1 /* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/pci.h> 24 #include <linux/irq.h> 25 #include <linux/log2.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/slab.h> 29 #include <linux/dmi.h> 30 #include <linux/dma-mapping.h> 31 32 #include "xhci.h" 33 #include "xhci-trace.h" 34 #include "xhci-mtk.h" 35 36 #define DRIVER_AUTHOR "Sarah Sharp" 37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" 38 39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E) 40 41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ 42 static int link_quirk; 43 module_param(link_quirk, int, S_IRUGO | S_IWUSR); 44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); 45 46 static unsigned int quirks; 47 module_param(quirks, uint, S_IRUGO); 48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default"); 49 50 /* TODO: copied from ehci-hcd.c - can this be refactored? */ 51 /* 52 * xhci_handshake - spin reading hc until handshake completes or fails 53 * @ptr: address of hc register to be read 54 * @mask: bits to look at in result of read 55 * @done: value of those bits when handshake succeeds 56 * @usec: timeout in microseconds 57 * 58 * Returns negative errno, or zero on success 59 * 60 * Success happens when the "mask" bits have the specified value (hardware 61 * handshake done). There are two failure modes: "usec" have passed (major 62 * hardware flakeout), or the register reads as all-ones (hardware removed). 63 */ 64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec) 65 { 66 u32 result; 67 68 do { 69 result = readl(ptr); 70 if (result == ~(u32)0) /* card removed */ 71 return -ENODEV; 72 result &= mask; 73 if (result == done) 74 return 0; 75 udelay(1); 76 usec--; 77 } while (usec > 0); 78 return -ETIMEDOUT; 79 } 80 81 /* 82 * Disable interrupts and begin the xHCI halting process. 83 */ 84 void xhci_quiesce(struct xhci_hcd *xhci) 85 { 86 u32 halted; 87 u32 cmd; 88 u32 mask; 89 90 mask = ~(XHCI_IRQS); 91 halted = readl(&xhci->op_regs->status) & STS_HALT; 92 if (!halted) 93 mask &= ~CMD_RUN; 94 95 cmd = readl(&xhci->op_regs->command); 96 cmd &= mask; 97 writel(cmd, &xhci->op_regs->command); 98 } 99 100 /* 101 * Force HC into halt state. 102 * 103 * Disable any IRQs and clear the run/stop bit. 104 * HC will complete any current and actively pipelined transactions, and 105 * should halt within 16 ms of the run/stop bit being cleared. 106 * Read HC Halted bit in the status register to see when the HC is finished. 107 */ 108 int xhci_halt(struct xhci_hcd *xhci) 109 { 110 int ret; 111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC"); 112 xhci_quiesce(xhci); 113 114 ret = xhci_handshake(&xhci->op_regs->status, 115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 116 if (ret) { 117 xhci_warn(xhci, "Host halt failed, %d\n", ret); 118 return ret; 119 } 120 xhci->xhc_state |= XHCI_STATE_HALTED; 121 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 122 return ret; 123 } 124 125 /* 126 * Set the run bit and wait for the host to be running. 127 */ 128 int xhci_start(struct xhci_hcd *xhci) 129 { 130 u32 temp; 131 int ret; 132 133 temp = readl(&xhci->op_regs->command); 134 temp |= (CMD_RUN); 135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.", 136 temp); 137 writel(temp, &xhci->op_regs->command); 138 139 /* 140 * Wait for the HCHalted Status bit to be 0 to indicate the host is 141 * running. 142 */ 143 ret = xhci_handshake(&xhci->op_regs->status, 144 STS_HALT, 0, XHCI_MAX_HALT_USEC); 145 if (ret == -ETIMEDOUT) 146 xhci_err(xhci, "Host took too long to start, " 147 "waited %u microseconds.\n", 148 XHCI_MAX_HALT_USEC); 149 if (!ret) 150 /* clear state flags. Including dying, halted or removing */ 151 xhci->xhc_state = 0; 152 153 return ret; 154 } 155 156 /* 157 * Reset a halted HC. 158 * 159 * This resets pipelines, timers, counters, state machines, etc. 160 * Transactions will be terminated immediately, and operational registers 161 * will be set to their defaults. 162 */ 163 int xhci_reset(struct xhci_hcd *xhci) 164 { 165 u32 command; 166 u32 state; 167 int ret, i; 168 169 state = readl(&xhci->op_regs->status); 170 171 if (state == ~(u32)0) { 172 xhci_warn(xhci, "Host not accessible, reset failed.\n"); 173 return -ENODEV; 174 } 175 176 if ((state & STS_HALT) == 0) { 177 xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); 178 return 0; 179 } 180 181 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC"); 182 command = readl(&xhci->op_regs->command); 183 command |= CMD_RESET; 184 writel(command, &xhci->op_regs->command); 185 186 /* Existing Intel xHCI controllers require a delay of 1 mS, 187 * after setting the CMD_RESET bit, and before accessing any 188 * HC registers. This allows the HC to complete the 189 * reset operation and be ready for HC register access. 190 * Without this delay, the subsequent HC register access, 191 * may result in a system hang very rarely. 192 */ 193 if (xhci->quirks & XHCI_INTEL_HOST) 194 udelay(1000); 195 196 ret = xhci_handshake(&xhci->op_regs->command, 197 CMD_RESET, 0, 10 * 1000 * 1000); 198 if (ret) 199 return ret; 200 201 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 202 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller)); 203 204 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 205 "Wait for controller to be ready for doorbell rings"); 206 /* 207 * xHCI cannot write to any doorbells or operational registers other 208 * than status until the "Controller Not Ready" flag is cleared. 209 */ 210 ret = xhci_handshake(&xhci->op_regs->status, 211 STS_CNR, 0, 10 * 1000 * 1000); 212 213 for (i = 0; i < 2; i++) { 214 xhci->bus_state[i].port_c_suspend = 0; 215 xhci->bus_state[i].suspended_ports = 0; 216 xhci->bus_state[i].resuming_ports = 0; 217 } 218 219 return ret; 220 } 221 222 223 #ifdef CONFIG_USB_PCI 224 /* 225 * Set up MSI 226 */ 227 static int xhci_setup_msi(struct xhci_hcd *xhci) 228 { 229 int ret; 230 /* 231 * TODO:Check with MSI Soc for sysdev 232 */ 233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 234 235 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 236 if (ret < 0) { 237 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 238 "failed to allocate MSI entry"); 239 return ret; 240 } 241 242 ret = request_irq(pdev->irq, xhci_msi_irq, 243 0, "xhci_hcd", xhci_to_hcd(xhci)); 244 if (ret) { 245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 246 "disable MSI interrupt"); 247 pci_free_irq_vectors(pdev); 248 } 249 250 return ret; 251 } 252 253 /* 254 * Set up MSI-X 255 */ 256 static int xhci_setup_msix(struct xhci_hcd *xhci) 257 { 258 int i, ret = 0; 259 struct usb_hcd *hcd = xhci_to_hcd(xhci); 260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 261 262 /* 263 * calculate number of msi-x vectors supported. 264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle, 265 * with max number of interrupters based on the xhci HCSPARAMS1. 266 * - num_online_cpus: maximum msi-x vectors per CPUs core. 267 * Add additional 1 vector to ensure always available interrupt. 268 */ 269 xhci->msix_count = min(num_online_cpus() + 1, 270 HCS_MAX_INTRS(xhci->hcs_params1)); 271 272 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count, 273 PCI_IRQ_MSIX); 274 if (ret < 0) { 275 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 276 "Failed to enable MSI-X"); 277 return ret; 278 } 279 280 for (i = 0; i < xhci->msix_count; i++) { 281 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0, 282 "xhci_hcd", xhci_to_hcd(xhci)); 283 if (ret) 284 goto disable_msix; 285 } 286 287 hcd->msix_enabled = 1; 288 return ret; 289 290 disable_msix: 291 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt"); 292 while (--i >= 0) 293 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 294 pci_free_irq_vectors(pdev); 295 return ret; 296 } 297 298 /* Free any IRQs and disable MSI-X */ 299 static void xhci_cleanup_msix(struct xhci_hcd *xhci) 300 { 301 struct usb_hcd *hcd = xhci_to_hcd(xhci); 302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 303 304 if (xhci->quirks & XHCI_PLAT) 305 return; 306 307 /* return if using legacy interrupt */ 308 if (hcd->irq > 0) 309 return; 310 311 if (hcd->msix_enabled) { 312 int i; 313 314 for (i = 0; i < xhci->msix_count; i++) 315 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci)); 316 } else { 317 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci)); 318 } 319 320 pci_free_irq_vectors(pdev); 321 hcd->msix_enabled = 0; 322 } 323 324 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci) 325 { 326 struct usb_hcd *hcd = xhci_to_hcd(xhci); 327 328 if (hcd->msix_enabled) { 329 struct pci_dev *pdev = to_pci_dev(hcd->self.controller); 330 int i; 331 332 for (i = 0; i < xhci->msix_count; i++) 333 synchronize_irq(pci_irq_vector(pdev, i)); 334 } 335 } 336 337 static int xhci_try_enable_msi(struct usb_hcd *hcd) 338 { 339 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 340 struct pci_dev *pdev; 341 int ret; 342 343 /* The xhci platform device has set up IRQs through usb_add_hcd. */ 344 if (xhci->quirks & XHCI_PLAT) 345 return 0; 346 347 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 348 /* 349 * Some Fresco Logic host controllers advertise MSI, but fail to 350 * generate interrupts. Don't even try to enable MSI. 351 */ 352 if (xhci->quirks & XHCI_BROKEN_MSI) 353 goto legacy_irq; 354 355 /* unregister the legacy interrupt */ 356 if (hcd->irq) 357 free_irq(hcd->irq, hcd); 358 hcd->irq = 0; 359 360 ret = xhci_setup_msix(xhci); 361 if (ret) 362 /* fall back to msi*/ 363 ret = xhci_setup_msi(xhci); 364 365 if (!ret) { 366 hcd->msi_enabled = 1; 367 return 0; 368 } 369 370 if (!pdev->irq) { 371 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n"); 372 return -EINVAL; 373 } 374 375 legacy_irq: 376 if (!strlen(hcd->irq_descr)) 377 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 378 hcd->driver->description, hcd->self.busnum); 379 380 /* fall back to legacy interrupt*/ 381 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, 382 hcd->irq_descr, hcd); 383 if (ret) { 384 xhci_err(xhci, "request interrupt %d failed\n", 385 pdev->irq); 386 return ret; 387 } 388 hcd->irq = pdev->irq; 389 return 0; 390 } 391 392 #else 393 394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd) 395 { 396 return 0; 397 } 398 399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci) 400 { 401 } 402 403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci) 404 { 405 } 406 407 #endif 408 409 static void compliance_mode_recovery(unsigned long arg) 410 { 411 struct xhci_hcd *xhci; 412 struct usb_hcd *hcd; 413 u32 temp; 414 int i; 415 416 xhci = (struct xhci_hcd *)arg; 417 418 for (i = 0; i < xhci->num_usb3_ports; i++) { 419 temp = readl(xhci->usb3_ports[i]); 420 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) { 421 /* 422 * Compliance Mode Detected. Letting USB Core 423 * handle the Warm Reset 424 */ 425 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 426 "Compliance mode detected->port %d", 427 i + 1); 428 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 429 "Attempting compliance mode recovery"); 430 hcd = xhci->shared_hcd; 431 432 if (hcd->state == HC_STATE_SUSPENDED) 433 usb_hcd_resume_root_hub(hcd); 434 435 usb_hcd_poll_rh_status(hcd); 436 } 437 } 438 439 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1)) 440 mod_timer(&xhci->comp_mode_recovery_timer, 441 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS)); 442 } 443 444 /* 445 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver 446 * that causes ports behind that hardware to enter compliance mode sometimes. 447 * The quirk creates a timer that polls every 2 seconds the link state of 448 * each host controller's port and recovers it by issuing a Warm reset 449 * if Compliance mode is detected, otherwise the port will become "dead" (no 450 * device connections or disconnections will be detected anymore). Becasue no 451 * status event is generated when entering compliance mode (per xhci spec), 452 * this quirk is needed on systems that have the failing hardware installed. 453 */ 454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci) 455 { 456 xhci->port_status_u0 = 0; 457 setup_timer(&xhci->comp_mode_recovery_timer, 458 compliance_mode_recovery, (unsigned long)xhci); 459 xhci->comp_mode_recovery_timer.expires = jiffies + 460 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS); 461 462 add_timer(&xhci->comp_mode_recovery_timer); 463 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 464 "Compliance mode recovery timer initialized"); 465 } 466 467 /* 468 * This function identifies the systems that have installed the SN65LVPE502CP 469 * USB3.0 re-driver and that need the Compliance Mode Quirk. 470 * Systems: 471 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820 472 */ 473 static bool xhci_compliance_mode_recovery_timer_quirk_check(void) 474 { 475 const char *dmi_product_name, *dmi_sys_vendor; 476 477 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); 478 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR); 479 if (!dmi_product_name || !dmi_sys_vendor) 480 return false; 481 482 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard"))) 483 return false; 484 485 if (strstr(dmi_product_name, "Z420") || 486 strstr(dmi_product_name, "Z620") || 487 strstr(dmi_product_name, "Z820") || 488 strstr(dmi_product_name, "Z1 Workstation")) 489 return true; 490 491 return false; 492 } 493 494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci) 495 { 496 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1)); 497 } 498 499 500 /* 501 * Initialize memory for HCD and xHC (one-time init). 502 * 503 * Program the PAGESIZE register, initialize the device context array, create 504 * device contexts (?), set up a command ring segment (or two?), create event 505 * ring (one for now). 506 */ 507 static int xhci_init(struct usb_hcd *hcd) 508 { 509 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 510 int retval = 0; 511 512 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init"); 513 spin_lock_init(&xhci->lock); 514 if (xhci->hci_version == 0x95 && link_quirk) { 515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 516 "QUIRK: Not clearing Link TRB chain bits."); 517 xhci->quirks |= XHCI_LINK_TRB_QUIRK; 518 } else { 519 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 520 "xHCI doesn't need link TRB QUIRK"); 521 } 522 retval = xhci_mem_init(xhci, GFP_KERNEL); 523 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init"); 524 525 /* Initializing Compliance Mode Recovery Data If Needed */ 526 if (xhci_compliance_mode_recovery_timer_quirk_check()) { 527 xhci->quirks |= XHCI_COMP_MODE_QUIRK; 528 compliance_mode_recovery_timer_init(xhci); 529 } 530 531 return retval; 532 } 533 534 /*-------------------------------------------------------------------------*/ 535 536 537 static int xhci_run_finished(struct xhci_hcd *xhci) 538 { 539 if (xhci_start(xhci)) { 540 xhci_halt(xhci); 541 return -ENODEV; 542 } 543 xhci->shared_hcd->state = HC_STATE_RUNNING; 544 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; 545 546 if (xhci->quirks & XHCI_NEC_HOST) 547 xhci_ring_cmd_db(xhci); 548 549 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 550 "Finished xhci_run for USB3 roothub"); 551 return 0; 552 } 553 554 /* 555 * Start the HC after it was halted. 556 * 557 * This function is called by the USB core when the HC driver is added. 558 * Its opposite is xhci_stop(). 559 * 560 * xhci_init() must be called once before this function can be called. 561 * Reset the HC, enable device slot contexts, program DCBAAP, and 562 * set command ring pointer and event ring pointer. 563 * 564 * Setup MSI-X vectors and enable interrupts. 565 */ 566 int xhci_run(struct usb_hcd *hcd) 567 { 568 u32 temp; 569 u64 temp_64; 570 int ret; 571 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 572 573 /* Start the xHCI host controller running only after the USB 2.0 roothub 574 * is setup. 575 */ 576 577 hcd->uses_new_polling = 1; 578 if (!usb_hcd_is_primary_hcd(hcd)) 579 return xhci_run_finished(xhci); 580 581 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run"); 582 583 ret = xhci_try_enable_msi(hcd); 584 if (ret) 585 return ret; 586 587 xhci_dbg_cmd_ptrs(xhci); 588 589 xhci_dbg(xhci, "ERST memory map follows:\n"); 590 xhci_dbg_erst(xhci, &xhci->erst); 591 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 592 temp_64 &= ~ERST_PTR_MASK; 593 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 594 "ERST deq = 64'h%0lx", (long unsigned int) temp_64); 595 596 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 597 "// Set the interrupt modulation register"); 598 temp = readl(&xhci->ir_set->irq_control); 599 temp &= ~ER_IRQ_INTERVAL_MASK; 600 /* 601 * the increment interval is 8 times as much as that defined 602 * in xHCI spec on MTK's controller 603 */ 604 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160); 605 writel(temp, &xhci->ir_set->irq_control); 606 607 /* Set the HCD state before we enable the irqs */ 608 temp = readl(&xhci->op_regs->command); 609 temp |= (CMD_EIE); 610 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 611 "// Enable interrupts, cmd = 0x%x.", temp); 612 writel(temp, &xhci->op_regs->command); 613 614 temp = readl(&xhci->ir_set->irq_pending); 615 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 616 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending", 617 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); 618 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); 619 xhci_print_ir_set(xhci, 0); 620 621 if (xhci->quirks & XHCI_NEC_HOST) { 622 struct xhci_command *command; 623 624 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 625 if (!command) 626 return -ENOMEM; 627 628 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0, 629 TRB_TYPE(TRB_NEC_GET_FW)); 630 if (ret) 631 xhci_free_command(xhci, command); 632 } 633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 634 "Finished xhci_run for USB2 roothub"); 635 return 0; 636 } 637 EXPORT_SYMBOL_GPL(xhci_run); 638 639 /* 640 * Stop xHCI driver. 641 * 642 * This function is called by the USB core when the HC driver is removed. 643 * Its opposite is xhci_run(). 644 * 645 * Disable device contexts, disable IRQs, and quiesce the HC. 646 * Reset the HC, finish any completed transactions, and cleanup memory. 647 */ 648 static void xhci_stop(struct usb_hcd *hcd) 649 { 650 u32 temp; 651 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 652 653 mutex_lock(&xhci->mutex); 654 655 /* Only halt host and free memory after both hcds are removed */ 656 if (!usb_hcd_is_primary_hcd(hcd)) { 657 /* usb core will free this hcd shortly, unset pointer */ 658 xhci->shared_hcd = NULL; 659 mutex_unlock(&xhci->mutex); 660 return; 661 } 662 663 spin_lock_irq(&xhci->lock); 664 xhci->xhc_state |= XHCI_STATE_HALTED; 665 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; 666 xhci_halt(xhci); 667 xhci_reset(xhci); 668 spin_unlock_irq(&xhci->lock); 669 670 xhci_cleanup_msix(xhci); 671 672 /* Deleting Compliance Mode Recovery Timer */ 673 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 674 (!(xhci_all_ports_seen_u0(xhci)))) { 675 del_timer_sync(&xhci->comp_mode_recovery_timer); 676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 677 "%s: compliance mode recovery timer deleted", 678 __func__); 679 } 680 681 if (xhci->quirks & XHCI_AMD_PLL_FIX) 682 usb_amd_dev_put(); 683 684 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 685 "// Disabling event ring interrupts"); 686 temp = readl(&xhci->op_regs->status); 687 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 688 temp = readl(&xhci->ir_set->irq_pending); 689 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 690 xhci_print_ir_set(xhci, 0); 691 692 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory"); 693 xhci_mem_cleanup(xhci); 694 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 695 "xhci_stop completed - status = %x", 696 readl(&xhci->op_regs->status)); 697 mutex_unlock(&xhci->mutex); 698 } 699 700 /* 701 * Shutdown HC (not bus-specific) 702 * 703 * This is called when the machine is rebooting or halting. We assume that the 704 * machine will be powered off, and the HC's internal state will be reset. 705 * Don't bother to free memory. 706 * 707 * This will only ever be called with the main usb_hcd (the USB3 roothub). 