1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 30 #include "xhci.h" 31 32 #define DRIVER_AUTHOR "Sarah Sharp" 33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 34 35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 36 static int link_quirk; 37 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 39 40 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 41 /* 42 * handshake - spin reading hc until handshake completes or fails 43 * @ptr: address of hc register to be read 44 * @mask: bits to look at in result of read 45 * @done: value of those bits when handshake succeeds 46 * @usec: timeout in microseconds 47 * 48 * Returns negative errno, or zero on success 49 * 50 * Success happens when the "mask" bits have the specified value (hardware 51 * handshake done). There are two failure modes: "usec" have passed (major 52 * hardware flakeout), or the register reads as all-ones (hardware removed). 53 */ 54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, 55 u32 mask, u32 done, int usec) 56 { 57 u32 result; 58 59 do { 60 result = xhci_readl(xhci, ptr); 61 if (result == ~(u32)0) /* card removed */ 62 return -ENODEV; 63 result &= mask; 64 if (result == done) 65 return 0; 66 udelay(1); 67 usec--; 68 } while (usec > 0); 69 return -ETIMEDOUT; 70 } 71 72 /* 73 * Disable interrupts and begin the xHCI halting process. 74 */ 75 void xhci_quiesce(struct xhci_hcd *xhci) 76 { 77 u32 halted; 78 u32 cmd; 79 u32 mask; 80 81 mask = ~(XHCI_IRQS); 82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; 83 if (!halted) 84 mask &= ~CMD_RUN; 85 86 cmd = xhci_readl(xhci, &xhci->op_regs->command); 87 cmd &= mask; 88 xhci_writel(xhci, cmd, &xhci->op_regs->command); 89 } 90 91 /* 92 * Force HC into halt state. 93 * 94 * Disable any IRQs and clear the run/stop bit. 95 * HC will complete any current and actively pipelined transactions, and 96 * should halt within 16 microframes of the run/stop bit being cleared. 97 * Read HC Halted bit in the status register to see when the HC is finished. 98 * XXX: shouldn't we set HC_STATE_HALT here somewhere? 99 */ 100 int xhci_halt(struct xhci_hcd *xhci) 101 { 102 xhci_dbg(xhci, "// Halt the HC\n"); 103 xhci_quiesce(xhci); 104 105 return handshake(xhci, &xhci->op_regs->status, 106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 107 } 108 109 /* 110 * Set the run bit and wait for the host to be running. 111 */ 112 int xhci_start(struct xhci_hcd *xhci) 113 { 114 u32 temp; 115 int ret; 116 117 temp = xhci_readl(xhci, &xhci->op_regs->command); 118 temp |= (CMD_RUN); 119 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", 120 temp); 121 xhci_writel(xhci, temp, &xhci->op_regs->command); 122 123 /* 124 * Wait for the HCHalted Status bit to be 0 to indicate the host is 125 * running. 126 */ 127 ret = handshake(xhci, &xhci->op_regs->status, 128 STS_HALT, 0, XHCI_MAX_HALT_USEC); 129 if (ret == -ETIMEDOUT) 130 xhci_err(xhci, "Host took too long to start, " 131 "waited %u microseconds.\n", 132 XHCI_MAX_HALT_USEC); 133 return ret; 134 } 135 136 /* 137 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT. 138 * 139 * This resets pipelines, timers, counters, state machines, etc. 140 * Transactions will be terminated immediately, and operational registers 141 * will be set to their defaults. 142 */ 143 int xhci_reset(struct xhci_hcd *xhci) 144 { 145 u32 command; 146 u32 state; 147 int ret; 148 149 state = xhci_readl(xhci, &xhci->op_regs->status); 150 if ((state & STS_HALT) == 0) { 151 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 152 return 0; 153 } 154 155 xhci_dbg(xhci, "// Reset the HC\n"); 156 command = xhci_readl(xhci, &xhci->op_regs->command); 157 command |= CMD_RESET; 158 xhci_writel(xhci, command, &xhci->op_regs->command); 159 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */ 160 xhci_to_hcd(xhci)->state = HC_STATE_HALT; 161 162 ret = handshake(xhci, &xhci->op_regs->command, 163 CMD_RESET, 0, 250 * 1000); 164 if (ret) 165 return ret; 166 167 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); 168 /* 169 * xHCI cannot write to any doorbells or operational registers other 170 * than status until the "Controller Not Ready" flag is cleared. 171 */ 172 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); 173 } 174 175 /* 176 * Free IRQs 177 * free all IRQs request 178 */ 179 static void xhci_free_irq(struct xhci_hcd *xhci) 180 { 181 int i; 182 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 183 184 /* return if using legacy interrupt */ 185 if (xhci_to_hcd(xhci)->irq >= 0) 186 return; 187 188 if (xhci->msix_entries) { 189 for (i = 0; i < xhci->msix_count; i++) 190 if (xhci->msix_entries[i].vector) 191 free_irq(xhci->msix_entries[i].vector, 192 xhci_to_hcd(xhci)); 193 } else if (pdev->irq >= 0) 194 free_irq(pdev->irq, xhci_to_hcd(xhci)); 195 196 return; 197 } 198 199 /* 200 * Set up MSI 201 */ 202 static int xhci_setup_msi(struct xhci_hcd *xhci) 203 { 204 int ret; 205 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 206 207 ret = pci_enable_msi(pdev); 208 if (ret) { 209 xhci_err(xhci, "failed to allocate MSI entry\n"); 210 return ret; 211 } 212 213 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 214 0, "xhci_hcd", xhci_to_hcd(xhci)); 215 if (ret) { 216 xhci_err(xhci, "disable MSI interrupt\n"); 217 pci_disable_msi(pdev); 218 } 219 220 return ret; 221 } 222 223 /* 224 * Set up MSI-X 225 */ 226 static int xhci_setup_msix(struct xhci_hcd *xhci) 227 { 228 int i, ret = 0; 229 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 230 231 /* 232 * calculate number of msi-x vectors supported. 233 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 234 * with max number of interrupters based on the xhci HCSPARAMS1. 235 * - num_online_cpus: maximum msi-x vectors per CPUs core. 236 * Add additional 1 vector to ensure always available interrupt. 237 */ 238 xhci->msix_count = min(num_online_cpus() + 1, 239 HCS_MAX_INTRS(xhci->hcs_params1)); 240 241 xhci->msix_entries = 242 kmalloc((sizeof(struct msix_entry))*xhci->msix_count, 243 GFP_KERNEL); 244 if (!xhci->msix_entries) { 245 xhci_err(xhci, "Failed to allocate MSI-X entries\n"); 246 return -ENOMEM; 247 } 248 249 for (i = 0; i < xhci->msix_count; i++) { 250 xhci->msix_entries[i].entry = i; 251 xhci->msix_entries[i].vector = 0; 252 } 253 254 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); 255 if (ret) { 256 xhci_err(xhci, "Failed to enable MSI-X\n"); 257 goto free_entries; 258 } 259 260 for (i = 0; i < xhci->msix_count; i++) { 261 ret = request_irq(xhci->msix_entries[i].vector, 262 (irq_handler_t)xhci_msi_irq, 263 0, "xhci_hcd", xhci_to_hcd(xhci)); 264 if (ret) 265 goto disable_msix; 266 } 267 268 return ret; 269 270 disable_msix: 271 xhci_err(xhci, "disable MSI-X interrupt\n"); 272 xhci_free_irq(xhci); 273 pci_disable_msix(pdev); 274 free_entries: 275 kfree(xhci->msix_entries); 276 xhci->msix_entries = NULL; 277 return ret; 278 } 279 280 /* Free any IRQs and disable MSI-X */ 281 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 282 { 283 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 284 285 xhci_free_irq(xhci); 286 287 if (xhci->msix_entries) { 288 pci_disable_msix(pdev); 289 kfree(xhci->msix_entries); 290 xhci->msix_entries = NULL; 291 } else { 292 pci_disable_msi(pdev); 293 } 294 295 return; 296 } 297 298 /* 299 * Initialize memory for HCD and xHC (one-time init). 300 * 301 * Program the PAGESIZE register, initialize the device context array, create 302 * device contexts (?), set up a command ring segment (or two?), create event 303 * ring (one for now). 304 */ 305 int xhci_init(struct usb_hcd *hcd) 306 { 307 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 308 int retval = 0; 309 310 xhci_dbg(xhci, "xhci_init\n"); 311 spin_lock_init(&xhci->lock); 312 if (link_quirk) { 313 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); 314 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 315 } else { 316 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); 317 } 318 retval = xhci_mem_init(xhci, GFP_KERNEL); 319 xhci_dbg(xhci, "Finished xhci_init\n"); 320 321 return retval; 322 } 323 324 /*-------------------------------------------------------------------------*/ 325 326 327 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 328 void xhci_event_ring_work(unsigned long arg) 329 { 330 unsigned long flags; 331 int temp; 332 u64 temp_64; 333 struct xhci_hcd *xhci = (struct xhci_hcd *) arg; 334 int i, j; 335 336 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); 337 338 spin_lock_irqsave(&xhci->lock, flags); 339 temp = xhci_readl(xhci, &xhci->op_regs->status); 340 xhci_dbg(xhci, "op reg status = 0x%x\n", temp); 341 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) { 342 xhci_dbg(xhci, "HW died, polling stopped.\n"); 343 spin_unlock_irqrestore(&xhci->lock, flags); 344 return; 345 } 346 347 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 348 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); 349 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled); 350 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); 351 xhci->error_bitmask = 0; 352 xhci_dbg(xhci, "Event ring:\n"); 353 xhci_debug_segment(xhci, xhci->event_ring->deq_seg); 354 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 355 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 356 temp_64 &= ~ERST_PTR_MASK; 357 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 358 xhci_dbg(xhci, "Command ring:\n"); 359 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); 360 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 361 xhci_dbg_cmd_ptrs(xhci); 362 for (i = 0; i < MAX_HC_SLOTS; ++i) { 363 if (!xhci->devs[i]) 364 continue; 365 for (j = 0; j < 31; ++j) { 366 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); 367 } 368 } 369 370 if (xhci->noops_submitted != NUM_TEST_NOOPS) 371 if (xhci_setup_one_noop(xhci)) 372 xhci_ring_cmd_db(xhci); 373 spin_unlock_irqrestore(&xhci->lock, flags); 374 375 if (!xhci->zombie) 376 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); 377 else 378 xhci_dbg(xhci, "Quit polling the event ring.\n"); 379 } 380 #endif 381 382 /* 383 * Start the HC after it was halted. 