xref: /linux/drivers/usb/host/xhci.c (revision d257f9bf06129613de539ea71ecea60848b662cd)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31 
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 	u32	result;
67 
68 	do {
69 		result = readl(ptr);
70 		if (result == ~(u32)0)		/* card removed */
71 			return -ENODEV;
72 		result &= mask;
73 		if (result == done)
74 			return 0;
75 		udelay(1);
76 		usec--;
77 	} while (usec > 0);
78 	return -ETIMEDOUT;
79 }
80 
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 	u32 halted;
87 	u32 cmd;
88 	u32 mask;
89 
90 	mask = ~(XHCI_IRQS);
91 	halted = readl(&xhci->op_regs->status) & STS_HALT;
92 	if (!halted)
93 		mask &= ~CMD_RUN;
94 
95 	cmd = readl(&xhci->op_regs->command);
96 	cmd &= mask;
97 	writel(cmd, &xhci->op_regs->command);
98 }
99 
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 	int ret;
111 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 	xhci_quiesce(xhci);
113 
114 	ret = xhci_handshake(&xhci->op_regs->status,
115 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 	if (ret) {
117 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
118 		return ret;
119 	}
120 	xhci->xhc_state |= XHCI_STATE_HALTED;
121 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122 	return ret;
123 }
124 
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130 	u32 temp;
131 	int ret;
132 
133 	temp = readl(&xhci->op_regs->command);
134 	temp |= (CMD_RUN);
135 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 			temp);
137 	writel(temp, &xhci->op_regs->command);
138 
139 	/*
140 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 	 * running.
142 	 */
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 	if (ret == -ETIMEDOUT)
146 		xhci_err(xhci, "Host took too long to start, "
147 				"waited %u microseconds.\n",
148 				XHCI_MAX_HALT_USEC);
149 	if (!ret)
150 		/* clear state flags. Including dying, halted or removing */
151 		xhci->xhc_state = 0;
152 
153 	return ret;
154 }
155 
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165 	u32 command;
166 	u32 state;
167 	int ret, i;
168 
169 	state = readl(&xhci->op_regs->status);
170 
171 	if (state == ~(u32)0) {
172 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
173 		return -ENODEV;
174 	}
175 
176 	if ((state & STS_HALT) == 0) {
177 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178 		return 0;
179 	}
180 
181 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182 	command = readl(&xhci->op_regs->command);
183 	command |= CMD_RESET;
184 	writel(command, &xhci->op_regs->command);
185 
186 	/* Existing Intel xHCI controllers require a delay of 1 mS,
187 	 * after setting the CMD_RESET bit, and before accessing any
188 	 * HC registers. This allows the HC to complete the
189 	 * reset operation and be ready for HC register access.
190 	 * Without this delay, the subsequent HC register access,
191 	 * may result in a system hang very rarely.
192 	 */
193 	if (xhci->quirks & XHCI_INTEL_HOST)
194 		udelay(1000);
195 
196 	ret = xhci_handshake(&xhci->op_regs->command,
197 			CMD_RESET, 0, 10 * 1000 * 1000);
198 	if (ret)
199 		return ret;
200 
201 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
202 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
203 
204 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
205 			 "Wait for controller to be ready for doorbell rings");
206 	/*
207 	 * xHCI cannot write to any doorbells or operational registers other
208 	 * than status until the "Controller Not Ready" flag is cleared.
209 	 */
210 	ret = xhci_handshake(&xhci->op_regs->status,
211 			STS_CNR, 0, 10 * 1000 * 1000);
212 
213 	for (i = 0; i < 2; i++) {
214 		xhci->bus_state[i].port_c_suspend = 0;
215 		xhci->bus_state[i].suspended_ports = 0;
216 		xhci->bus_state[i].resuming_ports = 0;
217 	}
218 
219 	return ret;
220 }
221 
222 
223 #ifdef CONFIG_USB_PCI
224 /*
225  * Set up MSI
226  */
227 static int xhci_setup_msi(struct xhci_hcd *xhci)
228 {
229 	int ret;
230 	/*
231 	 * TODO:Check with MSI Soc for sysdev
232 	 */
233 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234 
235 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
236 	if (ret < 0) {
237 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 				"failed to allocate MSI entry");
239 		return ret;
240 	}
241 
242 	ret = request_irq(pdev->irq, xhci_msi_irq,
243 				0, "xhci_hcd", xhci_to_hcd(xhci));
244 	if (ret) {
245 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 				"disable MSI interrupt");
247 		pci_free_irq_vectors(pdev);
248 	}
249 
250 	return ret;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
273 			PCI_IRQ_MSIX);
274 	if (ret < 0) {
275 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
276 				"Failed to enable MSI-X");
277 		return ret;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
282 				"xhci_hcd", xhci_to_hcd(xhci));
283 		if (ret)
284 			goto disable_msix;
285 	}
286 
287 	hcd->msix_enabled = 1;
288 	return ret;
289 
290 disable_msix:
291 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
292 	while (--i >= 0)
293 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
294 	pci_free_irq_vectors(pdev);
295 	return ret;
296 }
297 
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303 
304 	if (xhci->quirks & XHCI_PLAT)
305 		return;
306 
307 	/* return if using legacy interrupt */
308 	if (hcd->irq > 0)
309 		return;
310 
311 	if (hcd->msix_enabled) {
312 		int i;
313 
314 		for (i = 0; i < xhci->msix_count; i++)
315 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
316 	} else {
317 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
318 	}
319 
320 	pci_free_irq_vectors(pdev);
321 	hcd->msix_enabled = 0;
322 }
323 
324 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
325 {
326 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 
328 	if (hcd->msix_enabled) {
329 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330 		int i;
331 
332 		for (i = 0; i < xhci->msix_count; i++)
333 			synchronize_irq(pci_irq_vector(pdev, i));
334 	}
335 }
336 
337 static int xhci_try_enable_msi(struct usb_hcd *hcd)
338 {
339 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
340 	struct pci_dev  *pdev;
341 	int ret;
342 
343 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
344 	if (xhci->quirks & XHCI_PLAT)
345 		return 0;
346 
347 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		goto legacy_irq;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret) {
366 		hcd->msi_enabled = 1;
367 		return 0;
368 	}
369 
370 	if (!pdev->irq) {
371 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372 		return -EINVAL;
373 	}
374 
375  legacy_irq:
376 	if (!strlen(hcd->irq_descr))
377 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
378 			 hcd->driver->description, hcd->self.busnum);
379 
380 	/* fall back to legacy interrupt*/
381 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
382 			hcd->irq_descr, hcd);
383 	if (ret) {
384 		xhci_err(xhci, "request interrupt %d failed\n",
385 				pdev->irq);
386 		return ret;
387 	}
388 	hcd->irq = pdev->irq;
389 	return 0;
390 }
391 
392 #else
393 
394 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
395 {
396 	return 0;
397 }
398 
399 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
400 {
401 }
402 
403 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
404 {
405 }
406 
407 #endif
408 
409 static void compliance_mode_recovery(unsigned long arg)
410 {
411 	struct xhci_hcd *xhci;
412 	struct usb_hcd *hcd;
413 	u32 temp;
414 	int i;
415 
416 	xhci = (struct xhci_hcd *)arg;
417 
418 	for (i = 0; i < xhci->num_usb3_ports; i++) {
419 		temp = readl(xhci->usb3_ports[i]);
420 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
421 			/*
422 			 * Compliance Mode Detected. Letting USB Core
423 			 * handle the Warm Reset
424 			 */
425 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426 					"Compliance mode detected->port %d",
427 					i + 1);
428 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
429 					"Attempting compliance mode recovery");
430 			hcd = xhci->shared_hcd;
431 
432 			if (hcd->state == HC_STATE_SUSPENDED)
433 				usb_hcd_resume_root_hub(hcd);
434 
435 			usb_hcd_poll_rh_status(hcd);
436 		}
437 	}
438 
439 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
440 		mod_timer(&xhci->comp_mode_recovery_timer,
441 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
442 }
443 
444 /*
445  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
446  * that causes ports behind that hardware to enter compliance mode sometimes.
447  * The quirk creates a timer that polls every 2 seconds the link state of
448  * each host controller's port and recovers it by issuing a Warm reset
449  * if Compliance mode is detected, otherwise the port will become "dead" (no
450  * device connections or disconnections will be detected anymore). Becasue no
451  * status event is generated when entering compliance mode (per xhci spec),
452  * this quirk is needed on systems that have the failing hardware installed.
453  */
454 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
455 {
456 	xhci->port_status_u0 = 0;
457 	setup_timer(&xhci->comp_mode_recovery_timer,
458 		    compliance_mode_recovery, (unsigned long)xhci);
459 	xhci->comp_mode_recovery_timer.expires = jiffies +
460 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
461 
462 	add_timer(&xhci->comp_mode_recovery_timer);
463 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
464 			"Compliance mode recovery timer initialized");
465 }
466 
467 /*
468  * This function identifies the systems that have installed the SN65LVPE502CP
469  * USB3.0 re-driver and that need the Compliance Mode Quirk.
470  * Systems:
471  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
472  */
473 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
474 {
475 	const char *dmi_product_name, *dmi_sys_vendor;
476 
477 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
478 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
479 	if (!dmi_product_name || !dmi_sys_vendor)
480 		return false;
481 
482 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
483 		return false;
484 
485 	if (strstr(dmi_product_name, "Z420") ||
486 			strstr(dmi_product_name, "Z620") ||
487 			strstr(dmi_product_name, "Z820") ||
488 			strstr(dmi_product_name, "Z1 Workstation"))
489 		return true;
490 
491 	return false;
492 }
493 
494 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
495 {
496 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
497 }
498 
499 
500 /*
501  * Initialize memory for HCD and xHC (one-time init).
502  *
503  * Program the PAGESIZE register, initialize the device context array, create
504  * device contexts (?), set up a command ring segment (or two?), create event
505  * ring (one for now).
506  */
507 static int xhci_init(struct usb_hcd *hcd)
508 {
509 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
510 	int retval = 0;
511 
512 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
513 	spin_lock_init(&xhci->lock);
514 	if (xhci->hci_version == 0x95 && link_quirk) {
515 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
516 				"QUIRK: Not clearing Link TRB chain bits.");
517 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
518 	} else {
519 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
520 				"xHCI doesn't need link TRB QUIRK");
521 	}
522 	retval = xhci_mem_init(xhci, GFP_KERNEL);
523 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
524 
525 	/* Initializing Compliance Mode Recovery Data If Needed */
526 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
527 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
528 		compliance_mode_recovery_timer_init(xhci);
529 	}
530 
531 	return retval;
532 }
533 
534 /*-------------------------------------------------------------------------*/
535 
536 
537 static int xhci_run_finished(struct xhci_hcd *xhci)
538 {
539 	if (xhci_start(xhci)) {
540 		xhci_halt(xhci);
541 		return -ENODEV;
542 	}
543 	xhci->shared_hcd->state = HC_STATE_RUNNING;
544 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
545 
546 	if (xhci->quirks & XHCI_NEC_HOST)
547 		xhci_ring_cmd_db(xhci);
548 
549 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550 			"Finished xhci_run for USB3 roothub");
551 	return 0;
552 }
553 
554 /*
555  * Start the HC after it was halted.
556  *
557  * This function is called by the USB core when the HC driver is added.
558  * Its opposite is xhci_stop().
559  *
560  * xhci_init() must be called once before this function can be called.
561  * Reset the HC, enable device slot contexts, program DCBAAP, and
562  * set command ring pointer and event ring pointer.
563  *
564  * Setup MSI-X vectors and enable interrupts.
565  */
566 int xhci_run(struct usb_hcd *hcd)
567 {
568 	u32 temp;
569 	u64 temp_64;
570 	int ret;
571 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
572 
573 	/* Start the xHCI host controller running only after the USB 2.0 roothub
574 	 * is setup.
575 	 */
576 
577 	hcd->uses_new_polling = 1;
578 	if (!usb_hcd_is_primary_hcd(hcd))
579 		return xhci_run_finished(xhci);
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
582 
583 	ret = xhci_try_enable_msi(hcd);
584 	if (ret)
585 		return ret;
586 
587 	xhci_dbg_cmd_ptrs(xhci);
588 
589 	xhci_dbg(xhci, "ERST memory map follows:\n");
590 	xhci_dbg_erst(xhci, &xhci->erst);
591 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
592 	temp_64 &= ~ERST_PTR_MASK;
593 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
595 
596 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 			"// Set the interrupt modulation register");
598 	temp = readl(&xhci->ir_set->irq_control);
599 	temp &= ~ER_IRQ_INTERVAL_MASK;
600 	/*
601 	 * the increment interval is 8 times as much as that defined
602 	 * in xHCI spec on MTK's controller
603 	 */
604 	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
605 	writel(temp, &xhci->ir_set->irq_control);
606 
607 	/* Set the HCD state before we enable the irqs */
608 	temp = readl(&xhci->op_regs->command);
609 	temp |= (CMD_EIE);
610 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
611 			"// Enable interrupts, cmd = 0x%x.", temp);
612 	writel(temp, &xhci->op_regs->command);
613 
614 	temp = readl(&xhci->ir_set->irq_pending);
615 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
616 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
617 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
618 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
619 	xhci_print_ir_set(xhci, 0);
620 
621 	if (xhci->quirks & XHCI_NEC_HOST) {
622 		struct xhci_command *command;
623 
624 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
625 		if (!command)
626 			return -ENOMEM;
627 
628 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
629 				TRB_TYPE(TRB_NEC_GET_FW));
630 		if (ret)
631 			xhci_free_command(xhci, command);
632 	}
633 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 			"Finished xhci_run for USB2 roothub");
635 	return 0;
636 }
637 EXPORT_SYMBOL_GPL(xhci_run);
638 
639 /*
640  * Stop xHCI driver.
641  *
642  * This function is called by the USB core when the HC driver is removed.
643  * Its opposite is xhci_run().
644  *
645  * Disable device contexts, disable IRQs, and quiesce the HC.
646  * Reset the HC, finish any completed transactions, and cleanup memory.
647  */
648 static void xhci_stop(struct usb_hcd *hcd)
649 {
650 	u32 temp;
651 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
652 
653 	mutex_lock(&xhci->mutex);
654 
655 	/* Only halt host and free memory after both hcds are removed */
656 	if (!usb_hcd_is_primary_hcd(hcd)) {
657 		/* usb core will free this hcd shortly, unset pointer */
658 		xhci->shared_hcd = NULL;
659 		mutex_unlock(&xhci->mutex);
660 		return;
661 	}
662 
663 	spin_lock_irq(&xhci->lock);
664 	xhci->xhc_state |= XHCI_STATE_HALTED;
665 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
666 	xhci_halt(xhci);
667 	xhci_reset(xhci);
668 	spin_unlock_irq(&xhci->lock);
669 
670 	xhci_cleanup_msix(xhci);
671 
672 	/* Deleting Compliance Mode Recovery Timer */
673 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
674 			(!(xhci_all_ports_seen_u0(xhci)))) {
675 		del_timer_sync(&xhci->comp_mode_recovery_timer);
676 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
677 				"%s: compliance mode recovery timer deleted",
678 				__func__);
679 	}
680 
681 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
682 		usb_amd_dev_put();
683 
684 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
685 			"// Disabling event ring interrupts");
686 	temp = readl(&xhci->op_regs->status);
687 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
688 	temp = readl(&xhci->ir_set->irq_pending);
689 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
690 	xhci_print_ir_set(xhci, 0);
691 
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
693 	xhci_mem_cleanup(xhci);
694 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
695 			"xhci_stop completed - status = %x",
696 			readl(&xhci->op_regs->status));
697 	mutex_unlock(&xhci->mutex);
698 }
699 
700 /*
701  * Shutdown HC (not bus-specific)
702  *
703  * This is called when the machine is rebooting or halting.  We assume that the
704  * machine will be powered off, and the HC's internal state will be reset.
705  * Don't bother to free memory.
706  *
707  * This will only ever be called with the main usb_hcd (the USB3 roothub).
708  */
709 static void xhci_shutdown(struct usb_hcd *hcd)
710 {
711 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712 
713 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
714 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
715 
716 	spin_lock_irq(&xhci->lock);
717 	xhci_halt(xhci);
718 	/* Workaround for spurious wakeups at shutdown with HSW */
719 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
720 		xhci_reset(xhci);
721 	spin_unlock_irq(&xhci->lock);
722 
723 	xhci_cleanup_msix(xhci);
724 
725 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
726 			"xhci_shutdown completed - status = %x",
727 			readl(&xhci->op_regs->status));
728 
729 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
730 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
731 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
732 }
733 
734 #ifdef CONFIG_PM
735 static void xhci_save_registers(struct xhci_hcd *xhci)
736 {
737 	xhci->s3.command = readl(&xhci->op_regs->command);
738 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
739 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
740 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
741 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
742 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
743 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
744 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
745 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
746 }
747 
748 static void xhci_restore_registers(struct xhci_hcd *xhci)
749 {
750 	writel(xhci->s3.command, &xhci->op_regs->command);
751 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
752 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
753 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
754 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
755 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
756 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
757 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
758 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
759 }
760 
761 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
762 {
763 	u64	val_64;
764 
765 	/* step 2: initialize command ring buffer */
766 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
767 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
768 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
769 				      xhci->cmd_ring->dequeue) &
770 		 (u64) ~CMD_RING_RSVD_BITS) |
771 		xhci->cmd_ring->cycle_state;
772 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
773 			"// Setting command ring address to 0x%llx",
774 			(long unsigned long) val_64);
775 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
776 }
777 
778 /*
779  * The whole command ring must be cleared to zero when we suspend the host.
780  *
781  * The host doesn't save the command ring pointer in the suspend well, so we
782  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
783  * aligned, because of the reserved bits in the command ring dequeue pointer
784  * register.  Therefore, we can't just set the dequeue pointer back in the
785  * middle of the ring (TRBs are 16-byte aligned).
786  */
787 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
788 {
789 	struct xhci_ring *ring;
790 	struct xhci_segment *seg;
791 
792 	ring = xhci->cmd_ring;
793 	seg = ring->deq_seg;
794 	do {
795 		memset(seg->trbs, 0,
796 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
797 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
798 			cpu_to_le32(~TRB_CYCLE);
799 		seg = seg->next;
800 	} while (seg != ring->deq_seg);
801 
802 	/* Reset the software enqueue and dequeue pointers */
803 	ring->deq_seg = ring->first_seg;
804 	ring->dequeue = ring->first_seg->trbs;
805 	ring->enq_seg = ring->deq_seg;
806 	ring->enqueue = ring->dequeue;
807 
808 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
809 	/*
810 	 * Ring is now zeroed, so the HW should look for change of ownership
811 	 * when the cycle bit is set to 1.
812 	 */
813 	ring->cycle_state = 1;
814 
815 	/*
816 	 * Reset the hardware dequeue pointer.