708 */ 709 static void xhci_shutdown(struct usb_hcd *hcd) 710 { 711 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 712 713 if (xhci->quirks & XHCI_SPURIOUS_REBOOT) 714 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev)); 715 716 spin_lock_irq(&xhci->lock); 717 xhci_halt(xhci); 718 /* Workaround for spurious wakeups at shutdown with HSW */ 719 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 720 xhci_reset(xhci); 721 spin_unlock_irq(&xhci->lock); 722 723 xhci_cleanup_msix(xhci); 724 725 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 726 "xhci_shutdown completed - status = %x", 727 readl(&xhci->op_regs->status)); 728 729 /* Yet another workaround for spurious wakeups at shutdown with HSW */ 730 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP) 731 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot); 732 } 733 734 #ifdef CONFIG_PM 735 static void xhci_save_registers(struct xhci_hcd *xhci) 736 { 737 xhci->s3.command = readl(&xhci->op_regs->command); 738 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification); 739 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 740 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg); 741 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size); 742 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); 743 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 744 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending); 745 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control); 746 } 747 748 static void xhci_restore_registers(struct xhci_hcd *xhci) 749 { 750 writel(xhci->s3.command, &xhci->op_regs->command); 751 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification); 752 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); 753 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg); 754 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size); 755 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); 756 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue); 757 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending); 758 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control); 759 } 760 761 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) 762 { 763 u64 val_64; 764 765 /* step 2: initialize command ring buffer */ 766 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 767 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 768 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, 769 xhci->cmd_ring->dequeue) & 770 (u64) ~CMD_RING_RSVD_BITS) | 771 xhci->cmd_ring->cycle_state; 772 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 773 "// Setting command ring address to 0x%llx", 774 (long unsigned long) val_64); 775 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 776 } 777 778 /* 779 * The whole command ring must be cleared to zero when we suspend the host. 780 * 781 * The host doesn't save the command ring pointer in the suspend well, so we 782 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte 783 * aligned, because of the reserved bits in the command ring dequeue pointer 784 * register. Therefore, we can't just set the dequeue pointer back in the 785 * middle of the ring (TRBs are 16-byte aligned). 786 */ 787 static void xhci_clear_command_ring(struct xhci_hcd *xhci) 788 { 789 struct xhci_ring *ring; 790 struct xhci_segment *seg; 791 792 ring = xhci->cmd_ring; 793 seg = ring->deq_seg; 794 do { 795 memset(seg->trbs, 0, 796 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1)); 797 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= 798 cpu_to_le32(~TRB_CYCLE); 799 seg = seg->next; 800 } while (seg != ring->deq_seg); 801 802 /* Reset the software enqueue and dequeue pointers */ 803 ring->deq_seg = ring->first_seg; 804 ring->dequeue = ring->first_seg->trbs; 805 ring->enq_seg = ring->deq_seg; 806 ring->enqueue = ring->dequeue; 807 808 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 809 /* 810 * Ring is now zeroed, so the HW should look for change of ownership 811 * when the cycle bit is set to 1. 812 */ 813 ring->cycle_state = 1; 814 815 /* 816 * Reset the hardware dequeue pointer. 817 * Yes, this will need to be re-written after resume, but we're paranoid 818 * and want to make sure the hardware doesn't access bogus memory 819 * because, say, the BIOS or an SMI started the host without changing 820 * the command ring pointers. 821 */ 822 xhci_set_cmd_ring_deq(xhci); 823 } 824 825 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci) 826 { 827 int port_index; 828 __le32 __iomem **port_array; 829 unsigned long flags; 830 u32 t1, t2; 831 832 spin_lock_irqsave(&xhci->lock, flags); 833 834 /* disable usb3 ports Wake bits */ 835 port_index = xhci->num_usb3_ports; 836 port_array = xhci->usb3_ports; 837 while (port_index--) { 838 t1 = readl(port_array[port_index]); 839 t1 = xhci_port_state_to_neutral(t1); 840 t2 = t1 & ~PORT_WAKE_BITS; 841 if (t1 != t2) 842 writel(t2, port_array[port_index]); 843 } 844 845 /* disable usb2 ports Wake bits */ 846 port_index = xhci->num_usb2_ports; 847 port_array = xhci->usb2_ports; 848 while (port_index--) { 849 t1 = readl(port_array[port_index]); 850 t1 = xhci_port_state_to_neutral(t1); 851 t2 = t1 & ~PORT_WAKE_BITS; 852 if (t1 != t2) 853 writel(t2, port_array[port_index]); 854 } 855 856 spin_unlock_irqrestore(&xhci->lock, flags); 857 } 858 859 /* 860 * Stop HC (not bus-specific) 861 * 862 * This is called when the machine transition into S3/S4 mode. 863 * 864 */ 865 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup) 866 { 867 int rc = 0; 868 unsigned int delay = XHCI_MAX_HALT_USEC; 869 struct usb_hcd *hcd = xhci_to_hcd(xhci); 870 u32 command; 871 872 if (!hcd->state) 873 return 0; 874 875 if (hcd->state != HC_STATE_SUSPENDED || 876 xhci->shared_hcd->state != HC_STATE_SUSPENDED) 877 return -EINVAL; 878 879 /* Clear root port wake on bits if wakeup not allowed. */ 880 if (!do_wakeup) 881 xhci_disable_port_wake_on_bits(xhci); 882 883 /* Don't poll the roothubs on bus suspend. */ 884 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__); 885 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 886 del_timer_sync(&hcd->rh_timer); 887 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 888 del_timer_sync(&xhci->shared_hcd->rh_timer); 889 890 spin_lock_irq(&xhci->lock); 891 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 892 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 893 /* step 1: stop endpoint */ 894 /* skipped assuming that port suspend has done */ 895 896 /* step 2: clear Run/Stop bit */ 897 command = readl(&xhci->op_regs->command); 898 command &= ~CMD_RUN; 899 writel(command, &xhci->op_regs->command); 900 901 /* Some chips from Fresco Logic need an extraordinary delay */ 902 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1; 903 904 if (xhci_handshake(&xhci->op_regs->status, 905 STS_HALT, STS_HALT, delay)) { 906 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); 907 spin_unlock_irq(&xhci->lock); 908 return -ETIMEDOUT; 909 } 910 xhci_clear_command_ring(xhci); 911 912 /* step 3: save registers */ 913 xhci_save_registers(xhci); 914 915 /* step 4: set CSS flag */ 916 command = readl(&xhci->op_regs->command); 917 command |= CMD_CSS; 918 writel(command, &xhci->op_regs->command); 919 if (xhci_handshake(&xhci->op_regs->status, 920 STS_SAVE, 0, 10 * 1000)) { 921 xhci_warn(xhci, "WARN: xHC save state timeout\n"); 922 spin_unlock_irq(&xhci->lock); 923 return -ETIMEDOUT; 924 } 925 spin_unlock_irq(&xhci->lock); 926 927 /* 928 * Deleting Compliance Mode Recovery Timer because the xHCI Host 929 * is about to be suspended. 930 */ 931 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 932 (!(xhci_all_ports_seen_u0(xhci)))) { 933 del_timer_sync(&xhci->comp_mode_recovery_timer); 934 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 935 "%s: compliance mode recovery timer deleted", 936 __func__); 937 } 938 939 /* step 5: remove core well power */ 940 /* synchronize irq when using MSI-X */ 941 xhci_msix_sync_irqs(xhci); 942 943 return rc; 944 } 945 EXPORT_SYMBOL_GPL(xhci_suspend); 946 947 /* 948 * start xHC (not bus-specific) 949 * 950 * This is called when the machine transition from S3/S4 mode. 951 * 952 */ 953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated) 954 { 955 u32 command, temp = 0, status; 956 struct usb_hcd *hcd = xhci_to_hcd(xhci); 957 struct usb_hcd *secondary_hcd; 958 int retval = 0; 959 bool comp_timer_running = false; 960 961 if (!hcd->state) 962 return 0; 963 964 /* Wait a bit if either of the roothubs need to settle from the 965 * transition into bus suspend. 966 */ 967 if (time_before(jiffies, xhci->bus_state[0].next_statechange) || 968 time_before(jiffies, 969 xhci->bus_state[1].next_statechange)) 970 msleep(100); 971 972 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 973 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); 974 975 spin_lock_irq(&xhci->lock); 976 if (xhci->quirks & XHCI_RESET_ON_RESUME) 977 hibernated = true; 978 979 if (!hibernated) { 980 /* step 1: restore register */ 981 xhci_restore_registers(xhci); 982 /* step 2: initialize command ring buffer */ 983 xhci_set_cmd_ring_deq(xhci); 984 /* step 3: restore state and start state*/ 985 /* step 3: set CRS flag */ 986 command = readl(&xhci->op_regs->command); 987 command |= CMD_CRS; 988 writel(command, &xhci->op_regs->command); 989 if (xhci_handshake(&xhci->op_regs->status, 990 STS_RESTORE, 0, 10 * 1000)) { 991 xhci_warn(xhci, "WARN: xHC restore state timeout\n"); 992 spin_unlock_irq(&xhci->lock); 993 return -ETIMEDOUT; 994 } 995 temp = readl(&xhci->op_regs->status); 996 } 997 998 /* If restore operation fails, re-initialize the HC during resume */ 999 if ((temp & STS_SRE) || hibernated) { 1000 1001 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && 1002 !(xhci_all_ports_seen_u0(xhci))) { 1003 del_timer_sync(&xhci->comp_mode_recovery_timer); 1004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1005 "Compliance Mode Recovery Timer deleted!"); 1006 } 1007 1008 /* Let the USB core know _both_ roothubs lost power. */ 1009 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); 1010 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); 1011 1012 xhci_dbg(xhci, "Stop HCD\n"); 1013 xhci_halt(xhci); 1014 xhci_reset(xhci); 1015 spin_unlock_irq(&xhci->lock); 1016 xhci_cleanup_msix(xhci); 1017 1018 xhci_dbg(xhci, "// Disabling event ring interrupts\n"); 1019 temp = readl(&xhci->op_regs->status); 1020 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status); 1021 temp = readl(&xhci->ir_set->irq_pending); 1022 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); 1023 xhci_print_ir_set(xhci, 0); 1024 1025 xhci_dbg(xhci, "cleaning up memory\n"); 1026 xhci_mem_cleanup(xhci); 1027 xhci_dbg(xhci, "xhci_stop completed - status = %x\n", 1028 readl(&xhci->op_regs->status)); 1029 1030 /* USB core calls the PCI reinit and start functions twice: 1031 * first with the primary HCD, and then with the secondary HCD. 1032 * If we don't do the same, the host will never be started. 1033 */ 1034 if (!usb_hcd_is_primary_hcd(hcd)) 1035 secondary_hcd = hcd; 1036 else 1037 secondary_hcd = xhci->shared_hcd; 1038 1039 xhci_dbg(xhci, "Initialize the xhci_hcd\n"); 1040 retval = xhci_init(hcd->primary_hcd); 1041 if (retval) 1042 return retval; 1043 comp_timer_running = true; 1044 1045 xhci_dbg(xhci, "Start the primary HCD\n"); 1046 retval = xhci_run(hcd->primary_hcd); 1047 if (!retval) { 1048 xhci_dbg(xhci, "Start the secondary HCD\n"); 1049 retval = xhci_run(secondary_hcd); 1050 } 1051 hcd->state = HC_STATE_SUSPENDED; 1052 xhci->shared_hcd->state = HC_STATE_SUSPENDED; 1053 goto done; 1054 } 1055 1056 /* step 4: set Run/Stop bit */ 1057 command = readl(&xhci->op_regs->command); 1058 command |= CMD_RUN; 1059 writel(command, &xhci->op_regs->command); 1060 xhci_handshake(&xhci->op_regs->status, STS_HALT, 1061 0, 250 * 1000); 1062 1063 /* step 5: walk topology and initialize portsc, 1064 * portpmsc and portli 1065 */ 1066 /* this is done in bus_resume */ 1067 1068 /* step 6: restart each of the previously 1069 * Running endpoints by ringing their doorbells 1070 */ 1071 1072 spin_unlock_irq(&xhci->lock); 1073 1074 done: 1075 if (retval == 0) { 1076 /* Resume root hubs only when have pending events. */ 1077 status = readl(&xhci->op_regs->status); 1078 if (status & STS_EINT) { 1079 usb_hcd_resume_root_hub(xhci->shared_hcd); 1080 usb_hcd_resume_root_hub(hcd); 1081 } 1082 } 1083 1084 /* 1085 * If system is subject to the Quirk, Compliance Mode Timer needs to 1086 * be re-initialized Always after a system resume. Ports are subject 1087 * to suffer the Compliance Mode issue again. It doesn't matter if 1088 * ports have entered previously to U0 before system's suspension. 1089 */ 1090 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running) 1091 compliance_mode_recovery_timer_init(xhci); 1092 1093 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL) 1094 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller)); 1095 1096 /* Re-enable port polling. */ 1097 xhci_dbg(xhci, "%s: starting port polling.\n", __func__); 1098 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags); 1099 usb_hcd_poll_rh_status(xhci->shared_hcd); 1100 set_bit(HCD_FLAG_POLL_RH, &hcd->flags); 1101 usb_hcd_poll_rh_status(hcd); 1102 1103 return retval; 1104 } 1105 EXPORT_SYMBOL_GPL(xhci_resume); 1106 #endif /* CONFIG_PM */ 1107 1108 /*-------------------------------------------------------------------------*/ 1109 1110 /** 1111 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and 1112 * HCDs. Find the index for an endpoint given its descriptor. Use the return 1113 * value to right shift 1 for the bitmask. 1114 * 1115 * Index = (epnum * 2) + direction - 1, 1116 * where direction = 0 for OUT, 1 for IN. 1117 * For control endpoints, the IN index is used (OUT index is unused), so 1118 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 1119 */ 1120 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) 1121 { 1122 unsigned int index; 1123 if (usb_endpoint_xfer_control(desc)) 1124 index = (unsigned int) (usb_endpoint_num(desc)*2); 1125 else 1126 index = (unsigned int) (usb_endpoint_num(desc)*2) + 1127 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 1128 return index; 1129 } 1130 1131 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint 1132 * address from the XHCI endpoint index. 1133 */ 1134 unsigned int xhci_get_endpoint_address(unsigned int ep_index) 1135 { 1136 unsigned int number = DIV_ROUND_UP(ep_index, 2); 1137 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN; 1138 return direction | number; 1139 } 1140 1141 /* Find the flag for this endpoint (for use in the control context). Use the 1142 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1143 * bit 1, etc. 1144 */ 1145 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) 1146 { 1147 return 1 << (xhci_get_endpoint_index(desc) + 1); 1148 } 1149 1150 /* Find the flag for this endpoint (for use in the control context). Use the 1151 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 1152 * bit 1, etc. 1153 */ 1154 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) 1155 { 1156 return 1 << (ep_index + 1); 1157 } 1158 1159 /* Compute the last valid endpoint context index. Basically, this is the 1160 * endpoint index plus one. For slot contexts with more than valid endpoint, 1161 * we find the most significant bit set in the added contexts flags. 1162 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 1163 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. 1164 */ 1165 unsigned int xhci_last_valid_endpoint(u32 added_ctxs) 1166 { 1167 return fls(added_ctxs) - 1; 1168 } 1169 1170 /* Returns 1 if the arguments are OK; 1171 * returns 0 this is a root hub; returns -EINVAL for NULL pointers. 1172 */ 1173 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, 1174 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, 1175 const char *func) { 1176 struct xhci_hcd *xhci; 1177 struct xhci_virt_device *virt_dev; 1178 1179 if (!hcd || (check_ep && !ep) || !udev) { 1180 pr_debug("xHCI %s called with invalid args\n", func); 1181 return -EINVAL; 1182 } 1183 if (!udev->parent) { 1184 pr_debug("xHCI %s called for root hub\n", func); 1185 return 0; 1186 } 1187 1188 xhci = hcd_to_xhci(hcd); 1189 if (check_virt_dev) { 1190 if (!udev->slot_id || !xhci->devs[udev->slot_id]) { 1191 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n", 1192 func); 1193 return -EINVAL; 1194 } 1195 1196 virt_dev = xhci->devs[udev->slot_id]; 1197 if (virt_dev->udev != udev) { 1198 xhci_dbg(xhci, "xHCI %s called with udev and " 1199 "virt_dev does not match\n", func); 1200 return -EINVAL; 1201 } 1202 } 1203 1204 if (xhci->xhc_state & XHCI_STATE_HALTED) 1205 return -ENODEV; 1206 1207 return 1; 1208 } 1209 1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 1211 struct usb_device *udev, struct xhci_command *command, 1212 bool ctx_change, bool must_succeed); 1213 1214 /* 1215 * Full speed devices may have a max packet size greater than 8 bytes, but the 1216 * USB core doesn't know that until it reads the first 8 bytes of the 1217 * descriptor. If the usb_device's max packet size changes after that point, 1218 * we need to issue an evaluate context command and wait on it. 1219 */ 1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, 1221 unsigned int ep_index, struct urb *urb) 1222 { 1223 struct xhci_container_ctx *out_ctx; 1224 struct xhci_input_control_ctx *ctrl_ctx; 1225 struct xhci_ep_ctx *ep_ctx; 1226 struct xhci_command *command; 1227 int max_packet_size; 1228 int hw_max_packet_size; 1229 int ret = 0; 1230 1231 out_ctx = xhci->devs[slot_id]->out_ctx; 1232 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1233 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 1234 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc); 1235 if (hw_max_packet_size != max_packet_size) { 1236 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1237 "Max Packet Size for ep 0 changed."); 1238 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1239 "Max packet size in usb_device = %d", 1240 max_packet_size); 1241 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1242 "Max packet size in xHCI HW = %d", 1243 hw_max_packet_size); 1244 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1245 "Issuing evaluate context command."); 1246 1247 /* Set up the input context flags for the command */ 1248 /* FIXME: This won't work if a non-default control endpoint 1249 * changes max packet sizes. 1250 */ 1251 1252 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 1253 if (!command) 1254 return -ENOMEM; 1255 1256 command->in_ctx = xhci->devs[slot_id]->in_ctx; 1257 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 1258 if (!ctrl_ctx) { 1259 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1260 __func__); 1261 ret = -ENOMEM; 1262 goto command_cleanup; 1263 } 1264 /* Set up the modified control endpoint 0 */ 1265 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 1266 xhci->devs[slot_id]->out_ctx, ep_index); 1267 1268 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 1269 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); 1270 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 1271 1272 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 1273 ctrl_ctx->drop_flags = 0; 1274 1275 ret = xhci_configure_endpoint(xhci, urb->dev, command, 1276 true, false); 1277 1278 /* Clean up the input context for later use by bandwidth 1279 * functions. 