384 * 385 * This function is called by the USB core when the HC driver is added. 386 * Its opposite is xhci_stop(). 387 * 388 * xhci_init() must be called once before this function can be called. 389 * Reset the HC, enable device slot contexts, program DCBAAP, and 390 * set command ring pointer and event ring pointer. 391 * 392 * Setup MSI-X vectors and enable interrupts. 393 */ 394 int xhci_run(struct usb_hcd *hcd) 395 { 396 u32 temp; 397 u64 temp_64; 398 u32 ret; 399 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 400 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 401 void (*doorbell)(struct xhci_hcd *) = NULL; 402 403 hcd->uses_new_polling = 1; 404 405 xhci_dbg(xhci, "xhci_run\n"); 406 /* unregister the legacy interrupt */ 407 if (hcd->irq) 408 free_irq(hcd->irq, hcd); 409 hcd->irq = -1; 410 411 ret = xhci_setup_msix(xhci); 412 if (ret) 413 /* fall back to msi*/ 414 ret = xhci_setup_msi(xhci); 415 416 if (ret) { 417 /* fall back to legacy interrupt*/ 418 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 419 hcd->irq_descr, hcd); 420 if (ret) { 421 xhci_err(xhci, "request interrupt %d failed\n", 422 pdev->irq); 423 return ret; 424 } 425 hcd->irq = pdev->irq; 426 } 427 428 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 429 init_timer(&xhci->event_ring_timer); 430 xhci->event_ring_timer.data = (unsigned long) xhci; 431 xhci->event_ring_timer.function = xhci_event_ring_work; 432 /* Poll the event ring */ 433 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; 434 xhci->zombie = 0; 435 xhci_dbg(xhci, "Setting event ring polling timer\n"); 436 add_timer(&xhci->event_ring_timer); 437 #endif 438 439 xhci_dbg(xhci, "Command ring memory map follows:\n"); 440 xhci_debug_ring(xhci, xhci->cmd_ring); 441 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); 442 xhci_dbg_cmd_ptrs(xhci); 443 444 xhci_dbg(xhci, "ERST memory map follows:\n"); 445 xhci_dbg_erst(xhci, &xhci->erst); 446 xhci_dbg(xhci, "Event ring:\n"); 447 xhci_debug_ring(xhci, xhci->event_ring); 448 xhci_dbg_ring_ptrs(xhci, xhci->event_ring); 449 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 450 temp_64 &= ~ERST_PTR_MASK; 451 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); 452 453 xhci_dbg(xhci, "// Set the interrupt modulation register\n"); 454 temp = xhci_readl(xhci, &xhci->ir_set->irq_control); 455 temp &= ~ER_IRQ_INTERVAL_MASK; 456 temp |= (u32) 160; 457 xhci_writel(xhci, temp, &xhci->ir_set->irq_control); 458 459 /* Set the HCD state before we enable the irqs */ 460 hcd->state = HC_STATE_RUNNING; 461 temp = xhci_readl(xhci, &xhci->op_regs->command); 462 temp |= (CMD_EIE); 463 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", 464 temp); 465 xhci_writel(xhci, temp, &xhci->op_regs->command); 466 467 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 468 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", 469 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 470 xhci_writel(xhci, ER_IRQ_ENABLE(temp), 471 &xhci->ir_set->irq_pending); 472 xhci_print_ir_set(xhci, xhci->ir_set, 0); 473 474 if (NUM_TEST_NOOPS > 0) 475 doorbell = xhci_setup_one_noop(xhci); 476 if (xhci->quirks & XHCI_NEC_HOST) 477 xhci_queue_vendor_command(xhci, 0, 0, 0, 478 TRB_TYPE(TRB_NEC_GET_FW)); 479 480 if (xhci_start(xhci)) { 481 xhci_halt(xhci); 482 return -ENODEV; 483 } 484 485 if (doorbell) 486 (*doorbell)(xhci); 487 if (xhci->quirks & XHCI_NEC_HOST) 488 xhci_ring_cmd_db(xhci); 489 490 xhci_dbg(xhci, "Finished xhci_run\n"); 491 return 0; 492 } 493 494 /* 495 * Stop xHCI driver. 496 * 497 * This function is called by the USB core when the HC driver is removed. 498 * Its opposite is xhci_run(). 499 * 500 * Disable device contexts, disable IRQs, and quiesce the HC. 501 * Reset the HC, finish any completed transactions, and cleanup memory. 502 */ 503 void xhci_stop(struct usb_hcd *hcd) 504 { 505 u32 temp; 506 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 507 508 spin_lock_irq(&xhci->lock); 509 xhci_halt(xhci); 510 xhci_reset(xhci); 511 xhci_cleanup_msix(xhci); 512 spin_unlock_irq(&xhci->lock); 513 514 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING 515 /* Tell the event ring poll function not to reschedule */ 516 xhci->zombie = 1; 517 del_timer_sync(&xhci->event_ring_timer); 518 #endif 519 520 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 521 temp = xhci_readl(xhci, &xhci->op_regs->status); 522 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); 523 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); 524 xhci_writel(xhci, ER_IRQ_DISABLE(temp), 525 &xhci->ir_set->irq_pending); 526 xhci_print_ir_set(xhci, xhci->ir_set, 0); 527 528 xhci_dbg(xhci, "cleaning up memory\n"); 529 xhci_mem_cleanup(xhci); 530 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 531 xhci_readl(xhci, &xhci->op_regs->status)); 532 } 533 534 /* 535 * Shutdown HC (not bus-specific) 536 * 537 * This is called when the machine is rebooting or halting. We assume that the 538 * machine will be powered off, and the HC's internal state will be reset. 539 * Don't bother to free memory. 540 */ 541 void xhci_shutdown(struct usb_hcd *hcd) 542 { 543 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 544 545 spin_lock_irq(&xhci->lock); 546 xhci_halt(xhci); 547 xhci_cleanup_msix(xhci); 548 spin_unlock_irq(&xhci->lock); 549 550 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", 551 xhci_readl(xhci, &xhci->op_regs->status)); 552 } 553 554 /*-------------------------------------------------------------------------*/ 555 556 /** 557 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 558 * HCDs. Find the index for an endpoint given its descriptor. Use the return 559 * value to right shift 1 for the bitmask. 560 * 561 * Index = (epnum * 2) + direction - 1, 562 * where direction = 0 for OUT, 1 for IN. 563 * For control endpoints, the IN index is used (OUT index is unused), so 564 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 565 */ 566 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 567 { 568 unsigned int index; 569 if (usb_endpoint_xfer_control(desc)) 570 index = (unsigned int) (usb_endpoint_num(desc)*2); 571 else 572 index = (unsigned int) (usb_endpoint_num(desc)*2) + 573 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 574 return index; 575 } 576 577 /* Find the flag for this endpoint (for use in the control context). Use the 578 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 579 * bit 1, etc. 580 */ 581 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 582 { 583 return 1 << (xhci_get_endpoint_index(desc) + 1); 584 } 585 586 /* Find the flag for this endpoint (for use in the control context). Use the 587 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 588 * bit 1, etc. 589 */ 590 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 591 { 592 return 1 << (ep_index + 1); 593 } 594 595 /* Compute the last valid endpoint context index. Basically, this is the 596 * endpoint index plus one. For slot contexts with more than valid endpoint, 597 * we find the most significant bit set in the added contexts flags. 598 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 599 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 600 */ 601 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 602 { 603 return fls(added_ctxs) - 1; 604 } 605 606 /* Returns 1 if the arguments are OK; 607 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 608 */ 609 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 610 struct usb_host_endpoint *ep, int check_ep, const char *func) { 611 if (!hcd || (check_ep && !ep) || !udev) { 612 printk(KERN_DEBUG "xHCI %s called with invalid args\n", 613 func); 614 return -EINVAL; 615 } 616 if (!udev->parent) { 617 printk(KERN_DEBUG "xHCI %s called for root hub\n", 618 func); 619 return 0; 620 } 621 if (!udev->slot_id) { 622 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n", 623 func); 624 return -EINVAL; 625 } 626 return 1; 627 } 628 629 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 630 struct usb_device *udev, struct xhci_command *command, 631 bool ctx_change, bool must_succeed); 632 633 /* 634 * Full speed devices may have a max packet size greater than 8 bytes, but the 635 * USB core doesn't know that until it reads the first 8 bytes of the 636 * descriptor. If the usb_device's max packet size changes after that point, 637 * we need to issue an evaluate context command and wait on it. 638 */ 639 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 640 unsigned int ep_index, struct urb *urb) 641 { 642 struct xhci_container_ctx *in_ctx; 643 struct xhci_container_ctx *out_ctx; 644 struct xhci_input_control_ctx *ctrl_ctx; 645 struct xhci_ep_ctx *ep_ctx; 646 int max_packet_size; 647 int hw_max_packet_size; 648 int ret = 0; 649 650 out_ctx = xhci->devs[slot_id]->out_ctx; 651 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 652 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2); 653 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize; 654 if (hw_max_packet_size != max_packet_size) { 655 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); 656 xhci_dbg(xhci, "Max packet size in usb_device = %d\n", 657 max_packet_size); 658 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", 659 hw_max_packet_size); 660 xhci_dbg(xhci, "Issuing evaluate context command.\n"); 661 662 /* Set up the modified control endpoint 0 */ 663 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 664 xhci->devs[slot_id]->out_ctx, ep_index); 665 in_ctx = xhci->devs[slot_id]->in_ctx; 666 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 667 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK; 668 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size); 669 670 /* Set up the input context flags for the command */ 671 /* FIXME: This won't work if a non-default control endpoint 672 * changes max packet sizes. 673 */ 674 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 675 ctrl_ctx->add_flags = EP0_FLAG; 676 ctrl_ctx->drop_flags = 0; 677 678 xhci_dbg(xhci, "Slot %d input context\n", slot_id); 679 xhci_dbg_ctx(xhci, in_ctx, ep_index); 680 xhci_dbg(xhci, "Slot %d output context\n", slot_id); 681 xhci_dbg_ctx(xhci, out_ctx, ep_index); 682 683 ret = xhci_configure_endpoint(xhci, urb->dev, NULL, 684 true, false); 685 686 /* Clean up the input context for later use by bandwidth 687 * functions. 