817 	 * Yes, this will need to be re-written after resume, but we're paranoid
818 	 * and want to make sure the hardware doesn't access bogus memory
819 	 * because, say, the BIOS or an SMI started the host without changing
820 	 * the command ring pointers.
821 	 */
822 	xhci_set_cmd_ring_deq(xhci);
823 }
824 
825 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
826 {
827 	int port_index;
828 	__le32 __iomem **port_array;
829 	unsigned long flags;
830 	u32 t1, t2;
831 
832 	spin_lock_irqsave(&xhci->lock, flags);
833 
834 	/* disable usb3 ports Wake bits */
835 	port_index = xhci->num_usb3_ports;
836 	port_array = xhci->usb3_ports;
837 	while (port_index--) {
838 		t1 = readl(port_array[port_index]);
839 		t1 = xhci_port_state_to_neutral(t1);
840 		t2 = t1 & ~PORT_WAKE_BITS;
841 		if (t1 != t2)
842 			writel(t2, port_array[port_index]);
843 	}
844 
845 	/* disable usb2 ports Wake bits */
846 	port_index = xhci->num_usb2_ports;
847 	port_array = xhci->usb2_ports;
848 	while (port_index--) {
849 		t1 = readl(port_array[port_index]);
850 		t1 = xhci_port_state_to_neutral(t1);
851 		t2 = t1 & ~PORT_WAKE_BITS;
852 		if (t1 != t2)
853 			writel(t2, port_array[port_index]);
854 	}
855 
856 	spin_unlock_irqrestore(&xhci->lock, flags);
857 }
858 
859 /*
860  * Stop HC (not bus-specific)
861  *
862  * This is called when the machine transition into S3/S4 mode.
863  *
864  */
865 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
866 {
867 	int			rc = 0;
868 	unsigned int		delay = XHCI_MAX_HALT_USEC;
869 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
870 	u32			command;
871 
872 	if (!hcd->state)
873 		return 0;
874 
875 	if (hcd->state != HC_STATE_SUSPENDED ||
876 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
877 		return -EINVAL;
878 
879 	/* Clear root port wake on bits if wakeup not allowed. */
880 	if (!do_wakeup)
881 		xhci_disable_port_wake_on_bits(xhci);
882 
883 	/* Don't poll the roothubs on bus suspend. */
884 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
885 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
886 	del_timer_sync(&hcd->rh_timer);
887 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
888 	del_timer_sync(&xhci->shared_hcd->rh_timer);
889 
890 	spin_lock_irq(&xhci->lock);
891 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
892 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
893 	/* step 1: stop endpoint */
894 	/* skipped assuming that port suspend has done */
895 
896 	/* step 2: clear Run/Stop bit */
897 	command = readl(&xhci->op_regs->command);
898 	command &= ~CMD_RUN;
899 	writel(command, &xhci->op_regs->command);
900 
901 	/* Some chips from Fresco Logic need an extraordinary delay */
902 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
903 
904 	if (xhci_handshake(&xhci->op_regs->status,
905 		      STS_HALT, STS_HALT, delay)) {
906 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
907 		spin_unlock_irq(&xhci->lock);
908 		return -ETIMEDOUT;
909 	}
910 	xhci_clear_command_ring(xhci);
911 
912 	/* step 3: save registers */
913 	xhci_save_registers(xhci);
914 
915 	/* step 4: set CSS flag */
916 	command = readl(&xhci->op_regs->command);
917 	command |= CMD_CSS;
918 	writel(command, &xhci->op_regs->command);
919 	if (xhci_handshake(&xhci->op_regs->status,
920 				STS_SAVE, 0, 10 * 1000)) {
921 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
922 		spin_unlock_irq(&xhci->lock);
923 		return -ETIMEDOUT;
924 	}
925 	spin_unlock_irq(&xhci->lock);
926 
927 	/*
928 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
929 	 * is about to be suspended.
930 	 */
931 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
932 			(!(xhci_all_ports_seen_u0(xhci)))) {
933 		del_timer_sync(&xhci->comp_mode_recovery_timer);
934 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
935 				"%s: compliance mode recovery timer deleted",
936 				__func__);
937 	}
938 
939 	/* step 5: remove core well power */
940 	/* synchronize irq when using MSI-X */
941 	xhci_msix_sync_irqs(xhci);
942 
943 	return rc;
944 }
945 EXPORT_SYMBOL_GPL(xhci_suspend);
946 
947 /*
948  * start xHC (not bus-specific)
949  *
950  * This is called when the machine transition from S3/S4 mode.
951  *
952  */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 	u32			command, temp = 0, status;
956 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
957 	struct usb_hcd		*secondary_hcd;
958 	int			retval = 0;
959 	bool			comp_timer_running = false;
960 
961 	if (!hcd->state)
962 		return 0;
963 
964 	/* Wait a bit if either of the roothubs need to settle from the
965 	 * transition into bus suspend.
966 	 */
967 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
968 			time_before(jiffies,
969 				xhci->bus_state[1].next_statechange))
970 		msleep(100);
971 
972 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
973 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
974 
975 	spin_lock_irq(&xhci->lock);
976 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
977 		hibernated = true;
978 
979 	if (!hibernated) {
980 		/* step 1: restore register */
981 		xhci_restore_registers(xhci);
982 		/* step 2: initialize command ring buffer */
983 		xhci_set_cmd_ring_deq(xhci);
984 		/* step 3: restore state and start state*/
985 		/* step 3: set CRS flag */
986 		command = readl(&xhci->op_regs->command);
987 		command |= CMD_CRS;
988 		writel(command, &xhci->op_regs->command);
989 		if (xhci_handshake(&xhci->op_regs->status,
990 			      STS_RESTORE, 0, 10 * 1000)) {
991 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
992 			spin_unlock_irq(&xhci->lock);
993 			return -ETIMEDOUT;
994 		}
995 		temp = readl(&xhci->op_regs->status);
996 	}
997 
998 	/* If restore operation fails, re-initialize the HC during resume */
999 	if ((temp & STS_SRE) || hibernated) {
1000 
1001 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1002 				!(xhci_all_ports_seen_u0(xhci))) {
1003 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1004 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1005 				"Compliance Mode Recovery Timer deleted!");
1006 		}
1007 
1008 		/* Let the USB core know _both_ roothubs lost power. */
1009 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1010 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1011 
1012 		xhci_dbg(xhci, "Stop HCD\n");
1013 		xhci_halt(xhci);
1014 		xhci_reset(xhci);
1015 		spin_unlock_irq(&xhci->lock);
1016 		xhci_cleanup_msix(xhci);
1017 
1018 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1019 		temp = readl(&xhci->op_regs->status);
1020 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1021 		temp = readl(&xhci->ir_set->irq_pending);
1022 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1023 		xhci_print_ir_set(xhci, 0);
1024 
1025 		xhci_dbg(xhci, "cleaning up memory\n");
1026 		xhci_mem_cleanup(xhci);
1027 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1028 			    readl(&xhci->op_regs->status));
1029 
1030 		/* USB core calls the PCI reinit and start functions twice:
1031 		 * first with the primary HCD, and then with the secondary HCD.
1032 		 * If we don't do the same, the host will never be started.
1033 		 */
1034 		if (!usb_hcd_is_primary_hcd(hcd))
1035 			secondary_hcd = hcd;
1036 		else
1037 			secondary_hcd = xhci->shared_hcd;
1038 
1039 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1040 		retval = xhci_init(hcd->primary_hcd);
1041 		if (retval)
1042 			return retval;
1043 		comp_timer_running = true;
1044 
1045 		xhci_dbg(xhci, "Start the primary HCD\n");
1046 		retval = xhci_run(hcd->primary_hcd);
1047 		if (!retval) {
1048 			xhci_dbg(xhci, "Start the secondary HCD\n");
1049 			retval = xhci_run(secondary_hcd);
1050 		}
1051 		hcd->state = HC_STATE_SUSPENDED;
1052 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1053 		goto done;
1054 	}
1055 
1056 	/* step 4: set Run/Stop bit */
1057 	command = readl(&xhci->op_regs->command);
1058 	command |= CMD_RUN;
1059 	writel(command, &xhci->op_regs->command);
1060 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1061 		  0, 250 * 1000);
1062 
1063 	/* step 5: walk topology and initialize portsc,
1064 	 * portpmsc and portli
1065 	 */
1066 	/* this is done in bus_resume */
1067 
1068 	/* step 6: restart each of the previously
1069 	 * Running endpoints by ringing their doorbells
1070 	 */
1071 
1072 	spin_unlock_irq(&xhci->lock);
1073 
1074  done:
1075 	if (retval == 0) {
1076 		/* Resume root hubs only when have pending events. */
1077 		status = readl(&xhci->op_regs->status);
1078 		if (status & STS_EINT) {
1079 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1080 			usb_hcd_resume_root_hub(hcd);
1081 		}
1082 	}
1083 
1084 	/*
1085 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1086 	 * be re-initialized Always after a system resume. Ports are subject
1087 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1088 	 * ports have entered previously to U0 before system's suspension.
1089 	 */
1090 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1091 		compliance_mode_recovery_timer_init(xhci);
1092 
1093 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1094 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1095 
1096 	/* Re-enable port polling. */
1097 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1098 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1099 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1100 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1101 	usb_hcd_poll_rh_status(hcd);
1102 
1103 	return retval;
1104 }
1105 EXPORT_SYMBOL_GPL(xhci_resume);
1106 #endif	/* CONFIG_PM */
1107 
1108 /*-------------------------------------------------------------------------*/
1109 
1110 /**
1111  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1112  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1113  * value to right shift 1 for the bitmask.
1114  *
1115  * Index  = (epnum * 2) + direction - 1,
1116  * where direction = 0 for OUT, 1 for IN.
1117  * For control endpoints, the IN index is used (OUT index is unused), so
1118  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1119  */
1120 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1121 {
1122 	unsigned int index;
1123 	if (usb_endpoint_xfer_control(desc))
1124 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1125 	else
1126 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1127 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1128 	return index;
1129 }
1130 
1131 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1132  * address from the XHCI endpoint index.
1133  */
1134 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1135 {
1136 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1137 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1138 	return direction | number;
1139 }
1140 
1141 /* Find the flag for this endpoint (for use in the control context).  Use the
1142  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1143  * bit 1, etc.
1144  */
1145 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1146 {
1147 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1148 }
1149 
1150 /* Find the flag for this endpoint (for use in the control context).  Use the
1151  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1152  * bit 1, etc.
1153  */
1154 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1155 {
1156 	return 1 << (ep_index + 1);
1157 }
1158 
1159 /* Compute the last valid endpoint context index.  Basically, this is the
1160  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1161  * we find the most significant bit set in the added contexts flags.
1162  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1163  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1164  */
1165 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1166 {
1167 	return fls(added_ctxs) - 1;
1168 }
1169 
1170 /* Returns 1 if the arguments are OK;
1171  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1172  */
1173 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1174 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1175 		const char *func) {
1176 	struct xhci_hcd	*xhci;
1177 	struct xhci_virt_device	*virt_dev;
1178 
1179 	if (!hcd || (check_ep && !ep) || !udev) {
1180 		pr_debug("xHCI %s called with invalid args\n", func);
1181 		return -EINVAL;
1182 	}
1183 	if (!udev->parent) {
1184 		pr_debug("xHCI %s called for root hub\n", func);
1185 		return 0;
1186 	}
1187 
1188 	xhci = hcd_to_xhci(hcd);
1189 	if (check_virt_dev) {
1190 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1191 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1192 					func);
1193 			return -EINVAL;
1194 		}
1195 
1196 		virt_dev = xhci->devs[udev->slot_id];
1197 		if (virt_dev->udev != udev) {
1198 			xhci_dbg(xhci, "xHCI %s called with udev and "
1199 					  "virt_dev does not match\n", func);
1200 			return -EINVAL;
1201 		}
1202 	}
1203 
1204 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1205 		return -ENODEV;
1206 
1207 	return 1;
1208 }
1209 
1210 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1211 		struct usb_device *udev, struct xhci_command *command,
1212 		bool ctx_change, bool must_succeed);
1213 
1214 /*
1215  * Full speed devices may have a max packet size greater than 8 bytes, but the
1216  * USB core doesn't know that until it reads the first 8 bytes of the
1217  * descriptor.  If the usb_device's max packet size changes after that point,
1218  * we need to issue an evaluate context command and wait on it.
1219  */
1220 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1221 		unsigned int ep_index, struct urb *urb)
1222 {
1223 	struct xhci_container_ctx *out_ctx;
1224 	struct xhci_input_control_ctx *ctrl_ctx;
1225 	struct xhci_ep_ctx *ep_ctx;
1226 	struct xhci_command *command;
1227 	int max_packet_size;
1228 	int hw_max_packet_size;
1229 	int ret = 0;
1230 
1231 	out_ctx = xhci->devs[slot_id]->out_ctx;
1232 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1233 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1234 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1235 	if (hw_max_packet_size != max_packet_size) {
1236 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237 				"Max Packet Size for ep 0 changed.");
1238 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1239 				"Max packet size in usb_device = %d",
1240 				max_packet_size);
1241 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1242 				"Max packet size in xHCI HW = %d",
1243 				hw_max_packet_size);
1244 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1245 				"Issuing evaluate context command.");
1246 
1247 		/* Set up the input context flags for the command */
1248 		/* FIXME: This won't work if a non-default control endpoint
1249 		 * changes max packet sizes.
1250 		 */
1251 
1252 		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1253 		if (!command)
1254 			return -ENOMEM;
1255 
1256 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1257 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1258 		if (!ctrl_ctx) {
1259 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1260 					__func__);
1261 			ret = -ENOMEM;
1262 			goto command_cleanup;
1263 		}
1264 		/* Set up the modified control endpoint 0 */
1265 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1266 				xhci->devs[slot_id]->out_ctx, ep_index);
1267 
1268 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1269 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1270 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1271 
1272 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1273 		ctrl_ctx->drop_flags = 0;
1274 
1275 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1276 				true, false);
1277 
1278 		/* Clean up the input context for later use by bandwidth
1279 		 * functions.
1280 		 */
1281 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1282 command_cleanup:
1283 		kfree(command->completion);
1284 		kfree(command);
1285 	}
1286 	return ret;
1287 }
1288 
1289 /*
1290  * non-error returns are a promise to giveback() the urb later
1291  * we drop ownership so next owner (or urb unlink) can get it
1292  */
1293 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1294 {
1295 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1296 	unsigned long flags;
1297 	int ret = 0;
1298 	unsigned int slot_id, ep_index, ep_state;
1299 	struct urb_priv	*urb_priv;
1300 	int num_tds;
1301 
1302 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1303 					true, true, __func__) <= 0)
1304 		return -EINVAL;
1305 
1306 	slot_id = urb->dev->slot_id;
1307 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1308 
1309 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1310 		if (!in_interrupt())
1311 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1312 		return -ESHUTDOWN;
1313 	}
1314 
1315 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1316 		num_tds = urb->number_of_packets;
1317 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1318 	    urb->transfer_buffer_length > 0 &&
1319 	    urb->transfer_flags & URB_ZERO_PACKET &&
1320 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1321 		num_tds = 2;
1322 	else
1323 		num_tds = 1;
1324 
1325 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1326 			   num_tds * sizeof(struct xhci_td), mem_flags);
1327 	if (!urb_priv)
1328 		return -ENOMEM;
1329 
1330 	urb_priv->num_tds = num_tds;
1331 	urb_priv->num_tds_done = 0;
1332 	urb->hcpriv = urb_priv;
1333 
1334 	trace_xhci_urb_enqueue(urb);
1335 
1336 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1337 		/* Check to see if the max packet size for the default control
1338 		 * endpoint changed during FS device enumeration
1339 		 */
1340 		if (urb->dev->speed == USB_SPEED_FULL) {
1341 			ret = xhci_check_maxpacket(xhci, slot_id,
1342 					ep_index, urb);
1343 			if (ret < 0) {
1344 				xhci_urb_free_priv(urb_priv);
1345 				urb->hcpriv = NULL;
1346 				return ret;
1347 			}
1348 		}
1349 	}
1350 
1351 	spin_lock_irqsave(&xhci->lock, flags);
1352 
1353 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1354 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1355 			 urb->ep->desc.bEndpointAddress, urb);
1356 		ret = -ESHUTDOWN;
1357 		goto free_priv;
1358 	}
1359 
1360 	switch (usb_endpoint_type(&urb->ep->desc)) {
1361 
1362 	case USB_ENDPOINT_XFER_CONTROL:
1363 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1364 					 slot_id, ep_index);
1365 		break;
1366 	case USB_ENDPOINT_XFER_BULK:
1367 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1368 		if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1369 			xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1370 				  ep_state);
1371 			ret = -EINVAL;
1372 			break;
1373 		}
1374 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1375 					 slot_id, ep_index);
1376 		break;
1377 
1378 
1379 	case USB_ENDPOINT_XFER_INT:
1380 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1381 				slot_id, ep_index);
1382 		break;
1383 
1384 	case USB_ENDPOINT_XFER_ISOC:
1385 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1386 				slot_id, ep_index);
1387 	}
1388 
1389 	if (ret) {
1390 free_priv:
1391 		xhci_urb_free_priv(urb_priv);
1392 		urb->hcpriv = NULL;
1393 	}
1394 	spin_unlock_irqrestore(&xhci->lock, flags);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1400  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1401  * should pick up where it left off in the TD, unless a Set Transfer Ring
1402  * Dequeue Pointer is issued.
1403  *
1404  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1405  * the ring.  Since the ring is a contiguous structure, they can't be physically
1406  * removed.  Instead, there are two options:
1407  *
1408  *  1) If the HC is in the middle of processing the URB to be canceled, we
1409  *     simply move the ring's dequeue pointer past those TRBs using the Set
1410  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1411  *     when drivers timeout on the last submitted URB and attempt to cancel.
1412  *
1413  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1414  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1415  *     HC will need to invalidate the any TRBs it has cached after the stop
1416  *     endpoint command, as noted in the xHCI 0.95 errata.
1417  *
1418  *  3) The TD may have completed by the time the Stop Endpoint Command
1419  *     completes, so software needs to handle that case too.
1420  *
1421  * This function should protect against the TD enqueueing code ringing the
1422  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1423  * It also needs to account for multiple cancellations on happening at the same
1424  * time for the same endpoint.
