xref: /linux/drivers/usb/host/xhci.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 
30 #include "xhci.h"
31 
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34 
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39 
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 		      u32 mask, u32 done, int usec)
56 {
57 	u32	result;
58 
59 	do {
60 		result = xhci_readl(xhci, ptr);
61 		if (result == ~(u32)0)		/* card removed */
62 			return -ENODEV;
63 		result &= mask;
64 		if (result == done)
65 			return 0;
66 		udelay(1);
67 		usec--;
68 	} while (usec > 0);
69 	return -ETIMEDOUT;
70 }
71 
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 	u32 halted;
78 	u32 cmd;
79 	u32 mask;
80 
81 	mask = ~(XHCI_IRQS);
82 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 	if (!halted)
84 		mask &= ~CMD_RUN;
85 
86 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 	cmd &= mask;
88 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90 
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 	int ret;
102 	xhci_dbg(xhci, "// Halt the HC\n");
103 	xhci_quiesce(xhci);
104 
105 	ret = handshake(xhci, &xhci->op_regs->status,
106 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 	if (!ret)
108 		xhci->xhc_state |= XHCI_STATE_HALTED;
109 	return ret;
110 }
111 
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 	u32 temp;
118 	int ret;
119 
120 	temp = xhci_readl(xhci, &xhci->op_regs->command);
121 	temp |= (CMD_RUN);
122 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 			temp);
124 	xhci_writel(xhci, temp, &xhci->op_regs->command);
125 
126 	/*
127 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 	 * running.
129 	 */
130 	ret = handshake(xhci, &xhci->op_regs->status,
131 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 	if (ret == -ETIMEDOUT)
133 		xhci_err(xhci, "Host took too long to start, "
134 				"waited %u microseconds.\n",
135 				XHCI_MAX_HALT_USEC);
136 	if (!ret)
137 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 	return ret;
139 }
140 
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 	u32 command;
151 	u32 state;
152 	int ret;
153 
154 	state = xhci_readl(xhci, &xhci->op_regs->status);
155 	if ((state & STS_HALT) == 0) {
156 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 		return 0;
158 	}
159 
160 	xhci_dbg(xhci, "// Reset the HC\n");
161 	command = xhci_readl(xhci, &xhci->op_regs->command);
162 	command |= CMD_RESET;
163 	xhci_writel(xhci, command, &xhci->op_regs->command);
164 
165 	ret = handshake(xhci, &xhci->op_regs->command,
166 			CMD_RESET, 0, 250 * 1000);
167 	if (ret)
168 		return ret;
169 
170 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 	/*
172 	 * xHCI cannot write to any doorbells or operational registers other
173 	 * than status until the "Controller Not Ready" flag is cleared.
174 	 */
175 	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177 
178 /*
179  * Free IRQs
180  * free all IRQs request
181  */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184 	int i;
185 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186 
187 	/* return if using legacy interrupt */
188 	if (xhci_to_hcd(xhci)->irq >= 0)
189 		return;
190 
191 	if (xhci->msix_entries) {
192 		for (i = 0; i < xhci->msix_count; i++)
193 			if (xhci->msix_entries[i].vector)
194 				free_irq(xhci->msix_entries[i].vector,
195 						xhci_to_hcd(xhci));
196 	} else if (pdev->irq >= 0)
197 		free_irq(pdev->irq, xhci_to_hcd(xhci));
198 
199 	return;
200 }
201 
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207 	int ret;
208 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209 
210 	ret = pci_enable_msi(pdev);
211 	if (ret) {
212 		xhci_err(xhci, "failed to allocate MSI entry\n");
213 		return ret;
214 	}
215 
216 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 				0, "xhci_hcd", xhci_to_hcd(xhci));
218 	if (ret) {
219 		xhci_err(xhci, "disable MSI interrupt\n");
220 		pci_disable_msi(pdev);
221 	}
222 
223 	return ret;
224 }
225 
226 /*
227  * Set up MSI-X
228  */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231 	int i, ret = 0;
232 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234 
235 	/*
236 	 * calculate number of msi-x vectors supported.
237 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
239 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 	 *   Add additional 1 vector to ensure always available interrupt.
241 	 */
242 	xhci->msix_count = min(num_online_cpus() + 1,
243 				HCS_MAX_INTRS(xhci->hcs_params1));
244 
245 	xhci->msix_entries =
246 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 				GFP_KERNEL);
248 	if (!xhci->msix_entries) {
249 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 		return -ENOMEM;
251 	}
252 
253 	for (i = 0; i < xhci->msix_count; i++) {
254 		xhci->msix_entries[i].entry = i;
255 		xhci->msix_entries[i].vector = 0;
256 	}
257 
258 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 	if (ret) {
260 		xhci_err(xhci, "Failed to enable MSI-X\n");
261 		goto free_entries;
262 	}
263 
264 	for (i = 0; i < xhci->msix_count; i++) {
265 		ret = request_irq(xhci->msix_entries[i].vector,
266 				(irq_handler_t)xhci_msi_irq,
267 				0, "xhci_hcd", xhci_to_hcd(xhci));
268 		if (ret)
269 			goto disable_msix;
270 	}
271 
272 	hcd->msix_enabled = 1;
273 	return ret;
274 
275 disable_msix:
276 	xhci_err(xhci, "disable MSI-X interrupt\n");
277 	xhci_free_irq(xhci);
278 	pci_disable_msix(pdev);
279 free_entries:
280 	kfree(xhci->msix_entries);
281 	xhci->msix_entries = NULL;
282 	return ret;
283 }
284 
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290 
291 	xhci_free_irq(xhci);
292 
293 	if (xhci->msix_entries) {
294 		pci_disable_msix(pdev);
295 		kfree(xhci->msix_entries);
296 		xhci->msix_entries = NULL;
297 	} else {
298 		pci_disable_msi(pdev);
299 	}
300 
301 	hcd->msix_enabled = 0;
302 	return;
303 }
304 
305 /*
306  * Initialize memory for HCD and xHC (one-time init).
307  *
308  * Program the PAGESIZE register, initialize the device context array, create
309  * device contexts (?), set up a command ring segment (or two?), create event
310  * ring (one for now).
311  */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 	int retval = 0;
316 
317 	xhci_dbg(xhci, "xhci_init\n");
318 	spin_lock_init(&xhci->lock);
319 	if (link_quirk) {
320 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 	} else {
323 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324 	}
325 	retval = xhci_mem_init(xhci, GFP_KERNEL);
326 	xhci_dbg(xhci, "Finished xhci_init\n");
327 
328 	return retval;
329 }
330 
331 /*-------------------------------------------------------------------------*/
332 
333 
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337 	unsigned long flags;
338 	int temp;
339 	u64 temp_64;
340 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 	int i, j;
342 
343 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344 
345 	spin_lock_irqsave(&xhci->lock, flags);
346 	temp = xhci_readl(xhci, &xhci->op_regs->status);
347 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
349 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
350 		xhci_dbg(xhci, "HW died, polling stopped.\n");
351 		spin_unlock_irqrestore(&xhci->lock, flags);
352 		return;
353 	}
354 
355 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
356 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
357 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
358 	xhci->error_bitmask = 0;
359 	xhci_dbg(xhci, "Event ring:\n");
360 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
361 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
362 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
363 	temp_64 &= ~ERST_PTR_MASK;
364 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
365 	xhci_dbg(xhci, "Command ring:\n");
366 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
367 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
368 	xhci_dbg_cmd_ptrs(xhci);
369 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
370 		if (!xhci->devs[i])
371 			continue;
372 		for (j = 0; j < 31; ++j) {
373 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
374 		}
375 	}
376 	spin_unlock_irqrestore(&xhci->lock, flags);
377 
378 	if (!xhci->zombie)
379 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
380 	else
381 		xhci_dbg(xhci, "Quit polling the event ring.\n");
382 }
383 #endif
384 
385 static int xhci_run_finished(struct xhci_hcd *xhci)
386 {
387 	if (xhci_start(xhci)) {
388 		xhci_halt(xhci);
389 		return -ENODEV;
390 	}
391 	xhci->shared_hcd->state = HC_STATE_RUNNING;
392 
393 	if (xhci->quirks & XHCI_NEC_HOST)
394 		xhci_ring_cmd_db(xhci);
395 
396 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
397 	return 0;
398 }
399 
400 /*
401  * Start the HC after it was halted.
402  *
403  * This function is called by the USB core when the HC driver is added.
404  * Its opposite is xhci_stop().
405  *
406  * xhci_init() must be called once before this function can be called.
407  * Reset the HC, enable device slot contexts, program DCBAAP, and
408  * set command ring pointer and event ring pointer.
409  *
410  * Setup MSI-X vectors and enable interrupts.
411  */
412 int xhci_run(struct usb_hcd *hcd)
413 {
414 	u32 temp;
415 	u64 temp_64;
416 	u32 ret;
417 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
418 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
419 
420 	/* Start the xHCI host controller running only after the USB 2.0 roothub
421 	 * is setup.
422 	 */
423 
424 	hcd->uses_new_polling = 1;
425 	if (!usb_hcd_is_primary_hcd(hcd))
426 		return xhci_run_finished(xhci);
427 
428 	xhci_dbg(xhci, "xhci_run\n");
429 	/* unregister the legacy interrupt */
430 	if (hcd->irq)
431 		free_irq(hcd->irq, hcd);
432 	hcd->irq = -1;
433 
434 	/* Some Fresco Logic host controllers advertise MSI, but fail to
435 	 * generate interrupts.  Don't even try to enable MSI.
436 	 */
437 	if (xhci->quirks & XHCI_BROKEN_MSI)
438 		goto legacy_irq;
439 
440 	ret = xhci_setup_msix(xhci);
441 	if (ret)
442 		/* fall back to msi*/
443 		ret = xhci_setup_msi(xhci);
444 
445 	if (ret) {
446 legacy_irq:
447 		/* fall back to legacy interrupt*/
448 		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 					hcd->irq_descr, hcd);
450 		if (ret) {
451 			xhci_err(xhci, "request interrupt %d failed\n",
452 					pdev->irq);
453 			return ret;
454 		}
455 		hcd->irq = pdev->irq;
456 	}
457 
458 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
459 	init_timer(&xhci->event_ring_timer);
460 	xhci->event_ring_timer.data = (unsigned long) xhci;
461 	xhci->event_ring_timer.function = xhci_event_ring_work;
462 	/* Poll the event ring */
463 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
464 	xhci->zombie = 0;
465 	xhci_dbg(xhci, "Setting event ring polling timer\n");
466 	add_timer(&xhci->event_ring_timer);
467 #endif
468 
469 	xhci_dbg(xhci, "Command ring memory map follows:\n");
470 	xhci_debug_ring(xhci, xhci->cmd_ring);
471 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
472 	xhci_dbg_cmd_ptrs(xhci);
473 
474 	xhci_dbg(xhci, "ERST memory map follows:\n");
475 	xhci_dbg_erst(xhci, &xhci->erst);
476 	xhci_dbg(xhci, "Event ring:\n");
477 	xhci_debug_ring(xhci, xhci->event_ring);
478 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
479 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
480 	temp_64 &= ~ERST_PTR_MASK;
481 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
482 
483 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
484 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
485 	temp &= ~ER_IRQ_INTERVAL_MASK;
486 	temp |= (u32) 160;
487 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
488 
489 	/* Set the HCD state before we enable the irqs */
490 	temp = xhci_readl(xhci, &xhci->op_regs->command);
491 	temp |= (CMD_EIE);
492 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
493 			temp);
494 	xhci_writel(xhci, temp, &xhci->op_regs->command);
495 
496 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
497 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
498 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
499 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
500 			&xhci->ir_set->irq_pending);
501 	xhci_print_ir_set(xhci, 0);
502 
503 	if (xhci->quirks & XHCI_NEC_HOST)
504 		xhci_queue_vendor_command(xhci, 0, 0, 0,
505 				TRB_TYPE(TRB_NEC_GET_FW));
506 
507 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
508 	return 0;
509 }
510 
511 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
512 {
513 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514 
515 	spin_lock_irq(&xhci->lock);
516 	xhci_halt(xhci);
517 
518 	/* The shared_hcd is going to be deallocated shortly (the USB core only
519 	 * calls this function when allocation fails in usb_add_hcd(), or
520 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
521 	 */
522 	xhci->shared_hcd = NULL;
523 	spin_unlock_irq(&xhci->lock);
524 }
525 
526 /*
527  * Stop xHCI driver.
