupt
2920  */
2921 
2922 void xhci_endpoint_reset(struct usb_hcd *hcd,
2923 		struct usb_host_endpoint *ep)
2924 {
2925 	struct xhci_hcd *xhci;
2926 
2927 	xhci = hcd_to_xhci(hcd);
2928 
2929 	/*
2930 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2931 	 * The Reset Endpoint Command may only be issued to endpoints in the
2932 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2933 	 * Number of an endpoint that isn't in the Halted state, then software
2934 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2935 	 * for the target endpoint. that is in the Stopped state.
2936 	 */
2937 
2938 	/* For now just print debug to follow the situation */
2939 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2940 		 ep->desc.bEndpointAddress);
2941 }
2942 
2943 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2944 		struct usb_device *udev, struct usb_host_endpoint *ep,
2945 		unsigned int slot_id)
2946 {
2947 	int ret;
2948 	unsigned int ep_index;
2949 	unsigned int ep_state;
2950 
2951 	if (!ep)
2952 		return -EINVAL;
2953 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2954 	if (ret <= 0)
2955 		return -EINVAL;
2956 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2957 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2958 				" descriptor for ep 0x%x does not support streams\n",
2959 				ep->desc.bEndpointAddress);
2960 		return -EINVAL;
2961 	}
2962 
2963 	ep_index = xhci_get_endpoint_index(&ep->desc);
2964 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2965 	if (ep_state & EP_HAS_STREAMS ||
2966 			ep_state & EP_GETTING_STREAMS) {
2967 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2968 				"already has streams set up.\n",
2969 				ep->desc.bEndpointAddress);
2970 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2971 				"dynamic stream context array reallocation.\n");
2972 		return -EINVAL;
2973 	}
2974 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2975 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2976 				"endpoint 0x%x; URBs are pending.\n",
2977 				ep->desc.bEndpointAddress);
2978 		return -EINVAL;
2979 	}
2980 	return 0;
2981 }
2982 
2983 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2984 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2985 {
2986 	unsigned int max_streams;
2987 
2988 	/* The stream context array size must be a power of two */
2989 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2990 	/*
2991 	 * Find out how many primary stream array entries the host controller
2992 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2993 	 * level page entries), but that's an optional feature for xHCI host
2994 	 * controllers. xHCs must support at least 4 stream IDs.
2995 	 */
2996 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2997 	if (*num_stream_ctxs > max_streams) {
2998 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2999 				max_streams);
3000 		*num_stream_ctxs = max_streams;
3001 		*num_streams = max_streams;
3002 	}
3003 }
3004 
3005 /* Returns an error code if one of the endpoint already has streams.
3006  * This does not change any data structures, it only checks and gathers
3007  * information.
3008  */
3009 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3010 		struct usb_device *udev,
3011 		struct usb_host_endpoint **eps, unsigned int num_eps,
3012 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3013 {
3014 	unsigned int max_streams;
3015 	unsigned int endpoint_flag;
3016 	int i;
3017 	int ret;
3018 
3019 	for (i = 0; i < num_eps; i++) {
3020 		ret = xhci_check_streams_endpoint(xhci, udev,
3021 				eps[i], udev->slot_id);
3022 		if (ret < 0)
3023 			return ret;
3024 
3025 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3026 		if (max_streams < (*num_streams - 1)) {
3027 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3028 					eps[i]->desc.bEndpointAddress,
3029 					max_streams);
3030 			*num_streams = max_streams+1;
3031 		}
3032 
3033 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3034 		if (*changed_ep_bitmask & endpoint_flag)
3035 			return -EINVAL;
3036 		*changed_ep_bitmask |= endpoint_flag;
3037 	}
3038 	return 0;
3039 }
3040 
3041 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3042 		struct usb_device *udev,
3043 		struct usb_host_endpoint **eps, unsigned int num_eps)
3044 {
3045 	u32 changed_ep_bitmask = 0;
3046 	unsigned int slot_id;
3047 	unsigned int ep_index;
3048 	unsigned int ep_state;
3049 	int i;
3050 
3051 	slot_id = udev->slot_id;
3052 	if (!xhci->devs[slot_id])
3053 		return 0;
3054 
3055 	for (i = 0; i < num_eps; i++) {
3056 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3057 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3058 		/* Are streams already being freed for the endpoint? */
3059 		if (ep_state & EP_GETTING_NO_STREAMS) {
3060 			xhci_warn(xhci, "WARN Can't disable streams for "
3061 					"endpoint 0x%x, "
3062 					"streams are being disabled already\n",
3063 					eps[i]->desc.bEndpointAddress);
3064 			return 0;
3065 		}
3066 		/* Are there actually any streams to free? */
3067 		if (!(ep_state & EP_HAS_STREAMS) &&
3068 				!(ep_state & EP_GETTING_STREAMS)) {
3069 			xhci_warn(xhci, "WARN Can't disable streams for "
3070 					"endpoint 0x%x, "
3071 					"streams are already disabled!\n",
3072 					eps[i]->desc.bEndpointAddress);
3073 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3074 					"with non-streams endpoint\n");
3075 			return 0;
3076 		}
3077 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3078 	}
3079 	return changed_ep_bitmask;
3080 }
3081 
3082 /*
3083  * The USB device drivers use this function (through the HCD interface in USB
3084  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3085  * coordinate mass storage command queueing across multiple endpoints (basically
3086  * a stream ID == a task ID).
3087  *
3088  * Setting up streams involves allocating the same size stream context array
3089  * for each endpoint and issuing a configure endpoint command for all endpoints.
3090  *
3091  * Don't allow the call to succeed if one endpoint only supports one stream
3092  * (which means it doesn't support streams at all).
3093  *
3094  * Drivers may get less stream IDs than they asked for, if the host controller
3095  * hardware or endpoints claim they can't support the number of requested
3096  * stream IDs.
3097  */
3098 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3099 		struct usb_host_endpoint **eps, unsigned int num_eps,
3100 		unsigned int num_streams, gfp_t mem_flags)
3101 {
3102 	int i, ret;
3103 	struct xhci_hcd *xhci;
3104 	struct xhci_virt_device *vdev;
3105 	struct xhci_command *config_cmd;
3106 	struct xhci_input_control_ctx *ctrl_ctx;
3107 	unsigned int ep_index;
3108 	unsigned int num_stream_ctxs;
3109 	unsigned int max_packet;
3110 	unsigned long flags;
3111 	u32 changed_ep_bitmask = 0;
3112 
3113 	if (!eps)
3114 		return -EINVAL;
3115 
3116 	/* Add one to the number of streams requested to account for
3117 	 * stream 0 that is reserved for xHCI usage.
3118 	 */
3119 	num_streams += 1;
3120 	xhci = hcd_to_xhci(hcd);
3121 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3122 			num_streams);
3123 
3124 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3125 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3126 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3127 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3128 		return -ENOSYS;
3129 	}
3130 
3131 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3132 	if (!config_cmd) {
3133 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3134 		return -ENOMEM;
3135 	}
3136 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3137 	if (!ctrl_ctx) {
3138 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3139 				__func__);
3140 		xhci_free_command(xhci, config_cmd);
3141 		return -ENOMEM;
3142 	}
3143 
3144 	/* Check to make sure all endpoints are not already configured for
3145 	 * streams.  While we're at it, find the maximum number of streams that
3146 	 * all the endpoints will support and check for duplicate endpoints.
3147 	 */
3148 	spin_lock_irqsave(&xhci->lock, flags);
3149 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3150 			num_eps, &num_streams, &changed_ep_bitmask);
3151 	if (ret < 0) {
3152 		xhci_free_command(xhci, config_cmd);
3153 		spin_unlock_irqrestore(&xhci->lock, flags);
3154 		return ret;
3155 	}
3156 	if (num_streams <= 1) {
3157 		xhci_warn(xhci, "WARN: endpoints can't handle "
3158 				"more than one stream.\n");
3159 		xhci_free_command(xhci, config_cmd);
3160 		spin_unlock_irqrestore(&xhci->lock, flags);
3161 		return -EINVAL;
3162 	}
3163 	vdev = xhci->devs[udev->slot_id];
3164 	/* Mark each endpoint as being in transition, so
3165 	 * xhci_urb_enqueue() will reject all URBs.