1425  *
1426  * Note that this function can be called in any context, or so says
1427  * usb_hcd_unlink_urb()
1428  */
1429 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431 	unsigned long flags;
1432 	int ret, i;
1433 	u32 temp;
1434 	struct xhci_hcd *xhci;
1435 	struct urb_priv	*urb_priv;
1436 	struct xhci_td *td;
1437 	unsigned int ep_index;
1438 	struct xhci_ring *ep_ring;
1439 	struct xhci_virt_ep *ep;
1440 	struct xhci_command *command;
1441 	struct xhci_virt_device *vdev;
1442 
1443 	xhci = hcd_to_xhci(hcd);
1444 	spin_lock_irqsave(&xhci->lock, flags);
1445 
1446 	trace_xhci_urb_dequeue(urb);
1447 
1448 	/* Make sure the URB hasn't completed or been unlinked already */
1449 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 	if (ret)
1451 		goto done;
1452 
1453 	/* give back URB now if we can't queue it for cancel */
1454 	vdev = xhci->devs[urb->dev->slot_id];
1455 	urb_priv = urb->hcpriv;
1456 	if (!vdev || !urb_priv)
1457 		goto err_giveback;
1458 
1459 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1460 	ep = &vdev->eps[ep_index];
1461 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1462 	if (!ep || !ep_ring)
1463 		goto err_giveback;
1464 
1465 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1466 	temp = readl(&xhci->op_regs->status);
1467 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1468 		xhci_hc_died(xhci);
1469 		goto done;
1470 	}
1471 
1472 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1473 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1474 				"HC halted, freeing TD manually.");
1475 		for (i = urb_priv->num_tds_done;
1476 		     i < urb_priv->num_tds;
1477 		     i++) {
1478 			td = &urb_priv->td[i];
1479 			if (!list_empty(&td->td_list))
1480 				list_del_init(&td->td_list);
1481 			if (!list_empty(&td->cancelled_td_list))
1482 				list_del_init(&td->cancelled_td_list);
1483 		}
1484 		goto err_giveback;
1485 	}
1486 
1487 	i = urb_priv->num_tds_done;
1488 	if (i < urb_priv->num_tds)
1489 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1490 				"Cancel URB %p, dev %s, ep 0x%x, "
1491 				"starting at offset 0x%llx",
1492 				urb, urb->dev->devpath,
1493 				urb->ep->desc.bEndpointAddress,
1494 				(unsigned long long) xhci_trb_virt_to_dma(
1495 					urb_priv->td[i].start_seg,
1496 					urb_priv->td[i].first_trb));
1497 
1498 	for (; i < urb_priv->num_tds; i++) {
1499 		td = &urb_priv->td[i];
1500 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1501 	}
1502 
1503 	/* Queue a stop endpoint command, but only if this is
1504 	 * the first cancellation to be handled.
1505 	 */
1506 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1507 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1508 		if (!command) {
1509 			ret = -ENOMEM;
1510 			goto done;
1511 		}
1512 		ep->ep_state |= EP_STOP_CMD_PENDING;
1513 		ep->stop_cmd_timer.expires = jiffies +
1514 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 		add_timer(&ep->stop_cmd_timer);
1516 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1517 					 ep_index, 0);
1518 		xhci_ring_cmd_db(xhci);
1519 	}
1520 done:
1521 	spin_unlock_irqrestore(&xhci->lock, flags);
1522 	return ret;
1523 
1524 err_giveback:
1525 	if (urb_priv)
1526 		xhci_urb_free_priv(urb_priv);
1527 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1528 	spin_unlock_irqrestore(&xhci->lock, flags);
1529 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1530 	return ret;
1531 }
1532 
1533 /* Drop an endpoint from a new bandwidth configuration for this device.
1534  * Only one call to this function is allowed per endpoint before
1535  * check_bandwidth() or reset_bandwidth() must be called.
1536  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1537  * add the endpoint to the schedule with possibly new parameters denoted by a
1538  * different endpoint descriptor in usb_host_endpoint.
1539  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1540  * not allowed.
1541  *
1542  * The USB core will not allow URBs to be queued to an endpoint that is being
1543  * disabled, so there's no need for mutual exclusion to protect
1544  * the xhci->devs[slot_id] structure.
1545  */
1546 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1547 		struct usb_host_endpoint *ep)
1548 {
1549 	struct xhci_hcd *xhci;
1550 	struct xhci_container_ctx *in_ctx, *out_ctx;
1551 	struct xhci_input_control_ctx *ctrl_ctx;
1552 	unsigned int ep_index;
1553 	struct xhci_ep_ctx *ep_ctx;
1554 	u32 drop_flag;
1555 	u32 new_add_flags, new_drop_flags;
1556 	int ret;
1557 
1558 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1559 	if (ret <= 0)
1560 		return ret;
1561 	xhci = hcd_to_xhci(hcd);
1562 	if (xhci->xhc_state & XHCI_STATE_DYING)
1563 		return -ENODEV;
1564 
1565 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1566 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1567 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1568 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1569 				__func__, drop_flag);
1570 		return 0;
1571 	}
1572 
1573 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1574 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1575 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1576 	if (!ctrl_ctx) {
1577 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1578 				__func__);
1579 		return 0;
1580 	}
1581 
1582 	ep_index = xhci_get_endpoint_index(&ep->desc);
1583 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1584 	/* If the HC already knows the endpoint is disabled,
1585 	 * or the HCD has noted it is disabled, ignore this request
1586 	 */
1587 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1588 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1589 	    xhci_get_endpoint_flag(&ep->desc)) {
1590 		/* Do not warn when called after a usb_device_reset */
1591 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1592 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1593 				  __func__, ep);
1594 		return 0;
1595 	}
1596 
1597 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1598 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1599 
1600 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1601 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1602 
1603 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604 
1605 	if (xhci->quirks & XHCI_MTK_HOST)
1606 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607 
1608 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609 			(unsigned int) ep->desc.bEndpointAddress,
1610 			udev->slot_id,
1611 			(unsigned int) new_drop_flags,
1612 			(unsigned int) new_add_flags);
1613 	return 0;
1614 }
1615 
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630 		struct usb_host_endpoint *ep)
1631 {
1632 	struct xhci_hcd *xhci;
1633 	struct xhci_container_ctx *in_ctx;
1634 	unsigned int ep_index;
1635 	struct xhci_input_control_ctx *ctrl_ctx;
1636 	u32 added_ctxs;
1637 	u32 new_add_flags, new_drop_flags;
1638 	struct xhci_virt_device *virt_dev;
1639 	int ret = 0;
1640 
1641 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642 	if (ret <= 0) {
1643 		/* So we won't queue a reset ep command for a root hub */
1644 		ep->hcpriv = NULL;
1645 		return ret;
1646 	}
1647 	xhci = hcd_to_xhci(hcd);
1648 	if (xhci->xhc_state & XHCI_STATE_DYING)
1649 		return -ENODEV;
1650 
1651 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653 		/* FIXME when we have to issue an evaluate endpoint command to
1654 		 * deal with ep0 max packet size changing once we get the
1655 		 * descriptors
1656 		 */
1657 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658 				__func__, added_ctxs);
1659 		return 0;
1660 	}
1661 
1662 	virt_dev = xhci->devs[udev->slot_id];
1663 	in_ctx = virt_dev->in_ctx;
1664 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665 	if (!ctrl_ctx) {
1666 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667 				__func__);
1668 		return 0;
1669 	}
1670 
1671 	ep_index = xhci_get_endpoint_index(&ep->desc);
1672 	/* If this endpoint is already in use, and the upper layers are trying
1673 	 * to add it again without dropping it, reject the addition.
1674 	 */
1675 	if (virt_dev->eps[ep_index].ring &&
1676 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678 				"without dropping it.\n",
1679 				(unsigned int) ep->desc.bEndpointAddress);
1680 		return -EINVAL;
1681 	}
1682 
1683 	/* If the HCD has already noted the endpoint is enabled,
1684 	 * ignore this request.
1685 	 */
1686 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688 				__func__, ep);
1689 		return 0;
1690 	}
1691 
1692 	/*
1693 	 * Configuration and alternate setting changes must be done in
1694 	 * process context, not interrupt context (or so documenation
1695 	 * for usb_set_interface() and usb_set_configuration() claim).
1696 	 */
1697 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699 				__func__, ep->desc.bEndpointAddress);
1700 		return -ENOMEM;
1701 	}
1702 
1703 	if (xhci->quirks & XHCI_MTK_HOST) {
1704 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705 		if (ret < 0) {
1706 			xhci_free_endpoint_ring(xhci, virt_dev, ep_index);
1707 			return ret;
1708 		}
1709 	}
1710 
1711 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1712 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1713 
1714 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1715 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1716 	 * this re-adds a new state for the endpoint from the new endpoint
1717 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1718 	 * drop flags alone.
1719 	 */
1720 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1721 
1722 	/* Store the usb_device pointer for later use */
1723 	ep->hcpriv = udev;
1724 
1725 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1726 			(unsigned int) ep->desc.bEndpointAddress,
1727 			udev->slot_id,
1728 			(unsigned int) new_drop_flags,
1729 			(unsigned int) new_add_flags);
1730 	return 0;
1731 }
1732 
1733 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1734 {
1735 	struct xhci_input_control_ctx *ctrl_ctx;
1736 	struct xhci_ep_ctx *ep_ctx;
1737 	struct xhci_slot_ctx *slot_ctx;
1738 	int i;
1739 
1740 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1741 	if (!ctrl_ctx) {
1742 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1743 				__func__);
1744 		return;
1745 	}
1746 
1747 	/* When a device's add flag and drop flag are zero, any subsequent
1748 	 * configure endpoint command will leave that endpoint's state
1749 	 * untouched.  Make sure we don't leave any old state in the input
1750 	 * endpoint contexts.
1751 	 */
1752 	ctrl_ctx->drop_flags = 0;
1753 	ctrl_ctx->add_flags = 0;
1754 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1755 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1756 	/* Endpoint 0 is always valid */
1757 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1758 	for (i = 1; i < 31; i++) {
1759 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1760 		ep_ctx->ep_info = 0;
1761 		ep_ctx->ep_info2 = 0;
1762 		ep_ctx->deq = 0;
1763 		ep_ctx->tx_info = 0;
1764 	}
1765 }
1766 
1767 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1768 		struct usb_device *udev, u32 *cmd_status)
1769 {
1770 	int ret;
1771 
1772 	switch (*cmd_status) {
1773 	case COMP_COMMAND_ABORTED:
1774 	case COMP_COMMAND_RING_STOPPED:
1775 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1776 		ret = -ETIME;
1777 		break;
1778 	case COMP_RESOURCE_ERROR:
1779 		dev_warn(&udev->dev,
1780 			 "Not enough host controller resources for new device state.\n");
1781 		ret = -ENOMEM;
1782 		/* FIXME: can we allocate more resources for the HC? */
1783 		break;
1784 	case COMP_BANDWIDTH_ERROR:
1785 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1786 		dev_warn(&udev->dev,
1787 			 "Not enough bandwidth for new device state.\n");
1788 		ret = -ENOSPC;
1789 		/* FIXME: can we go back to the old state? */
1790 		break;
1791 	case COMP_TRB_ERROR:
1792 		/* the HCD set up something wrong */
1793 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1794 				"add flag = 1, "
1795 				"and endpoint is not disabled.\n");
1796 		ret = -EINVAL;
1797 		break;
1798 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1799 		dev_warn(&udev->dev,
1800 			 "ERROR: Incompatible device for endpoint configure command.\n");
1801 		ret = -ENODEV;
1802 		break;
1803 	case COMP_SUCCESS:
1804 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1805 				"Successful Endpoint Configure command");
1806 		ret = 0;
1807 		break;
1808 	default:
1809 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1810 				*cmd_status);
1811 		ret = -EINVAL;
1812 		break;
1813 	}
1814 	return ret;
1815 }
1816 
1817 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1818 		struct usb_device *udev, u32 *cmd_status)
1819 {
1820 	int ret;
1821 
1822 	switch (*cmd_status) {
1823 	case COMP_COMMAND_ABORTED:
1824 	case COMP_COMMAND_RING_STOPPED:
1825 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1826 		ret = -ETIME;
1827 		break;
1828 	case COMP_PARAMETER_ERROR:
1829 		dev_warn(&udev->dev,
1830 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1831 		ret = -EINVAL;
1832 		break;
1833 	case COMP_SLOT_NOT_ENABLED_ERROR:
1834 		dev_warn(&udev->dev,
1835 			"WARN: slot not enabled for evaluate context command.\n");
1836 		ret = -EINVAL;
1837 		break;
1838 	case COMP_CONTEXT_STATE_ERROR:
1839 		dev_warn(&udev->dev,
1840 			"WARN: invalid context state for evaluate context command.\n");
1841 		ret = -EINVAL;
1842 		break;
1843 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1844 		dev_warn(&udev->dev,
1845 			"ERROR: Incompatible device for evaluate context command.\n");
1846 		ret = -ENODEV;
1847 		break;
1848 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1849 		/* Max Exit Latency too large error */
1850 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1851 		ret = -EINVAL;
1852 		break;
1853 	case COMP_SUCCESS:
1854 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1855 				"Successful evaluate context command");
1856 		ret = 0;
1857 		break;
1858 	default:
1859 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1860 			*cmd_status);
1861 		ret = -EINVAL;
1862 		break;
1863 	}
1864 	return ret;
1865 }
1866 
1867 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1868 		struct xhci_input_control_ctx *ctrl_ctx)
1869 {
1870 	u32 valid_add_flags;
1871 	u32 valid_drop_flags;
1872 
1873 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1874 	 * (bit 1).  The default control endpoint is added during the Address
1875 	 * Device command and is never removed until the slot is disabled.
1876 	 */
1877 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1878 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1879 
1880 	/* Use hweight32 to count the number of ones in the add flags, or
1881 	 * number of endpoints added.  Don't count endpoints that are changed
1882 	 * (both added and dropped).
1883 	 */
1884 	return hweight32(valid_add_flags) -
1885 		hweight32(valid_add_flags & valid_drop_flags);
1886 }
1887 
1888 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1889 		struct xhci_input_control_ctx *ctrl_ctx)
1890 {
1891 	u32 valid_add_flags;
1892 	u32 valid_drop_flags;
1893 
1894 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1895 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1896 
1897 	return hweight32(valid_drop_flags) -
1898 		hweight32(valid_add_flags & valid_drop_flags);
1899 }
1900 
1901 /*
1902  * We need to reserve the new number of endpoints before the configure endpoint
1903  * command completes.  We can't subtract the dropped endpoints from the number
1904  * of active endpoints until the command completes because we can oversubscribe
1905  * the host in this case:
1906  *
1907  *  - the first configure endpoint command drops more endpoints than it adds
1908  *  - a second configure endpoint command that adds more endpoints is queued
1909  *  - the first configure endpoint command fails, so the config is unchanged
1910  *  - the second command may succeed, even though there isn't enough resources
1911  *
1912  * Must be called with xhci->lock held.
1913  */
1914 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1915 		struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917 	u32 added_eps;
1918 
1919 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1920 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1921 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1922 				"Not enough ep ctxs: "
1923 				"%u active, need to add %u, limit is %u.",
1924 				xhci->num_active_eps, added_eps,
1925 				xhci->limit_active_eps);
1926 		return -ENOMEM;
1927 	}
1928 	xhci->num_active_eps += added_eps;
1929 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1930 			"Adding %u ep ctxs, %u now active.", added_eps,
1931 			xhci->num_active_eps);
1932 	return 0;
1933 }
1934 
1935 /*
1936  * The configure endpoint was failed by the xHC for some other reason, so we
1937  * need to revert the resources that failed configuration would have used.
1938  *
1939  * Must be called with xhci->lock held.
1940  */
1941 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1942 		struct xhci_input_control_ctx *ctrl_ctx)
1943 {
1944 	u32 num_failed_eps;
1945 
1946 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1947 	xhci->num_active_eps -= num_failed_eps;
1948 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1949 			"Removing %u failed ep ctxs, %u now active.",
1950 			num_failed_eps,
1951 			xhci->num_active_eps);
1952 }
1953 
1954 /*
1955  * Now that the command has completed, clean up the active endpoint count by
1956  * subtracting out the endpoints that were dropped (but not changed).
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1961 		struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963 	u32 num_dropped_eps;
1964 
1965 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1966 	xhci->num_active_eps -= num_dropped_eps;
1967 	if (num_dropped_eps)
1968 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1969 				"Removing %u dropped ep ctxs, %u now active.",
1970 				num_dropped_eps,
1971 				xhci->num_active_eps);
1972 }
1973 
1974 static unsigned int xhci_get_block_size(struct usb_device *udev)
1975 {
1976 	switch (udev->speed) {
1977 	case USB_SPEED_LOW:
1978 	case USB_SPEED_FULL:
1979 		return FS_BLOCK;
1980 	case USB_SPEED_HIGH:
1981 		return HS_BLOCK;
1982 	case USB_SPEED_SUPER:
1983 	case USB_SPEED_SUPER_PLUS:
1984 		return SS_BLOCK;
1985 	case USB_SPEED_UNKNOWN:
1986 	case USB_SPEED_WIRELESS:
1987 	default:
1988 		/* Should never happen */
1989 		return 1;
1990 	}
1991 }
1992 
1993 static unsigned int
1994 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1995 {
1996 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1997 		return LS_OVERHEAD;
1998 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1999 		return FS_OVERHEAD;
2000 	return HS_OVERHEAD;
2001 }
2002 
2003 /* If we are changing a LS/FS device under a HS hub,
2004  * make sure (if we are activating a new TT) that the HS bus has enough
2005  * bandwidth for this new TT.
2006  */
2007 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2008 		struct xhci_virt_device *virt_dev,
2009 		int old_active_eps)
2010 {
2011 	struct xhci_interval_bw_table *bw_table;
2012 	struct xhci_tt_bw_info *tt_info;
2013 
2014 	/* Find the bandwidth table for the root port this TT is attached to. */
2015 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2016 	tt_info = virt_dev->tt_info;
2017 	/* If this TT already had active endpoints, the bandwidth for this TT
2018 	 * has already been added.  Removing all periodic endpoints (and thus
2019 	 * making the TT enactive) will only decrease the bandwidth used.
2020 	 */
2021 	if (old_active_eps)
2022 		return 0;
2023 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2024 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2025 			return -ENOMEM;
2026 		return 0;
2027 	}
2028 	/* Not sure why we would have no new active endpoints...
2029 	 *
2030 	 * Maybe because of an Evaluate Context change for a hub update or a
2031 	 * control endpoint 0 max packet size change?
2032 	 * FIXME: skip the bandwidth calculation in that case.
2033 	 */
2034 	return 0;
2035 }
2036 
2037 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2038 		struct xhci_virt_device *virt_dev)
2039 {
2040 	unsigned int bw_reserved;
2041 
2042 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2043 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2044 		return -ENOMEM;
2045 
2046 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2047 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2048 		return -ENOMEM;
2049 
2050 	return 0;
2051 }
2052 
2053 /*
2054  * This algorithm is a very conservative estimate of the worst-case scheduling
2055  * scenario for any one interval.  The hardware dynamically schedules the
2056  * packets, so we can't tell which microframe could be the limiting factor in
2057  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2058  *
2059  * Obviously, we can't solve an NP complete problem to find the minimum worst
2060  * case scenario.  Instead, we come up with an estimate that is no less than
2061  * the worst case bandwidth used for any one microframe, but may be an
2062  * over-estimate.