528  *
529  * This function is called by the USB core when the HC driver is removed.
530  * Its opposite is xhci_run().
531  *
532  * Disable device contexts, disable IRQs, and quiesce the HC.
533  * Reset the HC, finish any completed transactions, and cleanup memory.
534  */
535 void xhci_stop(struct usb_hcd *hcd)
536 {
537 	u32 temp;
538 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539 
540 	if (!usb_hcd_is_primary_hcd(hcd)) {
541 		xhci_only_stop_hcd(xhci->shared_hcd);
542 		return;
543 	}
544 
545 	spin_lock_irq(&xhci->lock);
546 	/* Make sure the xHC is halted for a USB3 roothub
547 	 * (xhci_stop() could be called as part of failed init).
548 	 */
549 	xhci_halt(xhci);
550 	xhci_reset(xhci);
551 	spin_unlock_irq(&xhci->lock);
552 
553 	xhci_cleanup_msix(xhci);
554 
555 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
556 	/* Tell the event ring poll function not to reschedule */
557 	xhci->zombie = 1;
558 	del_timer_sync(&xhci->event_ring_timer);
559 #endif
560 
561 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
562 		usb_amd_dev_put();
563 
564 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
565 	temp = xhci_readl(xhci, &xhci->op_regs->status);
566 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
567 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
569 			&xhci->ir_set->irq_pending);
570 	xhci_print_ir_set(xhci, 0);
571 
572 	xhci_dbg(xhci, "cleaning up memory\n");
573 	xhci_mem_cleanup(xhci);
574 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
575 		    xhci_readl(xhci, &xhci->op_regs->status));
576 }
577 
578 /*
579  * Shutdown HC (not bus-specific)
580  *
581  * This is called when the machine is rebooting or halting.  We assume that the
582  * machine will be powered off, and the HC's internal state will be reset.
583  * Don't bother to free memory.
584  *
585  * This will only ever be called with the main usb_hcd (the USB3 roothub).
586  */
587 void xhci_shutdown(struct usb_hcd *hcd)
588 {
589 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
590 
591 	spin_lock_irq(&xhci->lock);
592 	xhci_halt(xhci);
593 	spin_unlock_irq(&xhci->lock);
594 
595 	xhci_cleanup_msix(xhci);
596 
597 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
598 		    xhci_readl(xhci, &xhci->op_regs->status));
599 }
600 
601 #ifdef CONFIG_PM
602 static void xhci_save_registers(struct xhci_hcd *xhci)
603 {
604 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
605 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
606 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
607 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
608 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
609 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
610 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
611 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
612 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
613 }
614 
615 static void xhci_restore_registers(struct xhci_hcd *xhci)
616 {
617 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
618 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
619 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
620 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
621 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
622 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
623 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
624 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
625 }
626 
627 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
628 {
629 	u64	val_64;
630 
631 	/* step 2: initialize command ring buffer */
632 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
633 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
634 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
635 				      xhci->cmd_ring->dequeue) &
636 		 (u64) ~CMD_RING_RSVD_BITS) |
637 		xhci->cmd_ring->cycle_state;
638 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
639 			(long unsigned long) val_64);
640 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
641 }
642 
643 /*
644  * The whole command ring must be cleared to zero when we suspend the host.
645  *
646  * The host doesn't save the command ring pointer in the suspend well, so we
647  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
648  * aligned, because of the reserved bits in the command ring dequeue pointer
649  * register.  Therefore, we can't just set the dequeue pointer back in the
650  * middle of the ring (TRBs are 16-byte aligned).
651  */
652 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
653 {
654 	struct xhci_ring *ring;
655 	struct xhci_segment *seg;
656 
657 	ring = xhci->cmd_ring;
658 	seg = ring->deq_seg;
659 	do {
660 		memset(seg->trbs, 0, SEGMENT_SIZE);
661 		seg = seg->next;
662 	} while (seg != ring->deq_seg);
663 
664 	/* Reset the software enqueue and dequeue pointers */
665 	ring->deq_seg = ring->first_seg;
666 	ring->dequeue = ring->first_seg->trbs;
667 	ring->enq_seg = ring->deq_seg;
668 	ring->enqueue = ring->dequeue;
669 
670 	/*
671 	 * Ring is now zeroed, so the HW should look for change of ownership
672 	 * when the cycle bit is set to 1.
673 	 */
674 	ring->cycle_state = 1;
675 
676 	/*
677 	 * Reset the hardware dequeue pointer.
678 	 * Yes, this will need to be re-written after resume, but we're paranoid
679 	 * and want to make sure the hardware doesn't access bogus memory
680 	 * because, say, the BIOS or an SMI started the host without changing
681 	 * the command ring pointers.
682 	 */
683 	xhci_set_cmd_ring_deq(xhci);
684 }
685 
686 /*
687  * Stop HC (not bus-specific)
688  *
689  * This is called when the machine transition into S3/S4 mode.
690  *
691  */
692 int xhci_suspend(struct xhci_hcd *xhci)
693 {
694 	int			rc = 0;
695 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
696 	u32			command;
697 	int			i;
698 
699 	spin_lock_irq(&xhci->lock);
700 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
701 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
702 	/* step 1: stop endpoint */
703 	/* skipped assuming that port suspend has done */
704 
705 	/* step 2: clear Run/Stop bit */
706 	command = xhci_readl(xhci, &xhci->op_regs->command);
707 	command &= ~CMD_RUN;
708 	xhci_writel(xhci, command, &xhci->op_regs->command);
709 	if (handshake(xhci, &xhci->op_regs->status,
710 		      STS_HALT, STS_HALT, 100*100)) {
711 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
712 		spin_unlock_irq(&xhci->lock);
713 		return -ETIMEDOUT;
714 	}
715 	xhci_clear_command_ring(xhci);
716 
717 	/* step 3: save registers */
718 	xhci_save_registers(xhci);
719 
720 	/* step 4: set CSS flag */
721 	command = xhci_readl(xhci, &xhci->op_regs->command);
722 	command |= CMD_CSS;
723 	xhci_writel(xhci, command, &xhci->op_regs->command);
724 	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
725 		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
726 		spin_unlock_irq(&xhci->lock);
727 		return -ETIMEDOUT;
728 	}
729 	spin_unlock_irq(&xhci->lock);
730 
731 	/* step 5: remove core well power */
732 	/* synchronize irq when using MSI-X */
733 	if (xhci->msix_entries) {
734 		for (i = 0; i < xhci->msix_count; i++)
735 			synchronize_irq(xhci->msix_entries[i].vector);
736 	}
737 
738 	return rc;
739 }
740 
741 /*
742  * start xHC (not bus-specific)
743  *
744  * This is called when the machine transition from S3/S4 mode.
745  *
746  */
747 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
748 {
749 	u32			command, temp = 0;
750 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
751 	struct usb_hcd		*secondary_hcd;
752 	int			retval;
753 
754 	/* Wait a bit if either of the roothubs need to settle from the
755 	 * transition into bus suspend.
756 	 */
757 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
758 			time_before(jiffies,
759 				xhci->bus_state[1].next_statechange))
760 		msleep(100);
761 
762 	spin_lock_irq(&xhci->lock);
763 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
764 		hibernated = true;
765 
766 	if (!hibernated) {
767 		/* step 1: restore register */
768 		xhci_restore_registers(xhci);
769 		/* step 2: initialize command ring buffer */
770 		xhci_set_cmd_ring_deq(xhci);
771 		/* step 3: restore state and start state*/
772 		/* step 3: set CRS flag */
773 		command = xhci_readl(xhci, &xhci->op_regs->command);
774 		command |= CMD_CRS;
775 		xhci_writel(xhci, command, &xhci->op_regs->command);
776 		if (handshake(xhci, &xhci->op_regs->status,
777 			      STS_RESTORE, 0, 10*100)) {
778 			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
779 			spin_unlock_irq(&xhci->lock);
780 			return -ETIMEDOUT;
781 		}
782 		temp = xhci_readl(xhci, &xhci->op_regs->status);
783 	}
784 
785 	/* If restore operation fails, re-initialize the HC during resume */
786 	if ((temp & STS_SRE) || hibernated) {
787 		/* Let the USB core know _both_ roothubs lost power. */
788 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
789 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
790 
791 		xhci_dbg(xhci, "Stop HCD\n");
792 		xhci_halt(xhci);
793 		xhci_reset(xhci);
794 		spin_unlock_irq(&xhci->lock);
795 		xhci_cleanup_msix(xhci);
796 
797 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
798 		/* Tell the event ring poll function not to reschedule */
799 		xhci->zombie = 1;
800 		del_timer_sync(&xhci->event_ring_timer);
801 #endif
802 
803 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
804 		temp = xhci_readl(xhci, &xhci->op_regs->status);
805 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
806 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
807 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
808 				&xhci->ir_set->irq_pending);
809 		xhci_print_ir_set(xhci, 0);
810 
811 		xhci_dbg(xhci, "cleaning up memory\n");
812 		xhci_mem_cleanup(xhci);
813 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
814 			    xhci_readl(xhci, &xhci->op_regs->status));
815 
816 		/* USB core calls the PCI reinit and start functions twice:
817 		 * first with the primary HCD, and then with the secondary HCD.
818 		 * If we don't do the same, the host will never be started.
819 		 */
820 		if (!usb_hcd_is_primary_hcd(hcd))
821 			secondary_hcd = hcd;
822 		else
823 			secondary_hcd = xhci->shared_hcd;
824 
825 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
826 		retval = xhci_init(hcd->primary_hcd);
827 		if (retval)
828 			return retval;
829 		xhci_dbg(xhci, "Start the primary HCD\n");
830 		retval = xhci_run(hcd->primary_hcd);
831 		if (retval)
832 			goto failed_restart;
833 
834 		xhci_dbg(xhci, "Start the secondary HCD\n");
835 		retval = xhci_run(secondary_hcd);
836 		if (!retval) {
837 			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838 			set_bit(HCD_FLAG_HW_ACCESSIBLE,
839 					&xhci->shared_hcd->flags);
840 		}
841 failed_restart:
842 		hcd->state = HC_STATE_SUSPENDED;
843 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
844 		return retval;
845 	}
846 
847 	/* step 4: set Run/Stop bit */
848 	command = xhci_readl(xhci, &xhci->op_regs->command);
849 	command |= CMD_RUN;
850 	xhci_writel(xhci, command, &xhci->op_regs->command);
851 	handshake(xhci, &xhci->op_regs->status, STS_HALT,
852 		  0, 250 * 1000);
853 
854 	/* step 5: walk topology and initialize portsc,
855 	 * portpmsc and portli
856 	 */
857 	/* this is done in bus_resume */
858 
859 	/* step 6: restart each of the previously
860 	 * Running endpoints by ringing their doorbells
861 	 */
862 
863 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865 
866 	spin_unlock_irq(&xhci->lock);
867 	return 0;
868 }
869 #endif	/* CONFIG_PM */
870 
871 /*-------------------------------------------------------------------------*/
872 
873 /**
874  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
875  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
876  * value to right shift 1 for the bitmask.
877  *
878  * Index  = (epnum * 2) + direction - 1,
879  * where direction = 0 for OUT, 1 for IN.