688 */ 689 ctrl_ctx->add_flags = SLOT_FLAG; 690 } 691 return ret; 692 } 693 694 /* 695 * non-error returns are a promise to giveback() the urb later 696 * we drop ownership so next owner (or urb unlink) can get it 697 */ 698 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 699 { 700 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 701 unsigned long flags; 702 int ret = 0; 703 unsigned int slot_id, ep_index; 704 struct urb_priv *urb_priv; 705 int size, i; 706 707 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0) 708 return -EINVAL; 709 710 slot_id = urb->dev->slot_id; 711 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 712 713 if (!xhci->devs || !xhci->devs[slot_id]) { 714 if (!in_interrupt()) 715 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n"); 716 ret = -EINVAL; 717 goto exit; 718 } 719 if (!HCD_HW_ACCESSIBLE(hcd)) { 720 if (!in_interrupt()) 721 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 722 ret = -ESHUTDOWN; 723 goto exit; 724 } 725 726 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 727 size = urb->number_of_packets; 728 else 729 size = 1; 730 731 urb_priv = kzalloc(sizeof(struct urb_priv) + 732 size * sizeof(struct xhci_td *), mem_flags); 733 if (!urb_priv) 734 return -ENOMEM; 735 736 for (i = 0; i < size; i++) { 737 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags); 738 if (!urb_priv->td[i]) { 739 urb_priv->length = i; 740 xhci_urb_free_priv(xhci, urb_priv); 741 return -ENOMEM; 742 } 743 } 744 745 urb_priv->length = size; 746 urb_priv->td_cnt = 0; 747 urb->hcpriv = urb_priv; 748 749 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 750 /* Check to see if the max packet size for the default control 751 * endpoint changed during FS device enumeration 752 */ 753 if (urb->dev->speed == USB_SPEED_FULL) { 754 ret = xhci_check_maxpacket(xhci, slot_id, 755 ep_index, urb); 756 if (ret < 0) 757 return ret; 758 } 759 760 /* We have a spinlock and interrupts disabled, so we must pass 761 * atomic context to this function, which may allocate memory. 762 */ 763 spin_lock_irqsave(&xhci->lock, flags); 764 if (xhci->xhc_state & XHCI_STATE_DYING) 765 goto dying; 766 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 767 slot_id, ep_index); 768 spin_unlock_irqrestore(&xhci->lock, flags); 769 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { 770 spin_lock_irqsave(&xhci->lock, flags); 771 if (xhci->xhc_state & XHCI_STATE_DYING) 772 goto dying; 773 if (xhci->devs[slot_id]->eps[ep_index].ep_state & 774 EP_GETTING_STREAMS) { 775 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 776 "is transitioning to using streams.\n"); 777 ret = -EINVAL; 778 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & 779 EP_GETTING_NO_STREAMS) { 780 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " 781 "is transitioning to " 782 "not having streams.\n"); 783 ret = -EINVAL; 784 } else { 785 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 786 slot_id, ep_index); 787 } 788 spin_unlock_irqrestore(&xhci->lock, flags); 789 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { 790 spin_lock_irqsave(&xhci->lock, flags); 791 if (xhci->xhc_state & XHCI_STATE_DYING) 792 goto dying; 793 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 794 slot_id, ep_index); 795 spin_unlock_irqrestore(&xhci->lock, flags); 796 } else { 797 spin_lock_irqsave(&xhci->lock, flags); 798 if (xhci->xhc_state & XHCI_STATE_DYING) 799 goto dying; 800 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 801 slot_id, ep_index); 802 spin_unlock_irqrestore(&xhci->lock, flags); 803 } 804 exit: 805 return ret; 806 dying: 807 xhci_urb_free_priv(xhci, urb_priv); 808 urb->hcpriv = NULL; 809 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " 810 "non-responsive xHCI host.\n", 811 urb->ep->desc.bEndpointAddress, urb); 812 spin_unlock_irqrestore(&xhci->lock, flags); 813 return -ESHUTDOWN; 814 } 815 816 /* Get the right ring for the given URB. 817 * If the endpoint supports streams, boundary check the URB's stream ID. 818 * If the endpoint doesn't support streams, return the singular endpoint ring. 819 */ 820 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, 821 struct urb *urb) 822 { 823 unsigned int slot_id; 824 unsigned int ep_index; 825 unsigned int stream_id; 826 struct xhci_virt_ep *ep; 827 828 slot_id = urb->dev->slot_id; 829 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 830 stream_id = urb->stream_id; 831 ep = &xhci->devs[slot_id]->eps[ep_index]; 832 /* Common case: no streams */ 833 if (!(ep->ep_state & EP_HAS_STREAMS)) 834 return ep->ring; 835 836 if (stream_id == 0) { 837 xhci_warn(xhci, 838 "WARN: Slot ID %u, ep index %u has streams, " 839 "but URB has no stream ID.\n", 840 slot_id, ep_index); 841 return NULL; 842 } 843 844 if (stream_id < ep->stream_info->num_streams) 845 return ep->stream_info->stream_rings[stream_id]; 846 847 xhci_warn(xhci, 848 "WARN: Slot ID %u, ep index %u has " 849 "stream IDs 1 to %u allocated, " 850 "but stream ID %u is requested.\n", 851 slot_id, ep_index, 852 ep->stream_info->num_streams - 1, 853 stream_id); 854 return NULL; 855 } 856 857 /* 858 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 859 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 860 * should pick up where it left off in the TD, unless a Set Transfer Ring 861 * Dequeue Pointer is issued. 862 * 863 * The TRBs that make up the buffers for the canceled URB will be "removed" from 864 * the ring. Since the ring is a contiguous structure, they can't be physically 865 * removed. Instead, there are two options: 866 * 867 * 1) If the HC is in the middle of processing the URB to be canceled, we 868 * simply move the ring's dequeue pointer past those TRBs using the Set 869 * Transfer Ring Dequeue Pointer command. This will be the common case, 870 * when drivers timeout on the last submitted URB and attempt to cancel. 871 * 872 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 873 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 874 * HC will need to invalidate the any TRBs it has cached after the stop 875 * endpoint command, as noted in the xHCI 0.95 errata. 876 * 877 * 3) The TD may have completed by the time the Stop Endpoint Command 878 * completes, so software needs to handle that case too. 879 * 880 * This function should protect against the TD enqueueing code ringing the 881 * doorbell while this code is waiting for a Stop Endpoint command to complete. 882 * It also needs to account for multiple cancellations on happening at the same 883 * time for the same endpoint. 884 * 885 * Note that this function can be called in any context, or so says 886 * usb_hcd_unlink_urb() 887 */ 888 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 889 { 890 unsigned long flags; 891 int ret, i; 892 u32 temp; 893 struct xhci_hcd *xhci; 894 struct urb_priv *urb_priv; 895 struct xhci_td *td; 896 unsigned int ep_index; 897 struct xhci_ring *ep_ring; 898 struct xhci_virt_ep *ep; 899 900 xhci = hcd_to_xhci(hcd); 901 spin_lock_irqsave(&xhci->lock, flags); 902 /* Make sure the URB hasn't completed or been unlinked already */ 903 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 904 if (ret || !urb->hcpriv) 905 goto done; 906 temp = xhci_readl(xhci, &xhci->op_regs->status); 907 if (temp == 0xffffffff) { 908 xhci_dbg(xhci, "HW died, freeing TD.\n"); 909 urb_priv = urb->hcpriv; 910 911 usb_hcd_unlink_urb_from_ep(hcd, urb); 912 spin_unlock_irqrestore(&xhci->lock, flags); 913 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN); 914 xhci_urb_free_priv(xhci, urb_priv); 915 return ret; 916 } 917 if (xhci->xhc_state & XHCI_STATE_DYING) { 918 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " 919 "non-responsive xHCI host.\n", 920 urb->ep->desc.bEndpointAddress, urb); 921 /* Let the stop endpoint command watchdog timer (which set this 922 * state) finish cleaning up the endpoint TD lists. We must 923 * have caught it in the middle of dropping a lock and giving 924 * back an URB. 925 */ 926 goto done; 927 } 928 929 xhci_dbg(xhci, "Cancel URB %p\n", urb); 930 xhci_dbg(xhci, "Event ring:\n"); 931 xhci_debug_ring(xhci, xhci->event_ring); 932 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 933 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; 934 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 935 if (!ep_ring) { 936 ret = -EINVAL; 937 goto done; 938 } 939 940 xhci_dbg(xhci, "Endpoint ring:\n"); 941 xhci_debug_ring(xhci, ep_ring); 942 943 urb_priv = urb->hcpriv; 944 945 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { 946 td = urb_priv->td[i]; 947 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 948 } 949 950 /* Queue a stop endpoint command, but only if this is 951 * the first cancellation to be handled. 952 */ 953 if (!(ep->ep_state & EP_HALT_PENDING)) { 954 ep->ep_state |= EP_HALT_PENDING; 955 ep->stop_cmds_pending++; 956 ep->stop_cmd_timer.expires = jiffies + 957 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 958 add_timer(&ep->stop_cmd_timer); 959 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index); 960 xhci_ring_cmd_db(xhci); 961 } 962 done: 963 spin_unlock_irqrestore(&xhci->lock, flags); 964 return ret; 965 } 966 967 /* Drop an endpoint from a new bandwidth configuration for this device. 968 * Only one call to this function is allowed per endpoint before 969 * check_bandwidth() or reset_bandwidth() must be called. 970 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 971 * add the endpoint to the schedule with possibly new parameters denoted by a 972 * different endpoint descriptor in usb_host_endpoint. 973 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 974 * not allowed. 975 * 976 * The USB core will not allow URBs to be queued to an endpoint that is being 977 * disabled, so there's no need for mutual exclusion to protect 978 * the xhci->devs[slot_id] structure. 