3166 	 */
3167 	for (i = 0; i < num_eps; i++) {
3168 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3169 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3170 	}
3171 	spin_unlock_irqrestore(&xhci->lock, flags);
3172 
3173 	/* Setup internal data structures and allocate HW data structures for
3174 	 * streams (but don't install the HW structures in the input context
3175 	 * until we're sure all memory allocation succeeded).
3176 	 */
3177 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3178 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3179 			num_stream_ctxs, num_streams);
3180 
3181 	for (i = 0; i < num_eps; i++) {
3182 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3183 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3184 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3185 				num_stream_ctxs,
3186 				num_streams,
3187 				max_packet, mem_flags);
3188 		if (!vdev->eps[ep_index].stream_info)
3189 			goto cleanup;
3190 		/* Set maxPstreams in endpoint context and update deq ptr to
3191 		 * point to stream context array. FIXME
3192 		 */
3193 	}
3194 
3195 	/* Set up the input context for a configure endpoint command. */
3196 	for (i = 0; i < num_eps; i++) {
3197 		struct xhci_ep_ctx *ep_ctx;
3198 
3199 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3200 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3201 
3202 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3203 				vdev->out_ctx, ep_index);
3204 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3205 				vdev->eps[ep_index].stream_info);
3206 	}
3207 	/* Tell the HW to drop its old copy of the endpoint context info
3208 	 * and add the updated copy from the input context.
3209 	 */
3210 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3211 			vdev->out_ctx, ctrl_ctx,
3212 			changed_ep_bitmask, changed_ep_bitmask);
3213 
3214 	/* Issue and wait for the configure endpoint command */
3215 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3216 			false, false);
3217 
3218 	/* xHC rejected the configure endpoint command for some reason, so we
3219 	 * leave the old ring intact and free our internal streams data
3220 	 * structure.
3221 	 */
3222 	if (ret < 0)
3223 		goto cleanup;
3224 
3225 	spin_lock_irqsave(&xhci->lock, flags);
3226 	for (i = 0; i < num_eps; i++) {
3227 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3229 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3230 			 udev->slot_id, ep_index);
3231 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3232 	}
3233 	xhci_free_command(xhci, config_cmd);
3234 	spin_unlock_irqrestore(&xhci->lock, flags);
3235 
3236 	/* Subtract 1 for stream 0, which drivers can't use */
3237 	return num_streams - 1;
3238 
3239 cleanup:
3240 	/* If it didn't work, free the streams! */
3241 	for (i = 0; i < num_eps; i++) {
3242 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3243 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3244 		vdev->eps[ep_index].stream_info = NULL;
3245 		/* FIXME Unset maxPstreams in endpoint context and
3246 		 * update deq ptr to point to normal string ring.
3247 		 */
3248 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3249 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3250 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3251 	}
3252 	xhci_free_command(xhci, config_cmd);
3253 	return -ENOMEM;
3254 }
3255 
3256 /* Transition the endpoint from using streams to being a "normal" endpoint
3257  * without streams.
3258  *
3259  * Modify the endpoint context state, submit a configure endpoint command,
3260  * and free all endpoint rings for streams if that completes successfully.
3261  */
3262 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3263 		struct usb_host_endpoint **eps, unsigned int num_eps,
3264 		gfp_t mem_flags)
3265 {
3266 	int i, ret;
3267 	struct xhci_hcd *xhci;
3268 	struct xhci_virt_device *vdev;
3269 	struct xhci_command *command;
3270 	struct xhci_input_control_ctx *ctrl_ctx;
3271 	unsigned int ep_index;
3272 	unsigned long flags;
3273 	u32 changed_ep_bitmask;
3274 
3275 	xhci = hcd_to_xhci(hcd);
3276 	vdev = xhci->devs[udev->slot_id];
3277 
3278 	/* Set up a configure endpoint command to remove the streams rings */
3279 	spin_lock_irqsave(&xhci->lock, flags);
3280 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3281 			udev, eps, num_eps);
3282 	if (changed_ep_bitmask == 0) {
3283 		spin_unlock_irqrestore(&xhci->lock, flags);
3284 		return -EINVAL;
3285 	}
3286 
3287 	/* Use the xhci_command structure from the first endpoint.  We may have
3288 	 * allocated too many, but the driver may call xhci_free_streams() for
3289 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3290 	 */
3291 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3292 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3293 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3294 	if (!ctrl_ctx) {
3295 		spin_unlock_irqrestore(&xhci->lock, flags);
3296 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3297 				__func__);
3298 		return -EINVAL;
3299 	}
3300 
3301 	for (i = 0; i < num_eps; i++) {
3302 		struct xhci_ep_ctx *ep_ctx;
3303 
3304 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3305 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3306 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3307 			EP_GETTING_NO_STREAMS;
3308 
3309 		xhci_endpoint_copy(xhci, command->in_ctx,
3310 				vdev->out_ctx, ep_index);
3311 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3312 				&vdev->eps[ep_index]);
3313 	}
3314 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3315 			vdev->out_ctx, ctrl_ctx,
3316 			changed_ep_bitmask, changed_ep_bitmask);
3317 	spin_unlock_irqrestore(&xhci->lock, flags);
3318 
3319 	/* Issue and wait for the configure endpoint command,
3320 	 * which must succeed.
3321 	 */
3322 	ret = xhci_configure_endpoint(xhci, udev, command,
3323 			false, true);
3324 
3325 	/* xHC rejected the configure endpoint command for some reason, so we
3326 	 * leave the streams rings intact.
3327 	 */
3328 	if (ret < 0)
3329 		return ret;
3330 
3331 	spin_lock_irqsave(&xhci->lock, flags);
3332 	for (i = 0; i < num_eps; i++) {
3333 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3334 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3335 		vdev->eps[ep_index].stream_info = NULL;
3336 		/* FIXME Unset maxPstreams in endpoint context and
3337 		 * update deq ptr to point to normal string ring.
3338 		 */
3339 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3340 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3341 	}
3342 	spin_unlock_irqrestore(&xhci->lock, flags);
3343 
3344 	return 0;
3345 }
3346 
3347 /*
3348  * Deletes endpoint resources for endpoints that were active before a Reset
3349  * Device command, or a Disable Slot command.  The Reset Device command leaves
3350  * the control endpoint intact, whereas the Disable Slot command deletes it.
3351  *
3352  * Must be called with xhci->lock held.
3353  */
3354 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3355 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3356 {
3357 	int i;
3358 	unsigned int num_dropped_eps = 0;
3359 	unsigned int drop_flags = 0;
3360 
3361 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3362 		if (virt_dev->eps[i].ring) {
3363 			drop_flags |= 1 << i;
3364 			num_dropped_eps++;
3365 		}
3366 	}
3367 	xhci->num_active_eps -= num_dropped_eps;
3368 	if (num_dropped_eps)
3369 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3370 				"Dropped %u ep ctxs, flags = 0x%x, "
3371 				"%u now active.",
3372 				num_dropped_eps, drop_flags,
3373 				xhci->num_active_eps);
3374 }
3375 
3376 /*
3377  * This submits a Reset Device Command, which will set the device state to 0,
3378  * set the device address to 0, and disable all the endpoints except the default
3379  * control endpoint.  The USB core should come back and call
3380  * xhci_address_device(), and then re-set up the configuration.  If this is
3381  * called because of a usb_reset_and_verify_device(), then the old alternate
3382  * settings will be re-installed through the normal bandwidth allocation
3383  * functions.
3384  *
3385  * Wait for the Reset Device command to finish.  Remove all structures
3386  * associated with the endpoints that were disabled.  Clear the input device
3387  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3388  *
3389  * If the virt_dev to be reset does not exist or does not match the udev,
3390  * it means the device is lost, possibly due to the xHC restore error and
3391  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3392  * re-allocate the device.
3393  */
3394 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3395 {
3396 	int ret, i;
3397 	unsigned long flags;
3398 	struct xhci_hcd *xhci;
3399 	unsigned int slot_id;
3400 	struct xhci_virt_device *virt_dev;
3401 	struct xhci_command *reset_device_cmd;
3402 	int last_freed_endpoint;
3403 	struct xhci_slot_ctx *slot_ctx;
3404 	int old_active_eps = 0;
3405 
3406 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3407 	if (ret <= 0)
3408 		return ret;
3409 	xhci = hcd_to_xhci(hcd);
3410 	slot_id = udev->slot_id;
3411 	virt_dev = xhci->devs[slot_id];
3412 	if (!virt_dev) {
3413 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3414 				"not exist. Re-allocate the device\n", slot_id);
3415 		ret = xhci_alloc_dev(hcd, udev);
3416 		if (ret == 1)
3417 			return 0;
3418 		else
3419 			return -EINVAL;
3420 	}
3421 
3422 	if (virt_dev->tt_info)
3423 		old_active_eps = virt_dev->tt_info->active_eps;
3424 
3425 	if (virt_dev->udev != udev) {
3426 		/* If the virt_dev and the udev does not match, this virt_dev
3427 		 * may belong to another udev.