1280 */ 1281 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 1282 command_cleanup: 1283 kfree(command->completion); 1284 kfree(command); 1285 } 1286 return ret; 1287 } 1288 1289 /* 1290 * non-error returns are a promise to giveback() the urb later 1291 * we drop ownership so next owner (or urb unlink) can get it 1292 */ 1293 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) 1294 { 1295 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 1296 unsigned long flags; 1297 int ret = 0; 1298 unsigned int slot_id, ep_index, ep_state; 1299 struct urb_priv *urb_priv; 1300 int num_tds; 1301 1302 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, 1303 true, true, __func__) <= 0) 1304 return -EINVAL; 1305 1306 slot_id = urb->dev->slot_id; 1307 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1308 1309 if (!HCD_HW_ACCESSIBLE(hcd)) { 1310 if (!in_interrupt()) 1311 xhci_dbg(xhci, "urb submitted during PCI suspend\n"); 1312 return -ESHUTDOWN; 1313 } 1314 1315 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) 1316 num_tds = urb->number_of_packets; 1317 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) && 1318 urb->transfer_buffer_length > 0 && 1319 urb->transfer_flags & URB_ZERO_PACKET && 1320 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc))) 1321 num_tds = 2; 1322 else 1323 num_tds = 1; 1324 1325 urb_priv = kzalloc(sizeof(struct urb_priv) + 1326 num_tds * sizeof(struct xhci_td), mem_flags); 1327 if (!urb_priv) 1328 return -ENOMEM; 1329 1330 urb_priv->num_tds = num_tds; 1331 urb_priv->num_tds_done = 0; 1332 urb->hcpriv = urb_priv; 1333 1334 trace_xhci_urb_enqueue(urb); 1335 1336 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1337 /* Check to see if the max packet size for the default control 1338 * endpoint changed during FS device enumeration 1339 */ 1340 if (urb->dev->speed == USB_SPEED_FULL) { 1341 ret = xhci_check_maxpacket(xhci, slot_id, 1342 ep_index, urb); 1343 if (ret < 0) { 1344 xhci_urb_free_priv(urb_priv); 1345 urb->hcpriv = NULL; 1346 return ret; 1347 } 1348 } 1349 } 1350 1351 spin_lock_irqsave(&xhci->lock, flags); 1352 1353 if (xhci->xhc_state & XHCI_STATE_DYING) { 1354 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n", 1355 urb->ep->desc.bEndpointAddress, urb); 1356 ret = -ESHUTDOWN; 1357 goto free_priv; 1358 } 1359 1360 switch (usb_endpoint_type(&urb->ep->desc)) { 1361 1362 case USB_ENDPOINT_XFER_CONTROL: 1363 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, 1364 slot_id, ep_index); 1365 break; 1366 case USB_ENDPOINT_XFER_BULK: 1367 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 1368 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) { 1369 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n", 1370 ep_state); 1371 ret = -EINVAL; 1372 break; 1373 } 1374 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, 1375 slot_id, ep_index); 1376 break; 1377 1378 1379 case USB_ENDPOINT_XFER_INT: 1380 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, 1381 slot_id, ep_index); 1382 break; 1383 1384 case USB_ENDPOINT_XFER_ISOC: 1385 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, 1386 slot_id, ep_index); 1387 } 1388 1389 if (ret) { 1390 free_priv: 1391 xhci_urb_free_priv(urb_priv); 1392 urb->hcpriv = NULL; 1393 } 1394 spin_unlock_irqrestore(&xhci->lock, flags); 1395 return ret; 1396 } 1397 1398 /* 1399 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop 1400 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC 1401 * should pick up where it left off in the TD, unless a Set Transfer Ring 1402 * Dequeue Pointer is issued. 1403 * 1404 * The TRBs that make up the buffers for the canceled URB will be "removed" from 1405 * the ring. Since the ring is a contiguous structure, they can't be physically 1406 * removed. Instead, there are two options: 1407 * 1408 * 1) If the HC is in the middle of processing the URB to be canceled, we 1409 * simply move the ring's dequeue pointer past those TRBs using the Set 1410 * Transfer Ring Dequeue Pointer command. This will be the common case, 1411 * when drivers timeout on the last submitted URB and attempt to cancel. 1412 * 1413 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a 1414 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The 1415 * HC will need to invalidate the any TRBs it has cached after the stop 1416 * endpoint command, as noted in the xHCI 0.95 errata. 1417 * 1418 * 3) The TD may have completed by the time the Stop Endpoint Command 1419 * completes, so software needs to handle that case too. 1420 * 1421 * This function should protect against the TD enqueueing code ringing the 1422 * doorbell while this code is waiting for a Stop Endpoint command to complete. 1423 * It also needs to account for multiple cancellations on happening at the same 1424 * time for the same endpoint. 1425 * 1426 * Note that this function can be called in any context, or so says 1427 * usb_hcd_unlink_urb() 1428 */ 1429 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 1430 { 1431 unsigned long flags; 1432 int ret, i; 1433 u32 temp; 1434 struct xhci_hcd *xhci; 1435 struct urb_priv *urb_priv; 1436 struct xhci_td *td; 1437 unsigned int ep_index; 1438 struct xhci_ring *ep_ring; 1439 struct xhci_virt_ep *ep; 1440 struct xhci_command *command; 1441 struct xhci_virt_device *vdev; 1442 1443 xhci = hcd_to_xhci(hcd); 1444 spin_lock_irqsave(&xhci->lock, flags); 1445 1446 trace_xhci_urb_dequeue(urb); 1447 1448 /* Make sure the URB hasn't completed or been unlinked already */ 1449 ret = usb_hcd_check_unlink_urb(hcd, urb, status); 1450 if (ret) 1451 goto done; 1452 1453 /* give back URB now if we can't queue it for cancel */ 1454 vdev = xhci->devs[urb->dev->slot_id]; 1455 urb_priv = urb->hcpriv; 1456 if (!vdev || !urb_priv) 1457 goto err_giveback; 1458 1459 ep_index = xhci_get_endpoint_index(&urb->ep->desc); 1460 ep = &vdev->eps[ep_index]; 1461 ep_ring = xhci_urb_to_transfer_ring(xhci, urb); 1462 if (!ep || !ep_ring) 1463 goto err_giveback; 1464 1465 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */ 1466 temp = readl(&xhci->op_regs->status); 1467 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) { 1468 xhci_hc_died(xhci); 1469 goto done; 1470 } 1471 1472 if (xhci->xhc_state & XHCI_STATE_HALTED) { 1473 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1474 "HC halted, freeing TD manually."); 1475 for (i = urb_priv->num_tds_done; 1476 i < urb_priv->num_tds; 1477 i++) { 1478 td = &urb_priv->td[i]; 1479 if (!list_empty(&td->td_list)) 1480 list_del_init(&td->td_list); 1481 if (!list_empty(&td->cancelled_td_list)) 1482 list_del_init(&td->cancelled_td_list); 1483 } 1484 goto err_giveback; 1485 } 1486 1487 i = urb_priv->num_tds_done; 1488 if (i < urb_priv->num_tds) 1489 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, 1490 "Cancel URB %p, dev %s, ep 0x%x, " 1491 "starting at offset 0x%llx", 1492 urb, urb->dev->devpath, 1493 urb->ep->desc.bEndpointAddress, 1494 (unsigned long long) xhci_trb_virt_to_dma( 1495 urb_priv->td[i].start_seg, 1496 urb_priv->td[i].first_trb)); 1497 1498 for (; i < urb_priv->num_tds; i++) { 1499 td = &urb_priv->td[i]; 1500 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); 1501 } 1502 1503 /* Queue a stop endpoint command, but only if this is 1504 * the first cancellation to be handled. 1505 */ 1506 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) { 1507 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); 1508 if (!command) { 1509 ret = -ENOMEM; 1510 goto done; 1511 } 1512 ep->ep_state |= EP_STOP_CMD_PENDING; 1513 ep->stop_cmd_timer.expires = jiffies + 1514 XHCI_STOP_EP_CMD_TIMEOUT * HZ; 1515 add_timer(&ep->stop_cmd_timer); 1516 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id, 1517 ep_index, 0); 1518 xhci_ring_cmd_db(xhci); 1519 } 1520 done: 1521 spin_unlock_irqrestore(&xhci->lock, flags); 1522 return ret; 1523 1524 err_giveback: 1525 if (urb_priv) 1526 xhci_urb_free_priv(urb_priv); 1527 usb_hcd_unlink_urb_from_ep(hcd, urb); 1528 spin_unlock_irqrestore(&xhci->lock, flags); 1529 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); 1530 return ret; 1531 } 1532 1533 /* Drop an endpoint from a new bandwidth configuration for this device. 1534 * Only one call to this function is allowed per endpoint before 1535 * check_bandwidth() or reset_bandwidth() must be called. 1536 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1537 * add the endpoint to the schedule with possibly new parameters denoted by a 1538 * different endpoint descriptor in usb_host_endpoint. 1539 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1540 * not allowed. 1541 * 1542 * The USB core will not allow URBs to be queued to an endpoint that is being 1543 * disabled, so there's no need for mutual exclusion to protect 1544 * the xhci->devs[slot_id] structure. 1545 */ 1546 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1547 struct usb_host_endpoint *ep) 1548 { 1549 struct xhci_hcd *xhci; 1550 struct xhci_container_ctx *in_ctx, *out_ctx; 1551 struct xhci_input_control_ctx *ctrl_ctx; 1552 unsigned int ep_index; 1553 struct xhci_ep_ctx *ep_ctx; 1554 u32 drop_flag; 1555 u32 new_add_flags, new_drop_flags; 1556 int ret; 1557 1558 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1559 if (ret <= 0) 1560 return ret; 1561 xhci = hcd_to_xhci(hcd); 1562 if (xhci->xhc_state & XHCI_STATE_DYING) 1563 return -ENODEV; 1564 1565 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 1566 drop_flag = xhci_get_endpoint_flag(&ep->desc); 1567 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { 1568 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", 1569 __func__, drop_flag); 1570 return 0; 1571 } 1572 1573 in_ctx = xhci->devs[udev->slot_id]->in_ctx; 1574 out_ctx = xhci->devs[udev->slot_id]->out_ctx; 1575 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1576 if (!ctrl_ctx) { 1577 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1578 __func__); 1579 return 0; 1580 } 1581 1582 ep_index = xhci_get_endpoint_index(&ep->desc); 1583 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1584 /* If the HC already knows the endpoint is disabled, 1585 * or the HCD has noted it is disabled, ignore this request 1586 */ 1587 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) || 1588 le32_to_cpu(ctrl_ctx->drop_flags) & 1589 xhci_get_endpoint_flag(&ep->desc)) { 1590 /* Do not warn when called after a usb_device_reset */ 1591 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL) 1592 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", 1593 __func__, ep); 1594 return 0; 1595 } 1596 1597 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); 1598 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1599 1600 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); 1601 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1602 1603 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); 1604 1605 if (xhci->quirks & XHCI_MTK_HOST) 1606 xhci_mtk_drop_ep_quirk(hcd, udev, ep); 1607 1608 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1609 (unsigned int) ep->desc.bEndpointAddress, 1610 udev->slot_id, 1611 (unsigned int) new_drop_flags, 1612 (unsigned int) new_add_flags); 1613 return 0; 1614 } 1615 1616 /* Add an endpoint to a new possible bandwidth configuration for this device. 1617 * Only one call to this function is allowed per endpoint before 1618 * check_bandwidth() or reset_bandwidth() must be called. 1619 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will 1620 * add the endpoint to the schedule with possibly new parameters denoted by a 1621 * different endpoint descriptor in usb_host_endpoint. 1622 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is 1623 * not allowed. 1624 * 1625 * The USB core will not allow URBs to be queued to an endpoint until the 1626 * configuration or alt setting is installed in the device, so there's no need 1627 * for mutual exclusion to protect the xhci->devs[slot_id] structure. 1628 */ 1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, 1630 struct usb_host_endpoint *ep) 1631 { 1632 struct xhci_hcd *xhci; 1633 struct xhci_container_ctx *in_ctx; 1634 unsigned int ep_index; 1635 struct xhci_input_control_ctx *ctrl_ctx; 1636 u32 added_ctxs; 1637 u32 new_add_flags, new_drop_flags; 1638 struct xhci_virt_device *virt_dev; 1639 int ret = 0; 1640 1641 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); 1642 if (ret <= 0) { 1643 /* So we won't queue a reset ep command for a root hub */ 1644 ep->hcpriv = NULL; 1645 return ret; 1646 } 1647 xhci = hcd_to_xhci(hcd); 1648 if (xhci->xhc_state & XHCI_STATE_DYING) 1649 return -ENODEV; 1650 1651 added_ctxs = xhci_get_endpoint_flag(&ep->desc); 1652 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 1653 /* FIXME when we have to issue an evaluate endpoint command to 1654 * deal with ep0 max packet size changing once we get the 1655 * descriptors 1656 */ 1657 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", 1658 __func__, added_ctxs); 1659 return 0; 1660 } 1661 1662 virt_dev = xhci->devs[udev->slot_id]; 1663 in_ctx = virt_dev->in_ctx; 1664 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1665 if (!ctrl_ctx) { 1666 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1667 __func__); 1668 return 0; 1669 } 1670 1671 ep_index = xhci_get_endpoint_index(&ep->desc); 1672 /* If this endpoint is already in use, and the upper layers are trying 1673 * to add it again without dropping it, reject the addition. 1674 */ 1675 if (virt_dev->eps[ep_index].ring && 1676 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) { 1677 xhci_warn(xhci, "Trying to add endpoint 0x%x " 1678 "without dropping it.\n", 1679 (unsigned int) ep->desc.bEndpointAddress); 1680 return -EINVAL; 1681 } 1682 1683 /* If the HCD has already noted the endpoint is enabled, 1684 * ignore this request. 1685 */ 1686 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) { 1687 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", 1688 __func__, ep); 1689 return 0; 1690 } 1691 1692 /* 1693 * Configuration and alternate setting changes must be done in 1694 * process context, not interrupt context (or so documenation 1695 * for usb_set_interface() and usb_set_configuration() claim). 1696 */ 1697 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) { 1698 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", 1699 __func__, ep->desc.bEndpointAddress); 1700 return -ENOMEM; 1701 } 1702 1703 if (xhci->quirks & XHCI_MTK_HOST) { 1704 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep); 1705 if (ret < 0) { 1706 xhci_free_endpoint_ring(xhci, virt_dev, ep_index); 1707 return ret; 1708 } 1709 } 1710 1711 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); 1712 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); 1713 1714 /* If xhci_endpoint_disable() was called for this endpoint, but the 1715 * xHC hasn't been notified yet through the check_bandwidth() call, 1716 * this re-adds a new state for the endpoint from the new endpoint 1717 * descriptors. We must drop and re-add this endpoint, so we leave the 1718 * drop flags alone. 1719 */ 1720 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); 1721 1722 /* Store the usb_device pointer for later use */ 1723 ep->hcpriv = udev; 1724 1725 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n", 1726 (unsigned int) ep->desc.bEndpointAddress, 1727 udev->slot_id, 1728 (unsigned int) new_drop_flags, 1729 (unsigned int) new_add_flags); 1730 return 0; 1731 } 1732 1733 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) 1734 { 1735 struct xhci_input_control_ctx *ctrl_ctx; 1736 struct xhci_ep_ctx *ep_ctx; 1737 struct xhci_slot_ctx *slot_ctx; 1738 int i; 1739 1740 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 1741 if (!ctrl_ctx) { 1742 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 1743 __func__); 1744 return; 1745 } 1746 1747 /* When a device's add flag and drop flag are zero, any subsequent 1748 * configure endpoint command will leave that endpoint's state 1749 * untouched. Make sure we don't leave any old state in the input 1750 * endpoint contexts. 1751 */ 1752 ctrl_ctx->drop_flags = 0; 1753 ctrl_ctx->add_flags = 0; 1754 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 1755 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 1756 /* Endpoint 0 is always valid */ 1757 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 1758 for (i = 1; i < 31; i++) { 1759 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); 1760 ep_ctx->ep_info = 0; 1761 ep_ctx->ep_info2 = 0; 1762 ep_ctx->deq = 0; 1763 ep_ctx->tx_info = 0; 1764 } 1765 } 1766 1767 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, 1768 struct usb_device *udev, u32 *cmd_status) 1769 { 1770 int ret; 1771 1772 switch (*cmd_status) { 1773 case COMP_COMMAND_ABORTED: 1774 case COMP_COMMAND_RING_STOPPED: 1775 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n"); 1776 ret = -ETIME; 1777 break; 1778 case COMP_RESOURCE_ERROR: 1779 dev_warn(&udev->dev, 1780 "Not enough host controller resources for new device state.\n"); 1781 ret = -ENOMEM; 1782 /* FIXME: can we allocate more resources for the HC? */ 1783 break; 1784 case COMP_BANDWIDTH_ERROR: 1785 case COMP_SECONDARY_BANDWIDTH_ERROR: 1786 dev_warn(&udev->dev, 1787 "Not enough bandwidth for new device state.\n"); 1788 ret = -ENOSPC; 1789 /* FIXME: can we go back to the old state? */ 1790 break; 1791 case COMP_TRB_ERROR: 1792 /* the HCD set up something wrong */ 1793 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " 1794 "add flag = 1, " 1795 "and endpoint is not disabled.\n"); 1796 ret = -EINVAL; 1797 break; 1798 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1799 dev_warn(&udev->dev, 1800 "ERROR: Incompatible device for endpoint configure command.\n"); 1801 ret = -ENODEV; 1802 break; 1803 case COMP_SUCCESS: 1804 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1805 "Successful Endpoint Configure command"); 1806 ret = 0; 1807 break; 1808 default: 1809 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1810 *cmd_status); 1811 ret = -EINVAL; 1812 break; 1813 } 1814 return ret; 1815 } 1816 1817 static int xhci_evaluate_context_result(struct xhci_hcd *xhci, 1818 struct usb_device *udev, u32 *cmd_status) 1819 { 1820 int ret; 1821 1822 switch (*cmd_status) { 1823 case COMP_COMMAND_ABORTED: 1824 case COMP_COMMAND_RING_STOPPED: 1825 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n"); 1826 ret = -ETIME; 1827 break; 1828 case COMP_PARAMETER_ERROR: 1829 dev_warn(&udev->dev, 1830 "WARN: xHCI driver setup invalid evaluate context command.\n"); 1831 ret = -EINVAL; 1832 break; 1833 case COMP_SLOT_NOT_ENABLED_ERROR: 1834 dev_warn(&udev->dev, 1835 "WARN: slot not enabled for evaluate context command.\n"); 1836 ret = -EINVAL; 1837 break; 1838 case COMP_CONTEXT_STATE_ERROR: 1839 dev_warn(&udev->dev, 1840 "WARN: invalid context state for evaluate context command.\n"); 1841 ret = -EINVAL; 1842 break; 1843 case COMP_INCOMPATIBLE_DEVICE_ERROR: 1844 dev_warn(&udev->dev, 1845 "ERROR: Incompatible device for evaluate context command.\n"); 1846 ret = -ENODEV; 1847 break; 1848 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: 1849 /* Max Exit Latency too large error */ 1850 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n"); 1851 ret = -EINVAL; 1852 break; 1853 case COMP_SUCCESS: 1854 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 1855 "Successful evaluate context command"); 1856 ret = 0; 1857 break; 1858 default: 1859 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n", 1860 *cmd_status); 1861 ret = -EINVAL; 1862 break; 1863 } 1864 return ret; 1865 } 1866 1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci, 1868 struct xhci_input_control_ctx *ctrl_ctx) 1869 { 1870 u32 valid_add_flags; 1871 u32 valid_drop_flags; 1872 1873 /* Ignore the slot flag (bit 0), and the default control endpoint flag 1874 * (bit 1). The default control endpoint is added during the Address 1875 * Device command and is never removed until the slot is disabled. 1876 */ 1877 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1878 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1879 1880 /* Use hweight32 to count the number of ones in the add flags, or 1881 * number of endpoints added. Don't count endpoints that are changed 1882 * (both added and dropped). 1883 */ 1884 return hweight32(valid_add_flags) - 1885 hweight32(valid_add_flags & valid_drop_flags); 1886 } 1887 1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci, 1889 struct xhci_input_control_ctx *ctrl_ctx) 1890 { 1891 u32 valid_add_flags; 1892 u32 valid_drop_flags; 1893 1894 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2; 1895 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2; 1896 1897 return hweight32(valid_drop_flags) - 1898 hweight32(valid_add_flags & valid_drop_flags); 1899 } 1900 1901 /* 1902 * We need to reserve the new number of endpoints before the configure endpoint 1903 * command completes. We can't subtract the dropped endpoints from the number 1904 * of active endpoints until the command completes because we can oversubscribe 1905 * the host in this case: 1906 * 1907 * - the first configure endpoint command drops more endpoints than it adds 1908 * - a second configure endpoint command that adds more endpoints is queued 1909 * - the first configure endpoint command fails, so the config is unchanged 1910 * - the second command may succeed, even though there isn't enough resources 1911 * 1912 * Must be called with xhci->lock held. 1913 */ 1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci, 1915 struct xhci_input_control_ctx *ctrl_ctx) 1916 { 1917 u32 added_eps; 1918 1919 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1920 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) { 1921 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1922 "Not enough ep ctxs: " 1923 "%u active, need to add %u, limit is %u.", 1924 xhci->num_active_eps, added_eps, 1925 xhci->limit_active_eps); 1926 return -ENOMEM; 1927 } 1928 xhci->num_active_eps += added_eps; 1929 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1930 "Adding %u ep ctxs, %u now active.", added_eps, 1931 xhci->num_active_eps); 1932 return 0; 1933 } 1934 1935 /* 1936 * The configure endpoint was failed by the xHC for some other reason, so we 1937 * need to revert the resources that failed configuration would have used. 1938 * 1939 * Must be called with xhci->lock held. 1940 */ 1941 static void xhci_free_host_resources(struct xhci_hcd *xhci, 1942 struct xhci_input_control_ctx *ctrl_ctx) 1943 { 1944 u32 num_failed_eps; 1945 1946 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx); 1947 xhci->num_active_eps -= num_failed_eps; 1948 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1949 "Removing %u failed ep ctxs, %u now active.", 1950 num_failed_eps, 1951 xhci->num_active_eps); 1952 } 1953 1954 /* 1955 * Now that the command has completed, clean up the active endpoint count by 1956 * subtracting out the endpoints that were dropped (but not changed). 