2063  *
2064  * We walk the requirements for each endpoint by interval, starting with the
2065  * smallest interval, and place packets in the schedule where there is only one
2066  * possible way to schedule packets for that interval.  In order to simplify
2067  * this algorithm, we record the largest max packet size for each interval, and
2068  * assume all packets will be that size.
2069  *
2070  * For interval 0, we obviously must schedule all packets for each interval.
2071  * The bandwidth for interval 0 is just the amount of data to be transmitted
2072  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2073  * the number of packets).
2074  *
2075  * For interval 1, we have two possible microframes to schedule those packets
2076  * in.  For this algorithm, if we can schedule the same number of packets for
2077  * each possible scheduling opportunity (each microframe), we will do so.  The
2078  * remaining number of packets will be saved to be transmitted in the gaps in
2079  * the next interval's scheduling sequence.
2080  *
2081  * As we move those remaining packets to be scheduled with interval 2 packets,
2082  * we have to double the number of remaining packets to transmit.  This is
2083  * because the intervals are actually powers of 2, and we would be transmitting
2084  * the previous interval's packets twice in this interval.  We also have to be
2085  * sure that when we look at the largest max packet size for this interval, we
2086  * also look at the largest max packet size for the remaining packets and take
2087  * the greater of the two.
2088  *
2089  * The algorithm continues to evenly distribute packets in each scheduling
2090  * opportunity, and push the remaining packets out, until we get to the last
2091  * interval.  Then those packets and their associated overhead are just added
2092  * to the bandwidth used.
2093  */
2094 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2095 		struct xhci_virt_device *virt_dev,
2096 		int old_active_eps)
2097 {
2098 	unsigned int bw_reserved;
2099 	unsigned int max_bandwidth;
2100 	unsigned int bw_used;
2101 	unsigned int block_size;
2102 	struct xhci_interval_bw_table *bw_table;
2103 	unsigned int packet_size = 0;
2104 	unsigned int overhead = 0;
2105 	unsigned int packets_transmitted = 0;
2106 	unsigned int packets_remaining = 0;
2107 	unsigned int i;
2108 
2109 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2110 		return xhci_check_ss_bw(xhci, virt_dev);
2111 
2112 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2113 		max_bandwidth = HS_BW_LIMIT;
2114 		/* Convert percent of bus BW reserved to blocks reserved */
2115 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2116 	} else {
2117 		max_bandwidth = FS_BW_LIMIT;
2118 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2119 	}
2120 
2121 	bw_table = virt_dev->bw_table;
2122 	/* We need to translate the max packet size and max ESIT payloads into
2123 	 * the units the hardware uses.
2124 	 */
2125 	block_size = xhci_get_block_size(virt_dev->udev);
2126 
2127 	/* If we are manipulating a LS/FS device under a HS hub, double check
2128 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2129 	 */
2130 	if (virt_dev->tt_info) {
2131 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132 				"Recalculating BW for rootport %u",
2133 				virt_dev->real_port);
2134 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2135 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2136 					"newly activated TT.\n");
2137 			return -ENOMEM;
2138 		}
2139 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2140 				"Recalculating BW for TT slot %u port %u",
2141 				virt_dev->tt_info->slot_id,
2142 				virt_dev->tt_info->ttport);
2143 	} else {
2144 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2145 				"Recalculating BW for rootport %u",
2146 				virt_dev->real_port);
2147 	}
2148 
2149 	/* Add in how much bandwidth will be used for interval zero, or the
2150 	 * rounded max ESIT payload + number of packets * largest overhead.
2151 	 */
2152 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2153 		bw_table->interval_bw[0].num_packets *
2154 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2155 
2156 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2157 		unsigned int bw_added;
2158 		unsigned int largest_mps;
2159 		unsigned int interval_overhead;
2160 
2161 		/*
2162 		 * How many packets could we transmit in this interval?
2163 		 * If packets didn't fit in the previous interval, we will need
2164 		 * to transmit that many packets twice within this interval.
2165 		 */
2166 		packets_remaining = 2 * packets_remaining +
2167 			bw_table->interval_bw[i].num_packets;
2168 
2169 		/* Find the largest max packet size of this or the previous
2170 		 * interval.
2171 		 */
2172 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2173 			largest_mps = 0;
2174 		else {
2175 			struct xhci_virt_ep *virt_ep;
2176 			struct list_head *ep_entry;
2177 
2178 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2179 			virt_ep = list_entry(ep_entry,
2180 					struct xhci_virt_ep, bw_endpoint_list);
2181 			/* Convert to blocks, rounding up */
2182 			largest_mps = DIV_ROUND_UP(
2183 					virt_ep->bw_info.max_packet_size,
2184 					block_size);
2185 		}
2186 		if (largest_mps > packet_size)
2187 			packet_size = largest_mps;
2188 
2189 		/* Use the larger overhead of this or the previous interval. */
2190 		interval_overhead = xhci_get_largest_overhead(
2191 				&bw_table->interval_bw[i]);
2192 		if (interval_overhead > overhead)
2193 			overhead = interval_overhead;
2194 
2195 		/* How many packets can we evenly distribute across
2196 		 * (1 << (i + 1)) possible scheduling opportunities?
2197 		 */
2198 		packets_transmitted = packets_remaining >> (i + 1);
2199 
2200 		/* Add in the bandwidth used for those scheduled packets */
2201 		bw_added = packets_transmitted * (overhead + packet_size);
2202 
2203 		/* How many packets do we have remaining to transmit? */
2204 		packets_remaining = packets_remaining % (1 << (i + 1));
2205 
2206 		/* What largest max packet size should those packets have? */
2207 		/* If we've transmitted all packets, don't carry over the
2208 		 * largest packet size.
2209 		 */
2210 		if (packets_remaining == 0) {
2211 			packet_size = 0;
2212 			overhead = 0;
2213 		} else if (packets_transmitted > 0) {
2214 			/* Otherwise if we do have remaining packets, and we've
2215 			 * scheduled some packets in this interval, take the
2216 			 * largest max packet size from endpoints with this
2217 			 * interval.
2218 			 */
2219 			packet_size = largest_mps;
2220 			overhead = interval_overhead;
2221 		}
2222 		/* Otherwise carry over packet_size and overhead from the last
2223 		 * time we had a remainder.
2224 		 */
2225 		bw_used += bw_added;
2226 		if (bw_used > max_bandwidth) {
2227 			xhci_warn(xhci, "Not enough bandwidth. "
2228 					"Proposed: %u, Max: %u\n",
2229 				bw_used, max_bandwidth);
2230 			return -ENOMEM;
2231 		}
2232 	}
2233 	/*
2234 	 * Ok, we know we have some packets left over after even-handedly
2235 	 * scheduling interval 15.  We don't know which microframes they will
2236 	 * fit into, so we over-schedule and say they will be scheduled every
2237 	 * microframe.
2238 	 */
2239 	if (packets_remaining > 0)
2240 		bw_used += overhead + packet_size;
2241 
2242 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2243 		unsigned int port_index = virt_dev->real_port - 1;
2244 
2245 		/* OK, we're manipulating a HS device attached to a
2246 		 * root port bandwidth domain.  Include the number of active TTs
2247 		 * in the bandwidth used.
2248 		 */
2249 		bw_used += TT_HS_OVERHEAD *
2250 			xhci->rh_bw[port_index].num_active_tts;
2251 	}
2252 
2253 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2255 		"Available: %u " "percent",
2256 		bw_used, max_bandwidth, bw_reserved,
2257 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2258 		max_bandwidth);
2259 
2260 	bw_used += bw_reserved;
2261 	if (bw_used > max_bandwidth) {
2262 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2263 				bw_used, max_bandwidth);
2264 		return -ENOMEM;
2265 	}
2266 
2267 	bw_table->bw_used = bw_used;
2268 	return 0;
2269 }
2270 
2271 static bool xhci_is_async_ep(unsigned int ep_type)
2272 {
2273 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2274 					ep_type != ISOC_IN_EP &&
2275 					ep_type != INT_IN_EP);
2276 }
2277 
2278 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2279 {
2280 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2281 }
2282 
2283 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2284 {
2285 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2286 
2287 	if (ep_bw->ep_interval == 0)
2288 		return SS_OVERHEAD_BURST +
2289 			(ep_bw->mult * ep_bw->num_packets *
2290 					(SS_OVERHEAD + mps));
2291 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2292 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2293 				1 << ep_bw->ep_interval);
2294 
2295 }
2296 
2297 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2298 		struct xhci_bw_info *ep_bw,
2299 		struct xhci_interval_bw_table *bw_table,
2300 		struct usb_device *udev,
2301 		struct xhci_virt_ep *virt_ep,
2302 		struct xhci_tt_bw_info *tt_info)
2303 {
2304 	struct xhci_interval_bw	*interval_bw;
2305 	int normalized_interval;
2306 
2307 	if (xhci_is_async_ep(ep_bw->type))
2308 		return;
2309 
2310 	if (udev->speed >= USB_SPEED_SUPER) {
2311 		if (xhci_is_sync_in_ep(ep_bw->type))
2312 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2313 				xhci_get_ss_bw_consumed(ep_bw);
2314 		else
2315 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2316 				xhci_get_ss_bw_consumed(ep_bw);
2317 		return;
2318 	}
2319 
2320 	/* SuperSpeed endpoints never get added to intervals in the table, so
2321 	 * this check is only valid for HS/FS/LS devices.
2322 	 */
2323 	if (list_empty(&virt_ep->bw_endpoint_list))
2324 		return;
2325 	/* For LS/FS devices, we need to translate the interval expressed in
2326 	 * microframes to frames.
2327 	 */
2328 	if (udev->speed == USB_SPEED_HIGH)
2329 		normalized_interval = ep_bw->ep_interval;
2330 	else
2331 		normalized_interval = ep_bw->ep_interval - 3;
2332 
2333 	if (normalized_interval == 0)
2334 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2335 	interval_bw = &bw_table->interval_bw[normalized_interval];
2336 	interval_bw->num_packets -= ep_bw->num_packets;
2337 	switch (udev->speed) {
2338 	case USB_SPEED_LOW:
2339 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2340 		break;
2341 	case USB_SPEED_FULL:
2342 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2343 		break;
2344 	case USB_SPEED_HIGH:
2345 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2346 		break;
2347 	case USB_SPEED_SUPER:
2348 	case USB_SPEED_SUPER_PLUS:
2349 	case USB_SPEED_UNKNOWN:
2350 	case USB_SPEED_WIRELESS:
2351 		/* Should never happen because only LS/FS/HS endpoints will get
2352 		 * added to the endpoint list.
2353 		 */
2354 		return;
2355 	}
2356 	if (tt_info)
2357 		tt_info->active_eps -= 1;
2358 	list_del_init(&virt_ep->bw_endpoint_list);
2359 }
2360 
2361 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2362 		struct xhci_bw_info *ep_bw,
2363 		struct xhci_interval_bw_table *bw_table,
2364 		struct usb_device *udev,
2365 		struct xhci_virt_ep *virt_ep,
2366 		struct xhci_tt_bw_info *tt_info)
2367 {
2368 	struct xhci_interval_bw	*interval_bw;
2369 	struct xhci_virt_ep *smaller_ep;
2370 	int normalized_interval;
2371 
2372 	if (xhci_is_async_ep(ep_bw->type))
2373 		return;
2374 
2375 	if (udev->speed == USB_SPEED_SUPER) {
2376 		if (xhci_is_sync_in_ep(ep_bw->type))
2377 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2378 				xhci_get_ss_bw_consumed(ep_bw);
2379 		else
2380 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2381 				xhci_get_ss_bw_consumed(ep_bw);
2382 		return;
2383 	}
2384 
2385 	/* For LS/FS devices, we need to translate the interval expressed in
2386 	 * microframes to frames.
2387 	 */
2388 	if (udev->speed == USB_SPEED_HIGH)
2389 		normalized_interval = ep_bw->ep_interval;
2390 	else
2391 		normalized_interval = ep_bw->ep_interval - 3;
2392 
2393 	if (normalized_interval == 0)
2394 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2395 	interval_bw = &bw_table->interval_bw[normalized_interval];
2396 	interval_bw->num_packets += ep_bw->num_packets;
2397 	switch (udev->speed) {
2398 	case USB_SPEED_LOW:
2399 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2400 		break;
2401 	case USB_SPEED_FULL:
2402 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2403 		break;
2404 	case USB_SPEED_HIGH:
2405 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2406 		break;
2407 	case USB_SPEED_SUPER:
2408 	case USB_SPEED_SUPER_PLUS:
2409 	case USB_SPEED_UNKNOWN:
2410 	case USB_SPEED_WIRELESS:
2411 		/* Should never happen because only LS/FS/HS endpoints will get
2412 		 * added to the endpoint list.
2413 		 */
2414 		return;
2415 	}
2416 
2417 	if (tt_info)
2418 		tt_info->active_eps += 1;
2419 	/* Insert the endpoint into the list, largest max packet size first. */
2420 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2421 			bw_endpoint_list) {
2422 		if (ep_bw->max_packet_size >=
2423 				smaller_ep->bw_info.max_packet_size) {
2424 			/* Add the new ep before the smaller endpoint */
2425 			list_add_tail(&virt_ep->bw_endpoint_list,
2426 					&smaller_ep->bw_endpoint_list);
2427 			return;
2428 		}
2429 	}
2430 	/* Add the new endpoint at the end of the list. */
2431 	list_add_tail(&virt_ep->bw_endpoint_list,
2432 			&interval_bw->endpoints);
2433 }
2434 
2435 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2436 		struct xhci_virt_device *virt_dev,
2437 		int old_active_eps)
2438 {
2439 	struct xhci_root_port_bw_info *rh_bw_info;
2440 	if (!virt_dev->tt_info)
2441 		return;
2442 
2443 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2444 	if (old_active_eps == 0 &&
2445 				virt_dev->tt_info->active_eps != 0) {
2446 		rh_bw_info->num_active_tts += 1;
2447 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2448 	} else if (old_active_eps != 0 &&
2449 				virt_dev->tt_info->active_eps == 0) {
2450 		rh_bw_info->num_active_tts -= 1;
2451 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2452 	}
2453 }
2454 
2455 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2456 		struct xhci_virt_device *virt_dev,
2457 		struct xhci_container_ctx *in_ctx)
2458 {
2459 	struct xhci_bw_info ep_bw_info[31];
2460 	int i;
2461 	struct xhci_input_control_ctx *ctrl_ctx;
2462 	int old_active_eps = 0;
2463 
2464 	if (virt_dev->tt_info)
2465 		old_active_eps = virt_dev->tt_info->active_eps;
2466 
2467 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2468 	if (!ctrl_ctx) {
2469 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2470 				__func__);
2471 		return -ENOMEM;
2472 	}
2473 
2474 	for (i = 0; i < 31; i++) {
2475 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476 			continue;
2477 
2478 		/* Make a copy of the BW info in case we need to revert this */
2479 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480 				sizeof(ep_bw_info[i]));
2481 		/* Drop the endpoint from the interval table if the endpoint is
2482 		 * being dropped or changed.
2483 		 */
2484 		if (EP_IS_DROPPED(ctrl_ctx, i))
2485 			xhci_drop_ep_from_interval_table(xhci,
2486 					&virt_dev->eps[i].bw_info,
2487 					virt_dev->bw_table,
2488 					virt_dev->udev,
2489 					&virt_dev->eps[i],
2490 					virt_dev->tt_info);
2491 	}
2492 	/* Overwrite the information stored in the endpoints' bw_info */
2493 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494 	for (i = 0; i < 31; i++) {
2495 		/* Add any changed or added endpoints to the interval table */
2496 		if (EP_IS_ADDED(ctrl_ctx, i))
2497 			xhci_add_ep_to_interval_table(xhci,
2498 					&virt_dev->eps[i].bw_info,
2499 					virt_dev->bw_table,
2500 					virt_dev->udev,
2501 					&virt_dev->eps[i],
2502 					virt_dev->tt_info);
2503 	}
2504 
2505 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506 		/* Ok, this fits in the bandwidth we have.
2507 		 * Update the number of active TTs.
2508 		 */
2509 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510 		return 0;
2511 	}
2512 
2513 	/* We don't have enough bandwidth for this, revert the stored info. */
2514 	for (i = 0; i < 31; i++) {
2515 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516 			continue;
2517 
2518 		/* Drop the new copies of any added or changed endpoints from
2519 		 * the interval table.
2520 		 */
2521 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2522 			xhci_drop_ep_from_interval_table(xhci,
2523 					&virt_dev->eps[i].bw_info,
2524 					virt_dev->bw_table,
2525 					virt_dev->udev,
2526 					&virt_dev->eps[i],
2527 					virt_dev->tt_info);
2528 		}
2529 		/* Revert the endpoint back to its old information */
2530 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531 				sizeof(ep_bw_info[i]));
2532 		/* Add any changed or dropped endpoints back into the table */
2533 		if (EP_IS_DROPPED(ctrl_ctx, i))
2534 			xhci_add_ep_to_interval_table(xhci,
2535 					&virt_dev->eps[i].bw_info,
2536 					virt_dev->bw_table,
2537 					virt_dev->udev,
2538 					&virt_dev->eps[i],
2539 					virt_dev->tt_info);
2540 	}
2541 	return -ENOMEM;
2542 }
2543 
2544 
2545 /* Issue a configure endpoint command or evaluate context command
2546  * and wait for it to finish.
2547  */
2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549 		struct usb_device *udev,
2550 		struct xhci_command *command,
2551 		bool ctx_change, bool must_succeed)
2552 {
2553 	int ret;
2554 	unsigned long flags;
2555 	struct xhci_input_control_ctx *ctrl_ctx;
2556 	struct xhci_virt_device *virt_dev;
2557 
2558 	if (!command)
2559 		return -EINVAL;
2560 
2561 	spin_lock_irqsave(&xhci->lock, flags);
2562 
2563 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2564 		spin_unlock_irqrestore(&xhci->lock, flags);
2565 		return -ESHUTDOWN;
2566 	}
2567 
2568 	virt_dev = xhci->devs[udev->slot_id];
2569 
2570 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2571 	if (!ctrl_ctx) {
2572 		spin_unlock_irqrestore(&xhci->lock, flags);
2573 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2574 				__func__);
2575 		return -ENOMEM;
2576 	}
2577 
2578 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2579 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2580 		spin_unlock_irqrestore(&xhci->lock, flags);
2581 		xhci_warn(xhci, "Not enough host resources, "
2582 				"active endpoint contexts = %u\n",
2583 				xhci->num_active_eps);
2584 		return -ENOMEM;
2585 	}
2586 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2587 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2588 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2589 			xhci_free_host_resources(xhci, ctrl_ctx);
2590 		spin_unlock_irqrestore(&xhci->lock, flags);
2591 		xhci_warn(xhci, "Not enough bandwidth\n");
2592 		return -ENOMEM;
2593 	}
2594 
2595 	if (!ctx_change)
2596 		ret = xhci_queue_configure_endpoint(xhci, command,
2597 				command->in_ctx->dma,
2598 				udev->slot_id, must_succeed);
2599 	else
2600 		ret = xhci_queue_evaluate_context(xhci, command,
2601 				command->in_ctx->dma,
2602 				udev->slot_id, must_succeed);
2603 	if (ret < 0) {
2604 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2605 			xhci_free_host_resources(xhci, ctrl_ctx);
2606 		spin_unlock_irqrestore(&xhci->lock, flags);
2607 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2608 				"FIXME allocate a new ring segment");
2609 		return -ENOMEM;
2610 	}
2611 	xhci_ring_cmd_db(xhci);
2612 	spin_unlock_irqrestore(&xhci->lock, flags);
2613 
2614 	/* Wait for the configure endpoint command to complete */
2615 	wait_for_completion(command->completion);
2616 
2617 	if (!ctx_change)
2618 		ret = xhci_configure_endpoint_result(xhci, udev,
2619 						     &command->status);
2620 	else
2621 		ret = xhci_evaluate_context_result(xhci, udev,
2622 						   &command->status);
2623 
2624 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2625 		spin_lock_irqsave(&xhci->lock, flags);
2626 		/* If the command failed, remove the reserved resources.