3428 		 * Re-allocate the device.
3429 		 */
3430 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3431 				"not match the udev. Re-allocate the device\n",
3432 				slot_id);
3433 		ret = xhci_alloc_dev(hcd, udev);
3434 		if (ret == 1)
3435 			return 0;
3436 		else
3437 			return -EINVAL;
3438 	}
3439 
3440 	/* If device is not setup, there is no point in resetting it */
3441 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3442 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3443 						SLOT_STATE_DISABLED)
3444 		return 0;
3445 
3446 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3447 	/* Allocate the command structure that holds the struct completion.
3448 	 * Assume we're in process context, since the normal device reset
3449 	 * process has to wait for the device anyway.  Storage devices are
3450 	 * reset as part of error handling, so use GFP_NOIO instead of
3451 	 * GFP_KERNEL.
3452 	 */
3453 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3454 	if (!reset_device_cmd) {
3455 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3456 		return -ENOMEM;
3457 	}
3458 
3459 	/* Attempt to submit the Reset Device command to the command ring */
3460 	spin_lock_irqsave(&xhci->lock, flags);
3461 
3462 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3463 	if (ret) {
3464 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3465 		spin_unlock_irqrestore(&xhci->lock, flags);
3466 		goto command_cleanup;
3467 	}
3468 	xhci_ring_cmd_db(xhci);
3469 	spin_unlock_irqrestore(&xhci->lock, flags);
3470 
3471 	/* Wait for the Reset Device command to finish */
3472 	wait_for_completion(reset_device_cmd->completion);
3473 
3474 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3475 	 * unless we tried to reset a slot ID that wasn't enabled,
3476 	 * or the device wasn't in the addressed or configured state.
3477 	 */
3478 	ret = reset_device_cmd->status;
3479 	switch (ret) {
3480 	case COMP_COMMAND_ABORTED:
3481 	case COMP_STOPPED:
3482 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3483 		ret = -ETIME;
3484 		goto command_cleanup;
3485 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3486 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3487 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3488 				slot_id,
3489 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3490 		xhci_dbg(xhci, "Not freeing device rings.\n");
3491 		/* Don't treat this as an error.  May change my mind later. */
3492 		ret = 0;
3493 		goto command_cleanup;
3494 	case COMP_SUCCESS:
3495 		xhci_dbg(xhci, "Successful reset device command.\n");
3496 		break;
3497 	default:
3498 		if (xhci_is_vendor_info_code(xhci, ret))
3499 			break;
3500 		xhci_warn(xhci, "Unknown completion code %u for "
3501 				"reset device command.\n", ret);
3502 		ret = -EINVAL;
3503 		goto command_cleanup;
3504 	}
3505 
3506 	/* Free up host controller endpoint resources */
3507 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3508 		spin_lock_irqsave(&xhci->lock, flags);
3509 		/* Don't delete the default control endpoint resources */
3510 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3511 		spin_unlock_irqrestore(&xhci->lock, flags);
3512 	}
3513 
3514 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3515 	last_freed_endpoint = 1;
3516 	for (i = 1; i < 31; i++) {
3517 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3518 
3519 		if (ep->ep_state & EP_HAS_STREAMS) {
3520 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3521 					xhci_get_endpoint_address(i));
3522 			xhci_free_stream_info(xhci, ep->stream_info);
3523 			ep->stream_info = NULL;
3524 			ep->ep_state &= ~EP_HAS_STREAMS;
3525 		}
3526 
3527 		if (ep->ring) {
3528 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3529 			last_freed_endpoint = i;
3530 		}
3531 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3532 			xhci_drop_ep_from_interval_table(xhci,
3533 					&virt_dev->eps[i].bw_info,
3534 					virt_dev->bw_table,
3535 					udev,
3536 					&virt_dev->eps[i],
3537 					virt_dev->tt_info);
3538 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3539 	}
3540 	/* If necessary, update the number of active TTs on this root port */
3541 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3542 
3543 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3544 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3545 	ret = 0;
3546 
3547 command_cleanup:
3548 	xhci_free_command(xhci, reset_device_cmd);
3549 	return ret;
3550 }
3551 
3552 /*
3553  * At this point, the struct usb_device is about to go away, the device has
3554  * disconnected, and all traffic has been stopped and the endpoints have been
3555  * disabled.  Free any HC data structures associated with that device.
3556  */
3557 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3558 {
3559 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3560 	struct xhci_virt_device *virt_dev;
3561 	unsigned long flags;
3562 	u32 state;
3563 	int i, ret;
3564 	struct xhci_command *command;
3565 
3566 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3567 	if (!command)
3568 		return;
3569 
3570 #ifndef CONFIG_USB_DEFAULT_PERSIST
3571 	/*
3572 	 * We called pm_runtime_get_noresume when the device was attached.
3573 	 * Decrement the counter here to allow controller to runtime suspend
3574 	 * if no devices remain.
3575 	 */
3576 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3577 		pm_runtime_put_noidle(hcd->self.controller);
3578 #endif
3579 
3580 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3581 	/* If the host is halted due to driver unload, we still need to free the
3582 	 * device.
3583 	 */
3584 	if (ret <= 0 && ret != -ENODEV) {
3585 		kfree(command);
3586 		return;
3587 	}
3588 
3589 	virt_dev = xhci->devs[udev->slot_id];
3590 
3591 	/* Stop any wayward timer functions (which may grab the lock) */
3592 	for (i = 0; i < 31; i++) {
3593 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3594 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3595 	}
3596 
3597 	spin_lock_irqsave(&xhci->lock, flags);
3598 	/* Don't disable the slot if the host controller is dead. */
3599 	state = readl(&xhci->op_regs->status);
3600 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3601 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3602 		xhci_free_virt_device(xhci, udev->slot_id);
3603 		spin_unlock_irqrestore(&xhci->lock, flags);
3604 		kfree(command);
3605 		return;
3606 	}
3607 
3608 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3609 				    udev->slot_id)) {
3610 		spin_unlock_irqrestore(&xhci->lock, flags);
3611 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3612 		return;
3613 	}
3614 	xhci_ring_cmd_db(xhci);
3615 	spin_unlock_irqrestore(&xhci->lock, flags);
3616 
3617 	/*
3618 	 * Event command completion handler will free any data structures
3619 	 * associated with the slot.  XXX Can free sleep?
3620 	 */
3621 }
3622 
3623 /*
3624  * Checks if we have enough host controller resources for the default control
3625  * endpoint.
3626  *
3627  * Must be called with xhci->lock held.
3628  */
3629 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3630 {
3631 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3632 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3633 				"Not enough ep ctxs: "
3634 				"%u active, need to add 1, limit is %u.",
3635 				xhci->num_active_eps, xhci->limit_active_eps);
3636 		return -ENOMEM;
3637 	}
3638 	xhci->num_active_eps += 1;
3639 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3640 			"Adding 1 ep ctx, %u now active.",
3641 			xhci->num_active_eps);
3642 	return 0;
3643 }
3644 
3645 
3646 /*
3647  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3648  * timed out, or allocating memory failed.  Returns 1 on success.