1957 * 1958 * Must be called with xhci->lock held. 1959 */ 1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci, 1961 struct xhci_input_control_ctx *ctrl_ctx) 1962 { 1963 u32 num_dropped_eps; 1964 1965 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx); 1966 xhci->num_active_eps -= num_dropped_eps; 1967 if (num_dropped_eps) 1968 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 1969 "Removing %u dropped ep ctxs, %u now active.", 1970 num_dropped_eps, 1971 xhci->num_active_eps); 1972 } 1973 1974 static unsigned int xhci_get_block_size(struct usb_device *udev) 1975 { 1976 switch (udev->speed) { 1977 case USB_SPEED_LOW: 1978 case USB_SPEED_FULL: 1979 return FS_BLOCK; 1980 case USB_SPEED_HIGH: 1981 return HS_BLOCK; 1982 case USB_SPEED_SUPER: 1983 case USB_SPEED_SUPER_PLUS: 1984 return SS_BLOCK; 1985 case USB_SPEED_UNKNOWN: 1986 case USB_SPEED_WIRELESS: 1987 default: 1988 /* Should never happen */ 1989 return 1; 1990 } 1991 } 1992 1993 static unsigned int 1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw) 1995 { 1996 if (interval_bw->overhead[LS_OVERHEAD_TYPE]) 1997 return LS_OVERHEAD; 1998 if (interval_bw->overhead[FS_OVERHEAD_TYPE]) 1999 return FS_OVERHEAD; 2000 return HS_OVERHEAD; 2001 } 2002 2003 /* If we are changing a LS/FS device under a HS hub, 2004 * make sure (if we are activating a new TT) that the HS bus has enough 2005 * bandwidth for this new TT. 2006 */ 2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci, 2008 struct xhci_virt_device *virt_dev, 2009 int old_active_eps) 2010 { 2011 struct xhci_interval_bw_table *bw_table; 2012 struct xhci_tt_bw_info *tt_info; 2013 2014 /* Find the bandwidth table for the root port this TT is attached to. */ 2015 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table; 2016 tt_info = virt_dev->tt_info; 2017 /* If this TT already had active endpoints, the bandwidth for this TT 2018 * has already been added. Removing all periodic endpoints (and thus 2019 * making the TT enactive) will only decrease the bandwidth used. 2020 */ 2021 if (old_active_eps) 2022 return 0; 2023 if (old_active_eps == 0 && tt_info->active_eps != 0) { 2024 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT) 2025 return -ENOMEM; 2026 return 0; 2027 } 2028 /* Not sure why we would have no new active endpoints... 2029 * 2030 * Maybe because of an Evaluate Context change for a hub update or a 2031 * control endpoint 0 max packet size change? 2032 * FIXME: skip the bandwidth calculation in that case. 2033 */ 2034 return 0; 2035 } 2036 2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci, 2038 struct xhci_virt_device *virt_dev) 2039 { 2040 unsigned int bw_reserved; 2041 2042 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100); 2043 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved)) 2044 return -ENOMEM; 2045 2046 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100); 2047 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved)) 2048 return -ENOMEM; 2049 2050 return 0; 2051 } 2052 2053 /* 2054 * This algorithm is a very conservative estimate of the worst-case scheduling 2055 * scenario for any one interval. The hardware dynamically schedules the 2056 * packets, so we can't tell which microframe could be the limiting factor in 2057 * the bandwidth scheduling. This only takes into account periodic endpoints. 2058 * 2059 * Obviously, we can't solve an NP complete problem to find the minimum worst 2060 * case scenario. Instead, we come up with an estimate that is no less than 2061 * the worst case bandwidth used for any one microframe, but may be an 2062 * over-estimate. 2063 * 2064 * We walk the requirements for each endpoint by interval, starting with the 2065 * smallest interval, and place packets in the schedule where there is only one 2066 * possible way to schedule packets for that interval. In order to simplify 2067 * this algorithm, we record the largest max packet size for each interval, and 2068 * assume all packets will be that size. 2069 * 2070 * For interval 0, we obviously must schedule all packets for each interval. 2071 * The bandwidth for interval 0 is just the amount of data to be transmitted 2072 * (the sum of all max ESIT payload sizes, plus any overhead per packet times 2073 * the number of packets). 2074 * 2075 * For interval 1, we have two possible microframes to schedule those packets 2076 * in. For this algorithm, if we can schedule the same number of packets for 2077 * each possible scheduling opportunity (each microframe), we will do so. The 2078 * remaining number of packets will be saved to be transmitted in the gaps in 2079 * the next interval's scheduling sequence. 2080 * 2081 * As we move those remaining packets to be scheduled with interval 2 packets, 2082 * we have to double the number of remaining packets to transmit. This is 2083 * because the intervals are actually powers of 2, and we would be transmitting 2084 * the previous interval's packets twice in this interval. We also have to be 2085 * sure that when we look at the largest max packet size for this interval, we 2086 * also look at the largest max packet size for the remaining packets and take 2087 * the greater of the two. 2088 * 2089 * The algorithm continues to evenly distribute packets in each scheduling 2090 * opportunity, and push the remaining packets out, until we get to the last 2091 * interval. Then those packets and their associated overhead are just added 2092 * to the bandwidth used. 2093 */ 2094 static int xhci_check_bw_table(struct xhci_hcd *xhci, 2095 struct xhci_virt_device *virt_dev, 2096 int old_active_eps) 2097 { 2098 unsigned int bw_reserved; 2099 unsigned int max_bandwidth; 2100 unsigned int bw_used; 2101 unsigned int block_size; 2102 struct xhci_interval_bw_table *bw_table; 2103 unsigned int packet_size = 0; 2104 unsigned int overhead = 0; 2105 unsigned int packets_transmitted = 0; 2106 unsigned int packets_remaining = 0; 2107 unsigned int i; 2108 2109 if (virt_dev->udev->speed >= USB_SPEED_SUPER) 2110 return xhci_check_ss_bw(xhci, virt_dev); 2111 2112 if (virt_dev->udev->speed == USB_SPEED_HIGH) { 2113 max_bandwidth = HS_BW_LIMIT; 2114 /* Convert percent of bus BW reserved to blocks reserved */ 2115 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100); 2116 } else { 2117 max_bandwidth = FS_BW_LIMIT; 2118 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100); 2119 } 2120 2121 bw_table = virt_dev->bw_table; 2122 /* We need to translate the max packet size and max ESIT payloads into 2123 * the units the hardware uses. 2124 */ 2125 block_size = xhci_get_block_size(virt_dev->udev); 2126 2127 /* If we are manipulating a LS/FS device under a HS hub, double check 2128 * that the HS bus has enough bandwidth if we are activing a new TT. 2129 */ 2130 if (virt_dev->tt_info) { 2131 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2132 "Recalculating BW for rootport %u", 2133 virt_dev->real_port); 2134 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) { 2135 xhci_warn(xhci, "Not enough bandwidth on HS bus for " 2136 "newly activated TT.\n"); 2137 return -ENOMEM; 2138 } 2139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2140 "Recalculating BW for TT slot %u port %u", 2141 virt_dev->tt_info->slot_id, 2142 virt_dev->tt_info->ttport); 2143 } else { 2144 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2145 "Recalculating BW for rootport %u", 2146 virt_dev->real_port); 2147 } 2148 2149 /* Add in how much bandwidth will be used for interval zero, or the 2150 * rounded max ESIT payload + number of packets * largest overhead. 2151 */ 2152 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) + 2153 bw_table->interval_bw[0].num_packets * 2154 xhci_get_largest_overhead(&bw_table->interval_bw[0]); 2155 2156 for (i = 1; i < XHCI_MAX_INTERVAL; i++) { 2157 unsigned int bw_added; 2158 unsigned int largest_mps; 2159 unsigned int interval_overhead; 2160 2161 /* 2162 * How many packets could we transmit in this interval? 2163 * If packets didn't fit in the previous interval, we will need 2164 * to transmit that many packets twice within this interval. 2165 */ 2166 packets_remaining = 2 * packets_remaining + 2167 bw_table->interval_bw[i].num_packets; 2168 2169 /* Find the largest max packet size of this or the previous 2170 * interval. 2171 */ 2172 if (list_empty(&bw_table->interval_bw[i].endpoints)) 2173 largest_mps = 0; 2174 else { 2175 struct xhci_virt_ep *virt_ep; 2176 struct list_head *ep_entry; 2177 2178 ep_entry = bw_table->interval_bw[i].endpoints.next; 2179 virt_ep = list_entry(ep_entry, 2180 struct xhci_virt_ep, bw_endpoint_list); 2181 /* Convert to blocks, rounding up */ 2182 largest_mps = DIV_ROUND_UP( 2183 virt_ep->bw_info.max_packet_size, 2184 block_size); 2185 } 2186 if (largest_mps > packet_size) 2187 packet_size = largest_mps; 2188 2189 /* Use the larger overhead of this or the previous interval. */ 2190 interval_overhead = xhci_get_largest_overhead( 2191 &bw_table->interval_bw[i]); 2192 if (interval_overhead > overhead) 2193 overhead = interval_overhead; 2194 2195 /* How many packets can we evenly distribute across 2196 * (1 << (i + 1)) possible scheduling opportunities? 2197 */ 2198 packets_transmitted = packets_remaining >> (i + 1); 2199 2200 /* Add in the bandwidth used for those scheduled packets */ 2201 bw_added = packets_transmitted * (overhead + packet_size); 2202 2203 /* How many packets do we have remaining to transmit? */ 2204 packets_remaining = packets_remaining % (1 << (i + 1)); 2205 2206 /* What largest max packet size should those packets have? */ 2207 /* If we've transmitted all packets, don't carry over the 2208 * largest packet size. 2209 */ 2210 if (packets_remaining == 0) { 2211 packet_size = 0; 2212 overhead = 0; 2213 } else if (packets_transmitted > 0) { 2214 /* Otherwise if we do have remaining packets, and we've 2215 * scheduled some packets in this interval, take the 2216 * largest max packet size from endpoints with this 2217 * interval. 2218 */ 2219 packet_size = largest_mps; 2220 overhead = interval_overhead; 2221 } 2222 /* Otherwise carry over packet_size and overhead from the last 2223 * time we had a remainder. 2224 */ 2225 bw_used += bw_added; 2226 if (bw_used > max_bandwidth) { 2227 xhci_warn(xhci, "Not enough bandwidth. " 2228 "Proposed: %u, Max: %u\n", 2229 bw_used, max_bandwidth); 2230 return -ENOMEM; 2231 } 2232 } 2233 /* 2234 * Ok, we know we have some packets left over after even-handedly 2235 * scheduling interval 15. We don't know which microframes they will 2236 * fit into, so we over-schedule and say they will be scheduled every 2237 * microframe. 2238 */ 2239 if (packets_remaining > 0) 2240 bw_used += overhead + packet_size; 2241 2242 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) { 2243 unsigned int port_index = virt_dev->real_port - 1; 2244 2245 /* OK, we're manipulating a HS device attached to a 2246 * root port bandwidth domain. Include the number of active TTs 2247 * in the bandwidth used. 2248 */ 2249 bw_used += TT_HS_OVERHEAD * 2250 xhci->rh_bw[port_index].num_active_tts; 2251 } 2252 2253 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2254 "Final bandwidth: %u, Limit: %u, Reserved: %u, " 2255 "Available: %u " "percent", 2256 bw_used, max_bandwidth, bw_reserved, 2257 (max_bandwidth - bw_used - bw_reserved) * 100 / 2258 max_bandwidth); 2259 2260 bw_used += bw_reserved; 2261 if (bw_used > max_bandwidth) { 2262 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n", 2263 bw_used, max_bandwidth); 2264 return -ENOMEM; 2265 } 2266 2267 bw_table->bw_used = bw_used; 2268 return 0; 2269 } 2270 2271 static bool xhci_is_async_ep(unsigned int ep_type) 2272 { 2273 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 2274 ep_type != ISOC_IN_EP && 2275 ep_type != INT_IN_EP); 2276 } 2277 2278 static bool xhci_is_sync_in_ep(unsigned int ep_type) 2279 { 2280 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP); 2281 } 2282 2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw) 2284 { 2285 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK); 2286 2287 if (ep_bw->ep_interval == 0) 2288 return SS_OVERHEAD_BURST + 2289 (ep_bw->mult * ep_bw->num_packets * 2290 (SS_OVERHEAD + mps)); 2291 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets * 2292 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST), 2293 1 << ep_bw->ep_interval); 2294 2295 } 2296 2297 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci, 2298 struct xhci_bw_info *ep_bw, 2299 struct xhci_interval_bw_table *bw_table, 2300 struct usb_device *udev, 2301 struct xhci_virt_ep *virt_ep, 2302 struct xhci_tt_bw_info *tt_info) 2303 { 2304 struct xhci_interval_bw *interval_bw; 2305 int normalized_interval; 2306 2307 if (xhci_is_async_ep(ep_bw->type)) 2308 return; 2309 2310 if (udev->speed >= USB_SPEED_SUPER) { 2311 if (xhci_is_sync_in_ep(ep_bw->type)) 2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -= 2313 xhci_get_ss_bw_consumed(ep_bw); 2314 else 2315 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -= 2316 xhci_get_ss_bw_consumed(ep_bw); 2317 return; 2318 } 2319 2320 /* SuperSpeed endpoints never get added to intervals in the table, so 2321 * this check is only valid for HS/FS/LS devices. 2322 */ 2323 if (list_empty(&virt_ep->bw_endpoint_list)) 2324 return; 2325 /* For LS/FS devices, we need to translate the interval expressed in 2326 * microframes to frames. 2327 */ 2328 if (udev->speed == USB_SPEED_HIGH) 2329 normalized_interval = ep_bw->ep_interval; 2330 else 2331 normalized_interval = ep_bw->ep_interval - 3; 2332 2333 if (normalized_interval == 0) 2334 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload; 2335 interval_bw = &bw_table->interval_bw[normalized_interval]; 2336 interval_bw->num_packets -= ep_bw->num_packets; 2337 switch (udev->speed) { 2338 case USB_SPEED_LOW: 2339 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1; 2340 break; 2341 case USB_SPEED_FULL: 2342 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1; 2343 break; 2344 case USB_SPEED_HIGH: 2345 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1; 2346 break; 2347 case USB_SPEED_SUPER: 2348 case USB_SPEED_SUPER_PLUS: 2349 case USB_SPEED_UNKNOWN: 2350 case USB_SPEED_WIRELESS: 2351 /* Should never happen because only LS/FS/HS endpoints will get 2352 * added to the endpoint list. 2353 */ 2354 return; 2355 } 2356 if (tt_info) 2357 tt_info->active_eps -= 1; 2358 list_del_init(&virt_ep->bw_endpoint_list); 2359 } 2360 2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci, 2362 struct xhci_bw_info *ep_bw, 2363 struct xhci_interval_bw_table *bw_table, 2364 struct usb_device *udev, 2365 struct xhci_virt_ep *virt_ep, 2366 struct xhci_tt_bw_info *tt_info) 2367 { 2368 struct xhci_interval_bw *interval_bw; 2369 struct xhci_virt_ep *smaller_ep; 2370 int normalized_interval; 2371 2372 if (xhci_is_async_ep(ep_bw->type)) 2373 return; 2374 2375 if (udev->speed == USB_SPEED_SUPER) { 2376 if (xhci_is_sync_in_ep(ep_bw->type)) 2377 xhci->devs[udev->slot_id]->bw_table->ss_bw_in += 2378 xhci_get_ss_bw_consumed(ep_bw); 2379 else 2380 xhci->devs[udev->slot_id]->bw_table->ss_bw_out += 2381 xhci_get_ss_bw_consumed(ep_bw); 2382 return; 2383 } 2384 2385 /* For LS/FS devices, we need to translate the interval expressed in 2386 * microframes to frames. 2387 */ 2388 if (udev->speed == USB_SPEED_HIGH) 2389 normalized_interval = ep_bw->ep_interval; 2390 else 2391 normalized_interval = ep_bw->ep_interval - 3; 2392 2393 if (normalized_interval == 0) 2394 bw_table->interval0_esit_payload += ep_bw->max_esit_payload; 2395 interval_bw = &bw_table->interval_bw[normalized_interval]; 2396 interval_bw->num_packets += ep_bw->num_packets; 2397 switch (udev->speed) { 2398 case USB_SPEED_LOW: 2399 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1; 2400 break; 2401 case USB_SPEED_FULL: 2402 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1; 2403 break; 2404 case USB_SPEED_HIGH: 2405 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1; 2406 break; 2407 case USB_SPEED_SUPER: 2408 case USB_SPEED_SUPER_PLUS: 2409 case USB_SPEED_UNKNOWN: 2410 case USB_SPEED_WIRELESS: 2411 /* Should never happen because only LS/FS/HS endpoints will get 2412 * added to the endpoint list. 2413 */ 2414 return; 2415 } 2416 2417 if (tt_info) 2418 tt_info->active_eps += 1; 2419 /* Insert the endpoint into the list, largest max packet size first. */ 2420 list_for_each_entry(smaller_ep, &interval_bw->endpoints, 2421 bw_endpoint_list) { 2422 if (ep_bw->max_packet_size >= 2423 smaller_ep->bw_info.max_packet_size) { 2424 /* Add the new ep before the smaller endpoint */ 2425 list_add_tail(&virt_ep->bw_endpoint_list, 2426 &smaller_ep->bw_endpoint_list); 2427 return; 2428 } 2429 } 2430 /* Add the new endpoint at the end of the list. */ 2431 list_add_tail(&virt_ep->bw_endpoint_list, 2432 &interval_bw->endpoints); 2433 } 2434 2435 void xhci_update_tt_active_eps(struct xhci_hcd *xhci, 2436 struct xhci_virt_device *virt_dev, 2437 int old_active_eps) 2438 { 2439 struct xhci_root_port_bw_info *rh_bw_info; 2440 if (!virt_dev->tt_info) 2441 return; 2442 2443 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1]; 2444 if (old_active_eps == 0 && 2445 virt_dev->tt_info->active_eps != 0) { 2446 rh_bw_info->num_active_tts += 1; 2447 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD; 2448 } else if (old_active_eps != 0 && 2449 virt_dev->tt_info->active_eps == 0) { 2450 rh_bw_info->num_active_tts -= 1; 2451 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD; 2452 } 2453 } 2454 2455 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci, 2456 struct xhci_virt_device *virt_dev, 2457 struct xhci_container_ctx *in_ctx) 2458 { 2459 struct xhci_bw_info ep_bw_info[31]; 2460 int i; 2461 struct xhci_input_control_ctx *ctrl_ctx; 2462 int old_active_eps = 0; 2463 2464 if (virt_dev->tt_info) 2465 old_active_eps = virt_dev->tt_info->active_eps; 2466 2467 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2468 if (!ctrl_ctx) { 2469 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2470 __func__); 2471 return -ENOMEM; 2472 } 2473 2474 for (i = 0; i < 31; i++) { 2475 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2476 continue; 2477 2478 /* Make a copy of the BW info in case we need to revert this */ 2479 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info, 2480 sizeof(ep_bw_info[i])); 2481 /* Drop the endpoint from the interval table if the endpoint is 2482 * being dropped or changed. 2483 */ 2484 if (EP_IS_DROPPED(ctrl_ctx, i)) 2485 xhci_drop_ep_from_interval_table(xhci, 2486 &virt_dev->eps[i].bw_info, 2487 virt_dev->bw_table, 2488 virt_dev->udev, 2489 &virt_dev->eps[i], 2490 virt_dev->tt_info); 2491 } 2492 /* Overwrite the information stored in the endpoints' bw_info */ 2493 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev); 2494 for (i = 0; i < 31; i++) { 2495 /* Add any changed or added endpoints to the interval table */ 2496 if (EP_IS_ADDED(ctrl_ctx, i)) 2497 xhci_add_ep_to_interval_table(xhci, 2498 &virt_dev->eps[i].bw_info, 2499 virt_dev->bw_table, 2500 virt_dev->udev, 2501 &virt_dev->eps[i], 2502 virt_dev->tt_info); 2503 } 2504 2505 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) { 2506 /* Ok, this fits in the bandwidth we have. 2507 * Update the number of active TTs. 2508 */ 2509 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 2510 return 0; 2511 } 2512 2513 /* We don't have enough bandwidth for this, revert the stored info. */ 2514 for (i = 0; i < 31; i++) { 2515 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i)) 2516 continue; 2517 2518 /* Drop the new copies of any added or changed endpoints from 2519 * the interval table. 2520 */ 2521 if (EP_IS_ADDED(ctrl_ctx, i)) { 2522 xhci_drop_ep_from_interval_table(xhci, 2523 &virt_dev->eps[i].bw_info, 2524 virt_dev->bw_table, 2525 virt_dev->udev, 2526 &virt_dev->eps[i], 2527 virt_dev->tt_info); 2528 } 2529 /* Revert the endpoint back to its old information */ 2530 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i], 2531 sizeof(ep_bw_info[i])); 2532 /* Add any changed or dropped endpoints back into the table */ 2533 if (EP_IS_DROPPED(ctrl_ctx, i)) 2534 xhci_add_ep_to_interval_table(xhci, 2535 &virt_dev->eps[i].bw_info, 2536 virt_dev->bw_table, 2537 virt_dev->udev, 2538 &virt_dev->eps[i], 2539 virt_dev->tt_info); 2540 } 2541 return -ENOMEM; 2542 } 2543 2544 2545 /* Issue a configure endpoint command or evaluate context command 2546 * and wait for it to finish. 