880  * For control endpoints, the IN index is used (OUT index is unused), so
881  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
882  */
883 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
884 {
885 	unsigned int index;
886 	if (usb_endpoint_xfer_control(desc))
887 		index = (unsigned int) (usb_endpoint_num(desc)*2);
888 	else
889 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
890 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
891 	return index;
892 }
893 
894 /* Find the flag for this endpoint (for use in the control context).  Use the
895  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
896  * bit 1, etc.
897  */
898 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
899 {
900 	return 1 << (xhci_get_endpoint_index(desc) + 1);
901 }
902 
903 /* Find the flag for this endpoint (for use in the control context).  Use the
904  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
905  * bit 1, etc.
906  */
907 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
908 {
909 	return 1 << (ep_index + 1);
910 }
911 
912 /* Compute the last valid endpoint context index.  Basically, this is the
913  * endpoint index plus one.  For slot contexts with more than valid endpoint,
914  * we find the most significant bit set in the added contexts flags.
915  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
916  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
917  */
918 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
919 {
920 	return fls(added_ctxs) - 1;
921 }
922 
923 /* Returns 1 if the arguments are OK;
924  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
925  */
926 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
927 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
928 		const char *func) {
929 	struct xhci_hcd	*xhci;
930 	struct xhci_virt_device	*virt_dev;
931 
932 	if (!hcd || (check_ep && !ep) || !udev) {
933 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
934 				func);
935 		return -EINVAL;
936 	}
937 	if (!udev->parent) {
938 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
939 				func);
940 		return 0;
941 	}
942 
943 	xhci = hcd_to_xhci(hcd);
944 	if (xhci->xhc_state & XHCI_STATE_HALTED)
945 		return -ENODEV;
946 
947 	if (check_virt_dev) {
948 		if (!udev->slot_id || !xhci->devs
949 			|| !xhci->devs[udev->slot_id]) {
950 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
951 						"device\n", func);
952 			return -EINVAL;
953 		}
954 
955 		virt_dev = xhci->devs[udev->slot_id];
956 		if (virt_dev->udev != udev) {
957 			printk(KERN_DEBUG "xHCI %s called with udev and "
958 					  "virt_dev does not match\n", func);
959 			return -EINVAL;
960 		}
961 	}
962 
963 	return 1;
964 }
965 
966 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
967 		struct usb_device *udev, struct xhci_command *command,
968 		bool ctx_change, bool must_succeed);
969 
970 /*
971  * Full speed devices may have a max packet size greater than 8 bytes, but the
972  * USB core doesn't know that until it reads the first 8 bytes of the
973  * descriptor.  If the usb_device's max packet size changes after that point,
974  * we need to issue an evaluate context command and wait on it.
975  */
976 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
977 		unsigned int ep_index, struct urb *urb)
978 {
979 	struct xhci_container_ctx *in_ctx;
980 	struct xhci_container_ctx *out_ctx;
981 	struct xhci_input_control_ctx *ctrl_ctx;
982 	struct xhci_ep_ctx *ep_ctx;
983 	int max_packet_size;
984 	int hw_max_packet_size;
985 	int ret = 0;
986 
987 	out_ctx = xhci->devs[slot_id]->out_ctx;
988 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
989 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
990 	max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
991 	if (hw_max_packet_size != max_packet_size) {
992 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
993 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
994 				max_packet_size);
995 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
996 				hw_max_packet_size);
997 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
998 
999 		/* Set up the modified control endpoint 0 */
1000 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001 				xhci->devs[slot_id]->out_ctx, ep_index);
1002 		in_ctx = xhci->devs[slot_id]->in_ctx;
1003 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006 
1007 		/* Set up the input context flags for the command */
1008 		/* FIXME: This won't work if a non-default control endpoint
1009 		 * changes max packet sizes.
1010 		 */
1011 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013 		ctrl_ctx->drop_flags = 0;
1014 
1015 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019 
1020 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021 				true, false);
1022 
1023 		/* Clean up the input context for later use by bandwidth
1024 		 * functions.
1025 		 */
1026 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1027 	}
1028 	return ret;
1029 }
1030 
1031 /*
1032  * non-error returns are a promise to giveback() the urb later
1033  * we drop ownership so next owner (or urb unlink) can get it
1034  */
1035 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036 {
1037 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1038 	unsigned long flags;
1039 	int ret = 0;
1040 	unsigned int slot_id, ep_index;
1041 	struct urb_priv	*urb_priv;
1042 	int size, i;
1043 
1044 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045 					true, true, __func__) <= 0)
1046 		return -EINVAL;
1047 
1048 	slot_id = urb->dev->slot_id;
1049 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050 
1051 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1052 		if (!in_interrupt())
1053 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054 		ret = -ESHUTDOWN;
1055 		goto exit;
1056 	}
1057 
1058 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059 		size = urb->number_of_packets;
1060 	else
1061 		size = 1;
1062 
1063 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1064 				  size * sizeof(struct xhci_td *), mem_flags);
1065 	if (!urb_priv)
1066 		return -ENOMEM;
1067 
1068 	for (i = 0; i < size; i++) {
1069 		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070 		if (!urb_priv->td[i]) {
1071 			urb_priv->length = i;
1072 			xhci_urb_free_priv(xhci, urb_priv);
1073 			return -ENOMEM;
1074 		}
1075 	}
1076 
1077 	urb_priv->length = size;
1078 	urb_priv->td_cnt = 0;
1079 	urb->hcpriv = urb_priv;
1080 
1081 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082 		/* Check to see if the max packet size for the default control
1083 		 * endpoint changed during FS device enumeration
1084 		 */
1085 		if (urb->dev->speed == USB_SPEED_FULL) {
1086 			ret = xhci_check_maxpacket(xhci, slot_id,
1087 					ep_index, urb);
1088 			if (ret < 0) {
1089 				xhci_urb_free_priv(xhci, urb_priv);
1090 				urb->hcpriv = NULL;
1091 				return ret;
1092 			}
1093 		}
1094 
1095 		/* We have a spinlock and interrupts disabled, so we must pass
1096 		 * atomic context to this function, which may allocate memory.
1097 		 */
1098 		spin_lock_irqsave(&xhci->lock, flags);
1099 		if (xhci->xhc_state & XHCI_STATE_DYING)
1100 			goto dying;
1101 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102 				slot_id, ep_index);
1103 		if (ret)
1104 			goto free_priv;
1105 		spin_unlock_irqrestore(&xhci->lock, flags);
1106 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107 		spin_lock_irqsave(&xhci->lock, flags);
1108 		if (xhci->xhc_state & XHCI_STATE_DYING)
1109 			goto dying;
1110 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111 				EP_GETTING_STREAMS) {
1112 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113 					"is transitioning to using streams.\n");
1114 			ret = -EINVAL;
1115 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116 				EP_GETTING_NO_STREAMS) {
1117 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118 					"is transitioning to "
1119 					"not having streams.\n");
1120 			ret = -EINVAL;
1121 		} else {
1122 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123 					slot_id, ep_index);
1124 		}
1125 		if (ret)
1126 			goto free_priv;
1127 		spin_unlock_irqrestore(&xhci->lock, flags);
1128 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129 		spin_lock_irqsave(&xhci->lock, flags);
1130 		if (xhci->xhc_state & XHCI_STATE_DYING)
1131 			goto dying;
1132 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133 				slot_id, ep_index);
1134 		if (ret)
1135 			goto free_priv;
1136 		spin_unlock_irqrestore(&xhci->lock, flags);
1137 	} else {
1138 		spin_lock_irqsave(&xhci->lock, flags);
1139 		if (xhci->xhc_state & XHCI_STATE_DYING)
1140 			goto dying;
1141 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142 				slot_id, ep_index);
1143 		if (ret)
1144 			goto free_priv;
1145 		spin_unlock_irqrestore(&xhci->lock, flags);
1146 	}
1147 exit:
1148 	return ret;
1149 dying:
1150 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151 			"non-responsive xHCI host.\n",
1152 			urb->ep->desc.bEndpointAddress, urb);
1153 	ret = -ESHUTDOWN;
1154 free_priv:
1155 	xhci_urb_free_priv(xhci, urb_priv);
1156 	urb->hcpriv = NULL;
1157 	spin_unlock_irqrestore(&xhci->lock, flags);
1158 	return ret;
1159 }
1160 
1161 /* Get the right ring for the given URB.
1162  * If the endpoint supports streams, boundary check the URB's stream ID.
1163  * If the endpoint doesn't support streams, return the singular endpoint ring.
1164  */
1165 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166 		struct urb *urb)
1167 {
1168 	unsigned int slot_id;
1169 	unsigned int ep_index;
1170 	unsigned int stream_id;
1171 	struct xhci_virt_ep *ep;
1172 
1173 	slot_id = urb->dev->slot_id;
1174 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175 	stream_id = urb->stream_id;
1176 	ep = &xhci->devs[slot_id]->eps[ep_index];
1177 	/* Common case: no streams */
1178 	if (!(ep->ep_state & EP_HAS_STREAMS))
1179 		return ep->ring;
1180 
1181 	if (stream_id == 0) {
1182 		xhci_warn(xhci,
1183 				"WARN: Slot ID %u, ep index %u has streams, "
1184 				"but URB has no stream ID.\n",
1185 				slot_id, ep_index);
1186 		return NULL;
1187 	}
1188 
1189 	if (stream_id < ep->stream_info->num_streams)
1190 		return ep->stream_info->stream_rings[stream_id];
1191 
1192 	xhci_warn(xhci,
1193 			"WARN: Slot ID %u, ep index %u has "
1194 			"stream IDs 1 to %u allocated, "
1195 			"but stream ID %u is requested.\n",
1196 			slot_id, ep_index,
1197 			ep->stream_info->num_streams - 1,
1198 			stream_id);
1199 	return NULL;
1200 }
1201 
1202 /*
1203  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1204  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1205  * should pick up where it left off in the TD, unless a Set Transfer Ring
1206  * Dequeue Pointer is issued.
1207  *
1208  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209  * the ring.  Since the ring is a contiguous structure, they can't be physically
1210  * removed.  Instead, there are two options:
1211  *
1212  *  1) If the HC is in the middle of processing the URB to be canceled, we
1213  *     simply move the ring's dequeue pointer past those TRBs using the Set
1214  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1215  *     when drivers timeout on the last submitted URB and attempt to cancel.
1216  *
1217  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1219  *     HC will need to invalidate the any TRBs it has cached after the stop
1220  *     endpoint command, as noted in the xHCI 0.95 errata.
1221  *
1222  *  3) The TD may have completed by the time the Stop Endpoint Command
1223  *     completes, so software needs to handle that case too.
1224  *
1225  * This function should protect against the TD enqueueing code ringing the
1226  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227  * It also needs to account for multiple cancellations on happening at the same
1228  * time for the same endpoint.
1229  *
1230  * Note that this function can be called in any context, or so says
1231  * usb_hcd_unlink_urb()
1232  */
1233 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234 {
1235 	unsigned long flags;
1236 	int ret, i;
1237 	u32 temp;
1238 	struct xhci_hcd *xhci;
1239 	struct urb_priv	*urb_priv;
1240 	struct xhci_td *td;
1241 	unsigned int ep_index;
1242 	struct xhci_ring *ep_ring;
1243 	struct xhci_virt_ep *ep;
1244 
1245 	xhci = hcd_to_xhci(hcd);
1246 	spin_lock_irqsave(&xhci->lock, flags);
1247 	/* Make sure the URB hasn't completed or been unlinked already */
1248 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249 	if (ret || !urb->hcpriv)
1250 		goto done;
1251 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1252 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1254 		urb_priv = urb->hcpriv;
1255 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256 			td = urb_priv->td[i];
1257 			if (!list_empty(&td->td_list))
1258 				list_del_init(&td->td_list);
1259 			if (!list_empty(&td->cancelled_td_list))
1260 				list_del_init(&td->cancelled_td_list);
1261 		}
1262 
1263 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1264 		spin_unlock_irqrestore(&xhci->lock, flags);
1265 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266 		xhci_urb_free_priv(xhci, urb_priv);
1267 		return ret;
1268 	}
1269 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1271 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272 				"non-responsive xHCI host.\n",
1273 				urb->ep->desc.bEndpointAddress, urb);
1274 		/* Let the stop endpoint command watchdog timer (which set this
1275 		 * state) finish cleaning up the endpoint TD lists.  We must
1276 		 * have caught it in the middle of dropping a lock and giving
1277 		 * back an URB.