979 */ 980 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 981 struct usb_host_endpoint *ep) 982 { 983 struct xhci_hcd *xhci; 984 struct xhci_container_ctx *in_ctx, *out_ctx; 985 struct xhci_input_control_ctx *ctrl_ctx; 986 struct xhci_slot_ctx *slot_ctx; 987 unsigned int last_ctx; 988 unsigned int ep_index; 989 struct xhci_ep_ctx *ep_ctx; 990 u32 drop_flag; 991 u32 new_add_flags, new_drop_flags, new_slot_info; 992 int ret; 993 994 ret = xhci_check_args(hcd, udev, ep, 1, __func__); 995 if (ret <= 0) 996 return ret; 997 xhci = hcd_to_xhci(hcd); 998 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 999 1000 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1001 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1002 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1003 __func__, drop_flag); 1004 return 0; 1005 } 1006 1007 if (!xhci->devs || !xhci->devs[udev->slot_id]) { 1008 xhci_warn(xhci, "xHCI %s called with unaddressed device\n", 1009 __func__); 1010 return -EINVAL; 1011 } 1012 1013 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1014 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1015 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1016 ep_index = xhci_get_endpoint_index(&ep->desc); 1017 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1018 /* If the HC already knows the endpoint is disabled, 1019 * or the HCD has noted it is disabled, ignore this request 1020 */ 1021 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED || 1022 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) { 1023 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1024 __func__, ep); 1025 return 0; 1026 } 1027 1028 ctrl_ctx->drop_flags |= drop_flag; 1029 new_drop_flags = ctrl_ctx->drop_flags; 1030 1031 ctrl_ctx->add_flags &= ~drop_flag; 1032 new_add_flags = ctrl_ctx->add_flags; 1033 1034 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags); 1035 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1036 /* Update the last valid endpoint context, if we deleted the last one */ 1037 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { 1038 slot_ctx->dev_info &= ~LAST_CTX_MASK; 1039 slot_ctx->dev_info |= LAST_CTX(last_ctx); 1040 } 1041 new_slot_info = slot_ctx->dev_info; 1042 1043 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1044 1045 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1046 (unsigned int) ep->desc.bEndpointAddress, 1047 udev->slot_id, 1048 (unsigned int) new_drop_flags, 1049 (unsigned int) new_add_flags, 1050 (unsigned int) new_slot_info); 1051 return 0; 1052 } 1053 1054 /* Add an endpoint to a new possible bandwidth configuration for this device. 1055 * Only one call to this function is allowed per endpoint before 1056 * check_bandwidth() or reset_bandwidth() must be called. 1057 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1058 * add the endpoint to the schedule with possibly new parameters denoted by a 1059 * different endpoint descriptor in usb_host_endpoint. 1060 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1061 * not allowed. 1062 * 1063 * The USB core will not allow URBs to be queued to an endpoint until the 1064 * configuration or alt setting is installed in the device, so there's no need 1065 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1066 */ 1067 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1068 struct usb_host_endpoint *ep) 1069 { 1070 struct xhci_hcd *xhci; 1071 struct xhci_container_ctx *in_ctx, *out_ctx; 1072 unsigned int ep_index; 1073 struct xhci_ep_ctx *ep_ctx; 1074 struct xhci_slot_ctx *slot_ctx; 1075 struct xhci_input_control_ctx *ctrl_ctx; 1076 u32 added_ctxs; 1077 unsigned int last_ctx; 1078 u32 new_add_flags, new_drop_flags, new_slot_info; 1079 int ret = 0; 1080 1081 ret = xhci_check_args(hcd, udev, ep, 1, __func__); 1082 if (ret <= 0) { 1083 /* So we won't queue a reset ep command for a root hub */ 1084 ep->hcpriv = NULL; 1085 return ret; 1086 } 1087 xhci = hcd_to_xhci(hcd); 1088 1089 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1090 last_ctx = xhci_last_valid_endpoint(added_ctxs); 1091 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1092 /* FIXME when we have to issue an evaluate endpoint command to 1093 * deal with ep0 max packet size changing once we get the 1094 * descriptors 1095 */ 1096 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1097 __func__, added_ctxs); 1098 return 0; 1099 } 1100 1101 if (!xhci->devs || !xhci->devs[udev->slot_id]) { 1102 xhci_warn(xhci, "xHCI %s called with unaddressed device\n", 1103 __func__); 1104 return -EINVAL; 1105 } 1106 1107 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1108 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1109 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1110 ep_index = xhci_get_endpoint_index(&ep->desc); 1111 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1112 /* If the HCD has already noted the endpoint is enabled, 1113 * ignore this request. 1114 */ 1115 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) { 1116 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1117 __func__, ep); 1118 return 0; 1119 } 1120 1121 /* 1122 * Configuration and alternate setting changes must be done in 1123 * process context, not interrupt context (or so documenation 1124 * for usb_set_interface() and usb_set_configuration() claim). 1125 */ 1126 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id], 1127 udev, ep, GFP_NOIO) < 0) { 1128 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1129 __func__, ep->desc.bEndpointAddress); 1130 return -ENOMEM; 1131 } 1132 1133 ctrl_ctx->add_flags |= added_ctxs; 1134 new_add_flags = ctrl_ctx->add_flags; 1135 1136 /* If xhci_endpoint_disable() was called for this endpoint, but the 1137 * xHC hasn't been notified yet through the check_bandwidth() call, 1138 * this re-adds a new state for the endpoint from the new endpoint 1139 * descriptors. We must drop and re-add this endpoint, so we leave the 1140 * drop flags alone. 1141 */ 1142 new_drop_flags = ctrl_ctx->drop_flags; 1143 1144 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1145 /* Update the last valid endpoint context, if we just added one past */ 1146 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { 1147 slot_ctx->dev_info &= ~LAST_CTX_MASK; 1148 slot_ctx->dev_info |= LAST_CTX(last_ctx); 1149 } 1150 new_slot_info = slot_ctx->dev_info; 1151 1152 /* Store the usb_device pointer for later use */ 1153 ep->hcpriv = udev; 1154 1155 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", 1156 (unsigned int) ep->desc.bEndpointAddress, 1157 udev->slot_id, 1158 (unsigned int) new_drop_flags, 1159 (unsigned int) new_add_flags, 1160 (unsigned int) new_slot_info); 1161 return 0; 1162 } 1163 1164 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1165 { 1166 struct xhci_input_control_ctx *ctrl_ctx; 1167 struct xhci_ep_ctx *ep_ctx; 1168 struct xhci_slot_ctx *slot_ctx; 1169 int i; 1170 1171 /* When a device's add flag and drop flag are zero, any subsequent 1172 * configure endpoint command will leave that endpoint's state 1173 * untouched. Make sure we don't leave any old state in the input 1174 * endpoint contexts. 1175 */ 1176 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1177 ctrl_ctx->drop_flags = 0; 1178 ctrl_ctx->add_flags = 0; 1179 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1180 slot_ctx->dev_info &= ~LAST_CTX_MASK; 1181 /* Endpoint 0 is always valid */ 1182 slot_ctx->dev_info |= LAST_CTX(1); 1183 for (i = 1; i < 31; ++i) { 1184 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1185 ep_ctx->ep_info = 0; 1186 ep_ctx->ep_info2 = 0; 1187 ep_ctx->deq = 0; 1188 ep_ctx->tx_info = 0; 1189 } 1190 } 1191 1192 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1193 struct usb_device *udev, int *cmd_status) 1194 { 1195 int ret; 1196 1197 switch (*cmd_status) { 1198 case COMP_ENOMEM: 1199 dev_warn(&udev->dev, "Not enough host controller resources " 1200 "for new device state.\n"); 1201 ret = -ENOMEM; 1202 /* FIXME: can we allocate more resources for the HC? */ 1203 break; 1204 case COMP_BW_ERR: 1205 dev_warn(&udev->dev, "Not enough bandwidth " 1206 "for new device state.\n"); 1207 ret = -ENOSPC; 1208 /* FIXME: can we go back to the old state? */ 1209 break; 1210 case COMP_TRB_ERR: 1211 /* the HCD set up something wrong */ 1212 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1213 "add flag = 1, " 1214 "and endpoint is not disabled.\n"); 1215 ret = -EINVAL; 1216 break; 1217 case COMP_SUCCESS: 1218 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); 1219 ret = 0; 1220 break; 1221 default: 1222 xhci_err(xhci, "ERROR: unexpected command completion " 1223 "code 0x%x.\n", *cmd_status); 1224 ret = -EINVAL; 1225 break; 1226 } 1227 return ret; 1228 } 1229 1230 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1231 struct usb_device *udev, int *cmd_status) 1232 { 1233 int ret; 1234 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; 1235 1236 switch (*cmd_status) { 1237 case COMP_EINVAL: 1238 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " 1239 "context command.\n"); 1240 ret = -EINVAL; 1241 break; 1242 case COMP_EBADSLT: 1243 dev_warn(&udev->dev, "WARN: slot not enabled for" 1244 "evaluate context command.\n"); 1245 case COMP_CTX_STATE: 1246 dev_warn(&udev->dev, "WARN: invalid context state for " 1247 "evaluate context command.\n"); 1248 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); 1249 ret = -EINVAL; 1250 break; 1251 case COMP_SUCCESS: 1252 dev_dbg(&udev->dev, "Successful evaluate context command\n"); 1253 ret = 0; 1254 break; 1255 default: 1256 xhci_err(xhci, "ERROR: unexpected command completion " 1257 "code 0x%x.\n", *cmd_status); 1258 ret = -EINVAL; 1259 break; 1260 } 1261 return ret; 1262 } 1263 1264 /* Issue a configure endpoint command or evaluate context command 1265 * and wait for it to finish. 