3649  */
3650 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3651 {
3652 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3653 	unsigned long flags;
3654 	int ret, slot_id;
3655 	struct xhci_command *command;
3656 
3657 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3658 	if (!command)
3659 		return 0;
3660 
3661 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3662 	mutex_lock(&xhci->mutex);
3663 	spin_lock_irqsave(&xhci->lock, flags);
3664 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3665 	if (ret) {
3666 		spin_unlock_irqrestore(&xhci->lock, flags);
3667 		mutex_unlock(&xhci->mutex);
3668 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3669 		xhci_free_command(xhci, command);
3670 		return 0;
3671 	}
3672 	xhci_ring_cmd_db(xhci);
3673 	spin_unlock_irqrestore(&xhci->lock, flags);
3674 
3675 	wait_for_completion(command->completion);
3676 	slot_id = command->slot_id;
3677 	mutex_unlock(&xhci->mutex);
3678 
3679 	if (!slot_id || command->status != COMP_SUCCESS) {
3680 		xhci_err(xhci, "Error while assigning device slot ID\n");
3681 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3682 				HCS_MAX_SLOTS(
3683 					readl(&xhci->cap_regs->hcs_params1)));
3684 		xhci_free_command(xhci, command);
3685 		return 0;
3686 	}
3687 
3688 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3689 		spin_lock_irqsave(&xhci->lock, flags);
3690 		ret = xhci_reserve_host_control_ep_resources(xhci);
3691 		if (ret) {
3692 			spin_unlock_irqrestore(&xhci->lock, flags);
3693 			xhci_warn(xhci, "Not enough host resources, "
3694 					"active endpoint contexts = %u\n",
3695 					xhci->num_active_eps);
3696 			goto disable_slot;
3697 		}
3698 		spin_unlock_irqrestore(&xhci->lock, flags);
3699 	}
3700 	/* Use GFP_NOIO, since this function can be called from
3701 	 * xhci_discover_or_reset_device(), which may be called as part of
3702 	 * mass storage driver error handling.
3703 	 */
3704 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3705 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3706 		goto disable_slot;
3707 	}
3708 	udev->slot_id = slot_id;
3709 
3710 #ifndef CONFIG_USB_DEFAULT_PERSIST
3711 	/*
3712 	 * If resetting upon resume, we can't put the controller into runtime
3713 	 * suspend if there is a device attached.
3714 	 */
3715 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3716 		pm_runtime_get_noresume(hcd->self.controller);
3717 #endif
3718 
3719 
3720 	xhci_free_command(xhci, command);
3721 	/* Is this a LS or FS device under a HS hub? */
3722 	/* Hub or peripherial? */
3723 	return 1;
3724 
3725 disable_slot:
3726 	/* Disable slot, if we can do it without mem alloc */
3727 	spin_lock_irqsave(&xhci->lock, flags);
3728 	kfree(command->completion);
3729 	command->completion = NULL;
3730 	command->status = 0;
3731 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3732 				     udev->slot_id))
3733 		xhci_ring_cmd_db(xhci);
3734 	spin_unlock_irqrestore(&xhci->lock, flags);
3735 	return 0;
3736 }
3737 
3738 /*
3739  * Issue an Address Device command and optionally send a corresponding
3740  * SetAddress request to the device.
3741  */
3742 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3743 			     enum xhci_setup_dev setup)
3744 {
3745 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3746 	unsigned long flags;
3747 	struct xhci_virt_device *virt_dev;
3748 	int ret = 0;
3749 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3750 	struct xhci_slot_ctx *slot_ctx;
3751 	struct xhci_input_control_ctx *ctrl_ctx;
3752 	u64 temp_64;
3753 	struct xhci_command *command = NULL;
3754 
3755 	mutex_lock(&xhci->mutex);
3756 
3757 	if (xhci->xhc_state) {	/* dying, removing or halted */
3758 		ret = -ESHUTDOWN;
3759 		goto out;
3760 	}
3761 
3762 	if (!udev->slot_id) {
3763 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3764 				"Bad Slot ID %d", udev->slot_id);
3765 		ret = -EINVAL;
3766 		goto out;
3767 	}
3768 
3769 	virt_dev = xhci->devs[udev->slot_id];
3770 
3771 	if (WARN_ON(!virt_dev)) {
3772 		/*
3773 		 * In plug/unplug torture test with an NEC controller,
3774 		 * a zero-dereference was observed once due to virt_dev = 0.
3775 		 * Print useful debug rather than crash if it is observed again!
3776 		 */
3777 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3778 			udev->slot_id);
3779 		ret = -EINVAL;
3780 		goto out;
3781 	}
3782 
3783 	if (setup == SETUP_CONTEXT_ONLY) {
3784 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3785 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3786 		    SLOT_STATE_DEFAULT) {
3787 			xhci_dbg(xhci, "Slot already in default state\n");
3788 			goto out;
3789 		}
3790 	}
3791 
3792 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3793 	if (!command) {
3794 		ret = -ENOMEM;
3795 		goto out;
3796 	}
3797 
3798 	command->in_ctx = virt_dev->in_ctx;
3799 
3800 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3801 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3802 	if (!ctrl_ctx) {
3803 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3804 				__func__);
3805 		ret = -EINVAL;
3806 		goto out;
3807 	}
3808 	/*
3809 	 * If this is the first Set Address since device plug-in or
3810 	 * virt_device realloaction after a resume with an xHCI power loss,
3811 	 * then set up the slot context.
3812 	 */
3813 	if (!slot_ctx->dev_info)
3814 		xhci_setup_addressable_virt_dev(xhci, udev);
3815 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3816 	else
3817 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3818 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3819 	ctrl_ctx->drop_flags = 0;
3820 
3821 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3822 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3823 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3824 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3825 
3826 	spin_lock_irqsave(&xhci->lock, flags);
3827 	trace_xhci_setup_device(virt_dev);
3828 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3829 					udev->slot_id, setup);
3830 	if (ret) {
3831 		spin_unlock_irqrestore(&xhci->lock, flags);
3832 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3833 				"FIXME: allocate a command ring segment");
3834 		goto out;
3835 	}
3836 	xhci_ring_cmd_db(xhci);
3837 	spin_unlock_irqrestore(&xhci->lock, flags);
3838 
3839 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3840 	wait_for_completion(command->completion);
3841 
3842 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3843 	 * the SetAddress() "recovery interval" required by USB and aborting the
3844 	 * command on a timeout.
3845 	 */
3846 	switch (command->status) {
3847 	case COMP_COMMAND_ABORTED:
3848 	case COMP_STOPPED:
3849 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3850 		ret = -ETIME;
3851 		break;
3852 	case COMP_CONTEXT_STATE_ERROR:
3853 	case COMP_SLOT_NOT_ENABLED_ERROR:
3854 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3855 			 act, udev->slot_id);
3856 		ret = -EINVAL;
3857 		break;
3858 	case COMP_USB_TRANSACTION_ERROR:
3859 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3860 		ret = -EPROTO;
3861 		break;
3862 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3863 		dev_warn(&udev->dev,
3864 			 "ERROR: Incompatible device for setup %s command\n", act);
3865 		ret = -ENODEV;
3866 		break;
3867 	case COMP_SUCCESS:
3868 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3869 			       "Successful setup %s command", act);
3870 		break;
3871 	default:
3872 		xhci_err(xhci,
3873 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3874 			 act, command->status);
3875 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3876 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3877 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3878 		ret = -EINVAL;
3879 		break;
3880 	}
3881 	if (ret)
3882 		goto out;
3883 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3884 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3885 			"Op regs DCBAA ptr = %#016llx", temp_64);
3886 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3887 		"Slot ID %d dcbaa entry @%p = %#016llx",
3888 		udev->slot_id,
3889 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3890 		(unsigned long long)
3891 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3892 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893 			"Output Context DMA address = %#08llx",
3894 			(unsigned long long)virt_dev->out_ctx->dma);
3895 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3896 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3897 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3898 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3899 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3900 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3901 	/*
3902 	 * USB core uses address 1 for the roothubs, so we add one to the
3903 	 * address given back to us by the HC.
3904 	 */
3905 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3906 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3907 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3908 	/* Zero the input context control for later use */
3909 	ctrl_ctx->add_flags = 0;
3910 	ctrl_ctx->drop_flags = 0;
3911 
3912 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913 		       "Internal device address = %d",
3914 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3915 out:
3916 	mutex_unlock(&xhci->mutex);
3917 	if (command) {
3918 		kfree(command->completion);
3919 		kfree(command);
3920 	}
3921 	return ret;
3922 }
3923 
3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3925 {
3926 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3927 }
3928 
3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3932 }
3933 
3934 /*
3935  * Transfer the port index into real index in the HW port status
3936  * registers. Caculate offset between the port's PORTSC register
3937  * and port status base. Divide the number of per port register
3938  * to get the real index. The raw port number bases 1.