1278 		 */
1279 		goto done;
1280 	}
1281 
1282 	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283 	xhci_dbg(xhci, "Event ring:\n");
1284 	xhci_debug_ring(xhci, xhci->event_ring);
1285 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288 	if (!ep_ring) {
1289 		ret = -EINVAL;
1290 		goto done;
1291 	}
1292 
1293 	xhci_dbg(xhci, "Endpoint ring:\n");
1294 	xhci_debug_ring(xhci, ep_ring);
1295 
1296 	urb_priv = urb->hcpriv;
1297 
1298 	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299 		td = urb_priv->td[i];
1300 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1301 	}
1302 
1303 	/* Queue a stop endpoint command, but only if this is
1304 	 * the first cancellation to be handled.
1305 	 */
1306 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1307 		ep->ep_state |= EP_HALT_PENDING;
1308 		ep->stop_cmds_pending++;
1309 		ep->stop_cmd_timer.expires = jiffies +
1310 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311 		add_timer(&ep->stop_cmd_timer);
1312 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313 		xhci_ring_cmd_db(xhci);
1314 	}
1315 done:
1316 	spin_unlock_irqrestore(&xhci->lock, flags);
1317 	return ret;
1318 }
1319 
1320 /* Drop an endpoint from a new bandwidth configuration for this device.
1321  * Only one call to this function is allowed per endpoint before
1322  * check_bandwidth() or reset_bandwidth() must be called.
1323  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324  * add the endpoint to the schedule with possibly new parameters denoted by a
1325  * different endpoint descriptor in usb_host_endpoint.
1326  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327  * not allowed.
1328  *
1329  * The USB core will not allow URBs to be queued to an endpoint that is being
1330  * disabled, so there's no need for mutual exclusion to protect
1331  * the xhci->devs[slot_id] structure.
1332  */
1333 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334 		struct usb_host_endpoint *ep)
1335 {
1336 	struct xhci_hcd *xhci;
1337 	struct xhci_container_ctx *in_ctx, *out_ctx;
1338 	struct xhci_input_control_ctx *ctrl_ctx;
1339 	struct xhci_slot_ctx *slot_ctx;
1340 	unsigned int last_ctx;
1341 	unsigned int ep_index;
1342 	struct xhci_ep_ctx *ep_ctx;
1343 	u32 drop_flag;
1344 	u32 new_add_flags, new_drop_flags, new_slot_info;
1345 	int ret;
1346 
1347 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348 	if (ret <= 0)
1349 		return ret;
1350 	xhci = hcd_to_xhci(hcd);
1351 	if (xhci->xhc_state & XHCI_STATE_DYING)
1352 		return -ENODEV;
1353 
1354 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358 				__func__, drop_flag);
1359 		return 0;
1360 	}
1361 
1362 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1365 	ep_index = xhci_get_endpoint_index(&ep->desc);
1366 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367 	/* If the HC already knows the endpoint is disabled,
1368 	 * or the HCD has noted it is disabled, ignore this request
1369 	 */
1370 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1372 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1373 	    xhci_get_endpoint_flag(&ep->desc)) {
1374 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375 				__func__, ep);
1376 		return 0;
1377 	}
1378 
1379 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381 
1382 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384 
1385 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387 	/* Update the last valid endpoint context, if we deleted the last one */
1388 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389 	    LAST_CTX(last_ctx)) {
1390 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392 	}
1393 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394 
1395 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396 
1397 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398 			(unsigned int) ep->desc.bEndpointAddress,
1399 			udev->slot_id,
1400 			(unsigned int) new_drop_flags,
1401 			(unsigned int) new_add_flags,
1402 			(unsigned int) new_slot_info);
1403 	return 0;
1404 }
1405 
1406 /* Add an endpoint to a new possible bandwidth configuration for this device.
1407  * Only one call to this function is allowed per endpoint before
1408  * check_bandwidth() or reset_bandwidth() must be called.
1409  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410  * add the endpoint to the schedule with possibly new parameters denoted by a
1411  * different endpoint descriptor in usb_host_endpoint.
1412  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413  * not allowed.
1414  *
1415  * The USB core will not allow URBs to be queued to an endpoint until the
1416  * configuration or alt setting is installed in the device, so there's no need
1417  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418  */
1419 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420 		struct usb_host_endpoint *ep)
1421 {
1422 	struct xhci_hcd *xhci;
1423 	struct xhci_container_ctx *in_ctx, *out_ctx;
1424 	unsigned int ep_index;
1425 	struct xhci_ep_ctx *ep_ctx;
1426 	struct xhci_slot_ctx *slot_ctx;
1427 	struct xhci_input_control_ctx *ctrl_ctx;
1428 	u32 added_ctxs;
1429 	unsigned int last_ctx;
1430 	u32 new_add_flags, new_drop_flags, new_slot_info;
1431 	struct xhci_virt_device *virt_dev;
1432 	int ret = 0;
1433 
1434 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435 	if (ret <= 0) {
1436 		/* So we won't queue a reset ep command for a root hub */
1437 		ep->hcpriv = NULL;
1438 		return ret;
1439 	}
1440 	xhci = hcd_to_xhci(hcd);
1441 	if (xhci->xhc_state & XHCI_STATE_DYING)
1442 		return -ENODEV;
1443 
1444 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447 		/* FIXME when we have to issue an evaluate endpoint command to
1448 		 * deal with ep0 max packet size changing once we get the
1449 		 * descriptors
1450 		 */
1451 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452 				__func__, added_ctxs);
1453 		return 0;
1454 	}
1455 
1456 	virt_dev = xhci->devs[udev->slot_id];
1457 	in_ctx = virt_dev->in_ctx;
1458 	out_ctx = virt_dev->out_ctx;
1459 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460 	ep_index = xhci_get_endpoint_index(&ep->desc);
1461 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1462 
1463 	/* If this endpoint is already in use, and the upper layers are trying
1464 	 * to add it again without dropping it, reject the addition.
1465 	 */
1466 	if (virt_dev->eps[ep_index].ring &&
1467 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1468 				xhci_get_endpoint_flag(&ep->desc))) {
1469 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470 				"without dropping it.\n",
1471 				(unsigned int) ep->desc.bEndpointAddress);
1472 		return -EINVAL;
1473 	}
1474 
1475 	/* If the HCD has already noted the endpoint is enabled,
1476 	 * ignore this request.
1477 	 */
1478 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1479 	    xhci_get_endpoint_flag(&ep->desc)) {
1480 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481 				__func__, ep);
1482 		return 0;
1483 	}
1484 
1485 	/*
1486 	 * Configuration and alternate setting changes must be done in
1487 	 * process context, not interrupt context (or so documenation
1488 	 * for usb_set_interface() and usb_set_configuration() claim).
1489 	 */
1490 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492 				__func__, ep->desc.bEndpointAddress);
1493 		return -ENOMEM;
1494 	}
1495 
1496 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498 
1499 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1500 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1501 	 * this re-adds a new state for the endpoint from the new endpoint
1502 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1503 	 * drop flags alone.
1504 	 */
1505 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506 
1507 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508 	/* Update the last valid endpoint context, if we just added one past */
1509 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510 	    LAST_CTX(last_ctx)) {
1511 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513 	}
1514 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515 
1516 	/* Store the usb_device pointer for later use */
1517 	ep->hcpriv = udev;
1518 
1519 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520 			(unsigned int) ep->desc.bEndpointAddress,
1521 			udev->slot_id,
1522 			(unsigned int) new_drop_flags,
1523 			(unsigned int) new_add_flags,
1524 			(unsigned int) new_slot_info);
1525 	return 0;
1526 }
1527 
1528 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529 {
1530 	struct xhci_input_control_ctx *ctrl_ctx;
1531 	struct xhci_ep_ctx *ep_ctx;
1532 	struct xhci_slot_ctx *slot_ctx;
1533 	int i;
1534 
1535 	/* When a device's add flag and drop flag are zero, any subsequent
1536 	 * configure endpoint command will leave that endpoint's state
1537 	 * untouched.  Make sure we don't leave any old state in the input
1538 	 * endpoint contexts.
1539 	 */
1540 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541 	ctrl_ctx->drop_flags = 0;
1542 	ctrl_ctx->add_flags = 0;
1543 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545 	/* Endpoint 0 is always valid */
1546 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547 	for (i = 1; i < 31; ++i) {
1548 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549 		ep_ctx->ep_info = 0;
1550 		ep_ctx->ep_info2 = 0;
1551 		ep_ctx->deq = 0;
1552 		ep_ctx->tx_info = 0;
1553 	}
1554 }
1555 
1556 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557 		struct usb_device *udev, u32 *cmd_status)
1558 {
1559 	int ret;
1560 
1561 	switch (*cmd_status) {
1562 	case COMP_ENOMEM:
1563 		dev_warn(&udev->dev, "Not enough host controller resources "
1564 				"for new device state.\n");
1565 		ret = -ENOMEM;
1566 		/* FIXME: can we allocate more resources for the HC? */
1567 		break;
1568 	case COMP_BW_ERR:
1569 		dev_warn(&udev->dev, "Not enough bandwidth "
1570 				"for new device state.\n");
1571 		ret = -ENOSPC;
1572 		/* FIXME: can we go back to the old state? */
1573 		break;
1574 	case COMP_TRB_ERR:
1575 		/* the HCD set up something wrong */
1576 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577 				"add flag = 1, "
1578 				"and endpoint is not disabled.\n");
1579 		ret = -EINVAL;
1580 		break;
1581 	case COMP_DEV_ERR:
1582 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583 				"configure command.\n");
1584 		ret = -ENODEV;
1585 		break;
1586 	case COMP_SUCCESS:
1587 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1588 		ret = 0;
1589 		break;
1590 	default:
1591 		xhci_err(xhci, "ERROR: unexpected command completion "
1592 				"code 0x%x.\n", *cmd_status);
1593 		ret = -EINVAL;
1594 		break;
1595 	}
1596 	return ret;
1597 }
1598 
1599 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600 		struct usb_device *udev, u32 *cmd_status)
1601 {
1602 	int ret;
1603 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604 
1605 	switch (*cmd_status) {
1606 	case COMP_EINVAL:
1607 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608 				"context command.\n");
1609 		ret = -EINVAL;
1610 		break;
1611 	case COMP_EBADSLT:
1612 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1613 				"evaluate context command.\n");
1614 	case COMP_CTX_STATE:
1615 		dev_warn(&udev->dev, "WARN: invalid context state for "
1616 				"evaluate context command.\n");
1617 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618 		ret = -EINVAL;
1619 		break;
1620 	case COMP_DEV_ERR:
1621 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622 				"context command.\n");
1623 		ret = -ENODEV;
1624 		break;
1625 	case COMP_MEL_ERR:
1626 		/* Max Exit Latency too large error */
1627 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628 		ret = -EINVAL;
1629 		break;
1630 	case COMP_SUCCESS:
1631 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1632 		ret = 0;
1633 		break;
1634 	default:
1635 		xhci_err(xhci, "ERROR: unexpected command completion "
1636 				"code 0x%x.\n", *cmd_status);
1637 		ret = -EINVAL;
1638 		break;
1639 	}
1640 	return ret;
1641 }
1642 
1643 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644 		struct xhci_container_ctx *in_ctx)
1645 {
1646 	struct xhci_input_control_ctx *ctrl_ctx;
1647 	u32 valid_add_flags;
1648 	u32 valid_drop_flags;
1649 
1650 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1652 	 * (bit 1).  The default control endpoint is added during the Address
1653 	 * Device command and is never removed until the slot is disabled.