1266 */ 1267 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1268 struct usb_device *udev, 1269 struct xhci_command *command, 1270 bool ctx_change, bool must_succeed) 1271 { 1272 int ret; 1273 int timeleft; 1274 unsigned long flags; 1275 struct xhci_container_ctx *in_ctx; 1276 struct completion *cmd_completion; 1277 int *cmd_status; 1278 struct xhci_virt_device *virt_dev; 1279 1280 spin_lock_irqsave(&xhci->lock, flags); 1281 virt_dev = xhci->devs[udev->slot_id]; 1282 if (command) { 1283 in_ctx = command->in_ctx; 1284 cmd_completion = command->completion; 1285 cmd_status = &command->status; 1286 command->command_trb = xhci->cmd_ring->enqueue; 1287 list_add_tail(&command->cmd_list, &virt_dev->cmd_list); 1288 } else { 1289 in_ctx = virt_dev->in_ctx; 1290 cmd_completion = &virt_dev->cmd_completion; 1291 cmd_status = &virt_dev->cmd_status; 1292 } 1293 init_completion(cmd_completion); 1294 1295 if (!ctx_change) 1296 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, 1297 udev->slot_id, must_succeed); 1298 else 1299 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, 1300 udev->slot_id); 1301 if (ret < 0) { 1302 if (command) 1303 list_del(&command->cmd_list); 1304 spin_unlock_irqrestore(&xhci->lock, flags); 1305 xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); 1306 return -ENOMEM; 1307 } 1308 xhci_ring_cmd_db(xhci); 1309 spin_unlock_irqrestore(&xhci->lock, flags); 1310 1311 /* Wait for the configure endpoint command to complete */ 1312 timeleft = wait_for_completion_interruptible_timeout( 1313 cmd_completion, 1314 USB_CTRL_SET_TIMEOUT); 1315 if (timeleft <= 0) { 1316 xhci_warn(xhci, "%s while waiting for %s command\n", 1317 timeleft == 0 ? "Timeout" : "Signal", 1318 ctx_change == 0 ? 1319 "configure endpoint" : 1320 "evaluate context"); 1321 /* FIXME cancel the configure endpoint command */ 1322 return -ETIME; 1323 } 1324 1325 if (!ctx_change) 1326 return xhci_configure_endpoint_result(xhci, udev, cmd_status); 1327 return xhci_evaluate_context_result(xhci, udev, cmd_status); 1328 } 1329 1330 /* Called after one or more calls to xhci_add_endpoint() or 1331 * xhci_drop_endpoint(). If this call fails, the USB core is expected 1332 * to call xhci_reset_bandwidth(). 1333 * 1334 * Since we are in the middle of changing either configuration or 1335 * installing a new alt setting, the USB core won't allow URBs to be 1336 * enqueued for any endpoint on the old config or interface. Nothing 1337 * else should be touching the xhci->devs[slot_id] structure, so we 1338 * don't need to take the xhci->lock for manipulating that. 1339 */ 1340 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 1341 { 1342 int i; 1343 int ret = 0; 1344 struct xhci_hcd *xhci; 1345 struct xhci_virt_device *virt_dev; 1346 struct xhci_input_control_ctx *ctrl_ctx; 1347 struct xhci_slot_ctx *slot_ctx; 1348 1349 ret = xhci_check_args(hcd, udev, NULL, 0, __func__); 1350 if (ret <= 0) 1351 return ret; 1352 xhci = hcd_to_xhci(hcd); 1353 1354 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) { 1355 xhci_warn(xhci, "xHCI %s called with unaddressed device\n", 1356 __func__); 1357 return -EINVAL; 1358 } 1359 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1360 virt_dev = xhci->devs[udev->slot_id]; 1361 1362 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 1363 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 1364 ctrl_ctx->add_flags |= SLOT_FLAG; 1365 ctrl_ctx->add_flags &= ~EP0_FLAG; 1366 ctrl_ctx->drop_flags &= ~SLOT_FLAG; 1367 ctrl_ctx->drop_flags &= ~EP0_FLAG; 1368 xhci_dbg(xhci, "New Input Control Context:\n"); 1369 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1370 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 1371 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); 1372 1373 ret = xhci_configure_endpoint(xhci, udev, NULL, 1374 false, false); 1375 if (ret) { 1376 /* Callee should call reset_bandwidth() */ 1377 return ret; 1378 } 1379 1380 xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); 1381 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1382 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); 1383 1384 xhci_zero_in_ctx(xhci, virt_dev); 1385 /* Install new rings and free or cache any old rings */ 1386 for (i = 1; i < 31; ++i) { 1387 if (!virt_dev->eps[i].new_ring) 1388 continue; 1389 /* Only cache or free the old ring if it exists. 1390 * It may not if this is the first add of an endpoint. 1391 */ 1392 if (virt_dev->eps[i].ring) { 1393 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 1394 } 1395 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 1396 virt_dev->eps[i].new_ring = NULL; 1397 } 1398 1399 return ret; 1400 } 1401 1402 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 1403 { 1404 struct xhci_hcd *xhci; 1405 struct xhci_virt_device *virt_dev; 1406 int i, ret; 1407 1408 ret = xhci_check_args(hcd, udev, NULL, 0, __func__); 1409 if (ret <= 0) 1410 return; 1411 xhci = hcd_to_xhci(hcd); 1412 1413 if (!xhci->devs || !xhci->devs[udev->slot_id]) { 1414 xhci_warn(xhci, "xHCI %s called with unaddressed device\n", 1415 __func__); 1416 return; 1417 } 1418 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1419 virt_dev = xhci->devs[udev->slot_id]; 1420 /* Free any rings allocated for added endpoints */ 1421 for (i = 0; i < 31; ++i) { 1422 if (virt_dev->eps[i].new_ring) { 1423 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 1424 virt_dev->eps[i].new_ring = NULL; 1425 } 1426 } 1427 xhci_zero_in_ctx(xhci, virt_dev); 1428 } 1429 1430 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 1431 struct xhci_container_ctx *in_ctx, 1432 struct xhci_container_ctx *out_ctx, 1433 u32 add_flags, u32 drop_flags) 1434 { 1435 struct xhci_input_control_ctx *ctrl_ctx; 1436 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); 1437 ctrl_ctx->add_flags = add_flags; 1438 ctrl_ctx->drop_flags = drop_flags; 1439 xhci_slot_copy(xhci, in_ctx, out_ctx); 1440 ctrl_ctx->add_flags |= SLOT_FLAG; 1441 1442 xhci_dbg(xhci, "Input Context:\n"); 1443 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); 1444 } 1445 1446 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 1447 unsigned int slot_id, unsigned int ep_index, 1448 struct xhci_dequeue_state *deq_state) 1449 { 1450 struct xhci_container_ctx *in_ctx; 1451 struct xhci_ep_ctx *ep_ctx; 1452 u32 added_ctxs; 1453 dma_addr_t addr; 1454 1455 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1456 xhci->devs[slot_id]->out_ctx, ep_index); 1457 in_ctx = xhci->devs[slot_id]->in_ctx; 1458 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1459 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 1460 deq_state->new_deq_ptr); 1461 if (addr == 0) { 1462 xhci_warn(xhci, "WARN Cannot submit config ep after " 1463 "reset ep command\n"); 1464 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 1465 deq_state->new_deq_seg, 1466 deq_state->new_deq_ptr); 1467 return; 1468 } 1469 ep_ctx->deq = addr | deq_state->new_cycle_state; 1470 1471 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 1472 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 1473 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); 1474 } 1475 1476 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, 1477 struct usb_device *udev, unsigned int ep_index) 1478 { 1479 struct xhci_dequeue_state deq_state; 1480 struct xhci_virt_ep *ep; 1481 1482 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); 1483 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 1484 /* We need to move the HW's dequeue pointer past this TD, 1485 * or it will attempt to resend it on the next doorbell ring. 1486 */ 1487 xhci_find_new_dequeue_state(xhci, udev->slot_id, 1488 ep_index, ep->stopped_stream, ep->stopped_td, 1489 &deq_state); 1490 1491 /* HW with the reset endpoint quirk will use the saved dequeue state to 1492 * issue a configure endpoint command later. 1493 */ 1494 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 1495 xhci_dbg(xhci, "Queueing new dequeue state\n"); 1496 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 1497 ep_index, ep->stopped_stream, &deq_state); 1498 } else { 1499 /* Better hope no one uses the input context between now and the 1500 * reset endpoint completion! 1501 * XXX: No idea how this hardware will react when stream rings 1502 * are enabled. 1503 */ 1504 xhci_dbg(xhci, "Setting up input context for " 1505 "configure endpoint command\n"); 1506 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 1507 ep_index, &deq_state); 1508 } 1509 } 1510 1511 /* Deal with stalled endpoints. The core should have sent the control message 1512 * to clear the halt condition. However, we need to make the xHCI hardware 1513 * reset its sequence number, since a device will expect a sequence number of 1514 * zero after the halt condition is cleared. 1515 * Context: in_interrupt 1516 */ 1517 void xhci_endpoint_reset(struct usb_hcd *hcd, 1518 struct usb_host_endpoint *ep) 1519 { 1520 struct xhci_hcd *xhci; 1521 struct usb_device *udev; 1522 unsigned int ep_index; 1523 unsigned long flags; 1524 int ret; 1525 struct xhci_virt_ep *virt_ep; 1526 1527 xhci = hcd_to_xhci(hcd); 1528 udev = (struct usb_device *) ep->hcpriv; 1529 /* Called with a root hub endpoint (or an endpoint that wasn't added 1530 * with xhci_add_endpoint() 1531 */ 1532 if (!ep->hcpriv) 1533 return; 1534 ep_index = xhci_get_endpoint_index(&ep->desc); 1535 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 1536 if (!virt_ep->stopped_td) { 1537 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", 1538 ep->desc.bEndpointAddress); 1539 return; 1540 } 1541 if (usb_endpoint_xfer_control(&ep->desc)) { 1542 xhci_dbg(xhci, "Control endpoint stall already handled.\n"); 1543 return; 1544 } 1545 1546 xhci_dbg(xhci, "Queueing reset endpoint command\n"); 1547 spin_lock_irqsave(&xhci->lock, flags); 1548 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); 1549 /* 1550 * Can't change the ring dequeue pointer until it's transitioned to the 1551 * stopped state, which is only upon a successful reset endpoint 1552 * command. Better hope that last command worked! 