2547 */ 2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci, 2549 struct usb_device *udev, 2550 struct xhci_command *command, 2551 bool ctx_change, bool must_succeed) 2552 { 2553 int ret; 2554 unsigned long flags; 2555 struct xhci_input_control_ctx *ctrl_ctx; 2556 struct xhci_virt_device *virt_dev; 2557 2558 if (!command) 2559 return -EINVAL; 2560 2561 spin_lock_irqsave(&xhci->lock, flags); 2562 2563 if (xhci->xhc_state & XHCI_STATE_DYING) { 2564 spin_unlock_irqrestore(&xhci->lock, flags); 2565 return -ESHUTDOWN; 2566 } 2567 2568 virt_dev = xhci->devs[udev->slot_id]; 2569 2570 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2571 if (!ctrl_ctx) { 2572 spin_unlock_irqrestore(&xhci->lock, flags); 2573 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2574 __func__); 2575 return -ENOMEM; 2576 } 2577 2578 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) && 2579 xhci_reserve_host_resources(xhci, ctrl_ctx)) { 2580 spin_unlock_irqrestore(&xhci->lock, flags); 2581 xhci_warn(xhci, "Not enough host resources, " 2582 "active endpoint contexts = %u\n", 2583 xhci->num_active_eps); 2584 return -ENOMEM; 2585 } 2586 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && 2587 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) { 2588 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2589 xhci_free_host_resources(xhci, ctrl_ctx); 2590 spin_unlock_irqrestore(&xhci->lock, flags); 2591 xhci_warn(xhci, "Not enough bandwidth\n"); 2592 return -ENOMEM; 2593 } 2594 2595 if (!ctx_change) 2596 ret = xhci_queue_configure_endpoint(xhci, command, 2597 command->in_ctx->dma, 2598 udev->slot_id, must_succeed); 2599 else 2600 ret = xhci_queue_evaluate_context(xhci, command, 2601 command->in_ctx->dma, 2602 udev->slot_id, must_succeed); 2603 if (ret < 0) { 2604 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) 2605 xhci_free_host_resources(xhci, ctrl_ctx); 2606 spin_unlock_irqrestore(&xhci->lock, flags); 2607 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 2608 "FIXME allocate a new ring segment"); 2609 return -ENOMEM; 2610 } 2611 xhci_ring_cmd_db(xhci); 2612 spin_unlock_irqrestore(&xhci->lock, flags); 2613 2614 /* Wait for the configure endpoint command to complete */ 2615 wait_for_completion(command->completion); 2616 2617 if (!ctx_change) 2618 ret = xhci_configure_endpoint_result(xhci, udev, 2619 &command->status); 2620 else 2621 ret = xhci_evaluate_context_result(xhci, udev, 2622 &command->status); 2623 2624 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 2625 spin_lock_irqsave(&xhci->lock, flags); 2626 /* If the command failed, remove the reserved resources. 2627 * Otherwise, clean up the estimate to include dropped eps. 2628 */ 2629 if (ret) 2630 xhci_free_host_resources(xhci, ctrl_ctx); 2631 else 2632 xhci_finish_resource_reservation(xhci, ctrl_ctx); 2633 spin_unlock_irqrestore(&xhci->lock, flags); 2634 } 2635 return ret; 2636 } 2637 2638 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci, 2639 struct xhci_virt_device *vdev, int i) 2640 { 2641 struct xhci_virt_ep *ep = &vdev->eps[i]; 2642 2643 if (ep->ep_state & EP_HAS_STREAMS) { 2644 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n", 2645 xhci_get_endpoint_address(i)); 2646 xhci_free_stream_info(xhci, ep->stream_info); 2647 ep->stream_info = NULL; 2648 ep->ep_state &= ~EP_HAS_STREAMS; 2649 } 2650 } 2651 2652 /* Called after one or more calls to xhci_add_endpoint() or 2653 * xhci_drop_endpoint(). If this call fails, the USB core is expected 2654 * to call xhci_reset_bandwidth(). 2655 * 2656 * Since we are in the middle of changing either configuration or 2657 * installing a new alt setting, the USB core won't allow URBs to be 2658 * enqueued for any endpoint on the old config or interface. Nothing 2659 * else should be touching the xhci->devs[slot_id] structure, so we 2660 * don't need to take the xhci->lock for manipulating that. 2661 */ 2662 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2663 { 2664 int i; 2665 int ret = 0; 2666 struct xhci_hcd *xhci; 2667 struct xhci_virt_device *virt_dev; 2668 struct xhci_input_control_ctx *ctrl_ctx; 2669 struct xhci_slot_ctx *slot_ctx; 2670 struct xhci_command *command; 2671 2672 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2673 if (ret <= 0) 2674 return ret; 2675 xhci = hcd_to_xhci(hcd); 2676 if ((xhci->xhc_state & XHCI_STATE_DYING) || 2677 (xhci->xhc_state & XHCI_STATE_REMOVING)) 2678 return -ENODEV; 2679 2680 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2681 virt_dev = xhci->devs[udev->slot_id]; 2682 2683 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 2684 if (!command) 2685 return -ENOMEM; 2686 2687 command->in_ctx = virt_dev->in_ctx; 2688 2689 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ 2690 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 2691 if (!ctrl_ctx) { 2692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2693 __func__); 2694 ret = -ENOMEM; 2695 goto command_cleanup; 2696 } 2697 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2698 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 2699 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 2700 2701 /* Don't issue the command if there's no endpoints to update. */ 2702 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) && 2703 ctrl_ctx->drop_flags == 0) { 2704 ret = 0; 2705 goto command_cleanup; 2706 } 2707 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 2708 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 2709 for (i = 31; i >= 1; i--) { 2710 __le32 le32 = cpu_to_le32(BIT(i)); 2711 2712 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32)) 2713 || (ctrl_ctx->add_flags & le32) || i == 1) { 2714 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 2715 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 2716 break; 2717 } 2718 } 2719 2720 ret = xhci_configure_endpoint(xhci, udev, command, 2721 false, false); 2722 if (ret) 2723 /* Callee should call reset_bandwidth() */ 2724 goto command_cleanup; 2725 2726 /* Free any rings that were dropped, but not changed. */ 2727 for (i = 1; i < 31; i++) { 2728 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) && 2729 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) { 2730 xhci_free_endpoint_ring(xhci, virt_dev, i); 2731 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2732 } 2733 } 2734 xhci_zero_in_ctx(xhci, virt_dev); 2735 /* 2736 * Install any rings for completely new endpoints or changed endpoints, 2737 * and free any old rings from changed endpoints. 2738 */ 2739 for (i = 1; i < 31; i++) { 2740 if (!virt_dev->eps[i].new_ring) 2741 continue; 2742 /* Only free the old ring if it exists. 2743 * It may not if this is the first add of an endpoint. 2744 */ 2745 if (virt_dev->eps[i].ring) { 2746 xhci_free_endpoint_ring(xhci, virt_dev, i); 2747 } 2748 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i); 2749 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; 2750 virt_dev->eps[i].new_ring = NULL; 2751 } 2752 command_cleanup: 2753 kfree(command->completion); 2754 kfree(command); 2755 2756 return ret; 2757 } 2758 2759 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) 2760 { 2761 struct xhci_hcd *xhci; 2762 struct xhci_virt_device *virt_dev; 2763 int i, ret; 2764 2765 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 2766 if (ret <= 0) 2767 return; 2768 xhci = hcd_to_xhci(hcd); 2769 2770 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); 2771 virt_dev = xhci->devs[udev->slot_id]; 2772 /* Free any rings allocated for added endpoints */ 2773 for (i = 0; i < 31; i++) { 2774 if (virt_dev->eps[i].new_ring) { 2775 xhci_ring_free(xhci, virt_dev->eps[i].new_ring); 2776 virt_dev->eps[i].new_ring = NULL; 2777 } 2778 } 2779 xhci_zero_in_ctx(xhci, virt_dev); 2780 } 2781 2782 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, 2783 struct xhci_container_ctx *in_ctx, 2784 struct xhci_container_ctx *out_ctx, 2785 struct xhci_input_control_ctx *ctrl_ctx, 2786 u32 add_flags, u32 drop_flags) 2787 { 2788 ctrl_ctx->add_flags = cpu_to_le32(add_flags); 2789 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); 2790 xhci_slot_copy(xhci, in_ctx, out_ctx); 2791 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 2792 } 2793 2794 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, 2795 unsigned int slot_id, unsigned int ep_index, 2796 struct xhci_dequeue_state *deq_state) 2797 { 2798 struct xhci_input_control_ctx *ctrl_ctx; 2799 struct xhci_container_ctx *in_ctx; 2800 struct xhci_ep_ctx *ep_ctx; 2801 u32 added_ctxs; 2802 dma_addr_t addr; 2803 2804 in_ctx = xhci->devs[slot_id]->in_ctx; 2805 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 2806 if (!ctrl_ctx) { 2807 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 2808 __func__); 2809 return; 2810 } 2811 2812 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, 2813 xhci->devs[slot_id]->out_ctx, ep_index); 2814 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 2815 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, 2816 deq_state->new_deq_ptr); 2817 if (addr == 0) { 2818 xhci_warn(xhci, "WARN Cannot submit config ep after " 2819 "reset ep command\n"); 2820 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", 2821 deq_state->new_deq_seg, 2822 deq_state->new_deq_ptr); 2823 return; 2824 } 2825 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); 2826 2827 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); 2828 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, 2829 xhci->devs[slot_id]->out_ctx, ctrl_ctx, 2830 added_ctxs, added_ctxs); 2831 } 2832 2833 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, 2834 unsigned int stream_id, struct xhci_td *td) 2835 { 2836 struct xhci_dequeue_state deq_state; 2837 struct xhci_virt_ep *ep; 2838 struct usb_device *udev = td->urb->dev; 2839 2840 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2841 "Cleaning up stalled endpoint ring"); 2842 ep = &xhci->devs[udev->slot_id]->eps[ep_index]; 2843 /* We need to move the HW's dequeue pointer past this TD, 2844 * or it will attempt to resend it on the next doorbell ring. 2845 */ 2846 xhci_find_new_dequeue_state(xhci, udev->slot_id, 2847 ep_index, stream_id, td, &deq_state); 2848 2849 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg) 2850 return; 2851 2852 /* HW with the reset endpoint quirk will use the saved dequeue state to 2853 * issue a configure endpoint command later. 2854 */ 2855 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { 2856 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, 2857 "Queueing new dequeue state"); 2858 xhci_queue_new_dequeue_state(xhci, udev->slot_id, 2859 ep_index, &deq_state); 2860 } else { 2861 /* Better hope no one uses the input context between now and the 2862 * reset endpoint completion! 2863 * XXX: No idea how this hardware will react when stream rings 2864 * are enabled. 2865 */ 2866 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 2867 "Setting up input context for " 2868 "configure endpoint command"); 2869 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, 2870 ep_index, &deq_state); 2871 } 2872 } 2873 2874 /* Called when clearing halted device. The core should have sent the control 2875 * message to clear the device halt condition. The host side of the halt should 2876 * already be cleared with a reset endpoint command issued when the STALL tx 2877 * event was received. 2878 * 2879 * Context: in_interrupt 2880 */ 2881 2882 static void xhci_endpoint_reset(struct usb_hcd *hcd, 2883 struct usb_host_endpoint *ep) 2884 { 2885 struct xhci_hcd *xhci; 2886 2887 xhci = hcd_to_xhci(hcd); 2888 2889 /* 2890 * We might need to implement the config ep cmd in xhci 4.8.1 note: 2891 * The Reset Endpoint Command may only be issued to endpoints in the 2892 * Halted state. If software wishes reset the Data Toggle or Sequence 2893 * Number of an endpoint that isn't in the Halted state, then software 2894 * may issue a Configure Endpoint Command with the Drop and Add bits set 2895 * for the target endpoint. that is in the Stopped state. 2896 */ 2897 2898 /* For now just print debug to follow the situation */ 2899 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n", 2900 ep->desc.bEndpointAddress); 2901 } 2902 2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, 2904 struct usb_device *udev, struct usb_host_endpoint *ep, 2905 unsigned int slot_id) 2906 { 2907 int ret; 2908 unsigned int ep_index; 2909 unsigned int ep_state; 2910 2911 if (!ep) 2912 return -EINVAL; 2913 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); 2914 if (ret <= 0) 2915 return -EINVAL; 2916 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) { 2917 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" 2918 " descriptor for ep 0x%x does not support streams\n", 2919 ep->desc.bEndpointAddress); 2920 return -EINVAL; 2921 } 2922 2923 ep_index = xhci_get_endpoint_index(&ep->desc); 2924 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 2925 if (ep_state & EP_HAS_STREAMS || 2926 ep_state & EP_GETTING_STREAMS) { 2927 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " 2928 "already has streams set up.\n", 2929 ep->desc.bEndpointAddress); 2930 xhci_warn(xhci, "Send email to xHCI maintainer and ask for " 2931 "dynamic stream context array reallocation.\n"); 2932 return -EINVAL; 2933 } 2934 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { 2935 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " 2936 "endpoint 0x%x; URBs are pending.\n", 2937 ep->desc.bEndpointAddress); 2938 return -EINVAL; 2939 } 2940 return 0; 2941 } 2942 2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, 2944 unsigned int *num_streams, unsigned int *num_stream_ctxs) 2945 { 2946 unsigned int max_streams; 2947 2948 /* The stream context array size must be a power of two */ 2949 *num_stream_ctxs = roundup_pow_of_two(*num_streams); 2950 /* 2951 * Find out how many primary stream array entries the host controller 2952 * supports. Later we may use secondary stream arrays (similar to 2nd 2953 * level page entries), but that's an optional feature for xHCI host 2954 * controllers. xHCs must support at least 4 stream IDs. 2955 */ 2956 max_streams = HCC_MAX_PSA(xhci->hcc_params); 2957 if (*num_stream_ctxs > max_streams) { 2958 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", 2959 max_streams); 2960 *num_stream_ctxs = max_streams; 2961 *num_streams = max_streams; 2962 } 2963 } 2964 2965 /* Returns an error code if one of the endpoint already has streams. 2966 * This does not change any data structures, it only checks and gathers 2967 * information. 2968 */ 2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, 2970 struct usb_device *udev, 2971 struct usb_host_endpoint **eps, unsigned int num_eps, 2972 unsigned int *num_streams, u32 *changed_ep_bitmask) 2973 { 2974 unsigned int max_streams; 2975 unsigned int endpoint_flag; 2976 int i; 2977 int ret; 2978 2979 for (i = 0; i < num_eps; i++) { 2980 ret = xhci_check_streams_endpoint(xhci, udev, 2981 eps[i], udev->slot_id); 2982 if (ret < 0) 2983 return ret; 2984 2985 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp); 2986 if (max_streams < (*num_streams - 1)) { 2987 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", 2988 eps[i]->desc.bEndpointAddress, 2989 max_streams); 2990 *num_streams = max_streams+1; 2991 } 2992 2993 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); 2994 if (*changed_ep_bitmask & endpoint_flag) 2995 return -EINVAL; 2996 *changed_ep_bitmask |= endpoint_flag; 2997 } 2998 return 0; 2999 } 3000 3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, 3002 struct usb_device *udev, 3003 struct usb_host_endpoint **eps, unsigned int num_eps) 3004 { 3005 u32 changed_ep_bitmask = 0; 3006 unsigned int slot_id; 3007 unsigned int ep_index; 3008 unsigned int ep_state; 3009 int i; 3010 3011 slot_id = udev->slot_id; 3012 if (!xhci->devs[slot_id]) 3013 return 0; 3014 3015 for (i = 0; i < num_eps; i++) { 3016 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3017 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; 3018 /* Are streams already being freed for the endpoint? */ 3019 if (ep_state & EP_GETTING_NO_STREAMS) { 3020 xhci_warn(xhci, "WARN Can't disable streams for " 3021 "endpoint 0x%x, " 3022 "streams are being disabled already\n", 3023 eps[i]->desc.bEndpointAddress); 3024 return 0; 3025 } 3026 /* Are there actually any streams to free? */ 3027 if (!(ep_state & EP_HAS_STREAMS) && 3028 !(ep_state & EP_GETTING_STREAMS)) { 3029 xhci_warn(xhci, "WARN Can't disable streams for " 3030 "endpoint 0x%x, " 3031 "streams are already disabled!\n", 3032 eps[i]->desc.bEndpointAddress); 3033 xhci_warn(xhci, "WARN xhci_free_streams() called " 3034 "with non-streams endpoint\n"); 3035 return 0; 3036 } 3037 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); 3038 } 3039 return changed_ep_bitmask; 3040 } 3041 3042 /* 3043 * The USB device drivers use this function (through the HCD interface in USB 3044 * core) to prepare a set of bulk endpoints to use streams. Streams are used to 3045 * coordinate mass storage command queueing across multiple endpoints (basically 3046 * a stream ID == a task ID). 3047 * 3048 * Setting up streams involves allocating the same size stream context array 3049 * for each endpoint and issuing a configure endpoint command for all endpoints. 3050 * 3051 * Don't allow the call to succeed if one endpoint only supports one stream 3052 * (which means it doesn't support streams at all). 3053 * 3054 * Drivers may get less stream IDs than they asked for, if the host controller 3055 * hardware or endpoints claim they can't support the number of requested 3056 * stream IDs. 3057 */ 3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, 3059 struct usb_host_endpoint **eps, unsigned int num_eps, 3060 unsigned int num_streams, gfp_t mem_flags) 3061 { 3062 int i, ret; 3063 struct xhci_hcd *xhci; 3064 struct xhci_virt_device *vdev; 3065 struct xhci_command *config_cmd; 3066 struct xhci_input_control_ctx *ctrl_ctx; 3067 unsigned int ep_index; 3068 unsigned int num_stream_ctxs; 3069 unsigned int max_packet; 3070 unsigned long flags; 3071 u32 changed_ep_bitmask = 0; 3072 3073 if (!eps) 3074 return -EINVAL; 3075 3076 /* Add one to the number of streams requested to account for 3077 * stream 0 that is reserved for xHCI usage. 3078 */ 3079 num_streams += 1; 3080 xhci = hcd_to_xhci(hcd); 3081 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", 3082 num_streams); 3083 3084 /* MaxPSASize value 0 (2 streams) means streams are not supported */ 3085 if ((xhci->quirks & XHCI_BROKEN_STREAMS) || 3086 HCC_MAX_PSA(xhci->hcc_params) < 4) { 3087 xhci_dbg(xhci, "xHCI controller does not support streams.\n"); 3088 return -ENOSYS; 3089 } 3090 3091 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 3092 if (!config_cmd) 3093 return -ENOMEM; 3094 3095 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 3096 if (!ctrl_ctx) { 3097 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3098 __func__); 3099 xhci_free_command(xhci, config_cmd); 3100 return -ENOMEM; 3101 } 3102 3103 /* Check to make sure all endpoints are not already configured for 3104 * streams. While we're at it, find the maximum number of streams that 3105 * all the endpoints will support and check for duplicate endpoints. 3106 */ 3107 spin_lock_irqsave(&xhci->lock, flags); 3108 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, 3109 num_eps, &num_streams, &changed_ep_bitmask); 3110 if (ret < 0) { 3111 xhci_free_command(xhci, config_cmd); 3112 spin_unlock_irqrestore(&xhci->lock, flags); 3113 return ret; 3114 } 3115 if (num_streams <= 1) { 3116 xhci_warn(xhci, "WARN: endpoints can't handle " 3117 "more than one stream.\n"); 3118 xhci_free_command(xhci, config_cmd); 3119 spin_unlock_irqrestore(&xhci->lock, flags); 3120 return -EINVAL; 3121 } 3122 vdev = xhci->devs[udev->slot_id]; 3123 /* Mark each endpoint as being in transition, so 3124 * xhci_urb_enqueue() will reject all URBs. 3125 */ 3126 for (i = 0; i < num_eps; i++) { 3127 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3128 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; 3129 } 3130 spin_unlock_irqrestore(&xhci->lock, flags); 3131 3132 /* Setup internal data structures and allocate HW data structures for 3133 * streams (but don't install the HW structures in the input context 3134 * until we're sure all memory allocation succeeded). 