1654 	 */
1655 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1656 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657 
1658 	/* Use hweight32 to count the number of ones in the add flags, or
1659 	 * number of endpoints added.  Don't count endpoints that are changed
1660 	 * (both added and dropped).
1661 	 */
1662 	return hweight32(valid_add_flags) -
1663 		hweight32(valid_add_flags & valid_drop_flags);
1664 }
1665 
1666 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667 		struct xhci_container_ctx *in_ctx)
1668 {
1669 	struct xhci_input_control_ctx *ctrl_ctx;
1670 	u32 valid_add_flags;
1671 	u32 valid_drop_flags;
1672 
1673 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1675 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676 
1677 	return hweight32(valid_drop_flags) -
1678 		hweight32(valid_add_flags & valid_drop_flags);
1679 }
1680 
1681 /*
1682  * We need to reserve the new number of endpoints before the configure endpoint
1683  * command completes.  We can't subtract the dropped endpoints from the number
1684  * of active endpoints until the command completes because we can oversubscribe
1685  * the host in this case:
1686  *
1687  *  - the first configure endpoint command drops more endpoints than it adds
1688  *  - a second configure endpoint command that adds more endpoints is queued
1689  *  - the first configure endpoint command fails, so the config is unchanged
1690  *  - the second command may succeed, even though there isn't enough resources
1691  *
1692  * Must be called with xhci->lock held.
1693  */
1694 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695 		struct xhci_container_ctx *in_ctx)
1696 {
1697 	u32 added_eps;
1698 
1699 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701 		xhci_dbg(xhci, "Not enough ep ctxs: "
1702 				"%u active, need to add %u, limit is %u.\n",
1703 				xhci->num_active_eps, added_eps,
1704 				xhci->limit_active_eps);
1705 		return -ENOMEM;
1706 	}
1707 	xhci->num_active_eps += added_eps;
1708 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1709 			xhci->num_active_eps);
1710 	return 0;
1711 }
1712 
1713 /*
1714  * The configure endpoint was failed by the xHC for some other reason, so we
1715  * need to revert the resources that failed configuration would have used.
1716  *
1717  * Must be called with xhci->lock held.
1718  */
1719 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720 		struct xhci_container_ctx *in_ctx)
1721 {
1722 	u32 num_failed_eps;
1723 
1724 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725 	xhci->num_active_eps -= num_failed_eps;
1726 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1727 			num_failed_eps,
1728 			xhci->num_active_eps);
1729 }
1730 
1731 /*
1732  * Now that the command has completed, clean up the active endpoint count by
1733  * subtracting out the endpoints that were dropped (but not changed).
1734  *
1735  * Must be called with xhci->lock held.
1736  */
1737 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738 		struct xhci_container_ctx *in_ctx)
1739 {
1740 	u32 num_dropped_eps;
1741 
1742 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743 	xhci->num_active_eps -= num_dropped_eps;
1744 	if (num_dropped_eps)
1745 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1746 				num_dropped_eps,
1747 				xhci->num_active_eps);
1748 }
1749 
1750 /* Issue a configure endpoint command or evaluate context command
1751  * and wait for it to finish.
1752  */
1753 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754 		struct usb_device *udev,
1755 		struct xhci_command *command,
1756 		bool ctx_change, bool must_succeed)
1757 {
1758 	int ret;
1759 	int timeleft;
1760 	unsigned long flags;
1761 	struct xhci_container_ctx *in_ctx;
1762 	struct completion *cmd_completion;
1763 	u32 *cmd_status;
1764 	struct xhci_virt_device *virt_dev;
1765 
1766 	spin_lock_irqsave(&xhci->lock, flags);
1767 	virt_dev = xhci->devs[udev->slot_id];
1768 	if (command) {
1769 		in_ctx = command->in_ctx;
1770 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771 				xhci_reserve_host_resources(xhci, in_ctx)) {
1772 			spin_unlock_irqrestore(&xhci->lock, flags);
1773 			xhci_warn(xhci, "Not enough host resources, "
1774 					"active endpoint contexts = %u\n",
1775 					xhci->num_active_eps);
1776 			return -ENOMEM;
1777 		}
1778 
1779 		cmd_completion = command->completion;
1780 		cmd_status = &command->status;
1781 		command->command_trb = xhci->cmd_ring->enqueue;
1782 
1783 		/* Enqueue pointer can be left pointing to the link TRB,
1784 		 * we must handle that
1785 		 */
1786 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787 			command->command_trb =
1788 				xhci->cmd_ring->enq_seg->next->trbs;
1789 
1790 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791 	} else {
1792 		in_ctx = virt_dev->in_ctx;
1793 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794 				xhci_reserve_host_resources(xhci, in_ctx)) {
1795 			spin_unlock_irqrestore(&xhci->lock, flags);
1796 			xhci_warn(xhci, "Not enough host resources, "
1797 					"active endpoint contexts = %u\n",
1798 					xhci->num_active_eps);
1799 			return -ENOMEM;
1800 		}
1801 		cmd_completion = &virt_dev->cmd_completion;
1802 		cmd_status = &virt_dev->cmd_status;
1803 	}
1804 	init_completion(cmd_completion);
1805 
1806 	if (!ctx_change)
1807 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1808 				udev->slot_id, must_succeed);
1809 	else
1810 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811 				udev->slot_id);
1812 	if (ret < 0) {
1813 		if (command)
1814 			list_del(&command->cmd_list);
1815 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816 			xhci_free_host_resources(xhci, in_ctx);
1817 		spin_unlock_irqrestore(&xhci->lock, flags);
1818 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1819 		return -ENOMEM;
1820 	}
1821 	xhci_ring_cmd_db(xhci);
1822 	spin_unlock_irqrestore(&xhci->lock, flags);
1823 
1824 	/* Wait for the configure endpoint command to complete */
1825 	timeleft = wait_for_completion_interruptible_timeout(
1826 			cmd_completion,
1827 			USB_CTRL_SET_TIMEOUT);
1828 	if (timeleft <= 0) {
1829 		xhci_warn(xhci, "%s while waiting for %s command\n",
1830 				timeleft == 0 ? "Timeout" : "Signal",
1831 				ctx_change == 0 ?
1832 					"configure endpoint" :
1833 					"evaluate context");
1834 		/* FIXME cancel the configure endpoint command */
1835 		return -ETIME;
1836 	}
1837 
1838 	if (!ctx_change)
1839 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1840 	else
1841 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1842 
1843 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844 		spin_lock_irqsave(&xhci->lock, flags);
1845 		/* If the command failed, remove the reserved resources.
1846 		 * Otherwise, clean up the estimate to include dropped eps.
1847 		 */
1848 		if (ret)
1849 			xhci_free_host_resources(xhci, in_ctx);
1850 		else
1851 			xhci_finish_resource_reservation(xhci, in_ctx);
1852 		spin_unlock_irqrestore(&xhci->lock, flags);
1853 	}
1854 	return ret;
1855 }
1856 
1857 /* Called after one or more calls to xhci_add_endpoint() or
1858  * xhci_drop_endpoint().  If this call fails, the USB core is expected
1859  * to call xhci_reset_bandwidth().
1860  *
1861  * Since we are in the middle of changing either configuration or
1862  * installing a new alt setting, the USB core won't allow URBs to be
1863  * enqueued for any endpoint on the old config or interface.  Nothing
1864  * else should be touching the xhci->devs[slot_id] structure, so we
1865  * don't need to take the xhci->lock for manipulating that.
1866  */
1867 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1868 {
1869 	int i;
1870 	int ret = 0;
1871 	struct xhci_hcd *xhci;
1872 	struct xhci_virt_device	*virt_dev;
1873 	struct xhci_input_control_ctx *ctrl_ctx;
1874 	struct xhci_slot_ctx *slot_ctx;
1875 
1876 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877 	if (ret <= 0)
1878 		return ret;
1879 	xhci = hcd_to_xhci(hcd);
1880 	if (xhci->xhc_state & XHCI_STATE_DYING)
1881 		return -ENODEV;
1882 
1883 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884 	virt_dev = xhci->devs[udev->slot_id];
1885 
1886 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1888 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1891 	xhci_dbg(xhci, "New Input Control Context:\n");
1892 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1895 
1896 	ret = xhci_configure_endpoint(xhci, udev, NULL,
1897 			false, false);
1898 	if (ret) {
1899 		/* Callee should call reset_bandwidth() */
1900 		return ret;
1901 	}
1902 
1903 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1906 
1907 	/* Free any rings that were dropped, but not changed. */
1908 	for (i = 1; i < 31; ++i) {
1909 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1912 	}
1913 	xhci_zero_in_ctx(xhci, virt_dev);
1914 	/*
1915 	 * Install any rings for completely new endpoints or changed endpoints,
1916 	 * and free or cache any old rings from changed endpoints.
1917 	 */
1918 	for (i = 1; i < 31; ++i) {
1919 		if (!virt_dev->eps[i].new_ring)
1920 			continue;
1921 		/* Only cache or free the old ring if it exists.
1922 		 * It may not if this is the first add of an endpoint.
1923 		 */
1924 		if (virt_dev->eps[i].ring) {
1925 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1926 		}
1927 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928 		virt_dev->eps[i].new_ring = NULL;
1929 	}
1930 
1931 	return ret;
1932 }
1933 
1934 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1935 {
1936 	struct xhci_hcd *xhci;
1937 	struct xhci_virt_device	*virt_dev;
1938 	int i, ret;
1939 
1940 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941 	if (ret <= 0)
1942 		return;
1943 	xhci = hcd_to_xhci(hcd);
1944 
1945 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946 	virt_dev = xhci->devs[udev->slot_id];
1947 	/* Free any rings allocated for added endpoints */
1948 	for (i = 0; i < 31; ++i) {
1949 		if (virt_dev->eps[i].new_ring) {
1950 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951 			virt_dev->eps[i].new_ring = NULL;
1952 		}
1953 	}
1954 	xhci_zero_in_ctx(xhci, virt_dev);
1955 }
1956 
1957 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958 		struct xhci_container_ctx *in_ctx,
1959 		struct xhci_container_ctx *out_ctx,
1960 		u32 add_flags, u32 drop_flags)
1961 {
1962 	struct xhci_input_control_ctx *ctrl_ctx;
1963 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966 	xhci_slot_copy(xhci, in_ctx, out_ctx);
1967 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1968 
1969 	xhci_dbg(xhci, "Input Context:\n");
1970 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1971 }
1972 
1973 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974 		unsigned int slot_id, unsigned int ep_index,
1975 		struct xhci_dequeue_state *deq_state)
1976 {
1977 	struct xhci_container_ctx *in_ctx;
1978 	struct xhci_ep_ctx *ep_ctx;
1979 	u32 added_ctxs;
1980 	dma_addr_t addr;
1981 
1982 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983 			xhci->devs[slot_id]->out_ctx, ep_index);
1984 	in_ctx = xhci->devs[slot_id]->in_ctx;
1985 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987 			deq_state->new_deq_ptr);
1988 	if (addr == 0) {
1989 		xhci_warn(xhci, "WARN Cannot submit config ep after "
1990 				"reset ep command\n");
1991 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992 				deq_state->new_deq_seg,
1993 				deq_state->new_deq_ptr);
1994 		return;
1995 	}
1996 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1997 
1998 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2001 }
2002 
2003 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004 		struct usb_device *udev, unsigned int ep_index)
2005 {
2006 	struct xhci_dequeue_state deq_state;
2007 	struct xhci_virt_ep *ep;
2008 
2009 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2010 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011 	/* We need to move the HW's dequeue pointer past this TD,
2012 	 * or it will attempt to resend it on the next doorbell ring.