2627 		 * Otherwise, clean up the estimate to include dropped eps.
2628 		 */
2629 		if (ret)
2630 			xhci_free_host_resources(xhci, ctrl_ctx);
2631 		else
2632 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2633 		spin_unlock_irqrestore(&xhci->lock, flags);
2634 	}
2635 	return ret;
2636 }
2637 
2638 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2639 	struct xhci_virt_device *vdev, int i)
2640 {
2641 	struct xhci_virt_ep *ep = &vdev->eps[i];
2642 
2643 	if (ep->ep_state & EP_HAS_STREAMS) {
2644 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2645 				xhci_get_endpoint_address(i));
2646 		xhci_free_stream_info(xhci, ep->stream_info);
2647 		ep->stream_info = NULL;
2648 		ep->ep_state &= ~EP_HAS_STREAMS;
2649 	}
2650 }
2651 
2652 /* Called after one or more calls to xhci_add_endpoint() or
2653  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2654  * to call xhci_reset_bandwidth().
2655  *
2656  * Since we are in the middle of changing either configuration or
2657  * installing a new alt setting, the USB core won't allow URBs to be
2658  * enqueued for any endpoint on the old config or interface.  Nothing
2659  * else should be touching the xhci->devs[slot_id] structure, so we
2660  * don't need to take the xhci->lock for manipulating that.
2661  */
2662 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2663 {
2664 	int i;
2665 	int ret = 0;
2666 	struct xhci_hcd *xhci;
2667 	struct xhci_virt_device	*virt_dev;
2668 	struct xhci_input_control_ctx *ctrl_ctx;
2669 	struct xhci_slot_ctx *slot_ctx;
2670 	struct xhci_command *command;
2671 
2672 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2673 	if (ret <= 0)
2674 		return ret;
2675 	xhci = hcd_to_xhci(hcd);
2676 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2677 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2678 		return -ENODEV;
2679 
2680 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2681 	virt_dev = xhci->devs[udev->slot_id];
2682 
2683 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2684 	if (!command)
2685 		return -ENOMEM;
2686 
2687 	command->in_ctx = virt_dev->in_ctx;
2688 
2689 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2690 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2691 	if (!ctrl_ctx) {
2692 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2693 				__func__);
2694 		ret = -ENOMEM;
2695 		goto command_cleanup;
2696 	}
2697 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2698 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2699 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2700 
2701 	/* Don't issue the command if there's no endpoints to update. */
2702 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2703 	    ctrl_ctx->drop_flags == 0) {
2704 		ret = 0;
2705 		goto command_cleanup;
2706 	}
2707 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2708 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2709 	for (i = 31; i >= 1; i--) {
2710 		__le32 le32 = cpu_to_le32(BIT(i));
2711 
2712 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2713 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2714 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2715 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2716 			break;
2717 		}
2718 	}
2719 
2720 	ret = xhci_configure_endpoint(xhci, udev, command,
2721 			false, false);
2722 	if (ret)
2723 		/* Callee should call reset_bandwidth() */
2724 		goto command_cleanup;
2725 
2726 	/* Free any rings that were dropped, but not changed. */
2727 	for (i = 1; i < 31; i++) {
2728 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2729 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2730 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2731 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2732 		}
2733 	}
2734 	xhci_zero_in_ctx(xhci, virt_dev);
2735 	/*
2736 	 * Install any rings for completely new endpoints or changed endpoints,
2737 	 * and free any old rings from changed endpoints.
2738 	 */
2739 	for (i = 1; i < 31; i++) {
2740 		if (!virt_dev->eps[i].new_ring)
2741 			continue;
2742 		/* Only free the old ring if it exists.
2743 		 * It may not if this is the first add of an endpoint.
2744 		 */
2745 		if (virt_dev->eps[i].ring) {
2746 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2747 		}
2748 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2749 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2750 		virt_dev->eps[i].new_ring = NULL;
2751 	}
2752 command_cleanup:
2753 	kfree(command->completion);
2754 	kfree(command);
2755 
2756 	return ret;
2757 }
2758 
2759 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2760 {
2761 	struct xhci_hcd *xhci;
2762 	struct xhci_virt_device	*virt_dev;
2763 	int i, ret;
2764 
2765 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2766 	if (ret <= 0)
2767 		return;
2768 	xhci = hcd_to_xhci(hcd);
2769 
2770 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2771 	virt_dev = xhci->devs[udev->slot_id];
2772 	/* Free any rings allocated for added endpoints */
2773 	for (i = 0; i < 31; i++) {
2774 		if (virt_dev->eps[i].new_ring) {
2775 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2776 			virt_dev->eps[i].new_ring = NULL;
2777 		}
2778 	}
2779 	xhci_zero_in_ctx(xhci, virt_dev);
2780 }
2781 
2782 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2783 		struct xhci_container_ctx *in_ctx,
2784 		struct xhci_container_ctx *out_ctx,
2785 		struct xhci_input_control_ctx *ctrl_ctx,
2786 		u32 add_flags, u32 drop_flags)
2787 {
2788 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2789 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2790 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2791 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2792 }
2793 
2794 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2795 		unsigned int slot_id, unsigned int ep_index,
2796 		struct xhci_dequeue_state *deq_state)
2797 {
2798 	struct xhci_input_control_ctx *ctrl_ctx;
2799 	struct xhci_container_ctx *in_ctx;
2800 	struct xhci_ep_ctx *ep_ctx;
2801 	u32 added_ctxs;
2802 	dma_addr_t addr;
2803 
2804 	in_ctx = xhci->devs[slot_id]->in_ctx;
2805 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2806 	if (!ctrl_ctx) {
2807 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2808 				__func__);
2809 		return;
2810 	}
2811 
2812 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2813 			xhci->devs[slot_id]->out_ctx, ep_index);
2814 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2815 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2816 			deq_state->new_deq_ptr);
2817 	if (addr == 0) {
2818 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2819 				"reset ep command\n");
2820 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2821 				deq_state->new_deq_seg,
2822 				deq_state->new_deq_ptr);
2823 		return;
2824 	}
2825 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2826 
2827 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2828 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2829 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2830 			added_ctxs, added_ctxs);
2831 }
2832 
2833 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2834 			       unsigned int stream_id, struct xhci_td *td)
2835 {
2836 	struct xhci_dequeue_state deq_state;
2837 	struct xhci_virt_ep *ep;
2838 	struct usb_device *udev = td->urb->dev;
2839 
2840 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2841 			"Cleaning up stalled endpoint ring");
2842 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2843 	/* We need to move the HW's dequeue pointer past this TD,
2844 	 * or it will attempt to resend it on the next doorbell ring.
2845 	 */
2846 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2847 			ep_index, stream_id, td, &deq_state);
2848 
2849 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2850 		return;
2851 
2852 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2853 	 * issue a configure endpoint command later.
2854 	 */
2855 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2856 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2857 				"Queueing new dequeue state");
2858 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2859 				ep_index, &deq_state);
2860 	} else {
2861 		/* Better hope no one uses the input context between now and the
2862 		 * reset endpoint completion!
2863 		 * XXX: No idea how this hardware will react when stream rings
2864 		 * are enabled.
2865 		 */
2866 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2867 				"Setting up input context for "
2868 				"configure endpoint command");
2869 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2870 				ep_index, &deq_state);
2871 	}
2872 }
2873 
2874 /* Called when clearing halted device. The core should have sent the control
2875  * message to clear the device halt condition. The host side of the halt should
2876  * already be cleared with a reset endpoint command issued when the STALL tx
2877  * event was received.
2878  *
2879  * Context: in_interrupt
2880  */
2881 
2882 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2883 		struct usb_host_endpoint *ep)
2884 {
2885 	struct xhci_hcd *xhci;
2886 
2887 	xhci = hcd_to_xhci(hcd);
2888 
2889 	/*
2890 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2891 	 * The Reset Endpoint Command may only be issued to endpoints in the
2892 	 * Halted state. If software wishes reset the Data Toggle or Sequence
2893 	 * Number of an endpoint that isn't in the Halted state, then software
2894 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
2895 	 * for the target endpoint. that is in the Stopped state.
2896 	 */
2897 
2898 	/* For now just print debug to follow the situation */
2899 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2900 		 ep->desc.bEndpointAddress);
2901 }
2902 
2903 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2904 		struct usb_device *udev, struct usb_host_endpoint *ep,
2905 		unsigned int slot_id)
2906 {
2907 	int ret;
2908 	unsigned int ep_index;
2909 	unsigned int ep_state;
2910 
2911 	if (!ep)
2912 		return -EINVAL;
2913 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2914 	if (ret <= 0)
2915 		return -EINVAL;
2916 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2917 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2918 				" descriptor for ep 0x%x does not support streams\n",
2919 				ep->desc.bEndpointAddress);
2920 		return -EINVAL;
2921 	}
2922 
2923 	ep_index = xhci_get_endpoint_index(&ep->desc);
2924 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2925 	if (ep_state & EP_HAS_STREAMS ||
2926 			ep_state & EP_GETTING_STREAMS) {
2927 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2928 				"already has streams set up.\n",
2929 				ep->desc.bEndpointAddress);
2930 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2931 				"dynamic stream context array reallocation.\n");
2932 		return -EINVAL;
2933 	}
2934 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2935 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2936 				"endpoint 0x%x; URBs are pending.\n",
2937 				ep->desc.bEndpointAddress);
2938 		return -EINVAL;
2939 	}
2940 	return 0;
2941 }
2942 
2943 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2944 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2945 {
2946 	unsigned int max_streams;
2947 
2948 	/* The stream context array size must be a power of two */
2949 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2950 	/*
2951 	 * Find out how many primary stream array entries the host controller
2952 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2953 	 * level page entries), but that's an optional feature for xHCI host
2954 	 * controllers. xHCs must support at least 4 stream IDs.
2955 	 */
2956 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2957 	if (*num_stream_ctxs > max_streams) {
2958 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2959 				max_streams);
2960 		*num_stream_ctxs = max_streams;
2961 		*num_streams = max_streams;
2962 	}
2963 }
2964 
2965 /* Returns an error code if one of the endpoint already has streams.
2966  * This does not change any data structures, it only checks and gathers
2967  * information.
2968  */
2969 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2970 		struct usb_device *udev,
2971 		struct usb_host_endpoint **eps, unsigned int num_eps,
2972 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2973 {
2974 	unsigned int max_streams;
2975 	unsigned int endpoint_flag;
2976 	int i;
2977 	int ret;
2978 
2979 	for (i = 0; i < num_eps; i++) {
2980 		ret = xhci_check_streams_endpoint(xhci, udev,
2981 				eps[i], udev->slot_id);
2982 		if (ret < 0)
2983 			return ret;
2984 
2985 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2986 		if (max_streams < (*num_streams - 1)) {
2987 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2988 					eps[i]->desc.bEndpointAddress,
2989 					max_streams);
2990 			*num_streams = max_streams+1;
2991 		}
2992 
2993 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2994 		if (*changed_ep_bitmask & endpoint_flag)
2995 			return -EINVAL;
2996 		*changed_ep_bitmask |= endpoint_flag;
2997 	}
2998 	return 0;
2999 }
3000 
3001 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3002 		struct usb_device *udev,
3003 		struct usb_host_endpoint **eps, unsigned int num_eps)
3004 {
3005 	u32 changed_ep_bitmask = 0;
3006 	unsigned int slot_id;
3007 	unsigned int ep_index;
3008 	unsigned int ep_state;
3009 	int i;
3010 
3011 	slot_id = udev->slot_id;
3012 	if (!xhci->devs[slot_id])
3013 		return 0;
3014 
3015 	for (i = 0; i < num_eps; i++) {
3016 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3017 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3018 		/* Are streams already being freed for the endpoint? */
3019 		if (ep_state & EP_GETTING_NO_STREAMS) {
3020 			xhci_warn(xhci, "WARN Can't disable streams for "
3021 					"endpoint 0x%x, "
3022 					"streams are being disabled already\n",
3023 					eps[i]->desc.bEndpointAddress);
3024 			return 0;
3025 		}
3026 		/* Are there actually any streams to free? */
3027 		if (!(ep_state & EP_HAS_STREAMS) &&
3028 				!(ep_state & EP_GETTING_STREAMS)) {
3029 			xhci_warn(xhci, "WARN Can't disable streams for "
3030 					"endpoint 0x%x, "
3031 					"streams are already disabled!\n",
3032 					eps[i]->desc.bEndpointAddress);
3033 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3034 					"with non-streams endpoint\n");
3035 			return 0;
3036 		}
3037 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3038 	}
3039 	return changed_ep_bitmask;
3040 }
3041 
3042 /*
3043  * The USB device drivers use this function (through the HCD interface in USB
3044  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3045  * coordinate mass storage command queueing across multiple endpoints (basically
3046  * a stream ID == a task ID).
3047  *
3048  * Setting up streams involves allocating the same size stream context array
3049  * for each endpoint and issuing a configure endpoint command for all endpoints.
3050  *
3051  * Don't allow the call to succeed if one endpoint only supports one stream
3052  * (which means it doesn't support streams at all).
3053  *
3054  * Drivers may get less stream IDs than they asked for, if the host controller
3055  * hardware or endpoints claim they can't support the number of requested
3056  * stream IDs.
3057  */
3058 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3059 		struct usb_host_endpoint **eps, unsigned int num_eps,
3060 		unsigned int num_streams, gfp_t mem_flags)
3061 {
3062 	int i, ret;
3063 	struct xhci_hcd *xhci;
3064 	struct xhci_virt_device *vdev;
3065 	struct xhci_command *config_cmd;
3066 	struct xhci_input_control_ctx *ctrl_ctx;
3067 	unsigned int ep_index;
3068 	unsigned int num_stream_ctxs;
3069 	unsigned int max_packet;
3070 	unsigned long flags;
3071 	u32 changed_ep_bitmask = 0;
3072 
3073 	if (!eps)
3074 		return -EINVAL;
3075 
3076 	/* Add one to the number of streams requested to account for
3077 	 * stream 0 that is reserved for xHCI usage.
3078 	 */
3079 	num_streams += 1;
3080 	xhci = hcd_to_xhci(hcd);
3081 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082 			num_streams);
3083 
3084 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3085 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3086 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3087 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3088 		return -ENOSYS;
3089 	}
3090 
3091 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3092 	if (!config_cmd)
3093 		return -ENOMEM;
3094 
3095 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3096 	if (!ctrl_ctx) {
3097 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3098 				__func__);
3099 		xhci_free_command(xhci, config_cmd);
3100 		return -ENOMEM;
3101 	}
3102 
3103 	/* Check to make sure all endpoints are not already configured for
3104 	 * streams.  While we're at it, find the maximum number of streams that
3105 	 * all the endpoints will support and check for duplicate endpoints.
3106 	 */
3107 	spin_lock_irqsave(&xhci->lock, flags);
3108 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3109 			num_eps, &num_streams, &changed_ep_bitmask);
3110 	if (ret < 0) {
3111 		xhci_free_command(xhci, config_cmd);
3112 		spin_unlock_irqrestore(&xhci->lock, flags);
3113 		return ret;
3114 	}
3115 	if (num_streams <= 1) {
3116 		xhci_warn(xhci, "WARN: endpoints can't handle "
3117 				"more than one stream.\n");
3118 		xhci_free_command(xhci, config_cmd);
3119 		spin_unlock_irqrestore(&xhci->lock, flags);
3120 		return -EINVAL;
3121 	}
3122 	vdev = xhci->devs[udev->slot_id];
3123 	/* Mark each endpoint as being in transition, so
3124 	 * xhci_urb_enqueue() will reject all URBs.
3125 	 */
3126 	for (i = 0; i < num_eps; i++) {
3127 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3129 	}
3130 	spin_unlock_irqrestore(&xhci->lock, flags);
3131 
3132 	/* Setup internal data structures and allocate HW data structures for
3133 	 * streams (but don't install the HW structures in the input context
3134 	 * until we're sure all memory allocation succeeded).
3135 	 */
3136 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3137 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3138 			num_stream_ctxs, num_streams);
3139 
3140 	for (i = 0; i < num_eps; i++) {
3141 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3142 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3143 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3144 				num_stream_ctxs,
3145 				num_streams,
3146 				max_packet, mem_flags);
3147 		if (!vdev->eps[ep_index].stream_info)
3148 			goto cleanup;
3149 		/* Set maxPstreams in endpoint context and update deq ptr to
3150 		 * point to stream context array. FIXME
3151 		 */
3152 	}
3153 
3154 	/* Set up the input context for a configure endpoint command. */
3155 	for (i = 0; i < num_eps; i++) {
3156 		struct xhci_ep_ctx *ep_ctx;
3157 
3158 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3160 
3161 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3162 				vdev->out_ctx, ep_index);
3163 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3164 				vdev->eps[ep_index].stream_info);
3165 	}
3166 	/* Tell the HW to drop its old copy of the endpoint context info
3167 	 * and add the updated copy from the input context.
3168 	 */
3169 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3170 			vdev->out_ctx, ctrl_ctx,
3171 			changed_ep_bitmask, changed_ep_bitmask);
3172 
3173 	/* Issue and wait for the configure endpoint command */
3174 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3175 			false, false);
3176 
3177 	/* xHC rejected the configure endpoint command for some reason, so we
3178 	 * leave the old ring intact and free our internal streams data
3179 	 * structure.
3180 	 */
3181 	if (ret < 0)
3182 		goto cleanup;
3183 
3184 	spin_lock_irqsave(&xhci->lock, flags);
3185 	for (i = 0; i < num_eps; i++) {
3186 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3188 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3189 			 udev->slot_id, ep_index);
3190 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3191 	}
3192 	xhci_free_command(xhci, config_cmd);
3193 	spin_unlock_irqrestore(&xhci->lock, flags);
3194 
3195 	/* Subtract 1 for stream 0, which drivers can't use */
3196 	return num_streams - 1;
3197 
3198 cleanup:
3199 	/* If it didn't work, free the streams! */
3200 	for (i = 0; i < num_eps; i++) {
3201 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3203 		vdev->eps[ep_index].stream_info = NULL;
3204 		/* FIXME Unset maxPstreams in endpoint context and
3205 		 * update deq ptr to point to normal string ring.