1553 */ 1554 if (!ret) { 1555 xhci_cleanup_stalled_ring(xhci, udev, ep_index); 1556 kfree(virt_ep->stopped_td); 1557 xhci_ring_cmd_db(xhci); 1558 } 1559 virt_ep->stopped_td = NULL; 1560 virt_ep->stopped_trb = NULL; 1561 virt_ep->stopped_stream = 0; 1562 spin_unlock_irqrestore(&xhci->lock, flags); 1563 1564 if (ret) 1565 xhci_warn(xhci, "FIXME allocate a new ring segment\n"); 1566 } 1567 1568 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 1569 struct usb_device *udev, struct usb_host_endpoint *ep, 1570 unsigned int slot_id) 1571 { 1572 int ret; 1573 unsigned int ep_index; 1574 unsigned int ep_state; 1575 1576 if (!ep) 1577 return -EINVAL; 1578 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, __func__); 1579 if (ret <= 0) 1580 return -EINVAL; 1581 if (ep->ss_ep_comp.bmAttributes == 0) { 1582 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 1583 " descriptor for ep 0x%x does not support streams\n", 1584 ep->desc.bEndpointAddress); 1585 return -EINVAL; 1586 } 1587 1588 ep_index = xhci_get_endpoint_index(&ep->desc); 1589 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1590 if (ep_state & EP_HAS_STREAMS || 1591 ep_state & EP_GETTING_STREAMS) { 1592 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 1593 "already has streams set up.\n", 1594 ep->desc.bEndpointAddress); 1595 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 1596 "dynamic stream context array reallocation.\n"); 1597 return -EINVAL; 1598 } 1599 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 1600 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 1601 "endpoint 0x%x; URBs are pending.\n", 1602 ep->desc.bEndpointAddress); 1603 return -EINVAL; 1604 } 1605 return 0; 1606 } 1607 1608 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 1609 unsigned int *num_streams, unsigned int *num_stream_ctxs) 1610 { 1611 unsigned int max_streams; 1612 1613 /* The stream context array size must be a power of two */ 1614 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 1615 /* 1616 * Find out how many primary stream array entries the host controller 1617 * supports. Later we may use secondary stream arrays (similar to 2nd 1618 * level page entries), but that's an optional feature for xHCI host 1619 * controllers. xHCs must support at least 4 stream IDs. 1620 */ 1621 max_streams = HCC_MAX_PSA(xhci->hcc_params); 1622 if (*num_stream_ctxs > max_streams) { 1623 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 1624 max_streams); 1625 *num_stream_ctxs = max_streams; 1626 *num_streams = max_streams; 1627 } 1628 } 1629 1630 /* Returns an error code if one of the endpoint already has streams. 1631 * This does not change any data structures, it only checks and gathers 1632 * information. 1633 */ 1634 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 1635 struct usb_device *udev, 1636 struct usb_host_endpoint **eps, unsigned int num_eps, 1637 unsigned int *num_streams, u32 *changed_ep_bitmask) 1638 { 1639 unsigned int max_streams; 1640 unsigned int endpoint_flag; 1641 int i; 1642 int ret; 1643 1644 for (i = 0; i < num_eps; i++) { 1645 ret = xhci_check_streams_endpoint(xhci, udev, 1646 eps[i], udev->slot_id); 1647 if (ret < 0) 1648 return ret; 1649 1650 max_streams = USB_SS_MAX_STREAMS( 1651 eps[i]->ss_ep_comp.bmAttributes); 1652 if (max_streams < (*num_streams - 1)) { 1653 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 1654 eps[i]->desc.bEndpointAddress, 1655 max_streams); 1656 *num_streams = max_streams+1; 1657 } 1658 1659 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 1660 if (*changed_ep_bitmask & endpoint_flag) 1661 return -EINVAL; 1662 *changed_ep_bitmask |= endpoint_flag; 1663 } 1664 return 0; 1665 } 1666 1667 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 1668 struct usb_device *udev, 1669 struct usb_host_endpoint **eps, unsigned int num_eps) 1670 { 1671 u32 changed_ep_bitmask = 0; 1672 unsigned int slot_id; 1673 unsigned int ep_index; 1674 unsigned int ep_state; 1675 int i; 1676 1677 slot_id = udev->slot_id; 1678 if (!xhci->devs[slot_id]) 1679 return 0; 1680 1681 for (i = 0; i < num_eps; i++) { 1682 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1683 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1684 /* Are streams already being freed for the endpoint? */ 1685 if (ep_state & EP_GETTING_NO_STREAMS) { 1686 xhci_warn(xhci, "WARN Can't disable streams for " 1687 "endpoint 0x%x\n, " 1688 "streams are being disabled already.", 1689 eps[i]->desc.bEndpointAddress); 1690 return 0; 1691 } 1692 /* Are there actually any streams to free? */ 1693 if (!(ep_state & EP_HAS_STREAMS) && 1694 !(ep_state & EP_GETTING_STREAMS)) { 1695 xhci_warn(xhci, "WARN Can't disable streams for " 1696 "endpoint 0x%x\n, " 1697 "streams are already disabled!", 1698 eps[i]->desc.bEndpointAddress); 1699 xhci_warn(xhci, "WARN xhci_free_streams() called " 1700 "with non-streams endpoint\n"); 1701 return 0; 1702 } 1703 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 1704 } 1705 return changed_ep_bitmask; 1706 } 1707 1708 /* 1709 * The USB device drivers use this function (though the HCD interface in USB 1710 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 1711 * coordinate mass storage command queueing across multiple endpoints (basically 1712 * a stream ID == a task ID). 1713 * 1714 * Setting up streams involves allocating the same size stream context array 1715 * for each endpoint and issuing a configure endpoint command for all endpoints. 1716 * 1717 * Don't allow the call to succeed if one endpoint only supports one stream 1718 * (which means it doesn't support streams at all). 1719 * 1720 * Drivers may get less stream IDs than they asked for, if the host controller 1721 * hardware or endpoints claim they can't support the number of requested 1722 * stream IDs. 1723 */ 1724 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 1725 struct usb_host_endpoint **eps, unsigned int num_eps, 1726 unsigned int num_streams, gfp_t mem_flags) 1727 { 1728 int i, ret; 1729 struct xhci_hcd *xhci; 1730 struct xhci_virt_device *vdev; 1731 struct xhci_command *config_cmd; 1732 unsigned int ep_index; 1733 unsigned int num_stream_ctxs; 1734 unsigned long flags; 1735 u32 changed_ep_bitmask = 0; 1736 1737 if (!eps) 1738 return -EINVAL; 1739 1740 /* Add one to the number of streams requested to account for 1741 * stream 0 that is reserved for xHCI usage. 1742 */ 1743 num_streams += 1; 1744 xhci = hcd_to_xhci(hcd); 1745 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 1746 num_streams); 1747 1748 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 1749 if (!config_cmd) { 1750 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 1751 return -ENOMEM; 1752 } 1753 1754 /* Check to make sure all endpoints are not already configured for 1755 * streams. While we're at it, find the maximum number of streams that 1756 * all the endpoints will support and check for duplicate endpoints. 1757 */ 1758 spin_lock_irqsave(&xhci->lock, flags); 1759 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 1760 num_eps, &num_streams, &changed_ep_bitmask); 1761 if (ret < 0) { 1762 xhci_free_command(xhci, config_cmd); 1763 spin_unlock_irqrestore(&xhci->lock, flags); 1764 return ret; 1765 } 1766 if (num_streams <= 1) { 1767 xhci_warn(xhci, "WARN: endpoints can't handle " 1768 "more than one stream.\n"); 1769 xhci_free_command(xhci, config_cmd); 1770 spin_unlock_irqrestore(&xhci->lock, flags); 1771 return -EINVAL; 1772 } 1773 vdev = xhci->devs[udev->slot_id]; 1774 /* Mark each endpoint as being in transistion, so 1775 * xhci_urb_enqueue() will reject all URBs. 1776 */ 1777 for (i = 0; i < num_eps; i++) { 1778 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1779 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 1780 } 1781 spin_unlock_irqrestore(&xhci->lock, flags); 1782 1783 /* Setup internal data structures and allocate HW data structures for 1784 * streams (but don't install the HW structures in the input context 1785 * until we're sure all memory allocation succeeded). 1786 */ 1787 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 1788 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 1789 num_stream_ctxs, num_streams); 1790 1791 for (i = 0; i < num_eps; i++) { 1792 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1793 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 1794 num_stream_ctxs, 1795 num_streams, mem_flags); 1796 if (!vdev->eps[ep_index].stream_info) 1797 goto cleanup; 1798 /* Set maxPstreams in endpoint context and update deq ptr to 1799 * point to stream context array. FIXME 1800 */ 1801 } 1802 1803 /* Set up the input context for a configure endpoint command. */ 1804 for (i = 0; i < num_eps; i++) { 1805 struct xhci_ep_ctx *ep_ctx; 1806 1807 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1808 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 1809 1810 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 1811 vdev->out_ctx, ep_index); 1812 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 1813 vdev->eps[ep_index].stream_info); 1814 } 1815 /* Tell the HW to drop its old copy of the endpoint context info 1816 * and add the updated copy from the input context. 1817 */ 1818 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 1819 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 1820 1821 /* Issue and wait for the configure endpoint command */ 1822 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 1823 false, false); 1824 1825 /* xHC rejected the configure endpoint command for some reason, so we 1826 * leave the old ring intact and free our internal streams data 1827 * structure. 1828 */ 1829 if (ret < 0) 1830 goto cleanup; 1831 1832 spin_lock_irqsave(&xhci->lock, flags); 1833 for (i = 0; i < num_eps; i++) { 1834 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1835 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 1836 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 1837 udev->slot_id, ep_index); 1838 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 1839 } 1840 xhci_free_command(xhci, config_cmd); 1841 spin_unlock_irqrestore(&xhci->lock, flags); 1842 1843 /* Subtract 1 for stream 0, which drivers can't use */ 1844 return num_streams - 1; 1845 1846 cleanup: 1847 /* If it didn't work, free the streams! */ 1848 for (i = 0; i < num_eps; i++) { 1849 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1850 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 1851 vdev->eps[ep_index].stream_info = NULL; 1852 /* FIXME Unset maxPstreams in endpoint context and 1853 * update deq ptr to point to normal string ring. 1854 */ 1855 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 1856 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 1857 xhci_endpoint_zero(xhci, vdev, eps[i]); 1858 } 1859 xhci_free_command(xhci, config_cmd); 1860 return -ENOMEM; 1861 } 1862 1863 /* Transition the endpoint from using streams to being a "normal" endpoint 1864 * without streams. 