2013 	 */
2014 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015 			ep_index, ep->stopped_stream, ep->stopped_td,
2016 			&deq_state);
2017 
2018 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2019 	 * issue a configure endpoint command later.
2020 	 */
2021 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2023 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024 				ep_index, ep->stopped_stream, &deq_state);
2025 	} else {
2026 		/* Better hope no one uses the input context between now and the
2027 		 * reset endpoint completion!
2028 		 * XXX: No idea how this hardware will react when stream rings
2029 		 * are enabled.
2030 		 */
2031 		xhci_dbg(xhci, "Setting up input context for "
2032 				"configure endpoint command\n");
2033 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034 				ep_index, &deq_state);
2035 	}
2036 }
2037 
2038 /* Deal with stalled endpoints.  The core should have sent the control message
2039  * to clear the halt condition.  However, we need to make the xHCI hardware
2040  * reset its sequence number, since a device will expect a sequence number of
2041  * zero after the halt condition is cleared.
2042  * Context: in_interrupt
2043  */
2044 void xhci_endpoint_reset(struct usb_hcd *hcd,
2045 		struct usb_host_endpoint *ep)
2046 {
2047 	struct xhci_hcd *xhci;
2048 	struct usb_device *udev;
2049 	unsigned int ep_index;
2050 	unsigned long flags;
2051 	int ret;
2052 	struct xhci_virt_ep *virt_ep;
2053 
2054 	xhci = hcd_to_xhci(hcd);
2055 	udev = (struct usb_device *) ep->hcpriv;
2056 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2057 	 * with xhci_add_endpoint()
2058 	 */
2059 	if (!ep->hcpriv)
2060 		return;
2061 	ep_index = xhci_get_endpoint_index(&ep->desc);
2062 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063 	if (!virt_ep->stopped_td) {
2064 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065 				ep->desc.bEndpointAddress);
2066 		return;
2067 	}
2068 	if (usb_endpoint_xfer_control(&ep->desc)) {
2069 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2070 		return;
2071 	}
2072 
2073 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2074 	spin_lock_irqsave(&xhci->lock, flags);
2075 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2076 	/*
2077 	 * Can't change the ring dequeue pointer until it's transitioned to the
2078 	 * stopped state, which is only upon a successful reset endpoint
2079 	 * command.  Better hope that last command worked!
2080 	 */
2081 	if (!ret) {
2082 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083 		kfree(virt_ep->stopped_td);
2084 		xhci_ring_cmd_db(xhci);
2085 	}
2086 	virt_ep->stopped_td = NULL;
2087 	virt_ep->stopped_trb = NULL;
2088 	virt_ep->stopped_stream = 0;
2089 	spin_unlock_irqrestore(&xhci->lock, flags);
2090 
2091 	if (ret)
2092 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2093 }
2094 
2095 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096 		struct usb_device *udev, struct usb_host_endpoint *ep,
2097 		unsigned int slot_id)
2098 {
2099 	int ret;
2100 	unsigned int ep_index;
2101 	unsigned int ep_state;
2102 
2103 	if (!ep)
2104 		return -EINVAL;
2105 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106 	if (ret <= 0)
2107 		return -EINVAL;
2108 	if (ep->ss_ep_comp.bmAttributes == 0) {
2109 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110 				" descriptor for ep 0x%x does not support streams\n",
2111 				ep->desc.bEndpointAddress);
2112 		return -EINVAL;
2113 	}
2114 
2115 	ep_index = xhci_get_endpoint_index(&ep->desc);
2116 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117 	if (ep_state & EP_HAS_STREAMS ||
2118 			ep_state & EP_GETTING_STREAMS) {
2119 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120 				"already has streams set up.\n",
2121 				ep->desc.bEndpointAddress);
2122 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123 				"dynamic stream context array reallocation.\n");
2124 		return -EINVAL;
2125 	}
2126 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128 				"endpoint 0x%x; URBs are pending.\n",
2129 				ep->desc.bEndpointAddress);
2130 		return -EINVAL;
2131 	}
2132 	return 0;
2133 }
2134 
2135 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2137 {
2138 	unsigned int max_streams;
2139 
2140 	/* The stream context array size must be a power of two */
2141 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2142 	/*
2143 	 * Find out how many primary stream array entries the host controller
2144 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2145 	 * level page entries), but that's an optional feature for xHCI host
2146 	 * controllers. xHCs must support at least 4 stream IDs.
2147 	 */
2148 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149 	if (*num_stream_ctxs > max_streams) {
2150 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151 				max_streams);
2152 		*num_stream_ctxs = max_streams;
2153 		*num_streams = max_streams;
2154 	}
2155 }
2156 
2157 /* Returns an error code if one of the endpoint already has streams.
2158  * This does not change any data structures, it only checks and gathers
2159  * information.
2160  */
2161 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162 		struct usb_device *udev,
2163 		struct usb_host_endpoint **eps, unsigned int num_eps,
2164 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2165 {
2166 	unsigned int max_streams;
2167 	unsigned int endpoint_flag;
2168 	int i;
2169 	int ret;
2170 
2171 	for (i = 0; i < num_eps; i++) {
2172 		ret = xhci_check_streams_endpoint(xhci, udev,
2173 				eps[i], udev->slot_id);
2174 		if (ret < 0)
2175 			return ret;
2176 
2177 		max_streams = USB_SS_MAX_STREAMS(
2178 				eps[i]->ss_ep_comp.bmAttributes);
2179 		if (max_streams < (*num_streams - 1)) {
2180 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181 					eps[i]->desc.bEndpointAddress,
2182 					max_streams);
2183 			*num_streams = max_streams+1;
2184 		}
2185 
2186 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187 		if (*changed_ep_bitmask & endpoint_flag)
2188 			return -EINVAL;
2189 		*changed_ep_bitmask |= endpoint_flag;
2190 	}
2191 	return 0;
2192 }
2193 
2194 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195 		struct usb_device *udev,
2196 		struct usb_host_endpoint **eps, unsigned int num_eps)
2197 {
2198 	u32 changed_ep_bitmask = 0;
2199 	unsigned int slot_id;
2200 	unsigned int ep_index;
2201 	unsigned int ep_state;
2202 	int i;
2203 
2204 	slot_id = udev->slot_id;
2205 	if (!xhci->devs[slot_id])
2206 		return 0;
2207 
2208 	for (i = 0; i < num_eps; i++) {
2209 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211 		/* Are streams already being freed for the endpoint? */
2212 		if (ep_state & EP_GETTING_NO_STREAMS) {
2213 			xhci_warn(xhci, "WARN Can't disable streams for "
2214 					"endpoint 0x%x\n, "
2215 					"streams are being disabled already.",
2216 					eps[i]->desc.bEndpointAddress);
2217 			return 0;
2218 		}
2219 		/* Are there actually any streams to free? */
2220 		if (!(ep_state & EP_HAS_STREAMS) &&
2221 				!(ep_state & EP_GETTING_STREAMS)) {
2222 			xhci_warn(xhci, "WARN Can't disable streams for "
2223 					"endpoint 0x%x\n, "
2224 					"streams are already disabled!",
2225 					eps[i]->desc.bEndpointAddress);
2226 			xhci_warn(xhci, "WARN xhci_free_streams() called "
2227 					"with non-streams endpoint\n");
2228 			return 0;
2229 		}
2230 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2231 	}
2232 	return changed_ep_bitmask;
2233 }
2234 
2235 /*
2236  * The USB device drivers use this function (though the HCD interface in USB
2237  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2238  * coordinate mass storage command queueing across multiple endpoints (basically
2239  * a stream ID == a task ID).
2240  *
2241  * Setting up streams involves allocating the same size stream context array
2242  * for each endpoint and issuing a configure endpoint command for all endpoints.
2243  *
2244  * Don't allow the call to succeed if one endpoint only supports one stream
2245  * (which means it doesn't support streams at all).
2246  *
2247  * Drivers may get less stream IDs than they asked for, if the host controller
2248  * hardware or endpoints claim they can't support the number of requested
2249  * stream IDs.
2250  */
2251 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252 		struct usb_host_endpoint **eps, unsigned int num_eps,
2253 		unsigned int num_streams, gfp_t mem_flags)
2254 {
2255 	int i, ret;
2256 	struct xhci_hcd *xhci;
2257 	struct xhci_virt_device *vdev;
2258 	struct xhci_command *config_cmd;
2259 	unsigned int ep_index;
2260 	unsigned int num_stream_ctxs;
2261 	unsigned long flags;
2262 	u32 changed_ep_bitmask = 0;
2263 
2264 	if (!eps)
2265 		return -EINVAL;
2266 
2267 	/* Add one to the number of streams requested to account for
2268 	 * stream 0 that is reserved for xHCI usage.
2269 	 */
2270 	num_streams += 1;
2271 	xhci = hcd_to_xhci(hcd);
2272 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273 			num_streams);
2274 
2275 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276 	if (!config_cmd) {
2277 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2278 		return -ENOMEM;
2279 	}
2280 
2281 	/* Check to make sure all endpoints are not already configured for
2282 	 * streams.  While we're at it, find the maximum number of streams that
2283 	 * all the endpoints will support and check for duplicate endpoints.
2284 	 */
2285 	spin_lock_irqsave(&xhci->lock, flags);
2286 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287 			num_eps, &num_streams, &changed_ep_bitmask);
2288 	if (ret < 0) {
2289 		xhci_free_command(xhci, config_cmd);
2290 		spin_unlock_irqrestore(&xhci->lock, flags);
2291 		return ret;
2292 	}
2293 	if (num_streams <= 1) {
2294 		xhci_warn(xhci, "WARN: endpoints can't handle "
2295 				"more than one stream.\n");
2296 		xhci_free_command(xhci, config_cmd);
2297 		spin_unlock_irqrestore(&xhci->lock, flags);
2298 		return -EINVAL;
2299 	}
2300 	vdev = xhci->devs[udev->slot_id];
2301 	/* Mark each endpoint as being in transition, so
2302 	 * xhci_urb_enqueue() will reject all URBs.
2303 	 */
2304 	for (i = 0; i < num_eps; i++) {
2305 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2307 	}
2308 	spin_unlock_irqrestore(&xhci->lock, flags);
2309 
2310 	/* Setup internal data structures and allocate HW data structures for
2311 	 * streams (but don't install the HW structures in the input context
2312 	 * until we're sure all memory allocation succeeded).
2313 	 */
2314 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316 			num_stream_ctxs, num_streams);
2317 
2318 	for (i = 0; i < num_eps; i++) {
2319 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321 				num_stream_ctxs,
2322 				num_streams, mem_flags);
2323 		if (!vdev->eps[ep_index].stream_info)
2324 			goto cleanup;
2325 		/* Set maxPstreams in endpoint context and update deq ptr to
2326 		 * point to stream context array. FIXME
2327 		 */
2328 	}
2329 
2330 	/* Set up the input context for a configure endpoint command. */
2331 	for (i = 0; i < num_eps; i++) {
2332 		struct xhci_ep_ctx *ep_ctx;
2333 
2334 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2336 
2337 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338 				vdev->out_ctx, ep_index);
2339 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340 				vdev->eps[ep_index].stream_info);
2341 	}
2342 	/* Tell the HW to drop its old copy of the endpoint context info
2343 	 * and add the updated copy from the input context.
2344 	 */
2345 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2347 
2348 	/* Issue and wait for the configure endpoint command */
2349 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350 			false, false);
2351 
2352 	/* xHC rejected the configure endpoint command for some reason, so we
2353 	 * leave the old ring intact and free our internal streams data
2354 	 * structure.