3206 		 */
3207 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3208 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3209 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3210 	}
3211 	xhci_free_command(xhci, config_cmd);
3212 	return -ENOMEM;
3213 }
3214 
3215 /* Transition the endpoint from using streams to being a "normal" endpoint
3216  * without streams.
3217  *
3218  * Modify the endpoint context state, submit a configure endpoint command,
3219  * and free all endpoint rings for streams if that completes successfully.
3220  */
3221 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3222 		struct usb_host_endpoint **eps, unsigned int num_eps,
3223 		gfp_t mem_flags)
3224 {
3225 	int i, ret;
3226 	struct xhci_hcd *xhci;
3227 	struct xhci_virt_device *vdev;
3228 	struct xhci_command *command;
3229 	struct xhci_input_control_ctx *ctrl_ctx;
3230 	unsigned int ep_index;
3231 	unsigned long flags;
3232 	u32 changed_ep_bitmask;
3233 
3234 	xhci = hcd_to_xhci(hcd);
3235 	vdev = xhci->devs[udev->slot_id];
3236 
3237 	/* Set up a configure endpoint command to remove the streams rings */
3238 	spin_lock_irqsave(&xhci->lock, flags);
3239 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3240 			udev, eps, num_eps);
3241 	if (changed_ep_bitmask == 0) {
3242 		spin_unlock_irqrestore(&xhci->lock, flags);
3243 		return -EINVAL;
3244 	}
3245 
3246 	/* Use the xhci_command structure from the first endpoint.  We may have
3247 	 * allocated too many, but the driver may call xhci_free_streams() for
3248 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3249 	 */
3250 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3251 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3252 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3253 	if (!ctrl_ctx) {
3254 		spin_unlock_irqrestore(&xhci->lock, flags);
3255 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3256 				__func__);
3257 		return -EINVAL;
3258 	}
3259 
3260 	for (i = 0; i < num_eps; i++) {
3261 		struct xhci_ep_ctx *ep_ctx;
3262 
3263 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3264 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3265 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3266 			EP_GETTING_NO_STREAMS;
3267 
3268 		xhci_endpoint_copy(xhci, command->in_ctx,
3269 				vdev->out_ctx, ep_index);
3270 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3271 				&vdev->eps[ep_index]);
3272 	}
3273 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3274 			vdev->out_ctx, ctrl_ctx,
3275 			changed_ep_bitmask, changed_ep_bitmask);
3276 	spin_unlock_irqrestore(&xhci->lock, flags);
3277 
3278 	/* Issue and wait for the configure endpoint command,
3279 	 * which must succeed.
3280 	 */
3281 	ret = xhci_configure_endpoint(xhci, udev, command,
3282 			false, true);
3283 
3284 	/* xHC rejected the configure endpoint command for some reason, so we
3285 	 * leave the streams rings intact.
3286 	 */
3287 	if (ret < 0)
3288 		return ret;
3289 
3290 	spin_lock_irqsave(&xhci->lock, flags);
3291 	for (i = 0; i < num_eps; i++) {
3292 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3293 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3294 		vdev->eps[ep_index].stream_info = NULL;
3295 		/* FIXME Unset maxPstreams in endpoint context and
3296 		 * update deq ptr to point to normal string ring.
3297 		 */
3298 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3299 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3300 	}
3301 	spin_unlock_irqrestore(&xhci->lock, flags);
3302 
3303 	return 0;
3304 }
3305 
3306 /*
3307  * Deletes endpoint resources for endpoints that were active before a Reset
3308  * Device command, or a Disable Slot command.  The Reset Device command leaves
3309  * the control endpoint intact, whereas the Disable Slot command deletes it.
3310  *
3311  * Must be called with xhci->lock held.
3312  */
3313 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3314 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3315 {
3316 	int i;
3317 	unsigned int num_dropped_eps = 0;
3318 	unsigned int drop_flags = 0;
3319 
3320 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3321 		if (virt_dev->eps[i].ring) {
3322 			drop_flags |= 1 << i;
3323 			num_dropped_eps++;
3324 		}
3325 	}
3326 	xhci->num_active_eps -= num_dropped_eps;
3327 	if (num_dropped_eps)
3328 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3329 				"Dropped %u ep ctxs, flags = 0x%x, "
3330 				"%u now active.",
3331 				num_dropped_eps, drop_flags,
3332 				xhci->num_active_eps);
3333 }
3334 
3335 /*
3336  * This submits a Reset Device Command, which will set the device state to 0,
3337  * set the device address to 0, and disable all the endpoints except the default
3338  * control endpoint.  The USB core should come back and call
3339  * xhci_address_device(), and then re-set up the configuration.  If this is
3340  * called because of a usb_reset_and_verify_device(), then the old alternate
3341  * settings will be re-installed through the normal bandwidth allocation
3342  * functions.
3343  *
3344  * Wait for the Reset Device command to finish.  Remove all structures
3345  * associated with the endpoints that were disabled.  Clear the input device
3346  * structure? Reset the control endpoint 0 max packet size?
3347  *
3348  * If the virt_dev to be reset does not exist or does not match the udev,
3349  * it means the device is lost, possibly due to the xHC restore error and
3350  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3351  * re-allocate the device.
3352  */
3353 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3354 		struct usb_device *udev)
3355 {
3356 	int ret, i;
3357 	unsigned long flags;
3358 	struct xhci_hcd *xhci;
3359 	unsigned int slot_id;
3360 	struct xhci_virt_device *virt_dev;
3361 	struct xhci_command *reset_device_cmd;
3362 	int last_freed_endpoint;
3363 	struct xhci_slot_ctx *slot_ctx;
3364 	int old_active_eps = 0;
3365 
3366 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3367 	if (ret <= 0)
3368 		return ret;
3369 	xhci = hcd_to_xhci(hcd);
3370 	slot_id = udev->slot_id;
3371 	virt_dev = xhci->devs[slot_id];
3372 	if (!virt_dev) {
3373 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3374 				"not exist. Re-allocate the device\n", slot_id);
3375 		ret = xhci_alloc_dev(hcd, udev);
3376 		if (ret == 1)
3377 			return 0;
3378 		else
3379 			return -EINVAL;
3380 	}
3381 
3382 	if (virt_dev->tt_info)
3383 		old_active_eps = virt_dev->tt_info->active_eps;
3384 
3385 	if (virt_dev->udev != udev) {
3386 		/* If the virt_dev and the udev does not match, this virt_dev
3387 		 * may belong to another udev.
3388 		 * Re-allocate the device.
3389 		 */
3390 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3391 				"not match the udev. Re-allocate the device\n",
3392 				slot_id);
3393 		ret = xhci_alloc_dev(hcd, udev);
3394 		if (ret == 1)
3395 			return 0;
3396 		else
3397 			return -EINVAL;
3398 	}
3399 
3400 	/* If device is not setup, there is no point in resetting it */
3401 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3402 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3403 						SLOT_STATE_DISABLED)
3404 		return 0;
3405 
3406 	trace_xhci_discover_or_reset_device(slot_ctx);
3407 
3408 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3409 	/* Allocate the command structure that holds the struct completion.
3410 	 * Assume we're in process context, since the normal device reset
3411 	 * process has to wait for the device anyway.  Storage devices are
3412 	 * reset as part of error handling, so use GFP_NOIO instead of
3413 	 * GFP_KERNEL.
3414 	 */
3415 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3416 	if (!reset_device_cmd) {
3417 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3418 		return -ENOMEM;
3419 	}
3420 
3421 	/* Attempt to submit the Reset Device command to the command ring */
3422 	spin_lock_irqsave(&xhci->lock, flags);
3423 
3424 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3425 	if (ret) {
3426 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3427 		spin_unlock_irqrestore(&xhci->lock, flags);
3428 		goto command_cleanup;
3429 	}
3430 	xhci_ring_cmd_db(xhci);
3431 	spin_unlock_irqrestore(&xhci->lock, flags);
3432 
3433 	/* Wait for the Reset Device command to finish */
3434 	wait_for_completion(reset_device_cmd->completion);
3435 
3436 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3437 	 * unless we tried to reset a slot ID that wasn't enabled,
3438 	 * or the device wasn't in the addressed or configured state.
3439 	 */
3440 	ret = reset_device_cmd->status;
3441 	switch (ret) {
3442 	case COMP_COMMAND_ABORTED:
3443 	case COMP_COMMAND_RING_STOPPED:
3444 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3445 		ret = -ETIME;
3446 		goto command_cleanup;
3447 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3448 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3449 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3450 				slot_id,
3451 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3452 		xhci_dbg(xhci, "Not freeing device rings.\n");
3453 		/* Don't treat this as an error.  May change my mind later. */
3454 		ret = 0;
3455 		goto command_cleanup;
3456 	case COMP_SUCCESS:
3457 		xhci_dbg(xhci, "Successful reset device command.\n");
3458 		break;
3459 	default:
3460 		if (xhci_is_vendor_info_code(xhci, ret))
3461 			break;
3462 		xhci_warn(xhci, "Unknown completion code %u for "
3463 				"reset device command.\n", ret);
3464 		ret = -EINVAL;
3465 		goto command_cleanup;
3466 	}
3467 
3468 	/* Free up host controller endpoint resources */
3469 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3470 		spin_lock_irqsave(&xhci->lock, flags);
3471 		/* Don't delete the default control endpoint resources */
3472 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3473 		spin_unlock_irqrestore(&xhci->lock, flags);
3474 	}
3475 
3476 	/* Everything but endpoint 0 is disabled, so free the rings. */
3477 	last_freed_endpoint = 1;
3478 	for (i = 1; i < 31; i++) {
3479 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3480 
3481 		if (ep->ep_state & EP_HAS_STREAMS) {
3482 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3483 					xhci_get_endpoint_address(i));
3484 			xhci_free_stream_info(xhci, ep->stream_info);
3485 			ep->stream_info = NULL;
3486 			ep->ep_state &= ~EP_HAS_STREAMS;
3487 		}
3488 
3489 		if (ep->ring) {
3490 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3491 			last_freed_endpoint = i;
3492 		}
3493 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3494 			xhci_drop_ep_from_interval_table(xhci,
3495 					&virt_dev->eps[i].bw_info,
3496 					virt_dev->bw_table,
3497 					udev,
3498 					&virt_dev->eps[i],
3499 					virt_dev->tt_info);
3500 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3501 	}
3502 	/* If necessary, update the number of active TTs on this root port */
3503 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3504 	ret = 0;
3505 
3506 command_cleanup:
3507 	xhci_free_command(xhci, reset_device_cmd);
3508 	return ret;
3509 }
3510 
3511 /*
3512  * At this point, the struct usb_device is about to go away, the device has
3513  * disconnected, and all traffic has been stopped and the endpoints have been
3514  * disabled.  Free any HC data structures associated with that device.
3515  */
3516 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3517 {
3518 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3519 	struct xhci_virt_device *virt_dev;
3520 	struct xhci_slot_ctx *slot_ctx;
3521 	int i, ret;
3522 	struct xhci_command *command;
3523 
3524 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3525 	if (!command)
3526 		return;
3527 
3528 #ifndef CONFIG_USB_DEFAULT_PERSIST
3529 	/*
3530 	 * We called pm_runtime_get_noresume when the device was attached.
3531 	 * Decrement the counter here to allow controller to runtime suspend
3532 	 * if no devices remain.
3533 	 */
3534 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3535 		pm_runtime_put_noidle(hcd->self.controller);
3536 #endif
3537 
3538 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3539 	/* If the host is halted due to driver unload, we still need to free the
3540 	 * device.
3541 	 */
3542 	if (ret <= 0 && ret != -ENODEV) {
3543 		kfree(command);
3544 		return;
3545 	}
3546 
3547 	virt_dev = xhci->devs[udev->slot_id];
3548 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3549 	trace_xhci_free_dev(slot_ctx);
3550 
3551 	/* Stop any wayward timer functions (which may grab the lock) */
3552 	for (i = 0; i < 31; i++) {
3553 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3554 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3555 	}
3556 
3557 	xhci_disable_slot(xhci, command, udev->slot_id);
3558 	/*
3559 	 * Event command completion handler will free any data structures
3560 	 * associated with the slot.  XXX Can free sleep?
3561 	 */
3562 }
3563 
3564 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3565 			u32 slot_id)
3566 {
3567 	unsigned long flags;
3568 	u32 state;
3569 	int ret = 0;
3570 	struct xhci_virt_device *virt_dev;
3571 
3572 	virt_dev = xhci->devs[slot_id];
3573 	if (!virt_dev)
3574 		return -EINVAL;
3575 	if (!command)
3576 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3577 	if (!command)
3578 		return -ENOMEM;
3579 
3580 	spin_lock_irqsave(&xhci->lock, flags);
3581 	/* Don't disable the slot if the host controller is dead. */
3582 	state = readl(&xhci->op_regs->status);
3583 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3584 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3585 		xhci_free_virt_device(xhci, slot_id);
3586 		spin_unlock_irqrestore(&xhci->lock, flags);
3587 		kfree(command);
3588 		return ret;
3589 	}
3590 
3591 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3592 				slot_id);
3593 	if (ret) {
3594 		spin_unlock_irqrestore(&xhci->lock, flags);
3595 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3596 		return ret;
3597 	}
3598 	xhci_ring_cmd_db(xhci);
3599 	spin_unlock_irqrestore(&xhci->lock, flags);
3600 	return ret;
3601 }
3602 
3603 /*
3604  * Checks if we have enough host controller resources for the default control
3605  * endpoint.
3606  *
3607  * Must be called with xhci->lock held.
3608  */
3609 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3610 {
3611 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3612 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3613 				"Not enough ep ctxs: "
3614 				"%u active, need to add 1, limit is %u.",
3615 				xhci->num_active_eps, xhci->limit_active_eps);
3616 		return -ENOMEM;
3617 	}
3618 	xhci->num_active_eps += 1;
3619 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3620 			"Adding 1 ep ctx, %u now active.",
3621 			xhci->num_active_eps);
3622 	return 0;
3623 }
3624 
3625 
3626 /*
3627  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3628  * timed out, or allocating memory failed.  Returns 1 on success.
3629  */
3630 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3631 {
3632 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633 	struct xhci_virt_device *vdev;
3634 	struct xhci_slot_ctx *slot_ctx;
3635 	unsigned long flags;
3636 	int ret, slot_id;
3637 	struct xhci_command *command;
3638 
3639 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3640 	if (!command)
3641 		return 0;
3642 
3643 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3644 	mutex_lock(&xhci->mutex);
3645 	spin_lock_irqsave(&xhci->lock, flags);
3646 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3647 	if (ret) {
3648 		spin_unlock_irqrestore(&xhci->lock, flags);
3649 		mutex_unlock(&xhci->mutex);
3650 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3651 		xhci_free_command(xhci, command);
3652 		return 0;
3653 	}
3654 	xhci_ring_cmd_db(xhci);
3655 	spin_unlock_irqrestore(&xhci->lock, flags);
3656 
3657 	wait_for_completion(command->completion);
3658 	slot_id = command->slot_id;
3659 	mutex_unlock(&xhci->mutex);
3660 
3661 	if (!slot_id || command->status != COMP_SUCCESS) {
3662 		xhci_err(xhci, "Error while assigning device slot ID\n");
3663 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3664 				HCS_MAX_SLOTS(
3665 					readl(&xhci->cap_regs->hcs_params1)));
3666 		xhci_free_command(xhci, command);
3667 		return 0;
3668 	}
3669 
3670 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3671 		spin_lock_irqsave(&xhci->lock, flags);
3672 		ret = xhci_reserve_host_control_ep_resources(xhci);
3673 		if (ret) {
3674 			spin_unlock_irqrestore(&xhci->lock, flags);
3675 			xhci_warn(xhci, "Not enough host resources, "
3676 					"active endpoint contexts = %u\n",
3677 					xhci->num_active_eps);
3678 			goto disable_slot;
3679 		}
3680 		spin_unlock_irqrestore(&xhci->lock, flags);
3681 	}
3682 	/* Use GFP_NOIO, since this function can be called from
3683 	 * xhci_discover_or_reset_device(), which may be called as part of
3684 	 * mass storage driver error handling.
3685 	 */
3686 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3687 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3688 		goto disable_slot;
3689 	}
3690 	vdev = xhci->devs[slot_id];
3691 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3692 	trace_xhci_alloc_dev(slot_ctx);
3693 
3694 	udev->slot_id = slot_id;
3695 
3696 #ifndef CONFIG_USB_DEFAULT_PERSIST
3697 	/*
3698 	 * If resetting upon resume, we can't put the controller into runtime
3699 	 * suspend if there is a device attached.
3700 	 */
3701 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3702 		pm_runtime_get_noresume(hcd->self.controller);
3703 #endif
3704 
3705 
3706 	xhci_free_command(xhci, command);
3707 	/* Is this a LS or FS device under a HS hub? */
3708 	/* Hub or peripherial? */
3709 	return 1;
3710 
3711 disable_slot:
3712 	/* Disable slot, if we can do it without mem alloc */
3713 	kfree(command->completion);
3714 	command->completion = NULL;
3715 	command->status = 0;
3716 	return xhci_disable_slot(xhci, command, udev->slot_id);
3717 }
3718 
3719 /*
3720  * Issue an Address Device command and optionally send a corresponding
3721  * SetAddress request to the device.
3722  */
3723 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3724 			     enum xhci_setup_dev setup)
3725 {
3726 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3727 	unsigned long flags;
3728 	struct xhci_virt_device *virt_dev;
3729 	int ret = 0;
3730 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3731 	struct xhci_slot_ctx *slot_ctx;
3732 	struct xhci_input_control_ctx *ctrl_ctx;
3733 	u64 temp_64;
3734 	struct xhci_command *command = NULL;
3735 
3736 	mutex_lock(&xhci->mutex);
3737 
3738 	if (xhci->xhc_state) {	/* dying, removing or halted */
3739 		ret = -ESHUTDOWN;
3740 		goto out;
3741 	}
3742 
3743 	if (!udev->slot_id) {
3744 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3745 				"Bad Slot ID %d", udev->slot_id);
3746 		ret = -EINVAL;
3747 		goto out;
3748 	}
3749 
3750 	virt_dev = xhci->devs[udev->slot_id];
3751 
3752 	if (WARN_ON(!virt_dev)) {
3753 		/*
3754 		 * In plug/unplug torture test with an NEC controller,
3755 		 * a zero-dereference was observed once due to virt_dev = 0.
3756 		 * Print useful debug rather than crash if it is observed again!