3135 */ 3136 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); 3137 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", 3138 num_stream_ctxs, num_streams); 3139 3140 for (i = 0; i < num_eps; i++) { 3141 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3142 max_packet = usb_endpoint_maxp(&eps[i]->desc); 3143 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, 3144 num_stream_ctxs, 3145 num_streams, 3146 max_packet, mem_flags); 3147 if (!vdev->eps[ep_index].stream_info) 3148 goto cleanup; 3149 /* Set maxPstreams in endpoint context and update deq ptr to 3150 * point to stream context array. FIXME 3151 */ 3152 } 3153 3154 /* Set up the input context for a configure endpoint command. */ 3155 for (i = 0; i < num_eps; i++) { 3156 struct xhci_ep_ctx *ep_ctx; 3157 3158 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3159 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); 3160 3161 xhci_endpoint_copy(xhci, config_cmd->in_ctx, 3162 vdev->out_ctx, ep_index); 3163 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, 3164 vdev->eps[ep_index].stream_info); 3165 } 3166 /* Tell the HW to drop its old copy of the endpoint context info 3167 * and add the updated copy from the input context. 3168 */ 3169 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, 3170 vdev->out_ctx, ctrl_ctx, 3171 changed_ep_bitmask, changed_ep_bitmask); 3172 3173 /* Issue and wait for the configure endpoint command */ 3174 ret = xhci_configure_endpoint(xhci, udev, config_cmd, 3175 false, false); 3176 3177 /* xHC rejected the configure endpoint command for some reason, so we 3178 * leave the old ring intact and free our internal streams data 3179 * structure. 3180 */ 3181 if (ret < 0) 3182 goto cleanup; 3183 3184 spin_lock_irqsave(&xhci->lock, flags); 3185 for (i = 0; i < num_eps; i++) { 3186 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3187 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3188 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", 3189 udev->slot_id, ep_index); 3190 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; 3191 } 3192 xhci_free_command(xhci, config_cmd); 3193 spin_unlock_irqrestore(&xhci->lock, flags); 3194 3195 /* Subtract 1 for stream 0, which drivers can't use */ 3196 return num_streams - 1; 3197 3198 cleanup: 3199 /* If it didn't work, free the streams! */ 3200 for (i = 0; i < num_eps; i++) { 3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3202 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3203 vdev->eps[ep_index].stream_info = NULL; 3204 /* FIXME Unset maxPstreams in endpoint context and 3205 * update deq ptr to point to normal string ring. 3206 */ 3207 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; 3208 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3209 xhci_endpoint_zero(xhci, vdev, eps[i]); 3210 } 3211 xhci_free_command(xhci, config_cmd); 3212 return -ENOMEM; 3213 } 3214 3215 /* Transition the endpoint from using streams to being a "normal" endpoint 3216 * without streams. 3217 * 3218 * Modify the endpoint context state, submit a configure endpoint command, 3219 * and free all endpoint rings for streams if that completes successfully. 3220 */ 3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, 3222 struct usb_host_endpoint **eps, unsigned int num_eps, 3223 gfp_t mem_flags) 3224 { 3225 int i, ret; 3226 struct xhci_hcd *xhci; 3227 struct xhci_virt_device *vdev; 3228 struct xhci_command *command; 3229 struct xhci_input_control_ctx *ctrl_ctx; 3230 unsigned int ep_index; 3231 unsigned long flags; 3232 u32 changed_ep_bitmask; 3233 3234 xhci = hcd_to_xhci(hcd); 3235 vdev = xhci->devs[udev->slot_id]; 3236 3237 /* Set up a configure endpoint command to remove the streams rings */ 3238 spin_lock_irqsave(&xhci->lock, flags); 3239 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, 3240 udev, eps, num_eps); 3241 if (changed_ep_bitmask == 0) { 3242 spin_unlock_irqrestore(&xhci->lock, flags); 3243 return -EINVAL; 3244 } 3245 3246 /* Use the xhci_command structure from the first endpoint. We may have 3247 * allocated too many, but the driver may call xhci_free_streams() for 3248 * each endpoint it grouped into one call to xhci_alloc_streams(). 3249 */ 3250 ep_index = xhci_get_endpoint_index(&eps[0]->desc); 3251 command = vdev->eps[ep_index].stream_info->free_streams_command; 3252 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3253 if (!ctrl_ctx) { 3254 spin_unlock_irqrestore(&xhci->lock, flags); 3255 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3256 __func__); 3257 return -EINVAL; 3258 } 3259 3260 for (i = 0; i < num_eps; i++) { 3261 struct xhci_ep_ctx *ep_ctx; 3262 3263 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3264 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); 3265 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= 3266 EP_GETTING_NO_STREAMS; 3267 3268 xhci_endpoint_copy(xhci, command->in_ctx, 3269 vdev->out_ctx, ep_index); 3270 xhci_setup_no_streams_ep_input_ctx(ep_ctx, 3271 &vdev->eps[ep_index]); 3272 } 3273 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, 3274 vdev->out_ctx, ctrl_ctx, 3275 changed_ep_bitmask, changed_ep_bitmask); 3276 spin_unlock_irqrestore(&xhci->lock, flags); 3277 3278 /* Issue and wait for the configure endpoint command, 3279 * which must succeed. 3280 */ 3281 ret = xhci_configure_endpoint(xhci, udev, command, 3282 false, true); 3283 3284 /* xHC rejected the configure endpoint command for some reason, so we 3285 * leave the streams rings intact. 3286 */ 3287 if (ret < 0) 3288 return ret; 3289 3290 spin_lock_irqsave(&xhci->lock, flags); 3291 for (i = 0; i < num_eps; i++) { 3292 ep_index = xhci_get_endpoint_index(&eps[i]->desc); 3293 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); 3294 vdev->eps[ep_index].stream_info = NULL; 3295 /* FIXME Unset maxPstreams in endpoint context and 3296 * update deq ptr to point to normal string ring. 3297 */ 3298 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; 3299 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; 3300 } 3301 spin_unlock_irqrestore(&xhci->lock, flags); 3302 3303 return 0; 3304 } 3305 3306 /* 3307 * Deletes endpoint resources for endpoints that were active before a Reset 3308 * Device command, or a Disable Slot command. The Reset Device command leaves 3309 * the control endpoint intact, whereas the Disable Slot command deletes it. 3310 * 3311 * Must be called with xhci->lock held. 3312 */ 3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, 3314 struct xhci_virt_device *virt_dev, bool drop_control_ep) 3315 { 3316 int i; 3317 unsigned int num_dropped_eps = 0; 3318 unsigned int drop_flags = 0; 3319 3320 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) { 3321 if (virt_dev->eps[i].ring) { 3322 drop_flags |= 1 << i; 3323 num_dropped_eps++; 3324 } 3325 } 3326 xhci->num_active_eps -= num_dropped_eps; 3327 if (num_dropped_eps) 3328 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3329 "Dropped %u ep ctxs, flags = 0x%x, " 3330 "%u now active.", 3331 num_dropped_eps, drop_flags, 3332 xhci->num_active_eps); 3333 } 3334 3335 /* 3336 * This submits a Reset Device Command, which will set the device state to 0, 3337 * set the device address to 0, and disable all the endpoints except the default 3338 * control endpoint. The USB core should come back and call 3339 * xhci_address_device(), and then re-set up the configuration. If this is 3340 * called because of a usb_reset_and_verify_device(), then the old alternate 3341 * settings will be re-installed through the normal bandwidth allocation 3342 * functions. 3343 * 3344 * Wait for the Reset Device command to finish. Remove all structures 3345 * associated with the endpoints that were disabled. Clear the input device 3346 * structure? Reset the control endpoint 0 max packet size? 3347 * 3348 * If the virt_dev to be reset does not exist or does not match the udev, 3349 * it means the device is lost, possibly due to the xHC restore error and 3350 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to 3351 * re-allocate the device. 3352 */ 3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd, 3354 struct usb_device *udev) 3355 { 3356 int ret, i; 3357 unsigned long flags; 3358 struct xhci_hcd *xhci; 3359 unsigned int slot_id; 3360 struct xhci_virt_device *virt_dev; 3361 struct xhci_command *reset_device_cmd; 3362 int last_freed_endpoint; 3363 struct xhci_slot_ctx *slot_ctx; 3364 int old_active_eps = 0; 3365 3366 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); 3367 if (ret <= 0) 3368 return ret; 3369 xhci = hcd_to_xhci(hcd); 3370 slot_id = udev->slot_id; 3371 virt_dev = xhci->devs[slot_id]; 3372 if (!virt_dev) { 3373 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3374 "not exist. Re-allocate the device\n", slot_id); 3375 ret = xhci_alloc_dev(hcd, udev); 3376 if (ret == 1) 3377 return 0; 3378 else 3379 return -EINVAL; 3380 } 3381 3382 if (virt_dev->tt_info) 3383 old_active_eps = virt_dev->tt_info->active_eps; 3384 3385 if (virt_dev->udev != udev) { 3386 /* If the virt_dev and the udev does not match, this virt_dev 3387 * may belong to another udev. 3388 * Re-allocate the device. 3389 */ 3390 xhci_dbg(xhci, "The device to be reset with slot ID %u does " 3391 "not match the udev. Re-allocate the device\n", 3392 slot_id); 3393 ret = xhci_alloc_dev(hcd, udev); 3394 if (ret == 1) 3395 return 0; 3396 else 3397 return -EINVAL; 3398 } 3399 3400 /* If device is not setup, there is no point in resetting it */ 3401 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3402 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3403 SLOT_STATE_DISABLED) 3404 return 0; 3405 3406 trace_xhci_discover_or_reset_device(slot_ctx); 3407 3408 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); 3409 /* Allocate the command structure that holds the struct completion. 3410 * Assume we're in process context, since the normal device reset 3411 * process has to wait for the device anyway. Storage devices are 3412 * reset as part of error handling, so use GFP_NOIO instead of 3413 * GFP_KERNEL. 3414 */ 3415 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); 3416 if (!reset_device_cmd) { 3417 xhci_dbg(xhci, "Couldn't allocate command structure.\n"); 3418 return -ENOMEM; 3419 } 3420 3421 /* Attempt to submit the Reset Device command to the command ring */ 3422 spin_lock_irqsave(&xhci->lock, flags); 3423 3424 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id); 3425 if (ret) { 3426 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3427 spin_unlock_irqrestore(&xhci->lock, flags); 3428 goto command_cleanup; 3429 } 3430 xhci_ring_cmd_db(xhci); 3431 spin_unlock_irqrestore(&xhci->lock, flags); 3432 3433 /* Wait for the Reset Device command to finish */ 3434 wait_for_completion(reset_device_cmd->completion); 3435 3436 /* The Reset Device command can't fail, according to the 0.95/0.96 spec, 3437 * unless we tried to reset a slot ID that wasn't enabled, 3438 * or the device wasn't in the addressed or configured state. 3439 */ 3440 ret = reset_device_cmd->status; 3441 switch (ret) { 3442 case COMP_COMMAND_ABORTED: 3443 case COMP_COMMAND_RING_STOPPED: 3444 xhci_warn(xhci, "Timeout waiting for reset device command\n"); 3445 ret = -ETIME; 3446 goto command_cleanup; 3447 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */ 3448 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */ 3449 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n", 3450 slot_id, 3451 xhci_get_slot_state(xhci, virt_dev->out_ctx)); 3452 xhci_dbg(xhci, "Not freeing device rings.\n"); 3453 /* Don't treat this as an error. May change my mind later. */ 3454 ret = 0; 3455 goto command_cleanup; 3456 case COMP_SUCCESS: 3457 xhci_dbg(xhci, "Successful reset device command.\n"); 3458 break; 3459 default: 3460 if (xhci_is_vendor_info_code(xhci, ret)) 3461 break; 3462 xhci_warn(xhci, "Unknown completion code %u for " 3463 "reset device command.\n", ret); 3464 ret = -EINVAL; 3465 goto command_cleanup; 3466 } 3467 3468 /* Free up host controller endpoint resources */ 3469 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3470 spin_lock_irqsave(&xhci->lock, flags); 3471 /* Don't delete the default control endpoint resources */ 3472 xhci_free_device_endpoint_resources(xhci, virt_dev, false); 3473 spin_unlock_irqrestore(&xhci->lock, flags); 3474 } 3475 3476 /* Everything but endpoint 0 is disabled, so free the rings. */ 3477 last_freed_endpoint = 1; 3478 for (i = 1; i < 31; i++) { 3479 struct xhci_virt_ep *ep = &virt_dev->eps[i]; 3480 3481 if (ep->ep_state & EP_HAS_STREAMS) { 3482 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n", 3483 xhci_get_endpoint_address(i)); 3484 xhci_free_stream_info(xhci, ep->stream_info); 3485 ep->stream_info = NULL; 3486 ep->ep_state &= ~EP_HAS_STREAMS; 3487 } 3488 3489 if (ep->ring) { 3490 xhci_free_endpoint_ring(xhci, virt_dev, i); 3491 last_freed_endpoint = i; 3492 } 3493 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list)) 3494 xhci_drop_ep_from_interval_table(xhci, 3495 &virt_dev->eps[i].bw_info, 3496 virt_dev->bw_table, 3497 udev, 3498 &virt_dev->eps[i], 3499 virt_dev->tt_info); 3500 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info); 3501 } 3502 /* If necessary, update the number of active TTs on this root port */ 3503 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps); 3504 ret = 0; 3505 3506 command_cleanup: 3507 xhci_free_command(xhci, reset_device_cmd); 3508 return ret; 3509 } 3510 3511 /* 3512 * At this point, the struct usb_device is about to go away, the device has 3513 * disconnected, and all traffic has been stopped and the endpoints have been 3514 * disabled. Free any HC data structures associated with that device. 3515 */ 3516 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) 3517 { 3518 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3519 struct xhci_virt_device *virt_dev; 3520 struct xhci_slot_ctx *slot_ctx; 3521 int i, ret; 3522 struct xhci_command *command; 3523 3524 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3525 if (!command) 3526 return; 3527 3528 #ifndef CONFIG_USB_DEFAULT_PERSIST 3529 /* 3530 * We called pm_runtime_get_noresume when the device was attached. 3531 * Decrement the counter here to allow controller to runtime suspend 3532 * if no devices remain. 3533 */ 3534 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3535 pm_runtime_put_noidle(hcd->self.controller); 3536 #endif 3537 3538 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); 3539 /* If the host is halted due to driver unload, we still need to free the 3540 * device. 3541 */ 3542 if (ret <= 0 && ret != -ENODEV) { 3543 kfree(command); 3544 return; 3545 } 3546 3547 virt_dev = xhci->devs[udev->slot_id]; 3548 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3549 trace_xhci_free_dev(slot_ctx); 3550 3551 /* Stop any wayward timer functions (which may grab the lock) */ 3552 for (i = 0; i < 31; i++) { 3553 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING; 3554 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); 3555 } 3556 3557 xhci_disable_slot(xhci, command, udev->slot_id); 3558 /* 3559 * Event command completion handler will free any data structures 3560 * associated with the slot. XXX Can free sleep? 3561 */ 3562 } 3563 3564 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command, 3565 u32 slot_id) 3566 { 3567 unsigned long flags; 3568 u32 state; 3569 int ret = 0; 3570 struct xhci_virt_device *virt_dev; 3571 3572 virt_dev = xhci->devs[slot_id]; 3573 if (!virt_dev) 3574 return -EINVAL; 3575 if (!command) 3576 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL); 3577 if (!command) 3578 return -ENOMEM; 3579 3580 spin_lock_irqsave(&xhci->lock, flags); 3581 /* Don't disable the slot if the host controller is dead. */ 3582 state = readl(&xhci->op_regs->status); 3583 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) || 3584 (xhci->xhc_state & XHCI_STATE_HALTED)) { 3585 xhci_free_virt_device(xhci, slot_id); 3586 spin_unlock_irqrestore(&xhci->lock, flags); 3587 kfree(command); 3588 return ret; 3589 } 3590 3591 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT, 3592 slot_id); 3593 if (ret) { 3594 spin_unlock_irqrestore(&xhci->lock, flags); 3595 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3596 return ret; 3597 } 3598 xhci_ring_cmd_db(xhci); 3599 spin_unlock_irqrestore(&xhci->lock, flags); 3600 return ret; 3601 } 3602 3603 /* 3604 * Checks if we have enough host controller resources for the default control 3605 * endpoint. 3606 * 3607 * Must be called with xhci->lock held. 3608 */ 3609 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci) 3610 { 3611 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) { 3612 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3613 "Not enough ep ctxs: " 3614 "%u active, need to add 1, limit is %u.", 3615 xhci->num_active_eps, xhci->limit_active_eps); 3616 return -ENOMEM; 3617 } 3618 xhci->num_active_eps += 1; 3619 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, 3620 "Adding 1 ep ctx, %u now active.", 3621 xhci->num_active_eps); 3622 return 0; 3623 } 3624 3625 3626 /* 3627 * Returns 0 if the xHC ran out of device slots, the Enable Slot command 3628 * timed out, or allocating memory failed. Returns 1 on success. 3629 */ 3630 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) 3631 { 3632 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3633 struct xhci_virt_device *vdev; 3634 struct xhci_slot_ctx *slot_ctx; 3635 unsigned long flags; 3636 int ret, slot_id; 3637 struct xhci_command *command; 3638 3639 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3640 if (!command) 3641 return 0; 3642 3643 /* xhci->slot_id and xhci->addr_dev are not thread-safe */ 3644 mutex_lock(&xhci->mutex); 3645 spin_lock_irqsave(&xhci->lock, flags); 3646 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0); 3647 if (ret) { 3648 spin_unlock_irqrestore(&xhci->lock, flags); 3649 mutex_unlock(&xhci->mutex); 3650 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); 3651 xhci_free_command(xhci, command); 3652 return 0; 3653 } 3654 xhci_ring_cmd_db(xhci); 3655 spin_unlock_irqrestore(&xhci->lock, flags); 3656 3657 wait_for_completion(command->completion); 3658 slot_id = command->slot_id; 3659 mutex_unlock(&xhci->mutex); 3660 3661 if (!slot_id || command->status != COMP_SUCCESS) { 3662 xhci_err(xhci, "Error while assigning device slot ID\n"); 3663 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n", 3664 HCS_MAX_SLOTS( 3665 readl(&xhci->cap_regs->hcs_params1))); 3666 xhci_free_command(xhci, command); 3667 return 0; 3668 } 3669 3670 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) { 3671 spin_lock_irqsave(&xhci->lock, flags); 3672 ret = xhci_reserve_host_control_ep_resources(xhci); 3673 if (ret) { 3674 spin_unlock_irqrestore(&xhci->lock, flags); 3675 xhci_warn(xhci, "Not enough host resources, " 3676 "active endpoint contexts = %u\n", 3677 xhci->num_active_eps); 3678 goto disable_slot; 3679 } 3680 spin_unlock_irqrestore(&xhci->lock, flags); 3681 } 3682 /* Use GFP_NOIO, since this function can be called from 3683 * xhci_discover_or_reset_device(), which may be called as part of 3684 * mass storage driver error handling. 3685 */ 3686 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) { 3687 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); 3688 goto disable_slot; 3689 } 3690 vdev = xhci->devs[slot_id]; 3691 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); 3692 trace_xhci_alloc_dev(slot_ctx); 3693 3694 udev->slot_id = slot_id; 3695 3696 #ifndef CONFIG_USB_DEFAULT_PERSIST 3697 /* 3698 * If resetting upon resume, we can't put the controller into runtime 3699 * suspend if there is a device attached. 3700 */ 3701 if (xhci->quirks & XHCI_RESET_ON_RESUME) 3702 pm_runtime_get_noresume(hcd->self.controller); 3703 #endif 3704 3705 3706 xhci_free_command(xhci, command); 3707 /* Is this a LS or FS device under a HS hub? */ 3708 /* Hub or peripherial? */ 3709 return 1; 3710 3711 disable_slot: 3712 /* Disable slot, if we can do it without mem alloc */ 3713 kfree(command->completion); 3714 command->completion = NULL; 3715 command->status = 0; 3716 return xhci_disable_slot(xhci, command, udev->slot_id); 3717 } 3718 3719 /* 3720 * Issue an Address Device command and optionally send a corresponding 3721 * SetAddress request to the device. 