3939  */
3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3941 {
3942 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3944 	__le32 __iomem *addr;
3945 	int raw_port;
3946 
3947 	if (hcd->speed < HCD_USB3)
3948 		addr = xhci->usb2_ports[port1 - 1];
3949 	else
3950 		addr = xhci->usb3_ports[port1 - 1];
3951 
3952 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3953 	return raw_port;
3954 }
3955 
3956 /*
3957  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3958  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3959  */
3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3961 			struct usb_device *udev, u16 max_exit_latency)
3962 {
3963 	struct xhci_virt_device *virt_dev;
3964 	struct xhci_command *command;
3965 	struct xhci_input_control_ctx *ctrl_ctx;
3966 	struct xhci_slot_ctx *slot_ctx;
3967 	unsigned long flags;
3968 	int ret;
3969 
3970 	spin_lock_irqsave(&xhci->lock, flags);
3971 
3972 	virt_dev = xhci->devs[udev->slot_id];
3973 
3974 	/*
3975 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3976 	 * xHC was re-initialized. Exit latency will be set later after
3977 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3978 	 */
3979 
3980 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3981 		spin_unlock_irqrestore(&xhci->lock, flags);
3982 		return 0;
3983 	}
3984 
3985 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3986 	command = xhci->lpm_command;
3987 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3988 	if (!ctrl_ctx) {
3989 		spin_unlock_irqrestore(&xhci->lock, flags);
3990 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3991 				__func__);
3992 		return -ENOMEM;
3993 	}
3994 
3995 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3996 	spin_unlock_irqrestore(&xhci->lock, flags);
3997 
3998 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3999 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4000 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4001 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4002 	slot_ctx->dev_state = 0;
4003 
4004 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4005 			"Set up evaluate context for LPM MEL change.");
4006 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4007 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4008 
4009 	/* Issue and wait for the evaluate context command. */
4010 	ret = xhci_configure_endpoint(xhci, udev, command,
4011 			true, true);
4012 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4013 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4014 
4015 	if (!ret) {
4016 		spin_lock_irqsave(&xhci->lock, flags);
4017 		virt_dev->current_mel = max_exit_latency;
4018 		spin_unlock_irqrestore(&xhci->lock, flags);
4019 	}
4020 	return ret;
4021 }
4022 
4023 #ifdef CONFIG_PM
4024 
4025 /* BESL to HIRD Encoding array for USB2 LPM */
4026 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4027 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4028 
4029 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4030 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4031 					struct usb_device *udev)
4032 {
4033 	int u2del, besl, besl_host;
4034 	int besl_device = 0;
4035 	u32 field;
4036 
4037 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4038 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4039 
4040 	if (field & USB_BESL_SUPPORT) {
4041 		for (besl_host = 0; besl_host < 16; besl_host++) {
4042 			if (xhci_besl_encoding[besl_host] >= u2del)
4043 				break;
4044 		}
4045 		/* Use baseline BESL value as default */
4046 		if (field & USB_BESL_BASELINE_VALID)
4047 			besl_device = USB_GET_BESL_BASELINE(field);
4048 		else if (field & USB_BESL_DEEP_VALID)
4049 			besl_device = USB_GET_BESL_DEEP(field);
4050 	} else {
4051 		if (u2del <= 50)
4052 			besl_host = 0;
4053 		else
4054 			besl_host = (u2del - 51) / 75 + 1;
4055 	}
4056 
4057 	besl = besl_host + besl_device;
4058 	if (besl > 15)
4059 		besl = 15;
4060 
4061 	return besl;
4062 }
4063 
4064 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4065 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4066 {
4067 	u32 field;
4068 	int l1;
4069 	int besld = 0;
4070 	int hirdm = 0;
4071 
4072 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4073 
4074 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4075 	l1 = udev->l1_params.timeout / 256;
4076 
4077 	/* device has preferred BESLD */
4078 	if (field & USB_BESL_DEEP_VALID) {
4079 		besld = USB_GET_BESL_DEEP(field);
4080 		hirdm = 1;
4081 	}
4082 
4083 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4084 }
4085 
4086 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4087 			struct usb_device *udev, int enable)
4088 {
4089 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4090 	__le32 __iomem	**port_array;
4091 	__le32 __iomem	*pm_addr, *hlpm_addr;
4092 	u32		pm_val, hlpm_val, field;
4093 	unsigned int	port_num;
4094 	unsigned long	flags;
4095 	int		hird, exit_latency;
4096 	int		ret;
4097 
4098 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4099 			!udev->lpm_capable)
4100 		return -EPERM;
4101 
4102 	if (!udev->parent || udev->parent->parent ||
4103 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4104 		return -EPERM;
4105 
4106 	if (udev->usb2_hw_lpm_capable != 1)
4107 		return -EPERM;
4108 
4109 	spin_lock_irqsave(&xhci->lock, flags);
4110 
4111 	port_array = xhci->usb2_ports;
4112 	port_num = udev->portnum - 1;
4113 	pm_addr = port_array[port_num] + PORTPMSC;
4114 	pm_val = readl(pm_addr);
4115 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4116 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4117 
4118 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4119 			enable ? "enable" : "disable", port_num + 1);
4120 
4121 	if (enable) {
4122 		/* Host supports BESL timeout instead of HIRD */
4123 		if (udev->usb2_hw_lpm_besl_capable) {
4124 			/* if device doesn't have a preferred BESL value use a
4125 			 * default one which works with mixed HIRD and BESL
4126 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4127 			 */
4128 			if ((field & USB_BESL_SUPPORT) &&
4129 			    (field & USB_BESL_BASELINE_VALID))
4130 				hird = USB_GET_BESL_BASELINE(field);
4131 			else
4132 				hird = udev->l1_params.besl;
4133 
4134 			exit_latency = xhci_besl_encoding[hird];
4135 			spin_unlock_irqrestore(&xhci->lock, flags);
4136 
4137 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4138 			 * input context for link powermanagement evaluate
4139 			 * context commands. It is protected by hcd->bandwidth
4140 			 * mutex and is shared by all devices. We need to set
4141 			 * the max ext latency in USB 2 BESL LPM as well, so
4142 			 * use the same mutex and xhci_change_max_exit_latency()
4143 			 */
4144 			mutex_lock(hcd->bandwidth_mutex);
4145 			ret = xhci_change_max_exit_latency(xhci, udev,
4146 							   exit_latency);
4147 			mutex_unlock(hcd->bandwidth_mutex);
4148 
4149 			if (ret < 0)
4150 				return ret;
4151 			spin_lock_irqsave(&xhci->lock, flags);
4152 
4153 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4154 			writel(hlpm_val, hlpm_addr);
4155 			/* flush write */
4156 			readl(hlpm_addr);
4157 		} else {
4158 			hird = xhci_calculate_hird_besl(xhci, udev);
4159 		}
4160 
4161 		pm_val &= ~PORT_HIRD_MASK;
4162 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4163 		writel(pm_val, pm_addr);
4164 		pm_val = readl(pm_addr);
4165 		pm_val |= PORT_HLE;
4166 		writel(pm_val, pm_addr);
4167 		/* flush write */
4168 		readl(pm_addr);
4169 	} else {
4170 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4171 		writel(pm_val, pm_addr);
4172 		/* flush write */
4173 		readl(pm_addr);
4174 		if (udev->usb2_hw_lpm_besl_capable) {
4175 			spin_unlock_irqrestore(&xhci->lock, flags);
4176 			mutex_lock(hcd->bandwidth_mutex);
4177 			xhci_change_max_exit_latency(xhci, udev, 0);
4178 			mutex_unlock(hcd->bandwidth_mutex);
4179 			return 0;
4180 		}
4181 	}
4182 
4183 	spin_unlock_irqrestore(&xhci->lock, flags);
4184 	return 0;
4185 }
4186 
4187 /* check if a usb2 port supports a given extened capability protocol
4188  * only USB2 ports extended protocol capability values are cached.