3757 		 */
3758 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3759 			udev->slot_id);
3760 		ret = -EINVAL;
3761 		goto out;
3762 	}
3763 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3764 	trace_xhci_setup_device_slot(slot_ctx);
3765 
3766 	if (setup == SETUP_CONTEXT_ONLY) {
3767 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3768 		    SLOT_STATE_DEFAULT) {
3769 			xhci_dbg(xhci, "Slot already in default state\n");
3770 			goto out;
3771 		}
3772 	}
3773 
3774 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3775 	if (!command) {
3776 		ret = -ENOMEM;
3777 		goto out;
3778 	}
3779 
3780 	command->in_ctx = virt_dev->in_ctx;
3781 
3782 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3783 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3784 	if (!ctrl_ctx) {
3785 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3786 				__func__);
3787 		ret = -EINVAL;
3788 		goto out;
3789 	}
3790 	/*
3791 	 * If this is the first Set Address since device plug-in or
3792 	 * virt_device realloaction after a resume with an xHCI power loss,
3793 	 * then set up the slot context.
3794 	 */
3795 	if (!slot_ctx->dev_info)
3796 		xhci_setup_addressable_virt_dev(xhci, udev);
3797 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3798 	else
3799 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3800 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3801 	ctrl_ctx->drop_flags = 0;
3802 
3803 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3804 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3805 
3806 	spin_lock_irqsave(&xhci->lock, flags);
3807 	trace_xhci_setup_device(virt_dev);
3808 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3809 					udev->slot_id, setup);
3810 	if (ret) {
3811 		spin_unlock_irqrestore(&xhci->lock, flags);
3812 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3813 				"FIXME: allocate a command ring segment");
3814 		goto out;
3815 	}
3816 	xhci_ring_cmd_db(xhci);
3817 	spin_unlock_irqrestore(&xhci->lock, flags);
3818 
3819 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3820 	wait_for_completion(command->completion);
3821 
3822 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3823 	 * the SetAddress() "recovery interval" required by USB and aborting the
3824 	 * command on a timeout.
3825 	 */
3826 	switch (command->status) {
3827 	case COMP_COMMAND_ABORTED:
3828 	case COMP_COMMAND_RING_STOPPED:
3829 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3830 		ret = -ETIME;
3831 		break;
3832 	case COMP_CONTEXT_STATE_ERROR:
3833 	case COMP_SLOT_NOT_ENABLED_ERROR:
3834 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3835 			 act, udev->slot_id);
3836 		ret = -EINVAL;
3837 		break;
3838 	case COMP_USB_TRANSACTION_ERROR:
3839 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3840 		ret = -EPROTO;
3841 		break;
3842 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
3843 		dev_warn(&udev->dev,
3844 			 "ERROR: Incompatible device for setup %s command\n", act);
3845 		ret = -ENODEV;
3846 		break;
3847 	case COMP_SUCCESS:
3848 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3849 			       "Successful setup %s command", act);
3850 		break;
3851 	default:
3852 		xhci_err(xhci,
3853 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3854 			 act, command->status);
3855 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3856 		ret = -EINVAL;
3857 		break;
3858 	}
3859 	if (ret)
3860 		goto out;
3861 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3862 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3863 			"Op regs DCBAA ptr = %#016llx", temp_64);
3864 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865 		"Slot ID %d dcbaa entry @%p = %#016llx",
3866 		udev->slot_id,
3867 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3868 		(unsigned long long)
3869 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3870 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871 			"Output Context DMA address = %#08llx",
3872 			(unsigned long long)virt_dev->out_ctx->dma);
3873 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3874 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3875 	/*
3876 	 * USB core uses address 1 for the roothubs, so we add one to the
3877 	 * address given back to us by the HC.
3878 	 */
3879 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3880 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3881 	/* Zero the input context control for later use */
3882 	ctrl_ctx->add_flags = 0;
3883 	ctrl_ctx->drop_flags = 0;
3884 
3885 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3886 		       "Internal device address = %d",
3887 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3888 out:
3889 	mutex_unlock(&xhci->mutex);
3890 	if (command) {
3891 		kfree(command->completion);
3892 		kfree(command);
3893 	}
3894 	return ret;
3895 }
3896 
3897 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3898 {
3899 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3900 }
3901 
3902 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3903 {
3904 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3905 }
3906 
3907 /*
3908  * Transfer the port index into real index in the HW port status
3909  * registers. Caculate offset between the port's PORTSC register
3910  * and port status base. Divide the number of per port register
3911  * to get the real index. The raw port number bases 1.
3912  */
3913 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3914 {
3915 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3916 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3917 	__le32 __iomem *addr;
3918 	int raw_port;
3919 
3920 	if (hcd->speed < HCD_USB3)
3921 		addr = xhci->usb2_ports[port1 - 1];
3922 	else
3923 		addr = xhci->usb3_ports[port1 - 1];
3924 
3925 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3926 	return raw_port;
3927 }
3928 
3929 /*
3930  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3931  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3932  */
3933 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3934 			struct usb_device *udev, u16 max_exit_latency)
3935 {
3936 	struct xhci_virt_device *virt_dev;
3937 	struct xhci_command *command;
3938 	struct xhci_input_control_ctx *ctrl_ctx;
3939 	struct xhci_slot_ctx *slot_ctx;
3940 	unsigned long flags;
3941 	int ret;
3942 
3943 	spin_lock_irqsave(&xhci->lock, flags);
3944 
3945 	virt_dev = xhci->devs[udev->slot_id];
3946 
3947 	/*
3948 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3949 	 * xHC was re-initialized. Exit latency will be set later after
3950 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3951 	 */
3952 
3953 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3954 		spin_unlock_irqrestore(&xhci->lock, flags);
3955 		return 0;
3956 	}
3957 
3958 	/* Attempt to issue an Evaluate Context command to change the MEL. */
3959 	command = xhci->lpm_command;
3960 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3961 	if (!ctrl_ctx) {
3962 		spin_unlock_irqrestore(&xhci->lock, flags);
3963 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3964 				__func__);
3965 		return -ENOMEM;
3966 	}
3967 
3968 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3969 	spin_unlock_irqrestore(&xhci->lock, flags);
3970 
3971 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3972 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3973 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3974 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3975 	slot_ctx->dev_state = 0;
3976 
3977 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3978 			"Set up evaluate context for LPM MEL change.");
3979 
3980 	/* Issue and wait for the evaluate context command. */
3981 	ret = xhci_configure_endpoint(xhci, udev, command,
3982 			true, true);
3983 
3984 	if (!ret) {
3985 		spin_lock_irqsave(&xhci->lock, flags);
3986 		virt_dev->current_mel = max_exit_latency;
3987 		spin_unlock_irqrestore(&xhci->lock, flags);
3988 	}
3989 	return ret;
3990 }
3991 
3992 #ifdef CONFIG_PM
3993 
3994 /* BESL to HIRD Encoding array for USB2 LPM */
3995 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3996 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3997 
3998 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3999 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4000 					struct usb_device *udev)
4001 {
4002 	int u2del, besl, besl_host;
4003 	int besl_device = 0;
4004 	u32 field;
4005 
4006 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4007 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4008 
4009 	if (field & USB_BESL_SUPPORT) {
4010 		for (besl_host = 0; besl_host < 16; besl_host++) {
4011 			if (xhci_besl_encoding[besl_host] >= u2del)
4012 				break;
4013 		}
4014 		/* Use baseline BESL value as default */
4015 		if (field & USB_BESL_BASELINE_VALID)
4016 			besl_device = USB_GET_BESL_BASELINE(field);
4017 		else if (field & USB_BESL_DEEP_VALID)
4018 			besl_device = USB_GET_BESL_DEEP(field);
4019 	} else {
4020 		if (u2del <= 50)
4021 			besl_host = 0;
4022 		else
4023 			besl_host = (u2del - 51) / 75 + 1;
4024 	}
4025 
4026 	besl = besl_host + besl_device;
4027 	if (besl > 15)
4028 		besl = 15;
4029 
4030 	return besl;
4031 }
4032 
4033 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4034 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4035 {
4036 	u32 field;
4037 	int l1;
4038 	int besld = 0;
4039 	int hirdm = 0;
4040 
4041 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4042 
4043 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4044 	l1 = udev->l1_params.timeout / 256;
4045 
4046 	/* device has preferred BESLD */
4047 	if (field & USB_BESL_DEEP_VALID) {
4048 		besld = USB_GET_BESL_DEEP(field);
4049 		hirdm = 1;
4050 	}
4051 
4052 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4053 }
4054 
4055 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4056 			struct usb_device *udev, int enable)
4057 {
4058 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4059 	__le32 __iomem	**port_array;
4060 	__le32 __iomem	*pm_addr, *hlpm_addr;
4061 	u32		pm_val, hlpm_val, field;
4062 	unsigned int	port_num;
4063 	unsigned long	flags;
4064 	int		hird, exit_latency;
4065 	int		ret;
4066 
4067 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4068 			!udev->lpm_capable)
4069 		return -EPERM;
4070 
4071 	if (!udev->parent || udev->parent->parent ||
4072 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4073 		return -EPERM;
4074 
4075 	if (udev->usb2_hw_lpm_capable != 1)
4076 		return -EPERM;
4077 
4078 	spin_lock_irqsave(&xhci->lock, flags);
4079 
4080 	port_array = xhci->usb2_ports;
4081 	port_num = udev->portnum - 1;
4082 	pm_addr = port_array[port_num] + PORTPMSC;
4083 	pm_val = readl(pm_addr);
4084 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4085 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4086 
4087 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4088 			enable ? "enable" : "disable", port_num + 1);
4089 
4090 	if (enable) {
4091 		/* Host supports BESL timeout instead of HIRD */
4092 		if (udev->usb2_hw_lpm_besl_capable) {
4093 			/* if device doesn't have a preferred BESL value use a
4094 			 * default one which works with mixed HIRD and BESL
4095 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4096 			 */
4097 			if ((field & USB_BESL_SUPPORT) &&
4098 			    (field & USB_BESL_BASELINE_VALID))
4099 				hird = USB_GET_BESL_BASELINE(field);
4100 			else
4101 				hird = udev->l1_params.besl;
4102 
4103 			exit_latency = xhci_besl_encoding[hird];
4104 			spin_unlock_irqrestore(&xhci->lock, flags);
4105 
4106 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4107 			 * input context for link powermanagement evaluate
4108 			 * context commands. It is protected by hcd->bandwidth
4109 			 * mutex and is shared by all devices. We need to set
4110 			 * the max ext latency in USB 2 BESL LPM as well, so
4111 			 * use the same mutex and xhci_change_max_exit_latency()
4112 			 */
4113 			mutex_lock(hcd->bandwidth_mutex);
4114 			ret = xhci_change_max_exit_latency(xhci, udev,
4115 							   exit_latency);
4116 			mutex_unlock(hcd->bandwidth_mutex);
4117 
4118 			if (ret < 0)
4119 				return ret;
4120 			spin_lock_irqsave(&xhci->lock, flags);
4121 
4122 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4123 			writel(hlpm_val, hlpm_addr);
4124 			/* flush write */
4125 			readl(hlpm_addr);
4126 		} else {
4127 			hird = xhci_calculate_hird_besl(xhci, udev);
4128 		}
4129 
4130 		pm_val &= ~PORT_HIRD_MASK;
4131 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4132 		writel(pm_val, pm_addr);
4133 		pm_val = readl(pm_addr);
4134 		pm_val |= PORT_HLE;
4135 		writel(pm_val, pm_addr);
4136 		/* flush write */
4137 		readl(pm_addr);
4138 	} else {
4139 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4140 		writel(pm_val, pm_addr);
4141 		/* flush write */
4142 		readl(pm_addr);
4143 		if (udev->usb2_hw_lpm_besl_capable) {
4144 			spin_unlock_irqrestore(&xhci->lock, flags);
4145 			mutex_lock(hcd->bandwidth_mutex);
4146 			xhci_change_max_exit_latency(xhci, udev, 0);
4147 			mutex_unlock(hcd->bandwidth_mutex);
4148 			return 0;
4149 		}
4150 	}
4151 
4152 	spin_unlock_irqrestore(&xhci->lock, flags);
4153 	return 0;
4154 }
4155 
4156 /* check if a usb2 port supports a given extened capability protocol
4157  * only USB2 ports extended protocol capability values are cached.
4158  * Return 1 if capability is supported
4159  */
4160 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4161 					   unsigned capability)
4162 {
4163 	u32 port_offset, port_count;
4164 	int i;
4165 
4166 	for (i = 0; i < xhci->num_ext_caps; i++) {
4167 		if (xhci->ext_caps[i] & capability) {
4168 			/* port offsets starts at 1 */
4169 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4170 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4171 			if (port >= port_offset &&
4172 			    port < port_offset + port_count)
4173 				return 1;
4174 		}
4175 	}
4176 	return 0;
4177 }
4178 
4179 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4180 {
4181 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4182 	int		portnum = udev->portnum - 1;
4183 
4184 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4185 			!udev->lpm_capable)
4186 		return 0;
4187 
4188 	/* we only support lpm for non-hub device connected to root hub yet */
4189 	if (!udev->parent || udev->parent->parent ||
4190 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4191 		return 0;
4192 
4193 	if (xhci->hw_lpm_support == 1 &&
4194 			xhci_check_usb2_port_capability(
4195 				xhci, portnum, XHCI_HLC)) {
4196 		udev->usb2_hw_lpm_capable = 1;
4197 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4198 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4199 		if (xhci_check_usb2_port_capability(xhci, portnum,
4200 					XHCI_BLC))
4201 			udev->usb2_hw_lpm_besl_capable = 1;
4202 	}
4203 
4204 	return 0;
4205 }
4206 
4207 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4208 
4209 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4210 static unsigned long long xhci_service_interval_to_ns(
4211 		struct usb_endpoint_descriptor *desc)
4212 {
4213 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4214 }
4215 
4216 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4217 		enum usb3_link_state state)
4218 {
4219 	unsigned long long sel;
4220 	unsigned long long pel;
4221 	unsigned int max_sel_pel;
4222 	char *state_name;
4223 
4224 	switch (state) {
4225 	case USB3_LPM_U1:
4226 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4227 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4228 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4229 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4230 		state_name = "U1";
4231 		break;
4232 	case USB3_LPM_U2:
4233 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4234 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4235 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4236 		state_name = "U2";
4237 		break;
4238 	default:
4239 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4240 				__func__);
4241 		return USB3_LPM_DISABLED;
4242 	}
4243 
4244 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4245 		return USB3_LPM_DEVICE_INITIATED;
4246 
4247 	if (sel > max_sel_pel)
4248 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4249 				"due to long SEL %llu ms\n",
4250 				state_name, sel);
4251 	else
4252 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4253 				"due to long PEL %llu ms\n",
4254 				state_name, pel);
4255 	return USB3_LPM_DISABLED;
4256 }
4257 
4258 /* The U1 timeout should be the maximum of the following values:
4259  *  - For control endpoints, U1 system exit latency (SEL) * 3
4260  *  - For bulk endpoints, U1 SEL * 5
4261  *  - For interrupt endpoints:
4262  *    - Notification EPs, U1 SEL * 3
4263  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4264  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4265  */
4266 static unsigned long long xhci_calculate_intel_u1_timeout(
4267 		struct usb_device *udev,
4268 		struct usb_endpoint_descriptor *desc)
4269 {
4270 	unsigned long long timeout_ns;
4271 	int ep_type;
4272 	int intr_type;
4273 
4274 	ep_type = usb_endpoint_type(desc);
4275 	switch (ep_type) {
4276 	case USB_ENDPOINT_XFER_CONTROL:
4277 		timeout_ns = udev->u1_params.sel * 3;
4278 		break;
4279 	case USB_ENDPOINT_XFER_BULK:
4280 		timeout_ns = udev->u1_params.sel * 5;
4281 		break;
4282 	case USB_ENDPOINT_XFER_INT:
4283 		intr_type = usb_endpoint_interrupt_type(desc);
4284 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4285 			timeout_ns = udev->u1_params.sel * 3;
4286 			break;
4287 		}
4288 		/* Otherwise the calculation is the same as isoc eps */
4289 	case USB_ENDPOINT_XFER_ISOC:
4290 		timeout_ns = xhci_service_interval_to_ns(desc);
4291 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4292 		if (timeout_ns < udev->u1_params.sel * 2)
4293 			timeout_ns = udev->u1_params.sel * 2;
4294 		break;
4295 	default:
4296 		return 0;
4297 	}
4298 
4299 	return timeout_ns;
4300 }
4301 
4302 /* Returns the hub-encoded U1 timeout value. */
4303 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4304 		struct usb_device *udev,
4305 		struct usb_endpoint_descriptor *desc)
4306 {
4307 	unsigned long long timeout_ns;
4308 
4309 	if (xhci->quirks & XHCI_INTEL_HOST)
4310 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4311 	else
4312 		timeout_ns = udev->u1_params.sel;
4313 
4314 	/* The U1 timeout is encoded in 1us intervals.
4315 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4316 	 */
4317 	if (timeout_ns == USB3_LPM_DISABLED)
4318 		timeout_ns = 1;
4319 	else
4320 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4321 
4322 	/* If the necessary timeout value is bigger than what we can set in the
4323 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4324 	 */
4325 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4326 		return timeout_ns;
4327 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4328 			"due to long timeout %llu ms\n", timeout_ns);
4329 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4330 }
4331 
4332 /* The U2 timeout should be the maximum of:
4333  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4334  *  - largest bInterval of any active periodic endpoint (to avoid going
4335  *    into lower power link states between intervals).
4336  *  - the U2 Exit Latency of the device
4337  */
4338 static unsigned long long xhci_calculate_intel_u2_timeout(
4339 		struct usb_device *udev,
4340 		struct usb_endpoint_descriptor *desc)
4341 {
4342 	unsigned long long timeout_ns;
4343 	unsigned long long u2_del_ns;
4344 
4345 	timeout_ns = 10 * 1000 * 1000;
4346 
4347 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4348 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4349 		timeout_ns = xhci_service_interval_to_ns(desc);
4350 
4351 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4352 	if (u2_del_ns > timeout_ns)
4353 		timeout_ns = u2_del_ns;
4354 
4355 	return timeout_ns;
4356 }
4357 
4358 /* Returns the hub-encoded U2 timeout value. */
4359 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4360 		struct usb_device *udev,
4361 		struct usb_endpoint_descriptor *desc)
4362 {
4363 	unsigned long long timeout_ns;
4364 
4365 	if (xhci->quirks & XHCI_INTEL_HOST)
4366 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4367 	else
4368 		timeout_ns = udev->u2_params.sel;
4369 
4370 	/* The U2 timeout is encoded in 256us intervals */
4371 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4372 	/* If the necessary timeout value is bigger than what we can set in the
4373 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4374 	 */
4375 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4376 		return timeout_ns;
4377 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4378 			"due to long timeout %llu ms\n", timeout_ns);
4379 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4380 }
4381 
4382 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4383 		struct usb_device *udev,
4384 		struct usb_endpoint_descriptor *desc,
4385 		enum usb3_link_state state,
4386 		u16 *timeout)
4387 {
4388 	if (state == USB3_LPM_U1)
4389 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4390 	else if (state == USB3_LPM_U2)
4391 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4392 
4393 	return USB3_LPM_DISABLED;
4394 }
4395 
4396 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4397 		struct usb_device *udev,
4398 		struct usb_endpoint_descriptor *desc,
4399 		enum usb3_link_state state,
4400 		u16 *timeout)
4401 {
4402 	u16 alt_timeout;
4403 
4404 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4405 		desc, state, timeout);
4406 
4407 	/* If we found we can't enable hub-initiated LPM, or
4408 	 * the U1 or U2 exit latency was too high to allow
4409 	 * device-initiated LPM as well, just stop searching.