3722 */ 3723 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev, 3724 enum xhci_setup_dev setup) 3725 { 3726 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address"; 3727 unsigned long flags; 3728 struct xhci_virt_device *virt_dev; 3729 int ret = 0; 3730 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3731 struct xhci_slot_ctx *slot_ctx; 3732 struct xhci_input_control_ctx *ctrl_ctx; 3733 u64 temp_64; 3734 struct xhci_command *command = NULL; 3735 3736 mutex_lock(&xhci->mutex); 3737 3738 if (xhci->xhc_state) { /* dying, removing or halted */ 3739 ret = -ESHUTDOWN; 3740 goto out; 3741 } 3742 3743 if (!udev->slot_id) { 3744 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3745 "Bad Slot ID %d", udev->slot_id); 3746 ret = -EINVAL; 3747 goto out; 3748 } 3749 3750 virt_dev = xhci->devs[udev->slot_id]; 3751 3752 if (WARN_ON(!virt_dev)) { 3753 /* 3754 * In plug/unplug torture test with an NEC controller, 3755 * a zero-dereference was observed once due to virt_dev = 0. 3756 * Print useful debug rather than crash if it is observed again! 3757 */ 3758 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", 3759 udev->slot_id); 3760 ret = -EINVAL; 3761 goto out; 3762 } 3763 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); 3764 trace_xhci_setup_device_slot(slot_ctx); 3765 3766 if (setup == SETUP_CONTEXT_ONLY) { 3767 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) == 3768 SLOT_STATE_DEFAULT) { 3769 xhci_dbg(xhci, "Slot already in default state\n"); 3770 goto out; 3771 } 3772 } 3773 3774 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL); 3775 if (!command) { 3776 ret = -ENOMEM; 3777 goto out; 3778 } 3779 3780 command->in_ctx = virt_dev->in_ctx; 3781 3782 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); 3783 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 3784 if (!ctrl_ctx) { 3785 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3786 __func__); 3787 ret = -EINVAL; 3788 goto out; 3789 } 3790 /* 3791 * If this is the first Set Address since device plug-in or 3792 * virt_device realloaction after a resume with an xHCI power loss, 3793 * then set up the slot context. 3794 */ 3795 if (!slot_ctx->dev_info) 3796 xhci_setup_addressable_virt_dev(xhci, udev); 3797 /* Otherwise, update the control endpoint ring enqueue pointer. */ 3798 else 3799 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); 3800 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 3801 ctrl_ctx->drop_flags = 0; 3802 3803 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3804 le32_to_cpu(slot_ctx->dev_info) >> 27); 3805 3806 spin_lock_irqsave(&xhci->lock, flags); 3807 trace_xhci_setup_device(virt_dev); 3808 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma, 3809 udev->slot_id, setup); 3810 if (ret) { 3811 spin_unlock_irqrestore(&xhci->lock, flags); 3812 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3813 "FIXME: allocate a command ring segment"); 3814 goto out; 3815 } 3816 xhci_ring_cmd_db(xhci); 3817 spin_unlock_irqrestore(&xhci->lock, flags); 3818 3819 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ 3820 wait_for_completion(command->completion); 3821 3822 /* FIXME: From section 4.3.4: "Software shall be responsible for timing 3823 * the SetAddress() "recovery interval" required by USB and aborting the 3824 * command on a timeout. 3825 */ 3826 switch (command->status) { 3827 case COMP_COMMAND_ABORTED: 3828 case COMP_COMMAND_RING_STOPPED: 3829 xhci_warn(xhci, "Timeout while waiting for setup device command\n"); 3830 ret = -ETIME; 3831 break; 3832 case COMP_CONTEXT_STATE_ERROR: 3833 case COMP_SLOT_NOT_ENABLED_ERROR: 3834 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n", 3835 act, udev->slot_id); 3836 ret = -EINVAL; 3837 break; 3838 case COMP_USB_TRANSACTION_ERROR: 3839 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act); 3840 ret = -EPROTO; 3841 break; 3842 case COMP_INCOMPATIBLE_DEVICE_ERROR: 3843 dev_warn(&udev->dev, 3844 "ERROR: Incompatible device for setup %s command\n", act); 3845 ret = -ENODEV; 3846 break; 3847 case COMP_SUCCESS: 3848 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3849 "Successful setup %s command", act); 3850 break; 3851 default: 3852 xhci_err(xhci, 3853 "ERROR: unexpected setup %s command completion code 0x%x.\n", 3854 act, command->status); 3855 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1); 3856 ret = -EINVAL; 3857 break; 3858 } 3859 if (ret) 3860 goto out; 3861 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); 3862 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3863 "Op regs DCBAA ptr = %#016llx", temp_64); 3864 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3865 "Slot ID %d dcbaa entry @%p = %#016llx", 3866 udev->slot_id, 3867 &xhci->dcbaa->dev_context_ptrs[udev->slot_id], 3868 (unsigned long long) 3869 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); 3870 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3871 "Output Context DMA address = %#08llx", 3872 (unsigned long long)virt_dev->out_ctx->dma); 3873 trace_xhci_address_ctx(xhci, virt_dev->in_ctx, 3874 le32_to_cpu(slot_ctx->dev_info) >> 27); 3875 /* 3876 * USB core uses address 1 for the roothubs, so we add one to the 3877 * address given back to us by the HC. 3878 */ 3879 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 3880 le32_to_cpu(slot_ctx->dev_info) >> 27); 3881 /* Zero the input context control for later use */ 3882 ctrl_ctx->add_flags = 0; 3883 ctrl_ctx->drop_flags = 0; 3884 3885 xhci_dbg_trace(xhci, trace_xhci_dbg_address, 3886 "Internal device address = %d", 3887 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 3888 out: 3889 mutex_unlock(&xhci->mutex); 3890 if (command) { 3891 kfree(command->completion); 3892 kfree(command); 3893 } 3894 return ret; 3895 } 3896 3897 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) 3898 { 3899 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS); 3900 } 3901 3902 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev) 3903 { 3904 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY); 3905 } 3906 3907 /* 3908 * Transfer the port index into real index in the HW port status 3909 * registers. Caculate offset between the port's PORTSC register 3910 * and port status base. Divide the number of per port register 3911 * to get the real index. The raw port number bases 1. 3912 */ 3913 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1) 3914 { 3915 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 3916 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base; 3917 __le32 __iomem *addr; 3918 int raw_port; 3919 3920 if (hcd->speed < HCD_USB3) 3921 addr = xhci->usb2_ports[port1 - 1]; 3922 else 3923 addr = xhci->usb3_ports[port1 - 1]; 3924 3925 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1; 3926 return raw_port; 3927 } 3928 3929 /* 3930 * Issue an Evaluate Context command to change the Maximum Exit Latency in the 3931 * slot context. If that succeeds, store the new MEL in the xhci_virt_device. 3932 */ 3933 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci, 3934 struct usb_device *udev, u16 max_exit_latency) 3935 { 3936 struct xhci_virt_device *virt_dev; 3937 struct xhci_command *command; 3938 struct xhci_input_control_ctx *ctrl_ctx; 3939 struct xhci_slot_ctx *slot_ctx; 3940 unsigned long flags; 3941 int ret; 3942 3943 spin_lock_irqsave(&xhci->lock, flags); 3944 3945 virt_dev = xhci->devs[udev->slot_id]; 3946 3947 /* 3948 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and 3949 * xHC was re-initialized. Exit latency will be set later after 3950 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated 3951 */ 3952 3953 if (!virt_dev || max_exit_latency == virt_dev->current_mel) { 3954 spin_unlock_irqrestore(&xhci->lock, flags); 3955 return 0; 3956 } 3957 3958 /* Attempt to issue an Evaluate Context command to change the MEL. */ 3959 command = xhci->lpm_command; 3960 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx); 3961 if (!ctrl_ctx) { 3962 spin_unlock_irqrestore(&xhci->lock, flags); 3963 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 3964 __func__); 3965 return -ENOMEM; 3966 } 3967 3968 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx); 3969 spin_unlock_irqrestore(&xhci->lock, flags); 3970 3971 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 3972 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx); 3973 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT)); 3974 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency); 3975 slot_ctx->dev_state = 0; 3976 3977 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 3978 "Set up evaluate context for LPM MEL change."); 3979 3980 /* Issue and wait for the evaluate context command. */ 3981 ret = xhci_configure_endpoint(xhci, udev, command, 3982 true, true); 3983 3984 if (!ret) { 3985 spin_lock_irqsave(&xhci->lock, flags); 3986 virt_dev->current_mel = max_exit_latency; 3987 spin_unlock_irqrestore(&xhci->lock, flags); 3988 } 3989 return ret; 3990 } 3991 3992 #ifdef CONFIG_PM 3993 3994 /* BESL to HIRD Encoding array for USB2 LPM */ 3995 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000, 3996 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}; 3997 3998 /* Calculate HIRD/BESL for USB2 PORTPMSC*/ 3999 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci, 4000 struct usb_device *udev) 4001 { 4002 int u2del, besl, besl_host; 4003 int besl_device = 0; 4004 u32 field; 4005 4006 u2del = HCS_U2_LATENCY(xhci->hcs_params3); 4007 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4008 4009 if (field & USB_BESL_SUPPORT) { 4010 for (besl_host = 0; besl_host < 16; besl_host++) { 4011 if (xhci_besl_encoding[besl_host] >= u2del) 4012 break; 4013 } 4014 /* Use baseline BESL value as default */ 4015 if (field & USB_BESL_BASELINE_VALID) 4016 besl_device = USB_GET_BESL_BASELINE(field); 4017 else if (field & USB_BESL_DEEP_VALID) 4018 besl_device = USB_GET_BESL_DEEP(field); 4019 } else { 4020 if (u2del <= 50) 4021 besl_host = 0; 4022 else 4023 besl_host = (u2del - 51) / 75 + 1; 4024 } 4025 4026 besl = besl_host + besl_device; 4027 if (besl > 15) 4028 besl = 15; 4029 4030 return besl; 4031 } 4032 4033 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */ 4034 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev) 4035 { 4036 u32 field; 4037 int l1; 4038 int besld = 0; 4039 int hirdm = 0; 4040 4041 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4042 4043 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */ 4044 l1 = udev->l1_params.timeout / 256; 4045 4046 /* device has preferred BESLD */ 4047 if (field & USB_BESL_DEEP_VALID) { 4048 besld = USB_GET_BESL_DEEP(field); 4049 hirdm = 1; 4050 } 4051 4052 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm); 4053 } 4054 4055 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4056 struct usb_device *udev, int enable) 4057 { 4058 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4059 __le32 __iomem **port_array; 4060 __le32 __iomem *pm_addr, *hlpm_addr; 4061 u32 pm_val, hlpm_val, field; 4062 unsigned int port_num; 4063 unsigned long flags; 4064 int hird, exit_latency; 4065 int ret; 4066 4067 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support || 4068 !udev->lpm_capable) 4069 return -EPERM; 4070 4071 if (!udev->parent || udev->parent->parent || 4072 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4073 return -EPERM; 4074 4075 if (udev->usb2_hw_lpm_capable != 1) 4076 return -EPERM; 4077 4078 spin_lock_irqsave(&xhci->lock, flags); 4079 4080 port_array = xhci->usb2_ports; 4081 port_num = udev->portnum - 1; 4082 pm_addr = port_array[port_num] + PORTPMSC; 4083 pm_val = readl(pm_addr); 4084 hlpm_addr = port_array[port_num] + PORTHLPMC; 4085 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes); 4086 4087 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n", 4088 enable ? "enable" : "disable", port_num + 1); 4089 4090 if (enable) { 4091 /* Host supports BESL timeout instead of HIRD */ 4092 if (udev->usb2_hw_lpm_besl_capable) { 4093 /* if device doesn't have a preferred BESL value use a 4094 * default one which works with mixed HIRD and BESL 4095 * systems. See XHCI_DEFAULT_BESL definition in xhci.h 4096 */ 4097 if ((field & USB_BESL_SUPPORT) && 4098 (field & USB_BESL_BASELINE_VALID)) 4099 hird = USB_GET_BESL_BASELINE(field); 4100 else 4101 hird = udev->l1_params.besl; 4102 4103 exit_latency = xhci_besl_encoding[hird]; 4104 spin_unlock_irqrestore(&xhci->lock, flags); 4105 4106 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx 4107 * input context for link powermanagement evaluate 4108 * context commands. It is protected by hcd->bandwidth 4109 * mutex and is shared by all devices. We need to set 4110 * the max ext latency in USB 2 BESL LPM as well, so 4111 * use the same mutex and xhci_change_max_exit_latency() 4112 */ 4113 mutex_lock(hcd->bandwidth_mutex); 4114 ret = xhci_change_max_exit_latency(xhci, udev, 4115 exit_latency); 4116 mutex_unlock(hcd->bandwidth_mutex); 4117 4118 if (ret < 0) 4119 return ret; 4120 spin_lock_irqsave(&xhci->lock, flags); 4121 4122 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev); 4123 writel(hlpm_val, hlpm_addr); 4124 /* flush write */ 4125 readl(hlpm_addr); 4126 } else { 4127 hird = xhci_calculate_hird_besl(xhci, udev); 4128 } 4129 4130 pm_val &= ~PORT_HIRD_MASK; 4131 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id); 4132 writel(pm_val, pm_addr); 4133 pm_val = readl(pm_addr); 4134 pm_val |= PORT_HLE; 4135 writel(pm_val, pm_addr); 4136 /* flush write */ 4137 readl(pm_addr); 4138 } else { 4139 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK); 4140 writel(pm_val, pm_addr); 4141 /* flush write */ 4142 readl(pm_addr); 4143 if (udev->usb2_hw_lpm_besl_capable) { 4144 spin_unlock_irqrestore(&xhci->lock, flags); 4145 mutex_lock(hcd->bandwidth_mutex); 4146 xhci_change_max_exit_latency(xhci, udev, 0); 4147 mutex_unlock(hcd->bandwidth_mutex); 4148 return 0; 4149 } 4150 } 4151 4152 spin_unlock_irqrestore(&xhci->lock, flags); 4153 return 0; 4154 } 4155 4156 /* check if a usb2 port supports a given extened capability protocol 4157 * only USB2 ports extended protocol capability values are cached. 4158 * Return 1 if capability is supported 4159 */ 4160 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port, 4161 unsigned capability) 4162 { 4163 u32 port_offset, port_count; 4164 int i; 4165 4166 for (i = 0; i < xhci->num_ext_caps; i++) { 4167 if (xhci->ext_caps[i] & capability) { 4168 /* port offsets starts at 1 */ 4169 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1; 4170 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]); 4171 if (port >= port_offset && 4172 port < port_offset + port_count) 4173 return 1; 4174 } 4175 } 4176 return 0; 4177 } 4178 4179 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4180 { 4181 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4182 int portnum = udev->portnum - 1; 4183 4184 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support || 4185 !udev->lpm_capable) 4186 return 0; 4187 4188 /* we only support lpm for non-hub device connected to root hub yet */ 4189 if (!udev->parent || udev->parent->parent || 4190 udev->descriptor.bDeviceClass == USB_CLASS_HUB) 4191 return 0; 4192 4193 if (xhci->hw_lpm_support == 1 && 4194 xhci_check_usb2_port_capability( 4195 xhci, portnum, XHCI_HLC)) { 4196 udev->usb2_hw_lpm_capable = 1; 4197 udev->l1_params.timeout = XHCI_L1_TIMEOUT; 4198 udev->l1_params.besl = XHCI_DEFAULT_BESL; 4199 if (xhci_check_usb2_port_capability(xhci, portnum, 4200 XHCI_BLC)) 4201 udev->usb2_hw_lpm_besl_capable = 1; 4202 } 4203 4204 return 0; 4205 } 4206 4207 /*---------------------- USB 3.0 Link PM functions ------------------------*/ 4208 4209 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */ 4210 static unsigned long long xhci_service_interval_to_ns( 4211 struct usb_endpoint_descriptor *desc) 4212 { 4213 return (1ULL << (desc->bInterval - 1)) * 125 * 1000; 4214 } 4215 4216 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev, 4217 enum usb3_link_state state) 4218 { 4219 unsigned long long sel; 4220 unsigned long long pel; 4221 unsigned int max_sel_pel; 4222 char *state_name; 4223 4224 switch (state) { 4225 case USB3_LPM_U1: 4226 /* Convert SEL and PEL stored in nanoseconds to microseconds */ 4227 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); 4228 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); 4229 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL; 4230 state_name = "U1"; 4231 break; 4232 case USB3_LPM_U2: 4233 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); 4234 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); 4235 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL; 4236 state_name = "U2"; 4237 break; 4238 default: 4239 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n", 4240 __func__); 4241 return USB3_LPM_DISABLED; 4242 } 4243 4244 if (sel <= max_sel_pel && pel <= max_sel_pel) 4245 return USB3_LPM_DEVICE_INITIATED; 4246 4247 if (sel > max_sel_pel) 4248 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4249 "due to long SEL %llu ms\n", 4250 state_name, sel); 4251 else 4252 dev_dbg(&udev->dev, "Device-initiated %s disabled " 4253 "due to long PEL %llu ms\n", 4254 state_name, pel); 4255 return USB3_LPM_DISABLED; 4256 } 4257 4258 /* The U1 timeout should be the maximum of the following values: 4259 * - For control endpoints, U1 system exit latency (SEL) * 3 4260 * - For bulk endpoints, U1 SEL * 5 4261 * - For interrupt endpoints: 4262 * - Notification EPs, U1 SEL * 3 4263 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2) 4264 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2) 4265 */ 4266 static unsigned long long xhci_calculate_intel_u1_timeout( 4267 struct usb_device *udev, 4268 struct usb_endpoint_descriptor *desc) 4269 { 4270 unsigned long long timeout_ns; 4271 int ep_type; 4272 int intr_type; 4273 4274 ep_type = usb_endpoint_type(desc); 4275 switch (ep_type) { 4276 case USB_ENDPOINT_XFER_CONTROL: 4277 timeout_ns = udev->u1_params.sel * 3; 4278 break; 4279 case USB_ENDPOINT_XFER_BULK: 4280 timeout_ns = udev->u1_params.sel * 5; 4281 break; 4282 case USB_ENDPOINT_XFER_INT: 4283 intr_type = usb_endpoint_interrupt_type(desc); 4284 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) { 4285 timeout_ns = udev->u1_params.sel * 3; 4286 break; 4287 } 4288 /* Otherwise the calculation is the same as isoc eps */ 4289 case USB_ENDPOINT_XFER_ISOC: 4290 timeout_ns = xhci_service_interval_to_ns(desc); 4291 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100); 4292 if (timeout_ns < udev->u1_params.sel * 2) 4293 timeout_ns = udev->u1_params.sel * 2; 4294 break; 4295 default: 4296 return 0; 4297 } 4298 4299 return timeout_ns; 4300 } 4301 4302 /* Returns the hub-encoded U1 timeout value. */ 4303 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci, 4304 struct usb_device *udev, 4305 struct usb_endpoint_descriptor *desc) 4306 { 4307 unsigned long long timeout_ns; 4308 4309 if (xhci->quirks & XHCI_INTEL_HOST) 4310 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc); 4311 else 4312 timeout_ns = udev->u1_params.sel; 4313 4314 /* The U1 timeout is encoded in 1us intervals. 4315 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED. 4316 */ 4317 if (timeout_ns == USB3_LPM_DISABLED) 4318 timeout_ns = 1; 4319 else 4320 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000); 4321 4322 /* If the necessary timeout value is bigger than what we can set in the 4323 * USB 3.0 hub, we have to disable hub-initiated U1. 4324 */ 4325 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT) 4326 return timeout_ns; 4327 dev_dbg(&udev->dev, "Hub-initiated U1 disabled " 4328 "due to long timeout %llu ms\n", timeout_ns); 4329 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1); 4330 } 4331 4332 /* The U2 timeout should be the maximum of: 4333 * - 10 ms (to avoid the bandwidth impact on the scheduler) 4334 * - largest bInterval of any active periodic endpoint (to avoid going 4335 * into lower power link states between intervals). 4336 * - the U2 Exit Latency of the device 4337 */ 4338 static unsigned long long xhci_calculate_intel_u2_timeout( 4339 struct usb_device *udev, 4340 struct usb_endpoint_descriptor *desc) 4341 { 4342 unsigned long long timeout_ns; 4343 unsigned long long u2_del_ns; 4344 4345 timeout_ns = 10 * 1000 * 1000; 4346 4347 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) && 4348 (xhci_service_interval_to_ns(desc) > timeout_ns)) 4349 timeout_ns = xhci_service_interval_to_ns(desc); 4350 4351 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL; 4352 if (u2_del_ns > timeout_ns) 4353 timeout_ns = u2_del_ns; 4354 4355 return timeout_ns; 4356 } 4357 4358 /* Returns the hub-encoded U2 timeout value. */ 4359 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci, 4360 struct usb_device *udev, 4361 struct usb_endpoint_descriptor *desc) 4362 { 4363 unsigned long long timeout_ns; 4364 4365 if (xhci->quirks & XHCI_INTEL_HOST) 4366 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc); 4367 else 4368 timeout_ns = udev->u2_params.sel; 4369 4370 /* The U2 timeout is encoded in 256us intervals */ 4371 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000); 4372 /* If the necessary timeout value is bigger than what we can set in the 4373 * USB 3.0 hub, we have to disable hub-initiated U2. 