4189  * Return 1 if capability is supported
4190  */
4191 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4192 					   unsigned capability)
4193 {
4194 	u32 port_offset, port_count;
4195 	int i;
4196 
4197 	for (i = 0; i < xhci->num_ext_caps; i++) {
4198 		if (xhci->ext_caps[i] & capability) {
4199 			/* port offsets starts at 1 */
4200 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4201 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4202 			if (port >= port_offset &&
4203 			    port < port_offset + port_count)
4204 				return 1;
4205 		}
4206 	}
4207 	return 0;
4208 }
4209 
4210 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4211 {
4212 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4213 	int		portnum = udev->portnum - 1;
4214 
4215 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4216 			!udev->lpm_capable)
4217 		return 0;
4218 
4219 	/* we only support lpm for non-hub device connected to root hub yet */
4220 	if (!udev->parent || udev->parent->parent ||
4221 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4222 		return 0;
4223 
4224 	if (xhci->hw_lpm_support == 1 &&
4225 			xhci_check_usb2_port_capability(
4226 				xhci, portnum, XHCI_HLC)) {
4227 		udev->usb2_hw_lpm_capable = 1;
4228 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4229 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4230 		if (xhci_check_usb2_port_capability(xhci, portnum,
4231 					XHCI_BLC))
4232 			udev->usb2_hw_lpm_besl_capable = 1;
4233 	}
4234 
4235 	return 0;
4236 }
4237 
4238 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4239 
4240 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4241 static unsigned long long xhci_service_interval_to_ns(
4242 		struct usb_endpoint_descriptor *desc)
4243 {
4244 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4245 }
4246 
4247 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4248 		enum usb3_link_state state)
4249 {
4250 	unsigned long long sel;
4251 	unsigned long long pel;
4252 	unsigned int max_sel_pel;
4253 	char *state_name;
4254 
4255 	switch (state) {
4256 	case USB3_LPM_U1:
4257 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4258 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4259 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4260 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4261 		state_name = "U1";
4262 		break;
4263 	case USB3_LPM_U2:
4264 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4265 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4266 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4267 		state_name = "U2";
4268 		break;
4269 	default:
4270 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4271 				__func__);
4272 		return USB3_LPM_DISABLED;
4273 	}
4274 
4275 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4276 		return USB3_LPM_DEVICE_INITIATED;
4277 
4278 	if (sel > max_sel_pel)
4279 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4280 				"due to long SEL %llu ms\n",
4281 				state_name, sel);
4282 	else
4283 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4284 				"due to long PEL %llu ms\n",
4285 				state_name, pel);
4286 	return USB3_LPM_DISABLED;
4287 }
4288 
4289 /* The U1 timeout should be the maximum of the following values:
4290  *  - For control endpoints, U1 system exit latency (SEL) * 3
4291  *  - For bulk endpoints, U1 SEL * 5
4292  *  - For interrupt endpoints:
4293  *    - Notification EPs, U1 SEL * 3
4294  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4295  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4296  */
4297 static unsigned long long xhci_calculate_intel_u1_timeout(
4298 		struct usb_device *udev,
4299 		struct usb_endpoint_descriptor *desc)
4300 {
4301 	unsigned long long timeout_ns;
4302 	int ep_type;
4303 	int intr_type;
4304 
4305 	ep_type = usb_endpoint_type(desc);
4306 	switch (ep_type) {
4307 	case USB_ENDPOINT_XFER_CONTROL:
4308 		timeout_ns = udev->u1_params.sel * 3;
4309 		break;
4310 	case USB_ENDPOINT_XFER_BULK:
4311 		timeout_ns = udev->u1_params.sel * 5;
4312 		break;
4313 	case USB_ENDPOINT_XFER_INT:
4314 		intr_type = usb_endpoint_interrupt_type(desc);
4315 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4316 			timeout_ns = udev->u1_params.sel * 3;
4317 			break;
4318 		}
4319 		/* Otherwise the calculation is the same as isoc eps */
4320 	case USB_ENDPOINT_XFER_ISOC:
4321 		timeout_ns = xhci_service_interval_to_ns(desc);
4322 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4323 		if (timeout_ns < udev->u1_params.sel * 2)
4324 			timeout_ns = udev->u1_params.sel * 2;
4325 		break;
4326 	default:
4327 		return 0;
4328 	}
4329 
4330 	return timeout_ns;
4331 }
4332 
4333 /* Returns the hub-encoded U1 timeout value. */
4334 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4335 		struct usb_device *udev,
4336 		struct usb_endpoint_descriptor *desc)
4337 {
4338 	unsigned long long timeout_ns;
4339 
4340 	if (xhci->quirks & XHCI_INTEL_HOST)
4341 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4342 	else
4343 		timeout_ns = udev->u1_params.sel;
4344 
4345 	/* The U1 timeout is encoded in 1us intervals.
4346 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4347 	 */
4348 	if (timeout_ns == USB3_LPM_DISABLED)
4349 		timeout_ns = 1;
4350 	else
4351 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4352 
4353 	/* If the necessary timeout value is bigger than what we can set in the
4354 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4355 	 */
4356 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4357 		return timeout_ns;
4358 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4359 			"due to long timeout %llu ms\n", timeout_ns);
4360 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4361 }
4362 
4363 /* The U2 timeout should be the maximum of:
4364  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4365  *  - largest bInterval of any active periodic endpoint (to avoid going
4366  *    into lower power link states between intervals).
4367  *  - the U2 Exit Latency of the device
4368  */
4369 static unsigned long long xhci_calculate_intel_u2_timeout(
4370 		struct usb_device *udev,
4371 		struct usb_endpoint_descriptor *desc)
4372 {
4373 	unsigned long long timeout_ns;
4374 	unsigned long long u2_del_ns;
4375 
4376 	timeout_ns = 10 * 1000 * 1000;
4377 
4378 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4379 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4380 		timeout_ns = xhci_service_interval_to_ns(desc);
4381 
4382 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4383 	if (u2_del_ns > timeout_ns)
4384 		timeout_ns = u2_del_ns;
4385 
4386 	return timeout_ns;
4387 }
4388 
4389 /* Returns the hub-encoded U2 timeout value. */
4390 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4391 		struct usb_device *udev,
4392 		struct usb_endpoint_descriptor *desc)
4393 {
4394 	unsigned long long timeout_ns;
4395 
4396 	if (xhci->quirks & XHCI_INTEL_HOST)
4397 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4398 	else
4399 		timeout_ns = udev->u2_params.sel;
4400 
4401 	/* The U2 timeout is encoded in 256us intervals */
4402 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4403 	/* If the necessary timeout value is bigger than what we can set in the
4404 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4405 	 */
4406 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4407 		return timeout_ns;
4408 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4409 			"due to long timeout %llu ms\n", timeout_ns);
4410 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4411 }
4412 
4413 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4414 		struct usb_device *udev,
4415 		struct usb_endpoint_descriptor *desc,
4416 		enum usb3_link_state state,
4417 		u16 *timeout)
4418 {
4419 	if (state == USB3_LPM_U1)
4420 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4421 	else if (state == USB3_LPM_U2)
4422 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4423 
4424 	return USB3_LPM_DISABLED;
4425 }
4426 
4427 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4428 		struct usb_device *udev,
4429 		struct usb_endpoint_descriptor *desc,
4430 		enum usb3_link_state state,
4431 		u16 *timeout)
4432 {
4433 	u16 alt_timeout;
4434 
4435 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4436 		desc, state, timeout);
4437 
4438 	/* If we found we can't enable hub-initiated LPM, or
4439 	 * the U1 or U2 exit latency was too high to allow
4440 	 * device-initiated LPM as well, just stop searching.
4441 	 */
4442 	if (alt_timeout == USB3_LPM_DISABLED ||
4443 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4444 		*timeout = alt_timeout;
4445 		return -E2BIG;
4446 	}
4447 	if (alt_timeout > *timeout)
4448 		*timeout = alt_timeout;
4449 	return 0;
4450 }
4451 
4452 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4453 		struct usb_device *udev,
4454 		struct usb_host_interface *alt,
4455 		enum usb3_link_state state,
4456 		u16 *timeout)
4457 {
4458 	int j;
4459 
4460 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4461 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4462 					&alt->endpoint[j].desc, state, timeout))
4463 			return -E2BIG;
4464 		continue;
4465 	}
4466 	return 0;
4467 }
4468 
4469 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4470 		enum usb3_link_state state)
4471 {
4472 	struct usb_device *parent;
4473 	unsigned int num_hubs;
4474 
4475 	if (state == USB3_LPM_U2)
4476 		return 0;
4477 
4478 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4479 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4480 			parent = parent->parent)
4481 		num_hubs++;
4482 
4483 	if (num_hubs < 2)
4484 		return 0;
4485 
4486 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4487 			" below second-tier hub.\n");
4488 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4489 			"to decrease power consumption.\n");
4490 	return -E2BIG;
4491 }
4492 
4493 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4494 		struct usb_device *udev,
4495 		enum usb3_link_state state)
4496 {
4497 	if (xhci->quirks & XHCI_INTEL_HOST)
4498 		return xhci_check_intel_tier_policy(udev, state);
4499 	else
4500 		return 0;
4501 }
4502 
4503 /* Returns the U1 or U2 timeout that should be enabled.