4410 	 */
4411 	if (alt_timeout == USB3_LPM_DISABLED ||
4412 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4413 		*timeout = alt_timeout;
4414 		return -E2BIG;
4415 	}
4416 	if (alt_timeout > *timeout)
4417 		*timeout = alt_timeout;
4418 	return 0;
4419 }
4420 
4421 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4422 		struct usb_device *udev,
4423 		struct usb_host_interface *alt,
4424 		enum usb3_link_state state,
4425 		u16 *timeout)
4426 {
4427 	int j;
4428 
4429 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4430 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4431 					&alt->endpoint[j].desc, state, timeout))
4432 			return -E2BIG;
4433 		continue;
4434 	}
4435 	return 0;
4436 }
4437 
4438 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4439 		enum usb3_link_state state)
4440 {
4441 	struct usb_device *parent;
4442 	unsigned int num_hubs;
4443 
4444 	if (state == USB3_LPM_U2)
4445 		return 0;
4446 
4447 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4448 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4449 			parent = parent->parent)
4450 		num_hubs++;
4451 
4452 	if (num_hubs < 2)
4453 		return 0;
4454 
4455 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4456 			" below second-tier hub.\n");
4457 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4458 			"to decrease power consumption.\n");
4459 	return -E2BIG;
4460 }
4461 
4462 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4463 		struct usb_device *udev,
4464 		enum usb3_link_state state)
4465 {
4466 	if (xhci->quirks & XHCI_INTEL_HOST)
4467 		return xhci_check_intel_tier_policy(udev, state);
4468 	else
4469 		return 0;
4470 }
4471 
4472 /* Returns the U1 or U2 timeout that should be enabled.
4473  * If the tier check or timeout setting functions return with a non-zero exit
4474  * code, that means the timeout value has been finalized and we shouldn't look
4475  * at any more endpoints.
4476  */
4477 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4478 			struct usb_device *udev, enum usb3_link_state state)
4479 {
4480 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4481 	struct usb_host_config *config;
4482 	char *state_name;
4483 	int i;
4484 	u16 timeout = USB3_LPM_DISABLED;
4485 
4486 	if (state == USB3_LPM_U1)
4487 		state_name = "U1";
4488 	else if (state == USB3_LPM_U2)
4489 		state_name = "U2";
4490 	else {
4491 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4492 				state);
4493 		return timeout;
4494 	}
4495 
4496 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4497 		return timeout;
4498 
4499 	/* Gather some information about the currently installed configuration
4500 	 * and alternate interface settings.
4501 	 */
4502 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4503 			state, &timeout))
4504 		return timeout;
4505 
4506 	config = udev->actconfig;
4507 	if (!config)
4508 		return timeout;
4509 
4510 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4511 		struct usb_driver *driver;
4512 		struct usb_interface *intf = config->interface[i];
4513 
4514 		if (!intf)
4515 			continue;
4516 
4517 		/* Check if any currently bound drivers want hub-initiated LPM
4518 		 * disabled.
4519 		 */
4520 		if (intf->dev.driver) {
4521 			driver = to_usb_driver(intf->dev.driver);
4522 			if (driver && driver->disable_hub_initiated_lpm) {
4523 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4524 						"at request of driver %s\n",
4525 						state_name, driver->name);
4526 				return xhci_get_timeout_no_hub_lpm(udev, state);
4527 			}
4528 		}
4529 
4530 		/* Not sure how this could happen... */
4531 		if (!intf->cur_altsetting)
4532 			continue;
4533 
4534 		if (xhci_update_timeout_for_interface(xhci, udev,
4535 					intf->cur_altsetting,
4536 					state, &timeout))
4537 			return timeout;
4538 	}
4539 	return timeout;
4540 }
4541 
4542 static int calculate_max_exit_latency(struct usb_device *udev,
4543 		enum usb3_link_state state_changed,
4544 		u16 hub_encoded_timeout)
4545 {
4546 	unsigned long long u1_mel_us = 0;
4547 	unsigned long long u2_mel_us = 0;
4548 	unsigned long long mel_us = 0;
4549 	bool disabling_u1;
4550 	bool disabling_u2;
4551 	bool enabling_u1;
4552 	bool enabling_u2;
4553 
4554 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4555 			hub_encoded_timeout == USB3_LPM_DISABLED);
4556 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4557 			hub_encoded_timeout == USB3_LPM_DISABLED);
4558 
4559 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4560 			hub_encoded_timeout != USB3_LPM_DISABLED);
4561 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4562 			hub_encoded_timeout != USB3_LPM_DISABLED);
4563 
4564 	/* If U1 was already enabled and we're not disabling it,
4565 	 * or we're going to enable U1, account for the U1 max exit latency.
4566 	 */
4567 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4568 			enabling_u1)
4569 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4570 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4571 			enabling_u2)
4572 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4573 
4574 	if (u1_mel_us > u2_mel_us)
4575 		mel_us = u1_mel_us;
4576 	else
4577 		mel_us = u2_mel_us;
4578 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4579 	if (mel_us > MAX_EXIT) {
4580 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4581 				"is too big.\n", mel_us);
4582 		return -E2BIG;
4583 	}
4584 	return mel_us;
4585 }
4586 
4587 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4588 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4589 			struct usb_device *udev, enum usb3_link_state state)
4590 {
4591 	struct xhci_hcd	*xhci;
4592 	u16 hub_encoded_timeout;
4593 	int mel;
4594 	int ret;
4595 
4596 	xhci = hcd_to_xhci(hcd);
4597 	/* The LPM timeout values are pretty host-controller specific, so don't
4598 	 * enable hub-initiated timeouts unless the vendor has provided
4599 	 * information about their timeout algorithm.
4600 	 */
4601 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4602 			!xhci->devs[udev->slot_id])
4603 		return USB3_LPM_DISABLED;
4604 
4605 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4606 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4607 	if (mel < 0) {
4608 		/* Max Exit Latency is too big, disable LPM. */
4609 		hub_encoded_timeout = USB3_LPM_DISABLED;
4610 		mel = 0;
4611 	}
4612 
4613 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4614 	if (ret)
4615 		return ret;
4616 	return hub_encoded_timeout;
4617 }
4618 
4619 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4620 			struct usb_device *udev, enum usb3_link_state state)
4621 {
4622 	struct xhci_hcd	*xhci;
4623 	u16 mel;
4624 
4625 	xhci = hcd_to_xhci(hcd);
4626 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4627 			!xhci->devs[udev->slot_id])
4628 		return 0;
4629 
4630 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4631 	return xhci_change_max_exit_latency(xhci, udev, mel);
4632 }
4633 #else /* CONFIG_PM */
4634 
4635 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4636 				struct usb_device *udev, int enable)
4637 {
4638 	return 0;
4639 }
4640 
4641 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4642 {
4643 	return 0;
4644 }
4645 
4646 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4647 			struct usb_device *udev, enum usb3_link_state state)
4648 {
4649 	return USB3_LPM_DISABLED;
4650 }
4651 
4652 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4653 			struct usb_device *udev, enum usb3_link_state state)
4654 {
4655 	return 0;
4656 }
4657 #endif	/* CONFIG_PM */
4658 
4659 /*-------------------------------------------------------------------------*/
4660 
4661 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4662  * internal data structures for the device.
4663  */
4664 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4665 			struct usb_tt *tt, gfp_t mem_flags)
4666 {
4667 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4668 	struct xhci_virt_device *vdev;
4669 	struct xhci_command *config_cmd;
4670 	struct xhci_input_control_ctx *ctrl_ctx;
4671 	struct xhci_slot_ctx *slot_ctx;
4672 	unsigned long flags;
4673 	unsigned think_time;
4674 	int ret;
4675 
4676 	/* Ignore root hubs */
4677 	if (!hdev->parent)
4678 		return 0;
4679 
4680 	vdev = xhci->devs[hdev->slot_id];
4681 	if (!vdev) {
4682 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4683 		return -EINVAL;
4684 	}
4685 
4686 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4687 	if (!config_cmd)
4688 		return -ENOMEM;
4689 
4690 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4691 	if (!ctrl_ctx) {
4692 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4693 				__func__);
4694 		xhci_free_command(xhci, config_cmd);
4695 		return -ENOMEM;
4696 	}
4697 
4698 	spin_lock_irqsave(&xhci->lock, flags);
4699 	if (hdev->speed == USB_SPEED_HIGH &&
4700 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4701 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4702 		xhci_free_command(xhci, config_cmd);
4703 		spin_unlock_irqrestore(&xhci->lock, flags);
4704 		return -ENOMEM;
4705 	}
4706 
4707 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4708 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4709 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4710 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4711 	/*
4712 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4713 	 * but it may be already set to 1 when setup an xHCI virtual
4714 	 * device, so clear it anyway.
4715 	 */
4716 	if (tt->multi)
4717 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4718 	else if (hdev->speed == USB_SPEED_FULL)
4719 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4720 
4721 	if (xhci->hci_version > 0x95) {
4722 		xhci_dbg(xhci, "xHCI version %x needs hub "
4723 				"TT think time and number of ports\n",
4724 				(unsigned int) xhci->hci_version);
4725 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4726 		/* Set TT think time - convert from ns to FS bit times.
4727 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4728 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4729 		 *
4730 		 * xHCI 1.0: this field shall be 0 if the device is not a
4731 		 * High-spped hub.
4732 		 */
4733 		think_time = tt->think_time;
4734 		if (think_time != 0)
4735 			think_time = (think_time / 666) - 1;
4736 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4737 			slot_ctx->tt_info |=
4738 				cpu_to_le32(TT_THINK_TIME(think_time));
4739 	} else {
4740 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4741 				"TT think time or number of ports\n",
4742 				(unsigned int) xhci->hci_version);
4743 	}
4744 	slot_ctx->dev_state = 0;
4745 	spin_unlock_irqrestore(&xhci->lock, flags);
4746 
4747 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4748 			(xhci->hci_version > 0x95) ?
4749 			"configure endpoint" : "evaluate context");
4750 
4751 	/* Issue and wait for the configure endpoint or
4752 	 * evaluate context command.
4753 	 */
4754 	if (xhci->hci_version > 0x95)
4755 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4756 				false, false);
4757 	else
4758 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4759 				true, false);
4760 
4761 	xhci_free_command(xhci, config_cmd);
4762 	return ret;
4763 }
4764 
4765 static int xhci_get_frame(struct usb_hcd *hcd)
4766 {
4767 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4768 	/* EHCI mods by the periodic size.  Why? */
4769 	return readl(&xhci->run_regs->microframe_index) >> 3;
4770 }
4771 
4772 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4773 {
4774 	struct xhci_hcd		*xhci;
4775 	/*
4776 	 * TODO: Check with DWC3 clients for sysdev according to
4777 	 * quirks
4778 	 */
4779 	struct device		*dev = hcd->self.sysdev;
4780 	int			retval;
4781 
4782 	/* Accept arbitrarily long scatter-gather lists */
4783 	hcd->self.sg_tablesize = ~0;
4784 
4785 	/* support to build packet from discontinuous buffers */
4786 	hcd->self.no_sg_constraint = 1;
4787 
4788 	/* XHCI controllers don't stop the ep queue on short packets :| */
4789 	hcd->self.no_stop_on_short = 1;
4790 
4791 	xhci = hcd_to_xhci(hcd);
4792 
4793 	if (usb_hcd_is_primary_hcd(hcd)) {
4794 		xhci->main_hcd = hcd;
4795 		/* Mark the first roothub as being USB 2.0.
4796 		 * The xHCI driver will register the USB 3.0 roothub.
4797 		 */
4798 		hcd->speed = HCD_USB2;
4799 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4800 		/*
4801 		 * USB 2.0 roothub under xHCI has an integrated TT,
4802 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4803 		 * companion controller.
4804 		 */
4805 		hcd->has_tt = 1;
4806 	} else {
4807 		if (xhci->sbrn == 0x31) {
4808 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4809 			hcd->speed = HCD_USB31;
4810 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4811 		}
4812 		/* xHCI private pointer was set in xhci_pci_probe for the second
4813 		 * registered roothub.
4814 		 */
4815 		return 0;
4816 	}
4817 
4818 	mutex_init(&xhci->mutex);
4819 	xhci->cap_regs = hcd->regs;
4820 	xhci->op_regs = hcd->regs +
4821 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4822 	xhci->run_regs = hcd->regs +
4823 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4824 	/* Cache read-only capability registers */
4825 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4826 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4827 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4828 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4829 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4830 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4831 	if (xhci->hci_version > 0x100)
4832 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4833 	xhci_print_registers(xhci);
4834 
4835 	xhci->quirks |= quirks;
4836 
4837 	get_quirks(dev, xhci);
4838 
4839 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4840 	 * success event after a short transfer. This quirk will ignore such
4841 	 * spurious event.
4842 	 */
4843 	if (xhci->hci_version > 0x96)
4844 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4845 
4846 	/* Make sure the HC is halted. */
4847 	retval = xhci_halt(xhci);
4848 	if (retval)
4849 		return retval;
4850 
4851 	xhci_dbg(xhci, "Resetting HCD\n");
4852 	/* Reset the internal HC memory state and registers. */
4853 	retval = xhci_reset(xhci);
4854 	if (retval)
4855 		return retval;
4856 	xhci_dbg(xhci, "Reset complete\n");
4857 
4858 	/*
4859 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4860 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4861 	 * address memory pointers actually. So, this driver clears the AC64
4862 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4863 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4864 	 */
4865 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4866 		xhci->hcc_params &= ~BIT(0);
4867 
4868 	/* Set dma_mask and coherent_dma_mask to 64-bits,
4869 	 * if xHC supports 64-bit addressing */
4870 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4871 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4872 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4873 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4874 	} else {
4875 		/*
4876 		 * This is to avoid error in cases where a 32-bit USB
4877 		 * controller is used on a 64-bit capable system.
4878 		 */
4879 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4880 		if (retval)
4881 			return retval;
4882 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4883 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4884 	}
4885 
4886 	xhci_dbg(xhci, "Calling HCD init\n");
4887 	/* Initialize HCD and host controller data structures. */
4888 	retval = xhci_init(hcd);
4889 	if (retval)
4890 		return retval;
4891 	xhci_dbg(xhci, "Called HCD init\n");
4892 
4893 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4894 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4895 
4896 	return 0;
4897 }
4898 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4899 
4900 static const struct hc_driver xhci_hc_driver = {
4901 	.description =		"xhci-hcd",
4902 	.product_desc =		"xHCI Host Controller",
4903 	.hcd_priv_size =	sizeof(struct xhci_hcd),
4904 
4905 	/*
4906 	 * generic hardware linkage
4907 	 */
4908 	.irq =			xhci_irq,
4909 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4910 
4911 	/*
4912 	 * basic lifecycle operations
4913 	 */
4914 	.reset =		NULL, /* set in xhci_init_driver() */
4915 	.start =		xhci_run,
4916 	.stop =			xhci_stop,
4917 	.shutdown =		xhci_shutdown,
4918 
4919 	/*
4920 	 * managing i/o requests and associated device resources
4921 	 */
4922 	.urb_enqueue =		xhci_urb_enqueue,
4923 	.urb_dequeue =		xhci_urb_dequeue,
4924 	.alloc_dev =		xhci_alloc_dev,
4925 	.free_dev =		xhci_free_dev,
4926 	.alloc_streams =	xhci_alloc_streams,
4927 	.free_streams =		xhci_free_streams,
4928 	.add_endpoint =		xhci_add_endpoint,
4929 	.drop_endpoint =	xhci_drop_endpoint,
4930 	.endpoint_reset =	xhci_endpoint_reset,
4931 	.check_bandwidth =	xhci_check_bandwidth,
4932 	.reset_bandwidth =	xhci_reset_bandwidth,
4933 	.address_device =	xhci_address_device,
4934 	.enable_device =	xhci_enable_device,
4935 	.update_hub_device =	xhci_update_hub_device,
4936 	.reset_device =		xhci_discover_or_reset_device,
4937 
4938 	/*
4939 	 * scheduling support
4940 	 */
4941 	.get_frame_number =	xhci_get_frame,
4942 
4943 	/*
4944 	 * root hub support
4945 	 */
4946 	.hub_control =		xhci_hub_control,
4947 	.hub_status_data =	xhci_hub_status_data,
4948 	.bus_suspend =		xhci_bus_suspend,
4949 	.bus_resume =		xhci_bus_resume,
4950 
4951 	/*
4952 	 * call back when device connected and addressed
4953 	 */
4954 	.update_device =        xhci_update_device,
4955 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
4956 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
4957 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
4958 	.find_raw_port_number =	xhci_find_raw_port_number,
4959 };
4960 
4961 void xhci_init_driver(struct hc_driver *drv,
4962 		      const struct xhci_driver_overrides *over)
4963 {
4964 	BUG_ON(!over);
4965 
4966 	/* Copy the generic table to drv then apply the overrides */
4967 	*drv = xhci_hc_driver;
4968 
4969 	if (over) {
4970 		drv->hcd_priv_size += over->extra_priv_size;
4971 		if (over->reset)
4972 			drv->reset = over->reset;
4973 		if (over->start)
4974 			drv->start = over->start;
4975 	}
4976 }
4977 EXPORT_SYMBOL_GPL(xhci_init_driver);
4978 
4979 MODULE_DESCRIPTION(DRIVER_DESC);
4980 MODULE_AUTHOR(DRIVER_AUTHOR);
4981 MODULE_LICENSE("GPL");
4982 
4983 static int __init xhci_hcd_init(void)
4984 {
4985 	/*
4986 	 * Check the compiler generated sizes of structures that must be laid
4987 	 * out in specific ways for hardware access.
4988 	 */
4989 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4990 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4991 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4992 	/* xhci_device_control has eight fields, and also
4993 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4994 	 */
4995 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4996 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4997 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4998 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4999 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5000 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5001 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5002 
5003 	if (usb_disabled())
5004 		return -ENODEV;
5005 
5006 	return 0;
5007 }
5008 
5009 /*
5010  * If an init function is provided, an exit function must also be provided
5011  * to allow module unload.
5012  */
5013 static void __exit xhci_hcd_fini(void) { }
5014 
5015 module_init(xhci_hcd_init);
5016 module_exit(xhci_hcd_fini);
5017