2355 	 */
2356 	if (ret < 0)
2357 		goto cleanup;
2358 
2359 	spin_lock_irqsave(&xhci->lock, flags);
2360 	for (i = 0; i < num_eps; i++) {
2361 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364 			 udev->slot_id, ep_index);
2365 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2366 	}
2367 	xhci_free_command(xhci, config_cmd);
2368 	spin_unlock_irqrestore(&xhci->lock, flags);
2369 
2370 	/* Subtract 1 for stream 0, which drivers can't use */
2371 	return num_streams - 1;
2372 
2373 cleanup:
2374 	/* If it didn't work, free the streams! */
2375 	for (i = 0; i < num_eps; i++) {
2376 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378 		vdev->eps[ep_index].stream_info = NULL;
2379 		/* FIXME Unset maxPstreams in endpoint context and
2380 		 * update deq ptr to point to normal string ring.
2381 		 */
2382 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384 		xhci_endpoint_zero(xhci, vdev, eps[i]);
2385 	}
2386 	xhci_free_command(xhci, config_cmd);
2387 	return -ENOMEM;
2388 }
2389 
2390 /* Transition the endpoint from using streams to being a "normal" endpoint
2391  * without streams.
2392  *
2393  * Modify the endpoint context state, submit a configure endpoint command,
2394  * and free all endpoint rings for streams if that completes successfully.
2395  */
2396 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397 		struct usb_host_endpoint **eps, unsigned int num_eps,
2398 		gfp_t mem_flags)
2399 {
2400 	int i, ret;
2401 	struct xhci_hcd *xhci;
2402 	struct xhci_virt_device *vdev;
2403 	struct xhci_command *command;
2404 	unsigned int ep_index;
2405 	unsigned long flags;
2406 	u32 changed_ep_bitmask;
2407 
2408 	xhci = hcd_to_xhci(hcd);
2409 	vdev = xhci->devs[udev->slot_id];
2410 
2411 	/* Set up a configure endpoint command to remove the streams rings */
2412 	spin_lock_irqsave(&xhci->lock, flags);
2413 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414 			udev, eps, num_eps);
2415 	if (changed_ep_bitmask == 0) {
2416 		spin_unlock_irqrestore(&xhci->lock, flags);
2417 		return -EINVAL;
2418 	}
2419 
2420 	/* Use the xhci_command structure from the first endpoint.  We may have
2421 	 * allocated too many, but the driver may call xhci_free_streams() for
2422 	 * each endpoint it grouped into one call to xhci_alloc_streams().
2423 	 */
2424 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425 	command = vdev->eps[ep_index].stream_info->free_streams_command;
2426 	for (i = 0; i < num_eps; i++) {
2427 		struct xhci_ep_ctx *ep_ctx;
2428 
2429 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432 			EP_GETTING_NO_STREAMS;
2433 
2434 		xhci_endpoint_copy(xhci, command->in_ctx,
2435 				vdev->out_ctx, ep_index);
2436 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437 				&vdev->eps[ep_index]);
2438 	}
2439 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2441 	spin_unlock_irqrestore(&xhci->lock, flags);
2442 
2443 	/* Issue and wait for the configure endpoint command,
2444 	 * which must succeed.
2445 	 */
2446 	ret = xhci_configure_endpoint(xhci, udev, command,
2447 			false, true);
2448 
2449 	/* xHC rejected the configure endpoint command for some reason, so we
2450 	 * leave the streams rings intact.
2451 	 */
2452 	if (ret < 0)
2453 		return ret;
2454 
2455 	spin_lock_irqsave(&xhci->lock, flags);
2456 	for (i = 0; i < num_eps; i++) {
2457 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459 		vdev->eps[ep_index].stream_info = NULL;
2460 		/* FIXME Unset maxPstreams in endpoint context and
2461 		 * update deq ptr to point to normal string ring.
2462 		 */
2463 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2465 	}
2466 	spin_unlock_irqrestore(&xhci->lock, flags);
2467 
2468 	return 0;
2469 }
2470 
2471 /*
2472  * Deletes endpoint resources for endpoints that were active before a Reset
2473  * Device command, or a Disable Slot command.  The Reset Device command leaves
2474  * the control endpoint intact, whereas the Disable Slot command deletes it.
2475  *
2476  * Must be called with xhci->lock held.
2477  */
2478 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
2480 {
2481 	int i;
2482 	unsigned int num_dropped_eps = 0;
2483 	unsigned int drop_flags = 0;
2484 
2485 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486 		if (virt_dev->eps[i].ring) {
2487 			drop_flags |= 1 << i;
2488 			num_dropped_eps++;
2489 		}
2490 	}
2491 	xhci->num_active_eps -= num_dropped_eps;
2492 	if (num_dropped_eps)
2493 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494 				"%u now active.\n",
2495 				num_dropped_eps, drop_flags,
2496 				xhci->num_active_eps);
2497 }
2498 
2499 /*
2500  * This submits a Reset Device Command, which will set the device state to 0,
2501  * set the device address to 0, and disable all the endpoints except the default
2502  * control endpoint.  The USB core should come back and call
2503  * xhci_address_device(), and then re-set up the configuration.  If this is
2504  * called because of a usb_reset_and_verify_device(), then the old alternate
2505  * settings will be re-installed through the normal bandwidth allocation
2506  * functions.
2507  *
2508  * Wait for the Reset Device command to finish.  Remove all structures
2509  * associated with the endpoints that were disabled.  Clear the input device
2510  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2511  *
2512  * If the virt_dev to be reset does not exist or does not match the udev,
2513  * it means the device is lost, possibly due to the xHC restore error and
2514  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515  * re-allocate the device.
2516  */
2517 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2518 {
2519 	int ret, i;
2520 	unsigned long flags;
2521 	struct xhci_hcd *xhci;
2522 	unsigned int slot_id;
2523 	struct xhci_virt_device *virt_dev;
2524 	struct xhci_command *reset_device_cmd;
2525 	int timeleft;
2526 	int last_freed_endpoint;
2527 	struct xhci_slot_ctx *slot_ctx;
2528 
2529 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530 	if (ret <= 0)
2531 		return ret;
2532 	xhci = hcd_to_xhci(hcd);
2533 	slot_id = udev->slot_id;
2534 	virt_dev = xhci->devs[slot_id];
2535 	if (!virt_dev) {
2536 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537 				"not exist. Re-allocate the device\n", slot_id);
2538 		ret = xhci_alloc_dev(hcd, udev);
2539 		if (ret == 1)
2540 			return 0;
2541 		else
2542 			return -EINVAL;
2543 	}
2544 
2545 	if (virt_dev->udev != udev) {
2546 		/* If the virt_dev and the udev does not match, this virt_dev
2547 		 * may belong to another udev.
2548 		 * Re-allocate the device.
2549 		 */
2550 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551 				"not match the udev. Re-allocate the device\n",
2552 				slot_id);
2553 		ret = xhci_alloc_dev(hcd, udev);
2554 		if (ret == 1)
2555 			return 0;
2556 		else
2557 			return -EINVAL;
2558 	}
2559 
2560 	/* If device is not setup, there is no point in resetting it */
2561 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563 						SLOT_STATE_DISABLED)
2564 		return 0;
2565 
2566 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567 	/* Allocate the command structure that holds the struct completion.
2568 	 * Assume we're in process context, since the normal device reset
2569 	 * process has to wait for the device anyway.  Storage devices are
2570 	 * reset as part of error handling, so use GFP_NOIO instead of
2571 	 * GFP_KERNEL.
2572 	 */
2573 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574 	if (!reset_device_cmd) {
2575 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576 		return -ENOMEM;
2577 	}
2578 
2579 	/* Attempt to submit the Reset Device command to the command ring */
2580 	spin_lock_irqsave(&xhci->lock, flags);
2581 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2582 
2583 	/* Enqueue pointer can be left pointing to the link TRB,
2584 	 * we must handle that
2585 	 */
2586 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587 		reset_device_cmd->command_trb =
2588 			xhci->cmd_ring->enq_seg->next->trbs;
2589 
2590 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591 	ret = xhci_queue_reset_device(xhci, slot_id);
2592 	if (ret) {
2593 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594 		list_del(&reset_device_cmd->cmd_list);
2595 		spin_unlock_irqrestore(&xhci->lock, flags);
2596 		goto command_cleanup;
2597 	}
2598 	xhci_ring_cmd_db(xhci);
2599 	spin_unlock_irqrestore(&xhci->lock, flags);
2600 
2601 	/* Wait for the Reset Device command to finish */
2602 	timeleft = wait_for_completion_interruptible_timeout(
2603 			reset_device_cmd->completion,
2604 			USB_CTRL_SET_TIMEOUT);
2605 	if (timeleft <= 0) {
2606 		xhci_warn(xhci, "%s while waiting for reset device command\n",
2607 				timeleft == 0 ? "Timeout" : "Signal");
2608 		spin_lock_irqsave(&xhci->lock, flags);
2609 		/* The timeout might have raced with the event ring handler, so
2610 		 * only delete from the list if the item isn't poisoned.
2611 		 */
2612 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613 			list_del(&reset_device_cmd->cmd_list);
2614 		spin_unlock_irqrestore(&xhci->lock, flags);
2615 		ret = -ETIME;
2616 		goto command_cleanup;
2617 	}
2618 
2619 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620 	 * unless we tried to reset a slot ID that wasn't enabled,
2621 	 * or the device wasn't in the addressed or configured state.
2622 	 */
2623 	ret = reset_device_cmd->status;
2624 	switch (ret) {
2625 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2628 				slot_id,
2629 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630 		xhci_info(xhci, "Not freeing device rings.\n");
2631 		/* Don't treat this as an error.  May change my mind later. */
2632 		ret = 0;
2633 		goto command_cleanup;
2634 	case COMP_SUCCESS:
2635 		xhci_dbg(xhci, "Successful reset device command.\n");
2636 		break;
2637 	default:
2638 		if (xhci_is_vendor_info_code(xhci, ret))
2639 			break;
2640 		xhci_warn(xhci, "Unknown completion code %u for "
2641 				"reset device command.\n", ret);
2642 		ret = -EINVAL;
2643 		goto command_cleanup;
2644 	}
2645 
2646 	/* Free up host controller endpoint resources */
2647 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648 		spin_lock_irqsave(&xhci->lock, flags);
2649 		/* Don't delete the default control endpoint resources */
2650 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651 		spin_unlock_irqrestore(&xhci->lock, flags);
2652 	}
2653 
2654 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655 	last_freed_endpoint = 1;
2656 	for (i = 1; i < 31; ++i) {
2657 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
2658 
2659 		if (ep->ep_state & EP_HAS_STREAMS) {
2660 			xhci_free_stream_info(xhci, ep->stream_info);
2661 			ep->stream_info = NULL;
2662 			ep->ep_state &= ~EP_HAS_STREAMS;
2663 		}
2664 
2665 		if (ep->ring) {
2666 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667 			last_freed_endpoint = i;
2668 		}
2669 	}
2670 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2672 	ret = 0;
2673 
2674 command_cleanup:
2675 	xhci_free_command(xhci, reset_device_cmd);
2676 	return ret;
2677 }
2678 
2679 /*
2680  * At this point, the struct usb_device is about to go away, the device has
2681  * disconnected, and all traffic has been stopped and the endpoints have been
2682  * disabled.  Free any HC data structures associated with that device.
2683  */
2684 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2685 {
2686 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687 	struct xhci_virt_device *virt_dev;
2688 	unsigned long flags;
2689 	u32 state;
2690 	int i, ret;
2691 
2692 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693 	/* If the host is halted due to driver unload, we still need to free the
2694 	 * device.