4374 */ 4375 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT) 4376 return timeout_ns; 4377 dev_dbg(&udev->dev, "Hub-initiated U2 disabled " 4378 "due to long timeout %llu ms\n", timeout_ns); 4379 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2); 4380 } 4381 4382 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4383 struct usb_device *udev, 4384 struct usb_endpoint_descriptor *desc, 4385 enum usb3_link_state state, 4386 u16 *timeout) 4387 { 4388 if (state == USB3_LPM_U1) 4389 return xhci_calculate_u1_timeout(xhci, udev, desc); 4390 else if (state == USB3_LPM_U2) 4391 return xhci_calculate_u2_timeout(xhci, udev, desc); 4392 4393 return USB3_LPM_DISABLED; 4394 } 4395 4396 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci, 4397 struct usb_device *udev, 4398 struct usb_endpoint_descriptor *desc, 4399 enum usb3_link_state state, 4400 u16 *timeout) 4401 { 4402 u16 alt_timeout; 4403 4404 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev, 4405 desc, state, timeout); 4406 4407 /* If we found we can't enable hub-initiated LPM, or 4408 * the U1 or U2 exit latency was too high to allow 4409 * device-initiated LPM as well, just stop searching. 4410 */ 4411 if (alt_timeout == USB3_LPM_DISABLED || 4412 alt_timeout == USB3_LPM_DEVICE_INITIATED) { 4413 *timeout = alt_timeout; 4414 return -E2BIG; 4415 } 4416 if (alt_timeout > *timeout) 4417 *timeout = alt_timeout; 4418 return 0; 4419 } 4420 4421 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci, 4422 struct usb_device *udev, 4423 struct usb_host_interface *alt, 4424 enum usb3_link_state state, 4425 u16 *timeout) 4426 { 4427 int j; 4428 4429 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 4430 if (xhci_update_timeout_for_endpoint(xhci, udev, 4431 &alt->endpoint[j].desc, state, timeout)) 4432 return -E2BIG; 4433 continue; 4434 } 4435 return 0; 4436 } 4437 4438 static int xhci_check_intel_tier_policy(struct usb_device *udev, 4439 enum usb3_link_state state) 4440 { 4441 struct usb_device *parent; 4442 unsigned int num_hubs; 4443 4444 if (state == USB3_LPM_U2) 4445 return 0; 4446 4447 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */ 4448 for (parent = udev->parent, num_hubs = 0; parent->parent; 4449 parent = parent->parent) 4450 num_hubs++; 4451 4452 if (num_hubs < 2) 4453 return 0; 4454 4455 dev_dbg(&udev->dev, "Disabling U1 link state for device" 4456 " below second-tier hub.\n"); 4457 dev_dbg(&udev->dev, "Plug device into first-tier hub " 4458 "to decrease power consumption.\n"); 4459 return -E2BIG; 4460 } 4461 4462 static int xhci_check_tier_policy(struct xhci_hcd *xhci, 4463 struct usb_device *udev, 4464 enum usb3_link_state state) 4465 { 4466 if (xhci->quirks & XHCI_INTEL_HOST) 4467 return xhci_check_intel_tier_policy(udev, state); 4468 else 4469 return 0; 4470 } 4471 4472 /* Returns the U1 or U2 timeout that should be enabled. 4473 * If the tier check or timeout setting functions return with a non-zero exit 4474 * code, that means the timeout value has been finalized and we shouldn't look 4475 * at any more endpoints. 4476 */ 4477 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd, 4478 struct usb_device *udev, enum usb3_link_state state) 4479 { 4480 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4481 struct usb_host_config *config; 4482 char *state_name; 4483 int i; 4484 u16 timeout = USB3_LPM_DISABLED; 4485 4486 if (state == USB3_LPM_U1) 4487 state_name = "U1"; 4488 else if (state == USB3_LPM_U2) 4489 state_name = "U2"; 4490 else { 4491 dev_warn(&udev->dev, "Can't enable unknown link state %i\n", 4492 state); 4493 return timeout; 4494 } 4495 4496 if (xhci_check_tier_policy(xhci, udev, state) < 0) 4497 return timeout; 4498 4499 /* Gather some information about the currently installed configuration 4500 * and alternate interface settings. 4501 */ 4502 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc, 4503 state, &timeout)) 4504 return timeout; 4505 4506 config = udev->actconfig; 4507 if (!config) 4508 return timeout; 4509 4510 for (i = 0; i < config->desc.bNumInterfaces; i++) { 4511 struct usb_driver *driver; 4512 struct usb_interface *intf = config->interface[i]; 4513 4514 if (!intf) 4515 continue; 4516 4517 /* Check if any currently bound drivers want hub-initiated LPM 4518 * disabled. 4519 */ 4520 if (intf->dev.driver) { 4521 driver = to_usb_driver(intf->dev.driver); 4522 if (driver && driver->disable_hub_initiated_lpm) { 4523 dev_dbg(&udev->dev, "Hub-initiated %s disabled " 4524 "at request of driver %s\n", 4525 state_name, driver->name); 4526 return xhci_get_timeout_no_hub_lpm(udev, state); 4527 } 4528 } 4529 4530 /* Not sure how this could happen... */ 4531 if (!intf->cur_altsetting) 4532 continue; 4533 4534 if (xhci_update_timeout_for_interface(xhci, udev, 4535 intf->cur_altsetting, 4536 state, &timeout)) 4537 return timeout; 4538 } 4539 return timeout; 4540 } 4541 4542 static int calculate_max_exit_latency(struct usb_device *udev, 4543 enum usb3_link_state state_changed, 4544 u16 hub_encoded_timeout) 4545 { 4546 unsigned long long u1_mel_us = 0; 4547 unsigned long long u2_mel_us = 0; 4548 unsigned long long mel_us = 0; 4549 bool disabling_u1; 4550 bool disabling_u2; 4551 bool enabling_u1; 4552 bool enabling_u2; 4553 4554 disabling_u1 = (state_changed == USB3_LPM_U1 && 4555 hub_encoded_timeout == USB3_LPM_DISABLED); 4556 disabling_u2 = (state_changed == USB3_LPM_U2 && 4557 hub_encoded_timeout == USB3_LPM_DISABLED); 4558 4559 enabling_u1 = (state_changed == USB3_LPM_U1 && 4560 hub_encoded_timeout != USB3_LPM_DISABLED); 4561 enabling_u2 = (state_changed == USB3_LPM_U2 && 4562 hub_encoded_timeout != USB3_LPM_DISABLED); 4563 4564 /* If U1 was already enabled and we're not disabling it, 4565 * or we're going to enable U1, account for the U1 max exit latency. 4566 */ 4567 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) || 4568 enabling_u1) 4569 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000); 4570 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) || 4571 enabling_u2) 4572 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000); 4573 4574 if (u1_mel_us > u2_mel_us) 4575 mel_us = u1_mel_us; 4576 else 4577 mel_us = u2_mel_us; 4578 /* xHCI host controller max exit latency field is only 16 bits wide. */ 4579 if (mel_us > MAX_EXIT) { 4580 dev_warn(&udev->dev, "Link PM max exit latency of %lluus " 4581 "is too big.\n", mel_us); 4582 return -E2BIG; 4583 } 4584 return mel_us; 4585 } 4586 4587 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */ 4588 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4589 struct usb_device *udev, enum usb3_link_state state) 4590 { 4591 struct xhci_hcd *xhci; 4592 u16 hub_encoded_timeout; 4593 int mel; 4594 int ret; 4595 4596 xhci = hcd_to_xhci(hcd); 4597 /* The LPM timeout values are pretty host-controller specific, so don't 4598 * enable hub-initiated timeouts unless the vendor has provided 4599 * information about their timeout algorithm. 4600 */ 4601 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4602 !xhci->devs[udev->slot_id]) 4603 return USB3_LPM_DISABLED; 4604 4605 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state); 4606 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout); 4607 if (mel < 0) { 4608 /* Max Exit Latency is too big, disable LPM. */ 4609 hub_encoded_timeout = USB3_LPM_DISABLED; 4610 mel = 0; 4611 } 4612 4613 ret = xhci_change_max_exit_latency(xhci, udev, mel); 4614 if (ret) 4615 return ret; 4616 return hub_encoded_timeout; 4617 } 4618 4619 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4620 struct usb_device *udev, enum usb3_link_state state) 4621 { 4622 struct xhci_hcd *xhci; 4623 u16 mel; 4624 4625 xhci = hcd_to_xhci(hcd); 4626 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) || 4627 !xhci->devs[udev->slot_id]) 4628 return 0; 4629 4630 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED); 4631 return xhci_change_max_exit_latency(xhci, udev, mel); 4632 } 4633 #else /* CONFIG_PM */ 4634 4635 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd, 4636 struct usb_device *udev, int enable) 4637 { 4638 return 0; 4639 } 4640 4641 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev) 4642 { 4643 return 0; 4644 } 4645 4646 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd, 4647 struct usb_device *udev, enum usb3_link_state state) 4648 { 4649 return USB3_LPM_DISABLED; 4650 } 4651 4652 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd, 4653 struct usb_device *udev, enum usb3_link_state state) 4654 { 4655 return 0; 4656 } 4657 #endif /* CONFIG_PM */ 4658 4659 /*-------------------------------------------------------------------------*/ 4660 4661 /* Once a hub descriptor is fetched for a device, we need to update the xHC's 4662 * internal data structures for the device. 4663 */ 4664 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, 4665 struct usb_tt *tt, gfp_t mem_flags) 4666 { 4667 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4668 struct xhci_virt_device *vdev; 4669 struct xhci_command *config_cmd; 4670 struct xhci_input_control_ctx *ctrl_ctx; 4671 struct xhci_slot_ctx *slot_ctx; 4672 unsigned long flags; 4673 unsigned think_time; 4674 int ret; 4675 4676 /* Ignore root hubs */ 4677 if (!hdev->parent) 4678 return 0; 4679 4680 vdev = xhci->devs[hdev->slot_id]; 4681 if (!vdev) { 4682 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); 4683 return -EINVAL; 4684 } 4685 4686 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); 4687 if (!config_cmd) 4688 return -ENOMEM; 4689 4690 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx); 4691 if (!ctrl_ctx) { 4692 xhci_warn(xhci, "%s: Could not get input context, bad type.\n", 4693 __func__); 4694 xhci_free_command(xhci, config_cmd); 4695 return -ENOMEM; 4696 } 4697 4698 spin_lock_irqsave(&xhci->lock, flags); 4699 if (hdev->speed == USB_SPEED_HIGH && 4700 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) { 4701 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n"); 4702 xhci_free_command(xhci, config_cmd); 4703 spin_unlock_irqrestore(&xhci->lock, flags); 4704 return -ENOMEM; 4705 } 4706 4707 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); 4708 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 4709 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); 4710 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 4711 /* 4712 * refer to section 6.2.2: MTT should be 0 for full speed hub, 4713 * but it may be already set to 1 when setup an xHCI virtual 4714 * device, so clear it anyway. 4715 */ 4716 if (tt->multi) 4717 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 4718 else if (hdev->speed == USB_SPEED_FULL) 4719 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT); 4720 4721 if (xhci->hci_version > 0x95) { 4722 xhci_dbg(xhci, "xHCI version %x needs hub " 4723 "TT think time and number of ports\n", 4724 (unsigned int) xhci->hci_version); 4725 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); 4726 /* Set TT think time - convert from ns to FS bit times. 4727 * 0 = 8 FS bit times, 1 = 16 FS bit times, 4728 * 2 = 24 FS bit times, 3 = 32 FS bit times. 4729 * 4730 * xHCI 1.0: this field shall be 0 if the device is not a 4731 * High-spped hub. 4732 */ 4733 think_time = tt->think_time; 4734 if (think_time != 0) 4735 think_time = (think_time / 666) - 1; 4736 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH) 4737 slot_ctx->tt_info |= 4738 cpu_to_le32(TT_THINK_TIME(think_time)); 4739 } else { 4740 xhci_dbg(xhci, "xHCI version %x doesn't need hub " 4741 "TT think time or number of ports\n", 4742 (unsigned int) xhci->hci_version); 4743 } 4744 slot_ctx->dev_state = 0; 4745 spin_unlock_irqrestore(&xhci->lock, flags); 4746 4747 xhci_dbg(xhci, "Set up %s for hub device.\n", 4748 (xhci->hci_version > 0x95) ? 4749 "configure endpoint" : "evaluate context"); 4750 4751 /* Issue and wait for the configure endpoint or 4752 * evaluate context command. 4753 */ 4754 if (xhci->hci_version > 0x95) 4755 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4756 false, false); 4757 else 4758 ret = xhci_configure_endpoint(xhci, hdev, config_cmd, 4759 true, false); 4760 4761 xhci_free_command(xhci, config_cmd); 4762 return ret; 4763 } 4764 4765 static int xhci_get_frame(struct usb_hcd *hcd) 4766 { 4767 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 4768 /* EHCI mods by the periodic size. Why? */ 4769 return readl(&xhci->run_regs->microframe_index) >> 3; 4770 } 4771 4772 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks) 4773 { 4774 struct xhci_hcd *xhci; 4775 /* 4776 * TODO: Check with DWC3 clients for sysdev according to 4777 * quirks 4778 */ 4779 struct device *dev = hcd->self.sysdev; 4780 int retval; 4781 4782 /* Accept arbitrarily long scatter-gather lists */ 4783 hcd->self.sg_tablesize = ~0; 4784 4785 /* support to build packet from discontinuous buffers */ 4786 hcd->self.no_sg_constraint = 1; 4787 4788 /* XHCI controllers don't stop the ep queue on short packets :| */ 4789 hcd->self.no_stop_on_short = 1; 4790 4791 xhci = hcd_to_xhci(hcd); 4792 4793 if (usb_hcd_is_primary_hcd(hcd)) { 4794 xhci->main_hcd = hcd; 4795 /* Mark the first roothub as being USB 2.0. 4796 * The xHCI driver will register the USB 3.0 roothub. 4797 */ 4798 hcd->speed = HCD_USB2; 4799 hcd->self.root_hub->speed = USB_SPEED_HIGH; 4800 /* 4801 * USB 2.0 roothub under xHCI has an integrated TT, 4802 * (rate matching hub) as opposed to having an OHCI/UHCI 4803 * companion controller. 4804 */ 4805 hcd->has_tt = 1; 4806 } else { 4807 if (xhci->sbrn == 0x31) { 4808 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n"); 4809 hcd->speed = HCD_USB31; 4810 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS; 4811 } 4812 /* xHCI private pointer was set in xhci_pci_probe for the second 4813 * registered roothub. 4814 */ 4815 return 0; 4816 } 4817 4818 mutex_init(&xhci->mutex); 4819 xhci->cap_regs = hcd->regs; 4820 xhci->op_regs = hcd->regs + 4821 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase)); 4822 xhci->run_regs = hcd->regs + 4823 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK); 4824 /* Cache read-only capability registers */ 4825 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1); 4826 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2); 4827 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3); 4828 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase); 4829 xhci->hci_version = HC_VERSION(xhci->hcc_params); 4830 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params); 4831 if (xhci->hci_version > 0x100) 4832 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2); 4833 xhci_print_registers(xhci); 4834 4835 xhci->quirks |= quirks; 4836 4837 get_quirks(dev, xhci); 4838 4839 /* In xhci controllers which follow xhci 1.0 spec gives a spurious 4840 * success event after a short transfer. This quirk will ignore such 4841 * spurious event. 4842 */ 4843 if (xhci->hci_version > 0x96) 4844 xhci->quirks |= XHCI_SPURIOUS_SUCCESS; 4845 4846 /* Make sure the HC is halted. */ 4847 retval = xhci_halt(xhci); 4848 if (retval) 4849 return retval; 4850 4851 xhci_dbg(xhci, "Resetting HCD\n"); 4852 /* Reset the internal HC memory state and registers. */ 4853 retval = xhci_reset(xhci); 4854 if (retval) 4855 return retval; 4856 xhci_dbg(xhci, "Reset complete\n"); 4857 4858 /* 4859 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0) 4860 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit 4861 * address memory pointers actually. So, this driver clears the AC64 4862 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev, 4863 * DMA_BIT_MASK(32)) in this xhci_gen_setup(). 4864 */ 4865 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT) 4866 xhci->hcc_params &= ~BIT(0); 4867 4868 /* Set dma_mask and coherent_dma_mask to 64-bits, 4869 * if xHC supports 64-bit addressing */ 4870 if (HCC_64BIT_ADDR(xhci->hcc_params) && 4871 !dma_set_mask(dev, DMA_BIT_MASK(64))) { 4872 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n"); 4873 dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); 4874 } else { 4875 /* 4876 * This is to avoid error in cases where a 32-bit USB 4877 * controller is used on a 64-bit capable system. 4878 */ 4879 retval = dma_set_mask(dev, DMA_BIT_MASK(32)); 4880 if (retval) 4881 return retval; 4882 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n"); 4883 dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 4884 } 4885 4886 xhci_dbg(xhci, "Calling HCD init\n"); 4887 /* Initialize HCD and host controller data structures. */ 4888 retval = xhci_init(hcd); 4889 if (retval) 4890 return retval; 4891 xhci_dbg(xhci, "Called HCD init\n"); 4892 4893 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n", 4894 xhci->hcc_params, xhci->hci_version, xhci->quirks); 4895 4896 return 0; 4897 } 4898 EXPORT_SYMBOL_GPL(xhci_gen_setup); 4899 4900 static const struct hc_driver xhci_hc_driver = { 4901 .description = "xhci-hcd", 4902 .product_desc = "xHCI Host Controller", 4903 .hcd_priv_size = sizeof(struct xhci_hcd), 4904 4905 /* 4906 * generic hardware linkage 4907 */ 4908 .irq = xhci_irq, 4909 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED, 4910 4911 /* 4912 * basic lifecycle operations 4913 */ 4914 .reset = NULL, /* set in xhci_init_driver() */ 4915 .start = xhci_run, 4916 .stop = xhci_stop, 4917 .shutdown = xhci_shutdown, 4918 4919 /* 4920 * managing i/o requests and associated device resources 4921 */ 4922 .urb_enqueue = xhci_urb_enqueue, 4923 .urb_dequeue = xhci_urb_dequeue, 4924 .alloc_dev = xhci_alloc_dev, 4925 .free_dev = xhci_free_dev, 4926 .alloc_streams = xhci_alloc_streams, 4927 .free_streams = xhci_free_streams, 4928 .add_endpoint = xhci_add_endpoint, 4929 .drop_endpoint = xhci_drop_endpoint, 4930 .endpoint_reset = xhci_endpoint_reset, 4931 .check_bandwidth = xhci_check_bandwidth, 4932 .reset_bandwidth = xhci_reset_bandwidth, 4933 .address_device = xhci_address_device, 4934 .enable_device = xhci_enable_device, 4935 .update_hub_device = xhci_update_hub_device, 4936 .reset_device = xhci_discover_or_reset_device, 4937 4938 /* 4939 * scheduling support 4940 */ 4941 .get_frame_number = xhci_get_frame, 4942 4943 /* 4944 * root hub support 4945 */ 4946 .hub_control = xhci_hub_control, 4947 .hub_status_data = xhci_hub_status_data, 4948 .bus_suspend = xhci_bus_suspend, 4949 .bus_resume = xhci_bus_resume, 4950 4951 /* 4952 * call back when device connected and addressed 4953 */ 4954 .update_device = xhci_update_device, 4955 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm, 4956 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout, 4957 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout, 4958 .find_raw_port_number = xhci_find_raw_port_number, 4959 }; 4960 4961 void xhci_init_driver(struct hc_driver *drv, 4962 const struct xhci_driver_overrides *over) 4963 { 4964 BUG_ON(!over); 4965 4966 /* Copy the generic table to drv then apply the overrides */ 4967 *drv = xhci_hc_driver; 4968 4969 if (over) { 4970 drv->hcd_priv_size += over->extra_priv_size; 4971 if (over->reset) 4972 drv->reset = over->reset; 4973 if (over->start) 4974 drv->start = over->start; 4975 } 4976 } 4977 EXPORT_SYMBOL_GPL(xhci_init_driver); 4978 4979 MODULE_DESCRIPTION(DRIVER_DESC); 4980 MODULE_AUTHOR(DRIVER_AUTHOR); 4981 MODULE_LICENSE("GPL"); 4982 4983 static int __init xhci_hcd_init(void) 4984 { 4985 /* 4986 * Check the compiler generated sizes of structures that must be laid 4987 * out in specific ways for hardware access. 4988 */ 4989 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); 4990 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); 4991 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); 4992 /* xhci_device_control has eight fields, and also 4993 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx 4994 */ 4995 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); 4996 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); 4997 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); 4998 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8); 4999 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); 5000 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ 5001 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); 5002 5003 if (usb_disabled()) 5004 return -ENODEV; 5005 5006 return 0; 5007 } 5008 5009 /* 5010 * If an init function is provided, an exit function must also be provided 5011 * to allow module unload. 5012 */ 5013 static void __exit xhci_hcd_fini(void) { } 5014 5015 module_init(xhci_hcd_init); 5016 module_exit(xhci_hcd_fini); 5017