1865 * 1866 * Modify the endpoint context state, submit a configure endpoint command, 1867 * and free all endpoint rings for streams if that completes successfully. 1868 */ 1869 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 1870 struct usb_host_endpoint **eps, unsigned int num_eps, 1871 gfp_t mem_flags) 1872 { 1873 int i, ret; 1874 struct xhci_hcd *xhci; 1875 struct xhci_virt_device *vdev; 1876 struct xhci_command *command; 1877 unsigned int ep_index; 1878 unsigned long flags; 1879 u32 changed_ep_bitmask; 1880 1881 xhci = hcd_to_xhci(hcd); 1882 vdev = xhci->devs[udev->slot_id]; 1883 1884 /* Set up a configure endpoint command to remove the streams rings */ 1885 spin_lock_irqsave(&xhci->lock, flags); 1886 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 1887 udev, eps, num_eps); 1888 if (changed_ep_bitmask == 0) { 1889 spin_unlock_irqrestore(&xhci->lock, flags); 1890 return -EINVAL; 1891 } 1892 1893 /* Use the xhci_command structure from the first endpoint. We may have 1894 * allocated too many, but the driver may call xhci_free_streams() for 1895 * each endpoint it grouped into one call to xhci_alloc_streams(). 1896 */ 1897 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 1898 command = vdev->eps[ep_index].stream_info->free_streams_command; 1899 for (i = 0; i < num_eps; i++) { 1900 struct xhci_ep_ctx *ep_ctx; 1901 1902 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1903 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1904 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 1905 EP_GETTING_NO_STREAMS; 1906 1907 xhci_endpoint_copy(xhci, command->in_ctx, 1908 vdev->out_ctx, ep_index); 1909 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, 1910 &vdev->eps[ep_index]); 1911 } 1912 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 1913 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); 1914 spin_unlock_irqrestore(&xhci->lock, flags); 1915 1916 /* Issue and wait for the configure endpoint command, 1917 * which must succeed. 1918 */ 1919 ret = xhci_configure_endpoint(xhci, udev, command, 1920 false, true); 1921 1922 /* xHC rejected the configure endpoint command for some reason, so we 1923 * leave the streams rings intact. 1924 */ 1925 if (ret < 0) 1926 return ret; 1927 1928 spin_lock_irqsave(&xhci->lock, flags); 1929 for (i = 0; i < num_eps; i++) { 1930 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 1931 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 1932 vdev->eps[ep_index].stream_info = NULL; 1933 /* FIXME Unset maxPstreams in endpoint context and 1934 * update deq ptr to point to normal string ring. 1935 */ 1936 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 1937 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 1938 } 1939 spin_unlock_irqrestore(&xhci->lock, flags); 1940 1941 return 0; 1942 } 1943 1944 /* 1945 * This submits a Reset Device Command, which will set the device state to 0, 1946 * set the device address to 0, and disable all the endpoints except the default 1947 * control endpoint. The USB core should come back and call 1948 * xhci_address_device(), and then re-set up the configuration. If this is 1949 * called because of a usb_reset_and_verify_device(), then the old alternate 1950 * settings will be re-installed through the normal bandwidth allocation 1951 * functions. 1952 * 1953 * Wait for the Reset Device command to finish. Remove all structures 1954 * associated with the endpoints that were disabled. Clear the input device 1955 * structure? Cache the rings? Reset the control endpoint 0 max packet size? 1956 */ 1957 int xhci_reset_device(struct usb_hcd *hcd, struct usb_device *udev) 1958 { 1959 int ret, i; 1960 unsigned long flags; 1961 struct xhci_hcd *xhci; 1962 unsigned int slot_id; 1963 struct xhci_virt_device *virt_dev; 1964 struct xhci_command *reset_device_cmd; 1965 int timeleft; 1966 int last_freed_endpoint; 1967 1968 ret = xhci_check_args(hcd, udev, NULL, 0, __func__); 1969 if (ret <= 0) 1970 return ret; 1971 xhci = hcd_to_xhci(hcd); 1972 slot_id = udev->slot_id; 1973 virt_dev = xhci->devs[slot_id]; 1974 if (!virt_dev) { 1975 xhci_dbg(xhci, "%s called with invalid slot ID %u\n", 1976 __func__, slot_id); 1977 return -EINVAL; 1978 } 1979 1980 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 1981 /* Allocate the command structure that holds the struct completion. 1982 * Assume we're in process context, since the normal device reset 1983 * process has to wait for the device anyway. Storage devices are 1984 * reset as part of error handling, so use GFP_NOIO instead of 1985 * GFP_KERNEL. 1986 */ 1987 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 1988 if (!reset_device_cmd) { 1989 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 1990 return -ENOMEM; 1991 } 1992 1993 /* Attempt to submit the Reset Device command to the command ring */ 1994 spin_lock_irqsave(&xhci->lock, flags); 1995 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; 1996 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); 1997 ret = xhci_queue_reset_device(xhci, slot_id); 1998 if (ret) { 1999 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2000 list_del(&reset_device_cmd->cmd_list); 2001 spin_unlock_irqrestore(&xhci->lock, flags); 2002 goto command_cleanup; 2003 } 2004 xhci_ring_cmd_db(xhci); 2005 spin_unlock_irqrestore(&xhci->lock, flags); 2006 2007 /* Wait for the Reset Device command to finish */ 2008 timeleft = wait_for_completion_interruptible_timeout( 2009 reset_device_cmd->completion, 2010 USB_CTRL_SET_TIMEOUT); 2011 if (timeleft <= 0) { 2012 xhci_warn(xhci, "%s while waiting for reset device command\n", 2013 timeleft == 0 ? "Timeout" : "Signal"); 2014 spin_lock_irqsave(&xhci->lock, flags); 2015 /* The timeout might have raced with the event ring handler, so 2016 * only delete from the list if the item isn't poisoned. 2017 */ 2018 if (reset_device_cmd->cmd_list.next != LIST_POISON1) 2019 list_del(&reset_device_cmd->cmd_list); 2020 spin_unlock_irqrestore(&xhci->lock, flags); 2021 ret = -ETIME; 2022 goto command_cleanup; 2023 } 2024 2025 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 2026 * unless we tried to reset a slot ID that wasn't enabled, 2027 * or the device wasn't in the addressed or configured state. 2028 */ 2029 ret = reset_device_cmd->status; 2030 switch (ret) { 2031 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ 2032 case COMP_CTX_STATE: /* 0.96 completion code for same thing */ 2033 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", 2034 slot_id, 2035 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 2036 xhci_info(xhci, "Not freeing device rings.\n"); 2037 /* Don't treat this as an error. May change my mind later. */ 2038 ret = 0; 2039 goto command_cleanup; 2040 case COMP_SUCCESS: 2041 xhci_dbg(xhci, "Successful reset device command.\n"); 2042 break; 2043 default: 2044 if (xhci_is_vendor_info_code(xhci, ret)) 2045 break; 2046 xhci_warn(xhci, "Unknown completion code %u for " 2047 "reset device command.\n", ret); 2048 ret = -EINVAL; 2049 goto command_cleanup; 2050 } 2051 2052 /* Everything but endpoint 0 is disabled, so free or cache the rings. */ 2053 last_freed_endpoint = 1; 2054 for (i = 1; i < 31; ++i) { 2055 if (!virt_dev->eps[i].ring) 2056 continue; 2057 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); 2058 last_freed_endpoint = i; 2059 } 2060 xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); 2061 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); 2062 ret = 0; 2063 2064 command_cleanup: 2065 xhci_free_command(xhci, reset_device_cmd); 2066 return ret; 2067 } 2068 2069 /* 2070 * At this point, the struct usb_device is about to go away, the device has 2071 * disconnected, and all traffic has been stopped and the endpoints have been 2072 * disabled. Free any HC data structures associated with that device. 2073 */ 2074 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 2075 { 2076 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2077 struct xhci_virt_device *virt_dev; 2078 unsigned long flags; 2079 u32 state; 2080 int i; 2081 2082 if (udev->slot_id == 0) 2083 return; 2084 virt_dev = xhci->devs[udev->slot_id]; 2085 if (!virt_dev) 2086 return; 2087 2088 /* Stop any wayward timer functions (which may grab the lock) */ 2089 for (i = 0; i < 31; ++i) { 2090 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; 2091 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 2092 } 2093 2094 spin_lock_irqsave(&xhci->lock, flags); 2095 /* Don't disable the slot if the host controller is dead. */ 2096 state = xhci_readl(xhci, &xhci->op_regs->status); 2097 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) { 2098 xhci_free_virt_device(xhci, udev->slot_id); 2099 spin_unlock_irqrestore(&xhci->lock, flags); 2100 return; 2101 } 2102 2103 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { 2104 spin_unlock_irqrestore(&xhci->lock, flags); 2105 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2106 return; 2107 } 2108 xhci_ring_cmd_db(xhci); 2109 spin_unlock_irqrestore(&xhci->lock, flags); 2110 /* 2111 * Event command completion handler will free any data structures 2112 * associated with the slot. XXX Can free sleep? 2113 */ 2114 } 2115 2116 /* 2117 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 2118 * timed out, or allocating memory failed. Returns 1 on success. 