2695 	 */
2696 	if (ret <= 0 && ret != -ENODEV)
2697 		return;
2698 
2699 	virt_dev = xhci->devs[udev->slot_id];
2700 
2701 	/* Stop any wayward timer functions (which may grab the lock) */
2702 	for (i = 0; i < 31; ++i) {
2703 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2705 	}
2706 
2707 	spin_lock_irqsave(&xhci->lock, flags);
2708 	/* Don't disable the slot if the host controller is dead. */
2709 	state = xhci_readl(xhci, &xhci->op_regs->status);
2710 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
2712 		xhci_free_virt_device(xhci, udev->slot_id);
2713 		spin_unlock_irqrestore(&xhci->lock, flags);
2714 		return;
2715 	}
2716 
2717 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2718 		spin_unlock_irqrestore(&xhci->lock, flags);
2719 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720 		return;
2721 	}
2722 	xhci_ring_cmd_db(xhci);
2723 	spin_unlock_irqrestore(&xhci->lock, flags);
2724 	/*
2725 	 * Event command completion handler will free any data structures
2726 	 * associated with the slot.  XXX Can free sleep?
2727 	 */
2728 }
2729 
2730 /*
2731  * Checks if we have enough host controller resources for the default control
2732  * endpoint.
2733  *
2734  * Must be called with xhci->lock held.
2735  */
2736 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2737 {
2738 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739 		xhci_dbg(xhci, "Not enough ep ctxs: "
2740 				"%u active, need to add 1, limit is %u.\n",
2741 				xhci->num_active_eps, xhci->limit_active_eps);
2742 		return -ENOMEM;
2743 	}
2744 	xhci->num_active_eps += 1;
2745 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2746 			xhci->num_active_eps);
2747 	return 0;
2748 }
2749 
2750 
2751 /*
2752  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753  * timed out, or allocating memory failed.  Returns 1 on success.
2754  */
2755 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2756 {
2757 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2758 	unsigned long flags;
2759 	int timeleft;
2760 	int ret;
2761 
2762 	spin_lock_irqsave(&xhci->lock, flags);
2763 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764 	if (ret) {
2765 		spin_unlock_irqrestore(&xhci->lock, flags);
2766 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2767 		return 0;
2768 	}
2769 	xhci_ring_cmd_db(xhci);
2770 	spin_unlock_irqrestore(&xhci->lock, flags);
2771 
2772 	/* XXX: how much time for xHC slot assignment? */
2773 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774 			USB_CTRL_SET_TIMEOUT);
2775 	if (timeleft <= 0) {
2776 		xhci_warn(xhci, "%s while waiting for a slot\n",
2777 				timeleft == 0 ? "Timeout" : "Signal");
2778 		/* FIXME cancel the enable slot request */
2779 		return 0;
2780 	}
2781 
2782 	if (!xhci->slot_id) {
2783 		xhci_err(xhci, "Error while assigning device slot ID\n");
2784 		return 0;
2785 	}
2786 
2787 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788 		spin_lock_irqsave(&xhci->lock, flags);
2789 		ret = xhci_reserve_host_control_ep_resources(xhci);
2790 		if (ret) {
2791 			spin_unlock_irqrestore(&xhci->lock, flags);
2792 			xhci_warn(xhci, "Not enough host resources, "
2793 					"active endpoint contexts = %u\n",
2794 					xhci->num_active_eps);
2795 			goto disable_slot;
2796 		}
2797 		spin_unlock_irqrestore(&xhci->lock, flags);
2798 	}
2799 	/* Use GFP_NOIO, since this function can be called from
2800 	 * xhci_discover_or_reset_device(), which may be called as part of
2801 	 * mass storage driver error handling.
2802 	 */
2803 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805 		goto disable_slot;
2806 	}
2807 	udev->slot_id = xhci->slot_id;
2808 	/* Is this a LS or FS device under a HS hub? */
2809 	/* Hub or peripherial? */
2810 	return 1;
2811 
2812 disable_slot:
2813 	/* Disable slot, if we can do it without mem alloc */
2814 	spin_lock_irqsave(&xhci->lock, flags);
2815 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816 		xhci_ring_cmd_db(xhci);
2817 	spin_unlock_irqrestore(&xhci->lock, flags);
2818 	return 0;
2819 }
2820 
2821 /*
2822  * Issue an Address Device command (which will issue a SetAddress request to
2823  * the device).
2824  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825  * we should only issue and wait on one address command at the same time.
2826  *
2827  * We add one to the device address issued by the hardware because the USB core
2828  * uses address 1 for the root hubs (even though they're not really devices).
2829  */
2830 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2831 {
2832 	unsigned long flags;
2833 	int timeleft;
2834 	struct xhci_virt_device *virt_dev;
2835 	int ret = 0;
2836 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837 	struct xhci_slot_ctx *slot_ctx;
2838 	struct xhci_input_control_ctx *ctrl_ctx;
2839 	u64 temp_64;
2840 
2841 	if (!udev->slot_id) {
2842 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2843 		return -EINVAL;
2844 	}
2845 
2846 	virt_dev = xhci->devs[udev->slot_id];
2847 
2848 	if (WARN_ON(!virt_dev)) {
2849 		/*
2850 		 * In plug/unplug torture test with an NEC controller,
2851 		 * a zero-dereference was observed once due to virt_dev = 0.
2852 		 * Print useful debug rather than crash if it is observed again!
2853 		 */
2854 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855 			udev->slot_id);
2856 		return -EINVAL;
2857 	}
2858 
2859 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2860 	/*
2861 	 * If this is the first Set Address since device plug-in or
2862 	 * virt_device realloaction after a resume with an xHCI power loss,
2863 	 * then set up the slot context.
2864 	 */
2865 	if (!slot_ctx->dev_info)
2866 		xhci_setup_addressable_virt_dev(xhci, udev);
2867 	/* Otherwise, update the control endpoint ring enqueue pointer. */
2868 	else
2869 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2870 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2872 
2873 	spin_lock_irqsave(&xhci->lock, flags);
2874 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875 					udev->slot_id);
2876 	if (ret) {
2877 		spin_unlock_irqrestore(&xhci->lock, flags);
2878 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2879 		return ret;
2880 	}
2881 	xhci_ring_cmd_db(xhci);
2882 	spin_unlock_irqrestore(&xhci->lock, flags);
2883 
2884 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886 			USB_CTRL_SET_TIMEOUT);
2887 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888 	 * the SetAddress() "recovery interval" required by USB and aborting the
2889 	 * command on a timeout.
2890 	 */
2891 	if (timeleft <= 0) {
2892 		xhci_warn(xhci, "%s while waiting for a slot\n",
2893 				timeleft == 0 ? "Timeout" : "Signal");
2894 		/* FIXME cancel the address device command */
2895 		return -ETIME;
2896 	}
2897 
2898 	switch (virt_dev->cmd_status) {
2899 	case COMP_CTX_STATE:
2900 	case COMP_EBADSLT:
2901 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902 				udev->slot_id);
2903 		ret = -EINVAL;
2904 		break;
2905 	case COMP_TX_ERR:
2906 		dev_warn(&udev->dev, "Device not responding to set address.\n");
2907 		ret = -EPROTO;
2908 		break;
2909 	case COMP_DEV_ERR:
2910 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911 				"device command.\n");
2912 		ret = -ENODEV;
2913 		break;
2914 	case COMP_SUCCESS:
2915 		xhci_dbg(xhci, "Successful Address Device command\n");
2916 		break;
2917 	default:
2918 		xhci_err(xhci, "ERROR: unexpected command completion "
2919 				"code 0x%x.\n", virt_dev->cmd_status);
2920 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2922 		ret = -EINVAL;
2923 		break;
2924 	}
2925 	if (ret) {
2926 		return ret;
2927 	}
2928 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931 		 udev->slot_id,
2932 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933 		 (unsigned long long)
2934 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2936 			(unsigned long long)virt_dev->out_ctx->dma);
2937 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2939 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2941 	/*
2942 	 * USB core uses address 1 for the roothubs, so we add one to the
2943 	 * address given back to us by the HC.
2944 	 */
2945 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946 	/* Use kernel assigned address for devices; store xHC assigned
2947 	 * address locally. */
2948 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949 		+ 1;
2950 	/* Zero the input context control for later use */
2951 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952 	ctrl_ctx->add_flags = 0;
2953 	ctrl_ctx->drop_flags = 0;
2954 
2955 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2956 
2957 	return 0;
2958 }
2959 
2960 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961  * internal data structures for the device.
2962  */
2963 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964 			struct usb_tt *tt, gfp_t mem_flags)
2965 {
2966 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967 	struct xhci_virt_device *vdev;
2968 	struct xhci_command *config_cmd;
2969 	struct xhci_input_control_ctx *ctrl_ctx;
2970 	struct xhci_slot_ctx *slot_ctx;
2971 	unsigned long flags;
2972 	unsigned think_time;
2973 	int ret;
2974 
2975 	/* Ignore root hubs */
2976 	if (!hdev->parent)
2977 		return 0;
2978 
2979 	vdev = xhci->devs[hdev->slot_id];
2980 	if (!vdev) {
2981 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982 		return -EINVAL;
2983 	}
2984 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985 	if (!config_cmd) {
2986 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2987 		return -ENOMEM;
2988 	}
2989 
2990 	spin_lock_irqsave(&xhci->lock, flags);
2991 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2996 	if (tt->multi)
2997 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2998 	if (xhci->hci_version > 0x95) {
2999 		xhci_dbg(xhci, "xHCI version %x needs hub "
3000 				"TT think time and number of ports\n",
3001 				(unsigned int) xhci->hci_version);
3002 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003 		/* Set TT think time - convert from ns to FS bit times.
3004 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3006 		 *
3007 		 * xHCI 1.0: this field shall be 0 if the device is not a
3008 		 * High-spped hub.
3009 		 */
3010 		think_time = tt->think_time;
3011 		if (think_time != 0)
3012 			think_time = (think_time / 666) - 1;
3013 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014 			slot_ctx->tt_info |=
3015 				cpu_to_le32(TT_THINK_TIME(think_time));
3016 	} else {
3017 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018 				"TT think time or number of ports\n",
3019 				(unsigned int) xhci->hci_version);
3020 	}
3021 	slot_ctx->dev_state = 0;
3022 	spin_unlock_irqrestore(&xhci->lock, flags);
3023 
3024 	xhci_dbg(xhci, "Set up %s for hub device.\n",
3025 			(xhci->hci_version > 0x95) ?
3026 			"configure endpoint" : "evaluate context");
3027 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3029 
3030 	/* Issue and wait for the configure endpoint or
3031 	 * evaluate context command.
3032 	 */
3033 	if (xhci->hci_version > 0x95)
3034 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035 				false, false);
3036 	else
3037 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038 				true, false);
3039 
3040 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3042 
3043 	xhci_free_command(xhci, config_cmd);
3044 	return ret;
3045 }
3046 
3047 int xhci_get_frame(struct usb_hcd *hcd)
3048 {
3049 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050 	/* EHCI mods by the periodic size.  Why? */
3051 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3052 }
3053 
3054 MODULE_DESCRIPTION(DRIVER_DESC);
3055 MODULE_AUTHOR(DRIVER_AUTHOR);
3056 MODULE_LICENSE("GPL");
3057 
3058 static int __init xhci_hcd_init(void)
3059 {
3060 #ifdef CONFIG_PCI
3061 	int retval = 0;
3062 
3063 	retval = xhci_register_pci();
3064 
3065 	if (retval < 0) {
3066 		printk(KERN_DEBUG "Problem registering PCI driver.");
3067 		return retval;
3068 	}
3069 #endif
3070 	/*
3071 	 * Check the compiler generated sizes of structures that must be laid
3072 	 * out in specific ways for hardware access.
3073 	 */
3074 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077 	/* xhci_device_control has eight fields, and also
3078 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3079 	 */
3080 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3088 	return 0;
3089 }
3090 module_init(xhci_hcd_init);
3091 
3092 static void __exit xhci_hcd_cleanup(void)
3093 {
3094 #ifdef CONFIG_PCI
3095 	xhci_unregister_pci();
3096 #endif
3097 }
3098 module_exit(xhci_hcd_cleanup);
3099