4504  * If the tier check or timeout setting functions return with a non-zero exit
4505  * code, that means the timeout value has been finalized and we shouldn't look
4506  * at any more endpoints.
4507  */
4508 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4509 			struct usb_device *udev, enum usb3_link_state state)
4510 {
4511 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4512 	struct usb_host_config *config;
4513 	char *state_name;
4514 	int i;
4515 	u16 timeout = USB3_LPM_DISABLED;
4516 
4517 	if (state == USB3_LPM_U1)
4518 		state_name = "U1";
4519 	else if (state == USB3_LPM_U2)
4520 		state_name = "U2";
4521 	else {
4522 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4523 				state);
4524 		return timeout;
4525 	}
4526 
4527 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4528 		return timeout;
4529 
4530 	/* Gather some information about the currently installed configuration
4531 	 * and alternate interface settings.
4532 	 */
4533 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4534 			state, &timeout))
4535 		return timeout;
4536 
4537 	config = udev->actconfig;
4538 	if (!config)
4539 		return timeout;
4540 
4541 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4542 		struct usb_driver *driver;
4543 		struct usb_interface *intf = config->interface[i];
4544 
4545 		if (!intf)
4546 			continue;
4547 
4548 		/* Check if any currently bound drivers want hub-initiated LPM
4549 		 * disabled.
4550 		 */
4551 		if (intf->dev.driver) {
4552 			driver = to_usb_driver(intf->dev.driver);
4553 			if (driver && driver->disable_hub_initiated_lpm) {
4554 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4555 						"at request of driver %s\n",
4556 						state_name, driver->name);
4557 				return xhci_get_timeout_no_hub_lpm(udev, state);
4558 			}
4559 		}
4560 
4561 		/* Not sure how this could happen... */
4562 		if (!intf->cur_altsetting)
4563 			continue;
4564 
4565 		if (xhci_update_timeout_for_interface(xhci, udev,
4566 					intf->cur_altsetting,
4567 					state, &timeout))
4568 			return timeout;
4569 	}
4570 	return timeout;
4571 }
4572 
4573 static int calculate_max_exit_latency(struct usb_device *udev,
4574 		enum usb3_link_state state_changed,
4575 		u16 hub_encoded_timeout)
4576 {
4577 	unsigned long long u1_mel_us = 0;
4578 	unsigned long long u2_mel_us = 0;
4579 	unsigned long long mel_us = 0;
4580 	bool disabling_u1;
4581 	bool disabling_u2;
4582 	bool enabling_u1;
4583 	bool enabling_u2;
4584 
4585 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4586 			hub_encoded_timeout == USB3_LPM_DISABLED);
4587 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4588 			hub_encoded_timeout == USB3_LPM_DISABLED);
4589 
4590 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4591 			hub_encoded_timeout != USB3_LPM_DISABLED);
4592 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4593 			hub_encoded_timeout != USB3_LPM_DISABLED);
4594 
4595 	/* If U1 was already enabled and we're not disabling it,
4596 	 * or we're going to enable U1, account for the U1 max exit latency.
4597 	 */
4598 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4599 			enabling_u1)
4600 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4601 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4602 			enabling_u2)
4603 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4604 
4605 	if (u1_mel_us > u2_mel_us)
4606 		mel_us = u1_mel_us;
4607 	else
4608 		mel_us = u2_mel_us;
4609 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4610 	if (mel_us > MAX_EXIT) {
4611 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4612 				"is too big.\n", mel_us);
4613 		return -E2BIG;
4614 	}
4615 	return mel_us;
4616 }
4617 
4618 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4619 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4620 			struct usb_device *udev, enum usb3_link_state state)
4621 {
4622 	struct xhci_hcd	*xhci;
4623 	u16 hub_encoded_timeout;
4624 	int mel;
4625 	int ret;
4626 
4627 	xhci = hcd_to_xhci(hcd);
4628 	/* The LPM timeout values are pretty host-controller specific, so don't
4629 	 * enable hub-initiated timeouts unless the vendor has provided
4630 	 * information about their timeout algorithm.
4631 	 */
4632 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4633 			!xhci->devs[udev->slot_id])
4634 		return USB3_LPM_DISABLED;
4635 
4636 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4637 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4638 	if (mel < 0) {
4639 		/* Max Exit Latency is too big, disable LPM. */
4640 		hub_encoded_timeout = USB3_LPM_DISABLED;
4641 		mel = 0;
4642 	}
4643 
4644 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4645 	if (ret)
4646 		return ret;
4647 	return hub_encoded_timeout;
4648 }
4649 
4650 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4651 			struct usb_device *udev, enum usb3_link_state state)
4652 {
4653 	struct xhci_hcd	*xhci;
4654 	u16 mel;
4655 
4656 	xhci = hcd_to_xhci(hcd);
4657 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4658 			!xhci->devs[udev->slot_id])
4659 		return 0;
4660 
4661 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4662 	return xhci_change_max_exit_latency(xhci, udev, mel);
4663 }
4664 #else /* CONFIG_PM */
4665 
4666 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4667 				struct usb_device *udev, int enable)
4668 {
4669 	return 0;
4670 }
4671 
4672 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4673 {
4674 	return 0;
4675 }
4676 
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4678 			struct usb_device *udev, enum usb3_link_state state)
4679 {
4680 	return USB3_LPM_DISABLED;
4681 }
4682 
4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4684 			struct usb_device *udev, enum usb3_link_state state)
4685 {
4686 	return 0;
4687 }
4688 #endif	/* CONFIG_PM */
4689 
4690 /*-------------------------------------------------------------------------*/
4691 
4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4693  * internal data structures for the device.
4694  */
4695 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4696 			struct usb_tt *tt, gfp_t mem_flags)
4697 {
4698 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4699 	struct xhci_virt_device *vdev;
4700 	struct xhci_command *config_cmd;
4701 	struct xhci_input_control_ctx *ctrl_ctx;
4702 	struct xhci_slot_ctx *slot_ctx;
4703 	unsigned long flags;
4704 	unsigned think_time;
4705 	int ret;
4706 
4707 	/* Ignore root hubs */
4708 	if (!hdev->parent)
4709 		return 0;
4710 
4711 	vdev = xhci->devs[hdev->slot_id];
4712 	if (!vdev) {
4713 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4714 		return -EINVAL;
4715 	}
4716 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4717 	if (!config_cmd) {
4718 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4719 		return -ENOMEM;
4720 	}
4721 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4722 	if (!ctrl_ctx) {
4723 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4724 				__func__);
4725 		xhci_free_command(xhci, config_cmd);
4726 		return -ENOMEM;
4727 	}
4728 
4729 	spin_lock_irqsave(&xhci->lock, flags);
4730 	if (hdev->speed == USB_SPEED_HIGH &&
4731 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4732 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4733 		xhci_free_command(xhci, config_cmd);
4734 		spin_unlock_irqrestore(&xhci->lock, flags);
4735 		return -ENOMEM;
4736 	}
4737 
4738 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4739 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4740 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4741 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4742 	/*
4743 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4744 	 * but it may be already set to 1 when setup an xHCI virtual
4745 	 * device, so clear it anyway.
4746 	 */
4747 	if (tt->multi)
4748 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4749 	else if (hdev->speed == USB_SPEED_FULL)
4750 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4751 
4752 	if (xhci->hci_version > 0x95) {
4753 		xhci_dbg(xhci, "xHCI version %x needs hub "
4754 				"TT think time and number of ports\n",
4755 				(unsigned int) xhci->hci_version);
4756 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4757 		/* Set TT think time - convert from ns to FS bit times.
4758 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4759 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4760 		 *
4761 		 * xHCI 1.0: this field shall be 0 if the device is not a
4762 		 * High-spped hub.
4763 		 */
4764 		think_time = tt->think_time;
4765 		if (think_time != 0)
4766 			think_time = (think_time / 666) - 1;
4767 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4768 			slot_ctx->tt_info |=
4769 				cpu_to_le32(TT_THINK_TIME(think_time));
4770 	} else {
4771 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4772 				"TT think time or number of ports\n",
4773 				(unsigned int) xhci->hci_version);
4774 	}
4775 	slot_ctx->dev_state = 0;
4776 	spin_unlock_irqrestore(&xhci->lock, flags);
4777 
4778 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4779 			(xhci->hci_version > 0x95) ?