2119 */ 2120 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 2121 { 2122 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2123 unsigned long flags; 2124 int timeleft; 2125 int ret; 2126 2127 spin_lock_irqsave(&xhci->lock, flags); 2128 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); 2129 if (ret) { 2130 spin_unlock_irqrestore(&xhci->lock, flags); 2131 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2132 return 0; 2133 } 2134 xhci_ring_cmd_db(xhci); 2135 spin_unlock_irqrestore(&xhci->lock, flags); 2136 2137 /* XXX: how much time for xHC slot assignment? */ 2138 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 2139 USB_CTRL_SET_TIMEOUT); 2140 if (timeleft <= 0) { 2141 xhci_warn(xhci, "%s while waiting for a slot\n", 2142 timeleft == 0 ? "Timeout" : "Signal"); 2143 /* FIXME cancel the enable slot request */ 2144 return 0; 2145 } 2146 2147 if (!xhci->slot_id) { 2148 xhci_err(xhci, "Error while assigning device slot ID\n"); 2149 return 0; 2150 } 2151 /* xhci_alloc_virt_device() does not touch rings; no need to lock */ 2152 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) { 2153 /* Disable slot, if we can do it without mem alloc */ 2154 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 2155 spin_lock_irqsave(&xhci->lock, flags); 2156 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) 2157 xhci_ring_cmd_db(xhci); 2158 spin_unlock_irqrestore(&xhci->lock, flags); 2159 return 0; 2160 } 2161 udev->slot_id = xhci->slot_id; 2162 /* Is this a LS or FS device under a HS hub? */ 2163 /* Hub or peripherial? */ 2164 return 1; 2165 } 2166 2167 /* 2168 * Issue an Address Device command (which will issue a SetAddress request to 2169 * the device). 2170 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so 2171 * we should only issue and wait on one address command at the same time. 2172 * 2173 * We add one to the device address issued by the hardware because the USB core 2174 * uses address 1 for the root hubs (even though they're not really devices). 2175 */ 2176 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 2177 { 2178 unsigned long flags; 2179 int timeleft; 2180 struct xhci_virt_device *virt_dev; 2181 int ret = 0; 2182 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2183 struct xhci_slot_ctx *slot_ctx; 2184 struct xhci_input_control_ctx *ctrl_ctx; 2185 u64 temp_64; 2186 2187 if (!udev->slot_id) { 2188 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); 2189 return -EINVAL; 2190 } 2191 2192 virt_dev = xhci->devs[udev->slot_id]; 2193 2194 /* If this is a Set Address to an unconfigured device, setup ep 0 */ 2195 if (!udev->config) 2196 xhci_setup_addressable_virt_dev(xhci, udev); 2197 else 2198 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 2199 /* Otherwise, assume the core has the device configured how it wants */ 2200 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 2201 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 2202 2203 spin_lock_irqsave(&xhci->lock, flags); 2204 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, 2205 udev->slot_id); 2206 if (ret) { 2207 spin_unlock_irqrestore(&xhci->lock, flags); 2208 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 2209 return ret; 2210 } 2211 xhci_ring_cmd_db(xhci); 2212 spin_unlock_irqrestore(&xhci->lock, flags); 2213 2214 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 2215 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, 2216 USB_CTRL_SET_TIMEOUT); 2217 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 2218 * the SetAddress() "recovery interval" required by USB and aborting the 2219 * command on a timeout. 2220 */ 2221 if (timeleft <= 0) { 2222 xhci_warn(xhci, "%s while waiting for a slot\n", 2223 timeleft == 0 ? "Timeout" : "Signal"); 2224 /* FIXME cancel the address device command */ 2225 return -ETIME; 2226 } 2227 2228 switch (virt_dev->cmd_status) { 2229 case COMP_CTX_STATE: 2230 case COMP_EBADSLT: 2231 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", 2232 udev->slot_id); 2233 ret = -EINVAL; 2234 break; 2235 case COMP_TX_ERR: 2236 dev_warn(&udev->dev, "Device not responding to set address.\n"); 2237 ret = -EPROTO; 2238 break; 2239 case COMP_SUCCESS: 2240 xhci_dbg(xhci, "Successful Address Device command\n"); 2241 break; 2242 default: 2243 xhci_err(xhci, "ERROR: unexpected command completion " 2244 "code 0x%x.\n", virt_dev->cmd_status); 2245 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 2246 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 2247 ret = -EINVAL; 2248 break; 2249 } 2250 if (ret) { 2251 return ret; 2252 } 2253 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 2254 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); 2255 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", 2256 udev->slot_id, 2257 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 2258 (unsigned long long) 2259 xhci->dcbaa->dev_context_ptrs[udev->slot_id]); 2260 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", 2261 (unsigned long long)virt_dev->out_ctx->dma); 2262 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); 2263 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); 2264 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); 2265 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); 2266 /* 2267 * USB core uses address 1 for the roothubs, so we add one to the 2268 * address given back to us by the HC. 2269 */ 2270 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 2271 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1; 2272 /* Zero the input context control for later use */ 2273 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); 2274 ctrl_ctx->add_flags = 0; 2275 ctrl_ctx->drop_flags = 0; 2276 2277 xhci_dbg(xhci, "Device address = %d\n", udev->devnum); 2278 /* XXX Meh, not sure if anyone else but choose_address uses this. */ 2279 set_bit(udev->devnum, udev->bus->devmap.devicemap); 2280 2281 return 0; 2282 } 2283 2284 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 2285 * internal data structures for the device. 2286 */ 2287 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 2288 struct usb_tt *tt, gfp_t mem_flags) 2289 { 2290 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2291 struct xhci_virt_device *vdev; 2292 struct xhci_command *config_cmd; 2293 struct xhci_input_control_ctx *ctrl_ctx; 2294 struct xhci_slot_ctx *slot_ctx; 2295 unsigned long flags; 2296 unsigned think_time; 2297 int ret; 2298 2299 /* Ignore root hubs */ 2300 if (!hdev->parent) 2301 return 0; 2302 2303 vdev = xhci->devs[hdev->slot_id]; 2304 if (!vdev) { 2305 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 2306 return -EINVAL; 2307 } 2308 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 2309 if (!config_cmd) { 2310 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); 2311 return -ENOMEM; 2312 } 2313 2314 spin_lock_irqsave(&xhci->lock, flags); 2315 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 2316 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); 2317 ctrl_ctx->add_flags |= SLOT_FLAG; 2318 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 2319 slot_ctx->dev_info |= DEV_HUB; 2320 if (tt->multi) 2321 slot_ctx->dev_info |= DEV_MTT; 2322 if (xhci->hci_version > 0x95) { 2323 xhci_dbg(xhci, "xHCI version %x needs hub " 2324 "TT think time and number of ports\n", 2325 (unsigned int) xhci->hci_version); 2326 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild); 2327 /* Set TT think time - convert from ns to FS bit times. 2328 * 0 = 8 FS bit times, 1 = 16 FS bit times, 2329 * 2 = 24 FS bit times, 3 = 32 FS bit times. 2330 */ 2331 think_time = tt->think_time; 2332 if (think_time != 0) 2333 think_time = (think_time / 666) - 1; 2334 slot_ctx->tt_info |= TT_THINK_TIME(think_time); 2335 } else { 2336 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 2337 "TT think time or number of ports\n", 2338 (unsigned int) xhci->hci_version); 2339 } 2340 slot_ctx->dev_state = 0; 2341 spin_unlock_irqrestore(&xhci->lock, flags); 2342 2343 xhci_dbg(xhci, "Set up %s for hub device.\n", 2344 (xhci->hci_version > 0x95) ? 2345 "configure endpoint" : "evaluate context"); 2346 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); 2347 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); 2348 2349 /* Issue and wait for the configure endpoint or 2350 * evaluate context command. 2351 */ 2352 if (xhci->hci_version > 0x95) 2353 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 2354 false, false); 2355 else 2356 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 2357 true, false); 2358 2359 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); 2360 xhci_dbg_ctx(xhci, vdev->out_ctx, 0); 2361 2362 xhci_free_command(xhci, config_cmd); 2363 return ret; 2364 } 2365 2366 int xhci_get_frame(struct usb_hcd *hcd) 2367 { 2368 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 2369 /* EHCI mods by the periodic size. Why? */ 2370 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; 2371 } 2372 2373 MODULE_DESCRIPTION(DRIVER_DESC); 2374 MODULE_AUTHOR(DRIVER_AUTHOR); 2375 MODULE_LICENSE("GPL"); 2376 2377 static int __init xhci_hcd_init(void) 2378 { 2379 #ifdef CONFIG_PCI 2380 int retval = 0; 2381 2382 retval = xhci_register_pci(); 2383 2384 if (retval < 0) { 2385 printk(KERN_DEBUG "Problem registering PCI driver."); 2386 return retval; 2387 } 2388 #endif 2389 /* 2390 * Check the compiler generated sizes of structures that must be laid 2391 * out in specific ways for hardware access. 2392 */ 2393 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 2394 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 2395 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 2396 /* xhci_device_control has eight fields, and also 2397 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 2398 */ 2399 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 2400 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 2401 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 2402 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); 2403 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 2404 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 2405 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 2406 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 2407 return 0; 2408 } 2409 module_init(xhci_hcd_init); 2410 2411 static void __exit xhci_hcd_cleanup(void) 2412 { 2413 #ifdef CONFIG_PCI 2414 xhci_unregister_pci(); 2415 #endif 2416 } 2417 module_exit(xhci_hcd_cleanup); 2418