4780 			"configure endpoint" : "evaluate context");
4781 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4782 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4783 
4784 	/* Issue and wait for the configure endpoint or
4785 	 * evaluate context command.
4786 	 */
4787 	if (xhci->hci_version > 0x95)
4788 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4789 				false, false);
4790 	else
4791 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4792 				true, false);
4793 
4794 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4795 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4796 
4797 	xhci_free_command(xhci, config_cmd);
4798 	return ret;
4799 }
4800 
4801 int xhci_get_frame(struct usb_hcd *hcd)
4802 {
4803 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4804 	/* EHCI mods by the periodic size.  Why? */
4805 	return readl(&xhci->run_regs->microframe_index) >> 3;
4806 }
4807 
4808 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4809 {
4810 	struct xhci_hcd		*xhci;
4811 	struct device		*dev = hcd->self.controller;
4812 	int			retval;
4813 
4814 	/* Accept arbitrarily long scatter-gather lists */
4815 	hcd->self.sg_tablesize = ~0;
4816 
4817 	/* support to build packet from discontinuous buffers */
4818 	hcd->self.no_sg_constraint = 1;
4819 
4820 	/* XHCI controllers don't stop the ep queue on short packets :| */
4821 	hcd->self.no_stop_on_short = 1;
4822 
4823 	xhci = hcd_to_xhci(hcd);
4824 
4825 	if (usb_hcd_is_primary_hcd(hcd)) {
4826 		xhci->main_hcd = hcd;
4827 		/* Mark the first roothub as being USB 2.0.
4828 		 * The xHCI driver will register the USB 3.0 roothub.
4829 		 */
4830 		hcd->speed = HCD_USB2;
4831 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4832 		/*
4833 		 * USB 2.0 roothub under xHCI has an integrated TT,
4834 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4835 		 * companion controller.
4836 		 */
4837 		hcd->has_tt = 1;
4838 	} else {
4839 		if (xhci->sbrn == 0x31) {
4840 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4841 			hcd->speed = HCD_USB31;
4842 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4843 		}
4844 		/* xHCI private pointer was set in xhci_pci_probe for the second
4845 		 * registered roothub.
4846 		 */
4847 		return 0;
4848 	}
4849 
4850 	mutex_init(&xhci->mutex);
4851 	xhci->cap_regs = hcd->regs;
4852 	xhci->op_regs = hcd->regs +
4853 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4854 	xhci->run_regs = hcd->regs +
4855 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4856 	/* Cache read-only capability registers */
4857 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4858 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4859 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4860 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4861 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4862 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4863 	if (xhci->hci_version > 0x100)
4864 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4865 	xhci_print_registers(xhci);
4866 
4867 	xhci->quirks |= quirks;
4868 
4869 	get_quirks(dev, xhci);
4870 
4871 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4872 	 * success event after a short transfer. This quirk will ignore such
4873 	 * spurious event.
4874 	 */
4875 	if (xhci->hci_version > 0x96)
4876 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4877 
4878 	/* Make sure the HC is halted. */
4879 	retval = xhci_halt(xhci);
4880 	if (retval)
4881 		return retval;
4882 
4883 	xhci_dbg(xhci, "Resetting HCD\n");
4884 	/* Reset the internal HC memory state and registers. */
4885 	retval = xhci_reset(xhci);
4886 	if (retval)
4887 		return retval;
4888 	xhci_dbg(xhci, "Reset complete\n");
4889 
4890 	/*
4891 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4892 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4893 	 * address memory pointers actually. So, this driver clears the AC64
4894 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4895 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4896 	 */
4897 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4898 		xhci->hcc_params &= ~BIT(0);
4899 
4900 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4901 	 * if xHC supports 64-bit addressing */
4902 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4903 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4904 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4905 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4906 	} else {
4907 		/*
4908 		 * This is to avoid error in cases where a 32-bit USB
4909 		 * controller is used on a 64-bit capable system.
4910 		 */
4911 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4912 		if (retval)
4913 			return retval;
4914 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4915 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4916 	}
4917 
4918 	xhci_dbg(xhci, "Calling HCD init\n");
4919 	/* Initialize HCD and host controller data structures. */
4920 	retval = xhci_init(hcd);
4921 	if (retval)
4922 		return retval;
4923 	xhci_dbg(xhci, "Called HCD init\n");
4924 
4925 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4926 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4927 
4928 	return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4931 
4932 static const struct hc_driver xhci_hc_driver = {
4933 	.description =		"xhci-hcd",
4934 	.product_desc =		"xHCI Host Controller",
4935 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4936 
4937 	/*
4938 	 * generic hardware linkage
4939 	 */
4940 	.irq =			xhci_irq,
4941 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4942 
4943 	/*
4944 	 * basic lifecycle operations
4945 	 */
4946 	.reset =		NULL, /* set in xhci_init_driver() */
4947 	.start =		xhci_run,
4948 	.stop =			xhci_stop,
4949 	.shutdown =		xhci_shutdown,
4950 
4951 	/*
4952 	 * managing i/o requests and associated device resources
4953 	 */
4954 	.urb_enqueue =		xhci_urb_enqueue,
4955 	.urb_dequeue =		xhci_urb_dequeue,
4956 	.alloc_dev =		xhci_alloc_dev,
4957 	.free_dev =		xhci_free_dev,
4958 	.alloc_streams =	xhci_alloc_streams,
4959 	.free_streams =		xhci_free_streams,
4960 	.add_endpoint =		xhci_add_endpoint,
4961 	.drop_endpoint =	xhci_drop_endpoint,
4962 	.endpoint_reset =	xhci_endpoint_reset,
4963 	.check_bandwidth =	xhci_check_bandwidth,
4964 	.reset_bandwidth =	xhci_reset_bandwidth,
4965 	.address_device =	xhci_address_device,
4966 	.enable_device =	xhci_enable_device,
4967 	.update_hub_device =	xhci_update_hub_device,
4968 	.reset_device =		xhci_discover_or_reset_device,
4969 
4970 	/*
4971 	 * scheduling support
4972 	 */
4973 	.get_frame_number =	xhci_get_frame,
4974 
4975 	/*
4976 	 * root hub support
4977 	 */
4978 	.hub_control =		xhci_hub_control,
4979 	.hub_status_data =	xhci_hub_status_data,
4980 	.bus_suspend =		xhci_bus_suspend,
4981 	.bus_resume =		xhci_bus_resume,
4982 
4983 	/*
4984 	 * call back when device connected and addressed
4985 	 */
4986 	.update_device =        xhci_update_device,
4987 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4988 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4989 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4990 	.find_raw_port_number =	xhci_find_raw_port_number,
4991 };
4992 
4993 void xhci_init_driver(struct hc_driver *drv,
4994 		      const struct xhci_driver_overrides *over)
4995 {
4996 	BUG_ON(!over);
4997 
4998 	/* Copy the generic table to drv then apply the overrides */
4999 	*drv = xhci_hc_driver;
5000 
5001 	if (over) {
5002 		drv->hcd_priv_size += over->extra_priv_size;
5003 		if (over->reset)
5004 			drv->reset = over->reset;
5005 		if (over->start)
5006 			drv->start = over->start;
5007 	}
5008 }
5009 EXPORT_SYMBOL_GPL(xhci_init_driver);
5010 
5011 MODULE_DESCRIPTION(DRIVER_DESC);
5012 MODULE_AUTHOR(DRIVER_AUTHOR);
5013 MODULE_LICENSE("GPL");
5014 
5015 static int __init xhci_hcd_init(void)
5016 {
5017 	/*
5018 	 * Check the compiler generated sizes of structures that must be laid
5019 	 * out in specific ways for hardware access.
5020 	 */
5021 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5022 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5023 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5024 	/* xhci_device_control has eight fields, and also
5025 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5026 	 */
5027 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5028 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5029 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5030 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5031 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5032 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5033 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5034 
5035 	if (usb_disabled())
5036 		return -ENODEV;
5037 
5038 	return 0;
5039 }
5040 
5041 /*
5042  * If an init function is provided, an exit function must also be provided
5043  * to allow module unload.
5044  */
5045 static void __exit xhci_hcd_fini(void) { }
5046 
5047 module_init(xhci_hcd_init);
5048 module_exit(xhci_hcd_fini);
5049